WorldWideScience

Sample records for biological activity

  1. Biological activity determination

    Czech Academy of Sciences Publication Activity Database

    Madronová, L.; Novák, J.; Kubíček, J.; Antošová, B.; Kozler, J.; Novák, František

    New York: Nova Science Publisher, 2011 - (Madronová, L.), s. 85-103. (Chemistry Research and Applications). ISBN 978-1-61668-965-0 Institutional research plan: CEZ:AV0Z60660521 Keywords : biological activity * determination * potassium humate samples Subject RIV: CB - Analytical Chemistry, Separation

  2. Brassinosteroids: synthesis and biological activities

    Czech Academy of Sciences Publication Activity Database

    Oklešťková, Jana; Rárová, Lucie; Kvasnica, Miroslav; Strnad, Miroslav

    2015-01-01

    Roč. 14, č. 6 (2015), s. 1053-1072. ISSN 1568-7767 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Brassinosteroids * Chemical synthesis * Plant biological activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.407, year: 2014

  3. Brassinosteroids and their Biological Activities

    Czech Academy of Sciences Publication Activity Database

    Oklešťková, Jana; Rárová, Lucie; Strnad, Miroslav

    Vol. Part XIII. Heidelberg: Springer Verlag, 2013 - (Ramawat, K.; Mérillon, J.), s. 3851-3871 ISBN 978-3-642-22143-9 R&D Projects: GA AV ČR IAA400550801 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional support: RVO:61389030 Keywords : Anticancer activity * apoptosis * bioassay Subject RIV: EB - Genetics ; Molecular Biology

  4. Biological activity of guanidino purines

    Czech Academy of Sciences Publication Activity Database

    Česnek, Michal; Holý, Antonín

    Marburg : University of Marburg, 2006. s. 85. ISBN 3-89703-685-1. [Joint Meeting of the Czech, German and Hungarian Pharmaceutical Societies. 04.10.2006-07.10.2006, Marburg] R&D Projects: GA MŠk(CZ) 1M0508 Grant ostatní: Descartes Prize(XE) HPAW-2002-100096 Institutional research plan: CEZ:AV0Z40550506 Keywords : biological activity * guanidino purines Subject RIV: CC - Organic Chemistry

  5. Imidazole: Having Versatile Biological Activities

    Directory of Open Access Journals (Sweden)

    Amita Verma

    2013-01-01

    Full Text Available Imidazoles have occupied a unique position in heterocyclic chemistry, and its derivatives have attracted considerable interests in recent years for their versatile properties in chemistry and pharmacology. Imidazole is nitrogen-containing heterocyclic ring which possesses biological and pharmaceutical importance. Thus, imidazole compounds have been an interesting source for researchers for more than a century. The imidazole ring is a constituent of several important natural products, including purine, histamine, histidine, and nucleic acid. Being a polar and ionisable aromatic compound, it improves pharmacokinetic characteristics of lead molecules and thus is used as a remedy to optimize solubility and bioavailability parameters of proposed poorly soluble lead molecules. There are several methods used for the synthesis of imidazole-containing compounds, and also their various structure reactions offer enormous scope in the field of medicinal chemistry. The imidazole derivatives possess extensive spectrum of biological activities such as antibacterial, anticancer, antitubercular, antifungal, analgesic, and anti-HIV activities. This paper aims to review the biological activities of imidazole during the past years.

  6. Biological Activities of Scolopendrid Pharmacopuncture

    Directory of Open Access Journals (Sweden)

    Kim Sung-Chul

    2010-09-01

    Full Text Available 2Reactive Oxygen Species(ROS are continuously produced at a high rate as a by- product of aerobic metabolism. Since tissue damage by free radical increases with age, the reactive oxygen species(ROS such as hydrogen peroxide(H2O2, nitric oxide(NO. Several lines of evidence provided that ROS appears to cause to develop aging-related various diseases such as cancer, arthritis, cardiovascular disease. Our reserch objective was to examine the in vitro biological activity of Scolopendrid Pharmacopuncture, including the total poly-phenol content, DPPH radical scavenging, ABTS radical scavenging, Superoxide dismutase(SOD-like activity, Nitrite scavenging ability. The total poly-phenol contents of Scolopendrid Pharmacopuncture was 35.859mg/L. Elctron donation ability on DPPH was 36.82%. The 2,2'-azinobis-3-ehtlbezothiazoline-6- sulfonic acid radical decolorization (ABTS was 84.7%. The superoxide dismutase (SOD-like activities of Scolopendrid Pharmacopuncture was 44.33%. The nitrite scavenging effects were pH dependent, and were highest at pH 1.5(45.2% and lowest at pH 6.0(11.3%. We conclude that Scolopendrid Pharmacopuncture may be useful as potential sources of antioxidant.

  7. BIOLOGICALLY ACTIVE TRITERPENOIDS USABLE AS PRODRUGS

    Czech Academy of Sciences Publication Activity Database

    Urban, M.; Kvasnica, Miroslav; Dickinson, N.J.; Sarek, J.

    Hauppauge NY : Nova Science Pub. Inc, 2015, s. 25-49. ISBN 978-1-63463-656-8 R&D Projects: GA MŠk(CZ) LO1204; GA MŠk(CZ) LO1304 Institutional support: RVO:61389030 Keywords : triterpenoids * therapeutics * biological activity Subject RIV: EB - Genetics ; Molecular Biology http://site.ebrary.com/lib/alltitles/docDetail.action?docID=11006921

  8. Biologically active substance usable in organic agriculture

    OpenAIRE

    Šircová, Alena

    2012-01-01

    Organic farming system is a model of continuous agricultural activities, in that no synthetic pesticides, herbicides, growth regulators or GMOs may be used for plant protection. Such biological plant protection is allowed, where different antagonistic relationships between individual micro- and macro-organisms and pests occur. Certain biologically active substances contained in plants have a positive effect in protecting plants from pests and diseases as well as extracts from them functio...

  9. Biological Activities of Asparagus Racemosus

    OpenAIRE

    Potduang, Buppachart; Meeploy, Maneerat; Giwanon, Rattanasiri; Benmart, Yaowaluck; Kaewduang, Montree; Supatanakul, Winai

    2008-01-01

    Cytotoxic, antioxidant, tyrosinase inhibitory, antimicrobial activities of the crude ethanol extract of dry powdered roots of Asparagus racemosus (Liliaceae) were investigated. The LC50 to brine shrimp was 2189.49 µg/ml; the EC50 for DPPH radical scavenging was 381.91 µg/ml; the IC50 for tyrosinase inhibition was 7.98 mg/ml. The extract was active at 5–20 mg/ml against various pathogenic microbial (16 species, 18 strains) using the agar dilution assay, with the minimum inhibitory concentratio...

  10. SYNTHESIS AND BIOLOGICAL ACTIVITY OF FURAN DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Verma Anupam

    2011-04-01

    Full Text Available Furan derivative are an important class of heterocyclic compound that possess important biological properties. From last few decades a considerable amount of attention has been focussed on synthesis of Furan derivatives and screening them for different pharmacological activities.The furan ring system is the basic skeleton of numerous compounds possessing cardiovascular activities. An iodinated lipophilic furan derivative is widely used in the treatment of ventricular and atrial fibrillation. These moieties are widely employed as antibacterial, antiviral, anti-inflammatory, antifungal, antitumor, Antihyperglycemic, Analgesic, Anticonvulsant etc. Slight change in substitution pattern in furan nucleus causes distinguishable difference in their biological activities. In this review we are discussing about synthesis and various biological activities of newly synthesized furan derivatives.

  11. Xanthane sesquiterpenoids: structure, synthesis and biological activity.

    Science.gov (United States)

    Vasas, Andrea; Hohmann, Judit

    2011-04-01

    The aim of this review is to survey the naturally occurring xanthanes and xanthanolides, their structures, biological activities, structure–activity relationships and synthesis. There has been no comprehensive review of this topic previously. On the basis of 126 references, 112 compounds are summarized. PMID:21321751

  12. Biological activities of substituted trichostatic acid derivatives

    Indian Academy of Sciences (India)

    Cédric Charrier; Joëlle Roche; Jean-Pierre Gesson; Philippe Bertrand

    2009-07-01

    New substituted trichostatic acid derivatives have been synthesized and evaluated for their biological activities towards the H661 non-small lung cancer cell line. These syntheses were achieved by alkylation of propiophenones to introduce the side chain with a terminal precursor of hydroxamic acid and aminobenzamide derivatives. The first fluorinated derivatives of trichostatic acid are described, such as 6-fluoro trichostatin A, with antiproliferative activities in the micromolar range and with histone deacetylase inhibitory activity.

  13. New biologically active hydrogen sulfide donors.

    Science.gov (United States)

    Roger, Thomas; Raynaud, Francoise; Bouillaud, Frédéric; Ransy, Céline; Simonet, Serge; Crespo, Christine; Bourguignon, Marie-Pierre; Villeneuve, Nicole; Vilaine, Jean-Paul; Artaud, Isabelle; Galardon, Erwan

    2013-11-25

    Generous donors: The dithioperoxyanhydrides (CH3 COS)2 , (PhCOS)2 , CH3 COSSCO2 Me and PhCOSSCO2 Me act as thiol-activated hydrogen sulfide donors in aqueous buffer solution. The most efficient donor (CH3 COS)2 can induce a biological response in cells, and advantageously replace hydrogen sulfide in ex vivo vascular studies. PMID:24115650

  14. BENZIMIDAZOLES: THE LATEST INFORMATION ON BIOLOGICAL ACTIVITIES

    OpenAIRE

    Singh Gurvinder; Kaur Maninderjit; Chander Mohan

    2013-01-01

    Benzimidazole is a heterocyclic aromatic organic compound. It is an important pharmacophore and a privileged structure in medicinal chemistry. Benzimidazole and its derivatives play an important role in medical field with large number of Pharmacological activities such as antimicrobial, antiviral, antidiabetic and anticancer activity. This review is summarized to know about the chemistry of different derivatives of benzimidazoles along with their biological actions such as antioxidant, antimi...

  15. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    OpenAIRE

    A. S. Kayshev; N. S. Kaysheva

    2014-01-01

    A content of biologically active compounds (BAC) with signified pharmacological activity in distillers grains was proved. It is prospective for applications of these grains as a raw material resource of pharmaceuticals. A composition of BAC distillers grains received from wheat, corn, barley, millet at different spirit enterprises which use hydro fermentative grain processing. Considering polydispersity of distillers grains they were separated on solid and liquid phases preliminary. Physical ...

  16. Biological activity of SV40 DNA

    International Nuclear Information System (INIS)

    This thesis deals with a study on the biological activity of SV40 DNA. The transforming activity of SV40 DNA and DNA fragments is investigated in order to define as precisely as possible the area of the viral genome that is involved in the transformation. The infectivity of SV40 DNA is used to study the defective repair mechanisms of radiation damages of human xeroderma pigmentosum cells. (C.F.)

  17. SYNTHESIS AND BIOLOGICAL ACTIVITY OF PHENOTHIAZINE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Sinha Shweta

    2011-04-01

    Full Text Available Phenothiazines are heterocyclic molecules containing two benzene rings linked in a tricyclic system through nitrogen and sulfur atoms.Phenothiazine derivatives having amino alkyl side chain and these are connected to the nitrogen atom of heterocyclic unit playing crucial role in medicinal chemistry.From last few decades a considerable amount of attention has been focussed on synthesis of phenothiazines derivatives and screening them for different pharmacological activities. The investigation of substituted 10H-Phenothiazines has steadily strong growth because they exhibit a wide range of applications. These moieties are widely employed as antibacterial, antiviral, anti-inflammatory, anticancer, sedatives, tranquilizers agents etc. Slight change in substitution pattern in phenothiazine nucleus causes distinguishable difference in their biological activities. In this review we are discussing about synthesis and various biological activities of newly synthesized Phenothiazine derivatives.

  18. Glycosides from Marine Sponges (Porifera, Demospongiae: Structures, Taxonomical Distribution, Biological Activities and Biological Roles

    Directory of Open Access Journals (Sweden)

    Valentin A. Stonik

    2012-08-01

    Full Text Available Literature data about glycosides from sponges (Porifera, Demospongiae are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed.

  19. Glycosides from Marine Sponges (Porifera, Demospongiae): Structures, Taxonomical Distribution, Biological Activities and Biological Roles

    OpenAIRE

    Valentin A. Stonik; Makarieva, Tatyana N.; Vladimir I. Kalinin; Krasokhin, Vladimir B.; Ivanchina, Natalia V.

    2012-01-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed.

  20. Glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities and biological roles.

    Science.gov (United States)

    Kalinin, Vladimir I; Ivanchina, Natalia V; Krasokhin, Vladimir B; Makarieva, Tatyana N; Stonik, Valentin A

    2012-08-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed. PMID:23015769

  1. Neutron activation analysis of biological substances

    International Nuclear Information System (INIS)

    A Bowen cabbage sample was used as a reference material for the neutron activation studies, and the method was checked by the analysis of other biological substances (blood or serum etc.). For nondestructive measurements also some non-trace elements were determined in order to decide whether the activation analysis is a useful means for such measurements. The new activation analysis procedure was used for biomedical studies as, e.g., for trace element determination in body fluids, and for the analysis of inorganic components in air samples. (R.P.)

  2. Biological activities of selected basidiomycetes from Yemen.

    Science.gov (United States)

    Al-Fatimi, M; Schröder, G; Kreisel, H; Lindequist, U

    2013-03-01

    In a previous paper we demonstrated the results of biological screening of Yemeni basidiomycetes. The present study was aimed to investigate the antimicrobial and the antioxidant activity of further basidiomycetes collected in Yemen. Dichloromethane, methanol and aqueous extracts of the fruiting bodies of 25 species were screened in vitro for their antibacterial activities against three Gram-positive bacteria (Staphyloccocus aureus, Bacillus subtilis, Micrococcus flavus) and two Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), against six human fungal pathogens (Candida albicans, Candida krusei, Aspergillus fumigatus, Mucor sp., Microsporum gypseum, Trichophyton mentagrophytes) and against one non human pathogenic fungus (Candida maltosa). The results indicated that 75 extracts exhibited activity against one or more of the bacteria. The methanol extracts of Agaricus cf. bernardii, Agrocybe pediades, Chlorophyllum molybdites, Coriolopsis polyzona, Ganoderma xylonoides, Pycnoporus sanguineus, Trametes lactinea and Trametes cingulata showed activity against all tested bacteria. The highest antibacterial activity was exhibited by methanol extracts from Chlorophyllum molybdites, Ganoderma xylonoides and Trametes cingulata and Agaricus cf. bernardii, Agrocybe pediades, Coriolopsis polyzona, Pycnoporus sanguineus and Trametes lactinea. The methanol extracts of Chlorophyllum molybdites, Ganoderma xylonoides and Pycnoporus sanguineus showed considerable antifungal activities against the tested fungal strains. Strong antioxidative effects employing the DPPH assay were exhibited by methanol extracts from Chlorophyllum molybdites, Ganoderma xylonoides, Hexagonia velutina, Pycnoporus sanguineus, Trametes lactinea and Trametes cingulata. Our previous and presented studies about 48 basidiomycetes collected in Yemen provide evidence that basidiomycetes from the Arabic region so far should attract more attention as potential source for new biologically active

  3. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  4. Litchi Flavonoids: Isolation, Identification and Biological Activity

    OpenAIRE

    Jiangrong Li; Yueming Jiang

    2007-01-01

    The current status of the isolation, identification, biological activity, utilization and development prospects of flavonoids found in litchi fruit pericarp (LFP) tissues is reviewed. LFP tissues account for approximately 15% by weight of the whole fresh fruit and are comprised of significant amount of flavonoids. The major flavonoids in ripe LFP include flavonols and anthocyanins. The major flavanols in the LFP are reported to be procyanidin B4, procyanidin B2 and epicatechin, while cyanindi...

  5. COTTAGE CHEESE PRODUCTS ENRICHED BIOLOGICALLY ACTIVE ADDITIVES

    OpenAIRE

    Салкинбаева Г. Т.; Байбалинова Г. М.; Смаилова М. Н.

    2015-01-01

    This article deals with a reliable means of improving the structure of supply and optimum balance of the diet of the population, is the use of biologically active additives in a daily diet of the people to food dietary supplements. Supplements such advantages as an expression of food oriented, high nutritional density, homogeneity, easy preparation and forms of transport, good taste allow us to use them successfully in catering.

  6. Radiometallating antibodies and biologically active peptides

    International Nuclear Information System (INIS)

    We have developed methods to radiolabel large molecules, using porphyrins as bifunctional chelating agents for radiometals. The porphyrins are substituted with an N-benzyl group to activate them for radiometallation under mild reaction conditions. Porphyrins that have on functional group for covalent attachment to other molecules cannot cause crosslinking. We have examined the labeling chemistry for antibodies, and we have also developed methods to label smaller biologically active molecules, such as autoantigenic peptides. The autoantigenic peptides, fragments of the acetylcholine receptor, are under investigation for myasthenia gravis research. The methods of covalent attachment of these bifunctional chelating agents to large molecules and the radiometallation chemistry will be discussed

  7. Biological Activities of Royal Jelly - Review

    Directory of Open Access Journals (Sweden)

    Crenguţa I. Pavel

    2011-10-01

    Full Text Available Royal jelly is a secretion product of the cephalic glands of nurse bees that has been used for centuries for itsextraordinary properties and health effects. This bibliographic study aims to review many of the scientific findingsand research that prove many of the remarkable various actions, effects and some uses of royal jelly. There are takeninto consideration numerous biological properties and effects of royal jelly: antioxidant, neurotrophic, hipoglicemiant, hipocholesterolemiant and hepatoprotective, hypotensive and blood pressure regulatory, antitumor, antibiotic, anti-inflammatory, immunomodulatory and anti-allergic, general tonic and antiaging. Royal jelly is one ofthe most studied bee products, but there still remains much to reveal about its biochemistry and biological activity infuture research for our health and life benefit.

  8. Biological activities of Curcuma longa L.

    Directory of Open Access Journals (Sweden)

    Araújo CAC

    2001-01-01

    Full Text Available There are several data in the literature indicating a great variety of pharmacological activities of Curcuma longa L. (Zingiberaceae, which exhibit anti-inflammatory, anti-human immunodeficiency virus, anti-bacteria, antioxidant effects and nematocidal activities. Curcumin is a major component in Curcuma longa L., being responsible for its biological actions. Other extracts of this plant has been showing potency too. In vitro, curcumin exhibits anti-parasitic, antispasmodic, anti-inflammatory and gastrointestinal effects; and also inhibits carcinogenesis and cancer growth. In vivo, there are experiments showing the anti-parasitic, anti-inflammatory potency of curcumin and extracts of C. longa L. by parenteral and oral application in animal models. In this present work we make an overview of the pharmacological activities of C. longa L., showing its importance.

  9. Receiving of iodoinsulin with preserved biological activity

    International Nuclear Information System (INIS)

    The paper presents a method of receiving iodoinsulin with preserved biological activity. As a raw material recrystallized bovine insulin produced by ''Polfa'' was used. Chloramine T was used as an oxidizing agent in the iodize reaction. Insulin was marked with 125I or 127I in the rate of molar concentration of NaI and insulin 0.6. The obtained product contained about 0.3 of iodine atom per one insulin molecule. Specific radioactivity of the iodoinsulin was between 77 and 147 μCi/μg. Such an insulin was in over 95% precipitable with trichloroacetic acid. Its immunological reactivity varied from 89% to 100% while biological activity, determined with the consumption of glucose by the fatty tissue of epididymis of rat, was 92% +- 24% of the native insulin activity. Half-life time of 125I insulin in the rat blood circulation was determined. Curve of the isotope disappearance was biphasic. Half-life time of the first phase (shorter one) was 0.64 +- 0.2 minute while the longer phase 8.89 +- 2.16 minutes. (author)

  10. Biological Activities of Polyphenols from Grapes

    Directory of Open Access Journals (Sweden)

    Hua-Bin Li

    2010-02-01

    Full Text Available The dietary consumption of grape and its products is associated with a lower incidence of degenerative diseases such as cardiovascular disease and certain types of cancers. Most recent interest has focused on the bioactive phenolic compounds in grape. Anthocyanins, flavanols, flavonols and resveratrol are the most important grape polyphenols because they possess many biological activities, such as antioxidant, cardioprotective, anticancer, anti-inflammation, antiaging and antimicrobial properties. This review summarizes current knowledge on the bioactivities of grape phenolics. The extraction, isolation and identification methods of polyphenols from grape as well as their bioavailability and potential toxicity also are included.

  11. Reconstructing Causal Biological Networks through Active Learning.

    Science.gov (United States)

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments. PMID:26930205

  12. Reconstructing Causal Biological Networks through Active Learning.

    Directory of Open Access Journals (Sweden)

    Hyunghoon Cho

    Full Text Available Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs, which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.

  13. Biological activities of Morus celtidifolia leaf extracts.

    Science.gov (United States)

    Viveros-Valdez, Ezequiel; Oranday-Cárdenas, Azucena; Rivas-Morales, Catalina; Verde-Star, María Julia; Carranza-Rosales, Pilar

    2015-07-01

    The aims of this research were to examine the antibacterial, cytotoxic and antiradical/antioxidant activities of the organic extracts obtained from the leaves of the medicinal plant Morus celtidifolia (Family: Moraceae). To evaluate its antimicrobial properties, M. celtidifolia was tested against the bacteria of medical importance: Bacillus subtilis, Staphyloccocus aureus, Enterococcus faecalis, Escherichia coli, Enterobacter cloacae and Enterobacter aerogenes. Cytotoxic activity was assessed by using the brine shrimp (Artemia salina) lethality assay and also by toxicity screening against human cancer cell lines: MCF-7 (human breast adenocarcinoma) and HeLa (cervix adenocarcinoma). The free radical-scavenging activity was determined by the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay. Results revealed that the hexanic extract has antibacterial activity only against Gram positive strains, while the methanolic extract showed better cytotoxic and antioxidant activities than the non- polar extract with a median lethal dose (LD₅₀) of 125μg/ml, 90μg/ml and 75μg/ml against A. salina, MCF-7 and HeLa cells respectively, and median effective concentration (EC₅₀) of 152μg/ml on radical scavenging assay. This is the first study reporting the biological activities of leaves of Morus celtidifolia. PMID:26142508

  14. Aminoderivatives of cycloalkanespirohydantoins: synthesis and biological activity.

    Science.gov (United States)

    Naydenova, Emilia; Pencheva, Nevena; Popova, Julita; Stoyanov, Neyko; Lazarova, Maria; Aleksiev, Boris

    2002-03-01

    3-Aminocycloalkanespiro-5-hydantoins were synthesized and their biological activity was studied. In contrast to hydantoins, these compounds failed to induce either anticonvulsive effects in the central nervous system or inhibitory effects on cholinergic contractions in the enteric nervous system. However, they exerted well pronounced, atropinsensitive, contractile effects on the guinea-pig ileum longitudinal muscle preparations. Structure-activity relationships established allow the assumption that: (i) the reduction of the ring size in the molecule of the spirohydantoins leads to an increase in the potency of the respective analogue to induce contractile effect; (ii) the introduction of -NH2 in position 3 increases the ability of all the compounds studied to exert contractions; (iii) the enlargement of the ring leads to: (1) an increase of the degree of desensitization of the preparations; and (2) a decrease (except 1a) of the potency of the analogues to exert contractile effects. PMID:11989796

  15. Biologically Active Metabolites Synthesized by Microalgae

    Directory of Open Access Journals (Sweden)

    Michele Greque de Morais

    2015-01-01

    Full Text Available Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.

  16. Spectroscopic study of biologically active glasses

    Science.gov (United States)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  17. Litchi Flavonoids: Isolation, Identification and Biological Activity

    Directory of Open Access Journals (Sweden)

    Yueming Jiang

    2007-04-01

    Full Text Available The current status of the isolation, identification, biological activity, utilization and development prospects of flavonoids found in litchi fruit pericarp (LFP tissues is reviewed. LFP tissues account for approximately 15% by weight of the whole fresh fruit and are comprised of significant amount of flavonoids. The major flavonoids in ripe LFP include flavonols and anthocyanins. The major flavanols in the LFP are reported to be procyanidin B4, procyanidin B2 and epicatechin, while cyanindin-3-rutinside, cyanidin-3-glucoside, quercetin-3-rutinosde and quercetin-3-glucoside are identified as the important anthocyanins. Litchi flavanols and anthocyanins exhibit good potential antioxidant activity. The hydroxyl radical and superoxide anion scavenging activities of procyanidin B2 are greater than those of procyanidin B4 and epicatechin, while epicatechin has the highest α,α-diphenyl-β-picrylhydrazyl radical (DPPH· scavenging activity. In addition to the antioxidant activity, LFP extract displays a dose- and time-dependent inhibitory effect on human breast cancer, which could be attributed, in part, to its inhibition of proliferation and induction of apoptosis in cancer cells through upregulation and down-regulation of multiple genes. Furthermore, various anticancer activities are observed for epicatechin, procyanidin B2, procyanidin B4 and the ethyl acetate fraction of LFP tissue extracts. Procyanidin B4 and the ethyl acetate fraction show a stronger inhibitory effect on HELF than MCF-7 proliferation, while epicatechin and procyanidin B2 have lower cytotoxicities towards MCF-7 and HELF than paclitaxel. It is therefore suggested that flavonoids from LFP might be potentially useful components for functional foods and/or anti-breast cancer drugs.

  18. Biological activity of ruthenium nitrosyl complexes.

    Science.gov (United States)

    Tfouni, Elia; Truzzi, Daniela Ramos; Tavares, Aline; Gomes, Anderson Jesus; Figueiredo, Leonardo Elias; Franco, Douglas Wagner

    2012-01-01

    Nitric oxide plays an important role in various biological processes, such as neurotransmission, blood pressure control, immunological responses, and antioxidant action. The control of its local concentration, which is crucial for obtaining the desired effect, can be achieved with exogenous NO-carriers. Coordination compounds, in particular ruthenium(III) and (II) amines, are good NO-captors and -deliverers. The chemical and photochemical properties of several ruthenium amine complexes as NO-carriers in vitro and in vivo have been reviewed. These nitrosyl complexes can stimulate mice hippocampus slices, promote the lowering of blood pressure in several in vitro and in vivo models, and control Trypanosoma cruzi and Leishmania major infections, and they are also effective against tumor cells in different models of cancer. These complexes can be activated chemically or photochemically, and the observed biological effects can be attributed to the presence of NO in the compound. Their efficiencies are explained on the basis of the [Ru(II)NO(+)](3+)/[Ru(II)NO(0)](2+) reduction potential, the specific rate constant for NO liberation from the [RuNO](2+) moiety, and the quantum yield of NO release. PMID:22178685

  19. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: MODELING

    Directory of Open Access Journals (Sweden)

    Brînduşa-Antonela SBÎRCEA

    2011-01-01

    Full Text Available By using active and participatory methods it is hoped that pupils will not only come to a deeper understanding of the issues involved, but also that their motivation will be heightened. Pupil involvement in their learning is essential. Moreover, by using a variety of teaching techniques, we can help students make sense of the world in different ways, increasing the likelihood that they will develop a conceptual understanding. The teacher must be a good facilitator, monitoring and supporting group dynamics. Modeling is an instructional strategy in which the teacher demonstrates a new concept or approach to learning and pupils learn by observing. In the teaching of biology the didactic materials are fundamental tools in the teaching-learning process. Reading about scientific concepts or having a teacher explain them is not enough. Research has shown that modeling can be used across disciplines and in all grade and ability level classrooms. Using this type of instruction, teachers encourage learning.

  20. Nonexercise activity thermogenesis (NEAT): environment and biology.

    Science.gov (United States)

    Levine, James A

    2004-05-01

    Nonexercise activity thermogenesis (NEAT) is the energy expended for everything that is not sleeping, eating, or sports-like exercise. It includes the energy expended walking to work, typing, performing yard work, undertaking agricultural tasks, and fidgeting. NEAT can be measured by one of two approaches. The first is to measure or estimate total NEAT. Here, total daily energy expenditure is measured, and from it "basal metabolic rate-plus-thermic effect of food" is subtracted. The second is the factoral approach, whereby the components of NEAT are quantified, and total NEAT is calculated by summing these components. The amount of NEAT that humans perform represents the product of the amount and types of physical activities and the thermogenic cost of each activity. The factors that impact a human's NEAT are readily divisible into environmental factors, such as occupation or dwelling within a "concrete jungle," and biological factors such as weight, gender, and body composition. The combined impact of these factors explains the substantial variance in human NEAT. The variability in NEAT might be viewed as random, but human and animal data contradict this. It appears that changes in NEAT subtly accompany experimentally induced changes in energy balance and are important in the physiology of weight change. Inadequate modulation of NEAT plus a sedentary lifestyle may thus be important in obesity. It then becomes intriguing to dissect mechanistic studies that delineate how NEAT is regulated into neural, peripheral, and humoral factors. A scheme is described in this review in which NEAT corresponds to a carefully regulated "tank" of physical activity that is crucial for weight control. PMID:15102614

  1. Potential biological activity of acacia honey.

    Science.gov (United States)

    Muhammad, Aliyu; Odunola, Oyeronke A; Ibrahim, Mohammed A; Sallau, Abdullahi B; Erukainure, Ochuko L; Aimola, Idown A; Malami, Ibrahim

    2016-01-01

    Recent advances in functional foods-based research have increasingly become an area of major interest because it affects human health and activities. Functional foods are classes of foods with health promoting and disease preventing properties in addition to multiple nutritional values and of such type is honey. Acacia honey is a type of honey produced by bees (Apis mellifera) fed on Acacia flowers, hence the name. This review focuses on the potential biological activities of Acacia honey which includes quality, antioxidant, immuno-modulatory, antiproliferative and neurological properties at in vitro and in vivo levels. Based on our review, Acacia honey used from various researches is of high purity, contains some bioactive compounds ranging from vitamins, phenolics, flavonoids and fatty acids. It's highly nutritional with strong antioxidant and immuno-modulatory potentials which may therefore be considered a potential candidate for both cancer prevention and treatment. Neurologically, it may be considered as a viable therapeutic agent in the management of Alzheimer's disease. PMID:26709666

  2. Biological Activities of Plant Pigments Betalains.

    Science.gov (United States)

    Gandía-Herrero, Fernando; Escribano, Josefa; García-Carmona, Francisco

    2016-04-25

    Betalains are a family of natural pigments present in most plants of the order Caryophyllales. They provide colors ranging from yellow to violet to structures that in other plants are colored by anthocyanins. These include not only edible fruits and roots but also flowers, stems, and bracts. The recent characterization of different bioactivities in experiments with betalain containing extracts and purified pigments has renewed the interest of the research community in these molecules used by the food industry as natural colorants. Studies with multiple cancer cell lines have demonstrated a high chemopreventive potential that finds in vitro support in a strong antiradical and antioxidant activity. Experiments in vivo with model animals and bioavailability studies reinforce the possible role played by betalains in the diet. This work provides a critical review of all the claimed biological activities of betalains, showing that the bioactivities described might be supported by the high antiradical capacity of their structural unit, betalamic acid. Although more investigations with purified compounds are needed, the current evidences suggest a strong health-promoting potential. PMID:25118005

  3. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    Directory of Open Access Journals (Sweden)

    A. S. Kayshev

    2014-01-01

    Full Text Available A content of biologically active compounds (BAC with signified pharmacological activity in distillers grains was proved. It is prospective for applications of these grains as a raw material resource of pharmaceuticals. A composition of BAC distillers grains received from wheat, corn, barley, millet at different spirit enterprises which use hydro fermentative grain processing. Considering polydispersity of distillers grains they were separated on solid and liquid phases preliminary. Physical and chemical characteristics of distillers grains' liquid base were identified. Elementary composition of distillers grains is signified by active accumulation of biogenic elements (phosphorus, potassium, magnesium, calcium, sodium, iron and low content of heavy metals. The solid phase of distillers grains accumulates carbon, hydrogen and nitrogen in high concentration. The liquid phase of distillers grains contains: proteins and amino acids (20-46%, reducing sugars (5,6%-17,5%, galacturonides (0,8-1,4%, ascorbic acid (6,2-11,4 mg%. The solid base of distillers grains contains: galacturonides (3,4-5,3%, fatty oil (8,4-11,1% with predomination of essential fatty acids, proteins and amino acids (2,1-2,5%, flavonoids (0,4-0,9%, tocopherols (3,4-7,7 mg%. A method of complex processing of distillers grains based on application of membrane filtering of liquid phase and liquid extraction by inorganic and organic solvents of solid phase, which allows almost full extraction of the sum of biologically active compounds (BAC from liquid phase (Biobardin BM and solid phase (Biobardin UL. Biobardin BM comprises the following elements: proteins and amino acids (41-69%, reducing sugars (3,5-15,6%, fatty oil (0,2-0,3%, flavonoids (0,2-0,7%, ascorbic acid (17-37 mg%. Biobardin UL includes: oligouronids (16,4-19,5%, proteins and amino acids (11-21%, fatty oil (3,2-4,9% which includes essential acids; flavonoids (0,6-1,5%, tocopherols (6,6-10,2 mg%, carotinoids (0,13-0,21 mg

  4. Biological activity of Serratia marcescens cytotoxin

    Directory of Open Access Journals (Sweden)

    G.V. Carbonell

    2003-03-01

    Full Text Available Serratia marcescens cytotoxin was purified to homogeneity by ion-exchange chromatography on a DEAE Sepharose Fast Flow column, followed by gel filtration chromatography on a Sephadex G100 column. The molecular mass of the cytotoxin was estimated to be about 50 kDa. Some biological properties of the cytotoxin were analyzed and compared with well-characterized toxins, such as VT1, VT2 and CNF from Escherichia coli and hemolysin produced by S. marcescens. The sensitivity of the cell lines CHO, HeLa, HEp-2, Vero, BHK-21, MA 104 and J774 to the cytotoxin was determined by the cell viability assay using neutral red. CHO and HEp-2 were highly sensitive, with massive cellular death after 1 h of treatment, followed by BHK-21, HeLa, Vero and J774 cells, while MA 104 was insensitive to the toxin. Cytotoxin induced morphological changes such as cell rounding with cytoplasmic retraction and nuclear compactation which were evident 15 min after the addition of cytotoxin. The cytotoxic assays show that 15 min of treatment with the cytotoxin induced irreversible intoxication of the cells, determined by loss of cell viability. Concentrations of 2 CD50 (0.56 µg/ml of purified cytotoxin did not present any hemolytic activity, showing that the cytotoxin is distinct from S. marcescens hemolysin. Antisera prepared against S. marcescens cytotoxin did not neutralize the cytotoxic activity of VT1, VT2 or CNF toxin, indicating that these toxins do not share antigenic determinants with cytotoxin. Moreover, we did not detect gene sequences for any of these toxins in S. marcescens by PCR assay. These results suggest that S. marcescens cytotoxin is not related to any of these toxins from E. coli.

  5. Protease activated receptors (PARS) mediation in gyroxin biological activity

    International Nuclear Information System (INIS)

    Gyroxin is a serine protease enzyme from the South American rattlesnake (Crotalus durissus terrificus) venom; it is only partially characterized and has multiple activities. Gyroxin induces blood coagulation, blood pressure decrease and a neurotoxic behavior named barrel rotation. The mechanisms involved in this neurotoxic activity are not known. Whereas gyroxin is a member of enzymes with high potential to become a new drug with clinical applications such as thrombin, batroxobin, ancrod, tripsyn and kalicrein, it is important to find out how gyroxin works. The analysis on agarose gel electrophoresis and circular dichroism confirmed the molecules' integrity and purity. The gyroxin intravenous administration in mice proved its neurotoxicity (barrel rotation). In vivo studies employing intravital microscopy proved that gyroxin induces vasodilation with the participation of protease activated receptors (PARs), nitric oxide and Na+K+ATPase. The leukocytes' adherence and rolling counting indicated that gyroxin has no pro inflammatory activity. Gyroxin induced platelet aggregation, which was blocked by inhibitors of PAR1 and PAR4 receptors (SCH 79797 and tcY-NH2, respectively). Finally, it was proved that the gyroxin temporarily alter the permeability of the blood brain barrier (BBB). Our study has shown that both the protease-activated receptors and nitric oxide are mediators involved in the biological activities of gyroxin. (author)

  6. Low intensity ultrasound stimulates biological activity of aerobic activated sludge

    Institute of Scientific and Technical Information of China (English)

    LIU Hong; YAN Yixin; WANG Wenyan; YU Yongyong

    2007-01-01

    This work aims to explore a procedure to improve biological wastewater treatment efficiency using low intensity ultrasound.The aerobic activated sludge from a municipal wastewater treatment plant was used as the experimental material.Oxygen uptake rate(OUR)of the activated sludge (AS)was determined to indicate the changes of AS activity stimulated by ultrasound at 35 kHZ for 0-40 min with ultrasonic intensities of 0-1.2 W/cm2.The highest OUR was observed at the ultrasonic intensity of 0.3 W/cm2 and an irradiation period of 10 min;more than 15% increase was achieved immediately after sonication.More significantly,the AS activity stimulated by ultrasound could last 24 h after sonication,and the AS activity achieved its peak value within 8 h after sonication.or nearly 100% higher than the initial level after sonication.Therefore,to improve the wastewater treatment efficiency of bioreactors,ultrasound with an intensity of 0.3 W/cm2 could be employed to irradiate a part of the AS in the bioreactor for 10 min every 8 h.

  7. Reconstructing Causal Biological Networks through Active Learning

    OpenAIRE

    Cho, Hyunghoon; Berger, Bonnie; Peng, Jian

    2016-01-01

    Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are ...

  8. The ice nucleation activity of biological aerosols

    Science.gov (United States)

    Grothe, H.; Pummer, B.; Bauer, H.; Bernardi, J.

    2012-04-01

    Primary Biological Aerosol Particles (PBAPs), including bacteria, spores and pollen may be important for several atmospheric processes. Particularly, the ice nucleation caused by PBAPs is a topic of growing interest, since their impact on ice cloud formation and thus on radiative forcing, an important parameter in global climate is not yet fully understood. In laboratory model studies we investigated the ice nucleation activity of selected PBAPs. We studied the immersion mode freezing using water-oil emulsion, which we observed by optical microscopy. We particularly focused on pollen. We show that pollen of different species strongly differ in their ice nucleation behavior. The average freezing temperatures in laboratory experiments range from 240 K to 255 K. As the most efficient nuclei (silver birch, Scots pine and common juniper pollen) have a distribution area up to the Northern timberline, their ice nucleation activity might be a cryoprotective mechanism. For comparison the ice nucleation activity of Snomax, fungal spores, and mushrooms will be discussed as well. In the past, pollen have been rejected as important atmospheric IN, as they are not as abundant in the atmosphere as bacteria or mineral dust and are too heavy to reach higher altitudes. However, in our experiments (Pummer et al. 2011) it turned out that water, which had been in contact with pollen and then been separated from the bodies, nucleates as good as the pollen grains themselves. So the ice nuclei have to be easily-suspendable macromolecules (100-300 kDa) located on the pollen. Once extracted, they can be distributed further through the atmosphere than the heavy pollen grains and so augment the impact of pollen on ice cloud formation even in the upper troposphere. It is widely known, that material from the pollen, like allergens and sugars, can indeed leave the pollen body and be distributed independently. The most probable mechanism is the pollen grain bursting by rain, which releases

  9. Activation and transfer of sulfate in biological systems (1960)

    International Nuclear Information System (INIS)

    It examines in this review the successive stages of active sulfate formation and its role in biological synthesis of sulfuric esters. The possible role of active sulfate as intermediary in sulfate reduction is also discussed. (author)

  10. Ficus carica L. (Moraceae: Phytochemistry, Traditional Uses and Biological Activities

    Directory of Open Access Journals (Sweden)

    Shukranul Mawa

    2013-01-01

    Full Text Available This paper describes the botanical features of Ficus carica L. (Moraceae, its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is little information on the phytochemicals present in the stem and root. Reports on the biological activities of the plant are mainly on its crude extracts which have been proven to possess many biological activities. Some of the most interesting therapeutic effects include anticancer, hepatoprotective, hypoglycemic, hypolipidemic, and antimicrobial activities. Thus, studies related to identification of the bioactive compounds and correlating them to their biological activities are very useful for further research to explore the potential of F. carica as a source of therapeutic agents.

  11. Biological Activities of a Thai Luminescent Mushroom

    OpenAIRE

    Jiraporn BURAKORN; Trong Binh NGUEYN; Rueankeaw PRAPHRUET

    2015-01-01

    Wild fruit bodies of luminescent mushrooms were collected from wood stumps over a period covering August to October 2011 in the Kosumpisai forest, Mahasarakham province, in the Northeast of Thailand. A study of the morphological and genetic characteristics of the luminescent mushroom suggested that it was Neonothopanus nimbi KS. The fruiting bodies and mycelium of Neonothopanus nimbi KS were assayed for their antimicrobial activities, antifungal activity, inhibitory activity against avian inf...

  12. Biologically active secondary metabolites from marine cyanobacteria

    OpenAIRE

    Nunnery, Joshawna K.; Mevers, Emily; Gerwick, William H

    2010-01-01

    Marine cyanobacteria are a rich source of complex bioactive secondary metabolites which derive from mixed biosynthetic pathways. Recently, several marine cyanobacterial natural products have garnered much attention due to their intriguing structures and exciting anti-proliferative or cancer cell toxic activities. Several other recently discovered secondary metabolites exhibit insightful neurotoxic activities whereas others are showing pronounced anti-inflammatory activity. A number of anti-in...

  13. Synthetic Approaches and Biological Activities of 4-Hydroxycoumarin Derivatives

    OpenAIRE

    Oee-Sook Park; Jae-Chul Jung

    2009-01-01

    The main purpose of this review is to summarize recent chemical syntheses and structural modifications of 4-hydroxycoumarin and its derivatives, of interest due to their characteristic conjugated molecular architecture and biological activities.

  14. Synthetic Approaches and Biological Activities of 4-Hydroxycoumarin Derivatives

    Directory of Open Access Journals (Sweden)

    Oee-Sook Park

    2009-11-01

    Full Text Available The main purpose of this review is to summarize recent chemical syntheses and structural modifications of 4-hydroxycoumarin and its derivatives, of interest due to their characteristic conjugated molecular architecture and biological activities.

  15. PHYTOCHEMICALS AND BIOLOGICAL ACTIVITIES OF FAGONIA INDICA

    Directory of Open Access Journals (Sweden)

    Goyal Manoj

    2012-06-01

    Full Text Available Fagonia Indica (family Zygophyllaceae is a small spiny under-shrub, mostly found in the deserts of Asia and Africa. It is widely used is Ayurvedic system of medicine to treat vitiated conditions since this plant was antioxidant, analgesic, anti-inflammatory, antimicrobial, astringent, febrifuge and prophylactic against small-pox agents.There are reports providing scientific evidences for antimicrobial, analgesic, anti-inflammatory, and antioxidant activities of this plant. These activities were attributed to the presence of a variety of active ingredients including triterpenoidal saponins , flavonol glycosides, ursolic and oleanolic acids either alone or with their derivatives. A comprehensive account of the morphology, photochemical constituents, ethanobotanical uses and pharmacological activities reported are included in this review for exploring the immense medicinal potential of this plant.

  16. Biological Activity of Curcuminoids Isolated from Curcuma longa

    OpenAIRE

    Simay Çıkrıkçı; Erkan Mozioğlu; Hasibe Yılmaz

    2008-01-01

    Curcumin is the most important fraction of turmeric which is responsible for its biological activity. In this study, isolation and biological assessment of turmeric and curcumin have been discussed against standard bacterial and mycobacterial strains such as E.coli , S.aureus, E.feacalis, P.aeuroginosa, M.smegmatis, M.simiae, M.kansasii, M. terrae, M.szulgai and the fungi Candida albicans. The antioxidant activity of curcumin and turmeric were also determined by the CUPRAC method.

  17. Phytochemicals and Their Biological Activities of Plants in Tagetes L.

    Institute of Scientific and Technical Information of China (English)

    XU Li-wei; CHEN Juan; QI Huan-yang; SHI Yan-ping

    2012-01-01

    Tagetes L.,the genus in the family Asteraceae,consists of about 30 species spread in South and Middle America as well as Mexico.More than one hundred secondary metabolites have been obtained in phytochemical investigation on the species,some of which have potent biological activities.The advances in phytochemical studies and biological activities of the plants in Tagetes L.from 1925 to 2011 are summarized in this paper.

  18. Saponins from Swartzia langsdorffii: biological activities

    OpenAIRE

    2003-01-01

    The presence of saponins and the molluscicidal activity of the roots, leaves, seeds and fruits of Swartzia langsdorffii Raddi (Leguminosae) against Biomphalaria glabrata adults and eggs were investigated. The roots, seeds and fruits were macerated in 95% ethanol. These extracts exerted a significant molluscicidal activity against B. glabrata, up to a dilution of 100 mg/l. Four mixtures (A2, B2, C and D) of triterpenoid oleanane type saponins were chromatographically isolated from the seed and...

  19. PHYTOCHEMICALS AND BIOLOGICAL ACTIVITIES OF FAGONIA INDICA

    OpenAIRE

    Goyal Manoj; Pareek Anil; Batra Nikhil; Nagori Badri Prakash

    2012-01-01

    Fagonia Indica (family Zygophyllaceae) is a small spiny under-shrub, mostly found in the deserts of Asia and Africa. It is widely used is Ayurvedic system of medicine to treat vitiated conditions since this plant was antioxidant, analgesic, anti-inflammatory, antimicrobial, astringent, febrifuge and prophylactic against small-pox agents.There are reports providing scientific evidences for antimicrobial, analgesic, anti-inflammatory, and antioxidant activities of this plant. These activities w...

  20. Biological Activities of a Thai Luminescent Mushroom

    Directory of Open Access Journals (Sweden)

    Jiraporn BURAKORN

    2015-06-01

    Full Text Available Wild fruit bodies of luminescent mushrooms were collected from wood stumps over a period covering August to October 2011 in the Kosumpisai forest, Mahasarakham province, in the Northeast of Thailand. A study of the morphological and genetic characteristics of the luminescent mushroom suggested that it was Neonothopanus nimbi KS. The fruiting bodies and mycelium of Neonothopanus nimbi KS were assayed for their antimicrobial activities, antifungal activity, inhibitory activity against avian influenza H5N1 neuraminidase (NA, and anticancer activity, using organic solvent extracts. The results showed that only the methanol extract of mycelia was effective against Bacillus sphaericus, with the widest inhibition zone of 11.66±2.71 mm, but this was not effective against the other 3 bacteria (Pseudomonas aeruginosa, Serratia marcescens, and Escherichia coli. On the other hand, all of the fruit body extracts were inactive against all four bacteria. The ethylacetate extract of mycelia inhibited the NCI-H187 small lung cancer cell line, KB oral cavity cancer cell line, and the MCF7 breast cancer cell line, including Magnaporthe grisea and Curvularia lunata. The methanol extract of mycelia inhibited the KB oral cavity cell cancer cell line, Magnaporthe grisea, and Curvularia lunata at 96.66, 95.32 and 95.41 %, respectively. The results imply that polar extracts of mycelia are a resource of bioactive compounds, whereas extracts of fruit bodies have less inhibitory activity against cancer, phytopathogenic-fungi and H5N1 neuraminidase.

  1. Saponins from Swartzia langsdorffii: biological activities

    Directory of Open Access Journals (Sweden)

    Magalhães Aderbal Farias

    2003-01-01

    Full Text Available The presence of saponins and the molluscicidal activity of the roots, leaves, seeds and fruits of Swartzia langsdorffii Raddi (Leguminosae against Biomphalaria glabrata adults and eggs were investigated. The roots, seeds and fruits were macerated in 95% ethanol. These extracts exerted a significant molluscicidal activity against B. glabrata, up to a dilution of 100 mg/l. Four mixtures (A2, B2, C and D of triterpenoid oleanane type saponins were chromatographically isolated from the seed and fruit extracts. Two known saponins (1 and 2 were identified as beta-D-glucopyranosyl-[alpha-L-rhamnopyranosyl-(1->3- beta-D-glucuronopyranosyl-(1->3]-3beta-hydroxyolean-12-ene-28 -oate, and beta-D-glucopyranosyl-(1->3-beta-D-glucuronopyranosyl-(1 ->3]-3beta-hydroxyolean-12-ene-28-oate, respectively. These two saponins were present in all the mixtures, together with other triterpenoid oleane type saponins, which were shown to be less polar, by reversed-phase HPLC. The saponin identifications were based on spectral evidence, including ¹H-¹H two-dimensional correlation spectroscopy, nuclear Overhauser and exchange spectroscopy, heteronuclear multiple quantum coherence, and heteronuclear multiple-bond connectivity experiments. The toxicity of S. langsdorffii saponins to non-target organisms was prescreened by the brine shrimp lethality test.

  2. Biologically active extracts with kidney affections applications

    Science.gov (United States)

    Pascu (Neagu), Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-12-01

    This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) - Vaccinium vitis-idaea L. and Bilberry (fruit) - Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  3. SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL ACTIVITY OF POLYKETONES

    Institute of Scientific and Technical Information of China (English)

    Ismail A.Alkskas; Altaher M.Alhubge; Faizul Azam

    2013-01-01

    Polyketone resins have been prepared by the Friedel-Crafts polymerization of dithiophenylidenecyclopentanone (Ⅰ),dithiophenylidenecyclohexanone (Ⅱ) and dithiophenylideneacetone (Ⅲ) with adipoyl,sebacoyl and terephthaloyl dichlorides using boron trifluoride as catalyst and carbon disulphide as solvent.Polymers were characterized with IR,1H-NMR,and the results showed the presence of carbonyl of ketonic groups in the main chain.The polyketones have inherent viscosities of 0.40-0.70 dL/g.All the polymers are semicrystalline and most of them are partially soluble in most common organic solvents but freely soluble in aprotic solvents.The temperatures of 50% weight loss are as high as 185℃ to 280℃ in air,indicating that these aromatic polyketones have excellent thermal stability.All the polyketones were tested for their antimicrobial activity against bacteria and fungi.

  4. SECONDARY METABOLITES OF OCIMUM GRATISSIMUM AND THEIR BIOLOGICAL ACTIVITIES

    OpenAIRE

    Deeptanjali Sahoo; Ajay Kumar

    2013-01-01

    Ocimum gratissimum synthesizes and accumulates a variety of secondary metabolites. Some of the biologically active secondary metabolites such as eugenol, thymol, methyl cinnamate and geraniol are responsible for the antimicrobial activity of the well-known plant of this species and substantiate the claim in traditional system of medicine. The present review summarizes the information available on the secondary metabolites isolated from Ocimum gratissimum.

  5. Secondary Metabolites from Inula britannica L. and Their Biological Activities

    OpenAIRE

    Yoon-Ha Kim; Gauhar Rehman; Shabir Ahmad; Syed Abdullah Gilani; Muhammad Hamayun; Javid Hussain; Abdul Latif Khan; Sang-Mo Kang; In-Jung Lee

    2010-01-01

    Inula britannica L., family Asteraceae, is used in traditional Chinese and Kampo Medicines for various diseases. Flowers or the aerial parts are a rich source of secondary metabolites. These consist mainly of terpenoids (sesquiterpene lactones and dimmers, diterpenes and triterpenoids) and flavonoids. The isolated compounds have shown diverse biological activities: anticancer, antioxidant, anti-inflammatory, neuroprotective and hepatoprotective activities. This review provides information on ...

  6. Photo-activated biological processes as quantum measurements

    CERN Document Server

    Imamoglu, Atac

    2014-01-01

    We outline a framework for describing photo-activated biological reactions as generalized quantum measurements of external fields, for which the biological system takes on the role of a quantum meter. By using general arguments regarding the Hamiltonian that describes the measurement interaction, we identify the cases where it is essential for a complex chemical or biological system to exhibit non-equilibrium quantum coherent dynamics in order to achieve the requisite functionality. We illustrate the analysis by considering measurement of the solar radiation field in photosynthesis and measurement of the earth's magnetic field in avian magnetoreception.

  7. Biological models for active vision: Towards a unified architecture

    OpenAIRE

    Terzic K.; Lobato D.; Saleiro M.; Martins J; Farrajota M.; Rodrigues J.M.F.; Du Buf J.M.H.

    2013-01-01

    Building a general-purpose, real-time active vision system completely based on biological models is a great challenge. We apply a number of biologically plausible algorithms which address different aspects of vision, such as edge and keypoint detection, feature extraction,optical flow and disparity, shape detection, object recognition and scene modelling into a complete system. We present some of the experiments from our ongoing work, where our system leverages a combination of algorithms to ...

  8. Biological activities of radiation-degraded carrageenan

    International Nuclear Information System (INIS)

    Carrageenans were irradiated in solid state to doses 50-1000 kGy in air at ambient temperature. Changes in their molecular weight and functional properties with respect to their FT-IR and UV spectra were evaluated. Irradiation of carrageenans resulted in a rapid decrease of molecular weight indicating main chain scission in their polymeric structures. Formations of some compounds were evident by new absorption peaks in their UV and FT-IR spectra and quantitative analyses of the FT-IR spectra which, in addition, support that there is a breakdown in the carrageenan structure. Irradiated carrageenans were investigated for their plant growth-promoting activity. Carrageenans were added to the nutrient solutions for rice seedlings under non-circulating hydroponics cultivation. Irradiated carrageenan induced weight gain in treated rice seedlings. Maximum weight gain was obtained with KC irradiated at 100 kGy while treatment with IC at 500 kGy. IC exhibited less growth promoting properties than KC. The growth of fungi on the roots disappeared with treatment of IC and KC irradiated at 500 kGy. Growth promotion of some leafy vegetables was also observed with application of degraded KC. The carrageenan molecule has been broken down to smaller molecule (s) or compound (s) that can be absorbed effectively as nourishment factors and anti-microbial agents by plants. (author)

  9. Phytochemistry and biological activities of Phlomis species.

    Science.gov (United States)

    Limem-Ben Amor, Ilef; Boubaker, Jihed; Ben Sgaier, Mohamed; Skandrani, Ines; Bhouri, Wissem; Neffati, Aicha; Kilani, Soumaya; Bouhlel, Ines; Ghedira, Kamel; Chekir-Ghedira, Leila

    2009-09-01

    The genus Phlomis L. belongs to the Lamiaceae family and encompasses 100 species native to Turkey, North Africa, Europe and Asia. It is a popular herbal tea enjoyed for its taste and aroma. Phlomis species are used to treat various conditions such as diabetes, gastric ulcer, hemorrhoids, inflammation, and wounds. This review aims to summarize recent research on the phytochemistry and pharmacological properties of the genus Phlomis, with particular emphasis on its ethnobotanical uses. The essential oil of Phomis is composed of four chemotypes dominated by monoterpenes (alpha-pinene, limonene and linalool), sesquiterpenes (germacrene D and beta-caryophyllene), aliphalic compounds (9,12,15-octadecatrienoic acid methyl ester), fatty acids (hexadecanoic acid) and other components (trans-phytol, 9,12,15-octadecatrien-1-ol). Flavonoids, iridoids and phenylethyl alcohol constitute the main compounds isolated from Phlomis extracts. The pharmacological activities of some Phlomis species have been investigated. They are described according to antidiabetic, antinociceptive, antiulcerogenic, protection of the vascular system, anti-inflammatory, antiallergic, anticancer, antimicrobial and antioxidant properties. PMID:19563875

  10. Biological activities of radiation-degraded carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Relleve, Lorna; Dela Rosa, Alumanda; ABAD, Lucille; Aranilla, Charito; Aliganga, Anne Kathrina [Philippine Nuclear Research Institute, Quezon City (Philippines); Yoshii, Fumio; Kume, Tamikazu; Nagasawa, Naotsugu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Carrageenans were irradiated in solid state to doses 50-1000 kGy in air at ambient temperature. Changes in their molecular weight and functional properties with respect to their FT-IR and UV spectra were evaluated. Irradiation of carrageenans resulted in a rapid decrease of molecular weight indicating main chain scission in their polymeric structures. Formations of some compounds were evident by new absorption peaks in their UV and FT-IR spectra and quantitative analyses of the FT-IR spectra which, in addition, support that there is a breakdown in the carrageenan structure. Irradiated carrageenans were investigated for their plant growth-promoting activity. Carrageenans were added to the nutrient solutions for rice seedlings under non-circulating hydroponics cultivation. Irradiated carrageenan induced weight gain in treated rice seedlings. Maximum weight gain was obtained with KC irradiated at 100 kGy while treatment with IC at 500 kGy. IC exhibited less growth promoting properties than KC. The growth of fungi on the roots disappeared with treatment of IC and KC irradiated at 500 kGy. Growth promotion of some leafy vegetables was also observed with application of degraded KC. The carrageenan molecule has been broken down to smaller molecule (s) or compound (s) that can be absorbed effectively as nourishment factors and anti-microbial agents by plants. (author)

  11. [Oregano: properties, composition and biological activity].

