WorldWideScience

Sample records for biologic product shortages

  1. A production inventory model with deteriorating items and shortages

    OpenAIRE

    Samanta G.P.; Roy Ajanta

    2004-01-01

    A continuous production control inventory model for deteriorating items with shortages is developed. A number of structural properties of the inventory system are studied analytically. The formulae for the optimal average system cost, stock level, backlog level and production cycle time are derived when the deterioration rate is very small. Numerical examples are taken to illustrate the procedure of finding the optimal total inventory cost, stock level, backlog level and production cycle time...

  2. A production inventory model with deteriorating items and shortages

    Directory of Open Access Journals (Sweden)

    Samanta G.P.

    2004-01-01

    Full Text Available A continuous production control inventory model for deteriorating items with shortages is developed. A number of structural properties of the inventory system are studied analytically. The formulae for the optimal average system cost, stock level, backlog level and production cycle time are derived when the deterioration rate is very small. Numerical examples are taken to illustrate the procedure of finding the optimal total inventory cost, stock level, backlog level and production cycle time. Sensitivity analysis is carried out to demonstrate the effects of changing parameter values on the optimal solution of the system.

  3. Mitigation of maximum world oil production: Shortage scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Robert L. [Management Information Services, Inc., 723 Fords Landing Way, Alexandria, VA 22314 (United States)

    2008-02-15

    A framework is developed for planning the mitigation of the oil shortages that will be caused by world oil production reaching a maximum and going into decline. To estimate potential economic impacts, a reasonable relationship between percent decline in world oil supply and percent decline in world GDP was determined to be roughly 1:1. As a limiting case for decline rates, giant fields were examined. Actual oil production from Europe and North America indicated significant periods of relatively flat oil production (plateaus). However, before entering its plateau period, North American oil production went through a sharp peak and steep decline. Examination of a number of future world oil production forecasts showed multi-year rollover/roll-down periods, which represent pseudoplateaus. Consideration of resource nationalism posits an Oil Exporter Withholding Scenario, which could potentially overwhelm all other considerations. Three scenarios for mitigation planning resulted from this analysis: (1) A Best Case, where maximum world oil production is followed by a multi-year plateau before the onset of a monatomic decline rate of 2-5% per year; (2) A Middling Case, where world oil production reaches a maximum, after which it drops into a long-term, 2-5% monotonic annual decline; and finally (3) A Worst Case, where the sharp peak of the Middling Case is degraded by oil exporter withholding, leading to world oil shortages growing potentially more rapidly than 2-5% per year, creating the most dire world economic impacts. (author)

  4. Alternative production methods to face global molybdenum-99 supply shortage.

    Science.gov (United States)

    Lyra, Maria; Charalambatou, Paraskevi; Roussou, Eirini; Fytros, Stavros; Baka, Irini

    2011-01-01

    The sleeping giant of molybdenum-99 ((99)Mo) production is grinding to a halt and the world is wondering how this happened. Fewer than 10 reactors in the world are capable of producing radio nuclides for medicine; approximately 50% of the world's supply of raw material comes from National Research Universal (NRU) reactor in Canada. Many of these reactors, like the NRU, are old and aging. No one of these reactors, and probably not even all of them in combination, can replace the production of NRU. As the healthcare industry faces an aging population and the demand for diagnostic services using (99m)Tc continues to rise, the need for a consistent, reliable supply of (99)Mo has become increasingly important, so alternative methods to produce (99)Mo or even directly (99m)Tc had to be considered to avoid a supply shortage in the coming years. This need guides to the production of (99)Mo by replacing the Highly Enriched Uranium (HEU) target in a nuclear reactor with Low Enriched Uranium (LEU) and furthermore to the use of accelerators for manufacturing (99)Mo or for directly producing (99m)Tc.

  5. A production-inventory model for a deteriorating item with shortage and time dependent demand

    Directory of Open Access Journals (Sweden)

    Khanra S.

    2011-01-01

    Full Text Available In the present article, a production-inventory model is developed over a finite planning horizon where the demand varies linearly with time. The machine production rate is assumed to be finite and constant. Shortages in inventory are allowed and are completely backlogged. The associated constrained minimization problem is numerically solved. Sensitivity analysis is also presented for the given model.

  6. Shanxi Huaze Aluminium & Power Co.,Ltd.Intends to Cut Production Because of Power Shortage

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Located in Shanxi Province,Huaze Aluminium & Power Co.,Ltd.is facing the challenge of power shortage in an era of rising cost in coal and power."We began to cut production as early as in late June,"an insider from the com- pany said on later July.

  7. Replenishment Decision Making with Permissible Shortage, Repairable Nonconforming Products and Random Equipment Failure

    Directory of Open Access Journals (Sweden)

    Huei-Hsin Chang

    2012-09-01

    Full Text Available This study is concerned with replenishment decision making with repairable nonconforming products, backordering and random equipment failure during production uptime. In real world manufacturing systems, due to different factors generation of nonconforming items and unexpected machine breakdown are inevitable. Also, in certain business environments various situations between vendor and buyer, the backordering of shortage stocks sometimes is permissible with extra cost involved. This study incorporates backlogging, random breakdown and rework into a production system, with the objective of determination of the optimal replenishment lot size and optimal level of backordering that minimizes the long-run average system costs. Mathematical modeling along with the renewal reward theorem is employed for deriving system cost function. Hessian matrix equations are used to prove its convexity. Research result can be directly adopted by practitioners in the production planning and control field to assist them in making their own robust production replenishment decision.

  8. A Warehouse Imperfect Fuzzified Production Model with Shortages under Inflationary Conditions

    Directory of Open Access Journals (Sweden)

    S. R. Singh

    2012-01-01

    Full Text Available We develop a two-warehouse production model with imperfect items. Production rate is taken as the linear combination of on-hand inventory and demand, while demand rate is taken as function of time. Most of the researchers consider that the production rate is independent from the demand rate. In this paper we assume production rate as being dependent on the demand rate, and this assumption is more realistic. Shortages are allowed and partially backlogged with time-dependent backlogging rate. Due to different preservation facilities we consider that the deterioration rate is time dependent in own warehouse (OW and Weibull distribution deterioration in rented warehouse (RW. Holding cost in RW is greater than in OW. We developed a fuzzy model with fuzzifying all the costs of the model as triangular fuzzy numbers. The present model is developed in both crisp and fuzzy senses. Finally, numerical example is shown, and sensitivity is also illustrated.

  9. Developing an EPQ Model with Considering Preventive Maintenance, Imperfect Product, Shortage and Work in Process Inventory

    Directory of Open Access Journals (Sweden)

    Akbar Nilipour Tabatabaei

    2013-08-01

    Full Text Available Determination of optimal production lot size has been always noticed by researchers and various models have been proposed in this area. Among the subjects, which has been less considered in these models is machine failure. Obviously, a machine may encounter random failures during its working period and this makes clear the need for applying an appropriate maintenance policy for the machinery. In this paper based on assumptions such as authorized shortage, work in process inventory and possibility of producing defective products with and without the ability to re-work, EPQ model has been investigated and developed to select Preventive Maintenance (PM policy for the machinery. In addition, by minimizing system’s total cost over a period of time, a formula has been presented for determining optimal production lot size and its application has been examined using various numerical examples.

  10. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  11. Strategic analysis of a midstream oil production service provider experiencing a labour shortage

    OpenAIRE

    Iannarelli, Robyn Marie

    2006-01-01

    Recently, Flint Energy Services Limited announced its objective to double revenue in five years by becoming Service Provider of Choice and Employer of Choice. This paper will look at the challenges facing this organization concerning the current shortage of labour in the oil and gas industry of Alberta. For Flint, to double revenue, a Human Resource Strategy is fundamental. Continued success will depend on retention of its knowledge capital as competition for qualified personnel intensifies. ...

  12. Raising labour productivity to solve the paradox; labour shortage in the labour surplus economy; Malawi. (Is targeted fertilizer subsidy the solution?)

    OpenAIRE

    Assefa, Thomas Woldu

    2010-01-01

    Rural Malawian households are facing seasonal labour shortage problem at the peak time of their agricultural season while they are farming in a generally labour surplus economy. This problem is shared by many developing economies and several factors could cause it. Malawi’s economy is characterized by low level of labour productivity which partly accounts for this seasonal labour shortage problem. Thus, it is paramount to increase labour productivity in Malawi as it affects the performance o...

  13. 78 FR 65904 - Permanent Discontinuance or Interruption in Manufacturing of Certain Drug or Biological Products

    Science.gov (United States)

    2013-11-04

    ...(D) Immune Globulin and Hepatitis B Immune Globulin; Coagulation Factor VIIa (Recombinant); and..., or mitigate shortages of these products. b. Vaccines. We are proposing to apply section 506C of the FD&C Act to all biological products, including vaccines. Under section 506C(i)(3)(B) of the FD&C...

  14. Addressing the labour shortage

    Energy Technology Data Exchange (ETDEWEB)

    Riemer, J. [Alberta Economic Development, Edmonton, AB (Canada)

    2005-07-01

    Labour shortages are an increasing concern for companies in Alberta, where the economy is booming. This presentation provided statistics on labour shortages and Alberta's labour force. Between 1995 and 2004, employment in Alberta increased by more than 433,000 jobs, and is predicted to grow, but the natural population increase in the province is only 19,600 per year. It is expected that by 2010, immigrants will account for all growth in Canada's labour force. By 2020, an additional $100 billion of capital will be invested in Alberta, which is competing for labour with every other industrialized economy in the world. This presentation included a series of graphs and charts depicting Canada's national unemployment rate by province; Alberta's unemployment rate; oil sands capital expenditure; regional workforce requirements; and new jobs in the oil sands industry from 1998 to 2010. Employment requirements by trade were also highlighted along with projected labour shortages in 16 different trades. The author recommended that better long-term labour supply and demand models are needed along with rationalization and streamlining of credentials systems. Other solutions to labour shortages may include the removal of barriers to interprovincial and foreign workers; education and training; enhanced productivity; industry collaboration; and maximization of the labour pool to include women and Aboriginal workers. tabs., figs.

  15. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency.

    Science.gov (United States)

    Aizen, Marcelo A; Garibaldi, Lucas A; Cunningham, Saul A; Klein, Alexandra M

    2008-10-28

    There is evidence that pollinators are declining as a result of local and global environmental degradation [1-4]. Because a sizable proportion of the human diet depends directly or indirectly on animal pollination [5], the issue of how decreases in pollinator stocks could affect global crop production is of paramount importance [6-8]. Using the extensive FAO data set [9], we compared 45 year series (1961-2006) in yield, and total production and cultivated area of pollinator-dependent and nondependent crops [5]. We investigated temporal trends separately for the developed and developing world because differences in agricultural intensification, and socioeconomic and environmental conditions might affect yield and pollinators [10-13]. Since 1961, crop yield (Mt/ha) has increased consistently at average annual growth rates of approximately 1.5%. Temporal trends were similar between pollinator-dependent and nondependent crops in both the developed and developing world, thus not supporting the view that pollinator shortages are affecting crop yield at the global scale. We further report, however, that agriculture has become more pollinator dependent because of a disproportionate increase in the area cultivated with pollinator-dependent crops. If the trend toward favoring cultivation of pollinator-dependent crops continues, the need for the service provided by declining pollinators will greatly increase in the near future. PMID:18926704

  16. Drug shortages: a complex health care crisis.

    Science.gov (United States)

    Fox, Erin R; Sweet, Burgunda V; Jensen, Valerie

    2014-03-01

    National tracking of drug shortages began in 2001. However, a significant increase in the number of shortages began in late 2009, with numbers reaching what many have termed crisis level. The typical drug in short supply is a generic product administered by injection. Common classes of drugs affected by shortages include anesthesia medications, antibiotics, pain medications, nutrition and electrolyte products, and chemotherapy agents. The economic and clinical effects of drug shortages are significant. The financial effect of drug shortages is estimated to be hundreds of millions of dollars annually for health systems across the United States. Clinically, patients have been harmed by the lack of drugs or inferior alternatives, resulting in more than 15 documented deaths. Drug shortages occur for a variety of reasons. Generic injectable drugs are particularly susceptible to drug shortages because there are few manufacturers of these products and all manufacturers are running at full capacity. In addition, some manufacturers have had production problems, resulting in poor quality product. Although many suppliers are working to upgrade facilities and add additional manufacturing lines, these activities take time. A number of stakeholder organizations have been involved in meetings to further determine the causes and effects of drug shortages. A new law was enacted in July 2012 that granted the Food and Drug Administration additional tools to address the drug shortage crisis. The future of drug shortages is unknown, but there are hopeful indications that quality improvements and additional capacity may decrease the number of drug shortages in the years to come.

  17. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  18. Biological hydrogen production from phytomass

    Energy Technology Data Exchange (ETDEWEB)

    Bartacek, J.; Zabranska, J. [Inst. of Chemical Technology, Prague (Czech Republic). Dept. of Water Technology and Environmental Engineering

    2004-07-01

    Renewable sources of energy have received wide attention lately. One candidate is hydrogen which has the added advantage of involving no greenhouse gases. Biological hydrogen production from wastewater or biowastes is a very attractive production technique. So far, most studies have concentrated on the use of photosynthetic bacteria. However, dark fermentation has recently become a popular topic of research as it has the advantage of not requiring light energy input, something that limits the performance of the photosynthetic method. While pure cultures have been used in most of the investigations to date, in industrial situations mixed cultures will probably be the norm because of unavoidable contamination. In this investigation the phytomass of amaranth (Amaranthus cruentus L) was used to produce hydrogen. Specific organic loading, organic loading, and pH were varied to study the effect on hydrogen production. 18 refs., 1 tab., 6 figs.

  19. The STEM shortage paradox

    Science.gov (United States)

    Harris, Margaret

    2014-10-01

    The UK is believed to suffer from a shortage of scientists and engineers, yet unemployment rates for new graduates in these fields are high. Does that mean the skills shortage doesn't exist, asks Margaret Harris.

  20. Ph.D. shortage

    Science.gov (United States)

    The late 1990s will see a shortage of Ph.D. graduates, according to the Association of American Universities, Washington, D.C. AAU's new comprehensive study, “The Ph.D. Shortage: The Federal Role,” reports that competition for new Ph.D.s is already intense and can only intensify because demand is greater than supply in both academic and nonacademic markets.Doctoral education plays an increasingly important role in U.S. research and development programs. Students have a pivotal part in doing research and enriching it with new ideas. The AAU report says that graduate students are “major determinants of the creativity and productivity of U.S. academic research, the source of more than 50% of the nation's basic research.’ The market for doctoral education extends beyond the university. In 1985, about 43% of all Ph.D.s employed in this country were working outside higher education; the demand for doctorate recipients in nonacademic sectors continues to grow.

  1. Fuzzy random imperfect production system with shortages%考虑缺货的模糊随机缺陷生产系统

    Institute of Scientific and Technical Information of China (English)

    胡劲松; 季雅萍; 郭彩云; 徐如乾

    2011-01-01

    To settle the imperfect production process, an imperfect production system with fuzzy random deteriorating process under allowable shortage is investigated. The economic production quantity(EPQ) model including shortage cost and fuzzy random rework cost is established. Based on the credibility theory, the expected average cost per unit time is derived, and then the properties of the cost function are revealed. The optimal production length which can minimize the expected average cost is proved to exist and be unique, and the upper and lower bounds of the optimal production time are determined. Bisection method for the optimal production length is designed. Finally, a numerical example is presented to show the effectiveness of the proposed model and illustrate the effects of the shortage cost, rework cost and the defective item ratio on the optimal production policy.%针对不可靠的生产过程,研究了生产故障时间为模糊随机变量且允许缺货的缺陷生产系统.建立含缺货费和模糊随机重修费的经济生产批量模型.基于可信性理论,建立其期望费用模型,揭示了费用函数的性质,并证明了使费用最小的最优生产时间的存在性和唯一性,从而确定了最优生产时间的上下界.基于此,设计了最优生产时间的二分法求解过程.最后通过算例验证了所提出模型的有效性,并分析了缺货费用、重修费用和缺陷产品比例对最优生产策略的影响.

  2. Critical drug shortages: implications for emergency medicine.

    Science.gov (United States)

    Mazer-Amirshahi, Maryann; Pourmand, Ali; Singer, Steven; Pines, Jesse M; van den Anker, John

    2014-06-01

    Prescription drug shortages have become increasingly common and more severe over the past decade. In addition, reported shortages are longer in duration and have had a greater effect on patient care. Some of the causes of current drug shortages are multifactorial, including the consolidation of drug manufacturers, quality problems at production plants that restrict the supply of drugs, and a lack of financial incentives for manufacturers to produce certain products, particularly generic medications. Generic injectable medications are most commonly affected by shortages because the production process is complex and costly for these drugs, and profit margins are often smaller than for branded medications. Many commonly used emergency department (ED) generic injectables have been affected by shortages, including multiple resuscitation and critical care drugs. Several reports have shown that shortages can potentially have major effects on the quality of medical care, including medication errors, treatment delays, adverse outcomes, and increased health care costs. Currently, no published data exist outside of case reports that directly link ED-based drug shortages to overall patient safety events; however, there are several examples in the ED where first-line therapies for life-saving medications have been in short supply, and alternatives have higher rates of adverse events, narrower therapeutic indexes, or both. Aside from increasing notification about shortages, the U.S. Food and Drug Administration has little power to coerce manufacturers to produce medications during a shortage. Therefore, ED providers must learn to mitigate the effects of shortages locally, through active communication with pharmacy staff to identify safe and effective alternatives for commonly used medications when possible. Particularly given the effect on critical care medications, therapeutic alternatives should be clearly communicated to all staff so that providers have easy access to this

  3. Supply shortage; Nachschub gefaehrdet

    Energy Technology Data Exchange (ETDEWEB)

    Pries, P.D.; Rentzing, S.

    2006-08-15

    Producers of solar wafers intend to produce several MW of solar wafers during the next few years. However, indium and tellurium are not in unlimited supply, and prices are rising. A new shortage of raw materials is impending. (orig.)

  4. Exploring the STEM shortage

    Science.gov (United States)

    Gates, S. James, Jr.; Bhulai, Alfred; IcePilot; JoeB

    2014-12-01

    In reply to Margaret Harris' article on "The STEM shortage paradox" (Graduate careers, October pp56-59, http://ow.ly/DXvIq) and a related post on the physicsworld.com blog ("The STEM employment paradox, revisited", http://ow.ly/DXvCl), both of which questioned reports that the UK is suffering from a severe shortage of graduates in science, technology, engineering and mathematics.

  5. Synthetic biology advances for pharmaceutical production

    OpenAIRE

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems.

  6. Drug shortage management in Alabama hospital pharmacies

    Directory of Open Access Journals (Sweden)

    Oliver W. Holmes III, Pharm.D. Candidate 2013

    2013-01-01

    Full Text Available Purpose: The purpose of this study is to identify effective strategies used by Alabama hospitals to manage drug shortages. Moreover, this study aims to determine if there are any relationships among hospital size, utilization of a standard policy for drug shortage management and perceived usefulness of standard procedures for drug shortages.Methods: A paper survey was mailed to 129 hospital pharmacies in Alabama (per the Alabama Hospital Association directory. The survey consisted of 5 demographic questions, questions involving perception of current medication shortages, sources of information about shorted drugs, and frequency of discussion at P&T committee meetings. Most importantly, the survey contained questions about the use of a standard policy for handling drug shortages, the effectiveness of the policy if one is used, and an open-ended question asking the recipient to describe the policy being used.Results: A response rate of 55% was achieved as 71 surveys were completed and returned. Approximately 70% of the survey respondents described the current drug shortage issue as a top priority in their pharmacy department. The pharmacy distributor served as the primary source of information regarding drug shortages for 45% of the facilities. There is a direct relationship between size of hospital and likelihood of utilization of a standard policy or procedure for drug shortage management among the sample. The smaller facilities of the sample perceived their management strategies as effective more frequently than the larger hospitals.Conclusion: Common components of effective management strategies included extensive communication of shortage details and the ability to locate alternative products. The use of portable technology (e.g., Smart phones and tablets along with mobile applications may emerge as popular means for communicating drug product shortage news and updates within a facility or healthcare system.

  7. Synthetic Biology Guides Biofuel Production

    OpenAIRE

    2010-01-01

    The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improve...

  8. 9 CFR 114.6 - Mixing biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mixing biological products. 114.6... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PRODUCTION REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.6 Mixing biological products. Each biological product, when in liquid form,...

  9. Biological production of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianping; Paddock, Troy; Carrieri, Damian; Maness, Pin-Ching; Seibert, Michael

    2016-04-12

    Strains of cyanobacteria that produce high levels of alpha ketoglutarate (AKG) and pyruvate are disclosed herein. Methods of culturing these cyanobacteria to produce AKG or pyruvate and recover AKG or pyruvate from the culture are also described herein. Nucleic acid sequences encoding polypeptides that function as ethylene-forming enzymes and their use in the production of ethylene are further disclosed herein. These nucleic acids may be expressed in hosts such as cyanobacteria, which in turn may be cultured to produce ethylene.

  10. Assessment of the direct cyclotron production of (99m)Tc: An approach to crisis management of (99m)Tc shortage.

    Science.gov (United States)

    Rovais, Mohammad Reza Aboudzadeh; Aardaneh, Khosro; Aslani, Gholamreza; Rahiminejad, Ali; Yousefi, Kamran; Boulouri, Fatemeh

    2016-06-01

    Nowadays, the cyclotron production of technetium-99m ((99m)Tc) has been increased, due to the worldwide (99m)Tc generator shortage. In the present work, an improved strategy for the production of (99m)Tc, using the proton irradiation of the enriched (100)Mo was developed. The performance of this method in terms of the production yield, chemical purity, radiochemical purity, as well as radionuclide purity was evaluated. The average production yield was measured to be 356MBqμA(-1)h(-1). A good agreement was found between the calculated production yield and the experimental one. The radiochemical separation and total recovery yields of (99m)Tc were 92% and 69%, respectively. The radiochemical and the radionuclide purities of the (99m)Tc were 99% and >99.99% at the end of purification, respectively. The results of quality control tests (QC) support the concept that cyclotron-produced (99m)Tc is suitable for preparation of USP-compliant.

  11. Research of new Newsboy products inventory control and its optimization based on fuzzy shortage cost%基于模糊缺货成本的新Newsboy型产品库存控制优化

    Institute of Scientific and Technical Information of China (English)

    刘海军

    2013-01-01

    鉴于新Newsboy型产品库存控制中缺货成本的不确定性,考察了缺货成本对零售商最优订购量的影响,将单位缺货成本视为梯形模糊数,构建了一个基于模糊缺货成本的新Newsboy型产品库存控制优化模型,并运用模糊运算法则对该模型进行了求解.结果表明,当单位缺货成本不能准确估计时,采用模糊单位缺货成本对单位缺货成本的不确定性进行刻画以得出一个订购区间,不仅是可行的,而且也是有效的,最后的数值分析很好地证明了这一点.%Since the uncertainty of the shortage cost in new Newsboy products inventory control, this paper analyzes the influence of the shortage cost on the retailers' optimal order, and unit shortage cost being as trapezoid fuzzy number, constructs a new Newsboy products inventory control model based on the fuzzy shortage cost, solves the model by using fuzzy algorithm. Results show that when the unit shortage cost cannot be accurately estimate, it is not only feasible, but also effective that the uncertainty of unit shortage cost is scaled by fuzzy unit shortage cost in order to draw an order interval, and the numerical analysis proves this point well.

  12. Standardization for natural product synthetic biology.

    Science.gov (United States)

    Zhao, Huimin; Medema, Marnix H

    2016-08-27

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synthetic biology, focusing on standardization of data on biosynthetic pathways and gene clusters, as well as the role of standardization in the process of biosynthetic gene cluster engineering. PMID:27313083

  13. Standardization for natural product synthetic biology

    OpenAIRE

    Zhao, Huimin; Medema, Marnix H.

    2016-01-01

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synthetic biology, focusing on standardization of data on biosynthetic pathways and gene clusters, as well as the role of standardization in the process of biosynthetic gene cluster engineering.

  14. Degradation of fructans and production of propionic acid by Bacteroides thetaiotaomicron are enhanced by shortage of amino acids

    Directory of Open Access Journals (Sweden)

    Signe eAdamberg

    2014-12-01

    Full Text Available Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by the catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory and levan (synthesized using levansucrase from Pseudomonas syringae, two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (DP > 3. Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h, followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of D-lactate (82 ± 33 mmol/gDW occurred in parallel with extensive consumption (up to 17 mmol/gDW of amino acids, especially Ser, Thr and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will be studied in

  15. Standardization for natural product synthetic biology

    NARCIS (Netherlands)

    Zhao, Huimin; Medema, Marnix H.

    2016-01-01

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synt

  16. Teacher Shortages: What We Know. Teacher Shortage Series

    Science.gov (United States)

    Aragon, Stephanie

    2016-01-01

    This brief is the first in a series of reports examining the teacher shortage dilemma. It considers what the research says about teacher shortages and highlights recent state task force findings. Designed to guide state leaders in policy decisions, the briefs that follow examine five strategies states are using to address shortages: (1)…

  17. 9 CFR 114.17 - Rebottling of biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Rebottling of biological products. 114... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PRODUCTION REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.17 Rebottling of biological products. The Administrator...

  18. 9 CFR 114.18 - Reprocessing of biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Reprocessing of biological products..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PRODUCTION REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.18 Reprocessing of biological products. The Administrator...

  19. 9 CFR 114.4 - Identification of biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Identification of biological products... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PRODUCTION REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.4 Identification of biological products. Suitable tags or labels...

  20. Artificial Shortages and Strategic Pricing

    Directory of Open Access Journals (Sweden)

    Partha Gangopadhyay

    2012-01-01

    Full Text Available Problem statement: We consider a monopolist who manipulates the market by artificially creating shortages that result in an increase in current price that, in turn, boosts demand for the product in subsequent periods. The approach is to develop an intertemporal model of pricing strategy for a monopolist. Approach: The postulated pricing strategy creates an incentive for producers to reduce current supply and raise current prices and sacrifice current profits in order to increase future profits. The main problem is to explain the precise mathematical conditions under which the pricing strategy will be chosen by a monopolist. Results: We derive the optimal pricing strategy to argue that the monopolist has an incentive to adopt simple market manipulation that calls forth a close examination of issues concerning deregulation. Conclusion: The paper examines two possible strategies for a typical monopolist-strategic pricing vis-a-vis a myopic pricing. The intuition is that the monopolist can manipulate the market by artificially creating shortages that result in an increase in current price that, in turn, boosts demand for the product in subsequent periods.

  1. 9 CFR 106.1 - Biological products; exemption.

    Science.gov (United States)

    2010-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXEMPTION FOR BIOLOGICAL PRODUCTS USED IN DEPARTMENT PROGRAMS OR UNDER DEPARTMENT CONTROL OR SUPERVISION § 106.1 Biological products... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Biological products; exemption....

  2. South Africa faces coke shortage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    Iscor Vanderbijlpark in South Africa may need to import substantial tonnages of coking coal as a result of increasing quality demands on coke at Vanderbiljpark (to support the recently installed PCI process) as well as the Newcastle works. Availability of coke is not only a problem for the South African steel industry but is a global problem as the production of coke in Western countries has declined over the past three years. A massive expansion in coke-making capacity is happening in China but the Chinese beehive ovens create serious pollution problems. A world shortage of coke of 30 million t/y by 2005 is estimated, rising to over 60 million t/y by 2010 of no new capacity is created. Steelmakers have succeeded in reducing their consumption of coke, by pulverised coal injection by better distribution of components in the furnace shaft and by decline in use of the blast furnace-basic oxygen furnace route, but the industry is still facing serious shortages of coke.

  3. Food Shortage Causes Differential Effects on Body Composition and Tissue-Specific Gene Expression in Salmon Modified for Increased Growth Hormone Production.

    Science.gov (United States)

    Abernathy, Jason; Panserat, Stéphane; Welker, Thomas; Plagne-Juan, Elisabeth; Sakhrani, Dionne; Higgs, David A; Audouin, Florence; Devlin, Robert H; Overturf, Ken

    2015-12-01

    Growth hormone (GH) transgenic salmon possesses markedly increased metabolic rate, appetite, and feed conversion efficiency, as well as an increased ability to compete for food resources. Thus, the ability of GH-transgenic fish to withstand periods of food deprivation as occurs in nature is potentially different than that of nontransgenic fish. However, the physiological and genetic effects of transgenic GH production over long periods of food deprivation remain largely unknown. Here, GH-transgenic coho salmon (Oncorhynchus kisutch) and nontransgenic, wild-type coho salmon were subjected to a 3-month food deprivation trial, during which time performance characteristics related to growth were measured along with proximate compositions. To examine potential genetic effects of GH-transgenesis on long-term food deprivation, a group of genes related to muscle development and liver metabolism was selected for quantitative PCR analysis. Results showed that GH-transgenic fish lose weight at an increased rate compared to wild-type even though proximate compositions remained relatively similar between the groups. A total of nine genes related to muscle physiology (cathepsin, cee, insulin-like growth factor, myostatin, murf-1, myosin, myogenin, proteasome delta, tumor necrosis factor) and five genes related to liver metabolism (carnitine palmitoyltransferase, fatty acid synthase, glucose-6-phosphatase, glucose-6-phosphate dehydrogenase, glucokinase) were shown to be differentially regulated between GH-transgenic and wild-type coho salmon over time. These genetic and physiological responses assist in identifying differences between GH-transgenic and wild-type salmon in relation to fitness effects arising from elevated growth hormone during periods of long-term food shortage.

  4. 9 CFR 112.6 - Packaging biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Packaging biological products. 112.6... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PACKAGING AND LABELING § 112.6 Packaging biological products. (a) Each multiple-dose final container of a biological...