    Science.gov (United States)

    Arcila-Lozano, Cynthia Cristina; Loarca-Piña, Guadalupe; Lecona-Uribe, Salvador; González de Mejía, Elvira

    2004-03-01

    The oregano spice includes various plant species. The most common are the genus Origanum, native of Europe, and the Lippia, native of Mexico. Among the species of Origanum. their most important components are the limonene, gamma-cariofilene, rho-cymenene, canfor, linalol, alpha-pinene, carvacrol and thymol. In the genus Lippia, the same compounds can be found. The oregano composition depends on the specie, climate, altitude, time of recollection and the stage of growth. Some of the properties of this plant's extracts are being currently studied due to the growing interest for substituting synthetic additives commonly found in foods. Oregano has a good antioxidant capacity and also presents antimicrobial activity against pathogenic microorganisms like Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, among others. These are all characteristics of interest for the food industry because they may enhance the safety and stability of foods. There are also some reports regarding the antimutagenic and anticarcinogenic effect of oregano; representing an alternative for the potential treatment and/or prevention of certain chronic ailments, like cancer. PMID:15332363

  12. Biological activity of diterpenoids isolated from Anatolian Lamiaceae Plants

    Directory of Open Access Journals (Sweden)

    Gülaçtı Topçu

    2007-05-01

    Full Text Available In this study, antibacterial, antifungal, antimycobacterial, cytotoxic, antitumor, cardiovascular, antifeedant, insecticidal, antileishmanial and some other single activities of diterpenoids and norditerpenoids isolated from Turkish Lamiaceae plants, are reviewed. The diterpenoids were isolated from species of Salvia, Sideritis, and Ballota species growing in Anatolia. Fifty abietanes, ten kaurenes, seven pimaranes, six labdanes with their biological activities were reported. While twenty five diterpenoids showed antibacterial activity, eight of which showed activity against fungi. The most cytotoxic one was found to be taxodione (44 isolated from species of Salvia. Antifeedant, insecticidal and insect repellent activity of kaurenes, antimycobacterial activity and cardioactivity of abietanes and norabietanes together with labdanes were also reported.

  13. Phenolic Compounds Characterization and Biological Activities of Citrus aurantium Bloom

    OpenAIRE

    Armin Oskoueian; Jaafar, Hawa Z. E.; Rudi Hendra; Ehsan Oskoueian; Ehsan Karimi

    2012-01-01

    Citrus plants are known to possess beneficial biological activities for human health. In addition, ethnopharmacological application of plants is a good tool to explore their bioactivities and active compounds. This research was carried out to evaluate the phenolic and flavonoid analysis, antioxidant properties, anti inflammatory and anti cancer activity of Citrus aurantium bloom. The total phenolics and flavonoids results revealed that methanolic extract contained high total phenolics and fla...

  14. Biological Activity of Curcuminoids Isolated from Curcuma longa

    Directory of Open Access Journals (Sweden)

    Simay Çıkrıkçı

    2008-04-01

    Full Text Available Curcumin is the most important fraction of turmeric which is responsible for its biological activity. In this study, isolation and biological assessment of turmeric and curcumin have been discussed against standard bacterial and mycobacterial strains such as E.coli , S.aureus, E.feacalis, P.aeuroginosa, M.smegmatis, M.simiae, M.kansasii, M. terrae, M.szulgai and the fungi Candida albicans. The antioxidant activity of curcumin and turmeric were also determined by the CUPRAC method.

  15. Established and emerging biological activity markers of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Nielsen, O H; Vainer, B; Madsen, S M; Seidelin, J B; Heegaard, Niels Henrik Helweg

    2000-01-01

    Assessment of disease activity in inflammatory bowel disease (IBD), i.e., ulcerative colitis (UC) and Crohn's disease (CD), is done using clinical parameters and various biological disease markers. Ideally, a disease marker must: be able to identify individuals at risk of a given disorder, be dis...

  16. Polysaccharies of higher fungi: Biological role, structure and antioxidative activity

    NARCIS (Netherlands)

    Kozarski, M.S.; Klaus, A.; Niksic, M.; Griensven, van L.J.L.D.; Vrvic, M.M.; Jakovljevic, D.M.

    2014-01-01

    The fungal polysaccharides attract a lot of attention due to their multiple challenging bio-logical properties, such as: anti-tumor, anti-viral, anticomplementary, anticoagulant, hypo-lipidemic, immunomodulatory and immune-stimulatory activities, which all together make them suitable for application

  17. Polysaccharides of higher fungi: Biological role, structure, and antioxidative activity

    OpenAIRE

    Kozarski Maja S.; Klaus Anita S.; Nikšić Miomir P.; van Griensven Leo J.L.D.; Vrvić Miroslav M.; Jakovljević Dragica M.

    2014-01-01

    Fungal polysaccharides attract a lot of attention due to their multiple challenging biological properties, such as: anti-tumor, anti-viral, anticomplementary, anticoagulant, hypolipidemic and immunomodulatory and immune-stimulatory activities, which all together make them suitable for application in many quite distinctive areas, such as food industry, biomedicine, cosmetology, agriculture, environmental protection and waste water management. This article pr...

  18. Modeling Radial Holoblastic Cleavage: A Laboratory Activity for Developmental Biology.

    Science.gov (United States)

    Ellis, Linda K.

    2000-01-01

    Introduces a laboratory activity designed for an undergraduate developmental biology course. Uses Play-Doh (plastic modeling clay) to build a multicellular embryo in order to provide a 3-D demonstration of cleavage. Includes notes for the instructor and student directions. (YDS)

  19. Obtaining of biologically active substances from dandelion (Taraxacum officinale Wigg.)

    OpenAIRE

    Яблонська, К.М.; Національний авіаційний університет; Косоголова, Л. О.; Національний авіаційний університет; Мосюк, Л. І.; Національний авіаційний університет

    2015-01-01

    An aqueous extracts of dandelion (Taraxacum oficinale Wigg.) for the needs of diet. The optimum conditions for extraction of biologically active substances dandelion, namely the ratio of raw materials: extractant 1:20, extraction time – 30 minutes, the temperature – 55 °C. Extraction was carried out with distilled water.

  20. Occurrence, biological activity and synthesis of drimane sesquiterpenoids

    NARCIS (Netherlands)

    Jansen, B.J.M.; Groot, de Æ.

    2004-01-01

    In this review the names, structures and occurrence of all new drimanes and rearranged drimanes, which have been published between January 1990 and January 2003 have been collected. Subjects that have been treated are biosynthesis, analysis, biological activities, with special attention to cytotoxic

  1. Biological activity of phenolic compounds present in buckwheat plants

    Czech Academy of Sciences Publication Activity Database

    Kalinová, J.; Tříska, Jan; Vrchotová, Naděžda

    2005-01-01

    Roč. 16, č. 1 (2005), s. 123-129. ISSN 0971-4693 Institutional research plan: CEZ:AV0Z60870520 Keywords : biological activity, extract, Fagopyrum esculenthum Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.686, year: 2005

  2. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...

  3. Solar Energy Education. Renewable energy activities for biology

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    An instructional aid for teachers is presented that will allow biology students the opportunity to learn about renewable energy sources. Some of the school activities include using leaves as collectors of solar energy, solar energy stored in wood, and a fuel value test for green and dry woods. A study of organic wastes as a source of fuel is included. (BCS)

  4. Secondary Metabolites from Inula britannica L. and Their Biological Activities

    Directory of Open Access Journals (Sweden)

    Yoon-Ha Kim

    2010-03-01

    Full Text Available Inula britannica L., family Asteraceae, is used in traditional Chinese and Kampo Medicines for various diseases. Flowers or the aerial parts are a rich source of secondary metabolites. These consist mainly of terpenoids (sesquiterpene lactones and dimmers, diterpenes and triterpenoids and flavonoids. The isolated compounds have shown diverse biological activities: anticancer, antioxidant, anti-inflammatory, neuroprotective and hepatoprotective activities. This review provides information on isolated bioactive phytochemicals and pharmacological potentials of I. britannica.

  5. Secondary metabolites from Inula britannica L. and their biological activities.

    Science.gov (United States)

    Khan, Abdul Latif; Hussain, Javid; Hamayun, Muhammad; Gilani, Syed Abdullah; Ahmad, Shabir; Rehman, Gauhar; Kim, Yoon-Ha; Kang, Sang-Mo; Lee, In-Jung

    2010-03-01

    Inula britannica L., family Asteraceae, is used in traditional Chinese and Kampo Medicines for various diseases. Flowers or the aerial parts are a rich source of secondary metabolites. These consist mainly of terpenoids (sesquiterpene lactones and dimmers, diterpenes and triterpenoids) and flavonoids. The isolated compounds have shown diverse biological activities: anticancer, antioxidant, anti-inflammatory, neuroprotective and hepatoprotective activities. This review provides information on isolated bioactive phytochemicals and pharmacological potentials of I. britannica. PMID:20336001

  6. Synthesis, structure and biological properties of active spirohydantoin derivatives

    Directory of Open Access Journals (Sweden)

    Lazić Anita M.

    2016-01-01

    Full Text Available Spirohidantoins represent an pharmacologically important class of heterocycles since many derivatives have been recognized that display interesting activities against a wide range of biological targets. First synthesis of cycloalkanespiro-5-hydantoins was performed by Bucherer and Lieb 1934 by the reaction of cycloalkanone, potassium cyanide and ammonium-carbonate at reflux in a mixture of ethanol and water. QSAR (Quantitative Structure-Activity Relationship studies showed that a wide range of biological activities of spirohydantoin derivatives strongly depend upon their structure. This paper describes different methods of synthesis of spirohydantoin derivatives, their physico-chemical properties and biological activity. It emphasizes the importance of cycloalkanespiro-5-hydantoins with anticonvulsant, antiproliferative, antipsychotic, antimicrobial and antiinflammatory properties as well as their importance in the treatment of diabetes. Numerous spirohydantoin compounds exhibit physiological activity such as serotonin and fibrinogen antagonist, inhibitors of the glycine binding site of the NMDA receptor also, antagonist of leukocyte cell adhesion, acting as allosteric inhibitors of the protein-protein interactions. Some spirohydantoin derivatives have been identified as antitumor agents. Their activity depends on the substituent presented at position N-3 of the hydantoin ring and increases in order alkene > ester > ether. Besides that, compounds that contain two electron withdrawing groups (e.g. fluorine or chlorine on the third and fourth position of the phenyl ring are better antitumor agents than compounds with a single electron withdrawing group. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  7. Chemical and structural features influencing the biological activity of curcumin.

    Science.gov (United States)

    Priyadarsini, K Indira

    2013-01-01

    Curcumin, a polyphenolic natural product, exhibits therapeutic activity against a number of diseases, attributed mainly to its chemical structure and unique physical, chemical, and biological properties. It is a diferuloyl methane molecule [1,7-bis (4-hydroxy-3- methoxyphenyl)-1,6-heptadiene-3,5-dione)] containing two ferulic acid residues joined by a methylene bridge. It has three important functionalities: an aromatic o-methoxy phenolic group, α, β-unsaturated β-diketo moiety and a seven carbon linker. Extensive research in the last two decades has provided evidence for the role of these different functional groups in its crucial biological activities. A few highlights of chemical structural features associated with the biological activity of curcumin are: The o-methoxyphenol group and methylenic hydrogen are responsible for the antioxidant activity of curcumin, and curcumin donates an electron/ hydrogen atom to reactive oxygen species. Curcumin interacts with a number of biomolecules through non-covalent and covalent binding. The hydrogen bonding and hydrophobicity of curcumin, arising from the aromatic and tautomeric structures along with the flexibility of the linker group are responsible for the non-covalent interactions. The α, β-unsaturated β-diketone moiety covalently interacts with protein thiols, through Michael reaction. The β-diketo group forms chelates with transition metals, there by reducing the metal induced toxicity and some of the metal complexes exhibit improved antioxidant activity as enzyme mimics. New analogues with improved activity are being developed with modifications on specific functional groups of curcumin. The physico-chemical and structural features associated with some of the biological activities of curcumin and important analogues are summarized in this article. PMID:23116315

  8. Stereochemical Assignment of Strigolactone Analogues Confirms Their Selective Biological Activity.

    Science.gov (United States)

    Artuso, Emma; Ghibaudi, Elena; Lace, Beatrice; Marabello, Domenica; Vinciguerra, Daniele; Lombardi, Chiara; Koltai, Hinanit; Kapulnik, Yoram; Novero, Mara; Occhiato, Ernesto G; Scarpi, Dina; Parisotto, Stefano; Deagostino, Annamaria; Venturello, Paolo; Mayzlish-Gati, Einav; Bier, Ariel; Prandi, Cristina

    2015-11-25

    Strigolactones (SLs) are new plant hormones with various developmental functions. They are also soil signaling chemicals that are required for establishing beneficial mycorrhizal plant/fungus symbiosis. In addition, SLs play an essential role in inducing seed germination in root-parasitic weeds, which are one of the seven most serious biological threats to food security. There are around 20 natural SLs that are produced by plants in very low quantities. Therefore, most of the knowledge on SL signal transduction and associated molecular events is based on the application of synthetic analogues. Stereochemistry plays a crucial role in the structure-activity relationship of SLs, as compounds with an unnatural D-ring configuration may induce biological effects that are unrelated to SLs. We have synthesized a series of strigolactone analogues, whose absolute configuration has been elucidated and related with their biological activity, thus confirming the high specificity of the response. Analogues bearing the R-configured butenolide moiety showed enhanced biological activity, which highlights the importance of this stereochemical motif. PMID:26502774

  9. Protein stability and enzyme activity at extreme biological temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Feller, Georges, E-mail: gfeller@ulg.ac.b [Laboratory of Biochemistry, Centre for Protein Engineering, Institute of Chemistry B6a, University of Liege, B-4000 Liege (Belgium)

    2010-08-18

    Psychrophilic microorganisms thrive in permanently cold environments, even at subzero temperatures. To maintain metabolic rates compatible with sustained life, they have improved the dynamics of their protein structures, thereby enabling appropriate molecular motions required for biological activity at low temperatures. As a consequence of this structural flexibility, psychrophilic proteins are unstable and heat-labile. In the upper range of biological temperatures, thermophiles and hyperthermophiles grow at temperatures > 100 {sup 0}C and synthesize ultra-stable proteins. However, thermophilic enzymes are nearly inactive at room temperature as a result of their compactness and rigidity. At the molecular level, both types of extremophilic proteins have adapted the same structural factors, but in opposite directions, to address either activity at low temperatures or stability in hot environments. A model based on folding funnels is proposed accounting for the stability-activity relationships in extremophilic proteins. (topical review)

  10. BIOLOGICAL ACTIVITIES OF OXAZINE AND ITS DERIVATIVES: A REVIEW

    Directory of Open Access Journals (Sweden)

    SINDHU T J

    2014-12-01

    Full Text Available Oxazine derivatives are an important class of heterocycles, which has attracted much synthetic interest due to their wide range of biological activities. Oxazine is a heterocyclic compound can be formally derived from benzene, and its reduction products, by suitable substitution of carbon (and hydrogen atoms by nitrogen and oxygen. In the last few years oxazine derivatives have proved to be valuable synthetic intermediates and also possess important biological activities like sedative, analgesic, antipyretic, anticonvulsant, antitubercular, antitumour, antimalarial and antimicrobial. In these days, development of drug resistance is a major problem and to overcome this situation, it is necessary to synthesize new classes of compounds. The aim of the article is to review the generalization of the collected data about the synthesis of oxazine derivatives and their activities. We hope that this work will be a definite interest for researchers concerned with azines in generally and oxazines in particular.

  11. Biological Activities of Phenolic Compounds Present in Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Russell Keast

    2010-02-01

    Full Text Available The Mediterranean diet is associated with a lower incidence of atherosclerosis, cardiovascular disease, neurodegenerative diseases and certain types of cancer. The apparent health benefits have been partially ascribed to the dietary consumption of virgin olive oil by Mediterranean populations. Much research has focused on the biologically active phenolic compounds naturally present in virgin olive oils to aid in explaining reduced mortality and morbidity experienced by people consuming a traditional Mediterranean diet. Studies (human, animal, in vivo and in vitro have demonstrated that olive oil phenolic compounds have positive effects on certain physiological parameters, such as plasma lipoproteins, oxidative damage, inflammatory markers, platelet and cellular function, antimicrobial activity and bone health. This paper summarizes current knowledge on the bioavailability and biological activities of olive oil phenolic compounds.

  12. Polysaccharides of higher fungi: Biological role, structure, and antioxidative activity

    Directory of Open Access Journals (Sweden)

    Kozarski Maja S.

    2014-01-01

    Full Text Available Fungal polysaccharides attract a lot of attention due to their multiple challenging biological properties, such as: anti-tumor, anti-viral, anticomplementary, anticoagulant, hypolipidemic and immunomodulatory and immune-stimulatory activities, which all together make them suitable for application in many quite distinctive areas, such as food industry, biomedicine, cosmetology, agriculture, environmental protection and waste water management. This article presents results with respect to biological properties, structure and procedures related to the isolation and activation of polysaccharides of higher fungi. It is considered and presented along with a review of the critical antioxidative activity and possible influence of the structural composition of polysaccharide extracts (isolated from these higher fungi upon their antioxidative properties.

  13. Hydrodynamic collective effects of active proteins in biological membranes

    CERN Document Server

    Koyano, Yuki; Mikhailov, Alexander S

    2016-01-01

    Lipid bilayers forming biological membranes are known to behave as viscous 2D fluids on submicrometer scales; usually they contain a large number of active protein inclusions. Recently, it has been shown [Proc. Nat. Acad. Sci. USA 112, E3639 (2015)] that such active proteins should in- duce non-thermal fluctuating lipid flows leading to diffusion enhancement and chemotaxis-like drift for passive inclusions in biomembranes. Here, a detailed analytical and numerical investigation of such effects is performed. The attention is focused on the situations when proteins are concentrated within lipid rafts. We demonstrate that passive particles tend to become attracted by active rafts and are accumulated inside them.

  14. Biological activities of xanthatin from Xanthium strumarium leaves.

    Science.gov (United States)

    Nibret, Endalkachew; Youns, Mahamoud; Krauth-Siegel, R Luise; Wink, Michael

    2011-12-01

    The objective of the present work was to evaluate the biological activities of the major bioactive compound, xanthatin, and other compounds from Xanthium strumarium (Asteraceae) leaves. Inhibition of bloodstream forms of Trypanosoma brucei brucei and leukaemia HL-60 cell proliferation was assessed using resazurin as a vital stain. Xanthatin was found to be the major and most active compound against T. b. brucei with an IC(50) value of 2.63 µg/mL and a selectivity index of 20. The possible mode of action of xanthatin was further evaluated. Xanthatin showed antiinflammatory activity by inhibiting both PGE(2) synthesis (24% inhibition) and 5-lipoxygenase activity (92% inhibition) at concentrations of 100 µg/mL and 97 µg/mL, respectively. Xanthatin exhibited weak irreversible inhibition of parasite specific trypanothione reductase. Unlike xanthatin, diminazene aceturate and ethidium bromide showed strong DNA intercalation with IC(50) values of 26.04 µg/mL and 44.70 µg/mL, respectively. Substantial induction of caspase 3/7 activity in MIA PaCa-2 cells was observed after 6 h of treatment with 100 µg/mL of xanthatin. All these data taken together suggest that xanthatin exerts its biological activity by inducing apoptosis and inhibiting both PGE(2) synthesis and 5-lipoxygenase activity thereby avoiding unwanted inflammation commonly observed in diseases such as trypanosomiasis. PMID:21953905

  15. Marine Omega-3 Phospholipids: Metabolism and Biological Activities

    Directory of Open Access Journals (Sweden)

    Nils Hoem

    2012-11-01

    Full Text Available The biological activities of omega-3 fatty acids (n-3 FAs have been under extensive study for several decades. However, not much attention has been paid to differences of dietary forms, such as triglycerides (TGs versus ethyl esters or phospholipids (PLs. New innovative marine raw materials, like krill and fish by-products, present n-3 FAs mainly in the PL form. With their increasing availability, new evidence has emerged on n-3 PL biological activities and differences to n-3 TGs. In this review, we describe the recently discovered nutritional properties of n-3 PLs on different parameters of metabolic syndrome and highlight their different metabolic bioavailability in comparison to other dietary forms of n-3 FAs.

  16. Biological activities and medicinal properties of Cajanus cajan (L Millsp.

    Directory of Open Access Journals (Sweden)

    Dilipkumar Pal

    2011-01-01

    Full Text Available Cajanus cajan (L Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur (family: Fabaceae is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details.

  17. Recent insight into the biological activities of synthetic xanthone derivatives.

    Science.gov (United States)

    Shagufta; Ahmad, Irshad

    2016-06-30

    Xanthones are a class of oxygen containing heterocyclic compounds with a broad range of biological activities, and they have prominent significance in the field of medicinal chemistry. Xanthone is an attractive scaffold for the design and development of new drugs due to its promising biological activities, primarily as anticancer, antimalarial, antimicrobial, anti-HIV, anticonvulsant, anticholinesterase, antioxidant, anti-inflammatory, and as inhibitors of several enzymes like α-glycosidase, topoisomerase, protein kinase, aromatase, etc. In this review, we have compiled and discussed recent developments on the pharmacological profile of synthetic xanthone derivatives for different therapeutic targets. The review highlights the therapeutic significance of xanthones and offers support in the development of new xanthone derivatives as therapeutic agents. PMID:27111599

  18. Biological activities and medicinal properties of Cajanus cajan (L) Millsp.

    Science.gov (United States)

    Pal, Dilipkumar; Mishra, Pragya; Sachan, Neetu; Ghosh, Ashoke K

    2011-10-01

    Cajanus cajan (L) Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur) (family: Fabaceae) is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details. PMID:22247887

  19. Biological activities and medicinal properties of Gokhru (Pedalium murex L.)

    Institute of Scientific and Technical Information of China (English)

    V Rajashekar; E Upender Rao; Srinivas P

    2012-01-01

    Bada Gokhru (Pedalium murex L.) is perhaps the most useful traditional medicinal plant in India. Each part of the neem tree has some medicinal property and is thus commercially exploitable. During the last five decades, apart from the chemistry of the Pedalium murex compounds, considerable progress has been achieved regarding the biological activity and medicinal applications of this plant. It is now considered as a valuable source of unique natural products for development of medicines against various diseases and also for the development of industrial products. This review gives a bird’s eye view mainly on the biological activities of some of this compounds isolated, pharmacological actions of the extracts, clinical studies and plausible medicinal applications of gokharu along with their safety evaluation.

  20. Milk kefir: composition, microbial cultures, biological activities, and related products.

    Science.gov (United States)

    Prado, Maria R; Blandón, Lina Marcela; Vandenberghe, Luciana P S; Rodrigues, Cristine; Castro, Guillermo R; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir's exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir's microflora and the importance of kefiran as a beneficial health substance. PMID:26579086

  1. Baltic cyanobacteria- A source of biologically active compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Mazur-Marzec, H.; Błaszczyk, A.; Felczykowska, A.; Hohlfeld, N.; Kobos, J.; Toruńska-Sitarz, A.; PrabhaDevi; Montalva`o, S.; DeSouza, L.; Tammela, P.; Mikosik, A.; Bloch, S.; Nejman-Faleńczyk, B.; Węgrzyn, G.

    isolated by Histopaque™ (Sigma- Aldrich, St. Louis, USA) flotation. Isolated PBMC were stained supravitally with fluorescent CFSE (Carboxyfluorescein succinimidyl ester) dye according to the method described by Witkowski (2008), re-suspended in culture..., from bacteria and viruses to aquatic animals (Rohrlack et al., 2004; Sedmak et al., 2008; Sønstebø & Rohrlack, 2011). As many cyanobacterial products are characterized by a unique biological activity, they have become a focus of high interest...

  2. Processed Vietnamese ginseng: Preliminary results in chemistry and biological activity

    OpenAIRE

    Le, Thi Hong Van; Lee, Seo Young; Kim, Tae Ryong; Kim, Jae Young; Kwon, Sung Won; NGUYEN, NGOC KHOI; Park, Jeong Hill; Nguyen, Minh Duc

    2013-01-01

    Background This study was carried out to investigate the effect of the steaming process on chemical constituents, free radical scavenging activity, and antiproliferative effect of Vietnamese ginseng. Methods Samples of powdered Vietnamese ginseng were steamed at 120°C for various times and their extracts were subjected to chemical and biological studies. Results Upon steaming, contents of polar ginsenosides, such as Rb1, Rc, Rd, Re, and Rg1, were rapidly decreased, whereas less polar ginsenos...

  3. Secondary metabolites in grasses: characterization and biological activity

    OpenAIRE

    Aldo Tava

    2007-01-01

    In a series of studies dealing on the nutritional value of forage species, more attention was focussed on several compounds, named secondary metabolites, that are important in determining nutritional characteristics. Secondary metabolites are compounds detected in the green materials in low concentration compared to primary metabolites (proteins, sugars, lipids, fibers), but of fundamental importance for the plant physiology. The possess several biological activities and this contribute to th...

  4. Simaroubaceae family: botany, chemical composition and biological activities

    OpenAIRE

    Iasmine A.B.S. Alves; Henrique M. Miranda; Luiz A. L. Soares; Karina P. Randau

    2014-01-01

    The Simaroubaceae family includes 32 genera and more than 170 species of trees and brushes of pantropical distribution. The main distribution hot spots are located at tropical areas of America, extending to Africa, Madagascar and regions of Australia bathed by the Pacific. This family is characterized by the presence of quassinoids, secondary metabolites responsible of a wide spectrum of biological activities such as antitumor, antimalarial, antiviral, insecticide, feeding deterrent, amebicid...

  5. Electronic structure and biological activity: Barbiturates vs. thiobarbiturates

    Science.gov (United States)

    Novak, Igor; Kovač, Branka

    2010-06-01

    The electronic structure of the derivatives of thiobarbituric acid: 1,3-diethyl-2-thiobarbituric acid ( I) and 1,3-dibutyl-2-thiobarbituric acid ( II) has been investigated by HeI and HeII UV photoelectron spectroscopy (UPS) and quantum chemical calculations. We discuss their electronic structures and compare them with barbituric acid. We also relate the difference in electronic structure between barbituric and thiobarbituric acids to difference in biological activity of their derivatives.

  6. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities

    OpenAIRE

    Shukranul Mawa; Khairana Husain; Ibrahim Jantan

    2013-01-01

    This paper describes the botanical features of Ficus carica L. (Moraceae), its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is l...

  7. Chemistry and Biological Activities of Flavonoids: An Overview

    OpenAIRE

    Shashank Kumar; Pandey, Abhay K

    2013-01-01

    There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about...

  8. Polyphosphate Kinase from Activated Sludge Performing Enhanced Biological Phosphorus Removal†

    OpenAIRE

    Katherine D McMahon; Dojka, Michael A.; Pace, Norman R.; Jenkins, David; Keasling, Jay D.

    2002-01-01

    A novel polyphosphate kinase (PPK) was retrieved from an uncultivated organism in activated sludge carrying out enhanced biological phosphorus removal (EBPR). Acetate-fed laboratory-scale sequencing batch reactors were used to maintain sludge with a high phosphorus content (approximately 11% of the biomass). PCR-based clone libraries of small subunit rRNA genes and fluorescent in situ hybridization (FISH) were used to verify that the sludge was enriched in Rhodocyclus-like β-Proteobacteria kn...

  9. Biological activity of selected essential oils of the Lamiaceae family

    OpenAIRE

    Havlová, Kateřina

    2013-01-01

    The Lamiaceae family (the mints) is one of the large groups of plants. These herbs are important for their biological active substances, such as essential oils, tannins, bitter principles, etc. The properties of selected plants from this family are used in many industries. Many of them have been used long due to their medicinal properties and simultaneously they form an indispensable part of many products used for cosmetic purposes. The important ingredients are first of all essential oils, w...

  10. Biological Activities and Phytochemicals of Swietenia macrophylla King

    Directory of Open Access Journals (Sweden)

    Habsah Abdul Kadir

    2013-08-01

    Full Text Available Swietenia macrophylla King (Meliaceae is an endangered and medicinally important plant indigenous to tropical and subtropical regions of the World. S. macrophylla has been widely used in folk medicine to treat various diseases. The review reveals that limonoids and its derivatives are the major constituents of S. macrophylla. There are several data in the literature indicating a great variety of pharmacological activities of S. macrophylla, which exhibits antimicrobial, anti-inflammatory, antioxidant effects, antimutagenic, anticancer, antitumor and antidiabetic activities. Various other activities like anti-nociceptive, hypolipidemic, antidiarrhoeal, anti-infective, antiviral, antimalarial, acaricidal, antifeedant and heavy metal phytoremediation activity have also been reported. In view of the immense medicinal importance of S. macrophylla, this review aimed at compiling all currently available information on its ethnomedicinal uses, phytochemistry and biological activities of S. macrophylla, showing its importance.

  11. Biological activities and phytochemicals of Swietenia macrophylla King.

    Science.gov (United States)

    Moghadamtousi, Soheil Zorofchian; Goh, Bey Hing; Chan, Chim Kei; Shabab, Tara; Kadir, Habsah Abdul

    2013-01-01

    Swietenia macrophylla King (Meliaceae) is an endangered and medicinally important plant indigenous to tropical and subtropical regions of the World. S. macrophylla has been widely used in folk medicine to treat various diseases. The review reveals that limonoids and its derivatives are the major constituents of S. macrophylla. There are several data in the literature indicating a great variety of pharmacological activities of S. macrophylla, which exhibits antimicrobial, anti-inflammatory, antioxidant effects, antimutagenic, anticancer, antitumor and antidiabetic activities. Various other activities like anti-nociceptive, hypolipidemic, antidiarrhoeal, anti-infective, antiviral, antimalarial, acaricidal, antifeedant and heavy metal phytoremediation activity have also been reported. In view of the immense medicinal importance of S. macrophylla, this review aimed at compiling all currently available information on its ethnomedicinal uses, phytochemistry and biological activities of S. macrophylla, showing its importance. PMID:23999722

  12. Integrity and Biological Activity of DNA after UV Exposure

    Science.gov (United States)

    Lyon, Delina Y.; Monier, Jean-Michel; Dupraz, Sébastien; Freissinet, Caroline; Simonet, Pascal; Vogel, Timothy M.

    2010-04-01

    The field of astrobiology lacks a universal marker with which to indicate the presence of life. This study supports the proposal to use nucleic acids, specifically DNA, as a signature of life (biosignature). In addition to its specificity to living organisms, DNA is a functional molecule that can confer new activities and characteristics to other organisms, following the molecular biology dogma, that is, DNA is transcribed to RNA, which is translated into proteins. Previous criticisms of the use of DNA as a biosignature have asserted that DNA molecules would be destroyed by UV radiation in space. To address this concern, DNA in plasmid form was deposited onto different surfaces and exposed to UVC radiation. The surviving DNA was quantified via the quantitative polymerase chain reaction (qPCR). Results demonstrate increased survivability of DNA attached to surfaces versus non-adsorbed DNA. The DNA was also tested for biological activity via transformation into the bacterium Acinetobacter sp. and assaying for antibiotic resistance conferred by genes encoded by the plasmid. The success of these methods to detect DNA and its gene products after UV exposure (254 nm, 3.5 J/m2s) not only supports the use of the DNA molecule as a biosignature on mineral surfaces but also demonstrates that the DNA retained biological activity.

  13. Isolation of biologically active nanomaterial (inclusion bodies from bacterial cells

    Directory of Open Access Journals (Sweden)

    Peternel Špela

    2010-09-01

    Full Text Available Abstract Background In recent years bacterial inclusion bodies (IBs were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.

  14. SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL ACTIVITY OF SOME NOVEL ARYL AND HETROARYL CHALCONE ANALOGUES

    OpenAIRE

    Tribhuvan Singh; R Lavanya; Srikanth Merugu; P.Sudhakar; Syeda Sana Yasmeen

    2012-01-01

    A new series of Heterocyclic chalcones showed diversified biological activities. In view of potential biological activities of Heterocyclic chalcones derivative were prepared by claisen-Schmidt condensation technique. The compound were screened for anti-inflammatory and antibacterial activity.

  15. Synthesis, crystal structure and biological activity of novel diester cyclophanes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Yang, Bingqin; Fang, Xianwen; Cheng, Zhao; Yang, Meipan, E-mail: yangbq@nwu.edu.cn [Department of Chemistry, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Northwest University, Shaanxi (China)

    2012-10-15

    A series of novel diester cyclophanes was synthesized by esterification of 1,2-benzenedicarbonyl chloride with eight different diols under high dilution conditions. The structures of the compounds were verified by elemental analysis, {sup 1}H nuclear magnetic resonance (NMR), IR spectroscopy and high resolution mass spectrometry (HRMS). The crystal structures of two compounds were characterized by single crystal X-ray diffractometry (XRD). All the new cyclophanes were evaluated for biological activities and the results showed that some of these compounds have low antibacterial or antifungal activities (author)

  16. Radiation degradation of carbohydrates and their biological activities for plants

    Energy Technology Data Exchange (ETDEWEB)

    Kume, T.; Nagasawa, N.; Matsuhashi, S. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment] [and others

    2000-03-01

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using {sup 48}V and {sup 62}Zn. (author)

  17. Radiation degradation of carbohydrates and their biological activities for plants

    International Nuclear Information System (INIS)

    Radiation effects on carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated to improve the biological activities. These carbohydrates were easily degraded by irradiation and induced various kinds of biological activities such as anti-bacterial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction. Pectic fragments obtained from degraded pectin induced the phytoalexins such as glyceollins in soybean and pisatin in pea. The irradiated chitosan shows the higher elicitor activity for pisatin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. Kappa and iota carrageenan derived from red marine algae can promote growth of rice and the highest effect was obtained with kappa irradiated at 100 kGy. Some radiation degraded carbohydrates suppressed the damage of heavy metals on plants. The effects of irradiated carbohydrates on transportation of heavy metals have been investigated by PETIS (Positron Emitting Tracer Imaging System) and autoradiography using 48V and 62Zn. (author)

  18. On the mechanism of biological activation by tritium.

    Science.gov (United States)

    Rozhko, T V; Badun, G A; Razzhivina, I A; Guseynov, O A; Guseynova, V E; Kudryasheva, N S

    2016-06-01

    The mechanism of biological activation by beta-emitting radionuclide tritium was studied. Luminous marine bacteria were used as a bioassay to monitor the biological effect of tritium with luminescence intensity as the physiological parameter tested. Two different types of tritium sources were used: HTO molecules distributed regularly in the surrounding aqueous medium, and a solid source with tritium atoms fixed on its surface (tritium-labeled films, 0.11, 0.28, 0.91, and 2.36 MBq/cm(2)). When using the tritium-labeled films, tritium penetration into the cells was prevented. The both types of tritium sources revealed similar changes in the bacterial luminescence kinetics: a delay period followed by bioluminescence activation. No monotonic dependences of bioluminescence activation efficiency on specific radioactivities of the films were found. A 15-day exposure to tritiated water (100 MBq/L) did not reveal mutations in bacterial DNA. The results obtained give preference to a "non-genomic" mechanism of bioluminescence activation by tritium. An activation of the intracellular bioluminescence process develops without penetration of tritium atoms into the cells and can be caused by intensification of trans-membrane cellular processes stimulated by ionization and radiolysis of aqueous media. PMID:27035890

  19. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil.

    Science.gov (United States)

    Servili, Maurizio; Sordini, Beatrice; Esposto, Sonia; Urbani, Stefania; Veneziani, Gianluca; Di Maio, Ilona; Selvaggini, Roberto; Taticchi, Agnese

    2013-01-01

    Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO) phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life. PMID:26784660

  20. Biological Activities of Phenolic Compounds of Extra Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    Maurizio Servili

    2013-12-01

    Full Text Available Over the last few decades, multiple biological properties, providing antioxidant, anti-inflammatory, chemopreventive and anti-cancer benefits, as well as the characteristic pungent and bitter taste, have been attributed to Extra Virgin Olive Oil (EVOO phenols. In particular, growing efforts have been devoted to the study of the antioxidants of EVOO, due to their importance from health, biological and sensory points of view. Hydrophilic and lipophilic phenols represent the main antioxidants of EVOO, and they include a large variety of compounds. Among them, the most concentrated phenols are lignans and secoiridoids, with the latter found exclusively in the Oleaceae family, of which the drupe is the only edible fruit. In recent years, therefore, we have tackled the study of the main properties of phenols, including the relationships between their biological activity and the related chemical structure. This review, in fact, focuses on the phenolic compounds of EVOO, and, in particular, on their biological properties, sensory aspects and antioxidant capacity, with a particular emphasis on the extension of the product shelf-life.

  1. Summary of diamino pyrazoles derived and study their biological activities

    International Nuclear Information System (INIS)

    The work involves the synthesis of new heterocyclic structures diamino pyrazoles derivatives that are present in many natural products and products of pharmacological and therapeutic interests and study their biological activities. In order to develop a radiotracer interest and use in diagnostic nuclear medicine, we are interested to synthesis a pyrazole derivative with the precursor [Re(CO)5Br] and studying the antibacterial and antifungal activity of 3.5-diamino pyrazole and even thioamide complex rhenium. The objectives of our workout: 1/ Synthesis of molecules 3,5-diamino pyrazole and thioamide. 2/ Synthesis of 3,5-diamino pyrazole-rhenium complex. 3/ The in vitro study: Bacteriological Tests (Study of antibacterial and antifungal activity of 3,5-diamino pyrazole and thioamide). The first part of this work concerns the chemical synthesis of molecules such as: thioamide, Amp z1 Ampz2 and then we had synthesized the complex 3,5-diamino pyrazole-rhenium. Similarly we determined the physicochemical characteristics of the compounds synthesized by CLHP, CCM and RMN (1H, 13C). The second part is devoted to the study in vitro of biological activities of the synthesized molecules and complex 3,5 diaminopyrazole-rhenium with concentration 1 mg/mL and 2 mg/mL. The results allow us to say that the thioamide and Ampz2 have antibacterial activity against S. enterica and Ampz2 has low activity against S. aureus and P. aeruginossa. Other pyrazole derivatives have no significant antibacterial and antifungal activity. The results also show that the synthesized compounds of concentration 2 mg/mL in relation to the inhibition zones of amoxicillin and DMSO: 1/ Escherichia coli, there is antibacterial activity for thioamide, and the Amp z1-Re Ampz2 compound. 2/ Staphylococcus aureus, the complex Ampz 1-Re and the thioamide have significant antibacterial activity. 3/ Salmonella, we observe that the thioamide molecules, Ampz2 and Amp z1-Re have significant antibacterial activity while

  2. Biological activities of water-soluble fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S; Mashino, T [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512 (Japan)], E-mail: mashino-td@pha.keio.ac.jp

    2009-04-01

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C{sub 60}-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C{sub 60}-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC{sub 50} values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  3. Biological activities of water-soluble fullerene derivatives

    Science.gov (United States)

    Nakamura, S.; Mashino, T.

    2009-04-01

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C60-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C60-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC50 values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  4. Biological activities of water-soluble fullerene derivatives

    International Nuclear Information System (INIS)

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C60-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C60-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC50 values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  5. Pearson versus Spearman, Kendall's Tau Correlation Analysis on Structure-Activity Relationships of Biologic Active Compounds

    OpenAIRE

    Jäntschi, Lorentz; Sorana-Daniela BOLBOACĂ

    2006-01-01

    A sample of sixty-seven pyrimidine derivatives with inhibitory activity on E. coli dihydrofolate reductase (DHFR) was studied by the use of molecular descriptors family on structure-activity relationships. Starting from the results obtained by applying of MDF-SAR methodology on pyrimidine derivatives and from the assumption that the measured activity (compounds’ inhibitory activity) of a biologically active compounds is a semi-quantitative outcome (can be related with the type of equipment us...

  6. Perceived causality influences brain activity evoked by biological motion.

    Science.gov (United States)

    Morris, James P; Pelphrey, Kevin A; McCarthy, Gregory

    2008-01-01

    Using functional magnetic resonance imaging (fMRI), we investigated brain activity in an observer who watched the hand and arm motions of an individual when that individual was, or was not, the cause of the motion. Subjects viewed a realistic animated 3D character who sat at a table containing four pistons. On Intended Motion trials, the character raised his hand and arm upwards. On Unintended Motion trials, the piston under one of the character's hands pushed the hand and arm upward with the same motion. Finally, during Non-Biological Motion control trials, a piston pushed a coffee mug upward in the same smooth motion. Hand and arm motions, regardless of intention, evoked significantly more activity than control trials in a bilateral region that extended ventrally from the posterior superior temporal sulcus (pSTS) region and which was more spatially extensive in the right hemisphere. The left pSTS near the temporal-parietal junction, robustly differentiated between the Intended Motion and Unintended Motion conditions. Here, strong activity was observed for Intended Motion trials, while Unintended Motion trials evoked similar activity as the coffee mug trials. Our results demonstrate a strong hemispheric bias in the role of the pSTS in the perception of causality of biological motion. PMID:18633843

  7. Ion exchange defines the biological activity of titanate nanotubes.

    Science.gov (United States)

    Rónavári, Andrea; Kovács, Dávid; Vágvölgyi, Csaba; Kónya, Zoltán; Kiricsi, Mónika; Pfeiffer, Ilona

    2016-05-01

    One-dimensional titanate nanotubes (TiONTs) were subjected to systematic ion exchange to determine the impact of these modifications on biological activities. Ion exchanged TiONTs (with Ag, Mg, Bi, Sb, Ca, K, Sr, Fe, and Cu ions) were successfully synthesized and the presence of the substituted ions was verified by energy dispersive X-ray spectroscopy (EDS). A complex screening was carried out to reveal differences in toxicity to human cells, as well as in antibacterial, antifungal, and antiviral activities between the various modified nanotubes. Our results demonstrated that Ag ion exchanged TiONTs exerted potent antibacterial and antifungal effects against all examined microbial species but were ineffective on viruses. Surprisingly, the antibacterial activity of Cu/TiONTs was restricted to Micrococcus luteus. Most ion exchanged TiONTs did not show antimicrobial activity against the tested bacterial and fungal species. Incorporation of various ions into nanotube architectures lead to mild, moderate, or even to a massive loss of human cell viability; therefore, this type of biological effect exerted by TiONTs can be greatly modulated by ion exchange. These findings further emphasize the contribution of ion exchange in determining not only the physical and chemical characteristics but also the bioactivity of TiONT against different types of living cells. PMID:26972521

  8. Mutant p53: multiple mechanisms define biologic activity in cancer

    Directory of Open Access Journals (Sweden)

    Michael Paul Kim

    2015-11-01

    Full Text Available The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of p53 alterations involve missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may acquire novel functions, often with deleterious effects. Here, we review characterized mechanisms of mutant p53 gain of function in multiple model systems. In addition, we review mutant p53 addiction as emerging evidence suggests that tumors may depend on sustained mutant p53 activity for continued growth. We also discuss the role of p53 in stromal elements and their contribution to tumor initiation and progression. Lastly, current genetic mouse models of mutant p53 are reviewed and their limitations discussed.

  9. Bone-inducing Activity of Biological Piezoelectric Ceramic

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To simulate the piezoelectric effect of nature bone, two kinds of biological piezoelectric composite ceramics consisted of hydroxyapatite ( HA ) and lithium sodium potassium riobate (LNK) ceramic of which the ratio of HA/ LNK was 1: 10 and 5:5( wt/ wt ) were prepared. Their piezoelectric property and growth of apatite crystal in the ceramics surface were investigated. With the increase of LNK amount, piezoelectric activity increased correspondingly. By immersing the poled piezoelectric ceramics in simulated body fluid (SBF) at 36.5 ℃ for 7,14, and 21 days, apatite crystal was formed on negatively charged surfaces. After 21 days immersion in SBF,the thickest apatite crystal on the negatively charged surfaces increased to 3.337μm. The novel biological piezoelectric ceramics show an excellent piezoelectric property and superior potential bioactivity.

  10. European activities in space radiation biology and exobiology

    Energy Technology Data Exchange (ETDEWEB)

    Horneck, G. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

    1996-12-31

    In view of the space station era, the European Space Agency has initiated a review and planning document for space life sciences. Radiation biology includes dosimetry of the radiation field and its modification by mass shielding, studies on the biological responses to radiation in space, on the potential impact of space flight environment on radiation effects, and assessing the radiation risks and establishing radiation protection guidelines. To reach a better understanding of the processes leading to the origin, evolution and distribution of life, exobiological activities include the exploration of the solar system, the collection and analysis of extraterrestrial samples and the utilization of space as a tool for testing the impact of space environment on organics and resistant life forms. (author)

  11. Soil biological activity at European scale - two calculation concepts

    Science.gov (United States)

    Krüger, Janine; Rühlmann, Jörg

    2014-05-01

    The CATCH-C project aims to identify and improve the farm-compatibility of Soil Management Practices including to promote productivity, climate change mitigation and soil quality. The focus of this work concentrates on turnover conditions for soil organic matter (SOM). SOM is fundamental for the maintenance of quality and functions of soils while SOM storage is attributed a great importance in terms of climate change mitigation. The turnover conditions depend on soil biological activity characterized by climate and soil properties. To assess the turnover conditions two model concepts are applied: (I) Biological active time (BAT) regression approach derived from CANDY model (Franko & Oelschlägel 1995) expresses the variation of air temperature, precipitation and soil texture as a timescale and an indicator of biological activity for soil organic matter (SOM) turnover. (II) Re_clim parameter within the Introductory Carbon Balance Model (Andrén & Kätterer 1997) states the soil temperature and soil water to estimate soil biological activity. The modelling includes two strategies to cover the European scale and conditions. BAT was calculated on a 20x20 km grid basis. The European data sets of precipitation and air temperature (time period 1901-2000, monthly resolution), (Mitchell et al. 2004) were used to derive long-term averages. As we focus on agricultural areas we included CORINE data (2006) to extract arable land. The resulting BATs under co-consideration of the main soil textures (clay, silt, sand and loam) were investigated per environmental zone (ENZs, Metzger et al. 2005) that represents similar conditions for precipitation, temperature and relief to identify BAT ranges and hence turnover conditions for each ENZ. Re_clim was quantified by climatic time series of more than 250 weather stations across Europe presented by Klein Tank et al. (2002). Daily temperature, precipitation and potential evapotranspiration (maximal thermal extent) were used to calculate

  12. Biological activities of aqueous extract from Cinnamomum porrectum

    Science.gov (United States)

    Farah, H. Siti; Nazlina, I.; Yaacob, W. A.

    2013-11-01

    A study was carried out to evaluate biological activities of an extract obtained from Cinnamomum porrectum under reflux using water. Aqueous extract of Cinnamomum porrectum was tested for antibacterial activity against six Gram-positive and eight Gram-negative bacteria as well as MRSA. The results confirmed that the aqueous extract of Cinnamomum porrectum was bactericidal. Cytotoxic tests on Vero cell culture revealed that Cinnamomum porrectum was non-toxic which IC50 value higher than 0.02 mg/mL. Antiviral activity was tested based on the above IC50 values together with the measured EC50 values to obtain Therapeutic Index. The result showed that Cinnamomum porrectum has the ability to inhibit viral replication of HSV-1 in Vero cells.

  13. Biochemical studies on certain biologically active nitrogenous compounds

    International Nuclear Information System (INIS)

    Certain biologically active nitrogenous compounds such as alkaloids are widely distributed in many wild and medicinal plants such as peganum harmala L. (Phycophyllaceae). However, less literature cited on the natural compounds was extracted from the aerial parts of this plant; therefore this study was conducted on harmal leaves using several solvents. Data indicated that methanol extract was the inhibitoriest effect against some pathogenic bacteria, particularly Streptococcus pyogenus. Chromatographic separation illustrated that presence of four compounds; the most active one was the third compound (3). Elementary analysis (C, H, N) revealed that the primary chemical structure of the active antibacterial compound (C3) was: C17 H21 N3 O7 S with molecular weight 411. Spectroscopic analysis proved that coninical structure was = 1- thioformyl, 8?- D glucoperanoside- Bis- 2, 3 dihydroisopyridino pyrrol. This new compound is represented as a noval ?- carboline alkaloid compound

  14. CANTHARELLUS CIBARIUS - CULINARY-MEDICINAL MUSHROOM CONTENT AND BIOLOGICAL ACTIVITY.

    Science.gov (United States)

    Muszyńska, Bozena; Kała, Katarzyna; Firlej, Anna; Sułkowska-Ziaja, Katarzyna

    2016-01-01

    One of the most frequently harvested mushrooms in Polish forests is Yellow chanterelle (chanterelle) - Cantharellus cibarius Fr. from the Cantharellaceae family. Chanterelle is an ectomycorrhizal mushroom occurring in Poland. Chanterelle lives in symbiosis with pine, spruce, oak and hombeam. In cookery, chanterelle is appreciated because of the aroma, taste, firmness and crunchiness of its fruiting bodies. Wild edible mushrooms are widely consumed in Asia, Western Europe and Central America. Chanterelle contains a great number of carbohydrates and proteins and a low amount of fat. Actual review presents the main groups of physiologically active primary and secondary metabolites in the fruiting bodies of chanterelle such as indole and phenolic compounds, carbohydrates, fatty acids, proteins, free amino acids, sterols, carotenoids, enzymes, vitamins and elements with biological activity. The presence of these compounds and elements conditions the nutrient and therapeutic activity of chanterelle, e.g., immunomodulatory, anti-inflammatory, antioxidant, antiviral, antimicrobial and antigenotoxic properties. PMID:27476275

  15. DAGESTAN HAWTHORN - A VALUABLE SOURCE OF BIOLOGICALLY ACTIVE SUBSTANCES

    Directory of Open Access Journals (Sweden)

    Omarieva L. V.

    2016-02-01

    Full Text Available The article deals with hawthorn Dagestan. It is noted that the more than 100 species are found 14 species in Dagestan. The most common of them are studied as a source of biologically active substances and nutrients, and they can be used as food additives for various purposes. The content of biologically active substances and nutrients are defined. The high content of phenolic substances in C. pentagyna Waldst. et Kit, which play an important role in the formation of immunity and possessing P-vitamin activity is defined. Amino acid and fatty acid composition of the fruit of the hawthorn Crataegus pentagyna Waldst. et Kit, as the most valuable for using as food additives is defined by ionexchange and gas-liquid chromatography. Sixteen amino acids were identified and quantified in the protein component of hawthorn fruit. The high content of essential amino acids such as lysine, threonine, valine, methionine, leucine, isoleucine, phenylalanine. The amount of essential amino acids is 296.1 mg / 100 g. Chromatographic separation of fatty acid methyl esters has enabled us to establish the presence of the following fatty acids: palmitic, oleic, stearic, linoleic and linolenic, including established the presence of essential fatty acids - the family of alpha-linolenic acid OMEGA -3 and linoleic acid family of OMEGA -6

  16. Synthesis and biological activities of turkesterone 11?-acyl derivatives

    Directory of Open Access Journals (Sweden)

    Laurence Dinan

    2003-02-01

    Full Text Available Turkesterone is a phytoecdysteroid possessing an 11alpha-hydroxyl group. It is an analogue of the insect steroid hormone 20-hydroxyecdysone. Previous ecdysteroid QSAR and molecular modelling studies predicted that the cavity of the ligand-binding domain of the ecdysteroid receptor would possess space in the vicinity of C-11/C-12 of the ecdysteroid. We report the regioselective synthesis of a series of turkesterone 11alpha-acyl derivatives in order to explore this possibility. The structures of the analogues have been unambiguously determined by spectroscopic means (NMR and low-resolution mass spectrometry. Purity was verified by HPLC. Biological activities have been determined in Drosophila melanogaster BII cell-based bioassay for ecdysteroid agonists and in an in vitro radioligand-displacement assay using bacterially expressed D. melanogaster EcR/USP receptor proteins. The 11alpha-acyl derivatives do retain a significant amount of biological activity relative to the parent ecdysteroid. Further, although activity initially drops with the extension of the acyl chain length (C2 to C4, it then increases (C6 to C10, before decreasing again (C14 and C20. The implications of these findings for the interaction of ecdysteroids with the ecdysteroid receptor and potential applications in the generation of affinity-labelled and fluorescently-tagged ecdysteroids are discussed.

  17. Activating and inhibiting connections in biological network dynamics

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Many studies of biochemical networks have analyzed network topology. Such work has suggested that specific types of network wiring may increase network robustness and therefore confer a selective advantage. However, knowledge of network topology does not allow one to predict network dynamical behavior – for example, whether deleting a protein from a signaling network would maintain the network's dynamical behavior, or induce oscillations or chaos. Results Here we report that the balance between activating and inhibiting connections is important in determining whether network dynamics reach steady state or oscillate. We use a simple dynamical model of a network of interacting genes or proteins. Using the model, we study random networks, networks selected for robust dynamics, and examples of biological network topologies. The fraction of activating connections influences whether the network dynamics reach steady state or oscillate. Conclusion The activating fraction may predispose a network to oscillate or reach steady state, and neutral evolution or selection of this parameter may affect the behavior of biological networks. This principle may unify the dynamics of a wide range of cellular networks. Reviewers Reviewed by Sergei Maslov, Eugene Koonin, and Yu (Brandon Xia (nominated by Mark Gerstein. For the full reviews, please go to the Reviewers' comments section.

  18. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

    Directory of Open Access Journals (Sweden)

    Nocerino N

    2014-03-01

    Full Text Available Nunzia Nocerino,1 Andrea Fulgione,1 Marco Iannaccone,1 Laura Tomasetta,1 Flora Ianniello,1 Francesca Martora,1 Marco Lelli,2 Norberto Roveri,2 Federico Capuano,3 Rosanna Capparelli1 1Department of Agriculture Special Biotechnology Center Federico II, CeBIOTEC Biotechnology, University of Naples Federico II, Naples, 2Department of Chemistry, G Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, 3Department of Food Inspection IZS ME, Naples, Italy Abstract: The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA. We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. Keywords: lactoferrin, hydroxyapatite nanocrystals, biomimetism, biological activity, drug delivery

  19. Physicochemical Characteristics and Biological Activity of Irradiated Pectin Solution

    International Nuclear Information System (INIS)

    Pectin was dissolved in HCI, citric acid, and deionized distilled water (DW, 2%, v/v) and irradiated at different irradiation doses (2.5-50 kGy) by gamma ray to investigate its physicochemical characteristics and biological activity. Viscosity of pectin solution was significantly decreased by irradiation up to 10 kGy, then remained constant thereafter. Gamma-irradiation increased monosaccharide and polysaccharide levels up to 30-40 kDa. Electron donating ability of pectin solution was highest when DW was added was increased by increasing irradiation dose (p less than 0.05)

  20. Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances.

    Science.gov (United States)

    Purtov, K V; Petunin, A I; Burov, A E; Puzyr, A P; Bondar, V S

    2010-01-01

    Surface of detonation nanodiamonds was functionalized for the covalent attachment of immunoglobulin, and simultaneously bovine serum albumin and Rabbit Anti-Mouse Antibody. The nanodiamond-IgG(I125) and RAM-nanodiamond-BSA(I125) complexes are stable in blood serum and the immobilized proteins retain their biological activity. It was shown that the RAM-nanodiamond-BSA(I125) complex is able to bind to the target antigen immobilized on the Sepharose 6B matrix through antibody-antigen interaction. The idea can be extended to use nanodiamonds as carriers for delivery of bioactive substances (i.e., drugs) to various targets in vivo. PMID:20672079

  1. Nanodiamonds as Carriers for Address Delivery of Biologically Active Substances

    Directory of Open Access Journals (Sweden)

    Petunin AI

    2010-01-01

    Full Text Available Abstract Surface of detonation nanodiamonds was functionalized for the covalent attachment of immunoglobulin, and simultaneously bovine serum albumin and Rabbit Anti-Mouse Antibody. The nanodiamond-IgGI125 and RAM-nanodiamond-BSAI125 complexes are stable in blood serum and the immobilized proteins retain their biological activity. It was shown that the RAM-nanodiamond-BSAI125 complex is able to bind to the target antigen immobilized on the Sepharose 6B matrix through antibody–antigen interaction. The idea can be extended to use nanodiamonds as carriers for delivery of bioactive substances (i.e., drugs to various targets in vivo.

  2. Functionalization of hydroxyl terminated polybutadiene with biologically active fluorescent molecule

    Indian Academy of Sciences (India)

    R Murali Sankar; Subhadeep Saha; K Seeni Meera; Tushar Jana

    2009-10-01

    A biologically active molecule, 2-chloro-4,6-bis(dimethylamino)-1,3,5-triazine (CBDT), has been covalently attached at the terminal carbon atoms of the hydroxyl terminated polybutadiene (HTPB) backbone. The modification of HTPB backbone by CBDT molecule does not affect the unique physico-chemical properties such as fluidity, hydroxyl value and microstructure of the parent HTPB. The formation of hydrogen bonding between the terminal hydroxyl groups and the nitrogen atoms of triazine moiety is the driving force for the terminal attachment chemistry. The functionalized HTPB (HTPB–CBDT) shows a strong fluorescence emission at 385 nm.

  3. Activation Analysis of Biological Samples of Forensic Interest

    International Nuclear Information System (INIS)

    In forensic (crime investigation) studies, samples of a biological origin are frequently used as evidence. Often it is necessary to compare one sample (associated with a victim or the scene of a crime) with another sample of the same general type (associated with a suspect in some way). The purpose of such comparisons is to establish, if possible, that - to a high degree of probability - the two samples have a common origin. Typically, all available relevant methods of comparison are utilized in such cases by the criminalist: microscopic examination; X-ray diffraction; infra-red, visible, and ultra-violet spectrometry; and various methods of elemental analysis. The forensic applications of high-flux thermal-neutron activation analysis (NAA) have shown great promise and are attracting considerable attention. The authors' laboratory has been engaged in such forensic NAA research and development studies for the past five years. (It also operates a non-profit Forensic Activation Analysis Service, available to all law enforcement agencies, for the NAA comparison of evidence samples involved in actual criminal cases. Samples from many actual cases have been thus examined.) In the United States, NAA results have now been successfully presented in court in some 20 actual cases. Some of the evidence-type materials of interest are non-biological; others are biological. Only the latter will be discussed in this paper. The principal evidence-type materials of a biological nature that have been examined in this laboratory by high-flux thermal-NAA to date are the following: hair, blood, faeces, urine, fingernails, skin, wood, tobacco, whisky, green plants, and marijuana. (In addition, a number of these evidence-type materials have also been studied in this laboratory by high-flux photonuclear activation analysis (PNAA); attention in this paper will be largely devoted to the thermal-NAA forensic studies.) The main topics to be reported upon in this paper are: (1) limits of

  4. Nitrogen-Containing Apigenin Analogs: Preparation and Biological Activity

    Directory of Open Access Journals (Sweden)

    Jinyi Wang

    2012-12-01

    Full Text Available A series of nitrogen-containing apigenin analogs 4a–j was synthesized via Mannich reactions to develop anticancer, antibacterial, and antioxidant agents from plant-derived flavonoids. The chemical structures of these compounds were confirmed using 1H-NMR, 13C-NMR, and ESI-MS. The in vitro biological activities of the analogs were evaluated via assays of their antiproliferative, antibacterial, and antioxidant activities. The prepared apigenin analogs exhibited different antiproliferative activities against four human cancer cell lines, namely human cervical (HeLa, human hepatocellular liver (HepG2, human lung (A549, and human breast (MCF-7 cancer cells. Compound 4i showed the most favorable in vitro antiproliferative activity with IC50 values of 40, 40, 223, and 166 μg/mL against HeLa, HepG2, A549, and MCF-7, respectively. The 1,1-diphenyl-2-picrylhydrazyl (DPPH free radical scavenging activity assay also showed that 4i had the most potent antioxidant activity, with the smallest IC50 value (334.8 μg/mL. The antibacterial activities of the analogs were determined using a two-fold serial dilution technique against four pathogenic bacteria, namely Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. All the prepared apigenin analogs exhibited more potent activities than the parent apigenin. Compounds 4h and 4j, in particular, exhibited the best inhibitory activities against the Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with MIC values of 3.91 and 1.95 μg/mL, respectively.

  5. Biological activities of an extract from Cleome viscosa L. (Capparaceae).

    Science.gov (United States)

    Williams, L A D; Vasques, E; Reid, W; Porter, R; Kraus, W

    2003-10-01

    Electron micrograph examination of the leaf and stem surfaces of Cleome viscosa L (Family Capparaceae) revealed the presence of secretory glandular trichomes with club-cylinder and cylinder morphologies. In the present study, the leaves and stems of C. viscosa were extracted with hexane and the extract was evaluated for the following biological activities: anti-bacterial, anti-fungal, contact insecticidal and nematicidal. The extract was found to be a potent anti-bacterial agent according to the thin layer chromatography autobiographic assay. Activity-directed isolation studies of the anti-bacterially active compounds led to a 14-member ring cembranoid diterpene being identified as one of the effective agents. Minimum inhibitory concentration (MIC) values (microg/spot) of 5.0 microg/spot and 1.0 microg/spot were found for the diterpene on Bacillus subtilis (Gram-positive) and Pseudomonas fluorescens (Gram-negative), respectively. The diterpene did not inhibit the growth of the fungus Cladosporium cucumerinum. The extract demonstrated a pyrethroid type of contact insecticidal activity on adult Cylas formicarius elegantulus Summer (Coleoptera: Curculionidae). The extract also had high nematicidal activity with a percentage Abbott's value of 72.69 on the plant parasitic nematode Meloidogyne incognita Chitwood; however, the extract lost its potency upon subfractionation. PMID:14564407

  6. Biological activity of soil contaminated with cobalt, tin, and molybdenum.

    Science.gov (United States)

    Zaborowska, Magdalena; Kucharski, Jan; Wyszkowska, Jadwiga

    2016-07-01

    In this age of intensive industrialization and urbanization, mankind's highest concern should be to analyze the effect of all metals accumulating in the environment, both those considered toxic and trace elements. With this aim in mind, a unique study was conducted to determine the potentially negative impact of Sn(2+), Co(2+), and Mo(5+) in optimal and increased doses on soil biological properties. These metals were applied in the form of aqueous solutions of Sn(2+) (SnCl2 (.)2H2O), Co(2+) (CoCl2 · 6H2O), and Mo(5+) (MoCl5), each in the doses of 0, 25, 50, 100, 200, 400, and 800 mg kg(-1) soil DM. The activity of dehydrogenases, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and catalase and the counts of twelve microorganism groups were determined on the 25th and 50th day of experiment duration. Moreover, to present the studied problem comprehensively, changes in the biochemical activity and yield of spring barley were shown using soil and plant resistance indices-RS. The study shows that Sn(2+), Co(2+), and Mo(5+) disturb the state of soil homeostasis. Co(2+) and Mo(5+) proved the greatest soil biological activity inhibitors. The residence of these metals in soil, particularly Co(2+), also generated a drastic decrease in the value of spring barley resistance. Only Sn(2+) did not disrupt its yielding. The studied enzymes can be arranged as follows for their sensitivity to Sn(2+), Co(2+), Mo(5+): Deh > Ure > Aryl > Pal > Pac > Cat. Dehydrogenases and urease may be reliable soil health indicators. PMID:27277093

  7. Biological Activities of Oleanolic Acid Derivatives from Calendula officinalis Seeds.

    Science.gov (United States)

    Zaki, Ahmed; Ashour, Ahmed; Mira, Amira; Kishikawa, Asuka; Nakagawa, Toshinori; Zhu, Qinchang; Shimizu, Kuniyoshi

    2016-05-01

    Phytochemical examination of butanol fraction of Calendula officinalis seeds led to the isolation of two compounds identified as 28-O-β-D-glucopyranosyl-oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS1) and oleanolic acid 3-O-β-D-glucopyranosyl (1→3)-β-D-glucopyranosiduronic acid (CS2). Biological evaluation was carried out for these two compounds such as melanin biosynthesis inhibitory, hyaluronic acid production activities, anti obesity using lipase inhibition and adipocyte differentiation as well as evaluation of the protective effect against hydrogen peroxide induced neurotoxicity in neuro-2A cells. The results showed that, compound CS2 has a melanin biosynthesis stimulatory activity; however, compound CS1 has a potent stimulatory effect for the production of hyaluronic acid on normal human dermal fibroblast from adult (NHDF-Ad). Both compounds did not show any inhibitory effect on both lipase and adipocyte differentiation. Compound CS2 could protect neuro-2A cells and increased cell viability against H2 O2 . These activities (melanin biosynthesis stimulatory and protective effect against H2 O2 of CS2 and hyaluronic acid productive activities of these triterpene derivatives) have been reported for the first time. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26887328

  8. Essential oil components and biological activities of Coleus parvifolius leaves

    Directory of Open Access Journals (Sweden)

    Supinya Tewtrakul

    2005-08-01

    Full Text Available The essential oil distilled from the leaves of Coleus parvifolius Benth. (Labiatae was studied by gas chromatography and mass spectrometry (GC-MS. The main components were found to be (E-phytol (42.77%, followed by eicosatrienoate (16.39%, n-tetradecanoic acid (14.42%, octoil (6.54%, 2-methyl-7- octadecyne (5.97%, nonadecane (3.25%, germacrene-D (2.19% and α-humulene (1.42%, respectively. Regarding biological activities, the ethanolic extract of C. parvifolius showed potent antimicrobial activity against gram positive bacteria (Staphylococcus aureus, Bacillus subtilis and B. cereus with inhibition zones of 7-11 mm at a concentration of 10 mg/disc and moderate activity against gram negative bacteria (Salmonella typhi, S. enteritidis and Escherichia coli with inhibition zones of 9-11 mm at 100 mg/disc, whereas it was inactive against fungus, Candida albicans at a concentration of 100 mg/disc. The extract also exhibited strong antioxidant activity (ED50 = 5.87±0.03 μg/ml three times higher than that of butylated hydroxytoluene (BHT, ED50 = 18.08±0.43 μg/ml. Moreover, it was non-toxic to brine shrimp with LC50 value > 1,000 μg/ml.

  9. Biological and Nonbiological Antioxidant Activity of Some Essential Oils.

    Science.gov (United States)

    Pérez-Rosés, Renato; Risco, Ester; Vila, Roser; Peñalver, Pedro; Cañigueral, Salvador

    2016-06-15

    Fifteen essential oils, four essential oil fractions, and three pure compounds (thymol, carvacrol, and eugenol), characterized by gas chromatography and gas chromatography-mass spectrometry, were investigated for biological and nonbiological antioxidant activity. Clove oil and eugenol showed strong DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical scavenging activity (IC50 = 13.2 μg/mL and 11.7 μg/mL, respectively) and powerfully inhibited reactive oxygen species (ROS) production in human neutrophils stimulated by PMA (phorbol 12-myristate 13-acetate) (IC50 = 7.5 μg/mL and 1.6 μg/mL) or H2O2 (IC50 = 22.6 μg/mL and 27.1 μg/mL). Nutmeg, ginger, and palmarosa oils were also highly active on this test. Essential oils from clove and ginger, as well as eugenol, carvacrol, and bornyl acetate inhibited NO (nitric oxide) production (IC50 oils of clove, red thyme, and Spanish oregano, together with eugenol, thymol, and carvacrol showed the highest myeloperoxidase inhibitory activity. Isomers carvacrol and thymol displayed a disparate behavior in some tests. All in all, clove oil and eugenol offered the best antioxidant profile. PMID:27214068

  10. Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol.

    Science.gov (United States)

    Summerlin, Natalie; Qu, Zhi; Pujara, Naisarg; Sheng, Yong; Jambhrunkar, Siddharth; McGuckin, Michael; Popat, Amirali

    2016-08-01

    The naturally occurring polyphenol resveratrol (RES) has attracted increasing attention in recent years due to its antioxidant, anti-inflammatory, and anticancer activity. However, resveratrol's promising potential as a nutraceutical is hindered by its poor aqueous solubility, which limits its biological activity. Here we show that encapsulating resveratrol in colloidal mesoporous silica nanoparticles (MCM-48-RES) enhances its saturated solubility by ∼95% and increases its in vitro release kinetics compared to pure resveratrol. MCM-48-RES showed high loading capacity (20% w/w) and excellent encapsulation efficiency (100%). When tested against HT-29 and LS147T colon cancer cell lines, MCM-48-RES-mediated in vitro cell death was higher than that of pure resveratrol, mediated via the PARP and cIAP1 pathways. Finally, MCM-48-RES treatment also inhibited lipopolysaccharide-induced NF-κB activation in RAW264.7 cells, demonstrating improved anti-inflammatory activity. More broadly, our observations demonstrate the potential of colloidal mesoporous silica nanoparticles as next generation delivery carriers for hydrophobic nutraceuticals. PMID:27060664

  11. [The biological activity of macrophages in health and disease].

    Science.gov (United States)

    Nazimek, Katarzyna; Bryniarski, Krzysztof

    2012-01-01

    Macrophages are involved in immune response as phagocytes, antigen presenting cells and as effector cells of delayed-type hypersensitivity. Moreover, the activity of macrophages is associated with modulation of many biological processes during the whole life and depends on the actual macrophage phenotype induced under the influence of various microenvironmental stimuli. In pregnancy, placental macrophages induce the development of maternal tolerance to fetal antigens, while fetal macrophages are responsible for proper formation of tissues and organs. Residual macrophages play a very important role in tissue homeostasis, apoptotic cell clearance to prevent autoimmunization and first defense in infections. The inflammatory response of macrophages may be modulated by pathogens. Their suppressive activity is observed in immunologically privileged organs such as testes. In pathologies, macrophages are responsible for tissue damage in a case of nonspecific activation followed by overproduction of proinflammatory factors. Suppression of a specific immune response against tumors is mainly the effect of tumor associated macrophage (TAM) action. On the other hand, presentation of allergens or self-antigens by macrophages and their nonspecific activation by necrotic adipocytes leads to the induction of a chronic inflammatory response and impairment of immunity. Therefore, modulation of macrophage functions may be the key for improvement of therapy of cancer and allergic, autoimmune, metabolic, cardiovascular and Alzheimer's diseases. PMID:22922151

  12. Biological Activities of the Essential Oil from Erigeron floribundus

    Directory of Open Access Journals (Sweden)

    Riccardo Petrelli

    2016-08-01

    Full Text Available Erigeron floribundus (Asteraceae is an herbaceous plant widely used in Cameroonian traditional medicine to treat various diseases of microbial and non-microbial origin. In the present study, we evaluated the in vitro biological activities displayed by the essential oil obtained from the aerial parts of E. floribundus, namely the antioxidant, antimicrobial and antiproliferative activities. Moreover, we investigated the inhibitory effects of E. floribundus essential oil on nicotinate mononucleotide adenylyltransferase (NadD, a promising new target for developing novel antibiotics, and Trypanosoma brucei, the protozoan parasite responsible for Human African trypanosomiasis. The essential oil composition was dominated by spathulenol (12.2%, caryophyllene oxide (12.4% and limonene (8.8%. The E. floribundus oil showed a good activity against Staphylococcus aureus (inhibition zone diameter, IZD of 14 mm, minimum inhibitory concentration, MIC of 512 µg/mL. Interestingly, it inhibited the NadD enzyme from S. aureus (IC50 of 98 µg/mL, with no effects on mammalian orthologue enzymes. In addition, T. brucei proliferation was inhibited with IC50 values of 33.5 µg/mL with the essential oil and 5.6 µg/mL with the active component limonene. The essential oil exhibited strong cytotoxicity on HCT 116 colon carcinoma cells with an IC50 value of 14.89 µg/mL, and remarkable ferric reducing antioxidant power (tocopherol-equivalent antioxidant capacity, TEAC = 411.9 μmol·TE/g.

  13. Chemistry and Biological Activities of Flavonoids: An Overview

    Directory of Open Access Journals (Sweden)

    Shashank Kumar

    2013-01-01

    Full Text Available There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production.

  14. Catalytically and biologically active silver nanoparticles synthesized using essential oil

    Science.gov (United States)

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-01

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.

  15. Biological surface-active compounds from marine bacteria.

    Science.gov (United States)

    Dang, Nga Phuong; Landfald, Bjarne; Willassen, Nils Peder

    2016-01-01

    Surface-active compounds (SACs) are widely used in different industries as well as in many daily consumption products. However, with the increasing concern for their environmental acceptability, attention has turned towards biological SACs which are biodegradable, less toxic and more environmentally friendly. In this work, 176 marine hydrocarbon-degrading bacterial isolates from petroleum-contaminated sites along the Norwegian coastline were isolated and screened for their capacity to produce biological SACs. Among them, 18 isolates were capable of reducing the surface tension of the culture medium by at least 20 mN m(-1) and/or capable of maintaining more than 40% of the emulsion volume after 24 h when growing on glucose or kerosene as carbon and energy source. These isolates were members of the genera Pseudomonas, Pseudoalteromonas, Rhodococcus, Catenovulum, Cobetia, Glaciecola, Serratia, Marinomonas and Psychromonas. Two isolates, Rhodococcus sp. LF-13 and Rhodococcus sp. LF-22, reduced surface tension of culture medium by more than 40 mN m(-1) when growing on kerosene, n-hexadecane or rapeseed oil. The biosurfactants were produced by resting cells of the two Rhodococcus strains suggesting the biosynthesis of the biosurfactants was not necessarily associated with their growth on hydrocarbons. PMID:26506920

  16. Production of biologically active recombinant human lactoferrin in Aspergillus oryzae.

    Science.gov (United States)

    Ward, P P; Lo, J Y; Duke, M; May, G S; Headon, D R; Conneely, O M

    1992-07-01

    We report the production of recombinant human lactoferrin in Aspergillus oryzae. Expression of human lactoferrin (hLF), a 78 kD glycoprotein, was achieved by placing the cDNA under the control of the A. oryzae alpha-amylase promoter and the 3' flanking region of the A. niger glucoamylase gene. Using this system, hLF is expressed and secreted into the growth medium at levels up to 25 mg/l. The recombinant lactoferrin is indistinguishable from human milk lactoferrin with respect to its size, immunoreactivity, and iron-binding capacity. The recombinant protein appears to be appropriately N-linked glycosylated and correctly processed at the N-terminus by the A. oryzae secretory apparatus. Lactoferrin is the largest heterologous protein and the first mammalian glycoprotein expressed in the Aspergillus system to date. Hence, this expression system appears suitable for the large-scale production and secretion of biologically active mammalian glycoproteins. PMID:1368268

  17. Inactivation efficiencies of radical reactions with biologically active DNA

    Science.gov (United States)

    Lafleur, M. V. M.; Retèl, J.; Loman, H.

    Dilute aqueous solutions of biologically active θX174 DNA may serve as a simplified model system of the cell. Damage to the DNA after irradiation with γ-rays, may be ascribed to reactions with .OH, .H and e -aq or secondary radicals, arising from reactions of water radicals with added scavengers. Conversion of primary (water) radicals into secondary (scavenger) radicals leads to a considerable protection of the DNA, which, however, would have been larger if these secondary radicals did not contribute to DNA inactivation. The inactivation yield due to isopropanol or formate (secondary) radicals depends on dose rate as well as DNA concentration. Furthermore the inactivation efficiencies of the reactions of both the primary and the secondary radicals with single-stranded DNA could be established.

  18. Inactivation efficiencies of radical reactions with biologically active DNA

    International Nuclear Information System (INIS)

    Dilute aqueous solutions of biologically active ΦX174 DNA may serve as a simplified model system of the cell. Damage to the DNA after irradiation with γ-rays, may be ascribed to reactions with radical OH, radical H and esub(aq)- or secondary radicals, arising from reactions of water radicals with added scavengers. Conversion of primary (water) radicals into secondary (scavenger) radicals leads to a considerable protection of the DNA, which however, would have been larger if these secondary radicals did not contribute to DNA inactivation. The inactivation yield due to isopropanol or formate (secondary) radicals depends on dose rate as well as DNA concentration. Furthermore the inactivation efficiencies of the reactions of both the primary and the secondary radicals with single-stranded DNA could be established. (author)

  19. Simaroubaceae family: botany, chemical composition and biological activities

    Directory of Open Access Journals (Sweden)

    Iasmine A.B.S. Alves

    2014-08-01

    Full Text Available The Simaroubaceae family includes 32 genera and more than 170 species of trees and brushes of pantropical distribution. The main distribution hot spots are located at tropical areas of America, extending to Africa, Madagascar and regions of Australia bathed by the Pacific. This family is characterized by the presence of quassinoids, secondary metabolites responsible of a wide spectrum of biological activities such as antitumor, antimalarial, antiviral, insecticide, feeding deterrent, amebicide, antiparasitic and herbicidal. Although the chemical and pharmacological potential of Simaroubaceae family as well as its participation in official compendia; such as British, German, French and Brazilian pharmacopoeias, and patent registration, many of its species have not been studied yet. In order to direct further investigation to approach detailed botanical, chemical and pharmacological aspects of the Simaroubaceae, the present work reviews the information regarding the main genera of the family up to 2013.

  20. Constituents and Biological Activities of some Iranian Artemisia species

    Directory of Open Access Journals (Sweden)

    Abdolhossein Rustaiyan

    2014-09-01

    Full Text Available Plants play a vital role in maintaining human health and contribute towards improvement of human life. They are important components of medicines, cosmetics, dyes, beverages etc. Plants have been one of the important sources of medicines even since the dawn of human civilization. In spite of tremendous development in the field of allopathy during the 20th century, plants still remain one of the major sources of drug in the modern as well as traditional system of medicine throughout the world. Over 60% of all pharmaceuticals are plant-based. Plants are considered as state-of-art chemical laboratories capable of biosynthesizing number of biomolecules of different chemical classes. The present review describes the chemical and biological activities of some Iranian Artemisia species: A. aucheri Boiss., A. austriaca Jacq., A. chamaemelifolia Vill, A. ciniformis Krasch, A. deserti Krasch and A. diffusa. Krasch.

  1. Production and biological activities of yellow pigments from Monascus fungi.

    Science.gov (United States)

    Chen, Gong; Wu, Zhenqiang

    2016-08-01

    Monascus yellow pigments (MYPs), are azaphilone compounds and one of the three main components of total Monascus pigments (MPs). Thirty-five hydrophilic or hydrophobic MYPs have been identified, with the majority being hydrophobic. Apart from screening special Monascus strains, some advanced approaches, such as extractive and high-cell-density fermentations, have been applied for developing or producing new MYPs, especially extracellular hydrophilic MYPs. The outstanding performance of MYPs in terms of resistance to photodegradation, as well as tolerance for temperature and pH, give natural MYPs reasonable prospects, compared with the orange and red MPs, for practical use in the present and future. Meanwhile, MYPs have shown promising potential for applications in the food and pharmaceutical industries based on their described bioactivities. This review briefly summarizes the reports to date on chemical structures, biological activities, biosynthetic pathways, production technologies, and physicochemical performances of MYPs. The existing problems for MYPs are discussed and research prospects proposed. PMID:27357404

  2. [The release of biologically active compounds from peat peloids].

    Science.gov (United States)

    Babaskin, D V

    2011-01-01

    This work had the objective to study kinetics of the release of flavonoides from peat peloid compositions containing extracts of medicinal herbs in model systems.The key parameters of the process are defined. The rate of liberation of flavonoides is shown to depend on their initial concentration in the compositions being used. The influence of the flavonoide composition of the tested extracts and dimethylsulfoxide on the release of biologically active compounds contained in the starting material in the model environment is estimated. The possibility of the layer-by-layer deposition of the compositions and peat peloids in order to increase the efficacy of flavonoide release from the starting composition and to ensure more rational utilization of the extracts of medicinal plants is demonstrated. PMID:22165149

  3. Radiation degradation of polysaccharides and induced biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, Naotsugu; Yoshii, Fumio; Makuuchi Keizo; Kume Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Mitomo, Hiroshi [Gunma Univ., Kiryu (Japan). Faculty of Engineering

    1999-09-01

    Relationship between irradiation effect of polysaccharides and induced biological activity for plants has been investigated. Sodium alginate was irradiated by gamma-rays from a Co-60 source in liquid state (aqueous solution) and in solid state (powder form). Measurement of molecular weight and analysis of UV spectra of irradiated sodium alginate have been carried out. The molecular weight was decreased by irradiation in both conditions. New absorbance peak derived from double bond or/and carbonyl group was appeared at close to 267 nm by irradiation in UV spectra. It was found that alginate having molecular weight about 10,000 is most suitable to used as growth promoter in plants. To obtain the molecular weight of 10,000 by irradiation, the necessary doses are 100 kGy in liquid state and 500 kGy in solid state, respectively. (author)

  4. The long-term fertilization effect on biological activity of different genesis soils

    OpenAIRE

    Grigaliūnienė, Kristina

    2006-01-01

    The effect of organic and mineral fertilizers on biological activity of different genesis soils in long-term crop rotation trials was determined. Biological activity was diverse in the soils of different genesis and it activity correlated with some soil chemical properties. Organic and mineral fertilizers and their combinations more increased biological activity in the soil than only mineral fertilizers. Mineral fertilizers suppressed dehydrogenase and alkaline phosphatase activity (180 kg ha...

  5. Immobilization biological activated carbon used in advanced drinking water treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Bacteria separated from a mature filter bed of groundwater treatment plants were incubated in a culture media containing iron and manganese. A consortium of 5 strains of bacteria removing iron and manganese were obtained by repeated enrichment culturing. It was shown from the experiments of effect factors that ironmanganese removal bacteria in the culture media containing both Fe and Mn grew better than in that containing only Fe, however, they were unable to grow in the culture media containing only Mn. When comparing the bacteria biomass in the case ofρ (DO) =2.8 mg/L andρ (DO) =9.0 mg/L, no significant difference was found.The engineering bacteria removing the organic and the bacteria removing iron and manganese were simultaneously inoculated into activated carbon reactor to treat the effluent of distribution network. The experimental results showed that by using IBAC ( Immobilization Biological Activated Carbon) treatment, the removal efficiency of iron, manganese and permanganate index was more than 98% , 96% and 55% , respectively. After the influent with turbidity of 1.5 NTU, color of 25 degree and offensive odor was treated, the turbidity and color of effluence were less than 0.5 NTU and 15 degree, respectively, and it was odorless. It is determined that the cooperation function of engineering bacteria and activated carbon achieved advanced drinking water treatment.

  6. BIOLOGICAL ACTIVITY OF APPLE JUICE ENRICHED BY HERBAL EXTRACTS

    Directory of Open Access Journals (Sweden)

    Eva Ivanišová

    2015-02-01

    Full Text Available Herbal phytochemicals have recently become an attractive subject for scientists in many different research areas. The aim of this study was to determine antioxidant activity, total polyphenol and flavonoid content of apple juice enriched by water herbal extracts. Secondary was to evaluate sensory characteristic of enriched apple juice. It was found that applications of water herbal extracts to apple juice increase antioxidant activities, and also total polyphenol and flavonoid content with compare to pure apple juice. The highest biological activities were detected in apple juice with addition of lemon balm (14.42 mg TEAC/L; 84.38 mg TEAC/L; 50.88 mg GAE/L; 36.26 μg QE/L, oregano (14.92 mg TEAC/L; 79.97 mg TEAC/L; 50.51 mg GAE/L; 31.02 μg QE/L and salvia (8.40 mg TEAC/L; 30.40 mg TEAC/L; 23.33 mg GAE/L; 27.67 μg QE/L water extract. Sensorial analysis of samples showed, that enriched juices had better properties for evaluators with compared to pure juice. The aim of this study was also to mention the potential use of medicinal herbs in food industry, because plant bioactive compounds can play an important role in preventing cardiovascular diseases, cancers and reduction inflammatory action.

  7. Optimization of hypocrellin B derivative amphiphilicity and biological activity

    Institute of Scientific and Technical Information of China (English)

    LIU Xin; XIE Jie; ZHANG LuYong; CHEN HongXia; GU Ying; ZHAO JingQuan

    2009-01-01

    To satisfy the dual requirements of the fluent transportation in blood and the affinity to the target tissues of vascular diseases, hypocrellin derivatives with optimized amphiphilicity are expected. In this work, 3-amino-1-propanesulfonic acid and 4-amino-1-butanesulfonic acid substituted hypocrellin B,named compounds 1 and 2, were designed, synthesized in high yields and characterized. Besides greatly strengthened red absorption, the maximum solubility of compound 2 in phosphate buffered saline (PBS) is 4.2 mg/mL which is just enough to prepare an aqueous solution for intravenous injection in clinically acceptable concentration, while the partition coefficient between n-octanol and PBS,5.6, benefits the cell-uptake and biological activity as well. Furthermore, EPR measurements reveal that the photosensitization activities of the two compounds to generate semiquinone anion radicals, superoxide anion radicals and singlet oxygen are a little bit higher than those of taurine substituted hypocrellin B (THB), but the photodynamic activities to human lung cancer A549 cells are several times that of THB, mainly due to increases in lipophilicity and cell-uptake.

  8. In vitro biological activities of alkaloids from Cryptolepis sanguinolenta.

    Science.gov (United States)

    Cimanga, K; De Bruyne, T; Lasure, A; Van Poel, B; Pieters, L; Claeys, M; Berghe, D V; Kambu, K; Tona, L; Vlietinck, A J

    1996-02-01

    In our biological screening of higher plants, an aqueous and an 80% EtOH extract from the root bark of Cryptolepis sanguinolenta showed potent antibacterial, anticomplementary, and moderate antiviral activities, but no antifungal effect could be detected. Bioassay-guided fractionation of the 80% EtOH extract led to the isolation of three alkaloids: quindoline (1), hydroxycryptolepine (2), cryptolepine.HCl (3), and the corresponding base cryptolepine (4). All compounds strongly inhibited the growth of Gram-positive bacteria (MIC 500 micrograms/ml) against selected Gram-negative bacteria. They also possessed a bactericidal effect depending on the bacterial strain. Compounds 1, 2 and 3 displayed a dose-dependent inhibitory effect on the classical pathway of the complement system while compounds 2 and 3 activated the alternative pathway, except for compound 1. Compound 3 was found to possess an antiherpetic activity. Compounds 1 and 4 showed no antiviral effect, but were quite cytotoxic in the antiviral test system down to a concentration of 1 microgram/ml. PMID:8720383

  9. Evaluation of the biological activity of sunflower hull extracts

    Energy Technology Data Exchange (ETDEWEB)

    Taha, F. S.; Wagdy, S. M.; Hassanein, M. M. M.; Hamed, S. F.

    2012-11-01

    This work was planned with the aim of adding value to sunflower seed hulls, a waste product of the oil industry by preparing a sunflower hull phenolic extract rich in chlorogenic acid (CGA). In order to fulfill this goal, the optimization for the extraction of a phenolic extract from the hulls was investigated. The parameters studied were: type of solvent, solvent to water ratio and hull to solvent ratio. In addition, the solvent mixtures were also studied. The resulting phenolic extracts were evaluated for their biological activities. This included phenolic content determination, evaluation of the antioxidant and antimicrobial activities. Chlorogenic acid was determined in two chosen hull extracts using the UV spectrophotometric method and HPLC analysis. The anti carcinogenic activity of the two chosen extracts was tested on seven different cell line carcinomas. The results revealed that all the phenolic extracts of sunflower hull studied contain between 190-312.5 mg phenolics/ 100 g hulls. The highest phenolic extraction was achieved with 80% methanol (1:30, hull to solvent, w/v ratio) and methanol to ethanol to water (7:7:6 v/v/v) mixture with values of 312.5 and 306.5 mg phenolics/100 g hulls, respectively. The free radical scavenging activity and antioxidant activity of all the samples ranged from 33.6-72.6%. The highest antioxidant activity and free radical scavenging activity were achieved by the same extracts that possessed the highest phenolic content, namely methanol to ethanol to water extract and 80% methanol with values 71.8 and 72.6%, 68.2 and 70.9% respectively, compared to 77.9 and 76.9% respectively for TBHQ. All the phenolic extracts possessed antimicrobial activity but to different levels against different pathogenic bacteria. The two chosen extracts also possessed anti carcinogenic activity, which differed among varying cell line carcinomas. The HPLC analysis indicated that chlorogenic acid was the main phenolic acid in the extract. Thus it can

  10. Biological activity of terpene compounds produced by biotechnological methods.

    Science.gov (United States)

    Paduch, Roman; Trytek, Mariusz; Król, Sylwia K; Kud, Joanna; Frant, Maciej; Kandefer-Szerszeń, Martyna; Fiedurek, Jan

    2016-06-01

    Context Biotransformation systems are profitable tools for structural modification of bioactive natural compounds into valuable biologically active terpenoids. Objective This study determines the biological effect of (R)-(+)-limonene and (-)-α-pinene, and their oxygenated derivatives, (a) perillyl alcohol and (S)-(+)- and (R)-(-)-carvone enantiomers and (b) linalool, trans-verbenol and verbenone, respectively, on human colon tumour cells and normal colonic epithelium. Materials and methods Biotransformation procedures and in vitro cell culture tests were used in this work. Cells were incubated for 24 h with terpenes at concentrations of 5-500 μg/mL for NR, MTT, DPPH, and NO assays. IL-6 was determined by ELISA with/without 2 h pre-activation with 10 μg/mL LPS. Results trans-Verbenol and perillyl alcohol, obtained via biotransformation, produced in vitro effect against tumour cells at lower concentrations (IC50 value = 77.8 and 98.8 μg/mL, respectively) than their monoterpene precursors, (R)-(+)-limonene (IC50 value = 171.4 μg/mL) and (-)-α-pinene (IC50 value = 206.3 μg/mL). They also showed lower cytotoxicity against normal cells (IC50 > 500 and > 200 μg/mL, respectively). (S)-(+)-Carvone was 59.4% and 27.1% more toxic to tumour and normal cells, respectively, than the (R)-(-)-enantiomer. (R)-(+)-limonene derivatives decreased IL-6 production from normal cells in media with or without LPS (30.2% and 13.9%, respectively), while (-)-α-pinene derivatives induced IL-6 (verbenone had the strongest effect, 60.2% and 29.1% above control, respectively). None of the terpenes had antioxidative activity below 500 μg/mL. Discussion and conclusions Bioactivity against tumour cells decreased in the following order: alcohols > ketones > hydrocarbons. (R)-(+)-limonene, (-)-α-pinene, and their derivatives expressed diverse activity towards normal and tumour cells with noticeable enantiomeric differences. PMID:26808720

  11. Phenolic Compounds Characterization and Biological Activities of Citrus aurantium Bloom

    Directory of Open Access Journals (Sweden)

    Armin Oskoueian

    2012-01-01

    Full Text Available Citrus plants are known to possess beneficial biological activities for human health. In addition, ethnopharmacological application of plants is a good tool to explore their bioactivities and active compounds. This research was carried out to evaluate the phenolic and flavonoid analysis, antioxidant properties, anti inflammatory and anti cancer activity of Citrus aurantium bloom. The total phenolics and flavonoids results revealed that methanolic extract contained high total phenolics and flavonoids compared to ethanolic and boiling water extracts. The obtained total phenolics value for methanolic Citrus aurantium bloom extract was 4.55 ± 0.05 mg gallic acid equivalent (GAE/g dry weight (DW, and for total flavonoids it was 3.83 ± 0.05 mg rutin equivalent/g DW. In addition, the RP-HPLC analyses of phenolics and flavonoids indicated the presence of gallic acid, pyrogallol, syringic acid, caffeic acid, rutin, quercetin and naringin as bioactive compounds. The antioxidant activity of Citrus aurantium bloom were examined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH assay and the ferric reducing/antioxidant potential (FRAP. The free radical scavenging and ferric reducing power activities were higher for the methanolic extract of Citrus aurantium bloom at a concentration of 300 μg/mL, with values of 55.3% and 51.7%, respectively, as compared to the corresponding boiling water and ethanolic extracts, but the activities were lower than those of antioxidant standards such as BHT and α-tocopherol. Furthermore, the anti-inflammatory result of methanolic extract showed appreciable reduction in nitric oxide production of stimulated RAW 264.7 cells at the presence of plant extract. Apart from that, the anticancer activity of the methanolic extract was investigated in vitro against human cancer cell lines (MCF-7; MDA-MB-231, human colon adenocarcinoma (HT-29 and Chang cell as a normal human hepatocyte. The obtained result demonstrated the moderate to

  12. A Conceptual Framework for Organizing Active Learning Experiences in Biology Instruction

    Science.gov (United States)

    Gardner, Joel; Belland, Brian R.

    2012-01-01

    Introductory biology courses form a cornerstone of undergraduate instruction. However, the predominantly used lecture approach fails to produce higher-order biology learning. Research shows that active learning strategies can increase student learning, yet few biology instructors use all identified active learning strategies. In this paper, we…

  13. Teaching Systems Biology: An Active-Learning Approach

    Science.gov (United States)

    Kumar, Anuj

    2005-01-01

    With genomics well established in modern molecular biology, recent studies have sought to further the discipline by integrating complementary methodologies into a holistic depiction of the molecular mechanisms underpinning cell function. This genomic subdiscipline, loosely termed "systems biology," presents the biology educator with both…

  14. Synthesis, Characterization and Biological Activities of Organotin (IV Methylcyclohexyldithiocarbamate Compounds

    Directory of Open Access Journals (Sweden)

    Normah Awang

    2011-01-01

    Full Text Available Problem statement: The growing interest in the chemistry of sulphur donor ligands are due to their encouraging anticancer, antibacterial and antifungal activities as well as their widespread industrial application. Dithiocarbamates belong to this class and much attention has been paid to them. Approach: Novel organotin compounds with the molecular formula RmSn[S2CN(CH3(C6H11]4-m (where m = 2, R = CH3, C2H5; m = 3, R = C6H5 have been synthesized using in situ method. These compounds were characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy. Results: Elemental analysis revealed that all compounds were of good purity. Infrared spectra of the compounds showed that the thioureide ν(C-N band was in the region 1450-1500 cm−1. The unsplitting band of ν(C-S in the region 974-979 cm−1 indicated the bidentate nature of the chelated dithiocarbamato legends. The 13C NMR chemical shift of the carbon atom in the N-CS2 group appeared in the range of 196.29-199.82 ppm. Single crystal analysis from one of these compounds showed that the chelating mode of the dithiocarbamate groups was isobidentate. These compounds have been screened for antibacterial activity against four bacteria; Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa and Bacillus subtilis. Only one of these compounds shows promising results against S. aureus and S. typhi. Cytotoxicity screening on human leukemic promyelocyte HL-60 cells found that two of these compounds were very active with CD50 values of 0.87 and 0.18 µg mL−1. Conclusion: The studied compounds were found to have the potential in biological activity especially in cytotoxicity where this possibly can be used for clinical trials after further research.

  15. Chemistry, biogenesis, and biological activities of Cinnamomum zeylanicum.

    Science.gov (United States)

    Jayaprakasha, G K; Rao, L Jagan Mohan

    2011-07-01

    The genus Cinnamomum comprises of several hundreds of species, which are distributed in Asia and Australia. Cinnamomum zeylanicum, the source of cinnamon bark and leaf oils, is an indigenous tree of Sri Lanka, although most oil now comes from cultivated areas. C. zeylanicum is an important spice and aromatic crop having wide applications in flavoring, perfumery, beverages, and medicines. Volatile oils from different parts of cinnamon such as leaves, bark, fruits, root bark, flowers, and buds have been isolated by hydro distillation/steam distillation and supercritical fluid extraction. The chemical compositions of the volatile oils have been identified by GC and GC-MS. More than 80 compounds were identified from different parts of cinnamon. The leaf oil has a major component called eugenol. Cinnamaldehyde and camphor have been reported to be the major components of volatile oils from stem bark and root bark, respectively. Trans-cinnamyl acetate was found to be the major compound in fruits, flowers, and fruit stalks. These volatile oils were found to exhibit antioxidant, antimicrobial, and antidiabetic activities. C. zeylanicum bark and fruits were found to contain proanthocyandins with doubly linked bis-flavan-3-ol units in the molecule. The present review provides a coherent presentation of scattered literature on the chemistry, biogenesis, and biological activities of cinnamon. PMID:21929331

  16. Effect of a biological activated carbon filter on particle counts

    Institute of Scientific and Technical Information of China (English)

    Su-hua WU; Bing-zhi DONG; Tie-jun QIAO; Jin-song ZHANG

    2008-01-01

    Due to the importance of biological safety in drinking water quality and the disadvantages which exist in traditional methods of detecting typical microorganisms such as Cryptosporidium and Giardia,it is necessary to develop an alternative.Particle counts is a qualitative measurement of the amount of dissolved solids in water.The removal rate of particle counts was previously used as an indicator of the effectiveness of a biological activated carbon(BAC)filter in removing Cryptosporidium and Giardia.The particle counts in a BAC filter effluent over one operational period and the effects of BAC filter construction and operational parameters were investigated with a 10 m3/h pilot plant.The results indicated that the maximum particle count in backwash remnant water was as high as 1296 count/ml and it needed about 1.5 h to reduce from the maximum to less than 50 count/ml.During the standard filtration period,particle counts stay constant at less than 50 count/ml for 5 d except when influ-enced by sand filter backwash remnant water.The removal rates of particle counts in the BAC filter are related to characteristics of the carbon.For example,a columned carbon and a sand bed removed 33.3% and 8.5% of particles,respectively,while the particle counts in effluent from a cracked BAC filter was higher than that of the influent.There is no significant difference among particle removal rates with different filtration rates.High post-ozone dosage(>2 mg/L)plays an important role in particle count removal;when the dosage was 3 mg/L,the removal rates by carbon layers and sand beds decreased by 17.5% and increased by 9.5%,respectively,compared with a 2 mg/L dosage.

  17. Hen's egg as a source of valuable biologically active substances.

    Science.gov (United States)

    Zdrojewicz, Zygmunt; Herman, Marta; Starostecka, Ewa

    2016-01-01

    The aim of this article is to show current knowledge concerning valuable substances biologically active present in hen eggs and underline important nutritive role of hen eggs. Hen egg is a good source of nutrients such as proteins, vitamins (A, B2, B6, B12, D, E, K), minerals and lipids. The significant part of lipids is a group of unsaturated phospholipids, which are components of cell membranes, act protectively on the cardiovascular system and contribute to a decrease of cholesterol level and blood pressure. Therefore, the consumption of unsaturated phospholipids is recommended especially in patients suffering from diseases of the cardiovascular system. Another important substance is egg cystatin, which has a wide spectrum of biological functions, for example the ability to stimulate cell growth, inhibit inflammatory processes and has antibacterial and antiviral properties. Other substance presented in the egg white which helps fight bacteria is lysozyme. It is used in medicine as an aid in antibiotic therapy and analgesic in the course of infection, as well as in tumor malignancies. Among the components contained in the egg yolk there is also immunoglobulin Y which due to its therapeutic importance deserves special attention. Its use offers the possibility of replacing chemotherapeutic agents in the treatment of bacterial infections of digestive system, as well as an opportunity for the development of medicine associated with passive immunization of patients. The egg is a rich source of retinol which gradual depletion in the organism causes many eye pathologies. A very important and useful part of the egg, used in medicine is a shell and its membranes, due to the high collagen content relevant in the treatment of connective tissue diseases. PMID:27383572

  18. Syntheses and biological activities of 13-substituted avermectin aglycons.

    Science.gov (United States)

    Mrozik, H; Linn, B O; Eskola, P; Lusi, A; Matzuk, A; Preiser, F A; Ostlind, D A; Schaeffer, J M; Fisher, M H

    1989-02-01

    The reactions of sulfonate esters of the allylic/homoallylic 13-alcohol of 5-O-(tert-butyldimethylsilyl)-22,23-dihydroavermectin B1a aglycon (1a) were investigated. Nucleophilic substitution gave 13 beta-chloro and 13 beta-iodo derivatives, while solvolytic reaction conditions yielded 13 alpha-methoxy, 13 alpha-fluoro, and 13 alpha-chloro products. A mixture of 13 alpha- and 13 beta-fluorides was obtained upon reaction with DAST. The 13 beta-iodide gave, upon elimination with lutidine, the 8(9),10(11),12(13),14(15)-tetraene. The 13 beta-alcohol and the rearranged 15-ol 13(14)-ene and 15-amino 13(14)-ene derivatives were obtained by substitution via the allylic carbonium ion. MEM ethers 11 and 12 of the two epimeric 13-ols were prepared by alkylation with MEM chloride. In contrast, methylation of 1a with MeI and Ag2O in CH2Cl2 occurred exclusively at the tertiary 7-hydroxy group and not at the secondary 13 alpha-ol. Oxidation of the allylic alcohol 1a proceeded under Swern conditions but not with MnO2 to the 13-oxo aglycon, which was reduced by NaBH4 exclusively to the natural 13 alpha-ol, while reductive amination with NaCNBH3-NH4OAc gave the 13 alpha-amine. The methoxime derivative was obtained in the form of the two geometric isomers. Anthelmintic activities against the sheep nematode Trichostrongylus colubriformis, miticidal activities against the two-spotted spider mite (Tetranychus urticae), and insecticidal activities against the southern armyworm (Spodoptera eridania) as well as the binding constants to a free living nematode (Caenorhabditis elegans) derived receptor assay were obtained and compared to avermectin B1a, 22,23-dihydroavermectin B1a, and the 13-deoxy-22,23-dihydroavermectin B1 aglycon related to the milbemycins. None of the newly prepared derivatives exceeded the potency of the three reference compounds. Lipophilic 13-substituents such as halogen, alkoxy, and methoxime retained high biological activities in all assays, while the more polar

  19. Nanoencapsulation of Biologically Active Peptides from Whey Proteins

    Directory of Open Access Journals (Sweden)

    Sebnem Tellioglu Harsa

    2014-06-01

    Full Text Available "Now a days consumers, in order to feed with balanced diet, prefer healthy and reliable foods. In this respect food manufacturers are trying to respond the demands of consumers by developing new types of foods such as diet foods ( low calorie foods, modified foods (organic foods and functional foods (probiotic and prebiotics. Thus, production of nutritious, functional and beneficial foods has become a growing sector in the United States and European countries. Proteins are major source of many bioactive peptides. Bioactive peptides have been defined as specific protein fragments that have a positive impact on body functions and may ultimately influence human health. These peptides stay inactive within the main protein structure and activated by the enzymatic hydrolysis. These bioactive peptides, derived from proteins, are able to influence basic body systems (cardiovascular, nervous, gastrointestinal and immune systems and show multi-functional character. Due to these properties, studies have recently been focused on milk proteins and their bioactive peptides. Such peptides are inactive within the sequence of the milk protein. Whey contains a multitude of biologically active proteins and peptides. Physiologically active serum proteins are serum albumin, immunoglobulins, proteose-peptone, lactoferrin, lactoperoxidase and growth factors. In addition to these, enzymatic degradation of serum proteins releases a number of bioactive peptides such as alfa-lactophorin, beta-lactophorin, beta- lactotensin, lactokinin, albutensin, serophorin and lactoferricin. One of the common qualities of bioactive substances is their sensitivity to the physical and chemical properties of the environment. For this reason, the usefulness of bioactive components in food is limited by the structure. In order to sustain bioavailibility of these peptides, limiting its relationship with the media by encapsulation technology is one of them osthotly debated issues on in recent

  20. PREDICTION OF BIOLOGICAL ACTIVITY SPECTRA FOR SECONDARY METABOLITES FROM MARINE MACROALGAE CAULERPA SPP (CHLOROPHYTA – CAULERPALS

    Directory of Open Access Journals (Sweden)

    R. Azhaguraj

    2012-05-01

    Full Text Available This study aims to evaluate the biological activity of Caulerpin β-Sitosterol, Taraxerol and Palmtic acid isolated from the marine macro algae Caulerpa spp. The PASS computer program was used in this study to predict the biological activity profile of the four Phenazine derivates. The results were analyzed to show various biological activities like pharmacological (Kinase inhibitor, Neuroprotector and Antiviral, Effects (Oxidoreductase inhibitor, Acid Phosphatase inhibitor and toxicological activity (Teratogen of these compounds. The PASS software is useful for the study of biological activity of secondary metabolites.

  1. Results of activated sludge plants applying enhanced biological phosphorus removal

    Energy Technology Data Exchange (ETDEWEB)

    Machado, A.; Pinto, M.; Neder, K.; Hoffmann, H.

    1989-02-01

    To stop the eutrophication in lakes and rivers, the input of nutrient and phosphorus compounds must be limited. The biological elimination of phosphorus describes a possibility, to reduce phosphorus in the biological stage of a treatment plant to a considerable extent. In this paper the process-system and the operation-results of a pilot plant and two municipal treatment plants are presented, where biological phosphorus reduction about 80% takes place without any constructional modifications.

  2. Computational Systems Biology Analysis of Cell Reprogramming and Activation Dynamics

    OpenAIRE

    Fu, Yan

    2012-01-01

    In the past two decades, molecular cell biology has transitioned from a traditional descriptive science into a quantitative science that systematically measures cellular dynamics on different levels of genome, transcriptome and proteome. Along with this transition emerges the interdisciplinary field of systems biology, which aims to unravel complex interactions in biological systems through integrating experimental data into qualitative or quantitative models and computer simulations. In th...

  3. STUDIES OF RELATIONSHIPS BETWEEN MOLECULAR STRUCTURE AND BIOLOGICAL ACTIVITY BY PATTERN RECOGNITION METHODS

    Science.gov (United States)

    The attempt to rationalize the connections between the molecular structures of organic compounds and their biological activities comprises the field of structure-activity relations (SAR) studies. Correlations between structure and activity are important for the understanding and ...

  4. Nonoxidized, biologically active parathyroid hormone determines mortality in hemodialysis patients

    DEFF Research Database (Denmark)

    Tepel, Martin; Armbruster, Franz Paul; Grön, Hans Jürgen; Scholze, Alexandra; Reichetzeder, Christoph; Roth, Heinz Jürgen; Hocher, Berthold

    2013-01-01

    Background: It was shown that nonoxidized PTH (n-oxPTH) is bioactive, whereas the oxidation of PTH results in a loss of biological activity. Methods: In this study we analyzed the association of n-oxPTH on mortality in hemodialysis patients using a recently developed assay system. Results......: Hemodialysis patients (224 men, 116 women) had a median age of 66 years. One hundred seventy patients (50%) died during the follow-up period of 5 years. Median n-oxPTH levels were higher in survivors (7.2 ng/L) compared with deceased patients (5.0 ng/L; P = .002). Survival analysis showed an increased survival......-oxPTH levels. Conclusions: The predictive power of n-oxPTH and iPTH on the mortality of hemodialysis patients differs substantially. Measurements of n-oxPTH may reflect the hormone status more precisely. The iPTH-associated mortality is most likely describing oxidative stress-related mortality....

  5. Biological activity of harpin produced by Pantoea stewartii subsp. stewartii.

    Science.gov (United States)

    Ahmad, M; Majerczak, D R; Pike, S; Hoyos, M E; Novacky, A; Coplin, D L

    2001-10-01

    Pantoea stewartii subsp. stewartii causes Stewart's wilt of sweet corn. A hypersensitive response and pathogenicity (Hrp) secretion system is needed to produce water-soaking and wilting symptoms in corn and to cause a hypersensitive response (HR) in tobacco. Sequencing of the hrp cluster revealed a putative harpin gene, hrpN. The product of this gene was overexpressed in Escherichia coli and shown to elicit the HR in tobacco and systemic resistance in radishes. The protein was designated HrpN(Pnss). Like other harpins, it was heat stable and protease sensitive, although it was three- to fourfold less active biologically than Erwinia amylovora harpin. We used antibodies to purified HrpN(Pnss) to verify that hrpN mutants could not produce harpin. This protein was secreted into the culture supernatant and was produced by strains of P. stewartii subsp. indologenes. In order to determine the importance of HrpN(Pnss) in pathogenesis on sweet corn, three hrpN::Tn5 mutants were compared with the wild-type strain with 50% effective dose, disease severity, response time, and growth rate in planta as parameters. In all tests, HrpN(Pnss) was not required for infection, growth, or virulence in corn or endophytic growth in related grasses. PMID:11605962

  6. TEAK: topology enrichment analysis framework for detecting activated biological subpathways.

    Science.gov (United States)

    Judeh, Thair; Johnson, Cole; Kumar, Anuj; Zhu, Dongxiao

    2013-02-01

    To mine gene expression data sets effectively, analysis frameworks need to incorporate methods that identify intergenic relationships within enriched biologically relevant subpathways. For this purpose, we developed the Topology Enrichment Analysis frameworK (TEAK). TEAK employs a novel in-house algorithm and a tailor-made Clique Percolation Method to extract linear and nonlinear KEGG subpathways, respectively. TEAK scores subpathways using the Bayesian Information Criterion for context specific data and the Kullback-Leibler divergence for case-control data. In this article, we utilized TEAK with experimental studies to analyze microarray data sets profiling stress responses in the model eukaryote Saccharomyces cerevisiae. Using a public microarray data set, we identified via TEAK linear sphingolipid metabolic subpathways activated during the yeast response to nitrogen stress, and phenotypic analyses of the corresponding deletion strains indicated previously unreported fitness defects for the dpl1Δ and lag1Δ mutants under conditions of nitrogen limitation. In addition, we studied the yeast filamentous response to nitrogen stress by profiling changes in transcript levels upon deletion of two key filamentous growth transcription factors, FLO8 and MSS11. Via TEAK we identified a nonlinear glycerophospholipid metabolism subpathway involving the SLC1 gene, which we found via mutational analysis to be required for yeast filamentous growth. PMID:23268448

  7. Solar activity, magnetic storms and their effects on biological systems

    International Nuclear Information System (INIS)

    Full text: In the present time much attention is spent on the electromagnetic waves, solar radiation and magnetic storms on biological systems, including on person. However, there are few publications describing the mechanism of these influences on human. First of all it is necessary to point out that electromagnetic waves, the flow of particles in space and magnetic storms, acting on person human-all is connected with biophysical processes. So approach to influence of these factors on organism follows the processes of influence of these waves on bio system. Magnetic storms are phenomena continuously connected with solar activity. Investigation of cosmic space has intensified the practical importance of the problem of interaction with natural factors of external ambience. Much attention deserves the cosmic radiation, geomagnetic field, elements of climate and weathers. However the mechanism of bio tropic action of these factors is not enough studied. Beginning XXI century was already signified the successes in investigation of Mars. The Space shuttles 'Spirit' and 'Opportunity' successfully have carried out some work on examining and finding of water on Mars. A flight of person to Mars is being considered. One of the important mechanisms of influence on human organism is, in our opinion, the rising of the resonance at coincidence of frequencies and their more important factor is a phenomena of electromagnetic induction and forming the radicals in the organism

  8. Role of Calcium Signaling in B Cell Activation and Biology.

    Science.gov (United States)

    Baba, Yoshihiro; Kurosaki, Tomohiro

    2016-01-01

    Increase in intracellular levels of calcium ions (Ca2+) is one of the key triggering signals for the development of B cell response to the antigen. The diverse Ca2+ signals finely controlled by multiple factors participate in the regulation of gene expression, B cell development, and effector functions. B cell receptor (BCR)-initiated Ca2+ mobilization is sourced from two pathways: one is the release of Ca2+ from the intracellular stores, endoplasmic reticulum (ER), and other is the prolonged influx of extracellular Ca2+ induced by depleting the stores via store-operated calcium entry (SOCE) and calcium release-activated calcium (CRAC) channels. The identification of stromal interaction molecule 1(STIM1), the ER Ca2+ sensor, and Orai1, a key subunit of the CRAC channel pore, has now provided the tools to understand the mode of Ca2+ influx regulation and physiological relevance. Herein, we discuss our current understanding of the molecular mechanisms underlying BCR-triggered Ca2+ signaling as well as its contribution to the B cell biological processes and diseases. PMID:26369772

  9. Polyphenols from Bee Pollen: Structure, Absorption, Metabolism and Biological Activity

    Directory of Open Access Journals (Sweden)

    Anna Rzepecka-Stojko

    2015-12-01

    Full Text Available Bee pollen constitutes a natural source of antioxidants such as phenolic acids and flavonoids, which are responsible for its biological activity. Research has indicated the correlation between dietary polyphenols and cardioprotective, hepatoprotective, anti-inflammatory, antibacterial, anticancerogenic, immunostimulating, antianaemic effects, as well as their beneficial influence on osseous tissue. The beneficial effects of bee pollen on health result from the presence of phenolic acids and flavonoids which possess anti-inflammatory properties, phytosterol and linolenic acid which play an anticancerogenic role, and polysaccharides which stimulate immunological activity. Polyphenols are absorbed in the alimentary tract, metabolised by CYP450 enzymes, and excreted with urine and faeces. Flavonoids and phenolic acids are characterised by high antioxidative potential, which is closely related to their chemical structure. The high antioxidant potential of phenolic acids is due to the presence and location of hydroxyl groups, a carboxyl group in the immediate vicinity of ortho-diphenolic substituents, and the ethylene group between the phenyl ring and the carboxyl group. As regards flavonoids, essential structural elements are hydroxyl groups at the C5 and C7 positions in the A ring, and at the C3′ and C4′ positions in the B ring, and a hydroxyl group at the C3 position in the C ring. Furthermore, both, the double bond between C2 and C3, and a ketone group at the C4 position in the C ring enhance the antioxidative potential of these compounds. Polyphenols have an ideal chemical structure for scavenging free radicals and for creating chelates with metal ions, which makes them effective antioxidants in vivo.

  10. SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL ACTIVITY OF SOME NOVEL ARYL AND HETROARYL CHALCONE ANALOGUES

    Directory of Open Access Journals (Sweden)

    Tribhuvan Singh

    2012-07-01

    Full Text Available A new series of Heterocyclic chalcones showed diversified biological activities. In view of potential biological activities of Heterocyclic chalcones derivative were prepared by claisen-Schmidt condensation technique. The compound were screened for anti-inflammatory and antibacterial activity.

  11. Microbial Survey of a Full-Scale, Biologically Active Filter for Treatment of Drinking Water

    OpenAIRE

    White, Colin P.; DeBry, Ronald W.; Lytle, Darren A.

    2012-01-01

    The microbial community of a full-scale, biologically active drinking water filter was surveyed using molecular techniques. Nitrosomonas, Nitrospira, Sphingomonadales, and Rhizobiales dominated the clone libraries. The results elucidate the microbial ecology of biological filters and demonstrate that biological treatment of drinking water should be considered a viable alternative to physicochemical methods.