  5. Labor Shortage Looming Ahead?

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The large quantity of cheap labor resources has long been regarded as one of the important factors that make it possible for China’s economy to maintain rapid growth. However, Cai Fang, Director of the Institute of Population and Labor Economics, Chinese Academy of Social Sciences, warned at a lecture in early May that China’s surplus rural labor force is not as large as thought and that China will soon experience the transition from labor surplus to labor shortage. He predicted that the turning point would occur probably in 2009. In response, Hou Dongmin, Director of the Institute of Population, Resources and Environment of Renmin University of China, and Deng Yuwen, researcher at the China Society of Economic Reform, analyze the expected impacts of transition on China’s future growth mode (in sequence).

  6. Economic Impacts of Power Shortage

    Directory of Open Access Journals (Sweden)

    Peng Ou

    2016-07-01

    Full Text Available The electricity industry is a basic industry of the national economy. It has experienced several large-scale power shortages, hard power shortage and soft power shortage, which have brought a great threat to China’s sustainable economic development. To solve this problem better, it is necessary to make a quantitative assessment of the economic impacts of power shortage. The CGE model is commonly used for simulating economic shocks and policy effects. It describes supply, demand and equilibrium in different markets by simulating the economic mechanism through a set of equations. Once changed, the exogenous variables will affect a certain part of the system and then the whole system, leading to changes in quantities and prices. The equilibrium state will also change from one to another. A static CGE model is built in this paper, and the Social Accounting Matrix (SAM of eight sectors of China in 2007 is compiled, in order to simulate the economic impacts of hard power shortage and soft power shortage. Simulation results show that the negative effects of power shortage on economic development are very significant, and the effects vary in different sectors. Especially, under the background of hard power shortage, the industrial sector suffers most. The economic cost of power shortage is considerable, and the main reason for it is the specific administrative pricing system in China. The low electricity price in the long term will lead to insufficient construction and hard power shortage; moreover, that in the short run would result in soft power shortage. In order to solve the problem of power shortage completely, power system reform is inevitable.

  7. Global Shortage of Fresh Water

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>阅读下表。以Global Shortage of Fresh Water为题写一篇短文。词数:100—120学生习作:Global Shortage of Fresh Water Fresh water seems ineverywhere,in rivers,lakes,wells as well as rain,which make some people think that we can’t use up water.

  8. Systems biology of microbial exopolysaccharides production

    Directory of Open Access Journals (Sweden)

    Ozlem eAtes

    2015-12-01

    Full Text Available Exopolysaccharides (EPS produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture and medicine. EPSs are mainly associated with high-value applications and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore a systems-based approach constitutes an important step towards understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan and dextran.

  9. Biological production of ethanol from coal

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H[sub 2], CO[sub 2], CH[sub 4] and sulfur gases, is first produced using traditional gasification techniques. The CO, CO[sub 2] and H[sub 2] are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the wild strain'' produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  10. 9 CFR 103.1 - Preparation of experimental biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Preparation of experimental biological..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXPERIMENTAL PRODUCTION, DISTRIBUTION, AND EVALUATION OF BIOLOGICAL PRODUCTS PRIOR TO LICENSING § 103.1 Preparation...

  11. 9 CFR 103.3 - Shipment of experimental biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Shipment of experimental biological..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS EXPERIMENTAL PRODUCTION, DISTRIBUTION, AND EVALUATION OF BIOLOGICAL PRODUCTS PRIOR TO LICENSING § 103.3 Shipment...

  12. A note on models for a family of products with shelf life, and production and shortage costs in emerging markets (Short Communication

    Directory of Open Access Journals (Sweden)

    Leopoldo Eduardo Cárdenas-Barrón

    2012-01-01

    Full Text Available Recently, the economic lot scheduling problem (ELSP with common cycle time and shelf life restrictions has attracted the attention of several researchers. In this paper, a comparative study of solutions given by Xu and Sarker (2003 [Computers & Operations Research 30 (6, 925-938] with the results given by Viswanathan and Goyal (2000 [International Journal of Production Research, 38 (4, 829-836] are presented. Additionally, the paper makes some observations about two mathematical expressions, which contain a technical shortcoming.

  13. Competence building capacity shortage

    International Nuclear Information System (INIS)

    The objective of the project 'Competence Building Capacity Shortage' has been 'to increase knowledge about central approaches aimed at solving the peaking capacity problem in restructured power systems'. With respect to reserve markets, a model was developed in the project to analyze the relations between reserve requirements and prices in the spot and reserve markets respectively. A mathematical model was also developed and implemented, which also includes the balance market, and has a good ability to predict the relations between these markets under various assumptions. With some further development, this model can be used fore realistic analyses of these markets in a Nordic context. It was also concluded that certain system requirements with respect to frequency and time deviation can be relaxed without adverse effects. However, the requirements to system bias, Frequency Activated Operating Reserves and Frequency Activated Contingency Reserves cannot be relaxed, the latter because they must cover the dimensioning fault in the system. On the other hand, Fast Contingency Reserves can be reduced by removing requirements to national balances. Costs can furthermore be reduced by increasingly adapting a Nordic as opposed to national approach. A model for stepwise power flow was developed in the project, which is especially useful to analyze slow power system dynamics. This is relevant when analysing the effects of reserve requirements. A model for the analysis of the capacity balance in Norway and Sweden was also developed. This model is useful for looking at the future balance under various assumptions regarding e.g. weather conditions, demand growth and the development of the generation system. With respect to the present situation, if there is some price flexibility on the demand side and system operators are able to use reserves from the demand side, the probability for load shedding during the peak load hour is close to zero under the weather conditions after

  14. Competence building capacity shortage

    Energy Technology Data Exchange (ETDEWEB)

    Doorman, Gerard; Wangensteen, Ivar; Bakken, Bjoern

    2005-02-01

    The objective of the project 'Competence Building Capacity Shortage' has been 'to increase knowledge about central approaches aimed at solving the peaking capacity problem in restructured power systems'. With respect to reserve markets, a model was developed in the project to analyze the relations between reserve requirements and prices in the spot and reserve markets respectively. A mathematical model was also developed and implemented, which also includes the balance market, and has a good ability to predict the relations between these markets under various assumptions. With some further development, this model can be used fore realistic analyses of these markets in a Nordic context. It was also concluded that certain system requirements with respect to frequency and time deviation can be relaxed without adverse effects. However, the requirements to system bias, Frequency Activated Operating Reserves and Frequency Activated Contingency Reserves cannot be relaxed, the latter because they must cover the dimensioning fault in the system. On the other hand, Fast Contingency Reserves can be reduced by removing requirements to national balances. Costs can furthermore be reduced by increasingly adapting a Nordic as opposed to national approach. A model for stepwise power flow was developed in the project, which is especially useful to analyze slow power system dynamics. This is relevant when analysing the effects of reserve requirements. A model for the analysis of the capacity balance in Norway and Sweden was also developed. This model is useful for looking at the future balance under various assumptions regarding e.g. weather conditions, demand growth and the development of the generation system. With respect to the present situation, if there is some price flexibility on the demand side and system operators are able to use reserves from the demand side, the probability for load shedding during the peak load hour is close to zero under the weather

  15. Designated Health Professional Shortage Areas

    Data.gov (United States)

    U.S. Department of Health & Human Services — Health Professional Shortage Areas (HPSAs) Data Download makes data and information concerning Designated HPSAs readily available to our users in a one-stop...

  16. Biological treatment of shrimp production wastewater.

    Science.gov (United States)

    Boopathy, Raj

    2009-07-01

    Over the last few decades, there has been an increase in consumer demand for shrimp, which has resulted in its worldwide aquaculture production. In the United States, the stringent enforcement of environmental regulations encourages shrimp farmers to develop new technologies, such as recirculating raceway systems. This is a zero-water exchange system capable of producing high-density shrimp yields. The system also produces wastewater characterized by high levels of ammonia, nitrate, nitrite, and organic carbon, which make waste management costs prohibitive. Shrimp farmers have a great need for a waste management method that is effective and economical. One such method is the sequencing batch reactor (SBR). A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same reactor to take the place of multiple reactors in a conventional treatment system. The SBR accomplishes equalization, aeration, and clarification in a timed sequence in a single reactor system. This is achieved through reactor operation in sequences, which includes fill, react, settle, decant, and idle. A laboratory scale SBR was successfully operated using shrimp aquaculture wastewater. The wastewater contained high concentrations of carbon and nitrogen. By operating the reactors sequentially, namely, aerobic and anoxic modes, nitrification and denitrification were achieved as well as removal of carbon. Ammonia in the waste was nitrified within 4 days. The denitrification of nitrate was achieved by the anoxic process, and 100% removal of nitrate was observed within 15 days of reactor operation. PMID:19396482

  17. Biological hydrogen production using a membrane bioreactor.

    Science.gov (United States)

    Oh, Sang-Eun; Iyer, Prabha; Bruns, Mary Ann; Logan, Bruce E

    2004-07-01

    A cross-flow membrane was coupled to a chemostat to create an anaerobic membrane bioreactor (MBR) for biological hydrogen production. The reactor was fed glucose (10,000 mg/L) and inoculated with a soil inoculum heat-treated to kill non-spore-forming methanogens. Hydrogen gas was consistently produced at a concentration of 57-60% in the headspace under all conditions. When operated in chemostat mode (no flow through the membrane) at a hydraulic retention time (HRT) of 3.3 h, 90% of the glucose was removed, producing 2200 mg/L of cells and 500 mL/h of biogas. When operated in MBR mode, the solids retention time (SRT) was increased to SRT = 12 h producing a solids concentration in the reactor of 5800 mg/L. This SRT increased the overall glucose utilization (98%), the biogas production rate (640 mL/h), and the conversion efficiency of glucose-to-hydrogen from 22% (no MBR) to 25% (based on a maximum of 4 mol-H(2)/mol-glucose). When the SRT was increased from 5 h to 48 h, glucose utilization (99%) and biomass concentrations (8,800 +/- 600 mg/L) both increased. However, the biogas production decreased (310 +/- 40 mL/h) and the glucose-to-hydrogen conversion efficiency decreased from 37 +/- 4% to 18 +/- 3%. Sustained permeate flows through the membrane were in the range of 57 to 60 L/m(2) h for three different membrane pore sizes (0.3, 0.5, and 0.8 microm). Most (93.7% to 99.3%) of the membrane resistance was due to internal fouling and the reversible cake resistance, and not the membrane itself. Regular backpulsing was essential for maintaining permeate flux through the membrane. Analysis of DNA sequences using ribosomal intergenic spacer analysis indicated bacteria were most closely related to members of Clostridiaceae and Flexibacteraceae, including Clostridium acidisoli CAC237756 (97%), Linmingia china AF481148 (97%), and Cytophaga sp. MDA2507 AF238333 (99%). No PCR amplification of 16s rRNA genes was obtained when archaea-specific primers were used.

  18. Biological control and sustainable food production

    NARCIS (Netherlands)

    Bale, J.S.; Lenteren, van J.C.; Bigler, F.

    2008-01-01

    The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control). Augmentati

  19. Uranium: abundance or shortage?

    Energy Technology Data Exchange (ETDEWEB)

    Steyn, J. [Energy Resources International, Inc., Washington, DC (United States)

    1997-09-01

    With large uranium stockpiles, particularly in the form of HEU, continuing to be the dominant factor in the world uranium market, buyers should be able to enter into attractive long-term commitments for the future. Nevertheless, producers are now able to see forward with some degree of certainty and are expected to meet their planned levels of production and demand. (author).

  20. 9 CFR 115.2 - Inspections of biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Inspections of biological products. 115.2 Section 115.2 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS...

  1. Correcting India’s Chronic Shortage of Drug Inspectors to Ensure the Production and Distribution of Safe, High-Quality Medicines

    Directory of Open Access Journals (Sweden)

    Abhay B. Kadam

    2016-09-01

    Full Text Available Background Good drug regulation requires an effective system for monitoring and inspection of manufacturing and sales units. In India, despite widespread agreement on this principle, ongoing shortages of drug inspectors have been identified by national committees since 1975. The growth of India’s pharmaceutical industry and its large export market makes the problem more acute. Methods The focus of this study is a case study of Maharashtra, which has 29% of India’s manufacturing units and 38% of its medicines exports. India’s regulations were reviewed, comparing international, national and state inspection norms with the actual number of inspectors and inspections. Twenty-six key informant interviews were conducted to ascertain the causes of the shortfall. Results In 2009-2010, 55% of the sanctioned posts of drug inspectors in Maharashtra were vacant. This resulted in a shortfall of 83%, based on the Mashelkar Committee’s recommendations. Less than a quarter of the required inspections of manufacturing and sales units were undertaken. The Indian Drugs and Cosmetics Act and its Rules and Regulations make no provisions for drug inspectors and workforce planning norms, despite the growth and increasing complexity of India’s pharmaceutical industry. Conclusion The Maharashtra Food and Drug Administration (FDA falls short of the Mashelkar Committee’s recommended workforce planning norms. Legislation and political and operational support are required to produce needed changes.

  2. Correcting India’s Chronic Shortage of Drug Inspectors to Ensure the Production and Distribution of Safe, High-Quality Medicines

    Science.gov (United States)

    Kadam, Abhay B.; Maigetter, Karen; Jeffery, Roger; Mistry, Nerges F.; Weiss, Mitchell G.; Pollock, Allyson M.

    2016-01-01

    Background: Good drug regulation requires an effective system for monitoring and inspection of manufacturing and sales units. In India, despite widespread agreement on this principle, ongoing shortages of drug inspectors have been identified by national committees since 1975. The growth of India’s pharmaceutical industry and its large export market makes the problem more acute. Methods: The focus of this study is a case study of Maharashtra, which has 29% of India’s manufacturing units and 38% of its medicines exports. India’s regulations were reviewed, comparing international, national and state inspection norms with the actual number of inspectors and inspections. Twenty-six key informant interviews were conducted to ascertain the causes of the shortfall. Results: In 2009-2010, 55% of the sanctioned posts of drug inspectors in Maharashtra were vacant. This resulted in a shortfall of 83%, based on the Mashelkar Committee’s recommendations. Less than a quarter of the required inspections of manufacturing and sales units were undertaken. The Indian Drugs and Cosmetics Act and its Rules and Regulations make no provisions for drug inspectors and workforce planning norms, despite the growth and increasing complexity of India’s pharmaceutical industry. Conclusion: The Maharashtra Food and Drug Administration (FDA) falls short of the Mashelkar Committee’s recommended workforce planning norms. Legislation and political and operational support are required to produce needed changes PMID:27694680

  3. Correcting India’s Chronic Shortage of Drug Inspectors to Ensure the Production and Distribution of Safe, High-Quality Medicines

    Science.gov (United States)

    Kadam, Abhay B.; Maigetter, Karen; Jeffery, Roger; Mistry, Nerges F.; Weiss, Mitchell G.; Pollock, Allyson M.

    2016-01-01

    Background: Good drug regulation requires an effective system for monitoring and inspection of manufacturing and sales units. In India, despite widespread agreement on this principle, ongoing shortages of drug inspectors have been identified by national committees since 1975. The growth of India’s pharmaceutical industry and its large export market makes the problem more acute. Methods: The focus of this study is a case study of Maharashtra, which has 29% of India’s manufacturing units and 38% of its medicines exports. India’s regulations were reviewed, comparing international, national and state inspection norms with the actual number of inspectors and inspections. Twenty-six key informant interviews were conducted to ascertain the causes of the shortfall. Results: In 2009-2010, 55% of the sanctioned posts of drug inspectors in Maharashtra were vacant. This resulted in a shortfall of 83%, based on the Mashelkar Committee’s recommendations. Less than a quarter of the required inspections of manufacturing and sales units were undertaken. The Indian Drugs and Cosmetics Act and its Rules and Regulations make no provisions for drug inspectors and workforce planning norms, despite the growth and increasing complexity of India’s pharmaceutical industry. Conclusion: The Maharashtra Food and Drug Administration (FDA) falls short of the Mashelkar Committee’s recommended workforce planning norms. Legislation and political and operational support are required to produce needed changes

  4. Cholesterol oxidation products and their biological importance.

    Science.gov (United States)

    Kulig, Waldemar; Cwiklik, Lukasz; Jurkiewicz, Piotr; Rog, Tomasz; Vattulainen, Ilpo

    2016-09-01

    The main biological cause of oxysterols is the oxidation of cholesterol. They differ from cholesterol by the presence of additional polar groups that are typically hydroxyl, keto, hydroperoxy, epoxy, or carboxyl moieties. Under typical conditions, oxysterol concentration is maintained at a very low and precisely regulated level, with an excess of cholesterol. Like cholesterol, many oxysterols are hydrophobic and hence confined to cell membranes. However, small chemical differences between the sterols can significantly affect how they interact with other membrane components, and this in turn can have a substantial effect on membrane properties. In this spirit, this review describes the biological importance and the roles of oxysterols in the human body. We focus primarily on the effect of oxysterols on lipid membranes, but we also consider other issues such as enzymatic and nonenzymatic synthesis processes of oxysterols as well as pathological conditions induced by oxysterols. PMID:26956952

  5. COTTAGE CHEESE PRODUCTS ENRICHED BIOLOGICALLY ACTIVE ADDITIVES

    OpenAIRE

    Салкинбаева Г. Т.; Байбалинова Г. М.; Смаилова М. Н.

    2015-01-01

    This article deals with a reliable means of improving the structure of supply and optimum balance of the diet of the population, is the use of biologically active additives in a daily diet of the people to food dietary supplements. Supplements such advantages as an expression of food oriented, high nutritional density, homogeneity, easy preparation and forms of transport, good taste allow us to use them successfully in catering.

  6. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    OpenAIRE

    A. S. Kayshev; N. S. Kaysheva

    2014-01-01

    A content of biologically active compounds (BAC) with signified pharmacological activity in distillers grains was proved. It is prospective for applications of these grains as a raw material resource of pharmaceuticals. A composition of BAC distillers grains received from wheat, corn, barley, millet at different spirit enterprises which use hydro fermentative grain processing. Considering polydispersity of distillers grains they were separated on solid and liquid phases preliminary. Physical ...

  7. Production and consumption of biological particles in temperate tidal estuaries

    NARCIS (Netherlands)

    Heip, C.H.R.; Goosen, N.K.; Herman, P.M.J.; Kromkamp, J.C.; Middelburg, J.J.; Soetaert, K.E.R.

    1995-01-01

    The question is reviewed whether a balance exists between production and consumption of biological particles in temperate tidal estuaries and what the relationships are between the magnitude of production and consumption processes and system carbon metabolism. The production terms considered are pri

  8. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  9. Recent Developments in Biological Hydrogen Production Processes

    Directory of Open Access Journals (Sweden)

    DEBABRATA DAS

    2008-07-01

    Full Text Available Biohydrogen production technology can utilize renewable energy sources like biomass for the generation of hydrogen, the cleanest form of energy for the use of mankind. However, major constraints to the commercialization of these processes include lower hydrogen yields and rates of hydrogen production. To overcome these bottlenecks intensive research work has already been carried out on the advancement of these processes such as the development of genetically modified microorganisms, the improvement of the bioreactor design, molecular engineering of the key enzyme hydrogenases, the development of two stage processes, etc. The present paper explores the recent advancements that have been made till date and also presents the state of the art in molecular strategies to improve the hydrogen production.

  10. Electricity-mediated biological hydrogen production

    NARCIS (Netherlands)

    Geelhoed, J.S.; Hamelers, H.V.M.; Stams, A.J.M.

    2010-01-01

    Anaerobic bacteria have the ability to produce electricity from the oxidation of organic substrates. They also may use electricity to support chemical reactions that are energetically unfavorable. In the fermentation of sugars, hydrogen can be formed as one of the main products. However, a yield of

  11. Biological production of liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  12. Synthetic biology and microbioreactor platforms for programmable production of biologics at the point-of-care

    Science.gov (United States)

    Perez-Pinera, Pablo; Han, Ningren; Cleto, Sara; Cao, Jicong; Purcell, Oliver; Shah, Kartik A.; Lee, Kevin; Ram, Rajeev; Lu, Timothy K.

    2016-01-01

    Current biopharmaceutical manufacturing systems are not compatible with portable or distributed production of biologics, as they typically require the development of single biologic-producing cell lines followed by their cultivation at very large scales. Therefore, it remains challenging to treat patients in short time frames, especially in remote locations with limited infrastructure. To overcome these barriers, we developed a platform using genetically engineered Pichia pastoris strains designed to secrete multiple proteins on programmable cues in an integrated, benchtop, millilitre-scale microfluidic device. We use this platform for rapid and switchable production of two biologics from a single yeast strain as specified by the operator. Our results demonstrate selectable and near-single-dose production of these biologics in system with analytical, purification and polishing technologies could lead to a small-scale, portable and fully integrated personal biomanufacturing platform that could advance disease treatment at point-of-care. PMID:27470089

  13. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    Directory of Open Access Journals (Sweden)

    A. S. Kayshev

    2014-01-01

    Full Text Available A content of biologically active compounds (BAC with signified pharmacological activity in distillers grains was proved. It is prospective for applications of these grains as a raw material resource of pharmaceuticals. A composition of BAC distillers grains received from wheat, corn, barley, millet at different spirit enterprises which use hydro fermentative grain processing. Considering polydispersity of distillers grains they were separated on solid and liquid phases preliminary. Physical and chemical characteristics of distillers grains' liquid base were identified. Elementary composition of distillers grains is signified by active accumulation of biogenic elements (phosphorus, potassium, magnesium, calcium, sodium, iron and low content of heavy metals. The solid phase of distillers grains accumulates carbon, hydrogen and nitrogen in high concentration. The liquid phase of distillers grains contains: proteins and amino acids (20-46%, reducing sugars (5,6%-17,5%, galacturonides (0,8-1,4%, ascorbic acid (6,2-11,4 mg%. The solid base of distillers grains contains: galacturonides (3,4-5,3%, fatty oil (8,4-11,1% with predomination of essential fatty acids, proteins and amino acids (2,1-2,5%, flavonoids (0,4-0,9%, tocopherols (3,4-7,7 mg%. A method of complex processing of distillers grains based on application of membrane filtering of liquid phase and liquid extraction by inorganic and organic solvents of solid phase, which allows almost full extraction of the sum of biologically active compounds (BAC from liquid phase (Biobardin BM and solid phase (Biobardin UL. Biobardin BM comprises the following elements: proteins and amino acids (41-69%, reducing sugars (3,5-15,6%, fatty oil (0,2-0,3%, flavonoids (0,2-0,7%, ascorbic acid (17-37 mg%. Biobardin UL includes: oligouronids (16,4-19,5%, proteins and amino acids (11-21%, fatty oil (3,2-4,9% which includes essential acids; flavonoids (0,6-1,5%, tocopherols (6,6-10,2 mg%, carotinoids (0,13-0,21 mg

  14. Superintendents' Perceptions of the Principal Shortage

    Science.gov (United States)

    Pijanowski, John C.; Hewitt, Paul M.; Brady, Kevin P.

    2009-01-01

    The research literature on the principal shortage is inconsistent regarding the actual scope of the shortage and a clear articulation of factors contributing to the successful recruitment and retention of today's school leaders. Often, critical data related to the principal shortage are ignored, including the number of younger principals…

  15. Pollinator shortage and global crop yield

    Science.gov (United States)

    Aizen, Marcelo A; Cunningham, Saul A; Klein, Alexandra M

    2009-01-01

    A pollinator decline caused by environmental degradation might be compromising the production of pollinator-dependent crops. In a recent article, we compared 45 year series (1961–2006) in yield, production and cultivated area of pollinator-dependent and nondependent crop around the world. If pollinator shortage is occurring globally, we expected a lower annual growth rate in yield for pollinator-dependent than nondependent crops, but a higher growth in cultivated area to compensate the lower yield. We have found little evidence for the first “yield” prediction but strong evidence for the second “area” prediction. Here, we present an additional analysis to show that the first and second predictions are both supported for crops that vary in dependency levels from nondependent to moderate dependence (i.e., up to 65% average yield reduction without pollinators). However, those crops for which animal pollination is essential (i.e., 95% average yield reduction without pollinators) showed higher growth in yield and lower expansion in area than expected in a pollination shortage scenario. We propose that pollination management for highly pollinator-dependent crops, such us renting hives or hand pollination, might have compensated for pollinator limitation of yield. PMID:19704865

  16. Isobutanol: Supply Shortage Lasts for Long in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Supply Shortage of Feedstock In recent years, with the fast increasing demand from downstream sectors and the extension of new facilities for producing oxo-alcohol, China has boosted its production capacity of isobutanol to some extent. In 2006 China had a production capacity of 81 500 t/a with an output of around 60 000 tons.

  17. Romanian Tourism Facing Labour Shortage

    Directory of Open Access Journals (Sweden)

    Iulia Chivu

    2008-10-01

    Full Text Available The purpose of this paper is to present the main tendencies in the Romanian tourism and their impact on the labour market. The first partof the paper presents the main tendencies in travel and tourism sector. The second part of the paper focuses on the challenges of the labour market inthe hotel sector, highlighting essential aspect related to the declining of population, shortage of the workforce, emigration, financial compensations.The final part exposes few ideas and possible suggestions that can be applied into the travel and tourism sector in order to better manage the multipledimensions of growth.

  18. ROMANIAN TOURISM FACING LABOUR SHORTAGE

    Directory of Open Access Journals (Sweden)

    Cristina Simon

    2008-05-01

    Full Text Available The purpose of this paper is to present the main trends în the Romanian tourism sector andtheir impact on the labour market. The first part of the paper presents the main trends în the travel and tourismsector. The second part of the paper focuses on the challenges of the labour market în the hotel sector,highlighting essential aspect related to the declining of population, shortage of the workforce, emigration,financial compensations. The final part exposes few ideas and possible suggestions that can be applied into thetravel and tourism sector în order to better manage the multiple dimensions of growth.

  19. MILK KEFIR: COMPOSITION, MICROBIAL CULTURES, BIOLOGICAL ACTIVITIES AND RELATED PRODUCTS

    Directory of Open Access Journals (Sweden)

    Maria Rosa Prado

    2015-10-01

    Full Text Available In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance.

  20. Ionizing radiation for sterilization of medical products and biological tissues

    International Nuclear Information System (INIS)

    The article reviews the deliberations of the International Symposium on Ionizing Radiation for Sterilization of Medical Products and Biological Tissues which was held during 9-13 December 1974 under the auspices of the IAEA at the Bhabha Atomic Research Centre, Bombay. 42 papers were presented in the following broad subject areas: (1) Microbiological Control aspects of radiation sterilization, (2) Dosimetry aspects of radiation sterilization practices, (3) Effects of sterilizing radiation dose on the constituents of medical products, (4) Application of radiation sterilization of medical products of biological origin, (5) Technological aspects of radiation sterilization facilities, (6) Radiation sterilization of pharmaceutical substances, (7) Reports on current status of radiation sterilization of medical products in IAEA member states and (8) Working group discussion on the revision of the IAEA recommended code of practice for radiation sterilization of medical products. (S.K.K.)

  1. Assessment of biological Hydrogen production processes: A review

    Science.gov (United States)

    Najafpour, G. D.; Shahavi, M. H.; Neshat, S. A.

    2016-06-01

    Energy crisis created a special attention on renewable energy sources. Among these sources; hydrogen through biological processes is well-known as the most suitable and renewable energy sources. In terms of process yield, hydrogen production from various sources was evaluated. A summary of microorganisms as potential hydrogen producers discussed along with advantages and disadvantages of several bioprocesses. The pathway of photo-synthetic and dark fermentative organisms was discussed. In fact, the active enzymes involved in performance of biological processes for hydrogen generation were identified and their special functionalities were discussed. The influential factors affecting on hydrogen production were known as enzymes assisting liberation specific enzymes such as nitrogenase, hydrogenase and uptake hydrogenase. These enzymes were quite effective in reduction of proton and form active molecular hydrogen. Several types of photosynthetic systems were evaluated with intension of maximum hydrogen productivities. In addition dark fermentative and light intensities on hydrogen productions were evaluated. The hydrogen productivities of efficient hydrogen producing strains were evaluated.

  2. India's Worsening Uranium Shortage

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Michael M.

    2007-01-15

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  3. Natural product synthesis at the interface of chemistry and biology.

    Science.gov (United States)

    Hong, Jiyong

    2014-08-11

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences.

  4. Technical suitability mapping of feedstocks for biological hydrogen production

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Karaoglanoglou, L.S.; Koullas, D.P.; Bakker, R.R.; Claassen, P.A.M.; Koukios, E.G.

    2015-01-01

    The objective of this work was to map and compare the technical suitability of different raw materials for biological hydrogen production. Our model was based on hydrogen yield potential, sugar mobilization efficiency, fermentability and coproduct yield and value. The suitability of the studied r

  5. Geochemistry and isotope evolution of groundwater flow and recharge from the uranium production center in Brazilian semi-arid region (Caetite-BA, Brazil) - Towards sustainability or shortage?