  12. Humin-based complexes and study of their biological activity under irradiation

    International Nuclear Information System (INIS)

    Full text : Several experimental studies have indicated that humin acids has features such as antioxidant activity, antiradiation activity and other. It is known that the humin acids are biologically active organic compounds with characteristics of high polyfunctional and complexing acids. The biological activity of these compounds is connected with presence of phenolic and hydroxyl groups. The main goal of this research is to increase biological activity and sorption properties of humin acids and obtaining of their modified and enriched forms with organic minerals and their analysis on model plant objects. Humin acids solutions can stimulate the life activity of irradiated plants with critical doses and plants growing in the polluted soils with radionuclides

  13. Cyclopenta[c]phenanthrenes--chemistry and biological activity.

    Science.gov (United States)

    Brzuzan, Paweł; Góra, Maciej; Luczyński, Michał K; Woźny, Maciej

    2013-06-25

    Despite cyclopenta-fused polycyclic aromatic hydrocarbons (CP-PAHs) having been detected in the environment, the ability of these compounds to induce cellular and tissue responses remains poorly characterized. In this review, we look at the chemistry and biological activity of the cyclopenta[c]phenanthrenes (CP[c]Phs) as potential chemicals of concern in the process of risk assessment. The first part of the review deals with the environmental occurrence and chemistry of CP-PAHs, focusing on available methods of CP[c]Ph chemical synthesis. The most interesting structural feature of the CP[c]Ph is the presence of a pseudo fjord-region constructed by the cyclopentane ring. This compound can be treated either as a structurally similar one to B[c]Ph, or as a phenanthrene skeleton with an electrodonating alkyl substituent in the bay-region of the molecule. The second thread, providing available data on the adverse effects of CP[c]Ph compounds on cells and tissues of living organisms, mainly fish, improves our understanding of these possible environmental hazards. The data show that CP[c]Ph is less potent at inducing CYP1A gene expression in rainbow trout than benzo[a]pyrene (B[a]P), a well-known Ah-receptor agonist. Interestingly, the CP[c]Ph dependent up-regulation of CYP1A mRNA is positively correlated with the incidences of clastogenic changes in rainbow trout erythrocytes. CP[c]Ph has, comparably to B[a]P, a potential to repress expression of tumor suppressor p53, in the head kidney of rainbow trout. Furthermore, estrogen responsive genes in fish liver, ERα and VTG, are not induced by CP[c]Ph, suggesting that the compound has no endocrine disrupting potential. However, some CP[c]Phs show mutagenic activity when investigated in the Ames test, and exhibit genotoxic properties in in vitro micronucleus assay. The above characteristics suggest that CP-PAHs are chemicals of concern for which potential pathways of exposure should be further identified. PMID:23628509

  14. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  15. Mutant p53: Multiple Mechanisms Define Biologic Activity in Cancer

    OpenAIRE

    Kim, Michael Paul; Zhang, Yun; Lozano, Guillermina

    2015-01-01

    The functional importance of p53 as a tumor suppressor gene is evident through its pervasiveness in cancer biology. The p53 gene is the most commonly altered gene in human cancer; however, not all genetic alterations are biologically equivalent. The majority of alterations involve p53 missense mutations that result in the production of mutant p53 proteins. Such mutant p53 proteins lack normal p53 function and may concomitantly gain novel functions, often with deleterious effects. Here, we rev...

  16. Evaluation of the biological activity of sunflower hull extracts

    Directory of Open Access Journals (Sweden)

    Taha, F. S.

    2012-06-01

    Full Text Available This work was planned with the aim of adding value to sunflower seed hulls, a waste product of the oil industry by preparing a sunflower hull phenolic extract rich in chlorogenic acid (CGA. In order to fulfill this goal, the optimization for the extraction of a phenolic extract from the hulls was investigated. The parameters studied were: type of solvent, solvent to water ratio and hull to solvent ratio. In addition, the solvent mixtures were also studied. The resulting phenolic extracts were evaluated for their biological activities. This included phenolic content determination, evaluation of the antioxidant and antimicrobial activities. Chlorogenic acid was determined in two chosen hull extracts using the UV spectrophotometric method and HPLC analysis. The anticarcinogenic activity of the two chosen extracts was tested on seven different cell line carcinomas. The results revealed that all the phenolic extracts of sunflower hull studied contain between 190-312.5 mg phenolics/ 100 g hulls. The highest phenolic extraction was achieved with 80% methanol (1:30, hull to solvent, w/v ratio and methanol to ethanol to water (7:7:6 v/v/v mixture with values of 312.5 and 306.5 mg phenolics/100 g hulls, respectively. The free radical scavenging activity and antioxidant activity of all the samples ranged from 33.6-72.6%. The highest antioxidant activity and free radical scavenging activity were achieved by the same extracts that possessed the highest phenolic content, namely methanol to ethanol to water extract and 80% methanol with values 71.8 and 72.6%, 68.2 and 70.9% respectively, compared to 77.9 and 76.9% respectively for TBHQ. All the phenolic extracts possessed antimicrobial activity but to different levels against different pathogenic bacteria. The two chosen extracts also possessed anticarcinogenic activity, which differed among varying cell line carcinomas. The HPLC analysis indicated that chlorogenic acid was the main phenolic acid in the

  17. Systems Biology Graphical Notation: Activity Flow language Level 1 Version 1.2.

    Science.gov (United States)

    Mi, Huaiyu; Schreiber, Falk; Moodie, Stuart; Czauderna, Tobias; Demir, Emek; Haw, Robin; Luna, Augustin; Le Novère, Nicolas; Sorokin, Anatoly; Villéger, Alice

    2015-01-01

    The Systems Biological Graphical Notation (SBGN) is an international community effort for standardized graphical representations of biological pathways and networks. The goal of SBGN is to provide unambiguous pathway and network maps for readers with different scientific backgrounds as well as to support efficient and accurate exchange of biological knowledge between different research communities, industry, and other players in systems biology. Three SBGN languages, Process Description (PD), Entity Relationship (ER) and Activity Flow (AF), allow for the representation of different aspects of biological and biochemical systems at different levels of detail. The SBGN Activity Flow language represents the influences of activities among various entities within a network. Unlike SBGN PD and ER that focus on the entities and their relationships with others, SBGN AF puts the emphasis on the functions (or activities) performed by the entities, and their effects to the functions of the same or other entities. The nodes (elements) describe the biological activities of the entities, such as protein kinase activity, binding activity or receptor activity, which can be easily mapped to Gene Ontology molecular function terms. The edges (connections) provide descriptions of relationships (or influences) between the activities, e.g., positive influence and negative influence. Among all three languages of SBGN, AF is the closest to signaling pathways in biological literature and textbooks, but its well-defined semantics offer a superior precision in expressing biological knowledge. PMID:26528563

  18. Biologically active polymers from spontaneous carotenoid oxidation: a new frontier in carotenoid activity.

    Directory of Open Access Journals (Sweden)

    James B Johnston

    Full Text Available In animals carotenoids show biological activity unrelated to vitamin A that has been considered to arise directly from the behavior of the parent compound, particularly as an antioxidant. However, the very property that confers antioxidant activity on some carotenoids in plants also confers susceptibility to oxidative transformation. As an alternative, it has been suggested that carotenoid oxidative breakdown or metabolic products could be the actual agents of activity in animals. However, an important and neglected aspect of the behavior of the highly unsaturated carotenoids is their potential to undergo addition of oxygen to form copolymers. Recently we reported that spontaneous oxidation of ß-carotene transforms it into a product dominated by ß-carotene-oxygen copolymers. We now report that the polymeric product is biologically active. Results suggest an overall ability to prime innate immune function to more rapidly respond to subsequent microbial challenges. An underlying structural resemblance to sporopollenin, found in the outer shell of spores and pollen, may allow the polymer to modulate innate immune responses through interactions with the pattern recognition receptor system. Oxygen copolymer formation appears common to all carotenoids, is anticipated to be widespread, and the products may contribute to the health benefits of carotenoid-rich fruits and vegetables.

  19. Bioactivity of marine organisms. Part 3. Screening of marine algae of Indian coast for biological activity

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; Naik, C.G.; DeSouza, L.; Jayasree, V.; Ambiye, V.; Bhakuni, D.S.; Goel, A.K.; Garg, H.S.; Srimal, R.C.

    Ethanolic extracts from Indian marine algae have been tested for anti-viral, anti-bacterial, anti-fungal, anti-fertility, hypoglycaemic and a wide range of pharmacological activities. Of 34 species investigated 17 appeared biologically active. Six...

  20. Current research and service activities of AFRRI's biological dosimetry program

    International Nuclear Information System (INIS)

    Full text: The long-range goal of the Armed Forces Radiobiology Research Institute's (AFRRI) Biological Dosimetry Team is to develop validated radiation bio dosimeters. Our objectives are (1) to establish definitive clinical bioassays for rapid, high-throughput radiation exposure analyses and (2) to develop complimentary triage-type radiation exposure assessment bioassays to support medical treatment decisions. The experimental approach involves two steps. The first is to establish a reference laboratory that uses conventional bioassays for definitive analyses of biological samples. The second step is to develop a validated and forward deployable biological dosimetry capability for rapid radiation dose assessment with an emphasis on the use of molecular biology-based diagnostic platforms. The conventional lymphocyte metaphase-spread dicentric assay was established at AFRRI in accordance with international harmonized protocols and applied to estimate radiation exposure doses in several overexposure accidents. Currently, novel interphase cell-based cytological bioassay that detects cells with chromosomal type aberrations and radiation responsive molecular bio markers (i.e., gene expression, protein) are being validated and optimized for rapid radiation exposure assessment applications. In addition the Biological Assessment Tool (BAT), a radiation casualty management software application, was developed. Available at AFRRI's website (www.afrri.usuhs.mil), BAT permits the recording and communication of relevant radiological and medical information for radiation accidents. These research and service efforts contribute to an improved diagnostic response for accidental overexposures and also have applications in other research fields including radiation therapy and toxicology

  1. Effect of the fungicides carbendazim and metalaxyl on the biological activity of soils

    International Nuclear Information System (INIS)

    Metalaxyl and carbendazim at 10 and 100 ppm concentration have no influence on the biological activity of Humic Gley and Yellow Red Latosol soils as measured by respirometry. Carbendazim added to the Humic Gley soil at concentration of 500 ppm showed an inhibitory influence on the biological activity of this soil. (Author)

  2. Biological Activity of Autochthonic Bacterial Community in Oil-Contaminated Soil

    OpenAIRE

    Wolińska, Agnieszka; Kuźniar, Agnieszka; Szafranek-Nakonieczna, Anna; Jastrzębska, Natalia; Roguska, Eliza; Stępniewska, Zofia

    2016-01-01

    Soil microbial communities play an important role in the biodegradation of different petroleum derivates, including hydrocarbons. Also other biological factors such as enzyme and respiration activities and microbial abundance are sensitive to contamination with petroleum derivates. The aim of this study was to evaluate the response of autochthonic microbial community and biological parameters (respiration, dehydrogenase and catalase activities, total microorganisms count) on contamination wit...

  3. Simultaneous Determination of Arsenic, Manganese, and Selenium in Biological Materials by Neutron-Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1973-01-01

    A new method was developed for the simultaneous determination of arsenic, manganese, and selenium in biological material by thermal-neutron activation analysis. The use of 81 mSe as indicator for selenium permitted a reduction of activation time to 1 hr for a 1 g sample, and the possibility of loss...... the ppM level in samples of biological tissue....

  4. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    OpenAIRE

    Hee Jae Shin; Muhammad Abdul Mojid Mondol; Mohammad Tofazzal Islam

    2013-01-01

    Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activi...

  5. Using Active Learning to Teach Concepts and Methods in Quantitative Biology.

    Science.gov (United States)

    Waldrop, Lindsay D; Adolph, Stephen C; Diniz Behn, Cecilia G; Braley, Emily; Drew, Joshua A; Full, Robert J; Gross, Louis J; Jungck, John A; Kohler, Brynja; Prairie, Jennifer C; Shtylla, Blerta; Miller, Laura A

    2015-11-01

    This article provides a summary of the ideas discussed at the 2015 Annual Meeting of the Society for Integrative and Comparative Biology society-wide symposium on Leading Students and Faculty to Quantitative Biology through Active Learning. It also includes a brief review of the recent advancements in incorporating active learning approaches into quantitative biology classrooms. We begin with an overview of recent literature that shows that active learning can improve students' outcomes in Science, Technology, Engineering and Math Education disciplines. We then discuss how this approach can be particularly useful when teaching topics in quantitative biology. Next, we describe some of the recent initiatives to develop hands-on activities in quantitative biology at both the graduate and the undergraduate levels. Throughout the article we provide resources for educators who wish to integrate active learning and technology into their classrooms. PMID:26269460

  6. Activities in biological radiation research at the AGF

    International Nuclear Information System (INIS)

    The AGF is working on a wide spectrum of biological radiation research, with the different scientific disciplines contributing different methodologies to long-term research projects. The following fields are studied: 1. Molecular and cellular modes of action of radiation. 2. Detection and characterisation of biological radiation damage, especially in humans. 3. Medical applications of radiation effects. 4. Concepts and methods of radiation protection. The studies will lead to suggestions for radiation protection and improved radiotherapy. They may also contribute to the development of environmental protection strategies. (orig./MG)

  7. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: PROBLEM-SOLVING

    Directory of Open Access Journals (Sweden)

    Adela NEMEŞ

    2010-01-01

    Full Text Available We face with considerable challenge of developing students’ problem solving skills in our difficult environment. Good problem solving skills empower managers in their professional and personal lives. Problem solving skills are valued by academics and employers. The informations in Biology are often presented in abstract forms without contextualisation. Creative problem-solving process involves a few steps, which together provide a structured procedure for identifying challenges, generating ideas and implementing innovative solutions: identifying the problem, searching for possible solutions, selecting the most optimal solution and implementing a possible solution. Each aspect of personality has a different orientation to problem solving, different criteria for judging the effectiveness of the process and different associated strengths. Using real-world data in sample problems will also help facilitate the transfer process, since students can more easily identify with the context of a given situation. The paper describes the use of the Problem-Solving in Biology and the method of its administration. It also presents the results of a study undertaken to evaluate the value in teaching Biology. Problem-solving is seen as an essential skill that is developed in biology education.

  8. The biological activity and the using areas of glycerin derivatives

    International Nuclear Information System (INIS)

    The glycerin and its derivatives carry out several important biological functions in alive organism. Glycero lipids related to the neutral lipid groups thanks to presence of polar and hydrophobic groups take part in the developing of structure biogical membranes and in the processes, connected with transfer of matters and ions throw the membranes, energy supply of cell and defense reactions of organism

  9. Synthesis and biological activity of new homolupanes and homolupane saponins

    Czech Academy of Sciences Publication Activity Database

    Sidoryk, K.; Korda, A.; Rárová, Lucie; Oklešťková, Jana; Strnad, Miroslav; Cmoch, P.; Pakulski, Z.; Gwardiak, K.; Karczewski, R.; Luboradzki, R.

    2015-01-01

    Roč. 71, č. 13 (2015), s. 2004-2012. ISSN 0040-4020 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Homobetulin * Homobetulinic acid * Glycosylation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.641, year: 2014

  10. The half-lives of biological activity of some pesticides in water

    OpenAIRE

    Kyaw Myint Oo,

    2001-01-01

    In the absence of analytical methods, the half-lives of biological activity of pesticides can be estimated by bioassays. To determine the half-lives of biological acivity of pesticides to fish, static bioassays were conducted in the laboratory with ten different formulations of pesticides using Labeo rohita as a bio-indicator. The half-lives of biological activity for ten different pesticides in soft water at pH 7.5 and 27░C, ranged from 4.6 days to 11.8 days. The half-life of biological acti...

  11. Polycyclic Xanthone Natural Products: Structure, Biological Activity and Chemical Synthesis

    OpenAIRE

    Winter, Dana K.; Sloman, David L.; Porco, John A.

    2013-01-01

    Polycyclic xanthone natural products are a family of polyketides which are characterized by highly oxygenated, angular hexacyclic frameworks. In the last decade, this novel class of molecules has attracted noticeable attention from the synthetic and biological communities due to emerging reports of their potential use as antitumour agents. The aim of this article is to highlight the most recent developments of this subset of the xanthone family by detailing the innate challenges of the constr...

  12. ACTIVE AND PARTICIPATORY METHODS IN BIOLOGY: PROBLEM-SOLVING

    OpenAIRE

    Adela NEMEŞ; Nicoleta IANOVICI

    2010-01-01

    We face with considerable challenge of developing students’ problem solving skills in our difficult environment. Good problem solving skills empower managers in their professional and personal lives. Problem solving skills are valued by academics and employers. The informations in Biology are often presented in abstract forms without contextualisation. Creative problem-solving process involves a few steps, which together provide a structured procedure for identifying challenges, generating id...

  13. Residual matrix from different separation techniques impacts exosome biological activity

    OpenAIRE

    Lucia Paolini; Andrea Zendrini; Giuseppe Di Noto; Sara Busatto; Elisabetta Lottini; Annalisa Radeghieri; Alessandra Dossi; Andrea Caneschi; Doris Ricotta; Paolo Bergese

    2016-01-01

    Exosomes are gaining a prominent role in research due to their intriguing biology and several therapeutic opportunities. However, their accurate purification from body fluids and detailed physicochemical characterization remain open issues. We isolated exosomes from serum of patients with Multiple Myeloma by four of the most popular purification methods and assessed the presence of residual contaminants in the preparations through an ad hoc combination of biochemical and biophysical technique...

  14. Mango ginger (Curcuma amada Roxb.) – A promising spice for phytochemicals and biological activities

    Indian Academy of Sciences (India)

    R S Policegoudra; S M Aradhya; L Singh

    2011-09-01

    Mango ginger (Curcuma amada Roxb.) is a unique spice having morphological resemblance with ginger but imparts a raw mango flavour. The main use of mango ginger rhizome is in the manufacture of pickles and culinary preparations. Ayurveda and Unani medicinal systems have given much importance to mango ginger as an appetizer, alexteric, antipyretic, aphrodisiac, diuretic, emollient, expectorant and laxative and to cure biliousness, itching, skin diseases, bronchitis, asthma, hiccough and inflammation due to injuries. The biological activities of mango ginger include antioxidant activity, antibacterial activity, antifungal activity, anti-inflammatory activity, platelet aggregation inhibitory activity, cytotoxicity, antiallergic activity, hypotriglyceridemic activity, brine-shrimp lethal activity, enterokinase inhibitory activity, CNS depressant and analgesic activity. The major chemical components include starch, phenolic acids, volatile oils, curcuminoids and terpenoids like difurocumenonol, amadannulen and amadaldehyde. This article brings to light the major active components present in C. amada along with their biological activities that may be important from the pharmacological point of view.

  15. Biological research of Grabia River - fifty years of activity

    OpenAIRE

    Siciński, Jacek; Tończyk, Grzegorz

    2005-01-01

    Grabia, a small still close to natural conditions lowland river, has been an object of special interest for Łódź hydrobiologists for more than 50 years. Over 100 scientific papers and over 100 master theses were produced in the Faculty of Biology and Environmental Protection University of Łódź. The initiator was Prof.L.K. Pawłowski who spent many years conducting research into the river. The ground and the first research objective was to recognize the fauna diversity. The checklis...

  16. Epithermal neutron activation analysis of trace elements in biological materials

    International Nuclear Information System (INIS)

    The detection limits of 24 important minor and trace elements were studied in NBS SRM-1571 Orchard Leaves, NBS SRM-1577 Bovine Liver, Bowen's kale and IAEA H-4 Animal Muscle using ENAA method with cadmium and cadmium-boron filter. The lower detection limits have been found for elements As, Au, Ba, Br, Cd, Mo, Ni, Sb, Se, Sm and U by ENAA with cadmium filter and for elements As, Cd, Mo and Ni by ENAA with cadmium-boron filter, respectively, in comparison with INAA method. The results of the determination of elements studied in the above mentioned biological materials are also presented. (author)

  17. An Introduction to Biological Modeling Using Coin Flips to Predict the Outcome of a Diffusion Activity

    Science.gov (United States)

    Butcher, Greg Q.; Rodriguez, Juan; Chirhart, Scott; Messina, Troy C.

    2016-01-01

    In order to increase students' awareness for and comfort with mathematical modeling of biological processes, and increase their understanding of diffusion, the following lab was developed for use in 100-level, majors/non-majors biology and neuroscience courses. The activity begins with generation of a data set that uses coin-flips to replicate…

  18. Harnessing microbial metabolic exchange for the discovery of biologically active molecules

    OpenAIRE

    Liu, Wei-Ting

    2012-01-01

    Microbial metabolic exchange mediates microbial interactions and plays key roles in regulating biology and has shaped modern healthcare, agriculture and other commercial processes. In this thesis, cutting edge mass spectrometry techniques, new genome mining approaches, and innovative bioinformatics tools were coupled and developed into investigating microbial metabolic exchange and led to the identification and characterization of biological active molecules that may have therapeutic values. ...

  19. Biological activity of fucoidan from leafy bladderwort (Utricularia aurea Lour.)

    OpenAIRE

    Chotigeat, W.; Phongdara, A.; Choosawad, D.

    2005-01-01

    Fucoidan extracted from aquatic plant Utricularia aurea was 1.3% of dry weight and comprised glucuronic acid 62.5% and fucose 4.98% of the crude extract and 28.74% of the fucose was sulfate. The fucoidan was investigated for antibacterial activity. The minimal inhibitory concentration (MIC) of crude fucoidan against Vibrio harveyi and Escherichia coli was 20 and 10 mg/ml. Moreover, the fucoidan had anticoagulant activity. The crude fucoidan had activated partial thromboplastin time (APTT) at ...

  20. Synthesis, biological activities and structure-activity relationships for new avermectin analogues.

    Science.gov (United States)

    Zhang, Jian; Nan, Xiang; Yu, Hai-Tao; Cheng, Pi-Le; Zhang, Yan; Liu, Ying-Qian; Zhang, Shao-Yong; Hu, Guan-Fang; Liu, Huanxiang; Chen, An-Liang

    2016-10-01

    In an effort to discover new molecules with good insecticidal activities, more than 40 new avermectin derivatives were synthesized and evaluated for their biological activities against three species of arachnids, insects and nematodes, namely, Tetranychus Cinnabarinus, Aphis craccivora and Bursaphelenchus xylophilus. All the tested compounds showed potent inhibitory activities against three insect species. Notably, the majority of compounds exhibited high selectivity against T. cinnabarinus, some of which were much better in comparison with avermectin. Especially compounds 9j (LC50: 0.005 μM) and 16d (LC50: 0.002 μM) were 2.5- and 4.7-fold more active than avermectin (LC50: 0.013 μM), respectively, against T. cinnabarinus. Moreover, compounds 9b, 9d-f, 9h, 9j, 9l, 9n, 9p, 9r, 9v and 17d showed superior activities with LC50 values of 2.959-5.013 μM compared to that of 1 (LC50: 6.746 μM) against B. xylophilus. Meanwhile, the insecticidal activities of compounds 9f, 9g, 9h, and 9m against A. craccivora were 7-8 times better than that of avermectin, with LC50 values of 7.744, 5.634, 6.809, 7.939 and 52.234 μM, respectively. Furthermore, QSAR analysis showed that the molecular shape, size, connectivity degree and electronic distribution of avermectin analogues had substantial effects on insecticidal potency. These preliminary results provided useful insight in guiding further modifications of avermectin in the development of potential new insecticides. PMID:27318119

  1. BIOLOGICAL VALUE OF PUNY FRUITS RELATED TO THEIR ANTIRADICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    M. BALOGHOVÁ

    2013-12-01

    Full Text Available All analysed species of puny fruits (red currant (Ribes rubrum L variant Jonkheervan Tets, white currant (Ribes vulgare L. variant Blanka, black currant (Ribesnigrum L. variant Eva, blueberry (Vaccinium myrtilis variant Berkeley, elderberry(Sambucus nigra L. variant Sambo, hawthorn (Crataegus oxyacantha, mulberry(Morus nigra L. genotypes M152 and M047 are natural sources of anthocyanpigments and vitamin C with a high antiradical activity. Due to the fact that thehighest antiradical activity is not accompanied by the highest content of anthocyansand vitamin C in puny fruits, we suppose that the antiradical activity of plantmaterials is also connected with the presence of other compounds with antioxidantand antiradical activity. From our results follows that all studied puny fruits with ahigh antiradical activity increase the antioxidant value of human nutrition and alsoits prophylactic and medicinal effect.

  2. BIOLOGICAL VALUE OF PUNY FRUITS RELATED TO THEIR ANTIRADICAL ACTIVITY

    Directory of Open Access Journals (Sweden)

    PAULOVICSOVÁ B.

    2007-05-01

    Full Text Available All analysed species of puny fruits (red currant (Ribes rubrum L variant Jonkheervan Tets, white currant (Ribes vulgare L. variant Blanka, black currant (Ribesnigrum L. variant Eva, blueberry (Vaccinium myrtilis variant Berkeley, elderberry(Sambucus nigra L. variant Sambo, hawthorn (Crataegus oxyacantha, mulberry(Morus nigra L. genotypes M152 and M047 are natural sources of anthocyanpigments and vitamin C with a high antiradical activity. Due to the fact that thehighest antiradical activity is not accompanied by the highest content of anthocyansand vitamin C in puny fruits, we suppose that the antiradical activity of plantmaterials is also connected with the presence of other compounds with antioxidantand antiradical activity. From our results follows that all studied puny fruits with ahigh antiradical activity increase the antioxidant value of human nutrition and alsoits prophylactic and medicinal effect.

  3. Tests of biological activity of metabolites from Penicillium expansum (Link Thom various isolates

    Directory of Open Access Journals (Sweden)

    Halina Borecka

    2013-12-01

    Full Text Available Aqrobacterium tumefaciens and cucumber, mustard and linseeds were compared as test organisms for evaluation of the biological activity of patulin. It was found that the reaction of cucumber seeds and linseed to the patulin concentrations was more pronounced than that of mustard and Aqrobacterium tumefaciens. The activity of metabolites produced by Penicillium expansum was investigated with the use of cucumber seeds. As measure of activity served the percentage of radicule growth inhibition was compared with the growth in control seeds. The biological activity of the metabolites was specific for the isolates, those from apples being more active. Thirty two isolates from pears and 34 from apples were examined.

  4. Some biologically active oxovanadium(IV) complexes of triazole derived Schiff bases: their synthesis, characterization and biological properties.

    Science.gov (United States)

    Chohan, Zahid H; Sumrra, Sajjad H

    2010-10-01

    A series of biologically active oxovanadium(IV) complexes of triazole derived Schiff bases L(1)-L(5) have been synthesized and characterized by their physical, analytical, and spectral data. The synthesized ligands potentially act as bidentate, in which the oxygen of furfural and nitrogen of azomethine coordinate with the oxovanadium atom to give a stoichiometry of vanadyl complexes 1:2 (M:L) in a square-pyramidal geometry. In vitro antibacterial and antifungal activities on different species of pathogenic bacteria (E. coli, S. flexneri, P. aeruginosa, S. typhi, S. aureus, and B. subtilis) and fungi (T. longifusus, C. albicans, A. flavus, M. canis, F. solani, and C. glabrata) have been studied. All compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against most of the fungal strains. The brine shrimp bioassay was also carried out to check the cytotoxicity of coordinated and uncoordinated synthesized compounds. PMID:20429776

  5. Environmental Contaminants Monitoring in Selected Wetlands of Wyoming: Biologically Active Elements Study

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment, water and biota were collected from selected wetlands in Wyoming for the Biologically Active Elements (BAE) Study in 1988, 1989 and 1990 to identify...

  6. Stable heterologous expression of biologically active terpenoids in green plant cells

    DEFF Research Database (Denmark)

    Binti Khairul Ikram, Nur Kusaira; Zhan, Xin; Pan, Xiwu;

    2015-01-01

    Plants biosynthesize a great diversity of biologically active small molecules of interest for fragrances, flavors, and pharmaceuticals. Among specialized metabolites, terpenoids represent the greatest molecular diversity. Many terpenoids are very complex, and total chemical synthesis often requir...

  7. Therapeutic Uses and Pharmacological Properties of Garlic, Shallot, and Their Biologically Active Compounds

    Directory of Open Access Journals (Sweden)

    Peyman Mikaili

    2013-10-01

    Garlic and shallots are safe and rich sources of biologically active compounds with low toxicity. Further studies are needed to confirm the safety and quality of the plants to be used by clinicians as therapeutic agents.

  8. Synthesis and antiplatelet activity of antithrombotic thiourea compounds: biological and structure-activity relationship studies.

    Science.gov (United States)

    Lourenço, André Luiz; Saito, Max Seidy; Dorneles, Luís Eduardo Gomes; Viana, Gil Mendes; Sathler, Plínio Cunha; Aguiar, Lúcia Cruz de Sequeira; de Pádula, Marcelo; Domingos, Thaisa Francielle Souza; Fraga, Aline Guerra Manssour; Rodrigues, Carlos Rangel; de Sousa, Valeria Pereira; Castro, Helena Carla; Cabral, Lucio Mendes

    2015-01-01

    The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p) displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations. PMID:25903367

  9. Synthesis and Antiplatelet Activity of Antithrombotic Thiourea Compounds: Biological and Structure-Activity Relationship Studies

    Directory of Open Access Journals (Sweden)

    André Luiz Lourenço

    2015-04-01

    Full Text Available The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations.

  10. Chemical Constituents of Descurainia sophia L. and its Biological Activity

    Directory of Open Access Journals (Sweden)

    Nawal H. Mohamed

    2009-01-01

    Full Text Available Seven coumarin compounds were isolated for the first time from the aerial parts of DescurainiaSophia L. identified as scopoletine, scopoline, isoscopoline, xanthtoxol, xanthtoxin, psoralene and bergaptane.Three flavonoids namely kaempferol, quercetine and isorhamnetine and three terpenoid compounds -sitosterol-amyrine and cholesterol were also isolated and identified by physical and chemical methods; melting point, Rfvalues, UV and 1H NMR spectroscopy. Qualitative and quantitative analyses of free and protein amino acidsusing amino acid analyzer were performed. The plant contains 15 amino acids as free and protein amino acidswith different range of concentrations. Fatty acid analysis using GLC, revealed the presence of 10 fatty acids,the highest percentage was palmitic acid (27.45 % and the lowest was lauric acid (0.13%. Biological screeningof alcoholic extract showed that the plant is highly safe and has analgesic, antipyretic and anti-inflammatoryeffects.

  11. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis.

    Science.gov (United States)

    Crane, Erika A; Gademann, Karl

    2016-03-14

    Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody-drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products. PMID:26833854

  12. Biological activity of fucoidan from leafy bladderwort (Utricularia aurea Lour.

    Directory of Open Access Journals (Sweden)

    Chotigeat, W.

    2005-12-01

    Full Text Available Fucoidan extracted from aquatic plant Utricularia aurea was 1.3% of dry weight and comprised glucuronic acid 62.5% and fucose 4.98% of the crude extract and 28.74% of the fucose was sulfate. The fucoidan was investigated for antibacterial activity. The minimal inhibitory concentration (MIC of crude fucoidan against Vibrio harveyi and Escherichia coli was 20 and 10 mg/ml. Moreover, the fucoidan had anticoagulant activity. The crude fucoidan had activated partial thromboplastin time (APTT at 4.47 IU/mg.

  13. CHARACTERIZATION ADN BIOLOGICAL ACTIVITY OF SECONDARY METABOLITES FROM ARMILLARIA TABESCENS

    Science.gov (United States)

    Ethyl acetate extracts from liquid cultures of Armillaria tabescens showed good antimicrobial activity against Candida albicans, Cryptococcus neoformans, Escherichia coli and Mycobacterium intracellulare. Chemical analyses of extract constituents led to the isolation and identification of two new co...

  14. SYNTHESIS AND BIOLOGICAL ACTIVITY OF AMIDE DERIVATIVES OF GINKGOLIDE A

    Institute of Scientific and Technical Information of China (English)

    LI-HONG HU; ZHONG-LIANG CHEN; YU-YUAN XIE

    2001-01-01

    Amide derivatives of ginkgolide A were prepared and evaluated for their in vitro ability to inhibit the PAF-induced aggregation of rabbit platelets. They showed less activities than their parent compound ginkgolide A.

  15. Biologically active collagen-based scaffolds: advances in processing and characterization

    OpenAIRE

    Yannas, I.V.; Tzeranis, D. S.; Harley, B A; So, P. T. C.

    2010-01-01

    A small number of type I collagen–glycosaminoglycan scaffolds (collagen–GAG scaffolds; CGSs) have unusual biological activity consisting primarily in inducing partial regeneration of organs in the adult mammal. Two of these are currently in use in a variety of clinical settings. CGSs appear to induce regeneration by blocking the adult healing response, following trauma, consisting of wound contraction and scar formation. Several structural determinants of biological activity have been identif...

  16. Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry

    OpenAIRE

    Butnariu Monica; Coradini Cristina

    2012-01-01

    Abstract Background This study aimed to quantify the active biological compounds in C. officinalis flowers. Based on the active principles and biological properties of marigolds flowers reported in the literature, we sought to obtain and characterize the molecular composition of extracts prepared using different solvents. The antioxidant capacities of extracts were assessed by using spectrophotometry to measure both absorbance of the colorimetric free radical scavenger 2,2-diphenyl-1-picrylhy...

  17. Target enhanced 2D similarity search by using explicit biological activity annotations and profiles

    OpenAIRE

    Yu, Xiang; Geer, Lewis Y.; Han, Lianyi; Bryant, Stephen H

    2015-01-01

    Background The enriched biological activity information of compounds in large and freely-accessible chemical databases like the PubChem Bioassay Database has become a powerful research resource for the scientific research community. Currently, 2D fingerprint based conventional similarity search (CSS) is the most common widely used approach for database screening, but it does not typically incorporate the relative importance of fingerprint bits to biological activity. Results In this study, a ...

  18. Assessing the Biological Activity of the Glucan Phosphatase Laforin.

    Science.gov (United States)

    Romá-Mateo, Carlos; Raththagala, Madushi; Gentry, Mathew S; Sanz, Pascual

    2016-01-01

    Glucan phosphatases are a recently discovered family of enzymes that dephosphorylate either starch or glycogen and are essential for proper starch metabolism in plants and glycogen metabolism in humans. Mutations in the gene encoding the only human glucan phosphatase, laforin, result in the fatal, neurodegenerative, epilepsy known as Lafora disease. Here, we describe phosphatase assays to assess both generic laforin phosphatase activity and laforin's unique glycogen phosphatase activity. PMID:27514803

  19. The Role of Protease Activity in ErbB Biology

    OpenAIRE

    Blobel, Carl P; Carpenter, Graham; Freeman, Matthew

    2008-01-01

    Proteases are now recognized as having an active role in a variety of processes aside from their recognized metabolic role in protein degradation. Within the ErbB system of ligands and receptors proteases are known to be necessary for the generation of soluble ligands from transmembrane precursers and for the processing of the ErbB4 receptor, such that its intracellular domain is translocated to the nucleus. There are two protease activities involved in the events: proteases that cleave withi...

  20. Using Active Learning in a Studio Classroom to Teach Molecular Biology

    Science.gov (United States)

    Nogaj, Luiza A.

    2013-01-01

    This article describes the conversion of a lecture-based molecular biology course into an active learning environment in a studio classroom. Specific assignments and activities are provided as examples. The goal of these activities is to involve students in collaborative learning, teach them how to participate in the learning process, and give…

  1. Low Budget Biology. A Collection of Low Cost Labs and Activities.

    Science.gov (United States)

    Wartski, Bert; Wartski, Lynn Marie

    This document contains a collection of low cost labs and activities. The activities are organized into the following units: Chemistry; Microbiology; DNA to Chromosomes; Genetics; Evolution; Classification, Protist, and Fungus; Plant; Invertebrate; Human Biology; and Ecology and Miscellaneous. Some of the activities within these units include: (1)…

  2. Is kinase activity essential for biological functions of BRI1?

    Institute of Scientific and Technical Information of China (English)

    Weihui Xu; Juan Huang; Baohua Li; Jiayang Li; Yonghong Wang

    2008-01-01

    Brassinosteroids (BRs) are a major group of plant hormones that regulate plant growth and development. BRI1, a protein localized to the plasma membrane, functions as a BR receptor and it has been proposed that its kinase activity has an essential role in BR-regulated plant growth and development. Here we report the isolation and molecular characterization of a new allele of bril, bril-301, which shows moderate morphological phenotypes and a reduced response to BRs under normal growth conditions. Sequence analysis identified a two-base alteration from GG to AT, resulting in a conversion of 989G to 9891 in the BRI1 kinase domain. An in vitro assay of kinase activity showed that bril-301 has no detectable autophosphorylation activity or phosphorylation activity towards the BRI1 substrates TTL and BAK1. Furthermore, our results suggest that bril-301, even with extremely impaired kinase activity, still retains partial function in regulating plant growth and development, which raises the question of whether BRI1 kinase activity is essential for BR-mediated growth and development in higher plants.

  3. Biological Activities of Aerial Parts Extracts of Euphorbia characias

    Science.gov (United States)

    Pisano, Maria Barbara; Cosentino, Sofia; Viale, Silvia; Spanò, Delia; Corona, Angela; Esposito, Francesca; Tramontano, Enzo; Montoro, Paola; Tuberoso, Carlo Ignazio Giovanni; Medda, Rosaria; Pintus, Francesca

    2016-01-01

    The aim of the present study was to evaluate antioxidant, antimicrobial, anti-HIV, and cholinesterase inhibitory activities of aqueous and alcoholic extracts from leaves, stems, and flowers of Euphorbia characias. The extracts showed a high antioxidant activity and were a good source of total polyphenols and flavonoids. Ethanolic extracts from leaves and flowers displayed the highest inhibitory activity against acetylcholinesterase and butyrylcholinesterase, showing potential properties against Alzheimer's disease. Antimicrobial assay showed that leaves and flowers extracts were active against all Gram-positive bacteria tested. The ethanolic leaves extract appeared to have the strongest antibacterial activity against Bacillus cereus with MIC value of 312.5 μg/mL followed by Listeria monocytogenes and Staphylococcus aureus that also exhibited good sensitivity with MIC values of 1250 μg/mL. Moreover, all the extracts possessed anti-HIV activity. The ethanolic flower extract was the most potent inhibitor of HIV-1 RT DNA polymerase RNA-dependent and Ribonuclease H with IC50 values of 0.26 and 0.33 μg/mL, respectively. The LC-DAD metabolic profile showed that ethanolic leaves extract contains high levels of quercetin derivatives. This study suggests that Euphorbia characias extracts represent a good source of natural bioactive compounds which could be useful for pharmaceutical application as well as in food system for the prevention of the growth of food-borne bacteria and to extend the shelf-life of processed foods. PMID:27314007

  4. Biologic therapy improves psoriasis by decreasing the activity of monocytes and neutrophils.

    Science.gov (United States)

    Yamanaka, Keiichi; Umezawa, Yoshinori; Yamagiwa, Akisa; Saeki, Hidehisa; Kondo, Makoto; Gabazza, Esteban C; Nakagawa, Hidemi; Mizutani, Hitoshi

    2014-08-01

    Therapy with monoclonal antibodies to tumor necrosis factor (TNF)-α and the interleukin (IL)-12/23 p40 subunit has significantly improved the clinical outcome of patients with psoriasis. These antibodies inhibit the effects of the target cytokines and thus the major concern during their use is the induction of excessive immunosuppression. Recent studies evaluating the long-term efficacy and safety of biologic therapy in psoriasis have shown no significant appearance of serious adverse effects including infections and malignancies. However, the immunological consequence and the mechanism by which the blockade of a single cytokine by biologics can successfully control the activity of psoriasis remain unclear. In the current study, we investigated the effect of biologic therapy on cytokine production of various lymphocytes and on the activity of monocytes and neutrophils in psoriatic patients. Neutrophils, monocytes and T cells were purified from heparinized peripheral venous blood by Ficoll density gradient centrifugation, and γ-interferon, TNF-α and IL-17 production from lymphocytes was measured by flow cytometer. The activation maker of neutrophils and the activated subsets of monocytes were also analyzed. Biologic therapy induced no significant changes in the cytokine production by lymphocytes from the skin and gut-homing T cells. However, neutrophil activity and the ratio of activated monocyte population increased in severely psoriatic patients were normalized in psoriatic patients receiving biologic therapy. The present study showed that biologic therapy ameliorates clinical symptoms and controls the immune response in patients with psoriasis. PMID:25099154

  5. 125I radiolabelling of 1-34 N-terminal tetratiacontapeptide of bPTH with high specific activity and without destroying biological activity

    International Nuclear Information System (INIS)

    Radiolabelling of 1-34 N terminal synthetic biological active fragment of bovine parathormone (1-34 b PTH) with high specific activity and without loss of biological activity was studied. Chloramine T and lactoperoxydase methods were used. To assess biological activity of 125I 1-34 bPTH labelled fragment, their ability to activate renal cortical adenylate cyclase was used. The results show that enzymatic labelling method preserved the biological activity. With the chloramine T method it is possible to keep the biological activity by using DMSO

  6. Biological activity of Terminalia arjuna on Human Pathogenic Microorganisms

    Directory of Open Access Journals (Sweden)

    Tariq Javed

    2016-01-01

    Full Text Available World’s population relies chiefly on traditional medicinal plants, using their extracts or active constituents. Terminalia arjuna of family Combretaceae reported to be effective as aphrodisiac, expectorant, tonic, styptic, antidysenteric, sweet, acrid, purgative, laxative, astringent, diuretic, astringent, cirrhosis, cardioprotective and cancer treatment.   In present study, antibacterial, antifungal, brine shrimp lethality and phytotoxic effect of Terminalia arjuna was performed. Our results showed that methanolic extract of Terminalia arjuna leaves has moderate antifungal effect against Microsporm canis and fruit extract possess good antibacterial activity against Staphylococus aureus  and  Preudomonas aeroginosa. Moreover, Dichloromethane extract of Terminalia arjuna bark and fruit posses moderate phytotoxic activity

  7. Synthesis and biological activities of some benzimidazolone derivatives

    Directory of Open Access Journals (Sweden)

    B K Karale

    2015-01-01

    Full Text Available The reaction of 5-nitrobenzimidazolone with phenoxyethyl bromide in presence of potassium carbonate in dimethyl formamide obtained 6-nitro-1,3-bis(2-phenoxyethyl-1,3-dihydro-2H-benzimidazol-2-one. It was reduced using stannous chloride to get 6-amino -1,3-bis(2-phenoxyethyl-1, 3-dihydro-2H-benzimidazol -2-one, which was further treated with aromatic sulphonyl chloride to obtain benzimidazolone derivatives, 6a-k. These compounds were tested for antibacterial, antituberculosis and antifungal activity. Most of them have shown very good activity against some gram positive and gram negative microorganisms and fungal strains. Some of them have shown moderate activity against Mycobacterium tuberculosis.

  8. Synthesis and biological activity of nifuroxazide and analogs. II.

    Science.gov (United States)

    Tavares, L C; Chisté, J J; Santos, M G; Penna, T C

    1999-09-01

    Nifuroxazyde and six analogs were synthesized by varying the substitute from the para-position of the benzenic ring and the heteroatom of the heterocyclic ring. The MIC of seven resultant compounds was determined by serial dilutions, testing the ATCC 25923 strain of Staphylococcus aureus. A significant increase in the anti-microbial activity of thyophenic analogs, as compared with furanic and pyrrholic analogs, was observed. In addition, unlike the cyano and hydroxyl groups, the acetyl group promoted anti-microbial activity. PMID:10622109

  9. Activation methods of retrospective dosimetry using biological samples

    International Nuclear Information System (INIS)

    23Na and 32S are stable isotopes which are present in humans - 23Na in blood and other tissues, 32S in hair. When human body is irradiated by neutrons, nuclear reactions 23Na(n,γ)24Na and 32S(n,p)32P occur, the products, 24Na and 32P, being radioactive. The induced activity can be used for retrospective assessment of the neutron dose. The principle of this dosimetry application is described. As a particular case, the relations between the activity and neutron dose were derived for irradiation of a human by the fission neutron spectrum. (orig.)

  10. Withanolides: Biologically Active Constituents in the Treatment of Alzheimer's Disease.

    Science.gov (United States)

    Khan, Shahid A; Khan, Sher B; Shah, Zarbad; Asiri, Abdullah M

    2016-01-01

    The use of natural products in drug discovery and development have an important history. Several therapeutic agents have been investigated during the biological screenings of natural compounds. It is well documented that plants are possibly the core of novel substances that led to the discovery of new, novel, and effective therapeutic agents. Therefore, in the last few decades, scientists were thoroughly attempting for the search of benevolent drugs to protect mankind from various diseases and discomforts. The diverse chemical structures of natural products are the key element of their success in modern drug discovery. Cholinesterase enzyme inhibitors (ChEI) are chemicals which inhibit the splitting of cholinesterase enzymes (acetylcholinesterase and butyrylcholinesterase). Acetyl cholinesterase (AChE) and butyrylcholinesterase (BChE) are two types of cholinesterase enzymes that have been identified in vertebrates that are responsible for Alzheimer's disease and related dementia. Withanolides are affective plant secondary metabolites which inhibit acetylcholinesterase and butyrylcholinesterase enzyme and thus possibly will be the future drug for Alzheimer's disease. By viewing the importance of natural products in drug discovery and development, we present here, the importance of withanolides in the treatment of Alzheimer's disease. In this article, we also describe the classification and structural characterization of withanolides. This review comprises of 114 compounds. PMID:26527154

  11. Biological activity of Terminalia arjuna on Human Pathogenic Microorganisms

    OpenAIRE

    Tariq Javed; Sana Riaz; Muhammad Uzair; Gulam Mustafa; Ayesha Mohyuddin; Bashir Ahmad Ch.

    2016-01-01

    World’s population relies chiefly on traditional medicinal plants, using their extracts or active constituents. Terminalia arjuna of family Combretaceae reported to be effective as aphrodisiac, expectorant, tonic, styptic, antidysenteric, sweet, acrid, purgative, laxative, astringent, diuretic, astringent, cirrhosis, cardioprotective and cancer treatment.   In present study, antibacterial, antifungal, brine shrimp lethality and phytotoxic effect of Terminalia arjuna was performed. Our results...

  12. Chemical constituents and biological activities of Garcinia cowa Roxb.

    Directory of Open Access Journals (Sweden)

    Thunwadee Ritthiwigrom

    2013-06-01

    Full Text Available Garcinia cowa is an abundant source of bioactive phytochemicals. Phytochemical investigations of the plant parts indicated that the fruit, twig and stem are the best source of secondary metabolites, providing flavonoids, phloroglucinols and xanthones respectively. Seventy-eight of these compounds have been identified from the plant and several have interesting pharmacological activities.

  13. Chemical constituents and biological activities of Garcinia cowa Roxb.

    OpenAIRE

    Thunwadee Ritthiwigrom

    2013-01-01

    Garcinia cowa is an abundant source of bioactive phytochemicals. Phytochemical investigations of the plant parts indicated that the fruit, twig and stem are the best source of secondary metabolites, providing flavonoids, phloroglucinols and xanthones respectively. Seventy-eight of these compounds have been identified from the plant and several have interesting pharmacological activities.

  14. Densification of oil sands tailings by biological activity

    Energy Technology Data Exchange (ETDEWEB)

    Guo, C.; Chalaturnyk, R.J.; Scott, J.D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering; Mackinnon, M. [Syncrude Canada Ltd., Edmonton, AB (Canada). Edmonton Research Centre

    2004-07-01

    Syncrude's Mildred Lake Settling Basin (MLSB) has been accumulating mature fine tailings (MFT) since 1978 with the start of oilsand extraction. The MFT is an aqueous solution of silts, clays and unrecovered bitumen. This suspension was expected to densify to MFT slowly with full consolidation taking decades. However, the MFT densification in the MLSB has accelerated due to increased microbial activity and biogas accumulation and efflux from the MFT. This study examined the mechanism leading to this rapid densification. Small-scale column tests were performed to observe the gas evolution and to measure the changes of the geotechnical parameters under different microbial activities. This paper described the column test device and procedures which revealed the role of microbial activity in accelerating densification and provided a better understanding of the rapid water drainage from the MFT during microbial activity and gas generation. The relationship between the gas migration pathways in the MFT and the densification and strength within the MFT was also examined. The study is continuing on comprehensive consolidation tests of MFT under different conditions. 8 refs., 4 tabs., 16 figs.

  15. Biological function of activation-induced cytidine deaminase (AID

    Directory of Open Access Journals (Sweden)

    Ritu Kumar

    2014-10-01

    Full Text Available Activation-induced Cytidine Deaminase (AID is an essential regulator of B cell diversification, but its full range of action has until recently been an enigma. Based on homology, it was originally proposed to be an RNA-editing enzyme, but so far, no RNA substrates are known. Rather, it functions by deaminating cytidine, and in this manner, coupled with base-excision repair or mismatch repair machinery, it is a natural mutator. This allows it to play a central role in adaptive immunity, whereby it initiates the processes of class switch recombination and somatic hypermutation to help generate a diverse and high-affinity repertoire of immunoglobulin isotypes. More recently, it has been appreciated that methylated cytidine, already known as a key epigenetic mark on DNA controlling gene expression, can also be a target for AID modification. Coupled with repair machinery, this can facilitate the active removal of methylated DNA. This activity can impact the process of cellular reprogramming, including transition of a somatic cell to pluripotency, which requires major reshuffling of epigenetic memory. Thus, seemingly disparate roles for AID in controlling immune diversity and epigenetic memory have a common mechanistic basis. However, the very activity that is so useful for B cell diversity and cellular reprogramming is dangerous for the integrity of the genome. Thus, AID expression and activity is tightly regulated, and deregulation is associated with diseases including cancer. Here, we review the range of AID functions with a focus on its mechanisms of action and regulation. Major questions remain to be answered concerning how and when AID is targeted to specific loci and how this impacts development and disease.

  16. Biologically Inspired Photocatalytically Active Membranes for Water Treatment

    Science.gov (United States)

    Kinsinger, Nichola M.

    There is an alarming increase of a variety of new chemicals that are now being discharged into the wastewater system causing increased concern for public health and safety because many are not removed by typical wastewater treatment practices. Titanium Dioxide (TiO2) is a heterogeneous photocatalytic material that rapidly and completely mineralizing organics without harmful byproducts. TiO2 is synthesized by various methods, which lack the necessary control of crystal size, phase, and morphological features that yield optimized semiconductor materials. Mineralizing organisms demonstrate how nature can produce elegant structures at room temperature through controlled organic-mineral interactions. Here, we utilize biologically-inspired scaffolds to template the nucleation and growth of inorganic materials such as TiO2, which aid in controlling the size and phase of these particles and ultimately, their properties. Nanosized rutile and anatase particles were synthesized under solution conditions at relatively low temperatures and mild pH conditions. The effects of reaction conditions on phase and grain size were investigated and discussed from coordination chemistry and coarsening mechanisms. Photocatalytic characterization of TiO2 phase mixtures was performed to investigate their synergistic effect. The suspension conditions of these catalytic nanomaterials were modulated to optimize the degradation rate of organic analytes. Through the addition of an organic scaffold during the synthesis reaction, a mechanically robust (elastic) composite material containing TiO2 nanoparticles was produced. This composite was subsequently heat-treated to produce a porous, high surface area TiO2 nanoparticulate membrane. Processing conditions were investigated to characterize the growth and phase transformation of TiO2, which ultimately impacts photocatalytic performance. These bulk porous TiO2 structures can be fabricated and tailored to act as stand-alone photocatalytic membranes

  17. Synthesis and biological activity of Wuweizisu C and analogs.

    Science.gov (United States)

    Chang, J B; Wang, Q; Li, Y F

    2009-01-01

    Lignans are widely distributed in nature. The earliest recorded medicinal use of lignans dated back to over 1000 years ago. Lignan-rich plant products were also active ingredients in Chinese and Japanese folk medicines for the treatment of various diseases. The dried root and stem of this plant are listed in the Chinese pharmacopoeia for the treatment of rheumatoid arthritis, gastric, duodenal ulcers and many other diseases. This review highlights synthetic strategies for the Wuweizisu C analogs and the important pharmacological activities as well as therapeutic findings related to the treatment of HBV and other diseases. Notably a significant and ongoing project on Wuweizisu C and its analogs has led to the discovery and development of two potent derivatives alpha-DDB and BICYCLOL which are currently in clinical trials against HBV, especially in lowering elevated SGPT levels. Further design, synthesis, and evaluation of Wuweizisu C analogs are discussed. PMID:19903156

  18. Glutarimides: Biological activity, general synthetic methods and physicochemical properties

    Directory of Open Access Journals (Sweden)

    Popović-Đorđević Jelena B.

    2015-01-01

    Full Text Available Glutarimides, 2,6-dioxopiperidines are compounds that rarely occur in natural sources, but so far isolated ones exert widespread pharmacological activities, which makes them valuable as potential pharmacotherapeutics. Glutarimides act as androgen receptor antagonists, anti-inflammatory, anxiolytics, antibacterials, and tumor suppressing agents. Some synthetic glutarimide derivatives are already in use as immunosuppressive and sedative (e.g., thalidomide or anxiolytics (buspirone drugs. The wide applicability of this class of compounds, justify the interest of scientists to explore new pathways for its syntheses. General methods for synthesis of six-membered imide ring, are presented in this paper. These methods include: a reaction of dicarboxylic acids with ammonia or primary amine, b reactions of cyclization: amido-acids, diamides, dinitriles, nitrilo-acids, amido-nitriles, amido-esters, amidoacyl-chlorides or diacyl-chlorides, c adition of carbon-monoxide on a,b-unsaturated amides, d oxidation reactions, e Michael adition of active methylen compounds on methacrylamide or conjugated amides. Some of the described methods are used for closing glutarimide ring in syntheses of farmacological active compounds sesbanimide and aldose reductase inhibitors (ARI. Analyses of the geometry, as well as, the spectroscopic analyses (NMR and FT-IR of some glutarimides are presented because of their broad spectrum of pharmacological activity. To elucidate structures of glutarimides, geometrical parameters of newly synthesized tert-pentyl-1-benzyl-4-methyl-glutarimide-3-carboxylate (PBMG are analyzed and compared with the experimental data from X-ray analysis for glutarimide. Moreover, molecular electrostatic potential (MEP surface which is plotted over the optimized geometry to elucidate the reactivity of PBMG molecule is analyzed. The electronic properties of glutarimide derivatives are explained on the example of thalidomide. The Frontier Molecular Orbital

  19. Solenopsin A and analogs exhibit ceramide-like biological activity

    OpenAIRE

    Karlsson, Isabella; Zhou, Xin; Thomas, Raquela; Smith, Allorie T; Bonner, Michael Y.; Bakshi, Pooja; Banga, Ajay K.; Bowen, J. Phillip; Qabaja, Ghassan; Ford, Shavon L; Ballard, Matthew D; Petersen, Kimberly S.; Li, Xuechen; Chen, Guangping; Ogretmen, Besim

    2015-01-01

    Background (−)-Solenopsin A is a piperidine alkaloid that is a component of the venom of the fire ant Solenopsis invicta. Previously, we have demonstrated that solenopsin exhibit anti-angiogenic activity and downregulate phosphoinositol-3 kinase (PI3K) in the p53 deficient renal cell carcinoma cell line 786-O. Solenopsin has structural similarities to ceramide, a major endogenous regulator of cell signaling and cancer therapy induced apoptosis. Methods Different analogs of solenopsin were syn...

  20. New Conjugated Benzothiazole-N-oxides: Synthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Pavlína Foltínová

    2009-12-01

    Full Text Available Eleven new 2-styrylbenzothiazole-N-oxides have been prepared by aldol – type condensation reactions between 2-methylbenzothiazole–N-oxide and para-substituted benzaldehydes. Compounds with cyclic amino substituents showed typical push-pull molecule properties. Four compounds were tested against various bacterial strains as well as the protozoan Euglena gracilis as model microorganisms. Unlike previously prepared analogous benzothiazolium salts, only weak activity was recorded.

  1. Synthesis, characterization and biological activity of uranyl thiosemicarbazone complexes

    International Nuclear Information System (INIS)

    A new thiosemicarbazone namely phenacyl thioacetic acid thiosemicarbazone was synthesized and its UO22+ complexes were prepared. The synthesized ligand and complexes were characterized by elemental analyses, spectral (IR, 1H NMR and Mass) studies. In all complexes the ligand coordinates through carboxylic oxygen, azomethine nitrogen and thiolate sulfur. Antimicrobial screening of the free ligand and its complexes showed that, the free ligand and metal complexes possess antimicrobial activities towards two types of bacteria and two types of fungi. (author)

  2. Exosomes from myeloid derived suppressor cells carry biologically active proteins

    OpenAIRE

    Burke, Meghan; Choksawangkarn, Waeowalee; Edwards, Nathan; Ostrand-Rosenberg, Suzanne; Fenselau, Catherine

    2013-01-01

    Myeloid-derived suppressor cells (MDSC) are present in most cancer patients where they inhibit natural anti-tumor immunity and are an obstacle to anti-cancer immunotherapies. They mediate immune suppression through their production of proteins and soluble mediators that prevent the activation of tumor-reactive T lymphyocytes, polarize macrophages towards a tumor-promoting phenotype, and facilitate angiogenesis. The accumulation and suppressive potency of MDSC is regulated by inflammation with...

  3. Multiple biological activities of human recombinant interleukin 1.

    OpenAIRE

    Dinarello, C A; Cannon, J. G.; Mier, J W; Bernheim, H. A.; LoPreste, G; Lynn, D L; Love, R N; Webb, A C; Auron, P. E.; Reuben, R C

    1986-01-01

    Complementary DNA coding for human monocyte interleukin 1 (IL-1), pI 7 form, was expressed in Escherichia coli. During purification, IL-1 activity on murine T cells was associated with the recombinant protein. Homogeneous human recombinant IL-1 (hrIL-1) was tested in several assays to demonstrate the immunological and inflammatory properties attributed to this molecule. hrIL-1 induced proliferative responses in a cloned murine T cell in the presence of suboptimal concentrations of mitogen, wh...

  4. A rapid assay for the biological evaluation of helicase activity.

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Dimitrios Vlachakis, Andrea Brancale, Colin Berry & Sophia Kossida ### Abstract A new assay for the measurement of helicase enzyme activity was developed for the evaluation of the potency of potential inhibitors. This assay involves the use of a DNA or RNA duplex substrate and recombinant purified helicase. The DNA duplex consists of a pair of oligonucleotides, one of which is biotinylated and the other is digoxygenin (DIG)-labelled, both at their respective 5’ termini. T...

  5. Biological Activities and Phytochemicals of Swietenia macrophylla King

    OpenAIRE

    Habsah Abdul Kadir; Tara Shabab; Chim Kei Chan; Soheil Zorofchian Moghadamtousi; Bey Hing Goh

    2013-01-01

    Swietenia macrophylla King (Meliaceae) is an endangered and medicinally important plant indigenous to tropical and subtropical regions of the World. S. macrophylla has been widely used in folk medicine to treat various diseases. The review reveals that limonoids and its derivatives are the major constituents of S. macrophylla. There are several data in the literature indicating a great variety of pharmacological activities of S. macrophylla, which exhibits antimicrobial, anti-inflammatory, an...

  6. Biological Activity of Vegetal Extracts Containing Phenols on Plant Metabolism

    Directory of Open Access Journals (Sweden)

    Andrea Ertani

    2016-02-01

    Full Text Available The influence of vegetal extracts derived from red grape, blueberry fruits and hawthorn leaves on Zea mays L. plant growth and the activity of phenylalanine ammonia-lyase (PAL, a key enzyme of the phenylpropanoid pathway, was investigated in laboratory experiments. The extracts were characterized using FT-IR and Raman spectroscopies in order to obtain a pattern of the main functional groups. In addition, phenols content was determined by HPLC, whereas the content of indoleacetic acid and isopentenyladenosine hormones was determined by ELISA test and the auxin and gibberellin-like activities by plant-bioassays. The treated maize revealed increased root and leaf biomass, chlorophyll and sugars content with respect to untreated plants. Hawthorn, red grape skin and blueberry at 1.0 mL/L induced high p-coumaric content values, whilst hawthorn also showed high amounts of gallic and p-hydroxybenzoic acids. PAL activity induced by hawthorn at 1.0 mL/L had the highest values (11.1-fold UNT and was strongly and linearly related with the sum of leaf phenols. Our results suggest that these vegetal extracts contain more than one group of plant-promoting substances.

  7. Purification, Characterization and Biological Activity of Polysaccharides from Dendrobium officinale

    Directory of Open Access Journals (Sweden)

    Kaiwei Huang

    2016-05-01

    Full Text Available Polysaccharide (DOPA from the stem of D. officinale, as well as two fractions (DOPA-1 and DOPA-2 of it, were isolated and purified by DEAE cellulose-52 and Sephacryl S-300 chromatography, and their structural characteristics and bioactivities were investigated. The average molecular weights of DOPA-1 and DOPA-2 were 394 kDa and 362 kDa, respectively. They were mainly composed of d-mannose, d-glucose, and had a backbone consisting of 1,4-linked β-d-Manp and 1,4-linked β-d-Glcp with O-acetyl groups. Bioactivity studies indicated that both DOPA and its purified fractions (DOPA-1 and DOPA-2 could activate splenocytes and macrophages. The D. officinale polysaccharides had stimulatory effects on splenocytes, T-lymphocytes and B-lymphocytes, promoting the cell viability and NO production of RAW 264.7 macrophages. Furthermore, DOPA, DOPA-1 and DOPA-2 were found to protect RAW 264.7 macrophages against hydrogen peroxide (H2O2-induced oxidative injury by promoting cell viability, suppressing apoptosis and ameliorating oxidative lesions. These results suggested that D. officinale polysaccharides possessed antioxidant activity and mild immunostimulatory activity.

  8. Purification, Characterization and Biological Activity of Polysaccharides from Dendrobium officinale.

    Science.gov (United States)

    Huang, Kaiwei; Li, Yunrong; Tao, Shengchang; Wei, Gang; Huang, Yuechun; Chen, Dongfeng; Wu, Chengfeng

    2016-01-01

    Polysaccharide (DOPA) from the stem of D. officinale, as well as two fractions (DOPA-1 and DOPA-2) of it, were isolated and purified by DEAE cellulose-52 and Sephacryl S-300 chromatography, and their structural characteristics and bioactivities were investigated. The average molecular weights of DOPA-1 and DOPA-2 were 394 kDa and 362 kDa, respectively. They were mainly composed of d-mannose, d-glucose, and had a backbone consisting of 1,4-linked β-d-Manp and 1,4-linked β-d-Glcp with O-acetyl groups. Bioactivity studies indicated that both DOPA and its purified fractions (DOPA-1 and DOPA-2) could activate splenocytes and macrophages. The D. officinale polysaccharides had stimulatory effects on splenocytes, T-lymphocytes and B-lymphocytes, promoting the cell viability and NO production of RAW 264.7 macrophages. Furthermore, DOPA, DOPA-1 and DOPA-2 were found to protect RAW 264.7 macrophages against hydrogen peroxide (H₂O₂)-induced oxidative injury by promoting cell viability, suppressing apoptosis and ameliorating oxidative lesions. These results suggested that D. officinale polysaccharides possessed antioxidant activity and mild immunostimulatory activity. PMID:27248989

  9. Implications of the use of experimental activities in biology education in public schools

    Directory of Open Access Journals (Sweden)

    Vânia Cardoso da Silva Morais

    2016-04-01

    Full Text Available This study aimed to verify the influence of a didactic sequence with experimental activities on student motivation in relation to the subject matter Biology and check the possibility of applying such a result having as input the cultural-historical perspective and the dynamic of the three pedagogical moments. The work is part of a Master Degree research developed with 70 students from a high school in Patos de Minas city. The analysis of the data collected through observation, questionnaires, reports, testimonies of students, filming and photography of biology classes, points out that the use of experimental activities in Biology classes contributed to the increase of student motivation relating to Biology classes favoring the teaching-learning process and also to promote a converge between the scientific knowledge and reality of the students besides encourage their self-esteem and investigative sense. The results also indicate that it is possible to develop at school a didactic sequence based on the complementarity of two different theoretical lines like the dynamics of the three moments and in the historical and cultural perspective. Based on above considerations, we believe that the use of experimental activities following didactics positively influences student motivation in relation to Biology, favoring the teaching and learning of Biology. However, it is the whole of this, as the theory and the posture of motivating teachers, allowed approximation between scientific knowledge and reality of the students, enabling greater learning of biological concepts.

  10. Multicomponent click synthesis of potentially biologically active triazoles catalysed by copper nanoparticles on activated carbon in water

    OpenAIRE

    Alonso Valdés, Francisco; Moglie, Yanina; Radivoy, Gabriel; Yus Astiz, Miguel

    2011-01-01

    A variety of potentially biologically active 1,2,3-triazoles, derived from (–)-menthol, lactic acid, D-glucose, oestrone, cholesterol, and phenacetin, have been synthesised through the multicomponent alkyne-azide 1,3-dipolar cycloaddition catalysed by copper nanoparticles on activated carbon in neat water.

  11. Biological role of sialosyl transferase activity in rat brain

    International Nuclear Information System (INIS)

    The purpose of this dissertation is to obtain new evidence that will support or refute the existence of an ecto sialosyltransferse activity (STase) that has been described in the synaptic plasma membrane (SPM). This STase has been proposed to transfer sialic acid (NANA) to endogenous SPM gangliosides. Preparations of rat brain synaptosomes were assayed for STase by incubation with CMP-(14C)NANA, and measuring radioactivity transferred to the endogenous gangliosides. The activity was found to be 0.84 pmoles NANA transferred per mg protein per hour. The product specificity for STase was determined by the incorporation of label into individual ganglioside species. Subfractions were produced from rat brain that were enriched in Golgi membranes, synaptosomes, and SPM as judged by EM morphology and marker enzymes. The Golgi fraction had over 3 fold greater STase activity than synaptosomes, while SPM were enriched 2.5 fold over the synaptosomes from which they came. The labeling pattern of endogenous gangliosides was quite different by the Golgi STase. An unknown compound in the ganglioside extracts was specifically labeled, but gangliosides were not labeled with specificity by the Golgi transferase. The synaptosomal and SPM labeling patterns were identical and were characterized by GD3 specificity. Therefore the STase of SPM is not due to Golgi contamination. Intact neurons were assayed for STase by the use of brain cortical slices. Slices incubated that labeled CMP-NANA (available for cell surface reactions) produced the GD3-specific labeling pattern. These results suggest that the GD3-specific sialosyltransferase is a cell surface ecto-enzyme

  12. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ashrafuzzaman, Md [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States); Lampson, M A [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States); Greathouse, D V [Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 (United States); II, R E Koeppe [Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 (United States); Andersen, O S [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States)

    2006-07-19

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)-Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly-alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  13. Biological Activities and Cytotoxicity of Diterpenes from Copaifera spp. Oleoresins

    Directory of Open Access Journals (Sweden)

    Fabiano de S. Vargas

    2015-04-01

    Full Text Available Copaifera spp. are Amazonian species widely studied and whose oleoresins are used by local people for various medicinal purposes. However, a detailed study of the activity of the main phytochemical components of these oleoresins remains to be done. Here, we studied the cytotoxicity and in vitro anti-inflammatory effects of six diterpene acids: copalic, 3-hydroxy-copalic, 3-acetoxy-copalic, hardwickiic, kolavic-15-metyl ester, and kaurenoic, isolated from the oleoresins of Copaifera spp. The diterpenes did not show cytotoxicity in normal cell lines, nor did they show significant changes in viability of tumoral line cells. The 3-hydroxy-copalic was able to inhibit the enzyme tyrosinase (64% ± 1.5% at 250 µM. The kolavic-15-metyl ester at 200 µM showed high inhibitory effect on lipoxygenase (89.5% ± 1.2%. Among the diterpenes tested, only kaurenoic and copalic acids showed significant hemolytic activities with 61.7% and 38.4% at 100 µM, respectively. In addition, it was observed that only the copalic acid (98.5% ± 1.3% and hardwickiic acid (92.7% ± 4.9% at 100 mM inhibited nitric oxide production in macrophages activated by lipopolysaccharide. In this assay, the diterpenes did not inhibit tumor necrosis factor-α production. The acids inhibited the production of IL-6, 3-acetoxy-copalic (23.8% ± 8.2%, kaurenoic (11.2% ± 5.7%, kolavic-15-methyl ester (17.3% ± 4.2%, and copalic (4.2% ± 1.8%, respectively, at 25 µM. The kaurenoic, 3-acetoxy-copalic and copalic acids increased IL-10 production. This study may provide a basis for future studies on the therapeutic role of diterpenic acids in treating acute injuries such as inflammation or skin disorders.

  14. Biological Activities and Composition of Ferulago carduchorum Essential Oil

    Directory of Open Access Journals (Sweden)

    Fereshteh Golfakhrabadi

    2015-10-01

    Full Text Available Background: Ferulago carduchorum Boiss and Hausskn belongs to the Apiaceae family. This plant grows in west part of Iran that local people added it to dairy and oil ghee to delay expiration date and give them a pleasant taste. The aim of this study was to investigate the antioxidant, antimicrobial, acetyl cholinesterase inhibition, cytotoxic, larvicidal activities and composition of essential oil of F. carduchorum.Methods: Acetyl cholinesterase (AChE inhibitory, larvicidal activities and chemical composition of essential oil of F. carduchorum were investigated. Besides, antioxidant, antimicrobial and cytotoxic activities of essential oil were tested using DPPH, microdilution method and MTT assay, respectively.Results: The major components of essential oil were (z-β-ocimene (43.3%, α-pinene (18.23% and bornyl acetate (3.98%. Among 43 identified components, monoterpenes were the most compounds (84.63%. The essential oil had noticeable efficiency against Candida albicans (MIC= 2340 μg ml-1 and it was effective against Anophelesstephensi with LC50 and LC90 values of 12.78 and 47.43 ppm, respectively. The essential oil could inhibit AChE (IC50= 23.6 μl ml-1. The essential oil showed high cytotoxicity on T47D, HEP-G2 and HT-29 cell lines (IC50< 2 μg ml-1.Conclusion: The essential oil of F. carduchorum collected from west of Iran had anti-Candida, larvicidal and cytotoxicity effects and should be further investigated in others in vitro and in vivo experimental models.

  15. Interaction of metallic clusters with biologically active curcumin molecules

    Science.gov (United States)

    Gupta, Sanjeev K.; He, Haiying; Liu, Chunhui; Dutta, Ranu; Pandey, Ravindra

    2015-09-01

    We have investigated the interaction of subnano metallic Gd and Au clusters with curcumin, an important biomolecule having pharmacological activity. Gd clusters show different site preference to curcumin and much stronger interaction strength, in support of the successful synthesis of highly stable curcumin-coated Gd nanoparticles as reported recently. It can be attributed to significant charge transfer from the Gd cluster to curcumin together with a relatively strong hybridization of the Gd df-orbitals with curcumin p-orbitals. These results suggest that Gd nanoparticles can effectively be used as delivery carriers for curcumin at the cellular level for therapy and medical imaging applications.

  16. New approaches to estimation of peat deposits for production of biologically active compounds

    Science.gov (United States)

    Stepchenko, L. M.; Yurchenko, V. I.; Krasnik, V. G.; Syedykh, N. J.

    2009-04-01

    It is known, that biologically active preparations from peat increase animals productivity as well as resistance against stress-factors and have adaptogeneous, antioxidant, immunomodulative properties. Optymal choice of peat deposits for the production of biologically active preparations supposes the detailed comparative analysis of peat properties from different deposits. For this the cadastre of peat of Ukraine is developed in the humic substances laboratory named after prof. Khristeva L.A. (Dnipropetrovsk Agrarian University, Ukraine). It based on the research of its physical and chemical properties, toxicity and biological activity, and called Biocadastre. The Biocadastre is based on the set of parameters, including the descriptions of physical and chemical properties (active acidity, degree of decomposition, botanical composition etc.), toxicity estimation (by parabyotyc, infusorial, inhibitor and other tests), biological activity indexes (growth-promoting, antioxidative, adaptogeneous, immunomodulative antistress and other actions). The blocks of Biocadastre indexes are differentiated, taking into account their use for creation the preparations for vegetable, animals and microorganisms. The Biocadastre will allow to choose the peat deposits, most suitable for the production of different biologically active preparations, both wide directed and narrow spectrum of action, depending on application fields (medicine, agriculture, veterinary medicine, microbiological industry, balneology, cosmetology).

  17. Chemical Composition and Biological Activities of Gerbera anandria

    Directory of Open Access Journals (Sweden)

    Fa He

    2014-04-01

    Full Text Available Gerbera anandria (Compositae was extracted with 75% ethanol and the residue was fractionated using light petroleum, chloroform and ethyl acetate. The constituents of the extracts were separated by column chromatography employing solvents of different polarity. Column chromatography of the light petroleum fraction resulted in the isolation of methyl hexadecanoate, while the chloroform fraction afforded xanthotoxin, 2-hydroxy-6-methylbenzoic acid, 7-hydroxy-1(3H-isobenzofuranone, a mixture of β-sitosterol and stigmasterol, and 8-methoxysmyrindiol and the ethyl acetate fraction gave gerberinside, apigenin-7-O-β-d-glucopyranoside and quercetin. A new coumarin, 8-methoxysmyrindiol, was found. The chemical structures of the isolated compounds were established by MS and NMR (HSQC, HMBC. Free radical scavenging and cytotoxic activities of crude extracts and 8-methoxysmyrindiol were further investigated. The ethyl acetate phase exerted the strongest DPPH free radical scavenging activity in comparison to the other fractions. The coumarin 8-methoxysmyrindiol demonstrated cytotoxicity against multiple human cancer cell lines, with the highest potency in HepG2 cells.

  18. Biological activities of Eremostachys laevigata Bunge. grown in Iran.

    Science.gov (United States)

    Esmaeili, Akbar

    2012-10-01

    Essential oil from flowers, stems, and roots of Eremostachys laevigata Bunge. gathered in Iran was analyzed using gas chromatography (GC) and gas chromatography/mass spectroscopy (GC/MS), and 23, 21, and 9 compounds were identified, respectively. The primary components of all three oils were found to be 1,8-cineole, benzaldehyde, and piperitenone oxide: 18.3%, 18.7%, and 2.5%; 17.9%, 7.7%, and 63.3%; and 15.7%, 21.3%, and 1.2%, respectively. The oils derived from flowers and stems also contained cis-piperitone oxide as a major component (10.1% and 12.2%, respectively). E. laevigata oil showed antibacterial activity, particularly towards Gram-positive bacteria; additionally antioxidant activity was induced with IC(50) of flowers, stems and roots of E. laevigata (277.1, 495.0, and 212.6 μg/ml), respectively. Furthermore, under β-carotene-linoleic acid test assay the flower, stem, and root oils of E. laevigata had a high antibacterial effect. PMID:23009997

  19. Biological Treatment of tannery wastewater using activated sludge process

    International Nuclear Information System (INIS)

    A study was conducted to evaluate the feasibility of Activated Sludge Process (ASP) for the treatment of tannery wastewater and to develop a simple design criteria under local conditions. A bench scale model comprising of an aeration tank and final clarifier was used for this purpose. The model was operated continuously for 267 days. Settled tannery wastewater was used as influent to the aeration tank. Five days Biochemical Oxygen Demand (BOD5) and Chemical Oxygen Demand (COD) of the influent and effluent were measured to find process efficiency at various mixed liquor volatile suspended solids (MLVSS) and hydraulic detention time. The results of the study demonstrated that an efficiency of above 90% and 80% for BOD5 and COD, respectively could be obtained if the ASP is operated at an MLVSS concentration of 3500 mg/L keeping an aeration time of 12 hours. (author)

  20. Flavonoids from the genus Astragalus: Phytochemistry and biological activity

    Directory of Open Access Journals (Sweden)

    Viktor M Bratkov

    2016-01-01

    Full Text Available Flavonoids, the most common plant polyphenols are widely distributed in every species and possess a broad range of pharmacological activities. The genus Astragalus is the largest in the Fabaceae family with more than 2,500 species spread. They are known to contain different metabolites such as flavonoids, saponins, and polysaccharides. Plants from the genus have been used in the traditional medicine of many countries for centuries. This paper is focused on the large group of flavonoid compounds. Details on structure as well as information about the pharmacological properties of flavonoids, isolated from Astragalus species have been discussed. This review is based on publications until the first half of 2014 and includes also the results from our phytochemical investigations of the genus.

  1. Flavonoids from the Genus Astragalus: Phytochemistry and Biological Activity.

    Science.gov (United States)

    Bratkov, Viktor M; Shkondrov, Aleksandar M; Zdraveva, Petranka K; Krasteva, Ilina N

    2016-01-01

    Flavonoids, the most common plant polyphenols are widely distributed in every species and possess a broad range of pharmacological activities. The genus Astragalus is the largest in the Fabaceae family with more than 2,500 species spread. They are known to contain different metabolites such as flavonoids, saponins, and polysaccharides. Plants from the genus have been used in the traditional medicine of many countries for centuries. This paper is focused on the large group of flavonoid compounds. Details on structure as well as information about the pharmacological properties of flavonoids, isolated from Astragalus species have been discussed. This review is based on publications until the first half of 2014 and includes also the results from our phytochemical investigations of the genus. PMID:27041870

  2. Isotopic techniques for measuring the biological activity in plant rhizosphere

    International Nuclear Information System (INIS)

    The use of 14C made it possible to separate root respired CO2 and microbial CO2 resulting from exudates utilisation by the rhizosphere microflora. Measurements were done after wheat plants grown under axenic and non axenic conditions were placed during short period of time in an atmosphere contaning 14CO2. Under axenic conditions evolution of 14CO2 follows a bell shaped curve due to the brief appearance of labelled compounds translocated from the aerial part of the plants to the roots. In the presence of microorganisms, the maximum of activity due to root respiration is identical but immediately followed by a second peak of 14CO2 evolution that was attributed to the decomposition of labelled exudates by the microflora. The same observations resulted from the labelling of a grassland vegetation sampled with its soil and placed in the laboratory. Preliminary results obtained using this method of short term labelling of plants are presented here

  3. Amazon acai: chemistry and biological activities: a review.

    Science.gov (United States)

    Yamaguchi, Klenicy Kazumy de Lima; Pereira, Luiz Felipe Ravazi; Lamarão, Carlos Victor; Lima, Emerson Silva; da Veiga-Junior, Valdir Florêncio

    2015-07-15

    Acai (acai or assai) is one of the Amazon's most popular functional foods and widely used in the world. There are many benefits to its alleged use in the growing market for nutraceuticals. The acai extracts have a range of polyphenolic components with antioxidant properties, some of those present in greater quantity are orientin, isoorientin and vanillic acid, as well as anthocyanins cyanidin-3-glucoside and cyanidin-3-rutinoside. The presence of these substances is linked mainly to the antioxidant, anti- inflammatory, anti-proliferative and cardioprotective activities. Importantly, there are two main species of the Euterpe genus which produce acai. There are several differences between them but they are still quite unknown, from literature to producers and consumers. In this review are highlighted the chemical composition, botanical aspects, pharmacological, marketing and nutrition of these species based on studies published in the last five years in order to unify the current knowledge and dissimilarities between them. PMID:25722148

  4. Novel chlorinated dibenzofurans isolated from the cellular slime mold, Polysphondylium filamentosum, and their biological activities.

    Science.gov (United States)

    Kikuchi, Haruhisa; Kubohara, Yuzuru; Nguyen, Van Hai; Katou, Yasuhiro; Oshima, Yoshiteru

    2013-08-01

    Cellular slime molds are expected to have the huge potential for producing secondary metabolites including polyketides, and we have studied the diversity of secondary metabolites of cellular slime molds for their potential utilization as new biological resources for natural product chemistry. From the methanol extract of fruiting bodies of Polysphondylium filamentosum, we obtained new chlorinated benzofurans Pf-1 (4) and Pf-2 (5) which display multiple biological activities; these include stalk cell differentiation-inducing activity in the well-studied cellular slime mold, Dictyostelium discoideum, and inhibitory activities on cell proliferation in mammalian cells and gene expression in Drosophila melanogaster. PMID:23746784

  5. Molecular design, synthesis and biological activities of amidines as new ketol-acid reductoisomerase inhibitors

    Institute of Scientific and Technical Information of China (English)

    Bao Lei Wang; Yong Hong Li; Jian Guo Wang; Yi Ma; Zheng Ming Li

    2008-01-01

    Diamidine (A) was identified in our in vitro bio-assay as a possible inhibitor of ketol-acid reductoisomerase (KARI) from the ACD database search based on the known three-dimensional crystal structure of KARI. An investigation on interaction of A on KARI active sites, led to the design and synthesis of 15 novel monoamidines. Some of those showed better biological activity than A on rice KARI (in vitro) and in greenhouse herbicidal tests (in vivo). The structure-biological activity relationship was investigated, which provides valuable information to further study of potential KARI inhibitors.

  6. Synthesis and Biological Activity of Arylspiroborate Salts Derived from Caffeic Acid Phenethyl Ester

    Directory of Open Access Journals (Sweden)

    Martin J. G. Hébert

    2015-01-01

    Full Text Available Two novel boron compounds containing caffeic acid phenethyl ester (CAPE derivatives have been prepared and characterized fully. These new compounds and CAPE have been investigated for potential antioxidant and antimicrobial properties and their ability to inhibit 5-lipoxygenase and whether chelation to boron improves their biological activity. Sodium salt 4 was generally more active than ammonium salt 5 in the biological assays and surpassed the radical scavenging ability of CAPE. Compounds 4 and 5 were more active than CAPE and Zileuton in human polymorphonuclear leukocytes. These results clearly show the effectiveness of the synthesized salts as transporter of CAPE.

  7. Diversity of Secondary Metabolites from Marine Bacillus Species: Chemistry and Biological Activity

    Directory of Open Access Journals (Sweden)

    Hee Jae Shin

    2013-08-01

    Full Text Available Marine Bacillus species produce versatile secondary metabolites including lipopeptides, polypeptides, macrolactones, fatty acids, polyketides, and isocoumarins. These structurally diverse compounds exhibit a wide range of biological activities, such as antimicrobial, anticancer, and antialgal activities. Some marine Bacillus strains can detoxify heavy metals through reduction processes and have the ability to produce carotenoids. The present article reviews the chemistry and biological activities of secondary metabolites from marine isolates. Side by side, the potential for application of these novel natural products from marine Bacillus strains as drugs, pesticides, carotenoids, and tools for the bioremediation of heavy metal toxicity are also discussed.

  8. Effects of heat on the biological activity of wild Cordyceps sinensis

    Directory of Open Access Journals (Sweden)

    Pengkai Wu

    2015-01-01

    Conclusions: These results suggested that heat treatment does not adversely affect SOD or DNase activity, polysaccharide content, or cordycepin dissolution. Thus, heat treatment might be a safe processing method to extend the storage time of wild C. sinensis without compromising biological activity.

  9. A Preliminary Study of the Microbial Resources and Their Biological Activities of the East China Sea

    Directory of Open Access Journals (Sweden)

    Xiaoling Lu

    2011-01-01

    Full Text Available East China Sea is one of the four sea areas in China, which possesses peculiar ecological environment and many kinds of living creatures, especially the microorganisms. We established the East China Sea microorganism library (during 2006–2010 for the first time, which stored about 30000 strains that covered most kinds of the species. In this paper, 395 pure strains of East China Sea microorganism library which belong to 33 different genera were mainly introduced. Sulfitobacter, Halomonas, Bacillus, Pseudoalteromonas, and Idiomarina were the most dominant species. On the large-scale biological activity screening of the 395 strains, 100 strains possess different biological activities based on different screening models, of which 11.4% strains have antibacterial activities, 15.9% have cytotoxicity activities, and 6.1% have antioxidation activities. Besides, the secondary metabolites of 6 strains with strong biological activities were studied systematically; diketopiperazines and macrocyclic lactones are the active secondary metabolites. The species and the biological activity of microorganisms diversity, the abundant structure type of the secondary metabolites, and their bioactivities all indicate that East China Sea is a potent marine microorganisms-derived developing resource for drug discovery.

  10. Physical Activity: A Tool for Improving Health (Part 1--Biological Health Benefits)

    Science.gov (United States)

    Gallaway, Patrick J.; Hongu, Nobuko

    2015-01-01

    Extension educators have been promoting and incorporating physical activities into their community-based programs and improving the health of individuals, particularly those with limited resources. This article is the first of a three-part series describing the benefits of physical activity for human health: 1) biological health benefits of…

  11. [Advances in studies on chemical constituents and biological activities of Desmodium species].

    Science.gov (United States)

    Liu, Chao; Wu, Ying; Zhang, Qian-Jun; Kang, Wen-Yi; Zhang, Long; Zhou, Qing-Di

    2013-12-01

    The chemical constituents isolated from Desmodium species (Leguminosae) included terpenoids, flavonoids, steroids, alkaloids compounds. Modem pharmacological studies have showed that the Desmodium species have antioxidant, antibacterial, anti-inflammatory, hepatoprotective, diuretic, antipyretic, analgesic and choleretic activity. This article mainly has reviewed the research advances of chemical constituents and biological activities of Desmodium species since 2003. PMID:24791478

  12. Biological activity of a genetically modified BMP-2 variant with inhibitory activity

    Directory of Open Access Journals (Sweden)

    Kübler Alexander C

    2009-02-01

    Full Text Available Abstract Background Alterations of the binding epitopes of bone morphogenetic protein-2 (BMP-2 lead to a modified interaction with the ectodomains of BMP receptors. In the present study the biological effect of a BMP-2 double mutant with antagonistic activity was evaluated in vivo. Methods Equine-derived collagenous carriers were loaded with recombinant human BMP-2 (rhBMP-2 in a well-known dose to provide an osteoinductive stimulus. The study was performed in a split animal design: carriers only coupled with rhBMP-2 (control were implanted into prepared cavities of lower limb muscle of rats, specimens coupled with rhBMP-2 as well as BMP-2 double mutant were placed into the opposite limb in the same way. After 28 days the carriers were explanted, measured radiographically and characterized histologically. Results As expected, the BMP-2 loaded implants showed a typical heterotopic bone formation. The specimens coupled with both proteins showed a significant decreased bone formation in a dose dependent manner. Conclusion The antagonistic effect of a specific BMP-2 double mutant could be demonstrated in vivo. The dose dependent influence on heterotopic bone formation by preventing rhBMP-2 induced osteoinduction suggests a competitive receptor antagonism.

  13. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal.

    Science.gov (United States)

    Yang, Xin; Xu, Guoren; Yu, Huarong; Zhang, Zhao

    2016-07-01

    Ferric activation was novelly used to produce sludge-based adsorbent (SBA) from biological sludge through pyrolysis, and the adsorbents were applied to remove tetracycline from aqueous solution. The pyrolysis temperature and mass ratio (activator/dried sludge) greatly influenced the surface area and pore characteristics of SBA. Ferric activation could promote the porous structure development of adsorbents, and the optimum preparation conditions were pyrolysis temperature 750°C and mass ratio (activator/dried sludge) 0.5. In batch experiments, ferric-activated SBA showed a higher adsorption capacity for tetracycline than non-activated SBA, because the enhanced mesoporous structure favored the diffusion of tetracycline into the pores, the iron oxides and oxygen-containing functional groups in the adsorbents captured tetracycline by surface complexation. The results indicate that ferric activation is an effective approach for preparing adsorbents from biological sludge to remove tetracycline, providing a potential option for waste resource recovery. PMID:27038265

  14. Chemical characterization and biological activity of Chaga (Inonotus obliquus), a medicinal “mushroom”

    OpenAIRE

    Glamočlija, Jasmina; Ćirić, Ana; Nikolić, Miloš; Fernandes, Ângela; Barros, Lillian; Ricardo C. Calhelha; Ferreira, Isabel C.F.R.; Soković, Marina; Van Griensven, Leo J. L. D.

    2015-01-01

    Chemical composition and biological properties of aqueous and ethanolic extracts of Inonotus obliquus (Pers.:Fr.) Pilat from different origins, i.e. of Finland, Russia, and Thailand, were studied. Concerning biological activity, antimicrobial, antiqourum, antioxidative, and antitumor and cytotoxic effects were tested. Oxalic acid was found as the main organic acid, with the highest amount in Russian aqueous extract. Gallic, protocatechuic and p-hydroxybenzoic acids were detected in all sample...

  15. Aqueous biphasic system based on cholinium ionic liquids: extraction of biologically active phenolic acids

    OpenAIRE

    Branco, Sónia Isabel Pereira

    2014-01-01

    Phenolic acids are aromatic secondary plant metabolites, widely spread throughout the plant kingdom. Due to their biological and pharmacological properties, they have been playing an important role in phytotherapy and consequently techniques for their separation and purification are in need. This thesis aims at exploring new sustainable separation processes based on ionic liquids (ILs) in the extraction of biologically active phenolic acids. For that purpose, three phenolic acids with simi...

  16. The Potential Use of Indigobush (Amorpha fruticosa L.) as Natural Resource of Biologically Active Compounds

    OpenAIRE

    Tamara Jakovljević; Jasna Halambek; Kristina Radošević; Karla Hanousek; Marija Gradečki-Poštenjak; Višnja Gaurina Srček; Ivana Radojčić Redovniković; Alessandra De Marco

    2015-01-01

    Background and Purpose: Recent research indicates that a weed like Indigobush (Amorpha fruticosa L.) gives great opportunities for its commercialization through a rich spectrum of its beneficial biological features with possible use in the forestry and biotechnology field. Therefore, in this study we wanted to explore some of potential application of Indigobush extract, as a source of biologically active compounds, for animal cell culturing as well as green corrosion inhibitors. Materials ...

  17. Phytochemistry and biological activity of Spanish Citrus fruits.

    Science.gov (United States)

    Gironés-Vilaplana, Amadeo; Moreno, Diego A; García-Viguera, Cristina

    2014-04-01

    The evaluation of the potential inhibitory activity on α-glucosidase and pancreatic lipase by Citrus spp. fruits of Spanish origin (lemon, orange, grapefruit, lime, and mandarin) together with the evaluation of their phytochemical content and antioxidant capacity (DPPH˙, ORACFL, ABTS(+), FRAP and O2˙(-)) aiming for new applications of the fruits in nutrition and health was carried out. As far as we are aware, the presence of 3-O-caffeoylferuoylquinic acid and two hydrated feruloylquinic acids in orange and the presence of 3,5-diferuoylquinic acid in grapefruit have been reported for the first time. Although grapefruit showed higher contents of phytochemicals such as flavanones and vitamin C, lemon and lime showed higher potential for inhibitory effects on lipase, and lime also showed the best results for in vitro α-glucosidase inhibition. On the other hand, higher antioxidant capacity was reported for grapefruit, lemon and lime, which correlated well with their phytochemical composition. Based on the results, it could be concluded that Citrus fruits are of great value for nutrition and treatment of diet-related diseases such as obesity and diabetes, and consequently, a new field of interest in the food industry regarding new bioactive ingredients would be considered. PMID:24563112

  18. The Rise and Fall of Jasmonate Biological Activities.

    Science.gov (United States)

    Heitz, Thierry; Smirnova, Ekaterina; Widemann, Emilie; Aubert, Yann; Pinot, Franck; Ménard, Rozenn

    2016-01-01

    Jasmonates (JAs) constitute a major class of plant regulators that coordinate responses to biotic and abiotic threats and important aspects of plant development. The core biosynthetic pathway converts linolenic acid released from plastid membrane lipids to the cyclopentenone cis-oxo-phytodienoic acid (OPDA) that is further reduced and shortened to jasmonic acid (JA) in peroxisomes. Abundant pools of OPDA esterified to plastid lipids also occur upon stress, mainly in the Arabidopsis genus. Long thought to be the bioactive hormone, JA only gains its pleiotropic hormonal properties upon conjugation into jasmonoyl-isoleucine (JA-Ile). The signaling pathway triggered when JA-Ile promotes the assembly of COI1-JAZ (Coronatine Insensitive 1-JAsmonate Zim domain) co-receptor complexes has been the focus of most recent research in the jasmonate field. In parallel, OPDA and several other JA derivatives are recognized for their separate activities and contribute to the diversity of jasmonate action in plant physiology. We summarize in this chapter the properties of different bioactive JAs and review elements known for their perception and signal transduction. Much progress has also been gained on the enzymatic processes governing JA-Ile removal. Two JA-Ile catabolic pathways, operating through ω-oxidation (cytochromes P450) or conjugate cleavage (amido hydrolases) shape signal dynamics to allow optimal control on defense. JA-Ile turnover not only participates in signal attenuation, but also impact the homeostasis of the entire JA metabolic pathway. PMID:27023244

  19. Structure of Biologically Active Organotin(IV) Dithiocarbamates

    Science.gov (United States)

    Farina, Y.; Sanuddin, M.; Yamin, B. M.

    2008-03-01

    The diorganotin(IV) complexes of dithiocarbamates derived from from N-ethyl-n-propylamine (EtPrdtc), 2-dimethylaminoethylamine (Me2Etdtc), 3-dimethlyamino-1-propylamine (Me2Prdtc), p-tolylmethanamine (TylMetdtc) and N-methyl-1-phenylmethanamine (MePhMetdtc) have been synthesized and characterized. Single crystal X-ray diffraction studies on Ph3Sn(EtPrdtc), Me2Sn(MePhMetdtc)2 and Bu2Sn(MePhMetdtc)2 showed that the complexes adopted a monoclinic system with space group P(2)/n, P21/n and C2/c, respectively. The Ph3Sn(EtPrdtc) complex adopted a trigonal pyramidal structure while the Me2Sn(MePhMetdtc)2 and Bu2Sn(MePhMetdtc)2 complexes displayed structures which may be described as distorted octahedrons. Cytotoxicity test using HL60 cells (human promyelocytic leukemic) showed that only Me2Sn(Me2Etdtc), Me2Sn(MePhMetdtc)2 and Bu2Sn(MePhMetdtc)2 complexes were active. The rest of the complexes did not show cytotoxicity behaviour towards HL60 cells.

  20. Rubus Fruticosus L.: Constituents, Biological Activities and Health Related Uses

    Directory of Open Access Journals (Sweden)

    Muhammad Zia-Ul-Haq

    2014-07-01

    Full Text Available Rubus fruticosus L. is a shrub famous for its fruit called blackberry fruit or more commonly blackberry. The fruit has medicinal, cosmetic and nutritive value. It is a concentrated source of valuable nutrients, as well as bioactive constituents of therapeutic interest highlighting its importance as a functional food. Besides use as a fresh fruit, it is also used as ingredient in cooked dishes, salads and bakery products like jams, snacks, desserts, and fruit preserves. R. fruticosus contains vitamins, steroids and lipids in seed oil and minerals, flavonoids, glycosides, terpenes, acids and tannins in aerial parts that possess diverse pharmacological activities such as antioxidant, anti-carcinogenic, anti-inflammatory, antimicrobial anti-diabetic, anti-diarrheal, and antiviral. Various agrogeoclimatological factors like cultivar, environmental conditions of the area, agronomic practices employed, harvest time, post-harvest storage and processing techniques all influence the nutritional composition of blackberry fruit. This review focuses on the nutrients and chemical constituents as well as medicinal properties of different parts of R. fruticosus. Various cultivars and their physicochemical characteristics, polyphenolic content and ascorbic acid content are also discussed. The information in the present work will serve as baseline data and may lead to new biomedical applications of R. fruticosus as functional food.

  1. Salicin derivatives from Salix glandulosa and their biological activities.

    Science.gov (United States)

    Kim, Chung Sub; Subedi, Lalita; Park, Kyoung Jin; Kim, Sun Yeou; Choi, Sang Un; Kim, Ki Hyun; Lee, Kang Ro

    2015-10-01

    Two new salicin derivatives, saliglandin (1) and 6'-O-(Z)-p-coumaroylsalicin (2), along with fourteen known analogues (3-16) were isolated from the twigs of Salix glandulosa Seemen. The structures of 1-16 were characterized by the use of NMR methods ((1)H and (13)C NMR, (1)H-(1)H COSY, HSQC and HMBC), chemical hydrolysis, and GC/MS. The full NMR data assignment of the known compounds 6, 13, and 14 are reported for the first time. Isolated compounds were evaluated for their nitric oxide (NO) inhibitory efficacy in lipopolysaccharide (LPS)-activated microglial cell (BV-2). Compounds 2, 5, 8-16 significantly inhibited NO production, compound 11 being the most efficacious (IC50 13.57 μM) respectively. Moreover, compound 16 dramatically increased the nerve growth factor (NGF) production (165.24 ± 11.1%) in C6 glioma cells. Taken together, these results revealed that salicin derivatives from Salix glandulosa might have potent effect as anti-neuroinflammatory agents. PMID:26344424

  2. Alternative methods of terminal sterilization for biologically active macromolecules.

    Science.gov (United States)

    Yaman, A

    2001-11-01

    The traditional perception within the pharmaceutical industry of the manufacture of injectable drug products is that active pharmaceutical ingredients (API) that are peptides, proteins or biopolymers, such as poly(DL-lactide) (PLA) and poly(DL-lactideco-glycolide) (PLGA), cannot be terminally sterilized. This perception exists largely because terminal sterilization is assumed by many to be only carried out by steam sterilization in a standard autoclave. Thus, it is understood that these API candidates must be manufactured by aseptic techniques. With the current technological advances in the area of protein and peptide sterilization, which has largely come from the food industry and has in recent years been developed for pharmaceutical use, techniques have been developed for the terminal sterilization of thermally sensitive APIs and biopolymers. In this review, the focus will be on the four major types of sterilization that are presented in the literature: (i) gamma-irradiation; (ii) e-Beam; (iii) natural light; and (iv) microwave. Each of these sterilization techniques present advantages and disadvantages for use in large-scale terminal sterilization of bioactive macromolecules. PMID:11899616

  3. Polysaccharides from Arctium lappa L.: Chemical structure and biological activity.

    Science.gov (United States)

    Carlotto, Juliane; de Souza, Lauro M; Baggio, Cristiane H; Werner, Maria Fernanda de P; Maria-Ferreira, Daniele; Sassaki, Guilherme L; Iacomini, Marcello; Cipriani, Thales R

    2016-10-01

    The plant Arctium lappa L. is popularly used to relieve symptoms of inflammatory disorders. A crude polysaccharide fraction (SAA) resulting of aqueous extraction of A. lappa leaves showed a dose dependent anti-edematogenic activity on carrageenan-induced paw edema, which persisted for up to 48h. Sequential fractionation by ultrafiltration at 50kDa and 30kDa cut-off membranes yielded three fractions, namely RF50, RF30, and EF30. All these maintained the anti-edematogenic effect, but RF30 showed a more potent action, inhibiting 57% of the paw edema at a dose of 4.9mg/kg. The polysaccharide RF30 contained galacturonic acid, galactose, arabinose, rhamnose, glucose, and mannose in a 7:4:2:1:2:1 ratio and had a Mw of 91,000g/mol. Methylation analysis and NMR spectroscopy indicated that RF30 is mainly constituted by a type I rhamnogalacturonan branched by side chains of types I and II arabinogalactans, and arabinan. PMID:27311502

  4. Best Practices for Promoting Functional Biology Education: Activity-Based, Laboratory-Oriented Instruction

    Directory of Open Access Journals (Sweden)

    Abigail Mgboyibo Osuafor

    2016-08-01

    Full Text Available A major goal of science education is fostering students’ intellectual competencies. This goal can only be achieved when students are actively involved in the teaching-learning process. This study therefore, investigated the extent to which the biology teachers employ pupil-centered activities such as laboratory/practical instructional methods in order to improve the learning outcome of their students. The descriptive survey involved 73 Biology teachers randomly selected from all the six education zones of Anambra state, Nigeria. Four research questions and two hypotheses guided the conduct of the study. A 32-item structured questionnaire which has reliability co-efficient of 0.82 was used to collect data. Data were analyzed using mean, standard deviation and t-test. Results show that Biology teachers adopt practical-oriented strategies in teaching biology, conduct practical activities to a high extent, and perceive practical exercises as essential to effective teaching and learning of the subject. Provision of adequate number of laboratory materials, employment of adequate number of biology teachers, making provision for well designed laboratory activities in the curriculum and training of teachers on how to effectively combine theory with practical are some of the strategies that will encourage biology teachers to conduct practical lessons. There was no significant difference between male and female biology teachers in their responses to the different aspects investigated. Based on these findings, some recommendations were made which include that curriculum designers should incorporate guides for practical activities that go with each topic in the curriculum so as to encourage the teachers to teach theory with practical.

  5. On the possibility of biologically active fenole substances forming during irradiation of vegetable origin products

    International Nuclear Information System (INIS)

    The purpose of this study was to find out whether biologically active substances of phenol nature can form upon irradiation of fresh fruits and vegetables with doses of 200-300 Krad, to ascertain the stability of these substances during storage and processing, and to see whether they display cytostatic effects. The results of the study led to modifications and improvements in the methods used to study biologically active substances of phenol nature in fresh fruits irradiated with 200-300 krad. The total amount of phenolic compounds was found to be somewhat increased upon their extraction with cold ethanol. Of the substances detected in extracts from red tomatoes, the contens of chlorogenic acid, caffeic acid, and naranguenine were appreciably increased. Neither chemical methods nor bioassays revealed in irradiated juices and fruits any biologically active substances affecting the living organism. (E.T.)

  6. Tests of biological activity of metabolites from Penicillium expansum (Link) Thom various isolates

    OpenAIRE

    Halina Borecka; Mariola Pytel; Marie Fenney

    2013-01-01

    Aqrobacterium tumefaciens and cucumber, mustard and linseeds were compared as test organisms for evaluation of the biological activity of patulin. It was found that the reaction of cucumber seeds and linseed to the patulin concentrations was more pronounced than that of mustard and Aqrobacterium tumefaciens. The activity of metabolites produced by Penicillium expansum was investigated with the use of cucumber seeds. As measure of activity served the percentage of radicule growth inhibition wa...

  7. Current studies of biological materials using instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis still remains the preferred option when analysing the trace element distribution in a wide rage of materials by neutron activation analysis. However, when lower limits of detection are required or major interferences reduce the effectiveness of this technique, radiochemical neutron activation analysis is applied. This paper examines the current use of both methods and the development of rapid radiochemical techniques for analysis of the biological materials, hair, cow's milk, human's milk, milk powder, blood and blood serum

  8. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities

    Science.gov (United States)

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D.; Correia, Cristina; Li, Hu

    2016-01-01

    The sequential chain of interactions altering the binary state of a biomolecule represents the ‘information flow’ within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein–protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes—network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. PMID:26975659

  9. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities.

    Science.gov (United States)

    da Rocha, Edroaldo Lummertz; Ung, Choong Yong; McGehee, Cordelia D; Correia, Cristina; Li, Hu

    2016-06-01

    The sequential chain of interactions altering the binary state of a biomolecule represents the 'information flow' within a cellular network that determines phenotypic properties. Given the lack of computational tools to dissect context-dependent networks and gene activities, we developed NetDecoder, a network biology platform that models context-dependent information flows using pairwise phenotypic comparative analyses of protein-protein interactions. Using breast cancer, dyslipidemia and Alzheimer's disease as case studies, we demonstrate NetDecoder dissects subnetworks to identify key players significantly impacting cell behaviour specific to a given disease context. We further show genes residing in disease-specific subnetworks are enriched in disease-related signalling pathways and information flow profiles, which drive the resulting disease phenotypes. We also devise a novel scoring scheme to quantify key genes-network routers, which influence many genes, key targets, which are influenced by many genes, and high impact genes, which experience a significant change in regulation. We show the robustness of our results against parameter changes. Our network biology platform includes freely available source code (http://www.NetDecoder.org) for researchers to explore genome-wide context-dependent information flow profiles and key genes, given a set of genes of particular interest and transcriptome data. More importantly, NetDecoder will enable researchers to uncover context-dependent drug targets. PMID:26975659

  10. Astonishing diversity of natural surfactants: 6. Biologically active marine and terrestrial alkaloid glycosides.

    Science.gov (United States)

    Dembitsky, Valery M

    2005-11-01

    This review article presents 209 alkaloid glycosides isolated and identified from plants, microorganisms, and marine invertebrates that demonstrate different biological activities. They are of great interest, especially for the medicinal and/or pharmaceutical industries. These biologically active glycosides have good potential for future chemical preparation of compounds useful as antioxidants, anticancer, antimicrobial, and antibacterial agents. These glycosidic compounds have been subdivided into several groups, including: acridone; aporphine; benzoxazinoid; ergot; indole; enediyne alkaloidal antibiotics; glycosidic lupine alkaloids; piperidine, pyridine, pyrrolidine, and pyrrolizidine alkaloid glycosides; glycosidic quinoline and isoquinoline alkaloids; steroidal glycoalkaloids; and miscellaneous alkaloid glycosides. PMID:16459921

  11. [Biological activity of lipids and photosynthetic pigments of Sargassum pallidum C. Agardh].

    Science.gov (United States)

    Gerasimenko, N I; Martyias, E A; Logvinov, S V; Busarova, N G

    2014-01-01

    The biological activity of lipids and photosynthetic pigments of the kelp Sargassum pallidum (Turner) C. Agardh has been studied. Free fatty acids and their esters demonstrated considerable antimicrobial activity against bacteria (Staphylococcus aureus[ital] and Escherichia coli), yeast-like fungi (Candida albicans), and opportunistic pathogenic (Aspergilius niger) and phytopathogenic (Fusarium oxysporum, and Septoria glycines) fungi. Glyceroglycolipids and neutral lipids demonstrated moderate activity. Fucoxanthin and chlorophylls weakly suppressed the growth of microorganisms. None of the studied substances demonstrated activity against Ehrlich's carcinoma. It was shown that the season of weed harvesting affected both antimicrobial and hemolytic activities of different lipids due to changes in their fatty acid composition. PMID:25272757

  12. Size and compositional analyses of biologically active aerosols from a CO2 and diode laser plume

    International Nuclear Information System (INIS)

    Modern medical procedures, including laser surgery, can generate fine aerosols that may carry biologically active agents. With such procedures becoming more commonplace, it is evident that we need to look at the health implications on hospital staff when dealing with highly contagious patients with bacterial and/or viral infections, such as AIDS. The focus of this study is not to determine what portion that population is actually harmful, only to deduce what segment is still biologically active after vaporization from tissues. We have developed procedures to collect and analyze aerosols by size (from >10 μm to less than 0.07 μm) and by time (from minutes to ∼4 hour increments). Health relevant size cuts for aerosols in a work environment have been adopted by the International Organization for Standardization and the Comite of European de Normalisation. We examined both the nature of the aerosols generated and the efficiency of hospital masks used by personnel in screening aerosols and simulated conditions under which aerosols might be inhaled. Four sets of data were recorded: Mask filtered physical, mask filtered biological, unfiltered physical and unfiltered biological. A combination of PIXE analyses on impactor and filter samples were matched with filters and strips plated on agarose plates and counted for colony forming units to determine the biologically active subset of the population. (author)

  13. Symphonia globulifera, a widespread source of complex metabolites with potent biological activities.

    Science.gov (United States)

    Fromentin, Yann; Cottet, Kevin; Kritsanida, Marina; Michel, Sylvie; Gaboriaud-Kolar, Nicolas; Lallemand, Marie-Christine

    2015-01-01

    Symphonia globulifera has been widely used in traditional medicine and has therefore been subjected to several phytochemical studies in the American and African continents. Interestingly, some disparities have been observed concerning its metabolic profile. Several phytochemical studies of S. globulifera have led to the identification of more than 40 compounds, including several polycyclic polyprenylated acylphloroglucinols. Biological evaluations have pointed out the promising biological activities of these secondary metabolites, mostly as antiparasitic or antimicrobial, confirming the traditional use of this plant. The purpose of this review is to describe the natural occurrence, botanical aspects, ethnomedicinal use, structure, and biogenesis, as well as biological activities of compounds isolated from this species according to their provenance. PMID:25590372

  14. Comparative SPR study on the effect of nanomaterials on the biological activity of adsorbed proteins

    International Nuclear Information System (INIS)

    Bioactivity of proteins is evaluated to test the adverse effects of nanoparticles interjected into biological systems. Surface plasmon resonance (SPR) spectroscopy detects binding affinity that is normally related to biological activity. Utilizing SPR spectroscopy, a concise testing matrix is established by investigating the adsorption level of bovine serum albumin (BSA) and anti-BSA on the surface covered with 11-mercaptoundecanoic acid (MUA); magnetic nanoparticles (MNPs) and single-walled carbon nanotubes (SWCNTs), respectively. The immunoactivity of BSA on MNPs and SWCNT decreased by 18 % and 5 %, respectively, compared to that on the gold film modified with MUA. This indicates that MNPs cause a considerable loss of biological activity of adsorbed protein. This effect can be utilized for practical applications on detailed biophysical research and nanotoxicity studies. (author)

  15. Temporal and spatial variability of soil biological activity at European scale

    Science.gov (United States)

    Mallast, Janine; Rühlmann, Jörg

    2015-04-01

    The CATCH-C project aims to identify and improve the farm-compatibility of Soil Management Practices including to promote productivity, climate change mitigation and soil quality. The focus of this work concentrates on turnover conditions for soil organic matter (SOM). SOM is fundamental for the maintenance of quality and functions of soils while SOM storage is attributed a great importance in terms of climate change mitigation. The turnover conditions depend on soil biological activity characterized by climate and soil properties. Soil biological activity was investigated using two model concepts: a) Re_clim parameter within the ICBM (Introductory Carbon Balance Model) (Andrén & Kätterer 1997) states a climatic factor summarizing soil water storage and soil temperature and its influence on soil biological activity. b) BAT (biological active time) approach derived from model CANDY (CArbon and Nitrogen Dynamic) (Franko & Oelschlägel 1995) expresses the variation of soil moisture, soil temperature and soil aeration as a time scale and an indicator of biological activity for soil organic matter (SOM) turnover. During an earlier stage both model concepts, Re_clim and BAT, were applied based on a monthly data to assess spatial variability of turnover conditions across Europe. This hampers the investigation of temporal variability (e.g. intra-annual). The improved stage integrates daily data of more than 350 weather stations across Europe presented by Klein Tank et al. (2002). All time series data (temperature, precipitation and potential evapotranspiration and soil texture derived from the European Soil Database (JRC 2006)), are used to calculate soil biological activity in the arable layer. The resulting BAT and Re_clim values were spatio-temporal investigated. While "temporal" refers to a long-term trend analysis, "spatial" includes the investigation of soil biological activity variability per environmental zone (ENZ, Metzger et al. 2005 representing similar

  16. From Synthesis to Biological Impact of Pd (II) Complexes: Synthesis, Characterization, and Antimicrobial and Scavenging Activity

    Science.gov (United States)

    Sharma, Nitin Kumar; Ameta, Rakesh Kumar; Singh, Man

    2016-01-01

    The Pd (II) complexes with a series of halosubstituted benzylamine ligands (BLs) have been synthesized and characterized with different spectroscopic technique such as FTIR, UV/Vis, LCMS, 1H, and 13C NMR. Their molecular sustainability in different solvents such as DMSO, DMSO : H2O, and DMSO : PBS at physiological condition (pH 7.2) was determined by UV/Vis spectrophotometer. The in vitro antibacterial and antifungal activities of the complexes were investigated against Gram-positive and Gram-negative microbes and two different fungi indicated their significant biological potential. Additionally, their antioxidant activity has been analyzed with DPPH• free radical through spectrophotometric method and the result inferred them as an antioxidant. The stronger antibacterial and antioxidant activities of the synthesized complexes suggested them as a stronger antimicrobial agent. Our study advances the biological importance of palladium (II) amine complexes in the field of antimicrobial and antioxidant activities. PMID:27119023

  17. Generation of structurally novel short carotenoids and study of their biological activity

    DEFF Research Database (Denmark)

    Kim, Se Hyeuk; Kim, Moon S.; Lee, Bun Y.;

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored...... thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid...... structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-atocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid...

  18. Oxidation of Mixed Active Pharmaceutical Ingredients in Biologically Treated Wastewater by ClO2

    DEFF Research Database (Denmark)

    Moradas, Gerly; Fick, Jerker; Ledin, Anna;

    2011-01-01

    Biologically treated wastewater containing a mixture of 53 active pharmaceutical ingredients (APIs)was treated with 0-20 mg/l chlorine dioxide (ClO2) solution. Wastewater effluents were taken from two wastewater treatment plants in Sweden, one with (low COD) and one without (high COD) extended...

  19. Natural occurrence, biological activities and synthesis of eight-, nine-, and eleven-membered ring lactones

    OpenAIRE

    Helena M. C. Ferraz; Fernanda I. Bombonato; Myrian K. Sano; Luiz S. Longo Jr.

    2008-01-01

    The natural occurrence, biological activities and synthetic approaches to natural eight-, nine-, and eleven-membered lactones is reviewed. These medium ring lactones are grouped according to ring size, and their syntheses are discussed. The structures of some natural products early identified as medium-ring lactones were revised after total synthesis.

  20. Application of Olefin Cross-Metathesis to the Synthesis of Biologically Active Natural Products

    OpenAIRE

    Prunet, Joëlle

    2005-01-01

    An overview of the use of olefin cross-metathesis in the synthesis of biologically active natural products is presented. The diverse examples are organized according to the outcome of the olefin constructed by the cross-metathesis reaction: this olefin can be either present in the final product, reduced, engaged in other transformations, or involved in tandem processes.

  1. Neutron-Activation Analysis of Biological Material with High Radiation Levels

    International Nuclear Information System (INIS)

    A method has been developed for the chemical separation and subsequent gamma-spectrometric analysis of the alkali metals, the alkaline earths, the rare earths, chromium, hafnium, lanthanum, manganese, phosphorus, scandium and silver in neutron-activated biological material. The separation steps, being fully automatic, are based on a combination of ion-exchange and partition chromatography and require 40 min

  2. Improving Enzyme Activity and Broadening Selectivity for Biological Desulfurization and Upgrading of Petroleum Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Abhijeet P. Borole; Choo Y. Hamilton; Karen Miller; Brian Davison; Matthew Grossman; Robert Shong

    2003-05-12

    The objective of this project was to develop improved biocatalysts for desulfurization and upgrading of petroleum feedstocks. The goal was to improve the activity and broaden the selectivity of desulfurization enzymes using directed evolution as a tool as well as to explore the impact of ring-opening on biological desulfurization

  3. Research of resisting of the biological active point for constant and alternative current

    Directory of Open Access Journals (Sweden)

    S. N. Peregudov

    2008-05-01

    Full Text Available Is conducted research of resistance of biologically active point (BAT on a direct and variable current. Research results are presented. The estimation of intercommunication between resistance of skin and by an electromagnetic radiation in BAT is done. Is shown possibility of the use of experimental information for diagnostics of the state of human to the organism.