    International Nuclear Information System (INIS)

    The semi-arid region of the Northeast of Brazil is characterized by a lack of superficial waters due to the low pluviometric precipitation and high evaporation rates. Owing to these adverse climatic conditions, intense pressure is being put on the use of groundwater resources. However, there is still insufficient knowledge of the basic aquifers characteristics leading to an over exploitation of the water resources. The prevailance of crystalline rocks is connected to a fracture aquifer type of low productivity, where wells show, generally, yield rates lower than 3 m3·h-1. This work was developed in a semi-arid area located in the center-south region of Bahia State at 900 metres a.s.l., where were discovered several radioactive anomalies by aerogeophysical surveys performed during 70's decade, that allowed to set the uranium province named Lagoa Real. There were performed isotopic and geochemical analysis of groundwater sampled from twenty-five wells placed in crystalline rocks areas (granite or gneiss) covered by short layers of residual soil or alluvial sediments. The samples were analysed in a mass spectrometer for stable isotopic ratios, like δ2H, δ18O, δ13C (per mille VSMOW) and also measured for radiocarbon activity concentration (14C) to calculate the percentage of modern carbon (PMC) by AMS. The values of δ2H and δ18O defined a local evaporation line (LEL) with slope equal to 4.6 against the value of 7.4 for the Local Meteoric Water Line (Salvador station from 1972 to 1976). The radiocarbon ages, corrected by carbonate dissolution (through δ13C and DIC), showed very young waters that were recently recharged, perhaps during the last few years to several months. The supposed old ages for the fractured aquifer are not accomplished by radiocarbon dating, showing it is unconfined with no discharge of old groundwater through deep faults and short residence time. Thus, the groundwater offer for multiple uses (in terms of quantity) seems to be assured if the

  6. Logarithmic inventory model with shortage for deteriorating items

    Directory of Open Access Journals (Sweden)

    Khedlekar Uttam Kumar

    2013-01-01

    Full Text Available In this paper, we have modeled a business which starts with shortage of deteriorating items. After a duration, managers have freedom to order the stock of assurance of committed customers. There are many products that follow logarithmic demand pattern, so in this paper we incorporate it with the shortage of items at the beginning. A new model is developed to obtain the optimal solution for such type of market situation and have obtained some valuable results. Numerical examples and simulation study is appended along with managerial insights.

  7. Identifying shortage occupations in the UK

    OpenAIRE

    Anna Downs

    2009-01-01

    This article describes the top-down methodology used by the Migration Advisory Committee (MAC) to identify shortage occupations. Identifying shortage occupations is difficult and few countries have attempted to do this in a systematic way. The methodology developed by the MAC to identify shortage occupations is the first to use a comprehensive range of indicators. The methodology dovetails national level top-down data with bottom-up micro-level data and qualitative information from stakeholde...

  8. Irradiation of advanced health care products – Tissues and biologics

    International Nuclear Information System (INIS)

    Radiation sterilization of tissues and biologics has become more common in recent years. As a result it has become critical to understand how to adapt the typical test methods and validation approaches to a tissue or biological product scenario. Also data evaluation sometimes becomes more critical than with traditional medical devices because for many tissues and biologics a low radiation dose is required. It is the intent behind this paper to provide information on adapting bioburden tests used in radiation validations such that the data can be most effectively used on tissues and biologics. In addition challenges with data evaluation are discussed, particularly the use of less-than values for bioburden results in radiation validation studies. - Highlights: • MPN testing can provide good bioburden results for tissue/biologics. • There are appropriate situations to pool products for bioburden testing. • Options on dealing with bioburden results of “less-than” the limit of detection. • Underestimation and overestimation of bioburden and the dangers of both

  9. Concerns for Skills Shortages in the 21st Century: A Review into the Construction Industry, Australia

    Directory of Open Access Journals (Sweden)

    Michelle Watson

    2012-11-01

    Full Text Available The Australian Construction Industry is now facing skills shortages in all trades. As an industry focused on the skill of its workforce, there is now concern the Australian standard in quality, workmanship, and productivity will inhibit both at national and international level.This research paper addresses the underlying, influential factors concerning skills shortages in the Australian construction industry. The influential factors addressed include funding, training statistics, employer expectations, financial limitations, Industrial Relations and immigration. Given the reference to skills shortages within the industry, and documented in related literature, if skills shortages are to continue to exist, their effect will impact upon the overall performance of construction companies throughout Australia.

  10. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis.

    Science.gov (United States)

    Crane, Erika A; Gademann, Karl

    2016-03-14

    Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody-drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products.

  11. 9 CFR 102.5 - U.S. Veterinary Biological Product License.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false U.S. Veterinary Biological Product..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS LICENSES FOR BIOLOGICAL PRODUCTS § 102.5 U.S. Veterinary Biological Product License. (a) Authorization to produce...

  12. Systems Biology Approaches to Understand Natural Products Biosynthesis

    Science.gov (United States)

    Licona-Cassani, Cuauhtemoc; Cruz-Morales, Pablo; Manteca, Angel; Barona-Gomez, Francisco; Nielsen, Lars K.; Marcellin, Esteban

    2015-01-01

    Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes are well-known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed toward a shift in the exploitation of actinomycete’s biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation, and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets. PMID:26697425

  13. Systems biology approaches to understand natural products biosynthesis

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc eLicona-Cassani

    2015-12-01

    Full Text Available Actinomycetes populate soils and aquatic sediments which impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams and terpenes are well known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed towards a shift in the exploitation of actinomycetes biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets.

  14. Systems Biology Approaches to Understand Natural Products Biosynthesis

    OpenAIRE

    Licona-Cassani, Cuauhtemoc; Cruz-Morales, Pablo; Manteca, Angel; Barona-Gomez, Francisco; Nielsen, Lars K; Marcellin, Esteban

    2015-01-01

    Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes are well-known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regul...

  15. Systems biology approaches to understand natural products biosynthesis

    OpenAIRE

    Cuauhtemoc eLicona-Cassani; Pablo Cruz Morales; Angel eManteca; Francisco eBarona-Gomez; Lars Keld Nielsen; Esteban eMarcellin

    2015-01-01

    Actinomycetes populate soils and aquatic sediments which impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams and terpenes are well known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regul...

  16. Polycyclic Xanthone Natural Products: Structure, Biological Activity and Chemical Synthesis

    OpenAIRE

    Winter, Dana K.; Sloman, David L.; Porco, John A.

    2013-01-01

    Polycyclic xanthone natural products are a family of polyketides which are characterized by highly oxygenated, angular hexacyclic frameworks. In the last decade, this novel class of molecules has attracted noticeable attention from the synthetic and biological communities due to emerging reports of their potential use as antitumour agents. The aim of this article is to highlight the most recent developments of this subset of the xanthone family by detailing the innate challenges of the constr...

  17. Reproductive biology traits affecting productivity of sour cherry

    Directory of Open Access Journals (Sweden)

    Milica Fotiric Aksic

    2013-01-01

    Full Text Available The objective of this work was to evaluate variability in reproductive biology traits and the correlation between them in genotypes of 'Oblačinska' sour cherry (Prunus cerasus. High genetic diversity was found in the 41 evaluated genotypes, and significant differences were observed among them for all studied traits: flowering time, pollen germination, number of fruiting branches, production of flower and fruit, number of flowers per bud, fruit set, and limb yield efficiency. The number of fruiting branches significantly influenced the number of flower and fruit, fruit set, and yield efficiency. In addition to number of fruiting branches, yield efficiency was positively correlated with fruit set and production of flower and fruit. Results from principal component analysis suggested a reduction of the reproductive biology factors affecting yield to four main characters: number and structure of fruiting branches, flowering time, and pollen germination. Knowledge of the reproductive biology of the 'Oblačinska' genotypes can be used to select the appropriate ones to be grown or used as parents in breeding programs. In this sense, genotypes II/2, III/9, III/13, and III/14 have very good flower production and satisfactory pollen germination.

  18. Formate Formation and Formate Conversion in Biological Fuels Production

    Directory of Open Access Journals (Sweden)

    Bryan R. Crable

    2011-01-01

    Full Text Available Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production.

  19. Biological treatment of chicken feather waste for improved biogas production

    Institute of Scientific and Technical Information of China (English)

    Gergely Forgács; Saeid Alinezhad; Amir Mirabdollah; Elisabeth Feuk-Lagerstedt; Ilona Sárvári Horwáth

    2011-01-01

    A two-stage system was developed which combines the biological degradation of keratin-rich waste with the production of biogas.Chicken feather waste was treated biologically with a recombinant Bacillus megaterium strain showing keratinase activity prior to biogas production.Chopped,autoclaved chicken feathers (4%,W/V) were completely degraded,resulting in a yellowish fermentation broth with a level of 0.51 mg/mL soluble proteins after 8 days of cultivation of the recombinant strain.During the subsequent anaerobic batch digestion experiments,methane production of 0.35 Nm3/kg dry feathers (i.e.,0.4 Nm3/kg volatile solids of feathers),corresponding to 80% of the theoretical value on proteins,was achieved from the feather hydrolyzates,independently of the prehydrolysis time period of 1,2 or 8 days.Cultivation with a native keratinase producing strain,Bacillus licheniformis resulted in only 0.25 mg/mL soluble proteins in the feather hydrolyzate,which then was digested achieving a maximum accumulated methane production of 0.31 Nm3/kg dry feathers.Feather hydrolyzates treated with the wild type B.megaterium produced 0.21 Nm3 CH4/kg dry feathers as maximum yield.

  20. The domestic natural gas shortage in China

    Science.gov (United States)

    Guo, Ting

    This thesis analyzes the domestic shortage in the Chinese natural gas market. Both the domestic supply and demand of natural gas are growing fast in China. However, the supply cannot catch up with the demand. Under the present pricing mechanism, the Chinese natural gas market cannot get the equilibrium by itself. Expensive imports are inadequate to fill the increasing gap between the domestic demand and supply. Therefore, the shortage problem occurs. Since the energy gap can result in the arrested development of economics, the shortage problem need to be solved. This thesis gives three suggestions to solve the problem: the use of Unconventional Gas, Natural Gas Storage and Pricing Reform.

  1. Nutrient shortage triggers the hexosamine biosynthetic pathway via the GCN2-ATF4 signalling pathway.

    Science.gov (United States)

    Chaveroux, Cédric; Sarcinelli, Carmen; Barbet, Virginie; Belfeki, Sofiane; Barthelaix, Audrey; Ferraro-Peyret, Carole; Lebecque, Serge; Renno, Toufic; Bruhat, Alain; Fafournoux, Pierre; Manié, Serge N

    2016-06-03

    The hexosamine biosynthetic pathway (HBP) is a nutrient-sensing metabolic pathway that produces the activated amino sugar UDP-N-acetylglucosamine, a critical substrate for protein glycosylation. Despite its biological significance, little is known about the regulation of HBP flux during nutrient limitation. Here, we report that amino acid or glucose shortage increase GFAT1 production, the first and rate-limiting enzyme of the HBP. GFAT1 is a transcriptional target of the activating transcription factor 4 (ATF4) induced by the GCN2-eIF2α signalling pathway. The increased production of GFAT1 stimulates HBP flux and results in an increase in O-linked β-N-acetylglucosamine protein modifications. Taken together, these findings demonstrate that ATF4 provides a link between nutritional stress and the HBP for the regulation of the O-GlcNAcylation-dependent cellular signalling.

  2. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  3. Assessment of nitrogen and sulphur cycle bacteria and shrimp production in ponds treated with biological products

    Institute of Scientific and Technical Information of China (English)

    Thangapalam Jawahar Abraham; Shubhadeep Ghosh; Debasis Sasmal

    2015-01-01

    Objective:To study the influence of biological products on the levels of nitrogen and sulphur cycle bacteria in shrimp culture systems of West Bengal, India. Methods: The pond water and sediment samples were analyzed for physico-chemical parameters as per standard methods. The bacteria involved in ammonification, nitrification, denitrification, sulphate reduction and sulphur oxidation were enumerated by most probable number technique. Results:The semi-intensive and modified extensive shrimp farms used a variety of biological products during various stages of production. No biological products were used in traditional farms. The water and sediment samples of modified extensive system recorded significantly higher mean heterotrophic bacterial counts. The counts of ammonia, nitrite and sulphur oxidizers, and nitrate and sulphate reducers varied among the systems. The cycling of nitrogen and sulphur appeared to be affected with the intensification of culture practices. Conclusions:The application of biological products in certain systems helped to maintain the bacteria involved in nitrogen and sulphur cycles and safe levels of ammonia, nitrite and nitrate. An assessment of these metabolically active bacteria in shrimp culture ponds and the application of right kind microbial products would help ameliorate the organic pollution in shrimp aquaculture.

  4. Nursing the Nursing Shortage Back to Health.

    Science.gov (United States)

    Weisbord, Anne

    1992-01-01

    Discusses shortage of nurses, improved compensation, and other benefits for nurses. Discusses effects of institutional reputation. Describes move to retention programs by nurse recruiters. Concludes image of nursing has developed into professional status. (ABL)

  5. Biological hydrogen production from biomass by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T. [Wageningen UR, Agrotechnology and Food Sciences Group (AFSG), Business Unit Biobased Products, P.O. Box 17, 6700 AA Wageningen, (Netherlands); van Niel, E.W.J. [Lund University, Applied microbiology, P.O. Box 124, 221 000 Lund, (Sweden)

    2006-07-01

    To meet the reduction of the emission of CO{sub 2} imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  6. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    To meet the reduction of the emission of CO2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient requirements

  7. Current studies on physiological functions and biological production of lactosucrose.

    Science.gov (United States)

    Mu, Wanmeng; Chen, Qiuming; Wang, Xiao; Zhang, Tao; Jiang, Bo

    2013-08-01

    Lactosucrose (O-β-D-galactopyranosyl-(1,4)-O-α-D-glucopyranosyl-(1,2)-β-D-fructofuranoside) is a trisaccharide formed from lactose and sucrose by enzymatic transglycosylation. This rare trisaccharide is a kind of indigestible carbohydrate, has good prebiotic effect, and promotes intestinal mineral absorption. It has been used as a functional ingredient in a range of food products which are approved as foods for specified health uses in Japan. Using lactose and sucrose as substrates, lactosucrose can be produced through transfructosylation by β-fructofuranosidase from Arthrobacter sp. K-1 or a range of levansucrases, or through transgalactosylation by β-galactosidase from Bacillus circulans. This article presented a review of recent studies on the physiological functions of lactosucrose and the biological production from lactose and sucrose by different enzymes.

  8. Current studies on physiological functions and biological production of lactosucrose.

    Science.gov (United States)

    Mu, Wanmeng; Chen, Qiuming; Wang, Xiao; Zhang, Tao; Jiang, Bo

    2013-08-01

    Lactosucrose (O-β-D-galactopyranosyl-(1,4)-O-α-D-glucopyranosyl-(1,2)-β-D-fructofuranoside) is a trisaccharide formed from lactose and sucrose by enzymatic transglycosylation. This rare trisaccharide is a kind of indigestible carbohydrate, has good prebiotic effect, and promotes intestinal mineral absorption. It has been used as a functional ingredient in a range of food products which are approved as foods for specified health uses in Japan. Using lactose and sucrose as substrates, lactosucrose can be produced through transfructosylation by β-fructofuranosidase from Arthrobacter sp. K-1 or a range of levansucrases, or through transgalactosylation by β-galactosidase from Bacillus circulans. This article presented a review of recent studies on the physiological functions of lactosucrose and the biological production from lactose and sucrose by different enzymes. PMID:23828605

  9. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products.

    Science.gov (United States)

    Kavitha Sankar, P C; Ramakrishnan, Reshmi; Rosemary, M J

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. PMID:26838891

  10. Biological productivity and carbon cycling in the Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Primary production, bacterial production, particulate organic carbon fluxes and organic carbon burial rates were quantified during the summer period of 1999 in the Arctic Ocean via 14C uptake, 3H uptake, 234Th/238U disequilibrium and 210Pbex dating, respectively. The integrated primary production in the water column was as high as 197 mmolC/(m2@d) in the Chukchi shelf and was 3.8 mmolC/(m2@d) in the Canada Basin. These rates are higher than those reported previously. The ratios of bacterial production to primary production in the study region were higher than 0.5, indicating that microbial activity is not depressed but important in cold Arctic waters. 234Th/238U disequilibria were evident at the station in the Canada Basin. The presence of significant 234Th deficiency suggested that scavenging and removal processes are also important to biogeochemical cycles of trace elements in the Arctic Ocean. Particulate organic carbon export flux was estimated to be 1.0 mmolC/(m2@d). Measurements of sediment excess 210Pb profile in the Chukchi shelf allowed us to estimate the amount of organic carbon buried in the bottom sediment, which ranged from 25 to 35 mmolC/(m2@d) and represented about 59%-82% of the mean primary production in the euphotic zone. Overall, our results indicated that the Arctic Ocean has active carbon cycling and is not a biological desert as previously believed. Therefore, the Arctic Ocean may play an important role in the global carbon cycle and climate change.

  11. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    Science.gov (United States)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  12. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast.

    Science.gov (United States)

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-06-16

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and metabolism. Accumulation of unfolded proteins within the calcium-depleted lumen of the endoplasmic reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections linking disturbance of ER calcium equilibrium to ER stress and UPR signaling are evolutionary conserved and highlight the crucial role of metabolism in modulating the effects induced by calcium shortage.

  13. Biological production of ethanol from coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H{sub 2}, CO{sub 2}, CH{sub 4} and sulfur gases, is first produced using traditional gasification techniques. The CO, CO{sub 2} and H{sub 2} are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the ``wild strain`` produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  14. Systems biology of recombinant protein production using Bacillus megaterium.

    Science.gov (United States)

    Biedendieck, Rebekka; Borgmeier, Claudia; Bunk, Boyke; Stammen, Simon; Scherling, Christian; Meinhardt, Friedhelm; Wittmann, Christoph; Jahn, Dieter

    2011-01-01

    The Gram-negative bacterium Escherichia coli is the most widely used production host for recombinant proteins in both academia and industry. The Gram-positive bacterium Bacillus megaterium represents an increasingly used alternative for high yield intra- and extracellular protein synthesis. During the past two decades, multiple tools including gene expression plasmids and production strains have been developed. Introduction of free replicating and integrative plasmids into B. megaterium is possible via protoplasts transformation or transconjugation. Using His(6)- and StrepII affinity tags, the intra- or extracellular produced proteins can easily be purified in one-step procedures. Different gene expression systems based on the xylose controlled promoter P(xylA) and various phage RNA polymerase (T7, SP6, K1E) driven systems enable B. megaterium to produce up to 1.25g of recombinant protein per liter. Biomass concentrations of up to 80g/l can be achieved by high cell density cultivations in bioreactors. Gene knockouts and gene replacements in B. megaterium are possible via an optimized gene disruption system. For a safe application in industry, sporulation and protease-deficient as well as UV-sensitive mutants are available. With the help of the recently published B. megaterium genome sequence, it is possible to characterize bottle necks in the protein production process via systems biology approaches based on transcriptome, proteome, metabolome, and fluxome data. The bioinformatical platform (Megabac, http://www.megabac.tu-bs.de) integrates obtained theoretical and experimental data. PMID:21943898

  15. The "lessons" of the Australian "heroin shortage"

    Directory of Open Access Journals (Sweden)

    Gilmour Stuart

    2006-05-01

    Full Text Available Abstract Heroin use causes considerable harm to individual users including dependence, fatal and nonfatal overdose, mental health problems, and blood borne virus transmission. It also adversely affects the community through drug dealing, property crime and reduced public amenity. During the mid to late 1990s in Australia the prevalence of heroin use increased as reflected in steeply rising overdose deaths. In January 2001, there were reports of an unpredicted and unprecedented reduction in heroin supply with an abrupt onset in all Australian jurisdictions. The shortage was most marked in New South Wales, the State with the largest heroin market, which saw increases in price, dramatic decreases in purity at the street level, and reductions in the ease with which injecting drug users reported being able to obtain the drug. The abrupt onset of the shortage and a subsequent dramatic reduction in overdose deaths prompted national debate about the causes of the shortage and later international debate about the policy significance of what has come to be called the "Australian heroin shortage". In this paper we summarise insights from four years' research into the causes, consequences and policy implications of the "heroin shortage".

  16. Enhanced saccharification of biologically pretreated wheat straw for ethanol production.

    Science.gov (United States)

    López-Abelairas, M; Lu-Chau, T A; Lema, J M

    2013-02-01

    The biological pretreatment of lignocellulosic biomass with white-rot fungi for the production of bioethanol is an alternative to the most used physico-chemical processes. After biological treatment, a solid composed of cellulose, hemicellulose, and lignin-this latter is with a composition lower than that found in the initial substrate-is obtained. On the contrary, after applying physico-chemical methods, most of the hemicellulose fraction is solubilized, while cellulose and lignin fractions remain in the solid. The optimization of the combination of cellulases and hemicellulases required to saccharify wheat straw pretreated with the white-rot fungus Irpex lacteus was carried out in this work. The application of the optimal dosage made possible the increase of the sugar yield from 33 to 54 %, and at the same time the reduction of the quantity of enzymatic mixture in 40 %, with respect to the initial dosage. The application of a pre-hydrolysis step with xylanases was also studied. PMID:23306886

  17. Skilled labour shortage : implications, recruitment and workforce planning

    Energy Technology Data Exchange (ETDEWEB)

    Charette, A. [Canadian Council of Human Resources Association, St. Catherines, ON (Canada)

    2004-07-01

    This presentation provides information on how a long-term recruitment strategy can affect the viability of the oil and gas industry, which is currently facing a shortage of skilled labour in Canada. The problem poses a threat to the competitiveness of the industry and the problem will likely worsen unless action is taken now to prevent a crisis in the near future. A survey of business owners in 2002 indicated that 186,000 of 265,000 jobs remained vacant for at least 4 months. As the aging workforce of baby boomers reaches retirement age, the labour shortage is likely to be more pronounced by 2010 to 2015. The consequences of changing labour demographics affect costs, attracting and retaining talented workers, productivity, culture, creativity and competitiveness. figs.

  18. Employment regulation peculiarities in the terms of labour shortage

    Directory of Open Access Journals (Sweden)

    Nail Zalilovich Shaimardanov

    2011-03-01

    Full Text Available Current problems and peculiarities of employment due to the growing shortage of manpower are discussed on the example of Sverdlovsk region. The causes of labour shortages and the main features of its overcoming are associated with an increase in economic activity, growing productivity, mitigating structural problems of the labour market and migration replacement. Priority areas for management of regional employment, taking into account the negative effects of demographic factors, are proposed. These trends include the increased interaction of ministries and departments to coordinate actions in the social sphere, science-based development model for monitoring the social and labour sphere (with the situational analysis, monitoring and short-term forecasting, modernization of software on employment in the current conditions and the formation of constantly updatable information database for the migration planning.

  19. Production and biological activities of yellow pigments from Monascus fungi.

    Science.gov (United States)

    Chen, Gong; Wu, Zhenqiang

    2016-08-01

    Monascus yellow pigments (MYPs), are azaphilone compounds and one of the three main components of total Monascus pigments (MPs). Thirty-five hydrophilic or hydrophobic MYPs have been identified, with the majority being hydrophobic. Apart from screening special Monascus strains, some advanced approaches, such as extractive and high-cell-density fermentations, have been applied for developing or producing new MYPs, especially extracellular hydrophilic MYPs. The outstanding performance of MYPs in terms of resistance to photodegradation, as well as tolerance for temperature and pH, give natural MYPs reasonable prospects, compared with the orange and red MPs, for practical use in the present and future. Meanwhile, MYPs have shown promising potential for applications in the food and pharmaceutical industries based on their described bioactivities. This review briefly summarizes the reports to date on chemical structures, biological activities, biosynthetic pathways, production technologies, and physicochemical performances of MYPs. The existing problems for MYPs are discussed and research prospects proposed. PMID:27357404

  20. Synthetic Biology in the FDA Realm: Toward Productive Oversight Assessment.

    Science.gov (United States)

    Fatehi, Leili; Hall, Ralph F

    2015-01-01

    Synthetic biology (SB) is expected to create tremendous opportunities in a wide range of areas, including in foods, therapeutics, and diagnostics subject to regulatory oversight by the United States Food and Drug Administration. At the same time, there is substantial basis for concern about the uncertainties of accurately assessing the human health and environmental risks of such SB products. As such, SB is the latest in a string of emerging technologies that is the subject of calls for new approaches to regulation and oversight that involve "thinking ahead" to anticipate governance challenges upstream of technological development and adopting oversight mechanisms that are both adaptive to new information about risks and reflexive to performance data and feedback on policy outcomes over time. These new approaches constitute a marked departure from the status quo, and their development and implementation will require considerable time, resources, and reallocation of responsibilities. Furthermore, in order to develop an appropriate oversight response, adaptive or otherwise, there is first a need to identify the specific types and natures of applications, uncertainties, and regulatory issues that are likely to pose oversight challenges. This article presents our vision for a Productive Oversight Assessment (POA) approach in which the abilities and deficits of an oversight system are evaluated with the aim of enabling productive decisions (i.e., timely, feasible, effective for achieving desired policy outcomes) about oversight while also building capacity to facilitate broader governance efforts. The value ofPOA is two-fold. First, it will advance the development of a generalizable approach for making productive planning and decision-making about the oversight of any given new technology that presents challenges and uncertainties for any given oversight system whose policy goals are implicated by that technology. Second, this effort can enhance the very processes

  1. 77 FR 3780 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-01-25

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Vaccines and Related Biological..., Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics...

  2. 75 FR 59935 - Investigational New Drug Safety Reporting Requirements for Human Drug and Biological Products and...

    Science.gov (United States)

    2010-09-29

    ... ``E2A Clinical Safety Data Management: Definitions and Standards for Expedited Reporting'' (60 FR 11284... 0910-AG13 Investigational New Drug Safety Reporting Requirements for Human Drug and Biological Products... safety reporting for human biological products: Laura Rich, Center for Biologics Evaluation and...

  3. Biological conversion of pyrolytic products to ethanol and lipids

    Science.gov (United States)

    Lian, Jieni

    Pyrolysis is a promising technology that can convert up to 75 % of lignocellulosic biomass into crude bio-oil. However, due to the complex chemical compositions of bio-oil, its further refining into fuels and high value chemicals faces great challenges. This dissertation research proposed new technologies for biological conversion of pyrolytic products derived from cellulose and hemicellulose, such as anhydrosugars and carbolic acids to fuels and chemicals. First, the pyrolytic anhydrosugars (chiefly levoglucosan (LG)) were hydrolysed into glucose followed by neutralization, detoxification and fermentation to produce ethanol by ethanogenetic yeast and lipids by oleaginous yeasts. Second, a novel process for the conversion of C1-C4 pyrolytic products to lipid with oleaginous yeasts was investigated. Third, oleaginous yeasts that can directly convert LG to lipids were studied and a recombined yeast with LG kinase was constructed for the direct convertion of LG into lipids. This allowed a reduction of existing process for LG fermentation from four steps into two steps and eliminated the need for acids and bases as well as the disposal of chemicals. The development of genetic modified organisms with LG kinase opens a promising avenue for the direct LG fermentation to produce a wide range of fuels and chemicals. The simplification of LG utilization process would enhance the economic viability of this technology.

  4. Competency development in antibody production in cancer cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Park, M.S.

    1998-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The main objective of this project was to develop a rapid recombinant antibody production technology. To achieve the objective, the authors employed (1) production of recombinant antigens that are important for cell cycle regulation and DNA repair, (2) immunization and specific selection of antibody-producing lymphocytes using the flow cytometry and magnetic bead capturing procedure, (3) construction of single chain antibody library, (4) development of recombinant vectors that target, express, and regulate the expression of intracellular antibodies, and (5) specific inhibition of tumor cell growth in tissue culture. The authors have accomplished (1) optimization of a selection procedure to isolate antigen-specific lymphocytes, (2) optimization of the construction of a single-chain antibody library, and (3) development of a new antibody expression vector for intracellular immunization. The future direction of this research is to continue to test the potential use of the intracellular immunization procedure as a tool to study functions of biological molecules and as an immuno-cancer therapy procedure to inhibit the growth of cancer cells.

  5. Biological hydrogen production measured in batch anaerobic respirometers.

    Science.gov (United States)

    Logan, Bruce E; Oh, Sang-Eun; Kim, In S; Van Ginkel, Steven

    2002-06-01

    The biological production of hydrogen from the fermentation of different substrates was examined in batch tests using heat-shocked mixed cultures with two techniques: an intermittent pressure release method (Owen method) and a continuous gas release method using a bubble measurement device (respirometric method). Under otherwise identical conditions, the respirometric method resulted in the production of 43% more hydrogen gas from glucose than the Owen method. The lower conversion of glucose to hydrogen using the Owen protocol may have been produced by repression of hydrogenase activity from high partial pressures in the gastight bottles, but this could not be proven using a thermodynamic/rate inhibition analysis. In the respirometric method, total pressure in the headspace never exceeded ambient pressure, and hydrogen typically composed as much as 62% of the headspace gas. High conversion efficiencies were consistently obtained with heat-shocked soils taken at different times and those stored for up to a month. Hydrogen gas composition was consistently in the range of 60-64% for glucose-grown cultures during logarithmic growth but declined in stationary cultures. Overall, hydrogen conversion efficiencies for glucose cultures were 23% based on the assumption of a maximum of 4 mol of hydrogen/ mol of glucose. Hydrogen conversion efficiencies were similar for sucrose (23%) and somewhat lower for molasses (15%) but were much lower for lactate (0.50%) and cellulose (0.075%).

  6. 76 FR 68295 - Reducing Prescription Drug Shortages

    Science.gov (United States)

    2011-11-03

    ... significantly increased. Interruptions in the supplies of these drugs endanger patient safety and burden doctors, hospitals, pharmacists, and patients. They also increase health care costs, particularly because some... potential problem. Similarly, early disclosure of a shortage can help hospitals, doctors, and patients...

  7. Male Teacher Shortage: Black Teachers' Perspectives

    Science.gov (United States)

    Martino, Wayne; Rezai-Rashti, Goli M.

    2010-01-01

    In this paper the authors draw on the perspectives of black teachers to provide a more nuanced analysis of male teacher shortage. Interviews with two Caribbean teachers in Toronto, Canada, are employed to illuminate the limits of an explanatory framework that foregrounds the singularity of gender as a basis for advocating male teachers as role…

  8. Reducing the Special Education Teacher Shortage

    Science.gov (United States)

    Thornton, Bill; Peltier, Gary; Medina, Ricky

    2007-01-01

    New demands and high attrition levels of special education teachers have created a crisis for education and extensive additional stress for special education directors and principals. The critical shortage of highly qualified special education teachers has significantly increased the pressure to hire and retain them. This article discusses factors…

  9. Nursing Shortage Generates Innovative Program Expansion

    Science.gov (United States)

    Welhan, Beverly L.; Benfield, Ruth A.

    2008-01-01

    Responding to an impending health crisis due to a national nursing shortage, Montgomery County Community College increased nursing admissions by 50% and graduates by 51% through implementing a Continuous Nursing Program (CNP). Through implementing three 14-week semesters per year, the CNP uses an accelerated timeframe while maintaining a…

  10. Coping with the influenza vaccine shortage.

    Science.gov (United States)

    Mossad, Sherif B

    2004-12-01

    Faced with a shortage of the inactivated intramuscular influenza vaccine this year, the Centers for Disease Control and Prevention (CDC) has revised its guidelines for immunization and use of antiviral agents. The most rational solution at this time is to direct the supply of scarce vaccine to patients at highest risk of influenza-related complications. PMID:15641521

  11. 9 CFR 105.3 - Notices re: worthless, contaminated, dangerous, or harmful biological products.

    Science.gov (United States)

    2010-01-01

    ..., dangerous, or harmful biological products. 105.3 Section 105.3 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS SUSPENSION, REVOCATION, OR TERMINATION OF BIOLOGICAL LICENSES OR PERMITS §...

  12. Integrated anaerobic/aerobic biological treatment for intensive swine production.

    Science.gov (United States)

    Bortone, Giuseppe

    2009-11-01

    Manure processing could help farmers to effectively manage nitrogen (N) surplus load. Many pig farms have to treat wastewater. Piggery wastewater treatment is a complex challenge, due to the high COD and N concentrations and low C/N ratio. Anaerobic digestion (AD) could be a convenient pre-treatment, particularly from the energetic view point and farm income, but this causes further reduction of C/N ratio and makes denitrification difficult. N removal can only be obtained integrating anaerobic/aerobic treatment by taking into account the best use of electron donors. Experiences gained in Italy during development of integrated biological treatment approaches for swine manure, from bench to full scale, are reported in this paper. Solid/liquid separation as pre-treatment of raw manure is an efficient strategy to facilitate liquid fraction treatment without significantly lowering C/N ratio. In Italy, two full scale SBRs showed excellent efficiency and reliability. Current renewable energy policy and incentives makes economically attractive the application of AD to the separated solid fraction using high solid anaerobic digester (HSAD) technology. Economic evaluation showed that energy production can reduce costs up to 60%, making sustainable the overall treatment. PMID:19135363

  13. Farmer strategies to face labor shortages in Chilean agriculture

    Directory of Open Access Journals (Sweden)

    Verónica Aguirre

    2013-08-01

    Full Text Available This study analyzes the strategies that farmers in the south of Chile use to face current labor shortages and identify the variables that determine each of these strategies. A multinomial logit model and odds ratios plots with predicted probabilities were applied to a sample of 384 farmers. Interviews and focus groups were applied to specific producers, professionals and public officials. The main results show that only 32.3% of farmers declared that labor shortage is a problem. Of this percentage 52% chose the strategy of paying better, 13.8% chose improve the workers' working conditions, 9.5% chose to mechanize, and 24.1% did not follow a strategy. The production of labor-intensive products (e.g., exportable fruit determines the strategy of paying better; the farmer's educational level influences the strategy of improving the working conditions, and the farmer's age affects the strategy of mechanizing. However, the production of labor-intensive products exhibits the greater effect. The main disadvantage of the "pay better" strategy is that workers do not want to commit to their job.

  14. Silicon shortage: supply constraints limit PV growth until 2008

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, H.; Bradford, T. [Prometheus Inst. (United States)

    2006-10-01

    It is argued that a shortage of refined (polycystalline) silicon will curtail the expansion of the solar photovoltaics industry until about 2008. At present, 94% of PV cells produced worldwide use refined silicon. The problem has arisen because the traditional source, scrap silicon from the electronics industry, is no longer available in sufficient quantities - demand has outstripped supply. Although plans are in place to double the present supply of silicon over the next four years, doubts are expressed over the likelihood of this happening. Currently, there are only seven big companies producing the silicon - production figures for these companies are given. (author)

  15. 27 CFR 40.287 - Remission of tax liability on shortage.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Remission of tax liability on shortage. 40.287 Section 40.287 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO MANUFACTURE OF TOBACCO PRODUCTS, CIGARETTE PAPERS AND TUBES, AND PROCESSED...

  16. Biological evaluation of recombinant human erythropoietin in pharmaceutical products

    Directory of Open Access Journals (Sweden)

    Ramos A.S.

    2003-01-01

    Full Text Available The potencies of mammalian cell-derived recombinant human erythropoietin pharmaceutical preparations, from a total of five manufacturers, were assessed by in vivo bioassay using standardized protocols. Eight-week-old normocythemic mice received a single subcutaneous injection followed by blood sampling 96 h later or multiple daily injections with blood sampling 24 h after the last injection. Reticulocyte counting by microscopic examination was employed as the end-point using the brilliant cresyl blue or selective hemolysis methods, together with automated flow cytometry. Different injection schedules were investigated and dose-response curves for the European Pharmacopoeia Biological Reference Preparation of erythropoietin were compared. Manual and automated methods of reticulocyte counting were correlated with respect to assay validity and precision. Using 8 mice per treatment group, intra-assay precision determined for all of the assays in the study showed coefficients of variation of 12.1-28.4% for the brilliant cresyl blue method, 14.1-30.8% for the selective hemolysis method and 8.5-19.7% for the flow cytometry method. Applying the single injection protocol, a combination of at least two independent assays was required to achieve the precision potency and confidence limits indicated by the manufacturers, while the multiple daily injection protocol yielded the same acceptable results within a single assay. Although the latter protocol using flow cytometry for reticulocyte counting gave more precise and reproducible results (intra-assay coefficients of variation: 5.9-14.2%, the well-characterized manual methods provide equally valid alternatives for the quality control of recombinant human erythropoietin therapeutic products.

  17. 9 CFR 103.2 - Disposition of animals administered experimental biological products or live organisms.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Disposition of animals administered experimental biological products or live organisms. 103.2 Section 103.2 Animals and Animal Products ANIMAL AND... PRODUCTS; ORGANISMS AND VECTORS EXPERIMENTAL PRODUCTION, DISTRIBUTION, AND EVALUATION OF...

  18. Isotope shortage triggers delays for patients

    Science.gov (United States)

    Gould, Paula

    2009-07-01

    An unplanned shutdown of a nuclear reactor in Canada is disrupting the supply of medical isotopes across North America and forcing some hospitals to cancel or postpone patients' tests. The closure of the National Research Universal (NRU) reactor in Chalk River, Ontario, has also embarrassed Canadian officials, including a senior government minister who was forced to apologize after calling the isotope shortage a "sexy" career challenge.

  19. Development of biological platform for the autotrophic production of biofuels

    Science.gov (United States)

    Khan, Nymul

    The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO 2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E's (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country's petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpae. energy.gov/ProgramsProjects/Electrofuels.aspx). The Electrofuels initiative aimed to develop liquid biofuels that avoid the issues encountered in the current generation of biofuels: (1) the reliance of biomass-derived technologies on the inefficient process of photosynthesis, (2) the relatively energy- and resource-intensive nature of agronomic processes, and (3) the occupation of large areas of arable land for feedstock production. The process proceeds by the capture of solar energy into electrical energy via photovoltaic cells, using the generated electricity to split water into molecular hydrogen (H2) and oxygen (O2), and feeding these gases, along with carbon dioxide (CO2) emitted from point sources such as a biomass or coal-fired power plant, to a microbial bioprocessing platform. The proposed microbial bioprocessing platform leverages a chemolithoautotrophic microorganism (Rhodobacter capsulatus or Ralstonia eutropha) naturally able to utilize these gases as growth substrates, and genetically modified to produce a triterpene hydrocarbon fuel

  20. The nursing shortage: a worldwide problem

    Directory of Open Access Journals (Sweden)

    Booth Rachel Z.

    2002-01-01

    Full Text Available A worldwide shortage of nurses has been acknowledged by the multidisciplinary Global Advisory Group of the World Health Organization. The shortage is caused by an increased demand for nurses, while fewer people are choosing nursing as a profession and the current nurses worldwide are aging. The shortage applies to nurses in practice as well as the nurse faculty who teach students. The inter-country recruitment and migration of nurses from developing countries to developed countries exacerbates the problem. Although public opinion polls identifies the nurse as the person who makes the health care system work for them, the conditions of the work environment in which the nurse functions is unsatisfactory and must change. Numerous studies have shown the positive effects on the nurse of a healthy work environment and the positive relationships between nursing care and patient outcomes. It is important that government officials, insurance companies, and administrators and leaders of health care systems acknowledge and operationalize the value of nurses to the health care system in order to establish and maintain the integrity and viability of that system.

  1. Natural product synthesis at the interface of chemistry and biology

    OpenAIRE

    Hong, Jiyong

    2014-01-01

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in ...

  2. Find Shortage Areas: HPSA & MUA/P by Address

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Find Shortage Areas: Health Professional Shortage Area (HPSA) and Medically Underserved Area/Population (MUA/P) by Address tool is a locator tool designed to...

  3. Hydrological structure and biological productivity of the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, U.D.; Muraleedharan, P.M.

    Hydrological structure analyses of regions in the tropical Atlantic Ocean have consistently revealed the existence of a typical tropical structure characterized by a nitrate-depleted mixed layer above the thermocline. The important biological...

  4. 78 FR 20663 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-04-05

    ... DNA Viruses, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Vaccines and Related...

  5. 75 FR 17929 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-04-08

    ... will review and discuss available data regarding the unexpected finding of DNA originating from porcine... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory...

  6. 76 FR 3639 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-01-20

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory Committee... selection of strains to be included in the influenza virus vaccine for the 2011-2012 influenza season....

  7. 75 FR 2876 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-01-19

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory Committee... selection of strains to be included in the influenza virus vaccine for the 2010 - 2011 influenza season....

  8. 78 FR 5465 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-01-25

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory Committee... strains to be included in the influenza virus vaccine for the 2013- 2014 influenza season. FDA intends...

  9. Solving Shortage in a Priceless Market: Insights from Blood Donation

    OpenAIRE

    Tianshu Sun; Susan Feng Lu; Ginger Zhe Jin

    2015-01-01

    Shortage is common in many markets, such as those for human organs or blood, but the problem is often difficult to solve through price adjustment, given safety and ethical concerns. In this paper, we investigate whether market designers can use non-price methods to address shortage. Specifically, we study two methods that are used to alleviate shortage in the market for human blood. The first method is informing existing donors of a current shortage via a mobile message and encouraging them t...

  10. Potential for widespread application of biological control of stored-product pests

    DEFF Research Database (Denmark)

    Hansen, Lise Stengaard

    2007-01-01

    Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biological...... control of stored-product pests and has considered a number of existing and potential fields for application of biological control. Three situations were identified where biological control would be a valuable component of integrated pest management: (1) Empty room treatment against stored-product mites......, beetles and moths; (2) Preventative treatment of bulk commodities against weevils (Sitophilus spp.) and storage mites; (3) Preventative application of egg-parasitoids against moths in packaged products. Development of methods for biological control and of mass production of natural enemies...

  11. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup;

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches...... for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  12. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites.

    Science.gov (United States)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup; Weber, Tilmann

    2016-08-27

    Covering: 2012 to 2016Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites. The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production. PMID:27072921

  13. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  14. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. PMID:26479184

  15. 9 CFR 101.3 - Biological products and related terms.

    Science.gov (United States)

    2010-01-01

    ... OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS DEFINITIONS..., the harvest date shall be the date blood or tissues are collected for production or the date cultures..., representing a whole culture or a concentrate thereof, with or without the unevaluated growth products,...

  16. Organ shortage crisis: problems and possible solutions.

    Science.gov (United States)

    Abouna, G M

    2008-01-01

    The demand for organ transplantation has rapidly increased all over the world during the past decade due to the increased incidence of vital organ failure, the rising success and greater improvement in posttransplant outcome. However, the unavailability of adequate organs for transplantation to meet the existing demand has resulted in major organ shortage crises. As a result there has been a major increase in the number of patients on transplant waiting lists as well as in the number of patients dying while on the waiting list. In the United States, for example, the number of patients on the waiting list in the year 2006 had risen to over 95,000, while the number of patient deaths was over 6,300. This organ shortage crisis has deprived thousands of patients of a new and better quality of life and has caused a substantial increase in the cost of alternative medical care such as dialysis. There are several procedures and pathways which have been shown to provide practical and effective solutions to this crisis. These include implementation of appropriate educational programs for the public and hospital staff regarding the need and benefits of organ donation, the appropriate utilization of marginal (extended criteria donors), acceptance of paired organ donation, the acceptance of the concept of "presumed consent," implementation of a system of "rewarded gifting" for the family of the diseased donor and also for the living donor, developing an altruistic system of donation from a living donor to an unknown recipient, and accepting the concept of a controlled system of financial payment for the donor. As is outlined in this presentation, we strongly believe that the implementation of these pathways for obtaining organs from the living and the dead donors, with appropriate consideration of the ethical, religious and social criteria of the society, the organ shortage crisis will be eliminated and many lives will be saved through the process of organ donation and

  17. Identifying biomass fuel shortages in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Howes, Michael (Sussex Univ., Brighton (UK). Inst. of Development Studies)

    1989-01-01

    This paper analyses data from the Sri Lankan Forestry Master Plan and other sources, to explore the causes of biomass shortages, and to identify the areas where interventions are likely to have most impact. Five districts, concentrated in the wet lowland and hill country zones, are found to be in overall biomass fuel deficit whilst in a further five, which include dry zone locations, fuelwood consumption exceeds potential supply, Within the area of overall deficit, poorer urban groups and rural families with no home gardens - who together comprise 15% of all households nationally - are affected most severely. Another 10% of households are likely to suffer to a lesser extent. (author).

  18. Inspector shortage in the offshore oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Varcoe, David

    2002-07-01

    According to an article published by the Scotsman Online, a critical shortage of offshore safety inspectors is placing the lives of thousands of North Sea oil men at risk. Key improvements in the offshore safety regime, which followed the Piper Alpha disaster, are being compromised by the inability of front-line inspectors from the UK government's Health and Safety Executive to police platforms in the UK sector of the North Sea. The present article discusses the safety situation in the petroleum industry of the North Sea.

  19. Biological Pretreatment of Rubberwood with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Bioethanol Production

    OpenAIRE

    Forough Nazarpour; Dzulkefly Kuang Abdullah; Norhafizah Abdullah; Nazila Motedayen; Reza Zamiri

    2013-01-01

    Rubberwood (Hevea brasiliensis), a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm) and pretreatment time on the biological pretreatmen...

  20. Sex Roles: A Product of Socialization or a Biological Heritage.

    Science.gov (United States)

    Shaha, Steven H.

    This paper reviews selected studies of aggression in males and females and concludes that physiological, emotional and behavioral differences exist between the sexes. Primate studies, conducted by Harlow, are employed as evidence that sex differences in aggression are primarily biological and not primarily cultural phenomena. It is further…

  1. Kinetic study of biological hydrogen production by anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, R. [Annamalai Univ., Chidambaram (India). Dept. of Chemical Engineering; Karunanithi, T. [Annamalai Univ., Tamilnadu (India). Dept. of Chemical Engineering

    2009-07-01

    This study examined the kinetics of batch biohydrogen production from glucose. Clostridium pasteurianum was used to produce biohydrogen by dark anaerobic fermentation. The initial substrate concentration, initial pH and temperature were optimized for biohydrogen production. The maximum production of hydrogen under optimum conditions was found to be 5.376 l/l. The kinetic parameters were determined for the optimized medium and conditions in the batch reactor. The by product was expressed as total acidic equivalent. This presentation discussed the logistic equation that was used to model the growth of the organism and described how the kinetic parameters were calculated. The Leudeking piret kinetic model was used to express the hydrogen production and substrate use because it combines both growth associated and non associated contributions. It was concluded the production of biohydrogen can be predicted well using the logistic model for cell growth kinetics and the logistic incorporated Leudeking Piret model for product and substrate utilization kinetics.

  2. Importance of systems biology in engineering microbes for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Aindrila; Redding, Alyssa M.; Rutherford, Becky J.; Keasling, Jay D.

    2009-12-02

    Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable resources has catalyzed numerous research endeavors that focus on developing microbial systems for production of such natural products. Eliminating bottlenecks in microbial metabolic pathways and alleviating the stresses due to production of these chemicals are crucial in the generation of robust and efficient production hosts. The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose stresses due to product synthesis, and provides the rationale to cost-effectively engineer optimal industrial microorganisms.

  3. Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions.

    Science.gov (United States)

    Rodríguez Couto, Susana

    2008-07-01

    Biological wastes contain several reusable substances of high value such as soluble sugars and fibre. Direct disposal of such wastes to soil or landfill causes serious environmental problems. Thus, the development of potential value-added processes for these wastes is highly attractive. These biological wastes can be used as support-substrates in solid-state fermentation (SSF) to produce industrially relevant metabolites with great economical advantage. In addition, it is an environmentally friendly method of waste management. This paper reviews the reutilization of biological wastes for the production of value-added products using the SSF technique. PMID:18543242

  4. The times of oil shortage are not far

    Energy Technology Data Exchange (ETDEWEB)

    Editor [Korea Energy Management Corporation, Yongin (Korea)

    2002-02-01

    The reduction of oil production means that a sharp rise of oil price will be brought and a keen competition for securing oil resource will happen. The most concern of Korea is how to secure oil, which is the major energy resource as a basis of economic activities. Even though the efforts to develop alternative energy should be continued, and the times to fulfill the energy demand comes someday, just developing alternative energy is not a countermeasure for coming oil shortage within 10 years. In addition to that, we have to change our perception on nuclear plant as another preparing measure. Even many problems, the nuclear plant is necessary to substitute oil with a large amount while developing another alternative energy in the 21st century. Unless we want to live in a perfectly safe country, without nuclear accident, even if curtailing economic size with a mutual agreement of people and submitting a big difficulty, the government should notify the necessity of increasing nuclear plant dependency to people and persuade them to share the risk in order to overcome oil shortage.

  5. Skills shortage - identification of needs for engineering training in longwalls

    Energy Technology Data Exchange (ETDEWEB)

    Peter Lugg; Dewen Liu; Rebecca Hill [CRC Mining (Australia)

    2008-11-15

    This report investigates the impacts of the skills shortage on the productivity of longwall faces. The scope is limited to the supervisors and crews that operate, maintain and procure the longwall face equipment. Using a combination of face-to-face interviews and written questionnaires, the industry was canvassed about the impacts of the skills shortage, the current level of skilling and the competence of the workforce to perform its assigned tasks without supervision. The participants also identified the skillsets and levels of understanding required to allow them to work unsupervised, and the preferred delivery methods for training in the identified skills. An Industry Advisory Group was assembled to provide insight and advice to the research team with regards to the survey process and the interpretation of results. The survey data was drawn from face to face interviews from four mines and questionnaires completed by sixteen mines in Queensland and New South Wales. The data is analysed and the results presented along with conclusions and recommendations for future training.

  6. Proposing an Algorithm for R&Q Inventory Control Model with Stochastic Demand Influenced by Shortage

    Directory of Open Access Journals (Sweden)

    Parviz fattahi

    2013-08-01

    Full Text Available In this article, the continuous - review inventory control system has been studied. A new constraint of demand dependent on the average percent of product shortage has been added to the problem. It means that the average demand has a direct relationship with shortage in a period. This constraint, which is related to the costs of credit loss of the organization due to product shortage, has been considered in the inventory model. In this paper, the mathematical model of this problem has been presented and then, two heuristic approaches based on the genetic and simulated annealing algorithms are developed. Computational results indicate that the simulated annealing algorithm can provide better results compare to the genetic algorithm.

  7. Biology Needs a Modern Assessment System for Professional Productivity

    Science.gov (United States)

    McDade, Lucinda A.; Maddison, David R.; Guralnick, Robert; Piwowar, Heather A.; Jameson, Mary Liz; Helgen, Kristofer M.; Herendeen, Patrick S.; Hill, Andrew; Vis, Morgan L.

    2011-01-01

    Stimulated in large part by the advent of the Internet, research productivity in many academic disciplines has changed dramatically over the last two decades. However, the assessment system that governs professional success has not kept pace, creating a mismatch between modes of scholarly productivity and academic assessment criteria. In this…

  8. China's water shortage could shake world food security.

    Science.gov (United States)

    Brown, L R; Halweil, B

    1998-01-01

    This report indicates the global concern about China's water shortages and describes basin supplies, global availability of grain, and reasons for water losses. There is little precise data on how land productivity will be affected by declines in irrigation. Reports from the "China Daily" indicate that the 1995 grain harvest in Shandong province declined by 2.7 million tons (food for 9 million people) due to water failures of the Yellow River. A delegate at the 1998 National People's Congress pointed out that rural villages nationwide had shortages of 30 billion cu. m and losses of 20 million tons of grain production. About 70% of grain harvests rely on irrigation. Water demand for residential use and industrial use is likely to increase and compete with farm use. One unlikely option is to divert irrigation water to cities as needed and import grain. The entire agricultural, energy, and industrial economies need to be made more water efficient. Agriculture will need to produce more water efficient crops and livestock products and less water intensive energy supplies. Another alternative is to divert water from one location to another. Water pricing could reinforce efficiency of use. Use of composting toilets could reduce human residential water demand. Urban capacity building should rely on separate industrial and residential wastewater systems. Investing in technologies for industry can reduce water demand among paper and steel producers. The fastest growing grain market is in North Africa and the Middle East. Trends in principal grain exporting countries with 85% of global exports indicate no growth in grain production for export since 1980. PMID:12348868

  9. 9 CFR 113.29 - Determination of moisture content in desiccated biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Determination of moisture content in desiccated biological products. 113.29 Section 113.29 Animals and Animal Products ANIMAL AND PLANT HEALTH... VECTORS STANDARD REQUIREMENTS Standard Procedures § 113.29 Determination of moisture content in...

  10. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Strucko, Tomas; Eriksen, Jens Christian; Nielsen, J.;

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo...... biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of vanillin produced in this S. cerevisiae strain is insufficient for commercial production and improvements...... need to be done. We have introduced the genes necessary for vanillin production in an identical manner in two different yeast strains S288c and CEN.PK,where comprehensive – omics datasets are available, hence, allowing vanillin production in the two strain backgrounds to be evaluated and compared...

  11. Chemotherapy drug shortages in pediatric oncology: a consensus statement.

    Science.gov (United States)

    Decamp, Matthew; Joffe, Steven; Fernandez, Conrad V; Faden, Ruth R; Unguru, Yoram

    2014-03-01

    Shortages of essential drugs, including critical chemotherapy drugs, have become commonplace. Drug shortages cost significant time and financial resources, lead to adverse patient outcomes, delay clinical trials, and pose significant ethical challenges. Pediatric oncology is particularly susceptible to drug shortages, presenting an opportunity to examine these ethical issues and provide recommendations for preventing and alleviating shortages. We convened the Working Group on Chemotherapy Drug Shortages in Pediatric Oncology (WG) and developed consensus on the core ethical values and practical actions necessary for a coordinated response to the problem of shortages by institutions, agencies, and other stakeholders. The interdisciplinary and multiinstitutional WG included practicing pediatric hematologist-oncologists, nurses, hospital pharmacists, bioethicists, experts in emergency management and public policy, legal scholars, patient/family advocates, and leaders of relevant professional societies and organizations. The WG endorsed 2 core ethical values: maximizing the potential benefits of effective drugs and ensuring equitable access. From these, we developed 6 recommendations: (1) supporting national polices to prevent shortages, (2) optimizing use of drug supplies, (3) giving equal priority to evidence-based uses of drugs whether they occur within or outside clinical trials, (4) developing an improved clearinghouse for sharing drug shortage information, (5) exploring the sharing of drug supplies among institutions, and (6) developing proactive stakeholder engagement strategies to facilitate prevention and management of shortages. Each recommendation includes an ethical rationale, action items, and barriers that must be overcome. Implemented together, they provide a blueprint for effective and ethical management of drug shortages in pediatric oncology and beyond.

  12. The Role of Drinking Water Shortages on Human Psychological Functioning

    Directory of Open Access Journals (Sweden)

    Siamak Khodarahimi

    2014-08-01

    Full Text Available This study is grounded on an ecopsychological approach towards the effect of water shortages on human psychological functioning. The purpose of this study was to: (1 to examine the prevalence of psychological problems in rural residents with and without water shortages; (2 to evaluate human attributions about the possible causes of water scarcity; (3 to explore human coping styles towards water shortage; and (4 to recognize the role of sociocultural factors on the aforesaid factors. Participants included 3850 Iranian rural residents, those with water shortages (WWS, and those without water shortages (WOWS. A demographic questionnaire and several self-rating measures were used. Resulting data indicates that the prevalence of mental health problems is significantly higher in rural residents who suffer with water shortages. Attributional styles towards water shortages consisted of four components: personal, social, natural, and organizational. Coping styles of participants (with water shortages indicated an emotional-avoidant coping style, the utilization of water consumption methods to optimize water usage, the use of water-free technologies, social adaptation to life with regards to water, and the application of high quality technologies for water saving. Demographic and sociocultural factors influence psychological functioning with regards to water scarcity. This study demonstrates that mental health problems are more prevalent in areas with water shortages. It also indicates the impact of attributional styles, coping methods and the role of demographic and sociocultural factors on psychological functioning when water shortages occur,

  13. Hydrodynamics-Biology Coupling for Algae Culture and Biofuel Production

    OpenAIRE

    Bernard, Olivier; Sainte-Marie, Jacques; Sialve, Bruno; Steyer, Jean-Philippe

    2013-01-01

    Biofuel production from microalgae represents an acute optimization problem for industry. There is a wide range of parameters that must be taken into account in the development of this technology. Here, mathematical modelling has a vital role to play. The potential of microalgae as a source of biofuel and as a technological solution for CO2 fixation is the subject of intense academic and industrial research. Large-scale production of microalgae has potential for biofuel applications owing to ...

  14. Strategies for optimizing algal biology for enhanced biomass production

    Directory of Open Access Journals (Sweden)

    Amanda N. Barry

    2015-02-01

    Full Text Available One of the more environmentally sustainable ways to produce high energy density (oils feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source and subsequent carbon capture and sequestration (BECCS has also been proposed in the Intergovernmental Panel on Climate Change Report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass. To increase aerial carbon capture rates and biomass productivity it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to two-fold increases in biomass productivity.

  15. Some aspects of biological production and fishery resources of the EEZ of India

    Digital Repository Service at National Institute of Oceanography (India)

    Bhargava, R.M.S.

    Region and season-wise biological production in the Exclusive Economic Zone (EEZ) of India has been computed from the data of more than twenty years available at the Indian National Oceanographic Data Centre of the National Institute of Oceanography...

  16. Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila.

    Science.gov (United States)

    Patel, Sanjay K S; Mardina, Primata; Kim, Sang-Yong; Lee, Jung-Kul; Kim, In-Won

    2016-04-28

    Methane (CH₄) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH₄ can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH₄; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30°C, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl₂ as a methanol dehydrogenase inhibitor, 50% CH₄ concentration, 24 h of incubation, and 9 mg of dry cell mass ml(-1) inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH₄. PMID:26838340

  17. [Organs shortage in the United States].

    Science.gov (United States)

    Hattori, Masahiro; Iwaki, Yuichi

    2005-11-01

    Since the law pertaining to deceased transplantation was legalized in October 1997 in Japan, 140 cases of deceased transplants have been performed through March 2005. Patients on waiting lists, however, are increasing every year. Meanwhile patients traveling abroad in desperations to require donors also increase. In the United States, over 25,000 transplantations are performed annually. The number of patients on waiting list exceeded 86,000 in 2003. Organ shortages are a serious problem, even in the United States. Expanded criteria donor(ECD) and Model for endstage liver disease (MELD) scoring systems were implemented to improve some problems in kidney and liver allocation systems, respectively in 2002. Utilization of donated organs for non-citizens is limited in the United States. Japan must independently increase deceased donor transplantations. PMID:16277249

  18. Biological pretreatment and ethanol production from olive cake

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Baroi, George Nabin;

    2010-01-01

    Olive oil is one of the major Mediterranean products, whose nutritional and economic importance is well-known. However the extraction of olive oil yields a highly contaminating residue that causes serious environmental concerns in the olive oil producing countries. The olive cake (OC) coming out...... of the three-phase olive oil production process could be used as low price feedstock for lignocellulosic ethanol production due to its high concentration in carbohydrates. However, the binding of the carbohydrates with lignin may significantly hinder the necessary enzymatic hydrolysis of the polymeric sugars...... before ethanol fermentation. Treatment with three white rot fungi, Phaneroachaete chrysosporium, Ceriporiopsis subvermispora and Ceriolopsis polyzona has been applied on olive cake in order to investigate the potential for performing delignification and thus enhancing the efficiency of the subsequent...

  19. Systems-Level Synthetic Biology for Advanced Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Travis J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strickland, Lucas Marshall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tallant, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  20. Recent advances in biological production of sugar alcohols.