  4. Long alkyl chain bis-quaternary ammonium-based ionic liquids as biologically active xanthene dyes

    International Nuclear Information System (INIS)

    New examples of air- and moisture-stable, hydrophobic and hydrophilic bis-quaternary ammonium derived ionic liquids have been prepared. These ionic liquids have been proposed to act as biological active dyes with characteristic unique physicochemical properties, providing alternatives to some conventional anionic xanthene dyes such as eosine Y, fluorescein and erythrosine. (author)

  5. Natural occurrence, biological activities and synthesis of eight-, nine-, and eleven-membered ring lactones

    Directory of Open Access Journals (Sweden)

    Helena M. C. Ferraz

    2008-01-01

    Full Text Available The natural occurrence, biological activities and synthetic approaches to natural eight-, nine-, and eleven-membered lactones is reviewed. These medium ring lactones are grouped according to ring size, and their syntheses are discussed. The structures of some natural products early identified as medium-ring lactones were revised after total synthesis.

  6. Active Learning Not Associated with Student Learning in a Random Sample of College Biology Courses

    OpenAIRE

    Andrews, T M; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S T

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses randomly selected from a list of prominent colleges and universities to include instructors representing a broader population. We examined the rela...

  7. Active Learning "Not" Associated with Student Learning in a Random Sample of College Biology Courses

    Science.gov (United States)

    Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses…

  8. Chemical composition and biological activity of the essential oil of rhizome of Zingiber zerumbet (L.) smith

    Science.gov (United States)

    Technical Abstract: The aim was designed to study the biological activity and chemical composition of essential oil of Zingiber zerumbet (L.) Smith. The essential oil extracted from the rhizome of the plant was analysed by gas chromatography-mass spectroscopy and its major components amounting t...

  9. Sensitization and protection in the radiation chemistry of biologically active DNA

    International Nuclear Information System (INIS)

    The results are reported of a study of the effects of the well-known sensitizers paranitroacetophenone (PNAP), triacetone-amine-N-oxyl (TAN) and oxygen, and of the protector cysteamine on the radiosensitivity of purified biologically active DNA of bacteriophages. Irradiation conditions are stated. The results are discussed. (U.K.)

  10. Moooving forward on determining biologically active compounds in milk and their impact on health

    Science.gov (United States)

    Recent studies have demonstrated that some of the lesser studied components in milk, known as biologically active compounds (BACs), may provide potential benefits to human health. The added health-value of raw milk and milk from organic and grass-fed herds is strongly debated because of limited, an...

  11. BASIC SYNTHESIS AND BIOLOGICAL ACTIVITY OF SOME PHOSPHORCONTATNING ORGANIC COMPOUNDS CONTAINING FRAGMENTS OF UREA AND TRYHLORETILAMID

    Directory of Open Access Journals (Sweden)

    Gushylyk B.

    2013-10-01

    Full Text Available Data about directions of synthesis and use of the phosphororganic compounds in technics, biology and medicine is presented in the paper. Antimicrobial activity of 51 phosphororganic salts and ilides containing urine and threechlor ethylenamide has been studied. Perspective of the development of effective antimicrobial substances has been determined

  12. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review

    Directory of Open Access Journals (Sweden)

    Ranga Rao Ambati

    2014-01-01

    Full Text Available There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3′-dihydroxy-β, β′-carotene-4,4′-dione is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin extraction, analysis, stability studies, and its biological activities results were added to this review paper. Based on our results and current literature, astaxanthin showed potential biological activity in in vitro and in vivo models. These studies emphasize the influence of astaxanthin and its beneficial effects on the metabolism in animals and humans. Bioavailability of astaxanthin in animals was enhanced after feeding Haematococcus biomass as a source of astaxanthin. Astaxanthin, used as a nutritional supplement, antioxidant and anticancer agent, prevents diabetes, cardiovascular diseases, and neurodegenerative disorders, and also stimulates immunization. Astaxanthin products are used for commercial applications in the dosage forms as tablets, capsules, syrups, oils, soft gels, creams, biomass and granulated powders. Astaxanthin patent applications are available in food, feed and nutraceutical applications. The current review provides up-to-date information on astaxanthin sources, extraction, analysis, stability, biological activities, health benefits and special attention paid to its commercial applications.

  13. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity‐Oriented Synthesis

    DEFF Research Database (Denmark)

    Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2011-01-01

    Macrocyclic compounds are attractive targets when searching for molecules with biological activity. The interest in this compound class is increasing, which has led to a variety of methods for tackling the difficult macrocyclization step in their synthesis. This microreview highlights some recent...

  14. Active Learning and Student-centered Pedagogy Improve Student Attitudes and Performance in Introductory Biology

    OpenAIRE

    Armbruster, Peter; Patel, Maya; Johnson, Erika; Weiss, Martha

    2009-01-01

    We describe the development and implementation of an instructional design that focused on bringing multiple forms of active learning and student-centered pedagogies to a one-semester, undergraduate introductory biology course for both majors and nonmajors. Our course redesign consisted of three major elements: 1) reordering the presentation of the course content in an attempt to teach specific content within the context of broad conceptual themes, 2) incorporating active and problem-based lea...

  15. Influence of Technological Processes on Biologically Active Compounds of Produced Grapes Juices

    Czech Academy of Sciences Publication Activity Database

    Tříska, Jan; Balík, J.; Strohalm, J.; Novotná, P.; Vrchotová, Naděžda; Lefnerová, D.; Landfeld, A.; Híc, P.; Tománková, E.; Veverka, J.; Houška, M.

    2016-01-01

    Roč. 9, č. 3 (2016), s. 421-429. ISSN 1935-5130 R&D Projects: GA MŠk(CZ) LO1415; GA MZe QJ1210258; GA MZe QI91B094 Institutional support: RVO:67179843 Keywords : Grapevine juices * Thermomaceration * Biologically active compounds * Antioxidative capacity * Total polyphenols * Antimutagenic activity Subject RIV: GM - Food Processing Impact factor: 2.691, year: 2014

  16. Biological activity of two red algae, Gracilaria salicornia and Hypnea flagelliformis from Persian Gulf.

    OpenAIRE

    Saeidnia, S.; A.R. Gohari; Shahverdi, A.R.; P Permeh; M. Nasiri; Mollazadeh, K.; F. Farahani

    2009-01-01

    Among marine organisms, algae are a large and diverse group of organisms from which a wide range of secondary metabolites have been isolated. A number of these compounds possess biological activity. In this study, we aim to evaluate the cytotoxic, antibacterial and antifungal activity of two red algae, Gracilaria salicornia and Hypnea flagelliformis, collected from Persian Gulf. Ethyl acetate extracts of both algae showed a potent cytotoxic effect against Artemia salina nauplii (LC50 = 3 and ...

  17. Chemical and biological evolution of (U-14C)phenol sorbed on activated carbon

    International Nuclear Information System (INIS)

    Methods describing the chemical and biological evolution of (U-14C)phenol adsorbed on activated carbon are given with or without the use of bacteria. Without bacteria, the (U-14C)phenol initially adsorbed is not removed from the carbon after adding a solution of unlabelled phenol through the column for eight days. With bacteria, the (U-14C)phenol initially present, is removed (60-70%) from activated carbon with a solution containing unlabelled phenol, nitrogen and phosphorus. (author)

  18. SURVEY ON BIOLOGICAL GROWTH IN IMPROVED ACTIVATED – SLUDGE SYSTEM BY PAC

    OpenAIRE

    N. Djaafarzadeh; S Nasseri; A. Mesdaghinia

    1999-01-01

    In this research, the effects of the addition of powdered activated carbon (PAC) into the aeration zone of an activated-sludge (AS) system for treating Tehran Oil Refinery effluent, was investigated during more than 12 months in a PACT pilot-scale model. Besides the evaluation of organics removal efficiency and determination of basic design factors kinetic coefficients, a series of experiments were conducted in order to study the variations in biological growth (especially bacteria and monoce...

  19. RECENT ADVANCES OF QUINAZOLINONE DERIVATIVES AS MARKER FOR VARIOUS BIOLOGICAL ACTIVITIES

    OpenAIRE

    Anshul Chawla; Chesta Batra

    2013-01-01

    Heterocyclic chemistry comprises at least half of all organic chemistry research worldwide. Quinazolinone and its derivatives constitute an important class of heterocyclic compounds. The chemistry of quinazoline compounds has more than centuries old history; however the intense search for biologically active substances in this series began only in the last few decades. In this present communication an attempt is made to cover the medicinally active compounds, along with the recent discoveries...

  20. Synthesis, Crystal Structure and Biological Activities of Novel Anthranilic(Isophthalic) Acid Esters

    Institute of Scientific and Technical Information of China (English)

    YAN Tao; YU Guan-ping; LIU Peng-fei; XIONG Li-xia; YU Shu-jing; LI Zheng-ming

    2012-01-01

    In search of environmentally benign insecticides with high activity,low toxicity and low resistance,a series of novel anthranilic(isophthalic) acid esters was designed and synthesized based on the structure of ryanodine modulating agent.All the compounds were characterized by 1H NMR spectra,elemental analysis or high resolution mass spectrometry(HRMS).The preliminary results of biological activity assessment indicate that some of the title compounds exhibit certain but unremarkable insecticidal activity against Mythimna separata Walker at 200 mg/L and fungicidal activities against five funguses at 50 mg/L.

  1. Activities of microorganisms and enzymes in water-restricted environments: biological activities in aqueous compartments at micron scale

    Science.gov (United States)

    Hoppert, Michael; Mlejnek, Klaus; Seiffert, Beatrix; Mayer, Frank

    1997-07-01

    In water-in-oil microemulsions, microdroplets of water, surrounded by a layer of surfactant molecules (reversed micelles), are dispersed in an organic solvent. Various microorganisms (unicellular algae and cyanobacteria) and isolated enzymes were dispersed in microemulsions without loss of biological activity. Each biological system needed a defined quantity of water in the microemulsion for maximum activity. Under optimum conditions, microbial enzymes for various sources (hydrogenases, dehydrogenases) exhibited, besides ten-fold increase in specific activity, a temperature optimum up to 16 degree(s)C higher as compared to aqueous solutions. These experimental findings, together with theoretical considerations, imply that water structure inside reversed micelles is very different from free water, but similar to water in narrow compartments with polar or ionic surfaces. These compartments may represent a model system for environments, where (liquid) water is not available in bulk amounts, but embedded in an anhydrous matrix.

  2. The importance of extremophile cyanobacteria in the production of biologically active compounds

    Directory of Open Access Journals (Sweden)

    Drobac-Čik Aleksandra V.

    2007-01-01

    Full Text Available Due to their ability to endure extreme conditions, terrestrial cyanobacteria belong to a group of organisms known as "extremophiles". Research so far has shown that these organisms posses a great capacity for producing biologically active compounds (BAC. The antibacterial and antifungal activities of methanol extracts of 21 cyanobacterial strains belonging to Anabaena and Nostoc genera, previously isolated from different soil types and water resources in Serbia, were evaluated. In general, larger number of cyanobacterial strains showed antifungal activity. In contrast to Nostoc, Anabaena strains showed greater diversity of antibacterial activity (mean value of percentages of sensitive targeted bacterial strains 3% and 25.9% respectively. Larger number of targeted fungi was sensitive to cultural liquid extract (CL, while crude cell extract (CE affected more bacterial strains. According to this investigation, the higher biological activity of terrestrial strains as representatives of extremophiles may present them as significant BAC producers. This kind of investigation creates very general view of cyanobacterial possibility to produce biologically active compounds but it points out the necessity of exploring terrestrial cyanobacterial extremophiles as potentially excellent sources of these substances and reveals the most prospective strains for further investigations.

  3. Enhanced biological phosphorus removal from activated sludge system; Eliminacion biologica del fosfor en aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Pidre Bocardo, J. R.; Toja Santillana, J.; Alonso Alvarez, E. [Sevilla (Spain)

    1999-06-01

    A literature review of enhanced biological phosphorus removal was performed. This biological removal is based on the selective enrichment of bacteria accumulating inorganic polyphosphate, obtained at a cyclic regime of alternating anaerobic and aerobic conditions; or anaerobic, anoxic and aerobic zones for combined nitrogen and phosphorus removal. Some bacterial groups may to be implicate in this process, the gen Acinetobacter has been the most studied. In this paper a study of phosphorate forms from wastewater for a conventional activated sludge system is presented. (Author) 40 refs.

  4. Occurrence, biological activities and 13C NMR data of amides from Piper (Piperaceae

    Directory of Open Access Journals (Sweden)

    Jeferson C. do Nascimento

    2012-01-01

    Full Text Available This manuscript describes an update review with up to 285 references concerning the occurrence of amides from a variety of species of the genus Piper (Piperaceae. Besides addressing occurrence, this review also describes the biological activities attributed to extracts and pure compounds, a compiled 13C NMR data set, the main correlations between structural and NMR spectroscopic data of these compounds, and employment of hyphened techniques such as LC-MS, GC-MS and NMR for analysis of amides from biological samples and crude Piper extracts.

  5. Instrumental neutron activation analysis for the certification of biological reference materials

    International Nuclear Information System (INIS)

    A multielemental instrumental neutron activation analysis (INAA) method by short and long irradiation has been employed for the determination of 22 minor and trace constituents in two proposed Standard Reference Materials P-RBF and P-WBF from Institute of Radioecology and Applied Nuclear Techniques, Czechoslovakia. Also some biological standards such as Bowen's Kale, Cabbage leaves (Poland) including wheat and rice flour samples of local origin were analysed. It is suggested that INAA is an ideal method for the certification of reference materials of biological matrices. (author). 7 refs., 1 tab

  6. Occurrence, biological activities and {sup 13}C NMR data of amides from Piper (Piperaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Jeferson C. do; Paula, Vanderlucia F. de [Universidade Estadual do Sudoeste da Bahia, Jequie, BA (Brazil). Dept. de Quimica e Exatas; David, Jorge M. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; David, Juceni P., E-mail: jmdavid@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Fac. de Farmacia

    2012-07-01

    This manuscript describes an update review with up to 285 references concerning the occurrence of amides from a variety of species of the genus Piper (Piperaceae). Besides addressing occurrence, this review also describes the biological activities attributed to extracts and pure compounds, a compiled {sup 13}C NMR data set, the main correlations between structural and NMR spectroscopic data of these compounds, and employment of hyphened techniques such as LC-MS, GC-MS and NMR for analysis of amides from biological samples and crude Piper extracts. (author)

  7. NMR spectroscopy, Hammett correlations and biological activity of some Schiff bases derived from piperonal

    Energy Technology Data Exchange (ETDEWEB)

    Echevarria, Aurea [Universidade Federal Rural do Rio de Janeiro, Itaguai, RJ (Brazil). Dept. de Quimica; Nascimento, Maria da Graca; Geronimo, Vanilde [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Quimica; Miller, Joseph [Paraiba Univ., Joao Pessoa, PB (Brazil); Giesbrecht, Astrea [Sao Paulo Univ., SP (Brazil). Inst. de Ciencias Biomedicas

    1999-07-01

    A series of eleven Schiff Bases have been synthesized. They were obtained by condensation of piperonal (3,4-methylenedioxybenzaldehyde) with the corresponding aromatic primary amines. Their {sup 1}H and {sup 13}C-NMR spectra have been obtained and the Hammett correlations including chemical shifts and the substituent constants ({sigma}{sub p}, {sigma}R e {sigma}I) were studied. Linear and bilinear significant correlations were observed for iminic carbon (C-{alpha}) and C-1{sup '}, showing a more significant resonance effect on chemical shifts. The chemical shifts for C-4{sup '} were highly affected by substituent effects, especially for halogens in the expected direction. Their biological activity against microorganisms has also been measured and significant activity was showed against Epidermophyton floccosum. The biological activity did not give a reasonable relationship with electronic effects. (author)

  8. NMR spectroscopy, Hammett correlations and biological activity of some Schiff bases derived from piperonal

    International Nuclear Information System (INIS)

    A series of eleven Schiff Bases have been synthesized. They were obtained by condensation of piperonal (3,4-methylenedioxybenzaldehyde) with the corresponding aromatic primary amines. Their 1H and 13C-NMR spectra have been obtained and the Hammett correlations including chemical shifts and the substituent constants (σp, σR e σI) were studied. Linear and bilinear significant correlations were observed for iminic carbon (C-α) and C-1', showing a more significant resonance effect on chemical shifts. The chemical shifts for C-4' were highly affected by substituent effects, especially for halogens in the expected direction. Their biological activity against microorganisms has also been measured and significant activity was showed against Epidermophyton floccosum. The biological activity did not give a reasonable relationship with electronic effects. (author)

  9. The structure, occurrence and biological activity of ellagitannins: a general review

    Directory of Open Access Journals (Sweden)

    Lidia Lipińska

    2014-09-01

    Full Text Available The present paper deals with the structure, occurrence and biological activity of ellagitannins. Ellagitannins belong to the class of hydrolysable tannins, they are esters of hexahydroxydiphenoic acid and monosaccharide (most commonly glucose. Ellagitannins are slowly hydrolysed in the digestive tract, releasing the ellagic acid molecule. Their chemical structure determines physical and chemical properties and biological activity. Ellagitannins occur naturally in some fruits (pomegranate, strawberry, blackberry, raspberry, nuts (walnuts, almonds, and seeds. They form a diverse group of bioactive polyphenols with anti-infl ammatory, anticancer, antioxidant and antimicrobial (antibacterial, antifungal and antiviral activity. Furthermore, they improve the health of blood vessels. The paper discusses the metabolism and bioavailability of ellagitannins and ellagic acid. Ellagitannins are metabolized in the gastrointestinal tract by intestinal microbiota. They are stable in the stomach and undergo neither hydrolysis to free ellagic acid nor degradation. In turn, ellagic acid can be absorbed in the stomach. This paper shows the role of cancer cell lines in the studies of ellagitannins and ellagic acid metabolism. The biological activity of these compounds is broad and thus the focus is on their antimicrobial, anti-inflammatory and antitumor properties. Ellagitannins exhibit antimicrobial activity against fungi, viruses, and importantly, bacteria, including antibiotic-resistant strains such as methicillinresistant Staphylococcus aureus.

  10. Kinetic analysis of enhanced biological phosphorus removal in a hybrid integrated fixed film activated sludge process

    International Nuclear Information System (INIS)

    Hybrid integrated fixed film activated sludge is a promising process for the enhancement of nitrification, denitrification and phosphorus removal in conventional activated sludge systems that can be used for upgrading biological nutrient removal, particularly when they have space limitations or need modifications that will require large monetary expenses. In this research, successful implementation of hybrid integrated fixed film activated sludge process at temperate zone wastewater treatment facilities has been studied by the placement of fixed film media into aerobic, anaerobic and anoxic zones. The primary objective of this study was to investigate the incorporation of enhanced biological phosphorus removal into hybrid integrated fixed film activated sludge systems and study the interactions between the fixed biomass and the mixed liquor suspended solids with respect to substrate competition and nutrient removal efficiencies. A pilot-scale anaerobic-anoxic-oxic configuration system was used. The system was operated at different mean cell residence times and influent chemical oxygen demand/total phosphorus ratios and with split influent flows. The experimental results confirmed that enhanced biological phosphorus removal could be incorporated successfully into hybrid integrated fixed film activated sludge system, but the redistribution of biomass resulting from the integration of fixed film media and the competition of organic substrate between enhanced biological phosphorus removal and denitrification would affect performances. Also, kinetic analysis of the reactor with regarding to phosphorus removal has been studied with different kinetic models and consequently the modified Stover-Kincannon kinetic model has been chosen for modeling studies and experimental data analysis of the hybrid integrated fixed film activated sludge reactor

  11. Water at Biological Phase Boundaries: Its Role in Interfacial Activation of Enzymes and Metabolic Pathways.

    Science.gov (United States)

    Damodaran, Srinivasan

    2015-01-01

    Many life-sustaining activities in living cells occur at the membrane-water interface. The pertinent questions that we need to ask are, what are the evolutionary reasons in biology for choosing the membrane-water interface as the site for performing and/or controlling crucial biological reactions, and what is the key physical principle that is very singular to the membrane-water interface that biology exploits for regulating metabolic processes in cells? In this chapter, a hypothesis is developed, which espouses that cells control activities of membrane-bound enzymes through manipulation of the thermodynamic activity of water in the lipid-water interfacial region. The hypothesis is based on the fact that the surface pressure of a lipid monolayer is a direct measure of the thermodynamic activity of water at the lipid-water interface. Accordingly, the surface pressure-dependent activation or inactivation of interfacial enzymes is directly related to changes in the thermodynamic activity of interfacial water. Extension of this argument suggests that cells may manipulate conformations (and activities) of membrane-bound enzymes by manipulating the (re)activity of interfacial water at various locations in the membrane by localized compression or expansion of the interface. In this respect, cells may use the membrane-bound hormone receptors, lipid phase transition, and local variations in membrane lipid composition as effectors of local compression and/or expansion of membrane, and thereby local water activity. Several experimental data in the literature will be reexamined in the light of this hypothesis. PMID:26438268

  12. Synthesis and Antiplatelet Activity of Antithrombotic Thiourea Compounds: Biological and Structure-Activity Relationship Studies

    OpenAIRE

    André Luiz Lourenço; Max Seidy Saito; Luís Eduardo Gomes Dorneles; Gil Mendes Viana; Plínio Cunha Sathler; Lúcia Cruz de Sequeira Aguiar; Marcelo de Pádula; Thaisa Francielle Souza Domingos; Aline Guerra Manssour Fraga; Carlos Rangel Rodrigues; Valeria Pereira de Sousa; Helena Carla Castro; Lucio Mendes Cabral

    2015-01-01

    The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approache...

  13. Synthesis and Biological Activity of New 1,3-Dioxolanes as Potential Antibacterial and Antifungal Compounds

    Directory of Open Access Journals (Sweden)

    Hatice Başpınar Küçük

    2011-08-01

    Full Text Available A series of new enantiomerically pure and racemic 1,3-dioxolanes 1-8 was synthesized in good yields and short reaction times by the reaction of salicylaldehyde with commercially available diols using a catalytic amount of Mont K10. Elemental analysis and spectroscopic characterization established the structure of all the newly synthesized compounds. These compounds were tested for their possible antibacterial and antifungal activity. Biological screening showed that all the tested compounds, except 1, show excellent antifungal activity against C. albicans, while most of the compounds have also shown significant antibacterial activity against S. aureus, S. epidermidis, E. faecalis and P. aeruginosa.

  14. Microwave-assisted synthesis, characterization and biological activity of novel pyrazole derivatives

    Directory of Open Access Journals (Sweden)

    Theivendren Panneer Selvam

    2014-12-01

    Full Text Available A series of 1-(4-substitutedphenyl-3-phenyl-1H-pyrazole-4-carbaldehydes 4a–l have been synthesized and tested for their biological activities. Formation of the pyrazole derivatives was achieved by treating with Vilsmeier-Haack reagent. The newly synthesized compounds were evaluated for their anti-inflammatory and analgesic activities compared to Diclofenac sodium as standard drug. Compounds 4g, 4i and 4k exhibited the maximum anti-inflammatory and analgesic activities. The detailed synthesis, spectroscopic and toxicity data are reported.

  15. Synthesis and biological evaluation of arctigenin ester and ether derivatives as activators of AMPK.

    Science.gov (United States)

    Shen, Sida; Zhuang, Jingjing; Chen, Yijia; Lei, Min; Chen, Jing; Shen, Xu; Hu, Lihong

    2013-07-01

    A series of new arctigenin and 9-deoxy-arctigenin derivatives bearing different ester and ether side chains at the phenolic hydroxyl positions are designed, synthesized, and evaluated for activating AMPK potency in L6 myoblasts. Initial biological evaluation indicates that some alkyl ester and phenethyl ether arctigenin derivatives display potential activities in AMPK phosphorylation improvement. Further structure-activity relationship analysis shows that arctigenin ester derivatives 3a, 3h and 9-deoxy-arctigenin phenethyl ether derivatives 6a, 6c, 6d activate AMPK more potently than arctigenin. Moreover, the 2-(3,4-dimethoxyphenyl)ethyl ether moiety of 6c has been demonstrated as a potential functional group to improve the effect of AMPK phosphorylation. The structural optimization of arctigenin leads to the identification of 6c as a promising lead compound that exhibits excellent activity in AMPK activation. PMID:23673223

  16. [Evaluation of the total biological activity and allergenic composition of allergenic extracts].

    Science.gov (United States)

    Lombardero, M; González, R; Duffort, O; Juan, F; Ayuso, R; Ventas, P; Cortés, C; Carreira, J

    1986-01-01

    In the present study, a complete procedure is presented in order to standardize allergenic extracts, the meaning of which is the measurement of the total allergenic activity and the determination of the allergenic composition. The measurement of the biological activity comprises 2 steps: Preparation of Reference Extracts and determination of their "in vivo" activity. Evaluation of the total allergenic activity of extracts for clinical use. Reference extracts were prepared from the main allergens and their "in vivo" biological activity was determined by a quantitative skin prick test in a sample of at least 30 allergic patients. By definition, the protein concentration of Reference Extract that produces, in the allergic population, a geometric mean wheal of 75 mm.2 has an activity of 100 biological units (BUs). The determination of the biological activity of a problem extract is made by RAST inhibition. The sample is compared with the corresponding Reference Extract by this technique and, from this comparison, it is possible to quantify the activity of the problem extract in biologic units (BUs) with clinical significance. Likewise, different techniques have been used to determine the allergenic composition of extracts. These techniques comprise 2 steps: Separation of the components of the extract. Identification of the components that bind specific human IgE. The separation of the components of the extract has been carried out by isoelectric focusing (IEF) and electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE). In order to identify the allergenic components, an immunoblotting technique has been employed. The separated components in the IEF gel or SDS-PAGE gel are transferred to a nitrocellulose sheet and later on, this membrane is overlaid with a serum pool from allergic patients and a mouse monoclonal anti-human IgE, labelled with 125I. Finally, the autoradiography of the nitrocellulose membrane is obtained. In this way it is possible to compare

  17. Biological treatment of textile mill wastewater in the. presence of activated carbon

    International Nuclear Information System (INIS)

    The main goal of this study was to find out effectiveness of biological treatment for the reduction in chemical oxygen demand (COD) and biological oxygen demand (BOD) of the textile processing industrial wastewater in the absence and presence of granular activated carbon (GAC) in shake flask experiment. To check the pollution level, physio-chemical analysis of effluent from Amtex industry (Faisalabad) was carried out. The outlet effluent contained high value of COD (1100 mg/l), BOD (309 mg/l) with pH 9.2, electrical conductivity (Ec) 3.7 mS/m, total dissolved solids (TDS) (2640 mg/l), total solids (TS) (3060 mg/l), total suspended solids (TSS) (420 19/l) and phenol (.34 mg/l). After initial period of activated sludge adaptation to wastewater, shake flask batch cultures (with and without activated carbon) were operated on lab scale. The COD and BOD were noted after very 12 hours for 3 days. The maximum reduction in COD (82%) and BOD (90%) was observed biological treatment in presence of activated carbon at retention time of 72 hours. (author)

  18. Database searching for compounds with similar biological activity using short binary bit string representations of molecules.

    Science.gov (United States)

    Xue, L; Godden, J W; Bajorath, J

    1999-01-01

    In an effort to identify biologically active molecules in compound databases, we have investigated similarity searching using short binary bit strings with a maximum of 54 bit positions. These "minifingerprints" (MFPs) were designed to account for the presence or absence of structural fragments and/or aromatic character, flexibility, and hydrogen-bonding capacity of molecules. MFP design was based on an analysis of distributions of molecular descriptors and structural fragments in two large compound collections. The performance of different MFPs and a reference fingerprint was tested by systematic "one-against-all" similarity searches of molecules in a database containing 364 compounds with different biological activities. For each fingerprint, the most effective similarity cutoff value was determined. An MFP accounting for only 32 structural fragments showed less than 2% false positive similarity matches and correctly assigned on average approximately 40% of the compounds with the same biological activity to a query molecule. Inclusion of three numerical two-dimensional (2D) molecular descriptors increased the performance by 15%. This MFP performed better than a complex 2D fingerprint. At a similarity cutoff value of 0.85, the 2D fingerprint totally eliminated false positives but recognized less than 10% of the compounds within the same activity class. PMID:10529986

  19. Generation of structurally novel short carotenoids and study of their biological activity.

    Science.gov (United States)

    Kim, Se H; Kim, Moon S; Lee, Bun Y; Lee, Pyung C

    2016-01-01

    Recent research interest in phytochemicals has consistently driven the efforts in the metabolic engineering field toward microbial production of various carotenoids. In spite of systematic studies, the possibility of using C30 carotenoids as biologically functional compounds has not been explored thus far. Here, we generated 13 novel structures of C30 carotenoids and one C35 carotenoid, including acyclic, monocyclic, and bicyclic structures, through directed evolution and combinatorial biosynthesis, in Escherichia coli. Measurement of radical scavenging activity of various C30 carotenoid structures revealed that acyclic C30 carotenoids showed higher radical scavenging activity than did DL-α-tocopherol. We could assume high potential biological activity of the novel structures of C30 carotenoids as well, based on the neuronal differentiation activity observed for the monocyclic C30 carotenoid 4,4'-diapotorulene on rat bone marrow mesenchymal stem cells. Our results demonstrate that a series of structurally novel carotenoids possessing biologically beneficial properties can be synthesized in E. coli. PMID:26902326

  20. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities.

    Science.gov (United States)

    Pei, Kehan; Ou, Juanying; Huang, Junqing; Ou, Shiyi

    2016-07-01

    p-Coumaric acid (4-hydroxycinnamic acid) is a phenolic acid that has low toxicity in mice (LD50 = 2850 mg kg(-1) body weight), serves as a precursor of other phenolic compounds, and exists either in free or conjugated form in plants. Conjugates of p-coumaric acid have been extensively studied in recent years due to their bioactivities. In this review, the occurrence, bioavailability and bioaccessibility of p-coumaric acid and its conjugates with mono-, oligo- and polysaccharides, alkyl alcohols, organic acids, amine and lignin are discussed. Their biological activities, including antioxidant, anti-cancer, antimicrobial, antivirus, anti-inflammatory, antiplatelet aggregation, anxiolytic, antipyretic, analgesic, and anti-arthritis activities, and their mitigatory effects against diabetes, obesity, hyperlipaemia and gout are compared. Cumulative evidence from multiple studies indicates that conjugation of p-coumaric acid greatly strengthens its biological activities; however, the high biological activity but low absorption of its conjugates remains a puzzle. © 2015 Society of Chemical Industry. PMID:26692250

  1. The Effect of Peat and Vermicompost Cavitation Products on the Soil Biological Activity

    Directory of Open Access Journals (Sweden)

    Steinberga Vilhelmine

    2014-12-01

    Full Text Available Commercial products with humic substances have often been recommended for plant growth stimulation and yield improvement. The aim of this study was to clarify the effects of two products, containing cavited peat and vermicompost respectively on the soil biological activity. Vegetation experiments with garden cress and cucumbers were arranged in pots with a peat substratum in the greenhouses of the Latvia University of Agriculture. The plants were treated with the preparations once a month. The first treatment was done at sowing. Dose of 20, 2, 0.2 mL per m2 during each treatment time were used. A control variant was without peat or vermicompost preparation. Field experiments with onions were carried out in the organic farming experimental field of the Latvia State Institute of Cereal Breeding. Plant growth and soil (substratum biological activity (respiration and enzymatic activity were tested. Plant growth and response to the different preparations depended on the plant species and its development stage. The effect of preparations decreases during plant development. The impact of peat or vermicompost preparation on soil biological activity depended not only on the concentration of preparation, but was influenced by the soil or growth media type. The decrease of onion yield in field conditions as a result of preparations was observed.

  2. In Vitro Biologic Activities of the Antimicrobials Triclocarban, Its Analogs, and Triclosan in Bioassay Screens: Receptor-Based Bioassay Screens

    OpenAIRE

    Ahn, Ki Chang; Zhao, Bin; Chen, Jiangang; Cherednichenko, Gennady; Sanmarti, Enio; Denison, Michael S.; Lasley, Bill; Pessah, Isaac N; Kültz, Dietmar; Chang, Daniel P.Y.; Gee, Shirley J.; Hammock, Bruce D.

    2008-01-01

    Background Concerns have been raised about the biological and toxicologic effects of the antimicrobials triclocarban (TCC) and triclosan (TCS) in personal care products. Few studies have evaluated their biological activities in mammalian cells to assess their potential for adverse effects. Objectives In this study, we assessed the activity of TCC, its analogs, and TCS in in vitro nuclear-receptor–responsive and calcium signaling bioassays. Materials and methods We determined the biological ac...

  3. Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants

    Science.gov (United States)

    Le Roy, Julien; Huss, Brigitte; Creach, Anne; Hawkins, Simon; Neutelings, Godfrey

    2016-01-01

    The phenylpropanoid pathway in plants is responsible for the biosynthesis of a huge amount of secondary metabolites derived from phenylalanine and tyrosine. Both flavonoids and lignins are synthesized at the end of this very diverse metabolic pathway, as well as many intermediate molecules whose precise biological functions remain largely unknown. The diversity of these molecules can be further increased under the action of UDP-glycosyltransferases (UGTs) leading to the production of glycosylated hydroxycinnamates and related aldehydes, alcohols and esters. Glycosylation can change phenylpropanoid solubility, stability and toxic potential, as well as influencing compartmentalization and biological activity. (De)-glycosylation therefore represents an extremely important regulation point in phenylpropanoid homeostasis. In this article we review recent knowledge on the enzymes involved in regulating phenylpropanoid glycosylation status and availability in different subcellular compartments. We also examine the potential link between monolignol glycosylation and lignification by exploring co-expression of lignin biosynthesis genes and phenolic (de)glycosylation genes. Of the different biological roles linked with their particular chemical properties, phenylpropanoids are often correlated with the plant's stress management strategies that are also regulated by glycosylation. UGTs can for instance influence the resistance of plants during infection by microorganisms and be involved in the mechanisms related to environmental changes. The impact of flavonoid glycosylation on the color of flowers, leaves, seeds and fruits will also be discussed. Altogether this paper underlies the fact that glycosylation and deglycosylation are powerful mechanisms allowing plants to regulate phenylpropanoid localisation, availability and biological activity. PMID:27303427

  4. Biological activities of extracts from Chenopodium ambrosioides Lineu and Kielmeyera neglecta Saddi

    Directory of Open Access Journals (Sweden)

    Sousa Zulane

    2012-07-01

    Full Text Available Abstract Background Chenopodium ambrosioides and Kielmeyera neglecta are plants traditionally used in Brazil to treat various infectious diseases. The study of the biological activities of these plants is of great importance for the detection of biologically active compounds. Methods Extracts from these plants were extracted with hexane (Hex, dichloromethane (DCM, ethyl acetate (EtOAc and ethanol (EtOH and assessed for their antimicrobial properties, bioactivity against Artemia salina Leach and antifungal action on the cell wall of Neurospora crassa. Results Extracts from C. ambrosioides (Hex, DCM and EtOH and K. neglecta (EtOAc and EtOH showed high bioactivity against A. salina (LD50 C. ambrosioides Hex and DCM showed specific activity against yeasts, highlighting the activity of hexanic extract against Candida krusei (MIC = 100 μg/mL. By comparing the inhibitory concentration of 50% growth (IC 50% with the growth control, extracts from K. neglecta EtOAc and EtOH have shown activities against multidrug-resistant bacteria (Enterococcus faecalis ATCC 51299 and Staphylococcus aureus ATCC 43300, with IC 50% of 12.5 μg/mL The assay carried out on N. crassa allowed defining that extracts with antifungal activity do not have action through inhibition of cell wall synthesis. Conclusions Generally speaking, extracts from C. ambrosioides and K. neglecta showed biological activities that have made the search for bioactive substances in these plants more attractive, illustrating the success of their use in the Brazilian folk medicine.

  5. Opuntia ficus indica peel derived pectin mediated hydroxyapatite nanoparticles: Synthesis, spectral characterization, biological and antimicrobial activities

    Science.gov (United States)

    Gopi, D.; Kanimozhi, K.; Kavitha, L.

    2015-04-01

    In the present study, we have adapted a facile and efficient green route for the synthesis of HAP nanoparticles using pectin as a template which was extracted from the peel of prickly pear (Opuntia ficus indica) fruits. The concentration of pectin plays a major role in the behavior of crystallinity, purity, morphology as well as biological property of the as-synthesized HAP nanoparticles. The extracted pectin and the as-synthesized nanoparticles were characterized by various analytical techniques. The in vitro apatite formation on the surface of the as-synthesized nanoparticles in simulated body fluid (SBF) for various days showed an enhanced bioactivity. Also, the antimicrobial activity was investigated using various microorganisms. All the results revealed the formation of pure, low crystalline and discrete granular like HAP nanoparticles of size around 25 nm with enhanced biological and antimicrobial activities. Hence the as-synthesized nanoparticles can act as a better bone regenerating material in the field of biomedicine.

  6. Supercritical Algal Extracts: A Source of Biologically Active Compounds from Nature

    Directory of Open Access Journals (Sweden)

    Izabela Michalak

    2015-01-01

    Full Text Available The paper discusses the potential applicability of the process of supercritical fluid extraction (SFE in the production of algal extracts with the consideration of the process conditions and yields. State of the art in the research on solvent-free isolation of biologically active compounds from the biomass of algae was presented. Various aspects related with the properties of useful compounds found in cells of microalgae and macroalgae were discussed, including their potential applications as the natural components of plant protection products (biostimulants and bioregulators, dietary feed and food supplements, and pharmaceuticals. Analytical methods of determination of the natural compounds derived from algae were discussed. Algal extracts produced by SFE process enable obtaining a solvent-free concentrate of biologically active compounds; however, detailed economic analysis, as well as elaboration of products standardization procedures, is required in order to implement the products in the market.

  7. Synthesis, Spectral Characterization and biological activity of N-Substituted Derivatives of Tetrahydrofuran-2-ylmethylamine

    OpenAIRE

    Aziz-ur-Rehman; Rasool, S; Abbasi, M. A.; Khan, K. M.; Ahmad, I.; 2S. Afzal

    2014-01-01

    Tetrahydrofuran-2-ylmethylamine (1) was subjected to condensation reaction with 4-chlorobenzenesulfonyl chloride (2) in a mild basic medium to synthesize N-(tetrahydrofuran-2-ylmethyl)-4-chlorobenzenesulfonamide (3). A series of N-substituted derivatives, 5a-f, were synthesized by condensing alkyl/aralkyl halides, 4a-f, with 3 under polar aprotic conditions using sodium hydride activator. The spectral characterization of all the molecules included IR, 1H-NMR and EI-MS data. The biological act...

  8. Comparison of methods for extraction of biologically active substances from hawthorn fruit

    OpenAIRE

    Svetlana Trapeznikova

    2016-01-01

    At the Department of Chemistry and Chemical Technology of the Institute of science and technology carried out research work on the extraction of biologically active substances (BAS) of the fruit bushes growing in dendrogarden NArFU them. MV Lomonosov Moscow State University (Arkhangelsk). In this study, carried out extraction hawthorn fruit 70% concentration of ethanol. Extraction was performed by infusion, GM = 1: 10 (raw materials: extractant), heated in different conditions: 1) in an in...

  9. Chemistry and Biological Activities of Terpenoids from Copaiba (Copaifera spp.) Oleoresins

    OpenAIRE

    Jamilly Kelly Oliveira Neves; José Alexsandro da Silva; Paula Cristina Souza Barbosa; Fabiano de Sousa Vargas; Lidiam Maia Leandro; Valdir Florêncio da Veiga-Junior

    2012-01-01

    Copaiba oleoresins are exuded from the trunks of trees of the Copaifera species (Leguminosae-Caesalpinoideae). This oleoresin is a solution of diterpenoids, especially, mono- and di-acids, solubilized by sesquiterpene hydrocarbons. The sesquiterpenes and diterpenes (labdane, clerodane and kaurane skeletons) are different for each Copaifera species and have been linked to several reported biological activities, ranging from anti-tumoral to embriotoxic effects. This review presents all the subs...

  10. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.

    Directory of Open Access Journals (Sweden)

    Giulia Gigliarelli

    2015-12-01

    Full Text Available Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  11. RESEARCH OF QUALITY, SAFETY AND CONTENT OF BIOLOGICALLY ACTIVE SUBSTANCES OF FOOD RED BEET

    OpenAIRE

    Gorash E. Y.; Victorova E. P.; Kupin G. A.; Aleshin V. N.; Lisovoy V. V.

    2015-01-01

    The article presents results of research of quality, safety and content of biologically active substances of food red beet roots of Bordo 237 variety, grown in the Krasnodar region in 2014. On the basis of the research carried out it was established, that there are carbohydrates, proteins, organic acids and mineral substances in the food red beet roots of Bordo 237 variety. Food red beet roots are a source of dietary fibers (pectin, protopectin, hemicelluloses and cellulose), possessing antit...

  12. Stability and biological activity evaluations of PEGylated human basic fibroblast growth factor

    OpenAIRE

    Hadadian, Shahin; Shamassebi, Dariush Norouzian; Mirzahoseini, Hasan; Shokrgozar, Mohamad Ali; Bouzari, Saeid; Sepahi, Mina

    2015-01-01

    Background: Human basic fibroblast growth factor (hBFGF) is a heparin-binding growth factor and stimulates the proliferation of a wide variety of cells and tissues causing survival properties and its stability and biological activity improvements have received much attention. Materials and Methods: In the present work, hBFGF produced by engineered Escherichia coli and purified by cation exchange and heparin affinity chromatography, was PEGylated under appropriate condition employing 10 kD pol...

  13. Generation and characterisation of biologically active milk-derived protein and peptide fractions

    OpenAIRE

    McGrath, Brian Andrew

    2014-01-01

    In recent years, extensive research has been carried out on the health benefits of milk proteins and peptides. Biologically active peptides are defined as specific protein fragments which have a positive impact on the physiological functions of the body; such peptides are produced naturally in vivo, but can also be generated by physical and/or chemical processes, enzymatic hydrolysis and/or microbial fermentation. The aims of this thesis were to investigate not only the traditional methods us...

  14. Eugenol biologic activity in immunosuppressed rat females with Candida albicans genital infection: histocytological changes

    OpenAIRE

    Romeo Teodor CRISTINA; Obistioiu, Diana; Dumitrescu, Eugenia; NICHITA, ILEANA; Muselin, Florin; Brezovan, Diana; CERNEA, MIHAI SORIN

    2015-01-01

    From our prior studies concerning eugenol's biologic activity we observed the very good in vitro antifungal efficiency of this natural compound. Those positive results generated the need to supplement the available information with a comparative in vivo animal model. In this context, our current study was proposed to ascertain and compare the effects of eugenol with nystatin with a placebo control group (saline solution) by evaluating the cytohistological alterations in immunosuppressed ...

  15. Soil properties and biological activity as influenced by nutrient management in rice- fallow sorghum

    OpenAIRE

    N Goutami

    2015-01-01

    A field experiment was conducted to observe the effect of inorganics, bio-fertilizers and FYM applied to rice-fallow sorghum on soil properties and biological activity at Agricultural College Farm, Bapatla during 2012. Soil samples were collected at flowering and harvest of the crop and were analysed for bulk density (BD), porosity, pH, electrical conductivity (EC), organic carbon, N, P, K and micronutrients by standard methods. Results indicated that the soil properties viz., bulk density, p...

  16. Voltammetric and amperometric determination of biologically active organic compounds using various types of silver amalgam electrodes

    OpenAIRE

    Barek, Jiří; Fischer, Jan; Moreira, Josino C.; Wang, Joseph

    2014-01-01

    In this paper, possibilities of various types of silver amalgam electrodes for determination of micromolar and submicromolar concentrations of various electrochemically reducible biologically active organic compounds are reviewed. Attention is paid to the use of polished and mercury meniscus modified silver solid amalgam electrodes, silver amalgam paste electrodes both with and without pasting liquids, single crystal silver amalgam electrodes, composite silver amalgam electrodes, and porous s...

  17. Stable Heterologous Expression of Biologically Active Terpenoids in Green Plant Cells

    OpenAIRE

    Nur Kusaira Binti Khairul eIkram; Xin eZhan; Xiwu ePan; Brian Christropher eKing; Henrik Toft Simonsen

    2015-01-01

    Plants biosynthesize a great diversity of biologically active small molecules of interest for fragrances, flavours, and pharmaceuticals. Among specialized metabolites, terpenoids represent the greatest molecular diversity. Many terpenoids are very complex, and total chemical synthesis often requires many steps and difficult chemical reactions, resulting in a low final yield or incorrect stereochemistry. Several drug candidates with terpene skeletons are difficult to obtain by chemical synthes...

  18. REGULATION OF PRODUCTION PERFORMANCE OF CHICORY PLANTS BY FOLIAR APPLICATION OF BIOLOGICALLY ACTIVE SUBSTANCES

    OpenAIRE

    MAREK KOVÁR; IVAN ČERNÝ

    2012-01-01

    In this study were evaluated both the growth and yield potentials of three chicory (Cichorium intybus var. sativum) varieties ('Fredonia Nova', 'Oesia' a 'Maurane') growing in natural agro-ecological conditions from 2006 to 2008. Regulation of the crop productivity by foliar application of biologically active substances (Atonik, Polybor 150, and Biafit Gold) was also studied. Evaluation of growth-production performance of chicory was realized as: leaf area index (LAI), photosynthetic potentia...

  19. Neutron Activation Analysis of Biological Materials by Means of Neutron Multiplicator

    International Nuclear Information System (INIS)

    We have studied the possibilities of instrumental neutron activation analysis of freeze-dried biological materials performed with neutron multiplicator of average power (subcritical assembly PS-1). Neutron flux in the vertical channel amounts to 2.3*106n/cm2sec, concentrations of Na, Al and Mn were determined in freeze-dried samples of blue-green alga Spirulina platensis (S.platensis) (author)

  20. Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications

    OpenAIRE

    Joonseok Koh; Santosh Kumar

    2012-01-01

    This paper describes the physiochemical, optical and biological activity of chitosan-chromone derivative. The chitosan-chromone derivative gels were prepared by reacting chitosan with chromone-3-carbaldehyde, followed by solvent exchange, filtration and drying by evaporation. The identity of Schiff base was confirmed by UV-Vis absorption spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. The chitosan-chromone derivative was evaluated by X-ray diffraction (XRD), thermogravimetric...

  1. MORPHOMETRIC CHARACTERISTIC OF RATS LIVER UNDER PRE-SLAUGHTER STRESS AND USAGE OF BIOLOGICALLY ACTIVE SUBSTANCES

    OpenAIRE

    Grabovskyi S. S.; Grabovska O. S.

    2015-01-01

    We have studied morphometric parameters of rats’ liver under stress conditions using the biologically active substances of plant and animal origin: spleen, Echinacea and Chinese lemon extracts, sprouted grain. Aerosol introduction of spleen extract to the rats feed for five days before slaughter was caused to liver morphological state moderate deviation, indicating the antistressors properties of polyamines contained in this extract. The results of model experiment on rats can be used ...

  2. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules.

    Science.gov (United States)

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical

  3. [Plasma antioxidant activity--a test for impaired biological functions of endoecology, exotrophy, and inflammation reactions].

    Science.gov (United States)

    Titov, V N; Krylin, V V; Dmitriev, V A; Iashin, Ia I

    2010-07-01

    The authors discuss the diagnostic value of a test for total serum antioxidant activity determined by an electrochemistry method on a liquid chromatograph (without a column), by using an amperometric detector, as well as the composition of the endogenously synthesized hydrophilic and hydrophobic acceptors of reactive oxygen species (ROS). Uric acid is a major hydrophilic acceptor of ROS; monoenic oleic fatty acid acts as its major lipophilic acceptor. The constant determined by the authors for of 03 oleic acid oxidation during automatic titration in the organic medium is an order of magnitude higher than that for alpha-tocopherol, beta-carotene and linoleic fatty acid; its concentration is also an order of magnitude higher. In oxidative stress, the adrenal steroid hormone dehydroepiandrosterone initiates oleic acid synthesis via expression of palmitoyl elongase and steatoryl desaturase. In early steps of phylogenesis in primates, spontaneous mutation resulted in ascorbic acid synthesis gene knockout; phylogenetically, further other mutation knocked out the gene encoding the synthesis of uricase and the conversion of uric acid to alantoin. In primates, uric acid became not only a catabolite of purine bases in vivo, but also the major endogenous hydrophilic acceptor of ROS. This philogenetic order makes it clear why the epithelium in the proximal nephron tubule entirely reabsorbs uric acid (a catabolite?) from primary urine and then secretes it again to urine depending on the impairment of biological functions of endoecology (the intercellular medium being contaminated with biological rubbish), the activation of a biological inflammatory reaction, the cellular production of ROS, and the reduction in serum total antioxidant activity. With each biological reaction, there was an increase in the blood content of uric acid as a hydrophilic acceptor of ROS, by actively lowering its secretion into urine. Uric acid is a diagnostic test of inflammation, or rather compensatory

  4. The genus Machaerium (Fabaceae): taxonomy, phytochemistry, traditional uses and biological activities.

    Science.gov (United States)

    Amen, Yhiya M; Marzouk, Amani M; Zaghloul, Mona G; Afifi, Mohamed S

    2015-01-01

    Machaerium, in the family Fabaceae, predominantly is a genus of a Neotropical distribution of trees, shrubs, and lianas occurring from southern Mexico to Brazil and northern Argentina and as far as South America. Several Machaerium species are widely used in traditional medicine and are considered to have multiple medicinal properties. This review aims to provide up-to-date and comprehensive information on the taxonomy, phytochemistry, traditional uses and biological activities of plants in the genus Machaerium. PMID:25601210

  5. Methods for the synthesis of aza(deaza)xanthines as a basis of biologically active compounds

    Science.gov (United States)

    Babkov, D. A.; Geisman, A. N.; Khandazhinskaya, A. L.; Novikov, M. S.

    2016-03-01

    The review covers methods for the synthesis of aza(deaza)xanthines, i.e., fused pyrrolo-, pyrazolo- and triazolopyrimidine heterocyclic systems, which are common core structures of various biologically active compounds. The extensive range of modern synthetic approaches is organized according to target structures and starting building blocks. The presented material is intended to benefit broad audience of specialists in the fields of organic, medicinal and pharmaceutical chemistry. The bibliography includes 195 references.

  6. Application of gold nanoparticles in electrokinetic analyses and separations of biologically active peptides

    Czech Academy of Sciences Publication Activity Database

    Sýkora, D.; Řezanka, P.; Zvatora, P.; Zimová, M.; Ehala, Sille; Čeřovský, Václav; Kašička, Václav

    2011-01-01

    Roč. 96, č. 4 (2011), s. 454-454. ISSN 1097-0282. [American Peptide Symposium /22./. 25.06.2011-30.06.2011, San Diego] R&D Projects: GA ČR(CZ) GA203/09/0675 Institutional research plan: CEZ:AV0Z40550506 Keywords : gold nanoparticles (GNPs) * opentubular capillary * electrochromatography (OT-CEC) * biologically active peptides Subject RIV: CC - Organic Chemistry

  7. Bioreactor Cultivation of Zeltnera beyrichii (Torr. & A. Gray) Mans.: A Novel Source of Biologically Active Compounds

    OpenAIRE

    Miloš Radović; Branislav Šiler; Jasmina Nestorović Živković; Tijana Banjanac; Suzana Živković; Miloš Nikolić; Marina Soković; Danijela Mišić

    2013-01-01

    With regard to world’s increasing demand for biologically active compounds, a novel source of xanthones and secoiridoid glycosides has been studied . Zeltnera beyrichii (Torr. & A. Gray) Mans., an insufficiently acknowledged North American medicinal plant species, may be considered a pharmacological substitute for commercial C. erythraea Rafn, since it accumulates in aerial parts nearly the same amount of secoiridoid glycosides: swertiamarin, gentiopicrin, and sweroside (13.76, 7.56, and 0.17...

  8. Physical Activity, Physical Performance, and Biological Markers of Health among Sedentary Older Latinos

    OpenAIRE

    Gerardo Moreno; Mangione, Carol M; Pin-Chieh Wang; Laura Trejo; Anthony Butch; Chi-Hong Tseng; Sarkisian, Catherine A.

    2014-01-01

    Background. Physical activity is associated with better physical health, possibly by changing biological markers of health such as waist circumference and inflammation, but these relationships are unclear and even less understood among older Latinos—a group with high rates of sedentary lifestyle. Methods. Participants were 120 sedentary older Latino adults from senior centers. Community-partnered research methods were used to recruit participants. Inflammatory (C-reactive protein) and metabol...

  9. Portuguese Thymbra and Thymus species volatiles: chemical composition and biological activities.

    Science.gov (United States)

    Figueiredo, A C; Barroso, J G; Pedro, L G; Salgueiro, L; Miguel, M G; Faleiro, M L

    2008-01-01

    Thymbra capitata and Thymus species are commonly known in Portugal as thyme and they are currently used as culinary herbs, as well as for ornamental, aromatizing and traditional medicinal purposes. The present work reports on the state of the art on the information available on the taxonomy, ethnobotany, cell and molecular biology of the Portuguese representatives of these genera and on the chemotaxonomy and antibacterial, antifungal and antioxidant activities of their essential oils and other volatile-containing extracts. PMID:19075695

  10. Abrus precatorius Leaves: Antioxidant Activity in Food and Biological Systems, pH, and Temperature Stability

    OpenAIRE

    Vanitha Reddy Palvai; Sowmya Mahalingu; Asna Urooj

    2014-01-01

    Natural antioxidants present in foods and other biological materials have attracted considerable interest because of their presumed safety and potential nutritional and therapeutic effects. Antioxidant constituents of plant materials act as radical scavengers and convert the radicals to less reactive species. Abrus precatorius (AP) was analyzed for its proximate and phytochemical composition. The leaves were extracted with methanol (ME) and analyzed for antioxidant activity by radical scaven...

  11. Novel biologically active peptides from the venom of the solitary bee Macropis fulvipes (HYMENOPTERA: MELITTIDAE)

    Czech Academy of Sciences Publication Activity Database

    Monincová, Lenka; Slaninová, Jiřina; Voburka, Zdeněk; Hovorka, Oldřich; Fučík, Vladimír; Borovičková, Lenka; Bednárová, Lucie; Buděšínský, Miloš; Straka, J.; Čeřovský, Václav

    Praha : Institut of organic Chemistry and Biochemistry ASCR, 2009 - (Slaninová, J.), s. 77-80 ISBN 978-80-86241-31-9. - (Collection Symposium Series. 11). [Biologically Active Peptides. Conference /11./. Praha (CZ), 22.04.2009-24.04.2009] R&D Projects: GA ČR(CZ) GA203/08/0536 Institutional research plan: CEZ:AV0Z40550506 Keywords : antimicrobial peptides * Macropis fulvipes * alpha-helical structures * amphipathicity Subject RIV: CC - Organic Chemistry

  12. Chemical Composition and Biological Activities of Fragrant Mexican Copal (Bursera spp.)

    OpenAIRE

    Giulia Gigliarelli; Becerra, Judith X.; Massimo Curini; Maria Carla Marcotullio

    2015-01-01

    Copal is the Spanish word used to describe aromatic resins from several genera of plants. Mexican copal derives from several Bursera spp., Protium copal, some Pinus spp. (e.g., P. pseudostrobus) and a few Fabaceae spp. It has been used for centuries as incense for religious ceremonies, as a food preservative, and as a treatment for several illnesses. The aim of this review is to analyze the chemical composition and biological activity of commercial Mexican Bursera copal.

  13. Physical Activity and Gastrointestinal Cancers: Primary and Tertiary Preventive Effects and Possible Biological Mechanisms

    OpenAIRE

    Karen Steindorf; Dorothea Clauss; Joachim Wiskemann; Schmidt, Martina E

    2015-01-01

    Gastrointestinal cancers account for 37% of all cancer deaths worldwide, underlining the need to further investigate modifiable factors for gastrointestinal cancer risk and prognosis. This review summarizes the corresponding evidence for physical activity (PA), including, briefly, possible biological mechanisms. Despite high public health relevance, there is still a scarcity of studies, especially for tertiary prevention. Besides the convincing evidence of beneficial effects of PA on colon ca...

  14. Sesquiterpene Lactones from Artemisia Genus: Biological Activities and Methods of Analysis

    OpenAIRE

    Bianca Ivanescu; Anca Miron; Andreia Corciova

    2015-01-01

    Sesquiterpene lactones are a large group of natural compounds, found primarily in plants of Asteraceae family, with over 5000 structures reported to date. Within this family, genus Artemisia is very well represented, having approximately 500 species characterized by the presence of eudesmanolides and guaianolides, especially highly oxygenated ones, and rarely of germacranolides. Sesquiterpene lactones exhibit a wide range of biological activities, such as antitumor, anti-inflammatory, analges...