    Science.gov (United States)

    Park, Yong-Cheol; Oh, Eun Joong; Jo, Jung-Hyun; Jin, Yong-Su; Seo, Jin-Ho

    2016-02-01

    Sugar alcohols, such as xylitol, mannitol, sorbitol, and erythritol are emerging food ingredients that provide similar or better sweetness/sensory properties of sucrose, but are less calorigenic. Also, sugar alcohols can be converted into commodity chemicals through chemical catalysis. Biotechnological production offers the safe and sustainable supply of sugar alcohols from renewable biomass. In contrast to early studies that aimed to produce sugar alcohols with microorganisms capable of producing sugar alcohols naturally, recent studies have focused on rational engineering of metabolic pathways to improve yield and productivity as well as to use inexpensive and abundant substrates. Metabolic engineering strategies to utilize inexpensive substrates, alleviate catabolite repression, reduce byproduct formation, and manipulate redox balances led to enhanced production of sugar alcohols.

  1. Recent advances in biological production of sugar alcohols.

    Science.gov (United States)

    Park, Yong-Cheol; Oh, Eun Joong; Jo, Jung-Hyun; Jin, Yong-Su; Seo, Jin-Ho

    2016-02-01

    Sugar alcohols, such as xylitol, mannitol, sorbitol, and erythritol are emerging food ingredients that provide similar or better sweetness/sensory properties of sucrose, but are less calorigenic. Also, sugar alcohols can be converted into commodity chemicals through chemical catalysis. Biotechnological production offers the safe and sustainable supply of sugar alcohols from renewable biomass. In contrast to early studies that aimed to produce sugar alcohols with microorganisms capable of producing sugar alcohols naturally, recent studies have focused on rational engineering of metabolic pathways to improve yield and productivity as well as to use inexpensive and abundant substrates. Metabolic engineering strategies to utilize inexpensive substrates, alleviate catabolite repression, reduce byproduct formation, and manipulate redox balances led to enhanced production of sugar alcohols. PMID:26723007

  2. Xenicane Natural Products: Biological Activity and Total Synthesis.

    Science.gov (United States)

    Betschart, Leo; Altmann, Karl-Heinz

    2015-01-01

    The xenicanes are a large class of mostly bicyclic marine diterpenoids featuring a cyclononane ring as a common structural denominator. After a brief introduction into the characteristic structural features of xenicanes and some biogenetic considerations, the major focus of this review will be on the various biological activities that have been reported for xenicanes and on efforts towards the total synthesis of these structures. Several xenicanes have been shown to be potent antiproliferative agents in vitro, but activities have also been reported in relation to inflammatory processes. However, so far, data on the possible in vivo activity of xenicanes are lacking. The major challenge in the total synthesis of xenicanes is the construction of the nine-membered ring. Different strategies have been pursued to establish this crucial substructure, including Grob fragmentation, ring-closing olefin metathesis, or Suzuki cross coupling as the enabling transformations. PMID:26429717

  3. Solving shortage in a priceless market: Insights from blood donation.

    Science.gov (United States)

    Sun, Tianshu; Lu, Susan Feng; Jin, Ginger Zhe

    2016-07-01

    Shortage is common in many markets, such as those for human organs or blood, but the problem is often difficult to solve through price adjustment, given safety and ethical concerns. In this paper, we study two non-price methods that are often used to alleviate shortage for human blood. The first method is informing existing donors of a current shortage via a mobile message and encouraging them to donate voluntarily. The second method is asking the patient's family or friends to donate in a family replacement (FR) program at the time of shortage. Using 447,357 individual donation records across 8 years from a large Chinese blood bank, we show that both methods are effective in addressing blood shortage in the short run but have different implications for total blood supply in the long run. We compare the efficacy of these methods and discuss their applications under different scenarios to alleviate shortage.

  4. Solving shortage in a priceless market: Insights from blood donation.

    Science.gov (United States)

    Sun, Tianshu; Lu, Susan Feng; Jin, Ginger Zhe

    2016-07-01

    Shortage is common in many markets, such as those for human organs or blood, but the problem is often difficult to solve through price adjustment, given safety and ethical concerns. In this paper, we study two non-price methods that are often used to alleviate shortage for human blood. The first method is informing existing donors of a current shortage via a mobile message and encouraging them to donate voluntarily. The second method is asking the patient's family or friends to donate in a family replacement (FR) program at the time of shortage. Using 447,357 individual donation records across 8 years from a large Chinese blood bank, we show that both methods are effective in addressing blood shortage in the short run but have different implications for total blood supply in the long run. We compare the efficacy of these methods and discuss their applications under different scenarios to alleviate shortage. PMID:27263024

  5. 9 CFR 113.3 - Sampling of biological products.

    Science.gov (United States)

    2010-01-01

    ... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS... bacterial vaccines; (iii) Two samples of Coccidiosis Vaccine; (iv) Eighteen samples of Rabies Vaccine... as follows: (1) Ten samples of Bacterial Master Seeds. (2) Thirteen samples of viral Master Seeds...

  6. Regeneration of nutrients and biological productivity in Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    Verlecar, X.N.; Somasundar, K.; Qasim, S.Z.

    contribute to the biomass production, reforming of plate ice during late summer (towards the end of February) may result in a shift of zooplanktonic organisms towards the north. Other oceanic regions north of 61° S Fig. 9 shows the distribution of chlorophyll...

  7. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    International Nuclear Information System (INIS)

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  8. Biological production of monoethanolamine by engineered Pseudomonas putida S12

    NARCIS (Netherlands)

    Foti, M.J.; Médici, R.; Ruijssenaars, H.J.

    2013-01-01

    Pseudomonas putida S12 was engineered for the production of monoethanolamine (MEA) from glucose via the decarboxylation of the central metabolite l-serine, which is catalyzed by the enzyme l-serine decarboxylase (SDC).The host was first evaluated for its tolerance towards MEA as well as its endogeno

  9. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

    2009-07-01

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  10. BIOLOGICAL FEATURES AND PRODUCTIVITY OF BLACK-AND-WHITE CATTLE

    Directory of Open Access Journals (Sweden)

    Kochueva Y. V.

    2015-02-01

    Full Text Available The behavior, interior and milk yield of the mature Black-and-White cows with various productivity levels, as well as etology of the replacement heifers are researched. The superiority of the high milk yielding cows for the lying duration and eating feed and water is revealed. Reduced variability of vital behavioral actions of animals is found. In addition, high yielding cows has been lower variability in all feeding acts. It was noted that high yielding animals exceeded equal age cows by the level of most interior factors. The differences were significant on the content of hemoglobin, vitamin E, and especially on the content of iron. Positive correlations between some interior design indicators is found. The analysis of lifetime productivity during our research found that high milk yielding cows had highest yields on the first lactation and kept the same level in the next lactations with insignificant variations. The lower productivity animals reached maximal yields on the third lactation with the followed downward trend. Differences between groups in lifetime productivity during research amounted to 16 992 kg. The significant superiority of the heifers with high grown intensity above equal age animals for the duration of feed and water eating, physiological functions and lying. The analysis of variation coefficient is confirmed the observed regularities.

  11. Bovine mammary stem cells: Cell biology meets production agriculture

    Science.gov (United States)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  12. Energies: shortage coming to climate's aid?; Energies: une penurie au secours du climat?

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, Adolphe [Montpellier Univ. (France)

    2011-09-08

    Since the industrial revolution, energy has been the driving force of the world economic growth. While our energy consumption is increasing day after day, this book tells us that shortage will be reached sooner than announced by some economists, politicians and oil companies. According to many petroleum geologists and independent experts, the oil production peaks would be already reached and the one for coal will be reached between 2030 and 2050. Shortage would also strike several mineral resources as well (like copper). The book tries to foresee what would be the shortage consequences for our societies. From the energy side, the challenge to take up is to save energy and to develop renewable energy sources. From the environment side, the exhaustion of fossil fuels represents a chance to slow down the ambient temperature rise to less than 2 deg. C by 2100. (J.S.)

  13. An EOQ Model for Time Dependent Weibull Deterioration with Linear Demand and Shortages

    Directory of Open Access Journals (Sweden)

    Umakanta Mishra

    2012-06-01

    Full Text Available Background. The study of control and maintenance of production inventories of deteriorating items with and without shortages  has grown in its importance recently. The effect of deterioration is very important in many inventory systems. Deterioration is defined as decay or damage such that the item cannot be used for its original purpose. Methods: In this article order level inventory models have been developed for deteriorating items with linear demand and Weibull deterioration.  In developing the model we have assumed that the production rate and the demand rate are time dependent. The unit production cost is inversely proportional to demand. Inventory-production system has two parameters Weibull deterioration.  Results and conclusions:  Two models have been developed considering without shortage cases and with shortage case where the shortages are completely backlogged. The objective of the model is to develop an optimal policy that minimizes the total average cost. Sensitivity analysis has been carried out to show the effect of changes in the parameter on the optimum total average cost.  

  14. Consequences of a global enzyme shortage of agalsidase beta in adult Dutch Fabry patients

    NARCIS (Netherlands)

    B.E. Smid; S.M. Rombach; J.M.F.G. Aerts; S. Kuiper; M. Mirzaian; H.S. Overkleeft; B.J.H.M. Poorthuis; C.E.M. Hollak; J.E.M. Groener; G.E. Linthorst

    2011-01-01

    ABSTRACT: BACKGROUND: Enzyme replacement therapy is currently the only approved therapy for Fabry disease. From June 2009 on, viral contamination of Genzyme's production facility resulted in a worldwide shortage of agalsidase beta leading to involuntary dose reductions (approved dose 1 mg/kg/eow, re

  15. Production of biological reagents for radioimmunoassay second antibody

    International Nuclear Information System (INIS)

    The experimental production of second antibody to be used in hormonal assays, in which the first antibody is raised in rabbits, is described. Four sheep were immunized with the rabbit immunoglobulin prepared at IPEN-CNEN laboratory. Their antisera were evaluated by the human thyrotropin radioimmunoassay employing materials provided by the National Hormone and Pituitary Program (USA), in comparison with a reference antiserum of known quality, produced in goat by the Radioassay Systems Laboratories - RSL (USA). From the fourth booster injection the animals developed antiserum with titer similar to that exhibited by the commercial product, even presenting higher values. These antisera are now being examinated for the optimal conditions of precipitation before be packed for future use and distribution. (author)

  16. Biological Impact of Bioactive Glasses and Their Dissolution Products.

    Science.gov (United States)

    Hoppe, Alexander; Boccaccini, Aldo R

    2015-01-01

    For many years, bioactive glasses (BGs) have been widely considered for bone tissue engineering applications due to their ability to bond to hard as well as soft tissue (a property termed bioactivity) and for their stimulating effects on bone formation. Ionic dissolution products released during the degradation of the BG matrix induce osteogenic gene expression leading to enhanced bone regeneration. Recently, adding bioactive metallic ions (e.g. boron, copper, cobalt, silver, zinc and strontium) to silicate (or phosphate and borate) glasses has emerged as a promising route for developing novel BG formulations with specific therapeutic functionalities, including antibacterial, angiogenic and osteogenic properties. The degradation behaviour of BGs can be tailored by adjusting the glass chemistry making these glass matrices potential carrier systems for controlled therapeutic ion release. This book chapter summarises the fundamental aspects of the effect of ionic dissolution products from BGs on osteogenesis and angiogenesis, whilst discussing novel BG compositions with controlled therapeutic ion release. PMID:26201273

  17. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    OpenAIRE

    Strucko, Tomas; Eriksen, Carsten; Nielsen, J.; Mortensen, Uffe Hasbro

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of...

  18. Strategies for optimizing algal biology for enhanced biomass production

    OpenAIRE

    Barry, Amanda N.; Starkenburg, Shawn R.; Richard eSayre

    2015-01-01

    One of the more environmentally sustainable ways to produce high energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration (BECCS) has also been proposed in the Intergovernmental Panel on Climate Change Report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosyn...

  19. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    OpenAIRE

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-01-01

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic c...

  20. Evidence-based practice in times of drug shortage.

    Science.gov (United States)

    de Lemos, Mário L; Waignein, Sally; de Haan, Marie

    2016-06-01

    Shortage of oncology drugs is a particularly complicated issue because there are usually limited therapeutic options. Moreover, oncology practice may employ medications for supportive indications which differ from their main usage. This means shortage of oncology drugs is not usually addressed by the major drug shortage guidelines. We have previously shown that, during a shortage crisis, it is possible to make a recommendation on the use of an expired drug supply based on a reasonable estimate of its safety and efficacy. Here, we would like to share further examples on how to deduce potential therapeutic alternatives based on pharmacokinetic and pharmacodynamic principles in the absence of direct clinical evidence in the literature.

  1. Selection for milk production from a lactation biology viewpoint.

    Science.gov (United States)

    Akers, R M

    2000-05-01

    The success of selection for increased milk production in dairy cows is apparent. Certainly, many herds now have average production levels that would have only been associated with the best producers in the herd 30 yr ago. There are, of course, many reasons for this success. Among these are improvements in genetic selection methods and associated use of artificial insemination, better fulfillment of nutritional needs and diet formulation, and careful attention to mastitis control and milking management. Development of new management tools (i.e., bovine somatotropin, improved crops, estrus detection devices, estrus synchronization, monitoring of individual animal performance, and disease prevention) should not be forgotten. Although many aspects of a dairy operation determine overall performance and profitability, the focus of this paper is the udder. Information indicates that both the structure and function of the bovine mammary gland have been directly impacted by long-term selection for increased milk production but improved functionality may have been more important. This review also considered studies that attempt to develop techniques and measurements for possible selection of genetically superior animals including measurement of circulating hormones and direct assay of mammary tissue function. PMID:10821592

  2. BIOLOGICAL AND PRODUCTIVE RESOURCES OF LACTATING COWS AT DENITRIFICATION

    Directory of Open Access Journals (Sweden)

    Kokaeva M. G.

    2015-09-01

    Full Text Available The article presents the results obtained in the process of two scientific-practical experiments carried jut on two milk cows (Shvitskay breed aimed at the antioxidants detoxication properties and mould inhibitor revealing. This factor is actual in the Republic of North Ossetia-Alania as the intensive technologies of the fodder crops cultivation using the nitrate fertilizers are widely applied in the region leading to the excess nitrates and nitrite penetration into the animals’ organism. During the first experiment, the antioxidants of epophen and vitamin C were added into the ration of the lactating cows with the subtoxic dosage of nitrates both separately and in complex. The complex feeding proved to increase the milk productivity, the fat mass and protein mass in milk while reducing the fodder expenditure per product unit. Beside, the lactating cows revealed the digestive and intermediate exchange betterment and the reduction of nitrates and nitrites level in blood. The second experiment helped to study Khadoks antioxidant and mould inhibitor called Mold-Zap efficiency use for the nitrates and aflotoxicin B1 detoxication. The researches showed that the complex admixtures of the said preparations introduction into the rations of the animals increased the milk productivity, fat and protein content and reduced aflatoxineM1 content. The cows activated the digestive and intermediate exchange, accompanied with the nitrates and nitrites level reduction in the organism

  3. Biological fouling of ethylene production water recycling system

    Energy Technology Data Exchange (ETDEWEB)

    Kurdish, I.K.; Khenkina, L.M.; Pavlenko, N.I.

    A study was made of biotic factors determining the intensity of biological overgrowth of ethylene as well as the distribution of sulfate-reducing bacteria in the system. The total quantity of microorganisms was determined by counting on membrane filters. The content of heterotrophic aerobic and anaerobic microorganisms was determined by inoculating specimens on meat-peptone agar and wort agar. The resistance of the microflora in the water supply system to high temperatures was studied by exposure of the specimens to various temperatures for one hour. The results indicated presence of large quantities of a number of biogenous substances in the water, including compounds of phosphorus and carbon. Large numbers of both aerobic and anaerobic microorganisms were present, consuming the oxygen absorbed by the water in the cooling tower, creating favorable conditions for development of both aerobic and anaerobic microorganisms. The sulfate-reducing bacteria present caused accumulation of hydrogen sulfide in the system, increasing corrosion. One possible means of controlling the fouling organisms might be to heat the water. Heating to 60C for sixty minutes significantly reduces the microorganism population, while 70C results in almost total elimination. 8 references, 4 figures.

  4. Biological Hydrogen Production Using Chloroform-treated Methanogenic Granules

    Science.gov (United States)

    Hu, Bo; Chen, Shulin

    In fermentative hydrogen production, the low-hydrogen-producing bacteria retention rate limits the suspended growth reactor productivity because of the long hydraulic retention time (HRT) required to maintain adequate bacteria population. Traditional bacteria immobilization methods such as calcium alginate entrapment have many application limitations in hydrogen fermentation, including limited duration time, bacteria leakage, cost, and so on. The use of chloroform-treated anaerobic granular sludge as immobilized hydrogen-producing bacteria in an immobilized hydrogen culture may be able to overcome the limitations of traditional immobilization methods. This paper reports the findings on the performance of fed-batch cultures and continuous cultures inoculated with chloroform-treated granules. The chloroform-treated granules were able to be reused over four fed-batch cultures, with pH adjustment. The upflow reactor packed with chloroform-treated granules was studied, and the HRT of the upflow reactor was found to be as low as 4 h without any decrease in hydrogen production yield. Initial pH and glucose concentration of the culture medium significantly influenced the performance of the reactor. The optimum initial pH of the culture medium was neutral, and the optimum glucose concentration of the culture medium was below 20 g chemical oxygen demand/L at HRT 4 h. This study also investigated the possibility of integrating immobilized hydrogen fermentation using chloroform-treated granules with immobilized methane production using untreated granular sludge. The results showed that the integrated batch cultures produced 1.01 mol hydrogen and 2 mol methane per mol glucose. Treating the methanogenic granules with chloroform and then using the treated granules as immobilized hydrogen-producing sludge demonstrated advantages over other immobilization methods because the treated granules provide hydrogen-producing bacteria with a protective niche, a long duration of an active

  5. Production, Secretion and Biological Activity of Bacillus cereus Enterotoxins

    Directory of Open Access Journals (Sweden)

    Sonia Senesi

    2010-06-01

    Full Text Available Bacillus cereus behaves as an opportunistic pathogen frequently causing gastrointestinal diseases, and it is increasingly recognized to be responsible for severe local or systemic infections. Pathogenicity of B. cereus mainly relies on the secretion of a wide array of toxins and enzymes and also on the ability to undergo swarming differentiation in response to surface-sensing. In this report, the pathogenicity exerted by B. cereus toxins is described with particular attention to the regulatory mechanisms of production and secretion of HBL, Nhe and CytK enterotoxins.

  6. Application of Olefin Cross-Metathesis to the Synthesis of Biologically Active Natural Products

    OpenAIRE

    Prunet, Joëlle

    2005-01-01

    An overview of the use of olefin cross-metathesis in the synthesis of biologically active natural products is presented. The diverse examples are organized according to the outcome of the olefin constructed by the cross-metathesis reaction: this olefin can be either present in the final product, reduced, engaged in other transformations, or involved in tandem processes.

  7. Natural product diversity and its role in chemical biology and drug discovery

    OpenAIRE

    Hong, Jiyong

    2011-01-01

    Through the natural selection process, natural products possess a unique and vast chemical diversity and have been evolved for optimal interactions with biological macromolecules. Owing to their diversity, target affinity, and specificity, natural products have demonstrated enormous potential as modulators of biomolecular function, been an essential source for drug discovery, and provided design principles for combinatorial library development.

  8. 9 CFR 113.51 - Requirements for primary cells used for production of biologics.

    Science.gov (United States)

    2010-01-01

    ... of the final pool of harvested material or samples of each subculture of cells used to prepare the... completed product or samples of the final pool of harvested material or samples of each subculture of cells... cells or each subculture of primary cells used to prepare a biological product shall be shown free...

  9. Overview of allied health personnel shortages.

    Science.gov (United States)

    Elwood, T W

    1991-01-01

    Upon learning that 95% of all fatal traffic accidents occur within three miles of one's home, an acquaintance moved to another residence four miles away and is still alive today. The world might be a much better place if most obstacles could be overcome this handily. Unfortunately, the problem of allied health personnel shortages appears to be more intractable. Because the situation is complicated in nature, it is most unlikely that any single remedy will suffice. Public and private interests have joined forces in many states, but it is abundantly clear that conventional market forces are unlikely to prevail. These forces usually focus on supply and demand. While shortages may cause entry-level salaries to rise, they do not stimulate academic institutions to increase their output nor will they affect the availability of research funding and/or doctoral training programs. Current market forces compel health facilities to engage in bidding wars for scarce manpower. Although individual job seekers may benefit, this practice does not increase the number of training program graduates. The federal government has a decisive role to play in assuring an adequate number of personnel to meet this nation's health care needs. Assistance is necessary in the form of providing entry- and advanced-level traineeships to accelerate the flow of part-time students pursuing doctorates, and to fund model student recruitment/retention projects. This role should encompass attracting students (particularly from minority and underserved portions of the population) to academic programs. The Disadvantaged Minority Health Improvement Act, PL 101-527 that was enacted in November 1990, contains only minimal provisions for allied health. Eligibility for student scholarship assistance is restricted to a small handful of allied health professions. Moreover, allied health is not eligible for the loan repayment program aimed at individuals who agree to serve on the faculty of health professions

  10. Development of biological functional material and product from Nelumbo nucifera

    International Nuclear Information System (INIS)

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient

  11. Development of biological functional material and product from Nelumbo nucifera

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Il Yun; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong

    2008-01-15

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient.

  12. A novel biological hydrogen production system. Impact of organic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, Hisham; Nakhla, George; El Naggar, Hesham [Western Ontario Univ. (Canada)

    2010-07-01

    The patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. Two biohydrogenators were operated for 220 days at 37 C, hydraulic retention time 8 h and solids retention time ranged from 1.4 to 2 days under four different glucose concentrations of 2, 8, 16, 32, 48 and 64 g/L, corresponding to organic loading rates of 6.5-206 kg COD/m{sup 3}-d, and started up using anaerobically-digested sludge from the St. Marys wastewater treatment plant (St.Mary, Ontario, Canada) as the seed. The system steadily produced hydrogen with no methane. A maximum hydrogen yield of 3.1 mol H{sub 2} /mol glucose was achieved in the system for all the organic loading rates with an average of 2.8mol H{sub 2} /mol glucose. Acetate and butyrate were the main effluent liquid products at concentrations ranging from 640-7400 mg/L and 400-4600 mg/l, respectively, with no lactate detection. Microbial community analysis using denaturing gradient gel electrophoresis (DGGE) confirmed the absence of lactate producing bacteria Lactobacillus fermentum and other non-hydrogen producing species, and the predominance of various Clostridium species. Biomass concentrations in the biohydrogenators were steady, during the runs, varying form 1500 mg/L at the OLR of 6.5 kg COD/m{sup 3}-d to 14000 mg/L at the 104 kg COD/m{sup 3}-d, thus emphasizing the potential of this novel system for sustained stable hydrogen production and prevention of biomass washout. (orig.)

  13. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  14. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia

    Energy Technology Data Exchange (ETDEWEB)

    Kummu, Matti; Varis, Olli [Water and Development Research Group, Aalto University (Finland); Ward, Philip J; De Moel, Hans, E-mail: matti.kummu@iki.fi, E-mail: philip.ward@ivm.vu.nl, E-mail: hans.de.moel@ivm.vu.nl, E-mail: olli.varis@tkk.fi [Institute for Environmental Studies, VU University, Amsterdam (Netherlands)

    2010-07-15

    In this letter we analyse the temporal development of physical population-driven water scarcity, i.e. water shortage, over the period 0 AD to 2005 AD. This was done using population data derived from the HYDE dataset, and water resource availability based on the WaterGAP model results for the period 1961-90. Changes in historical water resources availability were simulated with the STREAM model, forced by climate output data of the ECBilt-CLIO-VECODE climate model. The water crowding index, i.e. Falkenmark water stress indicator, was used to identify water shortage in 284 sub-basins. Although our results show a few areas with moderate water shortage (1000-1700 m{sup 3}/capita/yr) around the year 1800, water shortage began in earnest at around 1900, when 2% of the world population was under chronic water shortage (<1000 m{sup 3}/capita/yr). By 1960, this percentage had risen to 9%. From then on, the number of people under water shortage increased rapidly to the year 2005, by which time 35% of the world population lived in areas with chronic water shortage. In this study, the effects of changes in population on water shortage are roughly four times more important than changes in water availability as a result of long-term climatic change. Global trends in adaptation measures to cope with reduced water resources per capita, such as irrigated area, reservoir storage, groundwater abstraction, and global trade of agricultural products, closely follow the recent increase in global water shortage.

  15. Phototrophic pigment production with microalgae: biological constraints and opportunities.

    Science.gov (United States)

    Mulders, Kim J M; Lamers, Packo P; Martens, Dirk E; Wijffels, René H

    2014-04-01

    There is increasing interest in naturally produced colorants, and microalgae represent a bio-technologically interesting source due to their wide range of colored pigments, including chlorophylls (green), carotenoids (red, orange and yellow), and phycobiliproteins (red and blue). However, the concentration of these pigments, under optimal growth conditions, is often too low to make microalgal-based pigment production economically feasible. In some Chlorophyta (green algae), specific process conditions such as oversaturating light intensities or a high salt concentration induce the overproduction of secondary carotenoids (β-carotene in Dunaliella salina (Dunal) Teodoresco and astaxanthin in Haematococcus pluvialis (Flotow)). Overproduction of all other pigments (including lutein, fucoxanthin, and phycocyanin) requires modification in gene expression or enzyme activity, most likely combined with the creation of storage space outside of the photosystems. The success of such modification strategies depends on an adequate understanding of the metabolic pathways and the functional roles of all the pigments involved. In this review, the distribution of commercially interesting pigments across the most common microalgal groups, the roles of these pigments in vivo and their biosynthesis routes are reviewed, and constraints and opportunities for overproduction of both primary and secondary pigments are presented.

  16. Models of risk assessments for biologicals or related products in the European Union.

    Science.gov (United States)

    Moos, M

    1995-12-01

    In the context of veterinary biologicals, environmental risk assessment means the evaluation of the risk to human health and the environment (which includes plants and animals) connected with the release of such products. The following categories or types of veterinary biologicals can be distinguished: non-genetically modified organisms (non-GMOs) (inactivated/live) GMOs (inactivated/live) carrier products related products (e.g. non-specific "inducers'). Suitable models used in risk assessment for these products should aim to identify all possible adverse effects. A good working model should lead, at least, to a qualitative judgement on the environmental risk of the biological product (e.g. negligible, low, medium, severe, unacceptable). Quantifiable outcomes are rare; therefore, the producer of a biological product and the European control authorities should accept only models which are based on testable points and which are relevant to the type of product and its instructions for use. In view of animal welfare aspects, models working without animals should be preferred. In recent years, some of these methods have been integrated into safety tests described in European Union Directives and in monographs of the European Pharmacopoeia. By reviewing vaccine/registration problems (e.g. Aujeszky's disease live vaccine for pigs, and vaccinia-vectored rabies vaccine), several models used in risk assessment are demonstrated and discussed. PMID:8639943

  17. The Continuing Shortage of Child and Adolescent Psychiatrists

    Science.gov (United States)

    Thomas, Christopher R.; Holzer, Charles E., III

    2006-01-01

    Objective: The national shortage of child and adolescent psychiatrists has prompted efforts to improve recruitment. It is uncertain whether these efforts will be sufficient to address this shortage and its impact on youth mental health services. Method: Data were compared from 1990 to 2001 by state, county characteristics, number of youths, and…

  18. The American Nursing Shortage: Implications for Community Colleges

    Science.gov (United States)

    Friedel, Janice Nahra

    2012-01-01

    This article examines national employment and program trends in the nursing profession, the nursing shortage in Iowa, and state policy and community college responses in Iowa. During the seven-year period 2001-2008, two Iowa governors convened special task forces to study the nursing shortage and to make recommendations. The policy responses dealt…

  19. Organic Production Systems: What the Biological Cell Can Teach Us About Manufacturing

    OpenAIRE

    Lieven Demeester; Knut Eichler; Christoph H. Loch

    2004-01-01

    Biological cells run complicated and sophisticated production systems. The study of the cell's production technology provides us with insights that are potentially useful in industrial manufacturing. When comparing cell metabolism with manufacturing techniques in industry, we find some striking commonalities, but also some important differences. Like today's well-run factories, the cell operates a very lean production system, assures quality at the source, and uses component commonality to si...

  20. Occurrence, pathways and implications of biological production of reactive oxygen species in natural waters

    Science.gov (United States)

    Zhang, T.; Hansel, C. M.; Voelker, B. M.; Lamborg, C. H.

    2014-12-01

    Reactive oxygen species (ROS), such as superoxide (O2-) and hydrogen peroxide (H2O2) play a critical role in the redox cycling of both toxic (e.g., Hg) and nutrient (e.g., Fe) metals. Despite the discovery of extracellular ROS production in various microbial cultures, including fungi, algae and bacteria, photo-dependent processes are generally considered as the predominant source of ROS in natural waters. Here we show that biological production of ROS is ubiquitous and occurs at a significant rate in freshwater and brackish water environments. Water samples were collected from three freshwater and one brackish water ponds in Cape Cod, Massachusetts, USA, periodically from 2012 to 2014. Production of O2- and H2O2 were measured in dark incubations of natural water using a chemiluminescent and a colorimetric probe, respectively. Rates of biological ROS production were obtained by comparing unfiltered with 0.2-μm filtered samples. The role of biological activity in ROS production was confirmed by the cessation of ROS production upon addition of formaldehyde. In surface water, production rates of O2- ranged from undetectable to 96.0 ± 30.0 nmol L-1 h-1, and production rates of H2O2 varied between 9.9 ± 1.3 nmol L-1 h-1 and 145.6 ± 11.2 nmol L-1 h-1. The maximum production rates of both ROS were observed in mid-summer 2013, which coincides with peak biological activity. ROS production in the water from aphotic zone was greater than in the water from photic zone. Thus, non-light dependent biological processes are likely the major contributors to ROS production in this system. Moreover, O2- production appeared to be enhanced by NADH and inhibited by proteinase-K, suggesting the possible involvement of NADH oxidoreductases in this process. The potential role of different microbial communities in ROS production, and the implications of biological ROS production for mercury speciation will also be discussed.

  1. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  2. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae. We describe......-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic...

  3. Recent progress in synthetic biology for microbial production of C3-C10 alcohols

    Directory of Open Access Journals (Sweden)

    Edna N. Lamsen

    2012-06-01

    Full Text Available The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. While microbial ethanol production is well established, higher chain alcohols possess chemical properties that are more similar to gasoline. Unfortunately, these alcohols (except 1-butanol are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. Synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of these advanced biofuels. This review concentrates on recent developments in synthetic biology to produce higher-chain alcohols as viable renewable replacements for traditional fuel.

  4. Studies on production and biological potential of prodigiosin by Serratia marcescens.

    Science.gov (United States)

    Suryawanshi, Rahul K; Patil, Chandrashekhar D; Borase, Hemant P; Salunke, Bipinchandra K; Patil, Satish V

    2014-07-01

    Efficacy of Serratia marcescens for pigment production and biological activity was investigated. Natural substrates like sweet potato, mahua flower extract (Madhuca latifolia L.), and sesam at different concentrations were taken. As a carbon source microorganism favored potato powder was followed by sesam and mannitol, and as nitrogen source casein hydrolysate was followed by yeast and malt extract. The effect of inorganic salts on pigment production was also studied. At final optimized composition of suitable carbon, nitrogen source, and trace materials and at suitable physiological conditions, prodigiosin production was 4.8 g L(-1). The isolated pigment showed antimicrobial activity against different pathogenic bacteria and fungi. Extracted pigment was characterized by spectroscopy, Fourier transform infrared (FTIR), and thin layer chromatography (TLC) which confirm production of biological compound prodigiosin. This study suggests that use of sweet potato powder and casein can be a potential alternative bioresource for commercial production of pigment prodigiosin. PMID:24781979

  5. Pollinator shortage and global crop yield: Looking at the whole spectrum of pollinator dependency

    OpenAIRE

    Garibaldi, Lucas A.; Aizen, Marcelo A.; Cunningham, Saul A.; Klein, Alexandra M.

    2009-01-01

    A pollinator decline caused by environmental degradation might be compromising the production of pollinator-dependent crops. In a recent article, we compared 45 year series (1961–2006) in yield, production and cultivated area of pollinator-dependent and nondependent crop around the world. If pollinator shortage is occurring globally, we expected a lower annual growth rate in yield for pollinator-dependent than nondependent crops, but a higher growth in cultivated area to compensate the lower ...

  6. Consequences of a global enzyme shortage of agalsidase beta in adult Dutch Fabry patients

    Directory of Open Access Journals (Sweden)

    Hollak Carla EM

    2011-10-01

    Full Text Available Abstract Background Enzyme replacement therapy is currently the only approved therapy for Fabry disease. From June 2009 on, viral contamination of Genzyme's production facility resulted in a worldwide shortage of agalsidase beta leading to involuntary dose reductions (approved dose 1 mg/kg/eow, reduced dose 0.5 mg/kg/m, or switch to agalsidase alpha (administered dose 0.2 mg/kg/eow. An assessment report from the European Medicines Agency (EMA raised serious concerns about an increase in adverse events at lower dosages of agalsidase beta. We determined the influence of the shortage on clinical event incidence and the most sensitive biochemical marker (lysoGb3 in Dutch Fabry patients. Methods The incidence of clinical events per person per year was calculated from start of agalsidase beta treatment until the shortage, and was compared to the incidence of clinical events during the shortage period. In addition, plasma lysoGb3, eGFR, quality of life (SF-36 and brief pain inventory (BPI questionnaires were analysed. Results All thirty-five Dutch Fabry patients using agalsidase beta (17 males were included. Mean clinical event incidence was unchanged: 0.15 events per person per year before versus 0.15 during the shortage (p = 0.68. In total 28 clinical events occurred in 14 patients during 4.6 treatment years, compared to 7 events in 6 patients during the 1.3 year shortage period. eGFR and BPI scores were not significantly altered. Two SF-36 subscales were significantly but minimally reduced in females. In males, lysoGb3 increased with a median of 8.1 nM (range 2.5 - 29.2 after 1 year of shortage (p = 0.001. Increases in lysoGb3 were found in both patients switching to agalsidase alpha and on a reduced agalsidase beta dose. Antibody status, treatment duration or clinical event incidence showed no clear correlation to lysoGb3 increases. Conclusions No increase in clinical event incidence was found in the adult Dutch Fabry cohort during the agalsidase

  7. Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal?

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Nuncio, M.; Kumar, A.; Sardessai, S.; DeSouza, S.N.; Gauns, M.; Ramaiah, N.; Madhupratap, M.

    -1 Are eddies nature?s trigger to enhance biological productivity in the Bay of Bengal? S. Prasanna Kumar, M. Nuncio, Jayu Narvekar, Ajoy Kumar1, S. Sardesai, S.N. de Souza, Mangesh Gauns, N. Ramaiah and M. Madhupratap National Institute of Oceanography... of nutrient supply to the oligotrophic upper ocean waters such as wind- driven mixing, upwelling etc. cannot account for this. In this paper we explore the role of eddies in enhancing the biological productivity in the Bay of Bengal. 2. Data and Analysis...

  8. Bioinformatics for the synthetic biology of natural products: integrating across the Design-Build-Test cycle.

    Science.gov (United States)

    Carbonell, Pablo; Currin, Andrew; Jervis, Adrian J; Rattray, Nicholas J W; Swainston, Neil; Yan, Cunyu; Takano, Eriko; Breitling, Rainer

    2016-08-27

    Covering: 2000 to 2016Progress in synthetic biology is enabled by powerful bioinformatics tools allowing the integration of the design, build and test stages of the biological engineering cycle. In this review we illustrate how this integration can be achieved, with a particular focus on natural products discovery and production. Bioinformatics tools for the DESIGN and BUILD stages include tools for the selection, synthesis, assembly and optimization of parts (enzymes and regulatory elements), devices (pathways) and systems (chassis). TEST tools include those for screening, identification and quantification of metabolites for rapid prototyping. The main advantages and limitations of these tools as well as their interoperability capabilities are highlighted. PMID:27185383

  9. Bioinformatics for the synthetic biology of natural products: integrating across the Design–Build–Test cycle

    Science.gov (United States)

    Currin, Andrew; Jervis, Adrian J.; Rattray, Nicholas J. W.; Swainston, Neil; Yan, Cunyu; Breitling, Rainer

    2016-01-01

    Covering: 2000 to 2016 Progress in synthetic biology is enabled by powerful bioinformatics tools allowing the integration of the design, build and test stages of the biological engineering cycle. In this review we illustrate how this integration can be achieved, with a particular focus on natural products discovery and production. Bioinformatics tools for the DESIGN and BUILD stages include tools for the selection, synthesis, assembly and optimization of parts (enzymes and regulatory elements), devices (pathways) and systems (chassis). TEST tools include those for screening, identification and quantification of metabolites for rapid prototyping. The main advantages and limitations of these tools as well as their interoperability capabilities are highlighted. PMID:27185383

  10. New approaches to estimation of peat deposits for production of biologically active compounds

    Science.gov (United States)

    Stepchenko, L. M.; Yurchenko, V. I.; Krasnik, V. G.; Syedykh, N. J.

    2009-04-01

    It is known, that biologically active preparations from peat increase animals productivity as well as resistance against stress-factors and have adaptogeneous, antioxidant, immunomodulative properties. Optymal choice of peat deposits for the production of biologically active preparations supposes the detailed comparative analysis of peat properties from different deposits. For this the cadastre of peat of Ukraine is developed in the humic substances laboratory named after prof. Khristeva L.A. (Dnipropetrovsk Agrarian University, Ukraine). It based on the research of its physical and chemical properties, toxicity and biological activity, and called Biocadastre. The Biocadastre is based on the set of parameters, including the descriptions of physical and chemical properties (active acidity, degree of decomposition, botanical composition etc.), toxicity estimation (by parabyotyc, infusorial, inhibitor and other tests), biological activity indexes (growth-promoting, antioxidative, adaptogeneous, immunomodulative antistress and other actions). The blocks of Biocadastre indexes are differentiated, taking into account their use for creation the preparations for vegetable, animals and microorganisms. The Biocadastre will allow to choose the peat deposits, most suitable for the production of different biologically active preparations, both wide directed and narrow spectrum of action, depending on application fields (medicine, agriculture, veterinary medicine, microbiological industry, balneology, cosmetology).

  11. Compound Activity Mapping: Integrating Chemical and Biological Profiling for the Functional Annotation of Natural Product Libraries

    OpenAIRE

    Kurita, Kenji Long

    2015-01-01

    Natural products research has had a significant impact on human-health and our understanding of the natural world as a pillar of pharmacognosy, organic chemistry, ecology, and chemical biology. But while this science has yielded countless discoveries such as penicillin, taxol, and artimesinin and will continue to improve quality of life around the world, the idea that natural products is a panacea of chemical diversity has been challenged by problems including the endless rediscovery of known...

  12. What controls biological productivity in coastal upwelling systems? Insights from a comparative modeling study

    OpenAIRE

    Z. Lachkar; Gruber, N.

    2011-01-01

    The magnitude of the biological productivity in Eastern Boundary Upwelling Systems (EBUS) is traditionally viewed as directly reflecting the upwelling intensity. Yet, different EBUS show different sensitivities of productivity to upwelling-favorable winds (Carr and Kearns, 2003). Here, using a comparative modeling study of the California Current System (California CS) and Canary Current System (Canary CS), we show how physical and environmental factors, such as light, temperature and c...

  13. REGULATION OF PRODUCTION PERFORMANCE OF CHICORY PLANTS BY FOLIAR APPLICATION OF BIOLOGICALLY ACTIVE SUBSTANCES

    OpenAIRE

    MAREK KOVÁR; IVAN ČERNÝ

    2012-01-01

    In this study were evaluated both the growth and yield potentials of three chicory (Cichorium intybus var. sativum) varieties ('Fredonia Nova', 'Oesia' a 'Maurane') growing in natural agro-ecological conditions from 2006 to 2008. Regulation of the crop productivity by foliar application of biologically active substances (Atonik, Polybor 150, and Biafit Gold) was also studied. Evaluation of growth-production performance of chicory was realized as: leaf area index (LAI), photosynthetic potentia...

  14. 78 FR 58311 - Complex Issues in Developing Drug and Biological Products for Rare Diseases; Public Workshop...

    Science.gov (United States)

    2013-09-23

    ... for Rare Diseases; Public Workshop; Request for Comments AGENCY: Food and Drug Administration, HHS... for Rare Diseases.'' The purpose of the public workshop is twofold: To discuss complex issues in clinical trials for developing drug and biological products (``drugs'') for rare diseases,...

  15. Eddy-mediated biological productivity in the Bay of Bengal during fall and spring intermonsoons

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Nuncio, M.; Ramaiah, N.; Sardesai, S.; Narvekar, J.; Fernandes, V.; Paul, J.T.

    but also enhanced the nutrient concentrations. This in turn increased the biological productivity of the Bay to 1½-2 times. In addition, the subsurface chlorophyll maximum (SCM), which is generally located between 40 and 70 m in fall and 60 and 90 m...

  16. Process for the continuous biological production of lipids, hydrocarbons or mixtures thereof

    NARCIS (Netherlands)

    Van der Wielen, L.A.M.; Heijnen, J.J.

    2010-01-01

    The present invention is directed to a process for the continuous biological production of lipids, hydrocarbons, hydrocarbon like material or mixtures thereof by conversion of a suitable substrate using micro-organisms, in which process the said substrate is continuously, anaerobically fermented to

  17. Do biological medicinal products pose a risk to the environment?: a current view on ecopharmacovigilance.

    Science.gov (United States)

    Kühler, Thomas C; Andersson, Mikael; Carlin, Gunnar; Johnsson, Ann; Akerblom, Lennart

    2009-01-01

    The occurrence of active pharmaceutical substances in the environment is of growing concern. The vast majority of the compounds in question are of low molecular weight, intended for oral use and designed to tolerate, for example, the digestive enzymes in the upper alimentary tract, the harsh milieus found in the acidic stomach, or the microbe rich intestine. Accordingly, these xenobiotic compounds may, due to their inherent biological activity, constitute a risk to the environment. Biological medicinal products, for example recombinant human insulin or monoclonal antibodies, however, are different. They are primarily made up of oligomers or polymers of amino acids, sugars or nucleotides and are thus readily metabolized. They are therefore generally not considered to pose any risk to the environment. Certain classes of biological medicinal products, however, are associated with specific safety issues. Genetically modified organisms as vectors in vaccines or in gene therapy products have attracted much attention in this regard. Issues include the degree of attenuation of the live recombinant vaccine, replication restrictions of the vaccine vector, alteration of the host and tissue tropism of the vector, the possibility of reversion to virulence, and risk to the ecosystem. In this review we discuss the fate and the potential environmental impact of biological medicinal products following clinical use from an ecopharmacovigilance point of view, and review relevant policy documents and regulatory statements. PMID:19810773

  18. 9 CFR 113.52 - Requirements for cell lines used for production of biologics.

    Science.gov (United States)

    2010-01-01

    ... of origin of the MCS may be used if approved by APHIS. (c) The MCS and either each subculture of... sources of cells in the batch. (d) The MCS and either each subculture used to prepare a biological product... not be used. If bacteria or fungi are found in a subculture, the subculture shall not be used. (e)...

  19. Dilute-acid pretreatment of barley straw for biological hydrogen production using Caldicellulosiruptor saccharolyticus

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2012-01-01

    The main objective of this study was to use the fermentability test to investigate the feasibility of applying various dilute acids in the pretreatment of barley straw for biological hydrogen production. At a fixed acid loading of 1% (w/w dry matter) 28-32% of barley straw was converted to soluble m

  20. 21 CFR 310.4 - Biologics; products subject to license control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Biologics; products subject to license control. 310.4 Section 310.4 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... to license control. (a) If a drug has an approved license under section 351 of the Public...

  1. [Special considerations for the regulation of biological medicinal products in individualised medicine. More than stratified medicine].

    Science.gov (United States)

    Müller-Berghaus, J; Volkers, P; Scherer, J; Cichutek, K

    2013-11-01

    The term individualised medicine, also called personalised medicine, is commonly used as an equivalent to stratified medicine. However, this is erroneous since quite often it is forgotten that especially biological medicinal products have other aspects of individualization that go beyond mere stratification. The principles of stratified medicine have been applied for biological medicinal products for many years. A historical example is diphtheria antitoxin made from horse serum, while current examples are transfusion of red blood cells and the administration of factor VIII in haemophilia A. The stratifying aspects of these medicinal products are given by the following considerations: diphtheria antitoxin is only administered after a diagnosis of diphtheria and not in other forms of tonsillitis, red blood cells should only be transfused once blood group compatibility as been established and factor VIII replacement is only administered in haemophilia A as opposed to other acquired or hereditary disease of the coagulation system. The peculiarities of biological medicinal products, in particular the inherent variability of the drug, are especially important for autologous cellular medicinal products. In addition to the expected variability of the biological source material there is interindividual variability of patients as cell donors, which make definition of specifications and determination of criteria for pharmaceutical quality and potency tests difficult. Therapy with modified autologous cells, a common and important application of advanced therapy medicinal products, is exemplary for the special considerations that must be made when evaluating pharmaceutical quality, mode of action and toxicological properties of the biological medicine. The clinical investigation of advanced therapy medicinal products with the intent of demonstrating safety and efficacy is particularly challenging because of the complexity of therapy, which often involves invasive interventions

  2. [Special considerations for the regulation of biological medicinal products in individualised medicine. More than stratified medicine].

    Science.gov (United States)

    Müller-Berghaus, J; Volkers, P; Scherer, J; Cichutek, K

    2013-11-01

    The term individualised medicine, also called personalised medicine, is commonly used as an equivalent to stratified medicine. However, this is erroneous since quite often it is forgotten that especially biological medicinal products have other aspects of individualization that go beyond mere stratification. The principles of stratified medicine have been applied for biological medicinal products for many years. A historical example is diphtheria antitoxin made from horse serum, while current examples are transfusion of red blood cells and the administration of factor VIII in haemophilia A. The stratifying aspects of these medicinal products are given by the following considerations: diphtheria antitoxin is only administered after a diagnosis of diphtheria and not in other forms of tonsillitis, red blood cells should only be transfused once blood group compatibility as been established and factor VIII replacement is only administered in haemophilia A as opposed to other acquired or hereditary disease of the coagulation system. The peculiarities of biological medicinal products, in particular the inherent variability of the drug, are especially important for autologous cellular medicinal products. In addition to the expected variability of the biological source material there is interindividual variability of patients as cell donors, which make definition of specifications and determination of criteria for pharmaceutical quality and potency tests difficult. Therapy with modified autologous cells, a common and important application of advanced therapy medicinal products, is exemplary for the special considerations that must be made when evaluating pharmaceutical quality, mode of action and toxicological properties of the biological medicine. The clinical investigation of advanced therapy medicinal products with the intent of demonstrating safety and efficacy is particularly challenging because of the complexity of therapy, which often involves invasive interventions

  3. Statistical and regulatory considerations in assessments of interchangeability of biological drug products.

    Science.gov (United States)

    Tóthfalusi, Lászlo; Endrényi, László; Chow, Shein-Chung

    2014-05-01

    When the patent of a brand-name, marketed drug expires, new, generic products are usually offered. Small-molecule generic and originator drug products are expected to be chemically identical. Their pharmaceutical similarity can be typically assessed by simple regulatory criteria such as the expectation that the 90% confidence interval for the ratio of geometric means of some pharmacokinetic parameters be between 0.80 and 1.25. When such criteria are satisfied, the drug products are generally considered to exhibit therapeutic equivalence. They are then usually interchanged freely within individual patients. Biological drugs are complex proteins, for instance, because of their large size, intricate structure, sensitivity to environmental conditions, difficult manufacturing procedures, and the possibility of immunogenicity. Generic and brand-name biologic products can be expected to show only similarity but not identity in their various features and clinical effects. Consequently, the determination of biosimilarity is also a complicated process which involves assessment of the totality of the evidence for the close similarity of the two products. Moreover, even when biosimilarity has been established, it may not be assumed that the two biosimilar products can be automatically substituted by pharmacists. This generally requires additional, careful considerations. Without declaring interchangeability, a new product could be prescribed, i.e. it is prescribable. However, two products can be automatically substituted only if they are interchangeable. Interchangeability is a statistical term and it means that products can be used in any order in the same patient without considering the treatment history. The concepts of interchangeability and prescribability have been widely discussed in the past but only in relation to small molecule generics. In this paper we apply these concepts to biosimilars and we discuss: definitions of prescribability and interchangeability and

  4. Retrieval improvement is induced by water shortage through angiotensin II.

    Science.gov (United States)

    Frenkel, Lia; Maldonado, Héctor; Delorenzi, Alejandro

    2005-03-01

    Angiotensin II (ANGII) has an evolutionary preserved role in determining adaptative responses to water-shortages. In addition, it has been shown to modulate diverse phases of memory. Still, it is not clear whether ANGII improves or spoils memory. We demonstrated that endogenous angiotensins enhance consolidation of a long-term associative memory in the crab Chasmagnathus and that water shortage improves memory consolidation through brain ANGII actions. Here, we show that weakly trained crabs, when water-deprived, exhibit enhanced retrieval. Subsequently, memory retention is indistinguishable from that of strongly trained crabs. ANGII, but not angiotensin IV, is a necessary and sufficient condition for such enhancing effect. We conclude that ANGII released due to water shortage leads to enhanced memory retrieval. Thus, it seems that ANGII has an evolutionary preserved role as a multifunction coordinator that enables an adaptative response to water-shortage. The facilitation of memory consolidation and retrieval would be among those coordinated functions. PMID:15721803

  5. Shortages of Lifesaving Drugs Linger in U.S.

    Science.gov (United States)

    ... 158708.html Shortages of Lifesaving Drugs Linger in U.S. Longer wait time for vital acute-care meds ... professor of emergency medicine. Since 2012, when the U.S. Food and Drug Administration was authorized to deal ...

  6. 考虑产能限制及缺货惩罚的MTO投产计划决策%Decision-making Model of Planning Quantity Put into Production for the Make-To-Order Enterprises with Limited Capacity and Shortage Penalty Cost

    Institute of Scientific and Technical Information of China (English)

    高华丽; 但斌; 张旭梅

    2013-01-01

    较低的生产重复性使MTO企业的生产系统具有较大随机性,导致其产品投产量计划制定面临易过量或不足的风险.针对这一问题,考虑MTO企业的生产能力限制及其产品合格率的随机性,综合权衡初始投产过量、初始投产不足需补产及缺货等因素导致的总成本损失,以成本损失最小化为目标,建立了产品投产量计划决策模型来解决最优产品投产量计划的获得问题,并进行了相应的理论分析和数值仿真.研究表明:模型可有效求解出最优的产品计划投产量;考虑产能限制和缺货损失可降低企业的综合成本损失;企业产能对综合成本损失的影响同单位缺货成本与欠产再投产的单位产品成本之比有关;提高合格品率中值对降低综合成本损失至关重要.%Because of the low production repeatability and the uncertainty of the products eligibility-rate of the manufacturing enterprises with Make-To-Order mode to some extent,the decision-making of planning quantity put into production for the MTO enterprises becomes more difficult.In order to solve this problem,the paper proposed a decision-making model of planning quantity put into production for the limited capacity MTO enterprises,which aimed at minimize the expected loss of integrated cost,and presented the method to obtain the optimal planning quantity put into production and carried out theoretical analysis and sensitivity analysis of the key parameters.It is shown that the model is effective,the influence of the production capacity on the expected loss of integrated cost lies on the ratio of the excess cost to the shortage cost and improving the median rate of the products eligibility-rate is essential to reducing quantity of planning put-into-production.

  7. Biodiesel Projects Helpful to Ease Energy Shortage

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Nearly 7,000 hectares of biodiesel forest will take shape in the northern province of Hebei in 2008, part of a national campaign to fuel the fast growing economy in a green way. In no more than five years, the Pistacia chinensis Bunge, whose seeds have an oil content of up to 40 percent, will yield five tons of fruit and contribute about two tons of high-quality biological diesel oil,according to the provincial forestry administration.

  8. Energy Policies Cause Unexpected Diesel Shortage in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ An unprecedented diesel shortage is sweeping through Chinese cities, as numerous enterprises have to resort to diesel fuel to generate electricity to continue operation during periods of forced power outages.For example, the diesel shortage has recently paralyzed traffic on a pivotal expressway in Northwest China, with trucks waiting in long lines to fill their fuel tanks.China's Ministry of Commerce has recently required the local bureaus to ensure ample supply of fuel amid rising inflation.

  9. Farmer strategies to face labor shortages in Chilean agriculture

    OpenAIRE

    Verónica Aguirre; Rodrigo Echeverría; Clara Olmedo; Gustavo Blanco

    2013-01-01

    This study analyzes the strategies that farmers in the south of Chile use to face current labor shortages and identify the variables that determine each of these strategies. A multinomial logit model and odds ratios plots with predicted probabilities were applied to a sample of 384 farmers. Interviews and focus groups were applied to specific producers, professionals and public officials. The main results show that only 32.3% of farmers declared that labor shortage is a problem. Of this perce...

  10. Immobilized Biofilm in Thermophilic Biohydrogen Production using Synthetic versus Biological Materials

    Directory of Open Access Journals (Sweden)

    Jaruwan Wongthanate

    2015-02-01

    Full Text Available Biohydrogen production was studied from the vermicelli processing wastewater using synthetic and biological materials as immobilizing substrate employing a mixed culture in a batch reactor operated at the initial pH 6.0 and thermophilic condition (55 ± 1ºC. Maximum cumulative hydrogen production (1,210 mL H2/L wastewater was observed at 5% (v/v addition of ring-shaped synthetic material, which was the ring-shaped hydrophobic acrylic. Regarding 5% (v/v addition of synthetic and biological materials, the maximum cumulative hydrogen production using immobilizing synthetic material of ball-shaped hydrophobic polyethylene (HBPE (1,256.5 mL H2/L wastewater was a two-fold increase of cumulative hydrogen production when compared to its production using immobilizing biological material of rope-shaped hydrophilic ramie (609.8 mL H2/L wastewater. SEM observation of immobilized biofilm on a ball-shaped HBPE or a rope-shaped hydrophilic ramie was the rod shape and gathered into group.

  11. Apple biological and physiological disorders in the orchard and in postharvest according to production system

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Martins

    2013-03-01

    Full Text Available The study aimed to evaluate the incidence of biological and physiological disorders in the field and postharvested apples cvs. Gala, Fuji and Catarina grown in four production systems: conventional, organic transition, integrated and organic. Apples were evaluated for damages related to biological and physiological disorders in the orchard and after harvest. The greatest damages were attributed to pests, especially Anastrepha fraterculus in the organic system and Grapholita molesta in the organic transition. Apples produced in organic orchards had higher damage levels caused by postharvest physiological disorders than those grown in other production systems. For apples becoming from organic orchards most of the damage was due to lenticels breakdown and degeneration ('Gala', and bitter pit ('Fuji' and 'Catarina'. The incidence of postharvest rot was not influenced by apple production system.

  12. What controls biological productivity in coastal upwelling systems? Insights from a comparative modeling study

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2011-06-01

    Full Text Available The magnitude of the biological productivity in Eastern Boundary Upwelling Systems (EBUS is traditionally viewed as directly reflecting the upwelling intensity. Yet, different EBUS show different sensitivities of productivity to upwelling-favorable winds (Carr and Kearns, 2003. Here, using a comparative modeling study of the California Current System (California CS and Canary Current System (Canary CS, we show how physical and environmental factors, such as light, temperature and cross-shore circulation modulate the response of biological productivity to upwelling strength. To this end, we made a series of eddy-resolving simulations of the California CS and Canary CS using the Regional Ocean Modeling System (ROMS, coupled to a nitrogen based Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD ecosystem model. We find the nutrient content of the euphotic zone to be 20 % smaller in the Canary CS relative to the California CS. Yet, the biological productivity is 50 % smaller in the latter. This is due to: (1 a faster nutrient-replete growth in the Canary CS relative to the California CS, related to a more favorable light and temperature conditions in the Canary CS, and (2 the longer nearshore water residence times in the Canary CS which lead to larger buildup of biomass in the upwelling zone, thereby enhancing the productivity. The longer residence times in the Canary CS appear to be associated with the wider continental shelves and the lower eddy activity characterizing this upwelling system. This results in a weaker offshore export of nutrients and organic matter, thereby increasing local nutrient recycling and enhancing the coupling between new and export production in the Northwest African system. Our results suggest that climate change induced perturbations such as upwelling favorable wind intensification might lead to contrasting biological responses in the California CS and the Canary CS, with major implications for the biogeochemical cycles

  13. An economic order quantity model with shortage and inflation

    Science.gov (United States)

    Wulan, Elis Ratna; Nurjaman, Wildan

    2015-09-01

    The effect of inflation has become a persistent characteristic and more significant problem of many developing economies especially in the third world countries. While making effort to achieve optimal quantity of product to be produced or purchased using the simplest and on the shelf classical EOQ model, the non-inclusion of conflicting economic realities as shortage and inflation has rendered its result quite uneconomical and hence the purpose for this study. Mathematical expression was developed for each of the cost components the sum of which become the total inventory model over the period (0,L) ((TIC(0,L)). L is planning horizon and TIC(0,L) is total inventory cost over a period of (0,L). Significant savings with increase in quantity was achieved based on deference in the varying price regime. With the assumptions considered and subject to the availability of reliable inventory cost element, the developed model is found to produce a feasible, and economic inventory stock-level with the numerical example of a material supply of a manufacturing company.

  14. Optimization of Biohydrogen Production with Biomechatronics

    OpenAIRE

    Shao-Yi Hsia; Yu-Tuan Chou

    2014-01-01

    Massive utilization of petroleum and natural gas caused fossil fuel shortages. Consequently, a large amount of carbon dioxide and other pollutants are produced and induced environmental impact. Hydrogen is considered a clean and alternative energy source. It contains relatively high amount of energy compared with other fuels and by-product is water. In this study, the combination of ultrasonic mechanical and biological effects is utilized to increase biohydrogen production from dark fermentat...

  15. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  16. Milk proteins-derived bioactive peptides in dairy products: molecular, biological and methodological aspects

    Directory of Open Access Journals (Sweden)

    Bartłomiej Dziuba

    2014-03-01

    Full Text Available Proteins are one of the primary components of the food, both in terms of nutrition and function. They are main source of amino acids, essential for synthesis of proteins, and also source of energy. Additionally, many proteins exhibit specifi c biological activities, which may have effect on functional or pro-health properties of food products. These proteins and their hydrolysis products, peptides, may infl uence the properties of food and human organism. The number of commercially available food products containing bioactive peptides is very low, apart from that milk proteins are their rich source. It could be supposed that number of available products with declared activity will rise in near future because of observed strong uptrend on interest in such products. Molecular and biological properties of milk proteins, as precursors of bioactive peptides was characterised in the work. Therefore, the strategy of research and obtaining of such peptides both in laboratory and industrial scale, as well as the range of their commercial application, was presented. Several examples of research efforts presenting high potential to develop new products containing bioactive peptides from milk proteins and predetermined as nutraceuticals was described.