  15. Phytochemical analysis of stevia and stachys on contents biological active substances

    OpenAIRE

    B. Sarsenbaev; V. Мursaliyeva; N. Sultanova; L. Мамоnov; B. Ussenbekov

    2012-01-01

    Results of phytochemical analysis of stevia and stachys are showed up. It is revealed that tubers of stachys consist big amount amino acides, carbohydrates, glycosidated triterpenoides, small amount of alkaloids, flavanoides, too little organic acides. Tannins are absent. Acropetal distribution of glycosides was in stevia. Young leaves of stevia and fresh tubers of stachys are perspective raw material for biological active supplements (BAS), special products and food.

  16. Biological anoxic phosphorus removal in a continuous-flow external nitrification activated sludge system

    Energy Technology Data Exchange (ETDEWEB)

    Kapagiannidis, A. G.; Aivasidis, A.

    2009-07-01

    Application of Biological Nutrient Removal (BNR) process in wastewater treatment is necessitated for the protection of water bodies from eutrophication. an alternative BNR method is tested for simultaneous Carbon (C), Nitrogen (N) and Phosphorus (P) removal in a continuous-flow bench scale plant for municipal wastewater treatment. The plant operation is based on the activity of two microbial populations which grow under different operational conditions (two sludge system). (Author)

  17. Soluble Expression and Characterization of Biologically Active Bacillus anthracis Protective Antigen in Escherichia coli

    OpenAIRE

    Nagendra Suryanarayana; Vanlalhmuaka,; Bharti Mankere; Monika Verma; Kulanthaivel Thavachelvam; Urmil Tuteja

    2016-01-01

    Bacillus anthracis secretory protein protective antigen (PA) is primary candidate for subunit vaccine against anthrax. Attempts to obtain large quantity of PA from Escherichia coli expression system often result in the formation of insoluble inclusion bodies. Therefore, it is always better to produce recombinant proteins in a soluble form. In the present study, we have obtained biologically active recombinant PA in small scale E. coli shake culture system using three different expression cons...

  18.  The biological activity of macrophages in health and disease

    OpenAIRE

    Katarzyna Nazimek; Krzysztof Bryniarski

    2012-01-01

     Macrophages are involved in immune response as phagocytes, antigen presenting cells and as effector cells of delayed-type hypersensitivity. Moreover, the activity of macrophages is associated with modulation of many biological processes during the whole life and depends on the actual macrophage phenotype induced under the influence of various microenvironmental stimuli.In pregnancy, placental macrophages induce the development of maternal tolerance to fetal antigens, while fetal macrophages ...

  19. THE SEMANTIC INFORMATION MODEL FOR CLUSTER "BIOLOGICAL ACTIVE SUBSTANCES IN FEEDING AND COSMETICS"

    OpenAIRE

    Stefan Velikov

    2015-01-01

    The article presents a unified data model for cluster "Biologically active substances in feeding and cosmetics”. The basic information components and their relationship are indicated. The information system provides the data in a structured format thereby realize the concept of interoperability and allows the integration of different systems, storages, processing and re-using of information. The best practices for combining and adapting information resources to support semantic interoperabili...

  20. TERPENOIDS FROM THE STEM BARK OF JATROPHA PLANTS AND THEIR BIOLOGICAL ACTIVITIES

    OpenAIRE

    Manggau Marianti; Taher Muhammad; Sahidin; Ardiansyah

    2011-01-01

    Three terpenoids, including two diterpenes (curcusone B and jatrophone) and a triterpene (stigmasterol) have beenisolated from the stem bark of Jatropha plants. Curcusone B and stigmasterol were isolated from J. curcas, meanwhilejatrophone and stigmasterol were from J. gossypifolia. The biological activities of these compounds have beenevaluated toward bacteria, fungi and tumour cells. Isolation was carried out in vacuum liqiud cromatography (VLC)technique with silica gel as an adsorben and s...

  1. Expression of biologically active heterodimeric bovine follicle-stimulating hormone in milk of transgenic mice.

    OpenAIRE

    Greenberg, N M; Anderson, J.W.; Hsueh, A J; Nishimori, K; Reeves, J. J.; deAvila, D M; Ward, D N; Rosen, J. M.

    1991-01-01

    Follicle-stimulating hormone (FSH; follitropin) is a pituitary glycoprotein composed of two post-translationally modified subunits, which must properly assemble to be biologically active. FSH has been difficult to purify and to obtain in quantities sufficient for detailed biochemical studies. We have targeted FSH expression to the mammary gland of transgenic mice by using cDNAs encoding the bovine alpha and FSH beta subunits and a modified rat beta-casein gene-based expression system. Lines o...

  2. Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review

    OpenAIRE

    Ranga Rao Ambati; Siew-Moi Phang; Sarada Ravi; Ravishankar Gokare Aswathanarayana

    2014-01-01

    There is currently much interest in biological active compounds derived from natural resources, especially compounds that can efficiently act on molecular targets, which are involved in various diseases. Astaxanthin (3,3′-dihydroxy-β, β′-carotene-4,4′-dione) is a xanthophyll carotenoid, contained in Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum, and Phaffia rhodozyma. It accumulates up to 3.8% on the dry weight basis in H. pluvialis. Our recent published data on astaxanthin ex...

  3. Biological significance of local TGF-β activation in liver diseases

    Directory of Open Access Journals (Sweden)

    Hiromitsu eHayashi

    2012-02-01

    Full Text Available The cytokine transforming growth factor-β (TGF-β plays a pivotal role in a diverse range of cellular responses, including cell proliferation, apoptosis, differentiation, migration, adhesion, angiogenesis, stimulation of extracellular matrix (ECM synthesis, and downregulation of ECM degradation. TGF-β and its receptors are ubiquitously expressed by most cell types and tissues in vivo. In intact adult tissues and organs, TGF-β is secreted in a biologically inactive (latent form associated in a noncovalent complex with the ECM. In response to injury, local latent TGF-β complexes are converted into active TGF-β according to a tissue- and injury type-specific activation mechanism. Such a well and tightly orchestrated regulation in TGF-β activity enables an immediate, highly localized response to type-specific tissue injury. In the pathological process of liver fibrosis, TGF-β plays as a master pro-fibrogenic cytokine in promoting activation and myofibroblastic differentiation of hepatic stellate cells, a central event in liver fibrogenesis. Continuous and/or persistent TGF-β signaling induces sustained production of ECM components and of metalloproteinase synthesis. Therefore, the regulation of locally activated TGF-β levels is increasingly recognized as a therapeutic target for liver fibrogenesis. This review summarizes our present knowledge of the activation mechanisms and bioavailability of latent TGF-β in biological and pathological processes in the liver.

  4. Biological activities of the sulfated polysaccharide from the vascular plant Halodule wrightii

    Directory of Open Access Journals (Sweden)

    Juliana M. C. Silva

    2012-02-01

    Full Text Available A sulfated polysaccharide (SPSG was successfully isolated from seagrass Halodule wrightii Asch., Cymodoceaceae, and its antioxidant and anticoagulant activities were investigated. The data presented here showed that the SPSG is a 11 kDa sulfated heterogalactan with a sulfatation degree of 20.63% and it also contains glucose and xylose. SPSG antioxidant activities were evaluated using several in vitro assays and the anticoagulant activity was evaluated by aPTT and PT tests. These assays suggested that the SPSG possessed remarkable antioxidant properties in different in vitro assays and an outstanding anticoagulant activity 2.5-fold higher than that of heparin Clexane® in the aPTT test. This data represents the first reported on the sulfated polysaccharide biological activities from seagrass. These results indicate that SPSG can be considered in the future as a drug utilized in treating diseases from these systems.

  5. Activation of the biological shield of the shut-down Gundremmingen block A reactor

    International Nuclear Information System (INIS)

    For the dismantling planning of a nuclear reactor, it is important to know the depth of the activation of the biological shield. With an important sampling and measurement program to support activity computer calculations, data have been obtained and hypothesis defined to avoid in the future high-cost measurement program. Measurement results agree with calculations. Some provisional results have been used as well to correct measurement results, doing new measurements, as to correct enter data, more particularly for what concerns the weight proportions. It is shown that a calculation of the activity in the median plane of the core is sufficient to determine the field from which concrete is only weakly activated. For the A-block of the RWE-Bayerwerk nuclear power plant, this field is before the external layer (primary concrete). Only, the inner (secondary) concrete is activated, separated from the first one by a layer of styropore

  6. Soluble Expression and Characterization of Biologically Active Bacillus anthracis Protective Antigen in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nagendra Suryanarayana

    2016-01-01

    Full Text Available Bacillus anthracis secretory protein protective antigen (PA is primary candidate for subunit vaccine against anthrax. Attempts to obtain large quantity of PA from Escherichia coli expression system often result in the formation of insoluble inclusion bodies. Therefore, it is always better to produce recombinant proteins in a soluble form. In the present study, we have obtained biologically active recombinant PA in small scale E. coli shake culture system using three different expression constructs. The PA gene was cloned in expression vectors bearing trc, T5, and T7 promoters and transformed into their respective E. coli hosts. The growth conditions were optimized to obtain maximum expression of PA in soluble form. The expression construct PA-pET32c in DE3-pLysS E. coli host resulted in a maximum production of soluble PA (15 mg L−1 compared to other combinations. Purified PA was subjected to trypsin digestion and binding assay with lethal factor to confirm the protein’s functionality. Biological activity was confirmed by cytotoxicity assay on J774.1 cells. Balb/c mice were immunized with PA and the immunogenicity was tested by ELISA and toxin neutralization assay. This study highlights the expression of soluble and biologically active recombinant PA in larger quantity using simpler E. coli production platform.

  7. Soluble Expression and Characterization of Biologically Active Bacillus anthracis Protective Antigen in Escherichia coli.

    Science.gov (United States)

    Suryanarayana, Nagendra; Vanlalhmuaka; Mankere, Bharti; Verma, Monika; Thavachelvam, Kulanthaivel; Tuteja, Urmil

    2016-01-01

    Bacillus anthracis secretory protein protective antigen (PA) is primary candidate for subunit vaccine against anthrax. Attempts to obtain large quantity of PA from Escherichia coli expression system often result in the formation of insoluble inclusion bodies. Therefore, it is always better to produce recombinant proteins in a soluble form. In the present study, we have obtained biologically active recombinant PA in small scale E. coli shake culture system using three different expression constructs. The PA gene was cloned in expression vectors bearing trc, T5, and T7 promoters and transformed into their respective E. coli hosts. The growth conditions were optimized to obtain maximum expression of PA in soluble form. The expression construct PA-pET32c in DE3-pLysS E. coli host resulted in a maximum production of soluble PA (15 mg L(-1)) compared to other combinations. Purified PA was subjected to trypsin digestion and binding assay with lethal factor to confirm the protein's functionality. Biological activity was confirmed by cytotoxicity assay on J774.1 cells. Balb/c mice were immunized with PA and the immunogenicity was tested by ELISA and toxin neutralization assay. This study highlights the expression of soluble and biologically active recombinant PA in larger quantity using simpler E. coli production platform. PMID:26966576

  8. Cytokinin Nucleosides - Natural Compounds with a Unique Spectrum of Biological Activities.

    Science.gov (United States)

    Drenichev, Mikhail S; Oslovsky, Vladimir E; Mikhailov, Sergey N

    2016-01-01

    Cytokinin nucleosides exhibit antitumor, antiviral, antiprotozoal, blood pressure reducing, anti-inflammatory, and antipsychotic activity. These compounds also influence platelet aggregation and exhibit some other biological activities. Cytokinins are N6-substituted adenines and represent an important group of phytohormones with diverse biochemical functions in plants, stimulating cell division and plant growth. The main structural feature of cytokinin nucleosides is the presence of a hydrophobic hydrocarbon moiety at the N6-position of adenosine. This moiety is responsible for a difference in physicochemical and biological properties as compared to adenosine. 1-N-Tuberculosinyladenosine and N6-tuberculosinyladenosine are specifically produced by Mycobacterium tuberculosis as components of the plasmatic membrane, thus making them attractive targets for clinical test development. Structurally related compounds were found in marine organisms. It has been shown also that tRNA contains N6-isoprenyladenosine and some other related compounds. This review summarizes the structural features, biological activity, and the synthesis of cytokinin nucleosides and some of their closely related derivatives such as cytokinins and terpene derivatives of adenine. PMID:27086793

  9. Effects of gentle remediation technologies on soil biological and biochemical activities - a review.

    Science.gov (United States)

    Marschner, B.; Haag, R.; Renella, G.

    2009-04-01

    Remediation technologies for contaminated sites are generally designed to reduce risks for human health, groundwater or plant quality. While some drastic remediation measures such as soil excavation, thermal treatment or soil washing eliminate or strongly reduce soil life, in-situ treatments involving plants or immobilizing additives may also restore soil functionality by establishing or promoting a well structured and active community of soil organisms. Biological parameters that are sensitive to contaminants and other pedo-environmental conditions and which contribute to biogeochemical nutrient cycles, can be used as synthetic indicators of the progress and also the efficiency of given remediation approaches. Data from long-term studies on re-vegetated mine spoils show that biological and biochemical activity is enhanced with increasing plant density and diversity. Among the soil amendments, most measures that introduce organic matter or alkalinity to the contaminated soils also improve microbial or faunal parameters. Only few amendments, such as phosphates and chelators have deleterious effects on soil biota. In this review, soil microbial biomass and the activity of the enzymes phosphatase and arylsulphatase are identified as suitable and sensitive biological indicators for soil health. The results and future research needs are are summarized.

  10. Curcumin and Its Carbocyclic Analogs: Structure-Activity in Relation to Antioxidant and Selected Biological Properties

    Directory of Open Access Journals (Sweden)

    H. P. Vasantha Rupasinghe

    2013-05-01

    Full Text Available Curcumin is the major phenolic compound present in turmeric (Curcuma longa L.. Curcumin and 15 novel analogs were investigated for their antioxidant and selected biological activities. Strong relationships between the structure and evaluated activity revealed that the compounds with specific functional groups and carbon skeleton had specific biological profiles. Among the compounds tested, the derivatives (E-2-(3,4-dimethoxybenzylidene-5-((E-3-(3,4-dimethoxyphenylacryloylcyclopentanone (3e, and (E-2-(4-hydroxy-3-methoxybenzylidene-5-((E-3-(4-hydroxy-3-methoxyphenylacryloyl-cyclopentanone (3d and the parent compound curcumin exhibited the strongest free radical scavenging and antioxidant capacity. Concerning the other biological activities studied the compound (E-2-(4-hydroxy-3-methoxybenzylidene-5-((E-3-(4-hydroxy-3-methoxy-phenyl-acryloylcyclopentanone (3d was the most potent angiotensin converting enzyme (ACE inhibitor, while the derivatives (E-2-(4-hydroxybenzylidene-6-((E-3-(4-hydroxyphenylacryloylcyclohexanone (2b, (E-2-(3,4-dimethoxybenzylidene-6-((E-3-(3,4-dimethoxyphenylacryloylcyclohexanone (2e and (E-2-(3,4-dimethoxybenzylidene-5-((E-3-(3,4-dimethoxyphenylacryloylcyclopentanone (3e exhibited strong tyrosinase inhibition. Moreover, (E-2-(3,4-dimethoxybenzylidene-6-((E-3-(3,4-dimethoxyphenyl-acryloylcyclohexanone (2e was also found to be the strongest human HIV-1 protease inhibitor in vitro among the tested compounds. Cytotoxicity studies using normal human lung cells revealed that the novel curcumin as well as its carbocyclic analogs are not toxic.

  11. Human cryptochrome-1 confers light independent biological activity in transgenic Drosophila correlated with flavin radical stability.

    Directory of Open Access Journals (Sweden)

    Jacqueline Vieira

    Full Text Available Cryptochromes are conserved flavoprotein receptors found throughout the biological kingdom with diversified roles in plant development and entrainment of the circadian clock in animals. Light perception is proposed to occur through flavin radical formation that correlates with biological activity in vivo in both plants and Drosophila. By contrast, mammalian (Type II cryptochromes regulate the circadian clock independently of light, raising the fundamental question of whether mammalian cryptochromes have evolved entirely distinct signaling mechanisms. Here we show by developmental and transcriptome analysis that Homo sapiens cryptochrome--1 (HsCRY1 confers biological activity in transgenic expressing Drosophila in darkness, that can in some cases be further stimulated by light. In contrast to all other cryptochromes, purified recombinant HsCRY1 protein was stably isolated in the anionic radical flavin state, containing only a small proportion of oxidized flavin which could be reduced by illumination. We conclude that animal Type I and Type II cryptochromes may both have signaling mechanisms involving formation of a flavin radical signaling state, and that light independent activity of Type II cryptochromes is a consequence of dark accumulation of this redox form in vivo rather than of a fundamental difference in signaling mechanism.

  12. Surface mixing and biological activity in the four Eastern Boundary Upwelling Systems

    Directory of Open Access Journals (Sweden)

    V. Rossi

    2009-08-01

    Full Text Available Eastern Boundary Upwelling Systems (EBUS are characterized by a high productivity of plankton associated with large commercial fisheries, thus playing key biological and socio-economical roles. Since they are populated by several physical oceanic structures such as filaments and eddies, which interact with the biological processes, it is a major challenge to study this sub- and mesoscale activity in connection with the chlorophyll distribution. The aim of this work is to make a comparative study of these four upwelling systems focussing on their surface stirring, using the Finite Size Lyapunov Exponents (FSLEs, and their biological activity, based on satellite data. First, the spatial distribution of horizontal mixing is analysed from time averages and from probability density functions of FSLEs, which allow us to divide each areas in two different subsystems. Then we studied the temporal variability of surface stirring focussing on the annual and seasonal cycle. We also proposed a ranking of the four EBUS based on the averaged mixing intensity. When investigating the links with chlorophyll concentration, the previous subsystems reveal distinct biological signatures. There is a global negative correlation between surface horizontal mixing and chlorophyll standing stocks over the four areas. To try to better understand this inverse relationship, we consider the vertical dimension by looking at the Ekman-transport and vertical velocities. We suggest the possibility of a changing response of the phytoplankton to sub/mesoscale turbulence, from a negative effect in the very productive coastal areas to a positive one in the open ocean. This study provides new insights for the understanding of the variable biological productivity in the ocean, which results from both dynamics of the marine ecosystem and of the 3-D turbulent medium.

  13. Pertussis toxin analog with reduced enzymatic and biological activities is a protective immunogen.

    Science.gov (United States)

    Kimura, A; Mountzouros, K T; Schad, P A; Cieplak, W; Cowell, J L

    1990-01-01

    Bordetella pertussis TOX3201 has a 12-base-pair insertion in the S1 subunit gene of pertussis toxin (PTX), which encodes for a 4-amino-acid insertion between residues 107 and 108 of the mature S1 subunit (Black et al., Science 240:656-659, 1988). This mutant strain has been shown to secrete a holotoxin analog of PTX, designated CRM3201, with reduced ADP-ribosyltransferase activity. In the present study, we evaluated the biochemical, biological, and immunoprotective activities of purified CRM3201. Assay of enzymatic activities showed that CRM3201 had 20 to 30% of the ADP-ribosyltransferase activity and 55 to 60% of the NAD glycohydrolase activity of native PTX. CRM3201, however, had only 2 to 6% of the activity of PTX in clustering CHO cells, promoting leukocytosis, inducing histamine sensitization, and potentiating an anaphylactic response to bovine serum albumin. In contrast, activities associated with the B oligomer (binding to fetuin, hemagglutination of goose erythrocytes, and lymphocyte mitogen activity) were comparable to those of native PTX. Injection of BALB/c mice with CRM3201 mixed with Al(OH)3 elicited high titers of antibody to PTX (as measured by enzyme-linked immunosorbent assay), which neutralized a leukocytosis-promoting dose of PTX in these mice and neutralized PTX in a CHO cell assay. Passive transfer of the anti-CRM3201 antibody protected 20-day-old Swiss-Webster mice against a lethal aerosol challenge with B. pertussis 18323. Active immunization with CRM3201 significantly reduced lung colonization in adult BALB/c mice with a B. pertussis respiratory infection. These results demonstrate (i) that the reduced ADP-ribosyltransferase activity of CRM3201 is associated with reductions in certain biological and toxic activities of PTX (the enzymatic and biological activities are not, however, totally concordant); (ii) that CRM3201 possesses a functional B oligomer; and (iii) that CRM3201 can induce toxin-neutralizing antibodies which protect mice

  14. Synthesis, characterization and biological evaluation of anti-cancer indolizine derivatives via inhibiting β-catenin activity and activating p53.

    Science.gov (United States)

    Moon, Seong-Hee; Jung, Youngeun; Kim, Seong Hwan; Kim, Ikyon

    2016-01-01

    Diversity-oriented construction of new indolizine scaffolds was accomplished by utilizing domino Knoevenagel condensation/intramolecular aldol cyclization. Biological evaluation revealed anticancer activity of these compounds through inhibition of β-catenin and activation of p53. PMID:26608553

  15. Chemistry and Biological Activities of Terpenoids from Copaiba (Copaifera spp. Oleoresins

    Directory of Open Access Journals (Sweden)

    Jamilly Kelly Oliveira Neves

    2012-03-01

    Full Text Available Copaiba oleoresins are exuded from the trunks of trees of the Copaifera species (Leguminosae-Caesalpinoideae. This oleoresin is a solution of diterpenoids, especially, mono- and di-acids, solubilized by sesquiterpene hydrocarbons. The sesquiterpenes and diterpenes (labdane, clerodane and kaurane skeletons are different for each Copaifera species and have been linked to several reported biological activities, ranging from anti-tumoral to embriotoxic effects. This review presents all the substances already described in this oleoresin, together with structures and activities of its main terpenoids.

  16. Synthesis, Spectral Characterization and biological activity of N-Substituted Derivatives of Tetrahydrofuran-2-ylmethylamine

    Directory of Open Access Journals (Sweden)

    Aziz-ur-Rehman

    2014-06-01

    Full Text Available Tetrahydrofuran-2-ylmethylamine (1 was subjected to condensation reaction with 4-chlorobenzenesulfonyl chloride (2 in a mild basic medium to synthesize N-(tetrahydrofuran-2-ylmethyl-4-chlorobenzenesulfonamide (3. A series of N-substituted derivatives, 5a-f, were synthesized by condensing alkyl/aralkyl halides, 4a-f, with 3 under polar aprotic conditions using sodium hydride activator. The spectral characterization of all the molecules included IR, 1H-NMR and EI-MS data. The biological activity evaluation rendered 5c as moderate inhibitor of all the bacterial strains.

  17. Chemistry and biological activities of terpenoids from copaiba (Copaifera spp.) oleoresins.

    Science.gov (United States)

    Leandro, Lidiam Maia; Vargas, Fabiano de Sousa; Barbosa, Paula Cristina Souza; Neves, Jamilly Kelly Oliveira; da Silva, José Alexsandro; da Veiga-Junior, Valdir Florêncio

    2012-01-01

    Copaiba oleoresins are exuded from the trunks of trees of the Copaifera species (Leguminosae-Caesalpinoideae). This oleoresin is a solution of diterpenoids, especially, mono- and di-acids, solubilized by sesquiterpene hydrocarbons. The sesquiterpenes and diterpenes (labdane, clerodane and kaurane skeletons) are different for each Copaifera species and have been linked to several reported biological activities, ranging from anti-tumoral to embriotoxic effects. This review presents all the substances already described in this oleoresin, together with structures and activities of its main terpenoids. PMID:22466849

  18. Mode of action of antimicrobial proteins, pore-forming toxins and biologically active

    Directory of Open Access Journals (Sweden)

    O Schmidt

    2005-07-01

    Full Text Available Antimicrobial peptides and pore-forming toxins are important effectors in innate immune defencereactions. But their mode of action, comprising the insertion into cholesterol-containing membranes isnot known. Here we explore the mechanical implications of pore-formation by extracellular proteinassemblies that drive cellular uptake reactions by leverage-mediated (LM processes, whereoligomeric adhesion molecules bent membrane-receptors around ‘hinge’-like lipophorin particles. Theinteractions of antimicrobial peptides, pore-forming toxins and biologically active proteins with LMassembliesprovide a new paradigm for the configurational specificity and sterical selectivity ofbiologically active peptides.

  19. Effects of heat on the biological activity of wild Cordyceps sinensis

    OpenAIRE

    Pengkai Wu; Zhi Tao; Huafeng Liu; Guixiang Jiang; Changhua Ma; Chunmei Wang; Di Geng

    2015-01-01

    Background: Current methods of extending the storage time of wild Cordyceps sinensis adversely affect the nutritive and medicinal value of the product. Thus, this study was designed to investigate the effects of heat treatment, a relatively safe storage extension method, on the biological activity of wild C. sinensis. Methods: Samples were heated to 60, 80, or 100°C for 15, 30, or 60 minutes. SOD activity in wild C. sinensis before and after heating was assayed using a standard colorimetri...

  20. Biological activities of essential oils of Endlicheria citriodora, a methyl geranate-rich lauraceae

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Klenicy K.L.; Veiga-Junior, Valdir F., E-mail: valdirveiga@ufam.edu.br [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal do Amazonas, Manaus - AM (Brazil); Pedrosa, Tatiana do Nascimento; Vasconcellos, Marne Carvalho de; Lima, Emerson Silva [Faculdade de Ciencias Farmaceuticas, Universidade Federal do Amazonas, Manaus, AM (Brazil)

    2013-09-01

    The essential oils of branches and leaves of Endlicheria citiodora were obtained by hydrodistillation and analysed using GC-FID, GC-MS and both NMR {sup 13}C and {sup 1}H, resulting in the identification of methyl geranate as major constituent (93%) in both oils. Cytotoxicity, tyrosinase-inhibition and antioxidant activities were studied and characterized. High antioxidant potential (15.52 and 13.53 {mu}g/mL), low cytotoxicity and tyrosinase inhibition (53.85%) were observed. This is the first paper reporting the biological activities and composition of the essential oils of this species. (author)

  1. Synthesis and Biological Activity Evaluation of Schiff Bases of 5-Acyl-1,2,4-Triazine

    International Nuclear Information System (INIS)

    A simple and general method has been developed for the synthesis of various Schiff bases (oximes, hydrazones, semicarbazones and thiosemicarbazones) derived from 5-acyl-1,2,4-triazines. Some of the new synthesized Schiff bases were tested for biological activity but only oximes 2a-c shown poor antiviral activity. The oxime derivatives of 5-acyl-3-methylsulfanyl-1,2,4-triazine were tested with pea-seedling diamine oxidase as the enzyme is known to be inhibited by oxime compounds. However, only weak non-competitive inhibitory effects were observed (Ki of 10 /sup -2/ M). (author)

  2. Biological activities of essential oils of Endlicheria citriodora, a methyl geranate-rich lauraceae

    International Nuclear Information System (INIS)

    The essential oils of branches and leaves of Endlicheria citiodora were obtained by hydrodistillation and analysed using GC-FID, GC-MS and both NMR 13C and 1H, resulting in the identification of methyl geranate as major constituent (93%) in both oils. Cytotoxicity, tyrosinase-inhibition and antioxidant activities were studied and characterized. High antioxidant potential (15.52 and 13.53 μg/mL), low cytotoxicity and tyrosinase inhibition (53.85%) were observed. This is the first paper reporting the biological activities and composition of the essential oils of this species. (author)

  3. Barbiturate bearing aroylhydrazine derivatives: Synthesis, NMR investigations, single crystal X-ray studies and biological activity

    Science.gov (United States)

    Giziroglu, Emrah; Sarikurkcu, Cengiz; Aygün, Muhittin; Basbulbul, Gamze; Soyleyici, H. Can; Firinci, Erkan; Kirkan, Bulent; Alkis, Ayse; Saylica, Tayfur; Biyik, Halil

    2016-03-01

    A series of barbituric acid aroylhydrazine derivatives have been prepared from their corresponding 1,3-dimethyl-5-acetyl barbituric acid and aroylhydrazines. All compounds have been fully characterized by using FT-IR, multinuclear NMR (1H, 13C) and Mass (MS) spectrometry. We also describe the X-ray crystal structure of 3a, which crystallizes in the monoclinic P21/n space group. The crystal structure is stabilized with infinite linear chains of dimeric units. Furthermore, all compounds were investigated for their tyrosinase inhibition, antioxidative and antimicrobial activies. The results from biological activity assays have shown that all of compounds have excellent antioxidant, significant tyrosinase inhibition and moderate antimicrobial activity.

  4. Modulation of pulmonary macrophage superoxide release and tumoricidal activity following activation by biological response modifiers.

    Science.gov (United States)

    Drath, D B

    1986-10-01

    Following immunologic activation, pulmonary macrophages may prevent or cause regression of lung metastases by mechanisms which remain largely unknown. The studies described here were designed to determine if enhanced oxygen metabolite release was related to postactivation tumoricidal activity. We have shown that in vitro activation of Fischer 344 rat pulmonary macrophages by either free or liposome-encapsulated muramyl dipeptide leads to both enhanced release of superoxide anions and marked tumoricidal activity against syngenic (Fischer 13762), allogeneic (Schmidt-Ruppin RR 1022) and xenogeneic (Fibrosarcoma MCA-F) 125I-deoxyuridine-labeled target cells. This immune modulator did not, however, metabolically activate pulmonary macrophages as effectively as liposome-encapsulated lipopolysaccharide. A 24-h in vitro incubation with either 150 U or 300 U of interferon-gamma (3 X 10(6) U/mg) or 30 U, 150 U or 300 U of interferon-alpha (6 X 10(5) U/mg) caused a significant elevation in superoxide release above controls, whereas short-term exposure (2 or 4 h) had little or no effect. Free or encapsulated 6-O-stearoyl muramyl dipeptide, on the other hand, did increase superoxide levels at all 3 time periods. When either interferon-gamma or free or encapsulated muramyl dipeptide derivative were administered to intact rats by either i.v. injection, intratracheal instillation or osmotic minipump infusion, pulmonary macrophage tumoricidal activity was observed 96 h after cell harvesting. Zymosan-stimulated superoxide release, however, was not consistently elevated above control or empty liposome treatment following this course of in vivo activation. The data collectively suggest that in vivo pulmonary macrophage activation to a tumoricidal state and metabolic activation resulting in enhanced superoxide may be separable events. PMID:3021650

  5. The Biological Activities of Troponoids and Their Use in Agriculture A Review

    Directory of Open Access Journals (Sweden)

    Saniewski Marian

    2014-09-01

    Full Text Available Chemical compounds containing the tropone structure (2,4,6-cycloheptatrien-1-one, in their molecule, called troponoids, characterized by a seven-membered ring, are distributed in some plants, bacteria and fungi, although they are relatively rare. ß-Thujaplicin (2-hydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one, also known as hinokitiol, is a natural compound found in several plants of the Cupressaceae family. Besides hinokitiol, related compounds were identified in Cupressaceae trees. It has been demonstrated that hinokitiol and its derivatives have various biological effects, such as antibacterial, antifungal, insecticidal, antimalarial, antitumor, anti-ischemic, iron chelating and the inhibitory activity against polyphenol oxidase activity. Activity similar to ß-thujaplicin has tropolone and its derivatives, which are not present nature. Due to the high scientific and practical interest, synthetic ß-thujaplicin and other troponoids have been produced for many years. In this review, the major biological effects of troponoids, mostly ß-thujaplicin and tropolone, on tyrosinase and polyphenol oxidase activity, ethylene production, antibacterial, antifungal and insecticidal activities, and biotransformation of ß-thujaplicin by cultured plant cells are presented. Accumulation of ß-thujaplicin and related troponoids has been shown in cell cultures of Cupressus lusitanica and other species of Cupressaceae. The biosynthetic pathway of the troponoids in plants, bacteria and fungi has been also briefly described.

  6. Biological activities of binding site specific monoclonal antibodies to prolactin receptors of rabbit mammary gland

    International Nuclear Information System (INIS)

    The biological activity of three monoclonal antibodies (mAbs) against the rabbit mammary prolactin (PRL) receptor (M110, A82, and A917) were investigated using explants of rabbit mammary gland. The three mAbs which were all able to inhibit the binding of 125I-ovine prolactin to its receptor had different biological activities. Two mAbs (M110 and A82) were able to prevent the stimulating effect of PRL on casein synthesis when the molar ratio between the mAb and PRL was 100. One mAb (A917) was able to mimic the action of PRL on both casein and DNA ([3H]thymidine incorporation) synthesis, whereas the other two mAbs were without any stimulatory effect. For this stimulatory effect to be observed, bivalency of the antibody was essential, since monovalent fragments, which were able to inhibit PRL binding, had no agonistic activity. The ability of the mAbs to induce a down-regulation of receptors was also studied. These studies suggest that the binding domain of the receptor might be relatively complex, since only a part of this domain recognized by the antibody with PRL-like activity was able to induce hormonal action. Alternatively, only those antibodies able to microaggregate the receptors may possess PRL-like activity

  7. Influence of biological activity on sorption by using 65Zn and 109Cd into mangrove sediment

    International Nuclear Information System (INIS)

    Evaluation of the chemical behavior of zinc and cadmium as well as the influence of biological activity in the sorption kinetics under microcosm experiments by mangrove sediments collected in Sepetiba Bay - Rio de Janeiro was carried out. The mentioned area was well contaminated due to the leaching from the tailing pile by the abandoned zinc processing company Inga Mercantil. Radiotracer 65Zn and 109Cd were used to follow their exchange across water-sediment interfaces up to 48 hours experiments in six mangrove sediment cores. To determine the benthic activity index (BAI) the cores were treated with formaldehyde (biocide) and it was found that the presence of the radiotracers in the deeper layers of sediment without formaldehyde treatment showed clearly the influence of benthic activity retention (benthic faunal and microbial effects), since the same pattern was not found in the treated sediment. The activity values obtained for 65Zn and 109Cd in the untreated sediment with formaldehyde on the first centimeter were 53.79±0.28 % and 67.34±0.16 % respectively, whereas for the treated ones, were 98.72 ± 0.29 % and 98.31 ± 0.24 % respectively. Thus, it was demonstrated that the use of formaldehyde, as biological activity inhibitor, ceases the bioturbation process and allowed the accumulation along the sediment. (author)

  8. Biological Activities and Phytochemical Profiles of Extracts from Different Parts of Bamboo (Phyllostachys pubescens

    Directory of Open Access Journals (Sweden)

    Akinobu Tanaka

    2014-06-01

    Full Text Available Besides being a useful building material, bamboo also is a potential source of bioactive substances. Although some studies have been performed to examine its use in terms of the biological activity, only certain parts of bamboo, especially the leaves or shoots, have been studied. Comprehensive and comparative studies among different parts of bamboo would contribute to a better understanding and application of this knowledge. In this study, the biological activities of ethanol and water extracts from the leaves, branches, outer culm, inner culm, knots, rhizomes and roots of Phyllostachys pubescens, the major species of bamboo in Japan, were comparatively evaluated. The phytochemical profiles of these extracts were tentatively determined by liquid chromatography-mass spectrometry (LC-MS analysis. The results showed that extracts from different parts of bamboo had different chemical compositions and different antioxidative, antibacterial and antiallergic activities, as well as on on melanin biosynthesis. Outer culm and inner culm were found to be the most important sources of active compounds. 8-C-Glucosylapigenin, luteolin derivatives and chlorogenic acid were the most probable compounds responsible for the anti-allergy activity of these bamboo extracts. Our study suggests the potential use of bamboo as a functional ingredient in cosmetics or other health-related products.

  9. Mn(II) complexes with bipyridine, phenanthroline and benzoic acid: Biological and catalase-like activity

    Indian Academy of Sciences (India)

    Ibrahim Kani; Özlem Atlier; Kiymet Güven

    2016-04-01

    Five mononuclear Mn(II) complexes, [Mn(phen)2(ClO4)2] (1), [Mn(phen)3](ClO4)2(H2CO3)2(2), [Mn(bipy)2(ClO4)2] (3), [Mn(bipy)3](ClO4)2) (4), and Mn(phen)2(ba)(H2O)](ClO4)(CH3OH) (5), where bipy = 2,2’-bipyridine, phen = 1,10-phenanthroline, and ba = benzoic acid were prepared and characterized by Xray, IR and UV-Vis spectroscopies, and their catalase-like and biological activities were studied. The presence of two different types and the number of chelating NN-donor neutral ligands allowed for analysis of their effects on the catalase and biological activities. It was observed that the presence and number of phen ligands improved the activity more than the bipy ligand. Complexes 1 and 2, which contain more basic phen ligands, disproportionate H2O2 faster than complexes 3 and 4, which contain less basic bipy ligands. The in vitro antimicrobial activities of all the complexes were also tested against seven bacterial strains by microdilution tests. All the bacterial isolates demonstrated sensitivity to the complexes and the antifungal (anticandidal) activities of the Mn(II) complexes were remarkably higher than the reference drug ketoconazole.

  10. Evaluation of precision and accuracy of selenium measurements in biological materials using neutron activation analysis

    International Nuclear Information System (INIS)

    In recent years, the accurate determination of selenium in biological materials has become increasingly important in view of the essential nature of this element for human nutrition and its possible role as a protective agent against cancer. Unfortunately, the accurate determination of selenium in biological materials is often difficult for most analytical techniques for a variety of reasons, including interferences, complicated selenium chemistry due to the presence of this element in multiple oxidation states and in a variety of different organic species, stability and resistance to destruction of some of these organo-selenium species during acid dissolution, volatility of some selenium compounds, and potential for contamination. Neutron activation analysis (NAA) can be one of the best analytical techniques for selenium determinations in biological materials for a number of reasons. Currently, precision at the 1% level (1s) and overall accuracy at the 1 to 2% level (95% confidence interval) can be attained at the U.S. National Bureau of Standards (NBS) for selenium determinations in biological materials when counting statistics are not limiting (using the 75Se isotope). An example of this level of precision and accuracy is summarized. Achieving this level of accuracy, however, requires strict attention to all sources of systematic error. Precise and accurate results can also be obtained after radiochemical separations

  11. Removing undesirable color and boosting biological activity in red beet extracts using gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Sik; Lee, Eun Mi; Hong, Sung Hyun; Bai, Hyoung Woo; Chung, Byung Yeoup [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, In Chul [Youngdong University, Youngdong (Korea, Republic of)

    2011-10-15

    Red beet (Beta vulgaris L.) is a traditional and popular vegetable distributed in many part of the world and has been used as a natural colorant in many dairy products, beverages, candies and cattle products. Red beet roots contain two groups of betalain pigments, redviolet betacyanins and yellow betaxanthins. Betalains possess several biological activities such as antioxidant, anti-inflammatory, hepatoprotective, and anticancer properities. Recent trend of using natural products in industries tends toward multifunctional, high quality, and highpriced value foods and cosmetics. To meet the needs of consumers, cosmetics, medicine, and foods should contain the proper amount of natural products. Although the color removal processes such as filtration and absorption by clay are still useful, these procedures are difficult, time-consuming and costly. To overcome this problem, the radiation technology has emerged as a new way. Radiation technology has been applied to the decomposition and decoloration of pigment and is an efficient technique for inactivating pathogens, removing undesirable color in biomaterial extracts and improving or maintaining biological activities. Gamma-irradiation and electron beamirradiation techniques in previous reports were applied in order to remove any undesirable color and to improve or maintain biological activities of various extracts such as green tea leaves, licorice root, and S. chinensis fruits. Latorre et al. reported that betacyanin concentration decreased with the irradiation dose and significantly, in 35%, after 2.0 kGy of gamma-ray, whereas betaxathin concentration increased (about 11%-ratio with respect to control) after 1 kGy but decreased (about 19%) after 2 kGy. However, they did not try to analysis for completed removal of red beet pigments. Therefore, it is necessary to find the optimum irradiation dose for entirely removing red pigments in red beet. The aim of this work was to address the effects of the color removal and

  12. Removing undesirable color and boosting biological activity in red beet extracts using gamma irradiation

    International Nuclear Information System (INIS)

    Red beet (Beta vulgaris L.) is a traditional and popular vegetable distributed in many part of the world and has been used as a natural colorant in many dairy products, beverages, candies and cattle products. Red beet roots contain two groups of betalain pigments, redviolet betacyanins and yellow betaxanthins. Betalains possess several biological activities such as antioxidant, anti-inflammatory, hepatoprotective, and anticancer properities. Recent trend of using natural products in industries tends toward multifunctional, high quality, and highpriced value foods and cosmetics. To meet the needs of consumers, cosmetics, medicine, and foods should contain the proper amount of natural products. Although the color removal processes such as filtration and absorption by clay are still useful, these procedures are difficult, time-consuming and costly. To overcome this problem, the radiation technology has emerged as a new way. Radiation technology has been applied to the decomposition and decoloration of pigment and is an efficient technique for inactivating pathogens, removing undesirable color in biomaterial extracts and improving or maintaining biological activities. Gamma-irradiation and electron beamirradiation techniques in previous reports were applied in order to remove any undesirable color and to improve or maintain biological activities of various extracts such as green tea leaves, licorice root, and S. chinensis fruits. Latorre et al. reported that betacyanin concentration decreased with the irradiation dose and significantly, in 35%, after 2.0 kGy of gamma-ray, whereas betaxathin concentration increased (about 11%-ratio with respect to control) after 1 kGy but decreased (about 19%) after 2 kGy. However, they did not try to analysis for completed removal of red beet pigments. Therefore, it is necessary to find the optimum irradiation dose for entirely removing red pigments in red beet. The aim of this work was to address the effects of the color removal and

  13. Biological Activity of Tannins from Acacia mangium Bark Extracted by Different Solvents

    Directory of Open Access Journals (Sweden)

    E. Wina

    2010-08-01

    Full Text Available Acacia mangium bark is abundant byproduct of wood industry in Indonesia. It is underutilized and mainly used as fire wood for the wood industry. The bark contains high level of tannin but the tannin has not been extracted or produced commercially. Tannin isolate can be used for several purposes such as tanning agent for leather, adhesive for plywood or particle board, etc. In ruminant, tannin can be detrimental but can also be beneficial. This experiment was aimed of getting the highest yield of tannin extract with the highest biological activity in rumen fermentation. Nine different solvents at different temperatures were used to extract tannin from A. mangium bark. The extracts were analyzed for their tannin contents and biological activities. Tannin content was analyzed using folin ciocalteau and butanol-HCl methods. Biological activity was described as a percentage of an increase in gas production in the in vitro rumen-buffer fermentation, with and without addition of PEG. The results show that Na2SO3 solution extracted more tannin than other solutions and the higher the concentration of Na2SO3 solution, the higher the yield of tannin extract. The solution of 6% sodium sulphite gave the highest yield of tannin extract (31.2% of original bark sample and the highest concentration of tannin (18.26% but produced a negative effect on in vitro fermentation (% increase of gas production = 2.70%. Extraction with 50% acetone gave a high yield of extract (22.28% of original bark which contained 12.98% of tannin and showed the highest biological response (% increase of gas production = 216%. In conclusion, sodium sulphite solution is not recommended for tannin extraction if the tannin will be used as feed additive in ruminant feed; on the other hand, the aqueous acetone (50% acetone solution is a better choice to be used.

  14. Antimicrobial activity of nerolidol and its derivatives against airborne microbes and further biological activities.

    Science.gov (United States)

    Krist, Sabine; Banovac, Daniel; Tabanca, Nurhayat; Wedge, David E; Gochev, Velizar K; Wanner, Jürgen; Schmidt, Erich; Jirovetz, Leopold

    2015-01-01

    Nerolidol and its derivatives, namely cis-nerolidol, O-methyl-nerolidol, O-ethyl-nerolidol, (-)-α-bisabolol, trans,trans-farnesol and its main natural source cabreuva essential oil, were tested for their antimicrobial activity against airborne microbes and antifungal properties against plant pathogens. Among the tested compounds, α-bisabolol was the most effective antimicrobial agent and trans,trans-farnesol showed the best antifungal activity. PMID:25920237

  15. Medicinal properties of mangiferin, structural features, derivative synthesis, pharmacokinetics and biological activities.

    Science.gov (United States)

    Benard, Outhiriaradjou; Chi, Yuling

    2015-01-01

    The identification of biologically active and potentially therapeutically useful pharmacophores from natural products has been a long-term focus in the pharmaceutical industry. The recent emergence of a worldwide obesity and Type II diabetes epidemic has increased focus upon small molecules that can modulate energy metabolism, insulin sensitivity and fat biology. Interesting preliminary work done on mangiferin (MGF), the predominant constituent of extracts of the mango plant Mangifera indica L., portends potential for this pharmacophore as a novel parent compound for treating metabolic disorders. MGF is comprised of a C-glucosylated xanthone. Owing to the xanthone chemical structure, MGF has a redox active aromatic system and has antioxidant properties. MGF exerts varied and impressive metabolic effects in animals, improving metabolic disorders. For example we have discovered that MGF is a novel activator of the mammalian pyruvate dehydrogenase complex, leading to enhancement of carbohydrate utilization in oxidative metabolism, and leading to increased insulin sensitivity in animal models of obesity and insulin resistance. In addition, recent unbiased proteomics studies revealed that MGF upregulates proteins pivotal for mitochondrial bioenergetics and downregulates proteins controlling de novo lipogenesis in liver, helping to explain protective effects of MGF in prevention of liver steatosis. Several chemical studies have achieved synthesis of MGF, suggesting possible synthetic strategies to alter its chemical structure for development of structure-activity relationship (SAR) information. Ultimately, chemical derivatization studies could lead to the eventual development of novel therapeutics based upon the parent pharmacophore structure. Here we provide comprehensive review on chemical features of MGF, synthesis of its derivatives, its pharmacokinetics and biological activities. PMID:25827900

  16. First synthesis of racemic saphenamycin and its enantiomers. Investigation of biological activity

    DEFF Research Database (Denmark)

    Laursen, Jane B.; Jorgensen, C.G.; Nielsen, John

    2003-01-01

    The natural antibiotic saphenamycin, 6-[1-(2-hydroxy-6-methyl-benzoyloxy)-ethyl]-phenazine-1-carboxylic acid, was synthesized from saphenic acid using temporary ally] protection of carboxy and phenoxy functionalities. Resolution of racemic saphenic acid was performed by crystallization of the...... and screened against a range of skin flora and resistant Staphylococcus aureus strains. Biological activities of saphenamycin enantiomers were compared with that of the synthetic racemate as well as earlier reported activities of saphenamycin isolated from natural sources. No significant difference...... was observed in activity of the enantiomers of saphenamycin, which revealed that the chirality of saphenamycin has no consequences for the antibiotic activity. Saphenamycin proved to be a potent antibiotic against fusidic acid and rifampicin resistant S. aureus strains showing MIC of 0.1-0.2 mug/mL....

  17. Biological activity of two red algae, Gracilaria salicornia and Hypnea flagelliformis from Persian Gulf.

    Directory of Open Access Journals (Sweden)

    S Saeidnia

    2009-01-01

    Full Text Available Among marine organisms, algae are a large and diverse group of organisms from which a wide range of secondary metabolites have been isolated. A number of these compounds possess biological activity. In this study, we aim to evaluate the cytotoxic, antibacterial and antifungal activity of two red algae, Gracilaria salicornia and Hypnea flagelliformis, collected from Persian Gulf. Ethyl acetate extracts of both algae showed a potent cytotoxic effect against Artemia salina nauplii (LC50 = 3 and 4 μg.ml−1, respectively. Aqueous methanol (50% extracts were also effective. None of the methanol and aqueous methanol extracts of the algae showed antifungal and antibacterial activity against Staphylococcus aureus, Escherichia coli, Candida albicans and Aspergillus niger by the Broth-dilution method. Only the ethyl acetate extracts exhibited antibacterial activity (MIC = 2 μg.ml−1 on S. aureus. In conclusion, G. salicornia and H. flagelliformis could be a promising source of cytotoxic components.

  18. Syntheses, biological activities and SAR studies of novel carboxamide compounds containing piperazine and arylsulfonyl moieties.

    Science.gov (United States)

    Wang, Bao-Lei; Shi, Yan-Xia; Zhang, Shu-Jun; Ma, Yi; Wang, Hong-Xue; Zhang, Li-Yuan; Wei, Wei; Liu, Xing-Hai; Li, Yong-Hong; Li, Zheng-Ming; Li, Bao-Ju

    2016-07-19

    A series of novel carboxamide compounds 19a-19j, 20a-20j and 22a-22d containing piperazine and arylsulfonyl moieties have been synthesized. The bioassay results showed that some compounds exhibited favorable herbicidal activities against dicotyledonous plants and many of them possessed excellent antifungal activities. Among 24 novel compounds, some showed superiority over the commercial fungicides Chlorothalonil, Dimethomorph, Thiophanate-methyl, Iprodione, and Zhongshengmycin at 500 mg/L concentration. Some compounds also exhibited high KARI inhibitory activity at 100 μg/mL concentration and could be used as new KARI lead inhibitors for further studies. Moreover, SAR of these new compounds were comprehensively investigated using different computational methods in which 3D-QSAR model obtained provided useful information for further structural optimization for the discovery of new fungicides. The results of this research will contribute to explore comprehensive biological activities of piperazine-containing compounds in different areas of chemistry. PMID:27092414

  19. Stirring a fluid at low Reynolds numbers: Hydrodynamic collective effects of active proteins in biological cells

    Science.gov (United States)

    Kapral, Raymond; Mikhailov, Alexander S.

    2016-04-01

    Most of the proteins in the cell, including not only molecular motors and machines, but also enzymes, are active. When ATP or other substrates are supplied, these macromolecules cyclically change their conformations. Therefore, they mechanically stir the cytoplasm and nucleoplasm, so that non-thermal fluctuating flows are produced. As we have recently shown (Mikhailov and Kapral, 2015), stochastic advection by such flows might lead to substantial diffusion enhancement of particles inside a living cell. Additionally, when gradients in the concentrations of active particles or in the ATP/substrate supply are present, chemotaxis-like drift should take place. Here, the motion of passive tracers with various sizes in a mixture of different kinds of active proteins is analyzed. Moreover, effects of hydrodynamic interactions on the motion of active proteins are explored. Theoretical results are compared with available experimental data for ATP-dependent diffusion of natural and microinjected particles in biological cells.

  20. A Systemic Review on Aloe arborescens Pharmacological Profile: Biological Activities and Pilot Clinical Trials.

    Science.gov (United States)

    Singab, Abdel-Naser B; El-Hefnawy, Hala M; Esmat, Ahmed; Gad, Haidy A; Nazeam, Jilan A

    2015-12-01

    Since ancient times, plants and herbal preparations have been used as medicine. Research carried out in the last few decades has verified several such claims. Aloe arborescens Miller, belonging to the Aloe genus (Family Asphodelaceae), is one of the main varieties of Aloe used worldwide. The popularity of the plant in traditional medicine for several ailments (antitumor, immunomodulatory, antiinflammatory, antiulcer, antimicrobial and antifungal activity) focused the investigator's interest on this plant. Most importantly, the reported studies have shown the plant effectiveness on various cancer types such as liver, colon, duodenal, skin, pancreatic, intestinal, lung and kidney types. These multiple biological actions make Aloe an important resource for developing new natural therapies. However, the biological activities of isolated compounds such as glycoprotein, polysaccharides, enzyme and phenolics were insufficient. Considering all these, this contribution provides a systematic review outlining the evidence on the biological efficacy of the plant including the pharmacology and the related mechanisms of action, with specific attention to the various safety precautions, and preclinical and clinical studies, indicating the future research prospects of this plant. PMID:26768148

  1. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion.

    Science.gov (United States)

    Correa-Betanzo, J; Allen-Vercoe, E; McDonald, J; Schroeter, K; Corredig, M; Paliyath, G

    2014-12-15

    Wild blueberries are rich in polyphenols and have several potential health benefits. Understanding the factors that affect the bioaccessibility and bioavailability of polyphenols is important for evaluating their biological significance and efficacy as functional food ingredients. Since the bioavailability of polyphenols such as anthocyanins is generally low, it has been proposed that metabolites resulting during colonic fermentation may be the components that exert health benefits. In this study, an in vitro gastrointestinal model comprising sequential chemostat fermentation steps that simulate digestive conditions in the stomach, small intestine and colon was used to investigate the breakdown of blueberry polyphenols. The catabolic products were isolated and biological effects tested using a normal human colonic epithelial cell line (CRL 1790) and a human colorectal cancer cell line (HT 29). The results showed a high stability of total polyphenols and anthocyanins during simulated gastric digestion step with approximately 93% and 99% of recovery, respectively. Intestinal digestion decreased polyphenol- and anthocyanin- contents by 49% and 15%, respectively, by comparison to the non-digested samples. During chemostat fermentation that simulates colonic digestion, the complex polyphenol mixture was degraded to a limited number of phenolic compounds such as syringic, cinnamic, caffeic, and protocatechuic acids. Only acetylated anthocyanins were detected in low amounts after chemostat fermentation. The catabolites showed lowered antioxidant activity and cell growth inhibition potential. Results suggest that colonic fermentation may alter the biological activity of blueberry polyphenols. PMID:25038707

  2. Biological activity of Bt proteins expressed in different structures of transgenic corn against Spodoptera frugiperda

    Directory of Open Access Journals (Sweden)

    Daniel Bernardi

    2016-06-01

    Full Text Available ABSTRACT: Spodoptera frugiperda (J. E. Smith is the main target pest of Bt corn technologies, such as YieldGard VT PRO(tm (Cry1A.105/Cry2Ab2 and PowerCore(tm (Cry1A.105/Cry2Ab2/Cry1F. In this study, it was evaluated the biological activity of Bt proteins expressed in different plant structures of YieldGard VT PRO(tm and PowerCore(tm corn against S. frugiperda . Complete mortality of S. frugiperda neonates was observed on leaf-disc of both Bt corn technologies. However, the mortality in silks and grains was lower than 50 and 6%, respectively. In addition, more than 49% of the surviving larvae in silks and grains completed the biological cycle. However, all life table parameters were negatively affected in insects that developed in silks and grains of both Bt corn events. In summary, the low biological activity of Bt proteins expressed on silks and grains of YieldGard VT PRO(tm and PowerCore(tm corn can contribute to the resistance evolution in S. frugiperda populations.

  3. Photonuclear Activation Analysis of Biological Materials for Various Elements, including Fluorine

    International Nuclear Information System (INIS)

    Photonuclear activation analysis (PNAA) studies of a number of kinds of biological and non-biological materials have been carried out at these laboratories, in addition to highflux thermal-neutron and moderate-flux 14-MeV neutron activation analyses of the same materials. The photonuclear studies are carried out with the two high-current electron linear accelerators at the laboratory - machines of 17 MeV and 45 MeV maximum energies. These accelerators can be operated at electron energies anywhere from 2 MeV up to the maximum, and at integrated beam currents up to 0.5 mA. The partially diffused electron beam is absorbed in a water-cooled tungsten converter, to produce an intense bremsstrahlung beam. Samples are irradiated in a pneumatic tube just in front of the converter, or in a spinning multi-sample rack just beyond the pneumatic tube. Some of the advantages of high-flux PNAA, as compared with high-flux thermal-neutron activation analysis, in certain instances are: (1) some elements, such as C, N, and O, can be determined more sensitively, (2) the 24Na interference encountered in the thermal-neutron activation of many biological samples is eliminated, (3) many interfering activities can be eliminated by adjustment of the electron energy to values below the thresholds of interfering reactions, (4) alternate products, in some cases of more convenient half-lives or gamma-ray energies than those produced by (n, γ) reactions, can be formed, and (5) the problem of self-shielding is eliminated. The high penetrability of the bremsstrahlung photons makes the method more generally useful than charged-particle activation analysis. The experimentally determined limits of detection of some 40 elements studied, mostly by the (γ, γ') and (γ, n) reactions, will be reported, as well as photonuclear results on samples of hair, blood, urine, whisky, wood, tobacco and green plants. Detailed studies of the determination of fluorine in biological samples, by the 19F(γ, n)18F

  4. Does the different mowing regime affect soil biological activity and floristic composition of thermophilous Pieniny meadow?