  17. Milk proteins-derived bioactive peptides in dairy products: molecular, biological and methodological aspects.

    Science.gov (United States)

    Dziuba, Bartłomiej; Dziuba, Marta

    2014-01-01

    Proteins are one of the primary components of the food, both in terms of nutrition and function. They are main source of amino acids, essential for synthesis of proteins, and also source of energy. Additionally, many proteins exhibit specific biological activities, which may have effect on functional or pro-health properties of food products. These proteins and their hydrolysis products, peptides, may influence the properties of food and human organism. The number of commercially available food products containing bioactive peptides is very low, apart from that milk proteins are their rich source. It could be supposed that number of available products with declared activity will rise in near future because of observed strong uptrend on interest in such products. Molecular and biological properties of milk proteins, as precursors of bioactive peptides was characterised in the work. Therefore, the strategy of research and obtaining of such peptides both in laboratory and industrial scale, as well as the range of their commercial application, was presented. Several examples of research efforts presenting high potential to develop new products containing bioactive peptides from milk proteins and predetermined as nutraceuticals was described.

  18. High-latitude controls of thermocline nutrients and low latitude biological productivity.

    Science.gov (United States)

    Sarmiento, J L; Gruber, N; Brzezinski, M A; Dunne, J P

    2004-01-01

    The ocean's biological pump strips nutrients out of the surface waters and exports them into the thermocline and deep waters. If there were no return path of nutrients from deep waters, the biological pump would eventually deplete the surface waters and thermocline of nutrients; surface biological productivity would plummet. Here we make use of the combined distributions of silicic acid and nitrate to trace the main nutrient return path from deep waters by upwelling in the Southern Ocean and subsequent entrainment into subantarctic mode water. We show that the subantarctic mode water, which spreads throughout the entire Southern Hemisphere and North Atlantic Ocean, is the main source of nutrients for the thermocline. We also find that an additional return path exists in the northwest corner of the Pacific Ocean, where enhanced vertical mixing, perhaps driven by tides, brings abyssal nutrients to the surface and supplies them to the thermocline of the North Pacific. Our analysis has important implications for our understanding of large-scale controls on the nature and magnitude of low-latitude biological productivity and its sensitivity to climate change.

  19. Solid recovered fuel production through the mechanical-biological treatment of wastes

    OpenAIRE

    Velis, C.A.

    2010-01-01

    This thesis is concerned with the production of solid recovered fuel (SRF) from municipal solid waste using mechanical biological treatment (MBT) plants. It describes the first in-depth analysis of a UK MBT plant and addresses the fundamental research question: are MBT plants and their unit operations optimised to produce high quality SRF in the UK? A critical review of the process science and engineering of MBT provides timely insights into the quality management and standa...

  20. The potential of plants as a system for the development and production of human biologics

    OpenAIRE

    Qiang Chen; Davis, Keith R.

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics...

  1. [Biologic age as a criterion for work evaluation (exemplified by titanium alloys production)].

    Science.gov (United States)

    Afanas'eva, R F; Prokopenko, L V

    2009-01-01

    The article deals with results of studies concerning biologic age of workers (males) under occupational hazards of titanium alloys (jeopardy classes 3.3, 3.4.4) in Verkhne-Saldinsky metallurgic production association. Based on mathematic statistic analysis, the authors worked out an equation of multiple regression for ageing pace to forecast the ageing with consideration of age, length of service, occupation. The authors determined occupational groups characterized by premature ageing and increased risk of health disorders.

  2. The potential of plants as a system for the development and production of human biologics.

    Science.gov (United States)

    Chen, Qiang; Davis, Keith R

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology. PMID:27274814

  3. Mapping the patent landscape of synthetic biology for fine chemical production pathways.

    Science.gov (United States)

    Carbonell, Pablo; Gök, Abdullah; Shapira, Philip; Faulon, Jean-Loup

    2016-09-01

    A goal of synthetic biology bio-foundries is to innovate through an iterative design/build/test/learn pipeline. In assessing the value of new chemical production routes, the intellectual property (IP) novelty of the pathway is important. Exploratory studies can be carried using knowledge of the patent/IP landscape for synthetic biology and metabolic engineering. In this paper, we perform an assessment of pathways as potential targets for chemical production across the full catalogue of reachable chemicals in the extended metabolic space of chassis organisms, as computed by the retrosynthesis-based algorithm RetroPath. Our database for reactions processed by sequences in heterologous pathways was screened against the PatSeq database, a comprehensive collection of more than 150M sequences present in patent grants and applications. We also examine related patent families using Derwent Innovations. This large-scale computational study provides useful insights into the IP landscape of synthetic biology for fine and specialty chemicals production. PMID:27489206

  4. The potential of plants as a system for the development and production of human biologics

    Science.gov (United States)

    Chen, Qiang; Davis, Keith R.

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology. PMID:27274814

  5. The potential of plants as a system for the development and production of human biologics.

    Science.gov (United States)

    Chen, Qiang; Davis, Keith R

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology.

  6. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid; Ali; Khan; Nafees; Bacha; Bashir; Ahmad; Ghosia; Lutfullah; Umar; Farooq; Russell; John; Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites.Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions.The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques,for example,homologous and heterologous expressions.This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites:also the biosynthetic pathways of the bio-organic-molecules were reported.

  7. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid Ali Khan; Nafees Bacha; Bashir Ahmad; Ghosia Lutfullah; Umar Farooq; Russell John Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites. Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions. The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques, for example, homologous and heterologous expressions. This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites;also the biosynthetic pathways of the bio-organic-molecules were reported.

  8. Potential of chicken by-products as sources of useful biological resources

    International Nuclear Information System (INIS)

    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications

  9. Technical Key Figures for Photo-biological Hydrogen Production by Micro-algae

    International Nuclear Information System (INIS)

    One regenerative path to produce hydrogen is the photo-biological hydrogen production by the green micro-alga Chlamydomonas reinhardtii. This process can be divided into three phases: a growth phase, a phase in which the algae adapt from oxygen production and CO2-fixation to fermentative H2 production, and a phase in which H2 is produced. In a research project carried out at Ruhr-Universitat Bochum, a new developed flat panel bioreactor was investigated. A system analysis was conducted and energetic and environmental key figures were determined. The intention of this assessment on a very early technological stage was to collect first technical data in order to classify the current technological status of the photo-biological H2 production to identify future potentials and to uncover weaknesses. For this reason the key figures were evaluated for the status quo and for two scenarios which allow an outlook on the mid and the long term. The results were compared with other ways of regenerative H2 production. (authors)

  10. Potential of chicken by-products as sources of useful biological resources

    Energy Technology Data Exchange (ETDEWEB)

    Lasekan, Adeseye [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abu Bakar, Fatimah, E-mail: fatim@putra.upm.edu.my [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hashim, Dzulkifly [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2013-03-15

    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications.

  11. Current good manufacturing practice in plant automation of biological production processes.

    Science.gov (United States)

    Dorresteijn, R C; Wieten, G; van Santen, P T; Philippi, M C; de Gooijer, C D; Tramper, J; Beuvery, E C

    1997-01-01

    The production of biologicals is subject to strict governmental regulations. These are drawn up in current good manufacturing practices (cGMP), a.o. by the U.S. Food and Drug Administration. To implement cGMP in a production facility, plant automation becomes an essential tool. For this purpose Manufacturing Execution Systems (MES) have been developed that control all operations inside a production facility. The introduction of these recipe-driven control systems that follow ISA S88 standards for batch processes has made it possible to implement cGMP regulations in the control strategy of biological production processes. Next to this, an MES offers additional features such as stock management, planning and routing tools, process-dependent control, implementation of software sensors and predictive models, application of historical data and on-line statistical techniques for trend analysis and detection of instrumentation failures. This paper focuses on the development of new production strategies in which cGMP guidelines are an essential part.

  12. An analysis of news flow on the nation's nurse shortage.

    Science.gov (United States)

    Kalisch, B J; Kalisch, P A; Clinton, J

    1981-09-01

    Using data from national newspaper clipping services, this article analyzes characteristics of 1978 news coverage of the nation's nurse shortage. Based on a content analysis of nearly 3,000 newspaper articles, findings revealed that 14 per cent of the articles mentioned problems of nurse supply. Articles on nurse shortage were most frequent in the Pacific, Mid-Atlantic and South-Atlantic states and occurred least in the West-North Central and East-South Central states. Articles mentioning nurse shortage were more frequently placed on page 1, associated with clinical nursing in hospital settings and explained as the result of maldistribution of nurses, poor salaries, deficient working conditions and lack of job satisfaction. The reading public was confronted with three major consequences of current and continued shortages in nursing: 1) decline in the availability and diversity of health services; 2) erosion in the quality of care offered the public and jeopardized patient welfare; and 3) escalating health care costs. Solutions to the nurse shortage appear to be closely tied to further expansion of the issue among the public, the initiation of remedial governmental action and timely relocation of scarce resources within the health care industry. PMID:7289679

  13. China Struggles to Meet Energy Shortage

    Institute of Scientific and Technical Information of China (English)

    李端奇

    2005-01-01

    China is making plans not only to bolster1 energy production to meet everincreasing domestic needs2 but also to cut down on overall energy use in coming years. Headed by Premier Wen Jiabao, China's cabinet3 unveiled its longer-term energy development plan, in which the heart of the program is to be as energy-efficient and environmentally friendly as possible while pursuing4 economic growth between now and 2020.

  14. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals.

    Science.gov (United States)

    Jullesson, David; David, Florian; Pfleger, Brian; Nielsen, Jens

    2015-11-15

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes.

  15. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian;

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes....... an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...

  16. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development.

    Science.gov (United States)

    Wendisch, Volker F

    2014-12-01

    Amino acids are produced at the multi-million-ton-scale with fermentative production of l-glutamate and l-lysine alone being estimated to amount to more than five million tons in the year 2013. Metabolic engineering constantly improves productivities of amino acid producing strains, mainly Corynebacterium glutamicum and Escherichia coli strains. Classical mutagenesis and screening have been accelerated by combination with intracellular metabolite sensing. Synthetic biology approaches have allowed access to new carbon sources to realize a flexible feedstock concept. Moreover, new pathways for amino acid production as well as fermentative production of non-native compounds derived from amino acids or their metabolic precursors were developed. These include dipeptides, α,ω-diamines, α,ω-diacids, keto acids, acetylated amino acids and ω-amino acids. PMID:24922334

  17. An Integrated Vendor-Buyer Cooperative Inventory Model for Items with Imperfect Quality and Shortage Backordering

    Directory of Open Access Journals (Sweden)

    Jia-Tzer Hsu

    2012-01-01

    Full Text Available We develop a model to determine an integrated vendor-buyer inventory policy for items with imperfect quality and planned backorders. The production process is imperfect and produces a certain number of defective items with a known probability density function. The vendor delivers the items to the buyer in small lots of equally sized shipments. Upon receipt of the items, the buyer will conduct a 100% inspection. Since each lot contains a variable number of defective items, shortages may occur at the buyer. We assume that shortages are permitted and are completely backordered. The objective is to minimize the total joint annual costs incurred by the vendor and the buyer. The expected total annual integrated cost is derived and a solution procedure is provided to find the optimal solution. Numerical examples show that the integrated model gives an impressive cost reduction in comparison to an independent decision by the buyer.

  18. Techno-economic evaluation of a two-step biological process for hydrogen production.

    Science.gov (United States)

    Ljunggren, Mattias; Zacchi, Guido

    2010-01-01

    An integrated biological process for the production of hydrogen based on thermophilic and photo-heterotrophic fermentation was evaluated from a technical and economic standpoint. Besides the two fermentation steps the process also includes pretreatment of the raw material (potato steam peels) and purification of hydrogen using amine absorption. The study aimed neither at determining the absolute cost of biohydrogen nor at an economic optimization of the production process, but rather at studying the effects of different parameters on the production costs of biohydrogen as a guideline for future improvements. The effect of the key parameters, hydrogen productivity and yield and substrate concentration in the two fermentations on the cost of the hydrogen produced was studied. The selection of the process conditions was based mainly on laboratory data. The process was simulated by use of the software Aspen Plus and the capital costs were estimated using the program Aspen Icarus Process Evaluator. The study shows that the photo-fermentation is the main contributor to the hydrogen production cost mainly because of the cost of plastic tubing, for the photo-fermentors, which represents 40.5% of the hydrogen production cost. The costs of the capital investment and chemicals were also notable contributors to the hydrogen production cost. Major economic improvements could be achieved by increasing the productivity of the two fermentation steps on a medium-term to long-term scale. PMID:20039381

  19. The nursing shortage and ethics: up front and personal.

    Science.gov (United States)

    Silva, M C; Ludwick, R

    2001-01-01

    In times of crisis it is often that values and beliefs and, subsequently, our ethics are challenged. Authors in OJIN have addressed some of the ethical issues that nurses face in relation to crises in health care. For example, P. J. Maddox (1998) addressed ethical issues surrounding economic constraints and scarce resources. In this current issue of OJIN, Cheryl Peterson (2001) writes of the ethical dilemma nurses face in trying to comply with the Code for Nurses with Interpretive Statement, 1985 in light of the present nursing shortage. We invite you to read these and the other OJIN articles on the shortage and then submit to this column a story about how the nursing shortage has ethically affected you or your patients/clients. PMID:11936945

  20. CHARACTERS THAT SUFFERED DUE TO SHORTAGE IN THE CHARACTERS

    Directory of Open Access Journals (Sweden)

    Ma Feng

    2010-05-01

    Full Text Available In this article, the theories about motif and type will be used for analyzing the very types ofcharacters that suffered because of the shortages. To begin with, the analyzing of the differences andsimilarities of the shortages of each character will be counted on the inside and outside parts of theirsufferings. Then the theories of Nietzsche’s and of some myths will be used for analyzing the furtherreason of the sufferings. At last, investigating the special value those sufferings have brought forliteratures and for TV series. Multi-angle perspective is useful for investigating the unique charms ofthe shortages of characters as well as for finding out new understandings for the types of sufferings.

  1. The nurse manager: job satisfaction, the nursing shortage and retention.

    Science.gov (United States)

    Andrews, Diane Randall; Dziegielewski, Sophia F

    2005-07-01

    A critical shortage of registered nurses exists in the United States and this shortage is expected to worsen. It is predicted that unless this issue is resolved, the demand for nursing services will exceed the supply by nearly 30% in 2020. Extensive analysis of this pending crisis has resulted in numerous recommendations to improve both recruitment and retention. The purpose of this article is to clearly outline the issues contributing to this problem, and to provide the nurse manager with information regarding specific influences on job satisfaction as it relates to job turnover and employee retention. To accomplish this, an analysis of the literature using both national and international sources is used to formulate the lessons learned as well as strategies and future courses of action designed to address this shortage. PMID:15946168

  2. A synthetic biology approach to self-regulatory recombinant protein production in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Dragosits Martin

    2012-03-01

    Full Text Available Abstract Background Recombinant protein production is a process of great industrial interest, with products that range from pharmaceuticals to biofuels. Since high level production of recombinant protein imposes significant stress in the host organism, several methods have been developed over the years to optimize protein production. So far, these trial-and-error techniques have proved laborious and sensitive to process parameters, while there has been no attempt to address the problem by applying Synthetic Biology principles and methods, such as integration of standardized parts in novel synthetic circuits. Results We present a novel self-regulatory protein production system that couples the control of recombinant protein production with a stress-induced, negative feedback mechanism. The synthetic circuit allows the down-regulation of recombinant protein expression through a stress-induced promoter. We used E. coli as the host organism, since it is widely used in recombinant processes. Our results show that the introduction of the self-regulatory circuit increases the soluble/insoluble ratio of recombinant protein at the expense of total protein yield. To further elucidate the dynamics of the system, we developed a computational model that is in agreement with the observed experimental data, and provides insight on the interplay between protein solubility and yield. Conclusion Our work introduces the idea of a self-regulatory circuit for recombinant protein products, and paves the way for processes with reduced external control or monitoring needs. It demonstrates that the library of standard biological parts serves as a valuable resource for initial synthetic blocks that needs to be further refined to be successfully applied in practical problems of biotechnological significance. Finally, the development of a predictive model in conjunction with experimental validation facilitates a better understanding of the underlying dynamics and can be

  3. Biological Pretreatment of Rubberwood with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Forough Nazarpour

    2013-01-01

    Full Text Available Rubberwood (Hevea brasiliensis, a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm and pretreatment time on the biological pretreatment were first determined by chemical analysis and X-ray diffraction and their best condition obtained with 1 mm particle size and 90 days pretreatment. Further morphological study on rubberwood with 1 mm particle size pretreated by fungus was performed by FT-IR spectra analysis and SEM observation and the result indicated the ability of this fungus for pretreatment. A study on enzymatic hydrolysis resulted in an increased sugar yield of 27.67% as compared with untreated rubberwood (2.88%. The maximum ethanol concentration and yield were 17.9 g/L and 53% yield, respectively, after 120 hours. The results obtained demonstrate that rubberwood pretreated by C. subvermispora can be used as an alternative material for the enzymatic hydrolysis and bioethanol production.

  4. Can alternative sugar sources buffer pollinators from nectar shortages?

    Science.gov (United States)

    Gardner-Gee, Robin; Dhami, Manpreet K; Paulin, Katherine J; Beggs, Jacqueline R

    2014-12-01

    Honeydew is abundant in many ecosystems and may provide an alternative food source (a buffer) for pollinators during periods of food shortage, but the impact of honeydew on pollination systems has received little attention to date. In New Zealand, kānuka trees (Myrtaceae: Kunzea ericoides (A. Rich) Joy Thompson) are often heavily infested by the endemic honeydew-producing scale insect Coelostomidia wairoensis (Maskell) (Hemiptera: Coelostomidiidae) and the period of high honeydew production can overlap with kānuka flowering. In this study, we quantified the sugar resources (honeydew and nectar) available on kānuka and recorded nocturnal insect activity on infested and uninfested kānuka during the flowering period. Insects were abundant on infested trees, but flowers on infested trees received fewer insect visitors than flowers on uninfested trees. There was little evidence that insects had switched directly from nectar-feeding to honeydew-feeding, but it is possible that some omnivores (e.g., cockroaches) were distracted by the other honeydew-associated resources on infested branches (e.g., sooty molds, prey). Additional sampling was carried out after kānuka flowering had finished to determine honeydew usage in the absence of adjacent nectar resources. Moths, which had fed almost exclusively on nectar earlier, were recorded feeding extensively on honeydew after flowering had ceased; hence, honeydew may provide an additional food source for potential pollinators. Our results show that honeydew resources can impact floral visitation patterns and suggest that future pollinator studies should consider the full range of sugar resources present in the study environment. PMID:25368982

  5. Organ shortage: the greatest challenge facing transplant medicine.

    Science.gov (United States)

    Shafran, David; Kodish, Eric; Tzakis, Andreas

    2014-07-01

    The success of organ transplantation as a treatment for end-stage organ disease has yielded a series of ethical quandaries originating from the issue of organ shortage. Scarcity of organs for transplantation necessitates formulation of just and fair allocation policies as well as ethically viable solutions to bridging the vast gap between organ supply and demand. The concept of "triage" provides a useful paradigm in which to contextualize the organ shortage issue. This entails subjugating the welfare of the individual patient for the benefit of the wider community as an ethically justified response to the challenge of scarcity.

  6. Biological production of hydrogen by dark fermentation of OFMSW and co-fermentation with slaughterhouse wastes

    Energy Technology Data Exchange (ETDEWEB)

    Moran, A.; Gomez, X.; Cuestos, M. J.

    2005-07-01

    Hydrogen is an ideal, clean and sustainable energy source for the future because of its high conversion and nonpolluting nature (Lin and Lay, 2003). There are different methods for the production of hydrogen, the traditional ones, are the production from fossil fuels. Aiming to reach a development based on sustainable principles the production of hydrogen from renewable sources is a desirable goal. Among the environmental friendly alternatives for the production of hydrogen are the biological means. Dark fermentation as it is known the process when light is not used; it is a preferable option thanks to the knowledge already collected from its homologous process, the anaerobic digestion for the production of methane. There are several studies intended to the evaluation of the production of hydrogen, many are dedicated to the use of pure cultures or the utilization of basic substrates as glucose or sucrose (Lin and Lay, 2003; Chang et al., 2002, Kim et al., 2005). This study is performed to evaluate the fermentation of a mixture of wastes for the production of hydrogen. It is used as substrate the organic fraction of municipal solid wastes (OFMSW) and a mixture of this residue with slaughterhouse waste. (Author)

  7. The Effect of Peat and Vermicompost Cavitation Products on the Soil Biological Activity

    Directory of Open Access Journals (Sweden)

    Steinberga Vilhelmine

    2014-12-01

    Full Text Available Commercial products with humic substances have often been recommended for plant growth stimulation and yield improvement. The aim of this study was to clarify the effects of two products, containing cavited peat and vermicompost respectively on the soil biological activity. Vegetation experiments with garden cress and cucumbers were arranged in pots with a peat substratum in the greenhouses of the Latvia University of Agriculture. The plants were treated with the preparations once a month. The first treatment was done at sowing. Dose of 20, 2, 0.2 mL per m2 during each treatment time were used. A control variant was without peat or vermicompost preparation. Field experiments with onions were carried out in the organic farming experimental field of the Latvia State Institute of Cereal Breeding. Plant growth and soil (substratum biological activity (respiration and enzymatic activity were tested. Plant growth and response to the different preparations depended on the plant species and its development stage. The effect of preparations decreases during plant development. The impact of peat or vermicompost preparation on soil biological activity depended not only on the concentration of preparation, but was influenced by the soil or growth media type. The decrease of onion yield in field conditions as a result of preparations was observed.

  8. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    Science.gov (United States)

    Yin, Yanan; Wang, Jianlong

    2016-04-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCODconsumed. It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production.

  9. Berry productivity estimation of biological(botanical) reservations 'Milevichsky' and 'Zalyuchitsky'

    International Nuclear Information System (INIS)

    The necessity of creation of local status biological (botanical) reservations in Zhitkovichi district is scientifically substantiated on he basis of performed investigations and analysis of location nature conditions of declared reservations, their nature potential and on the estimation of productivity of wild berr plantation and radiation situation. Forest districts of these reservations have high productivity of wild bilberries and great bilberry and natural background radiation. The specific radiation activity of bilverries collected in the foregoing districts of Milevichi and Zalyutichi forestry does not exceed 60 Bk/kg, that is less than 30% of the permissible rate. Main recommendations were developed for protection and utilization of reservations, for conservation of the conditions required for growing forests with optimum characteristics, which promote vegetation and high productivity of wild berry reservations

  10. Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis.

    Science.gov (United States)

    Seifert, A H; Rittmann, S; Bernacchi, S; Herwig, C

    2013-05-01

    This contribution presents a method for quantification of the impact of emission gasses on the methane production with hydrogenotrophic methanogenic archaea. The developed method allows a robust quantification of the influence of real gasses on the volumetric productivity of methanogenic cultures by uncoupling physiological and mass transfer effects. This is achieved over reference experiments with pure H2 and CO2, simulating the mass transfer influence of the non-convertible side components by addition of N2 to the reactant stream. Furthermore, this method was used to examine the performance of Methanothermobacter marburgensis on different emission gasses. None of the present side components had a negative effect on the volumetric methane production rate. The presented method showed to be ready to use as a generic tool for feasibility studies and quantification of the physiological impact regarding the use of exhaust gasses as reactant gas for the biological methanogenesis. PMID:23582218

  11. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes.

    Science.gov (United States)

    Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2013-12-01

    The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies.

  12. The prospects of synthetic biology for the production of fuel from biomass

    International Nuclear Information System (INIS)

    When applied to engineering the metabolism of microorganisms, synthetic biology produces a broad spectrum of biomolecules from carbohydrates and, in the near future, from the biomass in general. The markets for biofuels and for chemicals are thus hooked up through a common technological core. Synthetic biology also opens new possibilities for switching from different types of biomass to different products, thus allowing for more flexibility in development strategies and eventually in industrial operations. This opening is welcomed even though the economic and societal environments hardly favors biofuels. A few more years of research and development are needed to bring these new possibilities to industrial maturity. Advanced biofuels will pass the threshold at which they become profitable and will no longer need subsidies. (author)

  13. The reduction of biological production induced by mesoscale mixing: a modelling study in the Benguela upwelling

    CERN Document Server

    Hernández-Carrasco, Ismael; Hernández-García, Emilio; Garçon, Veronique; López, Cristóbal

    2013-01-01

    Recent studies, both based on remote sensed data and coupled models, showed a reduction of biological productivity due to vigorous horizontal mixing in upwelling systems. In order to better understand this phenomenon, we have considered a system of oceanic flow in the Benguela area coupled with a simple biogeochemical model of Nutrient-Phyto-Zooplankton (NPZ) type. For the flow three different surface velocity fields are considered: one derived from satellite altimetry data, and the other two from a regional numerical model at two different spatial resolutions. We computed horizontal particle dispersion in terms of Lyapunov Exponents, and analyzed their correlations with phytoplankton concentrations. Our modelling approach confirms that in the south Benguela, there is a reduction of biological activity when stirring is increased. Two-dimensional offshore advection seems to be the dominant process involved. In the northern area, other factors not taken into account in our simulation are influencing the ecosyst...

  14. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    Science.gov (United States)

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. PMID:26724182

  15. Removal of disinfection by-product formation potentials by biologically assisted GAC treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The object of this paper is to evaluate the removal of disinfection by-products formation potential by artificially intensified biological activated carbon(BAC) process which is developed on the basis of traditional ozone granular activated carbon (GAC). The results show that 23.1% of trihalomethane formation potential (THMFP) and 68% of haloacetic acid formation potential (HAAFP) can be removed by BAC,respectively. Under the same conditions, the removal rates of the same substances were 12.2% and 13-25 % respectively only by GAC process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. BAC process has some advantages such as long backwashing cycle time, low backwashing intensity and prolonged activated carbon lifetime, etc.

  16. The future coastal ocean: the impact of increased stratification on biological production and carbon cycling

    Science.gov (United States)

    Lachkar, Z.; Gruber, N.

    2012-04-01

    Eastern boundary upwelling systems (EBUS) are regions of intense biogeochemical cycling and air-sea CO2 exchange. EBUS are particularly sensitive to changes in vertical stratification induced by upper ocean warming. However, neither the biological response to such physical perturbation nor the extent to which air-sea CO2 exchange might be altered under increased stratification are well understood. Here, we investigate the vulnerability of EBUS to such changes by conducting eddy-resolving simulations with the Regional Oceanic Modeling System (ROMS) coupled to a state-of-the art ecosystem model for the California and the Canary Current Systems. We examine how potential changes in stratification might affect the productivity in both upwelling systems and explore related changes in air-sea CO2 fluxes and biological pump efficiency. A particular focus of our analyses is on the role of local vs large scale changes in stratification. Overall, our initial results show for both EBUS a substantial increase of the CO2 outgassing with only a relatively modest change in productivity. We also found that identical changes in the vertical stratification lead to contrasting biological responses within and between these two EBUS characterized with only modestly different physical and environmental conditions. This is essentially due to varying initial temperature and nutrient conditions in addition to factors associated with the nearshore-offshore exchange timescales such as the shelf topography and the level of mesoscale eddy activity which differ substantially between the two EBUS. Finally, our results show that the depth of the maximum warming as well as the vertical penetration of the warm temperature anomaly play a key role in controlling the magnitude of the biological response in each EBUS.

  17. A regulatory perspective of clinical trial applications for biological products with particular emphasis on Advanced Therapy Medicinal Products (ATMPs).

    Science.gov (United States)

    Jones, David R; McBlane, James W; McNaughton, Graham; Rajakumaraswamy, Nishanthan; Wydenbach, Kirsty

    2013-08-01

    The safety of trial subjects is the tenet that guides the regulatory assessment of a Clinical Trial Authorization application and applies equally to trials involving small molecules and those with biological/biotechnological products, including Advanced Therapy Medicinal Products. The objective of a regulator is to ensure that the potential risk faced by a trial subject is outweighed by the potential benefit to them from taking part in the trial. The focus of the application review is to assess whether risks have been identified and appropriate steps taken to alleviate these as much as possible. Other factors are also taken into account during a review, such as regulatory requirements, and emerging non-clinical and clinical data from other trials on the same or similar products. This paper examines the regulatory review process of a Clinical Trial Authorization application from the perspectives of Quality, Non-Clinical and Clinical Regulatory Assessors at the Medicines and Healthcare products Regulatory Agency. It should be noted that each perspective has highlighted specific issues from their individual competence and that these can be different between the disciplines.