    Science.gov (United States)

    Józefowska, Agnieszka; Zaleski, Tomasz; Zarzycki, Jan

    2016-04-01

    The study area was located in the Pieniny National Park in the Carpathian Mountain (Southern Poland). About 30% of Park's area is covered by meadows. The climax stage of this area is forest. Therefore extensive use is indispensable action to keep semi-natural grassland such as termophilous Pieniny meadows, which are characterized by a very high biodiversity. The purpose of this research was to answer the question, how the different way of mowing: traditional scything (H), and mechanical mowing (M) or abandonment of mowing (N) effect on the biological activity of soil. Soil biological activity has been expressed by microbial and soil fauna activity. Microbial activity was described directly by count of microorganisms and indirectly by enzymatic activity (dehydrogenase - DHA) and the microbial biomass carbon content (MBC). Enchytraeidae and Lumbricidae were chosen as representatives of soil fauna. Density and species diversity of this Oligochaeta was determined. Samples were collected twice in June (before mowing) and in September (after mowing). Basic soil properties, such as pH value, organic carbon and nitrogen content, moisture and temperature, were determined. Mean count of vegetative bacteria forms, fungi and Actinobacteria was higher in H than M and N. Amount of bacteria connected with nitrification and denitrification process and Clostridium pasteurianum was the highest in soil where mowing was discontinued 11 years ago. The microbial activity measured indirectly by MBC and DHA indicated that the M had the highest activity. The soil biological activity in second term of sampling had generally higher activity than soil collected in June. That was probably connected with highest organic carbon content in soil resulting from mowing and the end of growing season. Higher earthworm density was in mowing soil (220 and 208 individuals m‑2 in H and M respectively) compare to non-mowing one (77 ind. m‑2). The density of Enchytraeidae was inversely, the higher

  5. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Science.gov (United States)

    Putz, Mihai V.; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners’ (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  6. Gamma radiation effect on biological activity and enzymatic properties of snake venoms

    International Nuclear Information System (INIS)

    The effect of gamma radiation, from Co-60, on the biological activity and on some enzymatic activities, present in the venoms of Lachesis muta and Bothrops atrox, using samples of dried venom that had been irradiated at a dose of 0.1, 0.5 and 1.0 Mrad have been studied. Variations in the degree of hemorrhage and local necrosis were observed in albino mice injected subcutaneously with venoms of both types. The reduction of the biological activity was greater for the local hemorrhagic effect and was dependent on the doses of irradiation. The specific activity of various enzymes, present in both venoms, is affected by the gamma radiation, at a dose of 0.1 Mrad the order of increasing inactivation being: exonuclease (4%), phospholipase (24%), caseinolytic enzyme (20%), tamesterase (33%), a thrombine-like enzyme (40%), fibrinolytic enzyme (41%), 5'-nucleotidase (50%) and endonuclease (55%). The enzymatic inactivation was augmented by 0.5 and 1.0 Mrad, without maintaining an arithmetic relation. The enzyme of major resistance to the radiation was exonuclease, whereas 5'-nucleotidase and endonuclease were the most sensitive. No significant changes were observed in the spectrum of UV absorbtion (range 260 to 290 nm) nor in the contents of L-tyrosine in the irradiated venoms

  7. Chemical Structure-Biological Activity Models for Pharmacophores’ 3D-Interactions

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2016-07-01

    Full Text Available Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding and quantitative (for predicting mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD as the revived precursor for comparative molecular field analyses (CoMFA and comparative molecular similarity indices analysis (CoMSIA; all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy-methyl]-6-(phenylthiothymine congeners’ (HEPT ligands antiviral activity against Human Immunodeficiency Virus of first type (HIV-1 and new pharmacophores in treating severe genetic disorders (like depression and psychosis, respectively, all involving 3D pharmacophore interactions.

  8. Chemical Structure-Biological Activity Models for Pharmacophores' 3D-Interactions.

    Science.gov (United States)

    Putz, Mihai V; Duda-Seiman, Corina; Duda-Seiman, Daniel; Putz, Ana-Maria; Alexandrescu, Iulia; Mernea, Maria; Avram, Speranta

    2016-01-01

    Within medicinal chemistry nowadays, the so-called pharmaco-dynamics seeks for qualitative (for understanding) and quantitative (for predicting) mechanisms/models by which given chemical structure or series of congeners actively act on biological sites either by focused interaction/therapy or by diffuse/hazardous influence. To this aim, the present review exposes three of the fertile directions in approaching the biological activity by chemical structural causes: the special computing trace of the algebraic structure-activity relationship (SPECTRAL-SAR) offering the full analytical counterpart for multi-variate computational regression, the minimal topological difference (MTD) as the revived precursor for comparative molecular field analyses (CoMFA) and comparative molecular similarity indices analysis (CoMSIA); all of these methods and algorithms were presented, discussed and exemplified on relevant chemical medicinal systems as proton pump inhibitors belonging to the 4-indolyl,2-guanidinothiazole class of derivatives blocking the acid secretion from parietal cells in the stomach, the 1-[(2-hydroxyethoxy)-methyl]-6-(phenylthio)thymine congeners' (HEPT ligands) antiviral activity against Human Immunodeficiency Virus of first type (HIV-1) and new pharmacophores in treating severe genetic disorders (like depression and psychosis), respectively, all involving 3D pharmacophore interactions. PMID:27399692

  9. Comparison of growth methods and biological activities of brazilian marine Streptomyces

    Directory of Open Access Journals (Sweden)

    A. C. Granato

    2013-03-01

    Full Text Available The present work describes the study of the growth and the cytotoxic and antitumor activities of the extracts of the marine microorganisms Streptomyces acrymicini and Streptomyces cebimarensis, the latter a new strain. Both microorganisms were collected from coastal marine sediments of the north coast of São Paulo state. Growth was performed in a shaker and in a bioreactor using Gym medium and the broths of both microorganisms were extracted with ethyl acetate and n-butanol. Three extracts, two organic and one aqueous, from each microorganism were obtained and tested for cytotoxic and antitumor activity using the SF-295 (Central Nervous System, HCT-8 (Colon cell lines, and the MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide method. The growth methods were compared and show that, although the shaker presented reasonable results, the bioreactor represents the best choice for growth of these microorganisms. The biological activity of the different extracts was evaluated and it was demonstrated that the growth methodology may influence the secondary metabolite production and the biological activity.

  10. Acetylated Triterpene Glycosides and Their Biological Activity from Holothuroidea Reported in the Past Six Decades.

    Science.gov (United States)

    Bahrami, Yadollah; Franco, Christopher M M

    2016-01-01

    Sea cucumbers have been valued for many centuries as a tonic and functional food, dietary delicacies and important ingredients of traditional medicine in many Asian countries. An assortment of bioactive compounds has been described in sea cucumbers. The most important and abundant secondary metabolites from sea cucumbers are triterpene glycosides (saponins). Due to the wide range of their potential biological activities, these natural compounds have gained attention and this has led to their emergence as high value compounds with extended application in nutraceutical, cosmeceutical, medicinal and pharmaceutical products. They are characterized by bearing a wide spectrum of structures, such as sulfated, non-sulfated and acetylated glycosides. Over 700 triterpene glycosides have been reported from the Holothuroidea in which more than 145 are decorated with an acetoxy group having 38 different aglycones. The majority of sea cucumber triterpene glycosides are of the holostane type containing a C18 (20) lactone group and either Δ(7(8)) or Δ(9(11)) double bond in their genins. The acetoxy group is mainly connected to the C-16, C-22, C-23 and/or C-25 of their aglycone. Apparently, the presence of an acetoxy group, particularly at C-16 of the aglycone, plays a significant role in the bioactivity; including induction of caspase, apoptosis, cytotoxicity, anticancer, antifungal and antibacterial activities of these compounds. This manuscript highlights the structure of acetylated saponins, their biological activity, and their structure-activity relationships. PMID:27527190

  11. Quality-control method for the determination of biological activity of engineered calcineurin subunit B.

    Science.gov (United States)

    Shi, Xinchang; Yang, Huan; Xu, Li; Li, Xiang; Huang, Zongwen; Han, Yudong; Wei, Qun; Rao, Chunming

    2016-06-01

    The aim of this study was to establish a quality-control method for calcineurin subunit B (CNB) biological activity determinations. CNB enhances the p-nitrophenylphosphate (pNPP) dephosphorylating activity of calcineurin subunit A Δ316 mutant (CNAΔ316). A series of CNB concentrations were fitted to a four-parameter equation to calculate the corresponding pNPP maximum dephosphorylation rates. Values were calculated based on biological activity references using a parallel line method. The method was then validated for accuracy, precision, linearity, linear range, sensitivity, specificity, and robustness. The recovery results were greater than 98%. Intra-plate precision was 6.7%, with inter-plate precision of 10.8%. The coefficient of determination was greater than 0.98. The linear range was 0.05-50 μg mL(-1), with sensitivity of 50 μg mL(-1). Tested cytokines did not induce CNAΔ316 dephosphorylation of pNPP. The chosen CNAΔ316 concentration range did not affect activity determinations. PMID:27053126

  12. On the accuracy of protein determination in large biological samples by prompt gamma neutron activation analysis

    International Nuclear Information System (INIS)

    A prompt gamma neutron activation analysis (PGNAA) facility has been developed for the determination of nitrogen and thus total protein in large volume biological samples or the whole body of small animals. In the present work, the accuracy of nitrogen determination by PGNAA in phantoms of known composition as well as in four raw ground meat samples of about 1 kg mass was examined. Dumas combustion and Kjeldahl techniques were also used for the assessment of nitrogen concentration in the meat samples. No statistically significant differences were found between the concentrations assessed by the three techniques. The results of this work demonstrate the applicability of PGNAA for the assessment of total protein in biological samples of 0.25-1.5 kg mass, such as a meat sample or the body of small animal even in vivo with an equivalent radiation dose of about 40 mSv

  13. Review-An overview of Pistacia integerrima a medicinal plant species: Ethnobotany, biological activities and phytochemistry.

    Science.gov (United States)

    Bibi, Yamin; Zia, Muhammad; Qayyum, Abdul

    2015-05-01

    Pistacia integerrima with a common name crab's claw is an ethnobotanically important tree native to Asia. Traditionally plant parts particularly its galls have been utilized for treatment of cough, asthma, dysentery, liver disorders and for snake bite. Plant mainly contains alkaloids, flavonoids, tannins, saponins and sterols in different parts including leaf, stem, bark, galls and fruit. A number of terpenoids, sterols and phenolic compounds have been isolated from Pistacia integerrima extracts. Plant has many biological activities including anti-microbial, antioxidant, analgesic, cytotoxicity and phytotoxicity due to its chemical constituents. This review covers its traditional ethnomedicinal uses along with progresses in biological and phytochemical evaluation of this medicinally important plant species and aims to serve as foundation for further exploration and utilization. PMID:26004708

  14. Solid state structural and theoretical investigations of a biologically active chalcone

    Science.gov (United States)

    Abbas, Asghar; Gökce, Halil; Bahceli, Semiha; Bolte, Michael; Naseer, Muhammad Moazzam

    2016-05-01

    The computational methods are presently emerging as an efficient and reliable tool for predicting structural properties of biologically important compounds. In the present manuscript, the solid state structural and theoretical investigations of a biologically active chalcone i-e (E)-3-(4-(hexyloxy)phenyl)-1-phenylprop-2-en-1-one (6c) have been reported. The solid state structure of 6c was measured by X-ray crystallographic technique whereas the optimized molecular geometry, vibrational frequencies, the simulated UV-vis spectra (in gas and in methanol solvent), 1H and 13C NMR chemical shift (in gas and in chloroform solvent) values, HOMO-LUMO analysis, the molecular electrostatic potential (MEP) surface and thermodynamic parameters were calculated by using DFT/B3LYP method with 6-311++G(d,p) basis set in ground state. The results of the theoretical investigations were found to be in good agreement with experimental data.

  15. On multielement analysis of biological samples with the aid of neutron activation

    International Nuclear Information System (INIS)

    A main objective of this study was elucidation of problems of sampling and sample preparation methods for multielement analysis of environmental and biological specimens. Another was assessment of the potentials of multielement neutron activation analysis (NAA) in environmental and biological research. In an attempt to explain the great differences in the elemental concentration ranges between biopsy and autopsy samples as reported in the literature, it was shown that post mortem changes induce great variations in the apparent elemental composition of autopsy specimens resulting in serious systematic errors. Applications of NAA to analysis of tissues of experimental animals, human tissues in health and disease, and environmental samples are illustrated with several examples. The suitability of NAA for routine analysis of elements such as Cr, Mo and Se, which are difficult to determine by other methods has been specially discussed. (author)

  16. Biologically active collagen-based scaffolds: advances in processing and characterization.

    Science.gov (United States)

    Yannas, I V; Tzeranis, D S; Harley, B A; So, P T C

    2010-04-28

    A small number of type I collagen-glycosaminoglycan scaffolds (collagen-GAG scaffolds; CGSs) have unusual biological activity consisting primarily in inducing partial regeneration of organs in the adult mammal. Two of these are currently in use in a variety of clinical settings. CGSs appear to induce regeneration by blocking the adult healing response, following trauma, consisting of wound contraction and scar formation. Several structural determinants of biological activity have been identified, including ligands for binding of fibroblasts to the collagen surface, the mean pore size (which affects ligand density) and the degradation rate (which affects the duration of the wound contraction-blocking activity by the scaffold). Processing variables that affect these determinants include the kinetics of swelling of collagen fibres in acetic acid, freezing of the collagen-GAG suspension and cross-linking of the freeze-dried scaffold. Recent developments in the processing of CGSs include fabrication of scaffolds that are paucidisperse in pore size, scaffolds with gradients in physicochemical properties (and therefore biological activity) and scaffolds that incorporate a mineral component. Advances in the characterization of the pore structure of CGSs have been made using confocal and nonlinear optical microscopy (NLOM). The mechanical behaviour of CGSs, as well as the resistance to degradative enzymes, have been studied. Following seeding with cells (typically fibroblasts), contractile forces in the range 26-450 nN per cell are generated by the cells, leading to buckling of scaffold struts. Ongoing studies of cell-seeded CGSs with NLOM have shown an advantage over the use of confocal microscopy due to the ability of the former method to image the CGS surfaces without staining (which alters its surface ligands), reduced cell photodamage, reduced fluorophore photobleaching and the ability to image deeper inside the scaffold. PMID:20308118

  17. Recent insights into the biological activities and drug delivery systems of tanshinones

    Directory of Open Access Journals (Sweden)

    Cai Y

    2016-01-01

    Full Text Available Yuee Cai,1,* Wenji Zhang,2,* Zirong Chen,3 Zhi Shi,1,2 Chengwei He,1 Meiwan Chen1 1State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, People’s Republic of China; 2Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, People’s Republic of China; 3Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL, USA *These authors contributed equally to this work Abstract: Tanshinones, the major lipid-soluble pharmacological constituents of the Chinese medicinal herb Tanshen (Salvia miltiorrhiza, have attracted growing scientific attention because of the prospective biomedical applications of these compounds. Numerous pharmacological activities, including anti-inflammatory, anticancer, and cardio-cerebrovascular protection activities, are exhibited by the three primary bioactive constituents among the tanshinones, ie, tanshinone I (TNI, tanshinone IIA (TNIIA, and cryptotanshinone (CPT. However, due to their poor solubility and low dissolution rate, the clinical applications of TNI, TNIIA, and CPT are limited. To solve these problems, many studies have focused on loading tanshinones into liposomes, nanoparticles, microemulsions, cyclodextrin inclusions, solid dispersions, and so on. In this review, we aim to offer an updated summary of the biological activities and drug delivery systems of tanshinones to provide a reference for these constituents in clinical applications. Keywords: tanshinones, biological activities, drug delivery systems, bioavailability, solubility

  18. Inhibition of survivin influences the biological activities of canine histiocytic sarcoma cell lines.

    Directory of Open Access Journals (Sweden)

    Hiroki Yamazaki

    Full Text Available Canine histiocytic sarcoma (CHS is an aggressive malignant neoplasm that originates from histiocytic lineage cells, including dendritic cells and macrophages, and is characterized by progressive local infiltration and a very high metastatic potential. Survivin is as an apoptotic inhibitory factor that has major functions in cell proliferation, including inhibition of apoptosis and regulation of cell division, and is expressed in most types of human and canine malignant neoplasms, including melanoma and osteosarcoma. To investigate whether survivin was expressed at high levels in CHS and whether its expression was correlated with the aggressive biological behavior of CHS, we assessed relation between survivin expression and CHS progression, as well as the effects of survivin inhibition on the biological activities of CHS cells. We comparatively analyzed the expression of 6 selected anti-apoptotic genes, including survivin, in specimens from 30 dogs with histiocytic sarcoma and performed annexin V staining to evaluate apoptosis, methylthiazole tetrazolium assays to assess cell viability and chemosensitivity, and latex bead assays to measure changes in phagocytic activities in 4 CHS cell lines and normal canine fibroblasts transfected with survivin siRNA. Survivin gene expression levels in 30 specimens were significantly higher than those of the other 6 genes. After transfection with survivin siRNA, apoptosis, cell growth inhibition, enhanced chemosensitivity, and weakened phagocytic activities were observed in all CHS cell lines. In contrast, normal canine fibroblasts were not significantly affected by survivin knockdown. These results suggested that survivin expression may mediate the aggressive biological activities of CHS and that survivin may be an effective therapeutic target for the treatment of CHS.

  19. Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet.

    Science.gov (United States)

    Wende, Kristian; Williams, Paul; Dalluge, Joe; Gaens, Wouter Van; Aboubakr, Hamada; Bischof, John; von Woedtke, Thomas; Goyal, Sagar M; Weltmann, Klaus-Dieter; Bogaerts, Annemie; Masur, Kai; Bruggeman, Peter J

    2015-01-01

    The mechanism of interaction of cold nonequilibrium plasma jets with mammalian cells in physiologic liquid is reported. The major biological active species produced by an argon RF plasma jet responsible for cell viability reduction are analyzed by experimental results obtained through physical, biological, and chemical diagnostics. This is complemented with chemical kinetics modeling of the plasma source to assess the dominant reactive gas phase species. Different plasma chemistries are obtained by changing the feed gas composition of the cold argon based RF plasma jet from argon, humidified argon (0.27%), to argon/oxygen (1%) and argon/air (1%) at constant power. A minimal consensus physiologic liquid was used, providing isotonic and isohydric conditions and nutrients but is devoid of scavengers or serum constituents. While argon and humidified argon plasma led to the creation of hydrogen peroxide dominated action on the mammalian cells, argon-oxygen and argon-air plasma created a very different biological action and was characterized by trace amounts of hydrogen peroxide only. In particular, for the argon-oxygen (1%), the authors observed a strong negative effect on mammalian cell proliferation and metabolism. This effect was distance dependent and showed a half life time of 30 min in a scavenger free physiologic buffer. Neither catalase and mannitol nor superoxide dismutase could rescue the cell proliferation rate. The strong distance dependency of the effect as well as the low water solubility rules out a major role for ozone and singlet oxygen but suggests a dominant role of atomic oxygen. Experimental results suggest that O reacts with chloride, yielding Cl2(-) or ClO(-). These chlorine species have a limited lifetime under physiologic conditions and therefore show a strong time dependent biological activity. The outcomes are compared with an argon MHz plasma jet (kinpen) to assess the differences between these (at least seemingly) similar plasma sources

  20. Polyphenolic Profile and Biological Activity of Chinese Hawthorn (Crataegus pinnatifida BUNGE Fruits

    Directory of Open Access Journals (Sweden)

    Tunde Jurikova

    2012-12-01

    Full Text Available Chinese hawthorn (Crataegus pinnatifida Bge. fruits are rich in polyphenols (e.g., epicatechin, procyanidin B2, procyanidin B5, procyanidin C1, hyperoside, isoquercitrin and chlorogenic acid—active compounds that exert beneficial effects. This review summarizes all information available on polyphenolic content and methods for their quantification in Chinese hawthorn berries and the relationships between individual polyphenolic compounds as well. The influence of species or cultivars, the locality of cultivation, the stage of maturity, and extract preparation conditions on the polyphenolic content were discussed as well. Currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included in the Chinese Pharmacopoeia. Recent trials have demonstrated the efficacy of Chinese hawthorn fruit in lowering blood cholesterol and the risk of cardiovascular diseases. The fruit has also demonstrated anti-inflammatory and anti-tumour activities. This review deals mainly with the biological activity of the fruit related to its antioxidant properties.

  1. The Synergistic Biologic Activity of Oleanolic and Ursolic Acids in Complex with Hydroxypropyl-γ-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Codruţa Soica

    2014-04-01

    Full Text Available Oleanolic and ursolic acids are natural triterpenic compounds with pentacyclic cholesterol-like structures which gives them very low water solubility, a significant disadvantage in terms of bioavailability. We previously reported the synthesis of inclusion complexes between these acids and cyclodextrins, as well as their in vivo evaluation on chemically induced skin cancer experimental models. In this study the synergistic activity of the acid mixture included inside hydroxypropyl-gamma-cyclodextrin (HPGCD was monitored using in vitro tests and in vivo skin cancer models. The coefficient of drug interaction (CDI was used to characterize the interactions as synergism, additivity or antagonism. Our results revealed an increased antitumor activity for the mixture of the two triterpenic acids, both single and in complex with cyclodextrin, thus proving their complementary biologic activities.

  2. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    Science.gov (United States)

    Yin, Yanan; Wang, Jianlong

    2016-04-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCODconsumed. It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production.

  3. Recent insights into the biological activities and drug delivery systems of tanshinones.

    Science.gov (United States)

    Cai, Yuee; Zhang, Wenji; Chen, Zirong; Shi, Zhi; He, Chengwei; Chen, Meiwan

    2016-01-01

    Tanshinones, the major lipid-soluble pharmacological constituents of the Chinese medicinal herb Tanshen (Salvia miltiorrhiza), have attracted growing scientific attention because of the prospective biomedical applications of these compounds. Numerous pharmacological activities, including anti-inflammatory, anticancer, and cardio-cerebrovascular protection activities, are exhibited by the three primary bioactive constituents among the tanshinones, ie, tanshinone I (TNI), tanshinone IIA (TNIIA), and cryptotanshinone (CPT). However, due to their poor solubility and low dissolution rate, the clinical applications of TNI, TNIIA, and CPT are limited. To solve these problems, many studies have focused on loading tanshinones into liposomes, nanoparticles, microemulsions, cyclodextrin inclusions, solid dispersions, and so on. In this review, we aim to offer an updated summary of the biological activities and drug delivery systems of tanshinones to provide a reference for these constituents in clinical applications. PMID:26792989

  4. The determination of plutonium alpha activity in urine, faeces and biological materials

    International Nuclear Information System (INIS)

    Methods have been developed for the determination of plutonium alpha activity in urine, faeces and biological materials. The chemical stages involved give practically complete separation of all extraneous material from the plutonium, which is electrodeposited on to a 0.5 inch stainless steel disc to produce a thin high resolution source. The limit of detection is 0.025 μμc/sample (sixteen-hour count) when the sources are counted in a small scintillator counter, but is lowest when counted in a counter which counts particles of energy 5.05-5.25 MeV only, and which therefore discriminates against small quantities of α-active materials introduced with the reagents in the final electrodeposition stage of the process. (Any such alpha activity may readily be identified by alpha pulse height analysis). (author)

  5. Transition metal complexes of some biologically active ligands; synthesis characterization and bioactivities

    International Nuclear Information System (INIS)

    Transition/representative transition metals complexes of biologically active chelating agent 1,2-dipyrolodinoethane were synthesized and characterized through spectral and analytical data. The complexes are of the formula (M(L)X/sub 2/). Where (M = Co (II), Ni (II), Cu (II), Zn (II), Hg (II) and Cd (II) and X = CI, Br, NO/sub 3/). Tetrahedral geometry has been proposed to these-metal complexes with the help of magnetic measurements, elemental analysis, chemical stoichiometry and spectroscopic data Antibacterial activity of the ligand and its metal complexes were screened against Eschereschi coli, Klebsiello pneumonia, Proteus mirabilis, Proteus vulhari, Streptococcus pneumonia, Salmonella Iyphi, Bacilh,s anthrax, Streptococcus fecalis and Staphylococcus aureus. Complexes were found to be active against Eschereschi coli, Klebsiella pneumonia, Proteus mirabilis and Proteus vulharis. (author)

  6. Polyphenolic profile and biological activity of Chinese hawthorn (Crataegus pinnatifida BUNGE) fruits.

    Science.gov (United States)

    Jurikova, Tunde; Sochor, Jiri; Rop, Otakar; Mlcek, Jiri; Balla, Stefan; Szekeres, Ladislav; Adam, Vojtech; Kizek, Rene

    2012-01-01

    Chinese hawthorn (Crataegus pinnatifida Bge.) fruits are rich in polyphenols (e.g., epicatechin, procyanidin B2, procyanidin B5, procyanidin C1, hyperoside, isoquercitrin and chlorogenic acid)--active compounds that exert beneficial effects. This review summarizes all information available on polyphenolic content and methods for their quantification in Chinese hawthorn berries and the relationships between individual polyphenolic compounds as well. The influence of species or cultivars, the locality of cultivation, the stage of maturity, and extract preparation conditions on the polyphenolic content were discussed as well. Currently, only fruits of C. pinnatifida and C. pinnatifida var. major are included in the Chinese Pharmacopoeia. Recent trials have demonstrated the efficacy of Chinese hawthorn fruit in lowering blood cholesterol and the risk of cardiovascular diseases. The fruit has also demonstrated anti-inflammatory and anti-tumour activities. This review deals mainly with the biological activity of the fruit related to its antioxidant properties. PMID:23222867

  7. Age-related biological activity of South American rattlesnake (Crotalus durissus terrificus venom

    Directory of Open Access Journals (Sweden)

    M. F. D. Furtado

    2003-01-01

    Full Text Available An in vitro and in vivo comparative study was performed on the effects of Crotalus durissus terrificus venoms from a mother and its 15 newborns. The venoms were tested for protein content, lethality, proteolytic, myotoxic, hemorrhagic, and phospholipase A2 activity. The minimum coagulant dose in plasma and human fibrinogen, protrhombin, and Factor II activations were analyzed. The venoms were also analyzed by polyacrylamide gel electrophoresis (PAGE. This showed that despite similar total protein content, the biological effects of the venoms were different. Venom from young snakes exhibited higher enzymatic and coagulant activities and higher myotoxicity compared to the mother’s. In addition, the PLA2 content paralleled myotoxicity. However, no difference could be detected in their toxicity (LD50 0.08 mg/Kg. High incidence of blood coagulation disorders and elevated circulating myoglobin may characterize systemic envenoming by young C. d. terrificus.

  8. Potential Amoebicidal Activity of Hydrazone Derivatives: Synthesis, Characterization, Electrochemical Behavior, Theoretical Study and Evaluation of the Biological Activity

    Directory of Open Access Journals (Sweden)

    Yanis Toledano-Magaña

    2015-05-01

    Full Text Available Four new hydrazones were synthesized by the condensation of the selected hydrazine and the appropriate nitrobenzaldehyde. A complete characterization was done employing 1H- and 13C-NMR, electrochemical techniques and theoretical studies. After the characterization and electrochemical analysis of each compound, amoebicidal activity was tested in vitro against the HM1:IMSS strain of Entamoeba histolytica. The results showed the influence of the nitrobenzene group and the hydrazone linkage on the amoebicidal activity. meta-Nitro substituted compound 2 presents a promising amoebicidal activity with an IC50 = 0.84 μM, which represents a 7-fold increase in cell growth inhibition potency with respect to metronidazole (IC50 = 6.3 μM. Compounds 1, 3, and 4 show decreased amoebicidal activity, with IC50 values of 7, 75 and 23 µM, respectively, as a function of the nitro group position on the aromatic ring. The observed differences in the biological activity could be explained not only by the redox potential of the molecules, but also by their capacity to participate in the formation of intra- and intermolecular hydrogen bonds. Redox potentials as well as the amoebicidal activity can be described with parameters obtained from the DFT analysis.

  9. Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology

    Directory of Open Access Journals (Sweden)

    Zhigang Xie

    2014-01-01

    Full Text Available In order to improve adsorption of macromolecular contaminants and promote the growth of microorganisms, active carbon for biological wastewater treatment or follow-up processing requires abundant mesopore and good biophile ability. In this experiment, biophile mesopore active carbon is produced in one-step activation with orange peel as raw material, and zinc chloride as activator, and the adsorption characteristics of orange peel active carbon is studied by static adsorption method. BET specific surface area and pore volume reached 1477 m2/g and 2.090 m3/g, respectively. The surface functional groups were examined by Fourier transform infrared spectroscopy (FT-IR. The surface of the as-prepared activated carbon contained hydroxyl group, carbonyl group, and methoxy group. The analysis based on X-ray diffraction spectrogram (XRD and three-dimensional fluorescence spectrum indicated that the as-prepared activated carbon, with smaller microcrystalline diameter and microcrystalline thickness and enhanced reactivity, exhibited enhanced adsorption performance. This research has a deep influence in effectively controlling water pollution, improving area water quality, easing orange peel waste pollution, and promoting coordinated development among society, economy, and environment.

  10. Isolation of biologically active constituents from Moringa peregrina (Forssk. Fiori. (family: Moringaceae growing in Egypt

    Directory of Open Access Journals (Sweden)

    Taha S El-Alfy

    2011-01-01

    Full Text Available Background: Moringa peregrina is a wild plant that grown in the eastern desert mountains in Egypt. Although, this plant is native to Egypt, no details studies were traced on its chemical composition and biological activity. Materials and Methods: The different fractions of the ethanolic extract of the dried aerial parts of the plants were subjected to fractionation and purification on various silica and sephadex columns for the isolation of the major compounds which were tested for there anticancer activity. The aqueous and ethanolic extract as well as its different fractions were tested for antihyperglycemic effect on Streptozitocin-induced diabetes in rats. Results: Investigation of the different fractions of the ethanolic extract of the aerial parts of M. peregrina yielded lupeol acetate (1, β-amyrin (2, α-amyrin (3, β-sitosterol (4, β-sitosterol-3-O-glucoside (5, apigenin (6, rhamnetin (7, neochlorogenic acid (10, rhamnetin-3-O-rutinoside (12, and 6-methoxy-acacetin-8-C-β-glucoside (13 which were isolated for the first time from the plant. Compound (13 was isolated for the first time from genus Moringa. In addition, quercetin (8, chryseriol-7-O-rhamnoside (9 and quercetin-3-O-rutinoside (11 were also isolated. Identification has been established by spectral data (UV, MS, IR, 1H, 1H -1H COSY, and 13C-NMR. The major isolated compounds were found to have valuable cytotoxic activities against breast (MCF 7 and colon (HCT 116 cancer cell lines and their activities were comparable to the reference drug doxorubicin. On the other hand, the aqueous and ethanolic extracts as well as the n-hexane fraction were found to have potent antihyperglycemic effect on Streptozitocin-induced diabetes in rats. Conclusion: The Egyptian plant M. peregrina is rich in biologically active ingredients which showed potent cytotoxic activity and also its ethanolic extraxt exert a significant antihyperglycemic effect.

  11. Visual Literacy Skills of Students in College-Level Biology: Learning Outcomes Following Digital or Hand-Drawing Activities

    Science.gov (United States)

    Bell, Justine C.

    2014-01-01

    To test the claim that digital learning tools enhance the acquisition of visual literacy in this generation of biology students, a learning intervention was carried out with 33 students enrolled in an introductory college biology course. This study compared learning outcomes following two types of learning tools: a traditional drawing activity, or…

  12. Cloning and biological activity of an anti-tumor peptide of Tumstatin

    Institute of Scientific and Technical Information of China (English)

    WANG Shujing; LIU Yan; LIN Xuesong; FU Xue; XU Jianyong; LIU Xinghan

    2007-01-01

    To obtain an anti-tumor peptide of Tumstatin and detect its biological activity,the nucleotide sequence encoding 185-203 amino acids (19peptide) of Tumstatin was synthesized and inserted into the fusion protein vector pTYB2.After identification by sequencing and restriction endonucleases,the recombined vector was transformed into BL-21 (DE3) E.coli competent cells.Transformed E.coli BL-21 (DE3) were induced by isopropyl-β-thiogalactopyranoside (IPTG),and then expressed.By 1,4-dithiothreitol (DTT)reduction,the soluble 19peptide was obtained from a chitin affinity chromatograph.The biological activity of 19peptide was determined by 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenytetrazolium bromide (MTT) assay,cell growth curve,the effect of the ascitic fluid transfevent H22 hepatoma on mice and via histopathological slices.The purified 19peptide directly inhibited proliferation and migration of murine B16 melanoma cells,SMMC-7721hepatoma carcinoma cells and human umbilical vein endothelial cells (HUVEC).The tumor inhibition rate of mice ascitic fluid transfevent H22 hepatoma was 48.46%.Histopathological slices showed that it could promote tumor tissue necrosis and decrease the density of blood vessels.With higher anti-tumor activity,19peptide has the potential to become a novel,potent anti-tumor agent.

  13. Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry

    Directory of Open Access Journals (Sweden)

    Butnariu Monica

    2012-04-01

    Full Text Available Abstract Background This study aimed to quantify the active biological compounds in C. officinalis flowers. Based on the active principles and biological properties of marigolds flowers reported in the literature, we sought to obtain and characterize the molecular composition of extracts prepared using different solvents. The antioxidant capacities of extracts were assessed by using spectrophotometry to measure both absorbance of the colorimetric free radical scavenger 2,2-diphenyl-1-picrylhydrazyl (DPPH as well as the total antioxidant potential, using the ferric reducing power (FRAP assay. Results Spectrophotometric assays in the ultraviolet-visible (UV-VIS region enabled identification and characterization of the full range of phenolic and flavonoids acids, and high-performance liquid chromatography (HPLC was used to identify and quantify phenolic compounds (depending on the method of extraction. Methanol ensured more efficient extraction of flavonoids than the other solvents tested. Antioxidant activity in methanolic extracts was correlated with the polyphenol content. Conclusions The UV-VIS spectra of assimilator pigments (e.g. chlorophylls, polyphenols and flavonoids extracted from the C. officinalis flowers consisted in quantitative evaluation of compounds which absorb to wavelengths broader than 360 nm.

  14. Tracking SERS-active nanoprobe intracellular uptake for chemical and biological sensing

    Science.gov (United States)

    Gregas, Molly K.; Yan, Fei; Scaffidi, Jonathan; Wang, Hsin-Neng; Khoury, Christopher; Zhang, Yan; Vo-Dinh, Tuan

    2007-09-01

    A critical aspect of the use of nanoprobes for intracellular studies in chemical and biological sensing involves a fundamental understanding of their uptake and trajectory in cells. In this study, we describe experiments using surface-enhanced Raman scattering (SERS) spectroscopy and mapping to track cellular uptake of plasmonics-active labeled nanoparticles. Three different Raman-active labels with positive, negative, and neutral charges were conjugated to silver colloidal nanoparticles with the aim of spatially and temporally profiling intracellular delivery and tracking of nanoprobes during uptake in single mammalian cells. 1-D Raman spectra and 2-D Raman mapping are used to identify and locate the probes via their SERS signal intensities. Because Raman spectroscopy is very specific for identification of chemical and molecular signatures, the development of functionalized plasmonics-active nanoprobes capable of exploring intracellular spaces and processes has the ability to provide specific information on the effects of biological and chemical pollutants in the intracellular environment. The results indicate that this technique will allow study of when, where, and how these substances affect cells and living organisms.

  15. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    Science.gov (United States)

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L. PMID:24520716

  16. RESEARCH OF QUALITY, SAFETY AND CONTENT OF BIOLOGICALLY ACTIVE SUBSTANCES OF FOOD RED BEET

    Directory of Open Access Journals (Sweden)

    Gorash E. Y.

    2015-11-01

    Full Text Available The article presents results of research of quality, safety and content of biologically active substances of food red beet roots of Bordo 237 variety, grown in the Krasnodar region in 2014. On the basis of the research carried out it was established, that there are carbohydrates, proteins, organic acids and mineral substances in the food red beet roots of Bordo 237 variety. Food red beet roots are a source of dietary fibers (pectin, protopectin, hemicelluloses and cellulose, possessing antitoxic, antioxidant, radiation protective, cholesterol-lowering and lipid correcting qualities, and also a source of vitamins C, B9 (folic acid and P-active substances, possessing antioxidant properties. Due to high content in food red beet of a complex of microelements – iron, zinc, manganese and copper, and a complex of macro elements – potassium and magnesium, it can be recommended for prophylaxis and treatment of hypertension, atherosclerosis and other diseases of heart and vascular system, and for prophylaxis of iron-deficiency anemia. Thus, the research of quality, safety and content of biologically active substances showed that food red beet roots of Bordo 237 variety are a high quality component ingredient for creation of food products of specialized and functional purpose

  17. TERPENOIDS FROM THE STEM BARK OF JATROPHA PLANTS AND THEIR BIOLOGICAL ACTIVITIES

    Directory of Open Access Journals (Sweden)

    Manggau Marianti

    2011-11-01

    Full Text Available Three terpenoids, including two diterpenes (curcusone B and jatrophone and a triterpene (stigmasterol have beenisolated from the stem bark of Jatropha plants. Curcusone B and stigmasterol were isolated from J. curcas, meanwhilejatrophone and stigmasterol were from J. gossypifolia. The biological activities of these compounds have beenevaluated toward bacteria, fungi and tumour cells. Isolation was carried out in vacuum liqiud cromatography (VLCtechnique with silica gel as an adsorben and some solvents as eluents. The compound structures were determined byspectroscopic methodes i.e. UV-vis, FTIR, NMR (1-D, 2-D and were then compared based on their spectroscopic datawith similiar data from literatures. The biological properties of these compounds were evaluated against four strains ofbacteria (Acetobacter sp., Eschericia coli, Staphylococcus aureus, and Streptococcus sp., 4 strains of fungi (Aspergilusniger, Penicillium sp. (grey, Penicillium sp. (white and Rhizopus sp. and murine leukemia P-388 cells. The resultsshowed that cytotoxic property of curcusone B towards murine leukemia P-388 cells is better than jatrophone andstigmasterol which are IC50 = 0.57 μg/mL (1.93 μM for curcusone B and IC50 > 100 μg/mL for jatrophone andstigmasterol. Meanwhile, activities against bacteria, jatrophone is better than curcusone B and stigmasterol. Jatrophoneis the most active against S. aureus (bacteria with growth inhibition zone 36 mm and A.niger (fungi is 44 mm. Furtherstudy indicated that jatrophone was bacteriostatic against S. aureus.

  18. Human IgE is efficiently produced in glycosylated and biologically active form in lepidopteran cells.

    Science.gov (United States)

    Bantleon, Frank; Wolf, Sara; Seismann, Henning; Dam, Svend; Lorentzen, Andrea; Miehe, Michaela; Jabs, Frederic; Jakob, Thilo; Plum, Melanie; Spillner, Edzard

    2016-04-01

    TH2-biased immunity to parasites and allergens is often associated with increased levels of antigen-specific and high affinity IgE. The role in reacting against minute amounts of target structures and to provoke severe anaphylactic reactions renders IgE a mechanistically outstanding isotype. IgE represents the least abundant serum antibody isotype and exhibits a variety of peculiarities including structure, extensive glycosylation and effector functions. Despite large progress in antibody technologies, however, the recombinant access to isotypes beyond IgG such as IgE still is scarce. The capacity of expression systems has to meet the complex structural conformations and the extensive posttranslational modifications that are indispensable for biological activity. In order to provide alternatives to mammalian expression systems with often low yield and a more complex glycosylation pattern we established the recombinant production of the highly complex IgE isotype in insect cells. Recombinant IgE (rIgE) was efficiently assembled and secreted into the supernatant in yields of >30 mg/L. Purification from serum free medium using different downstream processing methods provided large amounts of rIgE. This exhibited a highly specific interaction with its antigen, therapeutic anti-IgE and its high affinity receptor, the FcεRI. Lectins and glyco-proteomic analyses proved the presence of prototypic insect type N-glycans on the epsilon heavy chain. Mediator release assays demonstrated a biological activity of the rIgE comparable to IgE derived from mammalian cells. In summary the expression in insect cells provides rIgE with variant glycosylation pattern, but retained characteristics and biological activity. Therefore our data contribute to the understanding of functional and structural aspects and potential use of the IgE isotype. PMID:26943931

  19. Complementing xeroderma pigmentosum fibroblasts restore biological activity to UV-damaged DNA

    International Nuclear Information System (INIS)

    UV survival curves of adenovirus 2 using fused complementing xeroderma pigmentosum fibroblast strains as virus hosts showed a component with an inactivation slope identical to that given by normal cells. This component was not observed when the fibroblasts were not fused or when fusions involved strains in the same complementing group. Extrapolation to zero dose indicated that three percent of the viral plaque-forming units had infected cells capable of normal repair; this suggested that three percent of the cells were complementing heterokaryons. Thus, heterokaryons formed from xeroderma pigmentosum fibroblasts belonging to different complementation groups are as capable of restoring biological activity to UV-damaged adenovirus 2 as are normal cells

  20. Tandem Reactions Using Nitrile Imines: Synthesis of Some Novel Heterocyclic Compounds with Expected Biological Activity

    Directory of Open Access Journals (Sweden)

    Adil A. H. Gobouri

    2016-03-01

    Full Text Available New functionalized 7,9-dimethylpyrimido[4,5-d][1,2,4]triazolo[4,3-a]pyrimidine-5,6,8(1H,7H,9H-trione derivatives were synthesized via reaction of the hydrazonoyl halides with 7,8-dihydro-1,3-dimethyl-7-thioxopyrimido[4,5-d]pyrimidine-2,4,5(1H,3H,6Htrione. The biological activity of the products has been evaluated. The mechanism and the regioselectivity of the studied reactions have been discussed.

  1. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid Ali Khan; Nafees Bacha; Bashir Ahmad; Ghosia Lutfullah; Umar Farooq; Russell John Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites. Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions. The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques, for example, homologous and heterologous expressions. This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites;also the biosynthetic pathways of the bio-organic-molecules were reported.

  2. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid; Ali; Khan; Nafees; Bacha; Bashir; Ahmad; Ghosia; Lutfullah; Umar; Farooq; Russell; John; Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites.Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions.The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques,for example,homologous and heterologous expressions.This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites:also the biosynthetic pathways of the bio-organic-molecules were reported.

  3. Bifunctional phase-transfer catalysis in the asymmetric synthesis of biologically active isoindolinones

    Science.gov (United States)

    Di Mola, Antonia; Tiffner, Maximilian; Scorzelli, Francesco; Palombi, Laura; Filosa, Rosanna; De Caprariis, Paolo

    2015-01-01

    Summary New bifunctional chiral ammonium salts were investigated in an asymmetric cascade synthesis of a key building block for a variety of biologically relevant isoindolinones. With this chiral compound in hand, the development of further transformations allowed for the synthesis of diverse derivatives of high pharmaceutical value, such as the Belliotti (S)-PD172938 and arylated analogues with hypnotic sedative activity, obtained in good overall total yield (50%) and high enantiomeric purity (95% ee). The synthetic routes developed herein are particularly convenient in comparison with the current methods available in literature and are particularly promising for large scale applications. PMID:26734105

  4. Oscillatory dynamics of the biologically active zone in in situ bioremediation

    Science.gov (United States)

    Murray, Regan E.; Luce, Benjamin P.

    2002-10-01

    In situ bioremediation is a promising biotechnology for removing aqueous phase contaminants from groundwater. The system of three partial differential equations used to model bioremediation has a traveling wave solution which loses stability in a Hopf bifurcation, giving rise to oscillating fronts. To understand the origin of these oscillations, we construct a simplified model of the biologically active zone, a time delay differential equation with state-dependent delay. Despite its simplicity the new model mimics the dynamical characteristics of the bioremediation equations remarkably well and yields an approximate parametric expression for the oscillation onset point.

  5. Chemistry and Biological Activities of Essential Oils from Melaleuca L. Species

    Directory of Open Access Journals (Sweden)

    Luiz Claudio Almeida Barbosa

    2013-03-01

    Full Text Available Essential oils from species Melaleuca genus, especially M. alternifolia (Maiden & Betche Cheel, have been widely used worldwide in various industries. This review is a contribution to Melaleuca knowledge and describes five important essential oil-producing species and two subspecies of Melaleuca in terms of their essential oil chemical composition, medicinal applications, and leaf morphoanatomy. Some relationships between essential oil composition of these species and important biological activities are presented. Useful parameters for the certification of the essential oils are also highlighted.

  6. Chemistry and biological activities of essential oils from Melaleuca L. species

    Directory of Open Access Journals (Sweden)

    Luiz Claudio Almeida Barbosa

    2013-03-01

    Full Text Available Essential oils from species Melaleuca genus, especially M. alternifolia (Maiden & Betche Cheel, have been widely used worldwide in various industries. This review is a contribution to Melaleuca knowledge and describes five important essential oil-producing species and two subspecies of Melaleuca in terms of their essential oil chemical composition, medicinal applications, and leaf morphoanatomy. Some relationships between essential oil composition of these species and important biological activities are presented. Useful parameters for the certification of the essential oils are also highlighted.

  7. Affinity of Drugs and Small Biologically Active Molecules to Carbon Nanotubes: A Pharmacodynamics and Nanotoxicity Factor?

    OpenAIRE

    Liu, John; Yang, Liu; Hopfinger, Anton J.

    2009-01-01

    The MM-PBSA MD method was used to estimate the affinity, as represented by log kb, of each of a variety of biologically active molecules to a carbon nanotube in an aqueous environment. These ligand-receptor binding simulations were calibrated by first estimating the log kb values for eight ligands to human serum albumin, HSA, whose log kb values have been observed. A validation linear correlation equation was established [R2 = 0.888 Q2 = 0.603] between the observed and estimated log kb values...

  8. Oxidation of Mixed Active Pharmaceutical Ingredients in Biologically Treated Wastewater by ClO2

    OpenAIRE

    Moradas, Gerly; Fick, Jerker; Ledin, Anna; Jansen, Jes la Cour; Andersen, Henrik Rasmus

    2011-01-01

    Biologically treated wastewater containing a mixture of 53 active pharmaceutical ingredients (APIs)was treated with 0-20 mg/l chlorine dioxide (ClO2) solution. Wastewater effluents were taken from two wastewater treatment plants in Sweden, one with (low COD) and one without (high COD) extended nitrogen removal. The removal of the APIs varied from no significant removal at the highest dose of ClO2 (20 mg/l) to 90% removal at a dose of 0.5 mg/l of the oxidant. From the low COD effluent, only 4 ...

  9. Bifunctional phase-transfer catalysis in the asymmetric synthesis of biologically active isoindolinones.

    Science.gov (United States)

    Di Mola, Antonia; Tiffner, Maximilian; Scorzelli, Francesco; Palombi, Laura; Filosa, Rosanna; De Caprariis, Paolo; Waser, Mario; Massa, Antonio

    2015-01-01

    New bifunctional chiral ammonium salts were investigated in an asymmetric cascade synthesis of a key building block for a variety of biologically relevant isoindolinones. With this chiral compound in hand, the development of further transformations allowed for the synthesis of diverse derivatives of high pharmaceutical value, such as the Belliotti (S)-PD172938 and arylated analogues with hypnotic sedative activity, obtained in good overall total yield (50%) and high enantiomeric purity (95% ee). The synthetic routes developed herein are particularly convenient in comparison with the current methods available in literature and are particularly promising for large scale applications. PMID:26734105

  10. BIOLOGICALLY ACTIVE SUBSTANCES OF LAVANDULA X INTERMEDIA EMERIC EX LOISEL (LAMIACEAE)

    OpenAIRE

    A. E. Paliy; V. D. Rabotyagov

    2016-01-01

    Data about qualitative and quantitative composition of biologically active substances (volatile and phenolic compounds) in water- ethanol extract of Lavandula x intermedia Emeric ex Loisel (Lamiaceae) cv. ‘Bora’ bred in Nikitsky Botanical Garden are presented in the article. Concentration of volatile compounds in Lavandin extract was 398 mg/dm3 and 51 components were identified. Main volatiles in Lavandin cv. «Bora» extract were linalyl acetate (36,9%) and linalool (33,5%). Content of phenoli...

  11. The in Vitro Biological Activity of the Brazilian Brown Seaweed Dictyota mertensii against Leishmania amazonensis

    OpenAIRE

    Amanda Silva dos Santos Aliança; Keicyanne Fernanda Lessa dos Anjos; Thiago Nogueira de Vasconcelos Reis; Taciana Mirely Maciel Higino; Maria Carolina Accioly Brelaz-de-Castro; Éverson Miguel Bianco; Regina Celia Bressan Queiroz de Figueiredo

    2014-01-01

    Seaweeds present a wide variety of interesting bioactive molecules. In the present work we evaluated the biological activity of the dichloromethane/methanol (2:1) extract (DME) from the brown seaweed Dictyota mertensii against Leishmania amazonensis and its cytotoxic potential on mammalian cells. The extract showed significant inhibitory effect on the growth of promastigote forms (IC50 = 71.60 μg/mL) and low toxicity against mammalian cells (CC50 = 233.10 μg/mL). The DME was also efficient in...

  12. [Strategy of development, use and evaluation of the efficiency of biologically active food supplements].

    Science.gov (United States)

    Tutel'ian, V A

    1996-01-01

    Analytical reviews discussed of theoretical bases and principal problems in creation, usage and evaluation of biological active food supplements (BAFS)-nutriceuticals and pharmaceuticals. Need of use the BAFS by population is grounded by data on dietary intake showing deficiency of some nutrients. Treatment and prevention of chronic diseases are other important points of BAFS using. Classification of BAFS are presented taking into consideration the resources and regulative effects. Wide using of BAFS among population is grounded by decreasing of food consumption and nutrient intake in dietary intake of modern population. Importance of BAFS in nutrition of generations of XXI century is discussed. PMID:9123918

  13. Laser method of biological activity stimulation of cryoconserved hemopoietic tissue transplant

    Science.gov (United States)

    Khyznyak, Anatoly I.; Lesnik, Svetlana A.; Kogut, Georgy I.; Glukhenkaya, Galina T.

    1994-02-01

    The biological activity of cryoconserved fetal liver cells of mice (FLM) having undergone the He-Ne laser action has been estimated by the efficiency of their transplantation to mice- recipients exposed to lethal x-ray dose. The survival rate 30 days after x-ray exposure for those mice was 75% in comparison with 70% for mice with cryoconserved nonirradiated graft. The trial animals' peripheral blood investigations have been made. The obtained results indicate that the laser method of cryoconserved cells stimulation can help to increase the therapeutic efficiency of mielotransplantation.

  14. Main activities of the Latin American Network of Biological Dosimetry (LBDNet)

    International Nuclear Information System (INIS)

    The Latin American Biological Dosimetry Network (LBDNET) was constituted in 2007 for mutual assistance in case of a radiation emergency in the region supported by IAEA Technical Cooperation Projects RLA/9/054 and RLA/9/061. The main objectives are: a) to strengthen the technical capacities of Biological Dosimetry Services belonging to laboratories existing in the region (Argentine, Brazil, Chile, Cuba, Mexico, Peru and Uruguay) integrated in National Radiological Emergency Plans to provide a rapid biodosimetric response in a coordinated manner between countries and with RANET-IAEA/BioDoseNet-WHO, b) to provide support to other countries in the region lacking Biological Dosimetry laboratories, c) to consolidate the organization of the Latin American Biological Dosimetry Network for mutual assistance. The activities developed include technical meetings for protocols and chromosomal aberration scoring criteria unification, blood samples cultures exercises, chromosomal aberrations analysis at microscope, discussion of statistical methods and specialized software for dose calculation, the intercomparison between laboratory data after the analysis of slides with irradiated material and the intercomparison of the analysis of captured images distributed electronically in the WEB. The last exercise was the transportation of an irradiated human blood sample to countries inside and outside of the region. At the moment the exercises are concluded and they are pending to be published in reference journals. Results obtained show the capacity in the region for a biodosimetric response to a radiological accident. In the future the network will integrate techniques for high dose exposure evaluation and will enhance the interaction with other emergency systems in the region. (authors)

  15. Biological activity of Aronia melanocarpa antioxidants pre-screening in intervention study design

    Directory of Open Access Journals (Sweden)

    Konić-Ristić Aleksandra

    2013-01-01

    Full Text Available Beneficial effects of black chokeberry fruits and juices in health promotion and prevention of chronic diseases shown both in epidemiological and dietary intervention studies are often connected with their antioxidant activity. The aim of this study was to investigate the total phenolics and anthocyanins content, chemical antioxidant activity (DPPH-assay, antioxidant protection in erythrocytes and anti-platelet activity in vitro of three different chokeberry products: commercial and fresh pure chokeberry juice and crude lyophilized water-ethanol extract of chokeberry fruits, as a part of their pre-clinical evaluation. Obtained results indicated the differences in chemical composition and antioxidant activity of investigated products. Cellular effects, including both in vitro anti-platelet and antioxidant effects, were not directly correlated with the chemical antioxidant activity and results obtained in vitro for anti-platelet effects just partially consistent with the results obtained in vivo, in a pilot intervention trial. In conclusion, chemical analyses and in vitro experiments on foods and their bioactives are a valuable pre-screening tool for the evaluation of their biological activity. However, extrapolation of the obtained results to the in vivo settings is often limited and influenced by the bioavailability and metabolism of native dietary compounds or interactions with different molecules within the human body. [Projekat Ministarstva nauke Republike Srbije, br. III41030

  16. Phyto chemical and biological studies of certain plants with potential radioprotective activity

    International Nuclear Information System (INIS)

    One of the promising directions of radiation protection development is the search for natural radioprotective agents.The present work includes: I- Screening of certain edible and medicinal plants growing in Egypt for their radioprotective activities. II- Detailed phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla endl. comprising: A-Phyto chemical screening and proximate analysis. B-Investigation of lipoidal matter. C- Isolation, characterization and structure elucidation of phenolic constituents. D- Isolation, characterization and structure elucidation of saponin constituents. E- Evaluation of radioprotective and antitumor activities. I- Evaluation of potential radioprotective activities of certain herbs: In vivo biological screening designed to investigate the radioprotective role of 70% ethanol extract of 11 different herbals was carried out by measuring the lipid peroxide content, as well as the activities of two antioxidant enzymes; viz glutathione, and superoxide dismutase in blood and liver tissues 1 and 7 days after radiation exposure. II : Phyto chemical and biolo-activity studies of the dried leaves of brassaia actinophylla Endl A : preliminary phyto chemical screening, determination and TLC examination of successive extractives. B : Investigation of lipoidal matter. GLC of unsaponifiable matter (USM)

  17. Effect of UV light on biological activity of tyrosinase in buffer solution

    International Nuclear Information System (INIS)

    It has been reported previously that the UV irradiation of mushroom tyrosinase resulted in a logarithmic loss of biological activity due to the conformational changes in the enzyme molecule. The purpose of the present study was to investigate the factors influencing the radiosensitivity of enzymatic activity. A similar rate of the catalytic activity loss at different pH supported the attribution to the conformational change of the enzyme molecule but not to the active site damage. The presence of potassium chloride and the absence of oxygen resulted in only a little protection against enzyme photoinactivation. Activity survival curve as a function of radiation dose at a higher enzyme concentration showed to have a shoulder which indicate the mutual protection of the enzyme molecules. Copper (II) protected the loss in catalytic activity of enzyme on irradiation. This was explained in terms of scavenging of the hydrated electron by copper (II). Therefore, it was concluded that photoinactivation of this enzyme was mainly due to conformational changes caused by the damage of constitutional aromatic amino acid residues but also partially due to inactivation of copper of enzyme with hydrated electron. (author)

  18. Understanding the Adsorption Interface of Polyelectrolyte Coating on Redox Active Nanoparticles Using Soft Particle Electrokinetics and Its Biological Activity

    Science.gov (United States)

    2015-01-01

    The application of cerium oxide nanoparticles (CNPs) for therapeutic purposes requires a stable dispersion of nanoparticles in a biological environment. The objective of this study is to tailor the properties of polyelectrolyte coated CNPs as a function of molecular weight to achieve a stable and catalytic active dispersion. The coating of CNPs with polyacrylic acid (PAA) has increased the dispersion stability of CNPs and enhanced the catalytic ability. The stability of PAA coating was analyzed using the change in the Gibbs free energy computed by the Langmuir adsorption model. The adsorption isotherms were determined using soft particle electrokinetics which overcomes the challenges presented by other techniques. The change in Gibbs free energy was highest for CNPs coated with PAA of 250 kg/mol indicating the most stable coating. The change in free energy for PAA of 100 kg/mol coated CNPs was 85% lower than the PAA of 250 kg/mol coated CNPs. This significant difference is caused by the strong adsorption of PAA of 100 kg/mol on CNPs. Catalytic activity of PAA-CNPs is assessed by the catalase enzymatic mimetic activity of nanoparticles. The catalase activity was higher for PAA coated CNPs as compared to bare CNPs which indicated preferential adsorption of hydrogen peroxide induced by coating. This indicates that the catalase activity is also affected by the structure of the coating layer. PMID:24673655

  19. Effect of ionizing radiation on the biological activity of activated oncogenes and dormant proto-oncogenes

    International Nuclear Information System (INIS)

    The authors have studied the effect of ionizing radiation on the cloned human activated Ha-ras oncogene, on the Ha-ras gene in integrated form and on the dormant proto-oncogene murine c-mos using the NIH/3T3 transfection system. NIH/3T3 cells were transfected with DNA from the plasmid pT24 carrying the cloned Ha-ras oncogene of the T24 bladder carcinoma cell line. Various individual foci which developed were injected into nude mice. DNA was isolated from tumours, digested with the restriction enzyme Bam HI, electrophoresed on agarose and blotted onto nitrocellulose filter according to Southern. Hybridization with a pT24 probe showed that all the primary foci of transformed cells contained various fragments of the pT24 plasmid indicating that fibroblast transformation had been induced by introduction of the Ha-ras oncogene. (Auth.)

  20. Helicobacter pylori lipopolysaccharide: Biological activities in vitro and in vivo, pathological correlation to human chronic gastritis and peptic ulcer

    OpenAIRE

    Luo, Yi-Hui; Yan, Jie; Mao, Ya-Fei

    2004-01-01

    AIM: To determine the biological activity of Helicobacter pylori (H pylori) lipopolysaccharide (H-LPS) and understand pathological correlation between H-LPS and human chronic gastritis and peptic ulcer.