  18. A cell-free expression and purification process for rapid production of protein biologics.

    Science.gov (United States)

    Sullivan, Challise J; Pendleton, Erik D; Sasmor, Henri H; Hicks, William L; Farnum, John B; Muto, Machiko; Amendt, Eric M; Schoborg, Jennifer A; Martin, Rey W; Clark, Lauren G; Anderson, Mark J; Choudhury, Alaksh; Fior, Raffaella; Lo, Yu-Hwa; Griffey, Richard H; Chappell, Stephen A; Jewett, Michael C; Mauro, Vincent P; Dresios, John

    2016-02-01

    Cell-free protein synthesis has emerged as a powerful technology for rapid and efficient protein production. Cell-free methods are also amenable to automation and such systems have been extensively used for high-throughput protein production and screening; however, current fluidic systems are not adequate for manufacturing protein biopharmaceuticals. In this work, we report on the initial development of a fluidic process for rapid end-to-end production of recombinant protein biologics. This process incorporates a bioreactor module that can be used with eukaryotic or prokaryotic lysates that are programmed for combined transcription/translation of an engineered DNA template encoding for specific protein targets. Purification of the cell-free expressed product occurs through a series of protein separation modules that are configurable for process-specific isolation of different proteins. Using this approach, we demonstrate production of two bioactive human protein therapeutics, erythropoietin and granulocyte-macrophage colony-stimulating factor, in yeast and bacterial extracts, respectively, each within 24 hours. This process is flexible, scalable and amenable to automation for rapid production at the point-of-need of proteins with significant pharmaceutical, medical, or biotechnological value. PMID:26427345

  19. A cell-free expression and purification process for rapid production of protein biologics.

    Science.gov (United States)

    Sullivan, Challise J; Pendleton, Erik D; Sasmor, Henri H; Hicks, William L; Farnum, John B; Muto, Machiko; Amendt, Eric M; Schoborg, Jennifer A; Martin, Rey W; Clark, Lauren G; Anderson, Mark J; Choudhury, Alaksh; Fior, Raffaella; Lo, Yu-Hwa; Griffey, Richard H; Chappell, Stephen A; Jewett, Michael C; Mauro, Vincent P; Dresios, John

    2016-02-01

    Cell-free protein synthesis has emerged as a powerful technology for rapid and efficient protein production. Cell-free methods are also amenable to automation and such systems have been extensively used for high-throughput protein production and screening; however, current fluidic systems are not adequate for manufacturing protein biopharmaceuticals. In this work, we report on the initial development of a fluidic process for rapid end-to-end production of recombinant protein biologics. This process incorporates a bioreactor module that can be used with eukaryotic or prokaryotic lysates that are programmed for combined transcription/translation of an engineered DNA template encoding for specific protein targets. Purification of the cell-free expressed product occurs through a series of protein separation modules that are configurable for process-specific isolation of different proteins. Using this approach, we demonstrate production of two bioactive human protein therapeutics, erythropoietin and granulocyte-macrophage colony-stimulating factor, in yeast and bacterial extracts, respectively, each within 24 hours. This process is flexible, scalable and amenable to automation for rapid production at the point-of-need of proteins with significant pharmaceutical, medical, or biotechnological value.

  20. Biologically active amines in fermented and non-fermented commercial soybean products from the Spanish market.

    Science.gov (United States)

    Toro-Funes, N; Bosch-Fuste, J; Latorre-Moratalla, M L; Veciana-Nogués, M T; Vidal-Carou, M C

    2015-04-15

    Biologically active amines were determined in commercial soybean products. The antioxidant polyamines were found in both non-fermented and fermented soybean products. Natto and tempeh showed the highest content of polyamines (75-124 and 11-24 mg/kg of spermidine and spermine, respectively). On the other hand, the bacterial-related biogenic amines, tyramine, histamine, tryptamine and β-phenylethylamine, were detected in practically all fermented products with a high variability. The highest contents were found in sufu, tamari and soybean paste. Extremely high tyramine and histamine contents, 1700 and 700 mg/kg, respectively, found in some sufu samples could be unhealthy. However, biogenic amines observed in the other soybean products should not be a risk for healthy consumers. However, individuals who take monoamine and diamine oxidase inhibitors drugs should be strongly recommended to avoid this kind of products in order to suffer no adverse health effects. These biogenic amines were not detected in non-fermented soybean products.

  1. The O&M Personnel Shortage and University Training Programs.

    Science.gov (United States)

    Wiener, William R.; Joffee, Elga

    1993-01-01

    Measures taken during the 1980s to increase the number of orientation and mobility (O&M) specialists to work with persons with visual impairments were evaluated, by means of a telephone survey of 15 university O&M programs. Survey findings indicated that efforts to address critical shortages in O&M personnel have been effective. (DB)

  2. The Human Constraint; The Coming Shortage of Managerial Talent.

    Science.gov (United States)

    Miner, John B.

    The prospect of a massive managerial talent shortage in the United States and what can be done about it are the central concerns of the study, which revealed a notable decline in motivation to manage among business students and young managers. Part 1 defines the components of motivation to manage and their vital relationship to personal and…

  3. US Congress considers bill to relieve helium shortage

    Science.gov (United States)

    Gwynne, Peter

    2013-04-01

    A bill to alleviate the threat of a significant shortage of helium was set to be debated in the US House of Representatives as Physics World went to press with the House's Natural Resources Committee putting the finished touches to the motion.

  4. Shortage of Mathematics Teachers in Thai Basic Education Level

    Science.gov (United States)

    Puncreobutr, Vichian; Rattanatumma, Tawachai

    2016-01-01

    The objective of this study was to identify the reasons for shortage of Mathematics teachers at Thai Basic Education level. This research is both quantitative and qualitative in nature. For the purpose of study, survey was conducted with senior high school students, in order to find out their willingness to pursue mathematics in Bachelor of…

  5. The Dilemma of Physician Shortage and International Recruitment in Canada

    Directory of Open Access Journals (Sweden)

    Nazrul Islam

    2014-06-01

    Full Text Available The perception of physician shortage in Canada is widespread. Absolute shortages and relative discrepancies, both specialty-wise and in urban-rural distribution, have been a daunting policy challenge. International Medical Graduates (IMGs have been at the core of mitigating this problem, especially as long as shortage of physicians in rural areas is concerned. Considering such recruitment as historical reality is naïve annotation, but when it is recommended per se, then the indication of interest overweighs the intent of ethically justified solution. Such a recommendation has not only invited policy debate and disagreement, but has also raised serious ethical concerns. Canadian healthcare policy-makers were put into a series of twisting puzzles—recruiting IMGs in mitigating physician shortage was questioned by lack of vision for Canada’s self-sufficiency. In-migration of IMGs was largely attributed to Canada’s point-based physician-friendly immigration system without much emphasizing on IMGs’ home countries’ unfavorable factors and ignoring their basic human rights and choice of livelihood. While policy-makers’ excellence in integrating the already-migrated IMGs into the Canadian healthcare is cautiously appraised, its logical consequence in passively drawing more IMGs is loudly criticised. Even the passive recruitment of IMGs raised the ethical concern of source countries’ (which are often developing countries with already-compromised healthcare system vulnerability. The current paper offers critical insights juxtaposing all these seemingly conflicting ideas and interests within the scope of national and transnational instruments.

  6. Newsvendor problem with random shortage cost under a risk criterion

    NARCIS (Netherlands)

    Wu, Meng; Zhu, Stuart X.; Teunter, Ruud H.

    2013-01-01

    We study profit maximization vs risk approaches for the standard newsvendor problem with uncertainty in demand as well as a generalized version with uncertainty in the shortage cost (as often applies in practice). We consider two well-known risk approaches: Value-at-Risk (VaR) included as a constrai

  7. The Impending Shortage of Special Education Faculty: A Summary

    Science.gov (United States)

    Smith, D. D.; Young, C.; Montrosse, B.; Tyler, N. C.; Robb, S. M.

    2011-01-01

    This document highlights the major findings of a four-year study about the supply and demand of special education college and university faculty. The Special Education Faculty Needs Assessment (SEFNA) project concluded its data collection efforts in July of 2011. This national study continued the work of previous efforts that found the shortage of…

  8. End of the silicon shortage?; Mangelware bald im Ueberfluss?

    Energy Technology Data Exchange (ETDEWEB)

    Berner, J.

    2008-08-29

    Some experts are expecting an end of the silicon shortage even this year, while others assume that the raw material will continue to be in short supply for years to come. One thing can be said for sure, i.e. today's 'big five' will have to share with many new producers in the future. (orig.)

  9. Another Educational Problem: Shortages of University Scientific and Engineering Faculty.

    Science.gov (United States)

    Goodman, Paul W.

    It is pointed out that there is a desperate need for engineering and computer science doctoral faculty, a need recognized by various schools of science and engineering and by the Federal government. Although the National Science Foundation and other agencies do not see a shortage of college faculty in the other sciences, faculty in some of these…

  10. Biological Denitrification of High Nitrate Processing Wastewaters from Explosives Production Plant

    OpenAIRE

    Cyplik, Paweł; Marecik, Roman; Piotrowska-Cyplik, Agnieszka; Olejnik, Anna; Drożdżyńska, Agnieszka; Chrzanowski, Łukasz

    2011-01-01

    Wastewater samples originating from an explosives production plant (3,000 mg N l−1 nitrate, 4.8 mg l−1 nitroglycerin, 1.9 mg l−1 nitroglycol and 1,200 mg l−1 chemical oxygen demand) were subjected to biological purification. An attempt to completely remove nitrate and to decrease the chemical oxygen demand was carried out under anaerobic conditions. A soil isolated microbial consortium capable of biodegrading various organic compounds and reduce nitrate to atmospheric nitrogen under anaerobic...

  11. Biological and productive characteristics of apple cultivars resistant or tolerant to scab [Venturia inaequalis (Cooke) Wint.

    OpenAIRE

    Đorđević Boban S.; Vulić Todor B.; Đurović Dejan B.; Milatović Dragan P.; Zec Gordan N.; Radović Aleksandar R.

    2013-01-01

    Biological and productive characteristics of 11 scab-resistant apple cultivars were studied in the period 2011-2012 on the estate of the monastery Žiča in Central Serbia. Control cultivar for comparison was ‘Idared’, as the most spread apple cultivar in Serbia. The earliest blooming was found in cultivar ‘Topaz’, and the latest in cultivar ‘Rewena’. Based on the time of fruit maturation, three cultivars belong to the summer and autumn group, and five cultiv...

  12. Informed consent should be obtained from patients to use products (skin substitutes) and dressings containing biological material

    OpenAIRE

    Enoch, S; Shaaban, H; Dunn, K.

    2005-01-01

    Background: Biological products (tissue engineered skin, allograft and xenograft, and biological dressings) are widely used in the treatment of burns, chronic wounds, and other forms of acute injury. However, the religious and ethical issues, including consent, arising from their use have never been addressed in the medical literature.

  13. Monthly shortage trends for Central and Western Europe

    Science.gov (United States)

    Martinez, Md; Lana, X.; Burgueño, A.; Serra, C.

    2009-09-01

    Monthly shortage time trends are analysed for Central and Western Europe by considering more than 100 rain records (European Climate Assessment, ECA, and the Spanish Agencia Estatal de Meteorología, AEMET) covering the whole 20th century. Spells of monthly shortage are defined as consecutive months with amounts lowering the corresponding monthly median. Three annual variables are analysed: the average,, the largest, SM, and the cumulative, CS, monthly shortage. Due to the quite irregular annual evolution of these three variables, the Kendall-tau algorithm instead of a simple linear regression of the series has been applied to evaluate time trends. Positive and negative trends, never exceeding ±4.0 mm/decade, have been obtained for the three variables within the area delimited by 10°W-25°E longitude and 35°N-65°N latitude. The statistical significance at 95% level of local time trends has been assessed with the Mann-Kendall test. Additionally, the field significance of time trends is assessed by Monte Carlo simulations, randomly reproducing magnitudes and signs of time trends. The low number of empirical significant trends induces lack of field significance. A relatively high number of significant local trends (25) is only detected for CS, 6 of them are positive and 19 negative. Given that local significant trends are scattered throughout Central and Western Europe, a single spatial pattern for the monthly shortage should be discarded. Nevertheless, a close revision of local trends (statistically significant or not) manifests that positive values (increasing monthly shortage) are observed in France, a great part of the Iberian Peninsula, Central Europe and Italy.

  14. Hematoxylin shortages: their causes and duration, and other dyes that can replace hemalum in routine hematoxylin and eosin staining.

    Science.gov (United States)

    Dapson, R; Horobin, R W; Kiernan, J

    2010-02-01

    The origins of repeated hematoxylin shortages are outlined. Lack of integration in the hematoxylin trade exacerbates the problems inherent in using a natural product. Separate corporations are engaged in tree growth and harvesting, dye extraction, processing of extracts to yield hematoxylin, and formulation and sale of hematoxylin staining solutions to the end users in biomedical laboratories. Hematoxylin has many uses in biological staining and no single dye can replace it for all applications. Probably, the most satisfactory substitutes for aluminum-hematoxylin (hemalum) are the ferric complexes of celestine blue (CI 51050; mordant blue 14) and eriochrome cyanine R (CI 43820; mordant blue 3, also known as chromoxane cyanine R and solochrome cyanine R). The iron-celestine blue complex is a cationic dye that binds to nucleic acids and other polyanions, such as those of cartilage matrix and mast cell granules. Complexes of iron with eriochrome cyanine R are anionic and give selective nuclear staining similar to that obtained with acidic hemalum solutions. Iron complexes of gallein (CI 45445; mordant violet 25), a hydroxyxanthene dye, can replace iron-hematoxylin in formulations for staining nuclei, myelin, and protozoa. PMID:19562570

  15. [The pharmaceutical company Choay: an history linked to research and commercialization of biological products].

    Science.gov (United States)

    Bonnemain, Bruno

    2015-12-01

    Eugène Choay, when he created his own company in 1911, had already a large experience in pharmaceutical industry obtained with Maison Frère where he discovered the famous Dentol, well known thank to Poulbot's publicity drawings for this product. But, convinced of the future of biological products and Opotherapy, he decided to invest himself in this area with a totally new process for cold desiccation of organs. The success will be there and several pharmacists from Choay family will take care of the company and bring it to the top of its specialty in Opotherapy. At the beginning of the 1970's, Choay in in full development and has the products, the sites and the human resources for the future. In 1975, 4 therapeutic areas are covered by Choay's products: coagulation, inflammation, dermatology and hepatology. After more than 65 years of independence, Choay group will be finally bought partially and then totally by Sanofi. With the support of Sanofi, Choay created, in 1981, their US subsidiary called Choay Laboratories Inc;, after the NDA approval of sub-cutaneous Calciparine by the FDA. In 1985 Fraxiparine, a low molecular weight heparin discovered by Jean Choay's team, is lauched on the market. All these developments represent an outstanding record a longevity which indicates how perceptive was Eugène Choay and his successors when choosing to invest totally in the therapeutic use of hormones and products acting on coagulation factors.

  16. Suppressing and enhancing effects of mesoscale dynamics on biological production in the Mozambique Channel

    Science.gov (United States)

    José, Y. S.; Penven, P.; Aumont, O.; Machu, E.; Moloney, C. L.; Shillington, F.; Maury, O.

    2016-06-01

    We used a coupled physical-biogeochemical model to investigate how the strong eddy activity typical of the Mozambique Channel affects biological production. A numerical experiment was carried out, in which mesoscale dynamics were suppressed by cancelling the nonlinear terms for horizontal momentum in the Naviers-Stokes equation. Mesoscale dynamics were found to be responsible for (1) increased offshore production in the Mozambique Channel as a result of net eddy-induced offshore transport of nutrient-rich coastal waters; (2) decreased shelf production along the central Mozambican and south-west Madagascar coast caused by a reduction in nutrient availability related to the net eddy-induced lateral transport of nutrients; (3) increased coastal production along the northern Mozambican coast caused by eddy-induced nutrient supply. The model results also showed an intensification and shallowing of the subsurface production, related to increased upper layer nutrient concentrations caused by eddy activity. In addition, by driving the detachment of the East Madagascar Current at the southern tip of the island, inertial processes intensify the southern Madagascar upwelling and causes offshore diffusion of the upwelled waters. These results emphasize the complex role played by eddy activity and, more generally, inertial processes on marine ecosystems in this region.

  17. Biological characteristics of marine bacterium S - 9801 strain and its culture conditions of pigment production

    Institute of Scientific and Technical Information of China (English)

    田黎; 何培青; 武洪庆; 温占波; 刘晨临; 李光友

    2002-01-01

    Strain of Flavobacterium sp. (S- 9801), was screened from 207 strains of marine bacteria isolated from the Bohai Sea continental shelf and the Zhujiang Estuary, for its red pigment production. The biological characteristics of strain S- 9801 and culture conditions of pigment production have been checked out in this study. The color of the bacterial colony on 2216E medium was from coccineus to rose bengal. Optimum culture conditions were sodium chloride concentration(g/dm3), 10~30; pH,3~8; temperature, 25~28℃; tryptone and yeast extract as nitrogen sources and gluccse as carbon source. Under optimum conditions, pigment accumulation started after 12 h, reaching a maximum rate of synthesis at 36 h.

  18. Studies of the Production of Fungal Polyketides in Aspergillus nidulans by Using Systems Biology Tools

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Andersen, Mikael Rørdam; Grotkjær, Thomas;

    2009-01-01

    -methylsalicylic acid (6-MSA) synthase gene and one expressing the 6-MSA synthase gene and overexpressing the native xylulose-5-phosphate phosphoketolase gene (xpkA) for increasing the pool of polyketide precursor levels. The physiology of the recombinant strains and that of a reference wild-type strain were...... characterized on glucose, xylose, glycerol, and ethanol media in controlled bioreactors. Glucose was found to be the preferred carbon source for 6-MSA production, and 6-MSA concentrations up to 455 mg/liter were obtained for the recombinant strain harboring the 6-MSA gene. Our findings indicate...... that overexpression of xpkA does not directly improve 6-MSA production on glucose, but it is possible, if the metabolic flux through the lower part of glycolysis is reduced, to obtain quite high yields for conversion of sugar to 6-MSA. Systems biology tools were employed for in-depth analysis of the metabolic...

  19. Effects of milk yield on biological efficiency and profit of beef production from birth to slaughter.

    Science.gov (United States)

    Miller, S P; Wilton, J W; Pfeiffer, W C

    1999-02-01

    Effect of milk yield (MY) on biological efficiency and gross margin as an indicator of profit potential of beef production from birth to slaughter was determined. Data included 9 yr of spring-born single male calves. Biological efficiency was calculated as carcass weight/total feed energy intake, including nonlactating and lactating intakes of cow and creep and feedlot intakes of calf. Slaughter end point was finish constant at 9 mm of fat thickness. Gross margin was determined as returns minus feed costs. Three breeding systems were analyzed: purebred Hereford (HE), large rotational (LR), and small rotational (SR). Analyses were performed separately by breeding system when differences in the effect of MY among breeding systems were significant. Increased MY was associated with increased preweaning gain (P .10) effect of MY on age at slaughter or on carcass weight per day of age at slaughter was found. Increased MY was associated with increased cow lactating energy intake (P gross margin from birth to slaughter (P profit potential of beef production from birth to slaughter. PMID:10100661

  20. The Pig PeptideAtlas: A resource for systems biology in animal production and biomedicine.

    Science.gov (United States)

    Hesselager, Marianne O; Codrea, Marius C; Sun, Zhi; Deutsch, Eric W; Bennike, Tue B; Stensballe, Allan; Bundgaard, Louise; Moritz, Robert L; Bendixen, Emøke

    2016-02-01

    Biological research of Sus scrofa, the domestic pig, is of immediate relevance for food production sciences, and for developing pig as a model organism for human biomedical research. Publicly available data repositories play a fundamental role for all biological sciences, and protein data repositories are in particular essential for the successful development of new proteomic methods. Cumulative proteome data repositories, including the PeptideAtlas, provide the means for targeted proteomics, system-wide observations, and cross-species observational studies, but pigs have so far been underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within the veterinary proteomics domain, and this article demonstrates how the expression of isoform-unique peptides can be observed across distinct tissues and body fluids. The Pig PeptideAtlas is a unique resource for use in animal proteome research, particularly biomarker discovery and for preliminary design of SRM assays, which are equally important for progress in research that supports farm animal production and veterinary health, as for developing pig models with relevance to human health research. PMID:26699206

  1. Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?

    Science.gov (United States)

    O'Dowd, Colin; Ceburnis, Darius; Ovadnevaite, Jurgita; Bialek, Jakub; Stengel, Dagmar B.; Zacharias, Merry; Nitschke, Udo; Connan, Solene; Rinaldi, Matteo; Fuzzi, Sandro; Decesari, Stefano; Cristina Facchini, Maria; Marullo, Salvatore; Santoleri, Rosalia; Dell'Anno, Antonio; Corinaldesi, Cinzia; Tangherlini, Michael; Danovaro, Roberto

    2015-10-01

    Bursting bubbles at the ocean-surface produce airborne salt-water spray-droplets, in turn, forming climate-cooling marine haze and cloud layers. The reflectance and ultimate cooling effect of these layers is determined by the spray’s water-uptake properties that are modified through entrainment of ocean-surface organic matter (OM) into the airborne droplets. We present new results illustrating a clear dependence of OM mass-fraction enrichment in sea spray (OMss) on both phytoplankton-biomass, determined from Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP). The correlation coefficient for OMss as a function of Chl-a increased form 0.67 on a daily timescale to 0.85 on a monthly timescale. An even stronger correlation was found as a function of NPP, increasing to 0.93 on a monthly timescale. We suggest the observed dependence is through the demise of the bloom, driven by nanoscale biological processes (such as viral infections), releasing large quantities of transferable OM comprising cell debris, exudates and other colloidal materials. This OM, through aggregation processes, leads to enrichment in sea-spray, thus demonstrating an important coupling between biologically-driven plankton bloom termination, marine productivity and sea-spray modification with potentially significant climate impacts.

  2. Biological effects of activation products and other chemicals released from fusion power plants

    Energy Technology Data Exchange (ETDEWEB)

    Strand, J.A.; Poston, T.M.

    1976-09-01

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of /sup 26/Al, /sup 49/V, /sup 51/Cr, /sup 54/Mn, /sup 55/Fe, /sup 58/Co, /sup 60/Co, /sup 93/Nb, and /sup 94/Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs.

  3. Use of biologically reclaimed minerals for continuous hydroponic potato production in a CELSS.

    Science.gov (United States)

    Mackowiak, C L; Wheeler, R M; Stutte, G W; Yorio, N C; Sager, J C

    1997-01-01

    Plant-derived nutrients were successfully recycled in a Controlled Ecological Life Support System (CELSS) using biological methods. The majority of the essential nutrients were recovered by microbiologically treating the plant biomass in an aerobic bioreactor. Liquid effluent containing the nutrients was then returned to the biomass production component via a recirculating hydroponic system. Potato (Solanum tuberosum L.) cv. Norland plants were grown on those nutrients in either a batch production mode (same age plants on a nutrient solution) or a staggered production mode (4 different ages of plants on a nutrient solution). The study continued over a period of 418 days, within NASA Breadboard Project's Biomass Production Chamber at the Kennedy Space Center. During this period, four consecutive batch cycles (104-day harvests) and 13 consecutive staggered cycles (26-day harvests) were completed using reclaimed minerals and compared to plants grown with standard nutrient solutions. All nutrient solutions were continually recirculated during the entire 418 day study. In general, tuber yields with reclaimed minerals were within 10% of control solutions. Contaminants, such as sodium and recalcitrant organics tended to increase over time in solutions containing reclaimed minerals, however tuber composition was comparable to tubers grown in the control solutions. PMID:11542555

  4. Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion

    Directory of Open Access Journals (Sweden)

    Celio I. Chagas

    2014-10-01

    Full Text Available Grain production has displaced livestock to marginal lands in most of the productive regions in Argentina since 1990. In the fertile Rolling Pampa region, extensive cattle production has been concentrated in lowlands subjected to flooding, salt excess, erosion and sedimentation processes but also in some feedlots recently located in sloping arable lands prone to soil erosion. We studied the concentration of microbiological contamination indicators in runoff water and sediments accumulated in depressions along the tributary network from these lands devoted to cattle production. The aims of this work were: (i to gather a reliable set of data from different monitoring periods and scales, (ii to search for simple and sensible variables to be used as indicators for surface water quality advising purposes and (iii to corroborate previous biological contamination conceptual models for this region. Concentration of pollution indicators in these ponds was related to mean stocking rates from nearby fields and proved to depend significantly on the accumulated water and sediments. Viable mesophiles and total coliforms were found mainly attached to large sediments rather than in the runoff water phase. Seasonal sampling showed that the time period between the last significant runoff event and each sampling date regarding enterococci proved to be a sensible variable for predicting contamination. Enterococci concentration tended to increase gradually until the next extraordinary runoff event washed away contaminants. The mentioned relationship may be useful for designing early warning surface water contamination programs regarding enterococci dynamics and other related microbial pollutants as well.

  5. Biomarkers in natural fish populations indicate adverse biological effects of offshore oil production.

    Directory of Open Access Journals (Sweden)

    Lennart Balk

    Full Text Available BACKGROUND: Despite the growing awareness of the necessity of a sustainable development, the global economy continues to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from drilling waste, discharge of large amounts of produced water, and accidental spills. METHODS AND PRINCIPAL FINDINGS: Samples from natural populations of haddock (Melanogrammus aeglefinus and Atlantic cod (Gadus morhua in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of polycyclic aromatic hydrocarbons (PAHs were demonstrated, and biomarker analyses revealed adverse biological effects, including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity. Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two control areas indicates significant background pollution in the North Sea. CONCLUSION: It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into account the ecologically relevant impact of offshore oil production.

  6. Biological effects of activation products and other chemicals released from fusion power plants

    International Nuclear Information System (INIS)

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of 26Al, 49V, 51Cr, 54Mn, 55Fe, 58Co, 60Co, 93Nb, and 94Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs

  7. Towards risk-based drought management in the Netherlands: quantifying the welfare effects of water shortage

    Science.gov (United States)

    van der Vat, Marnix; Femke, Schasfoort; Rhee Gigi, Van; Manfred, Wienhoven; Nico, Polman; Joost, Delsman; den Hoek Paul, Van; Maat Judith, Ter; Marjolein, Mens

    2016-04-01

    It is widely acknowledged that drought management should move from a crisis to a risk-based approach. A risk-based approach to managing water resources requires a sound drought risk analysis, quantifying the probability and impacts of water shortage due to droughts. Impacts of droughts are for example crop yield losses, hydropower production losses, and water shortage for municipal and industrial use. Many studies analyse the balance between supply and demand, but there is little experience in translating this into economic metrics that can be used in a decision-making process on investments to reduce drought risk. We will present a drought risk analysis method for the Netherlands, with a focus on the underlying economic method to quantify the welfare effects of water shortage for different water users. Both the risk-based approach as well as the economic valuation of water shortage for various water users was explored in a study for the Dutch Government. First, an historic analysis of the effects of droughts on revenues and prices in agriculture as well as on shipping and nature was carried out. Second, a drought risk analysis method was developed that combines drought hazard and drought impact analysis in a probabilistic way for various sectors. This consists of a stepwise approach, from water availability through water shortage to economic impact, for a range of drought events with a certain return period. Finally, a local case study was conducted to test the applicability of the drought risk analysis method. Through the study, experience was gained into integrating hydrological and economic analyses, which is a prerequisite for drought risk analysis. Results indicate that the risk analysis method is promising and applicable for various sectors. However, it was also found that quantification of economic impacts from droughts is time-consuming, because location- and sector-specific data is needed, which is not always readily available. Furthermore, for some

  8. A retrosynthetic biology approach to metabolic pathway design for therapeutic production

    Directory of Open Access Journals (Sweden)

    Faulon Jean-Loup

    2011-08-01

    Full Text Available Abstract Background Synthetic biology is used to develop cell factories for production of chemicals by constructively importing heterologous pathways into industrial microorganisms. In this work we present a retrosynthetic approach to the production of therapeutics with the goal of developing an in situ drug delivery device in host cells. Retrosynthesis, a concept originally proposed for synthetic chemistry, iteratively applies reversed chemical transformations (reversed enzyme-catalyzed reactions in the metabolic space starting from a target product to reach precursors that are endogenous to the chassis. So far, a wider adoption of retrosynthesis into the manufacturing pipeline has been hindered by the complexity of enumerating all feasible biosynthetic pathways for a given compound. Results In our method, we efficiently address the complexity problem by coding substrates, products and reactions into molecular signatures. Metabolic maps are represented using hypergraphs and the complexity is controlled by varying the specificity of the molecular signature. Furthermore, our method enables candidate pathways to be ranked to determine which ones are best to engineer. The proposed ranking function can integrate data from different sources such as host compatibility for inserted genes, the estimation of steady-state fluxes from the genome-wide reconstruction of the organism's metabolism, or the estimation of metabolite toxicity from experimental assays. We use several machine-learning tools in order to estimate enzyme activity and reaction efficiency at each step of the identified pathways. Examples of production in bacteria and yeast for two antibiotics and for one antitumor agent, as well as for several essential metabolites are outlined. Conclusions We present here a unified framework that integrates diverse techniques involved in the design of heterologous biosynthetic pathways through a retrosynthetic approach in the reaction signature space

  9. Linking Physical Dynamics and Biological Productivity in a Coastal Mesoscale Eddy

    Science.gov (United States)

    Simons, R. D.; Nishimoto, M. M.; Washburn, L.; Brown, K. S.; Siegel, D. A.

    2014-12-01

    The Santa Barbara Channel (SBC) eddy is a cyclonic mesoscale eddy located off the coast of Southern California, USA. In the summer of 1998 and 1999, the SBC eddy was surveyed for juvenile fishes. In 1998, very high numbers of juvenile fishes were observed within the eddy, but not in 1999. The ocean conditions that contributed to the differences in fish abundances inside the eddy were investigated with three-dimensional numerical modeling. The physical dynamics of the SBC eddy, which included eddy size, three-dimensional rotational structure, and isopycnal uplift, were evaluated using a three-dimensional Regional Ocean Modeling System (ROMS). The retention ability of the eddy was quantified using a three-dimensional particle tracking model driven by the ROMS. The physical dynamics and particle retention of the SBC eddy were found to differ significantly in 1998 and 1999. In 1998, when the SBC eddy was rotating at a steady rate spatially and temporally and cycling consistently in and out of solid-body rotation, the particle retention was high and the isopycnal uplift sustained. However in 1999, when the SBC eddy was rotating unsteadily in space and time and did not have periods of solid-body rotation, the particle retention was low and the isopycnal uplift unstable. We theorize that the steady symmetric rotation of the eddy in 1998 had two important impacts on the biological productivity inside the eddy. First, it provided a prolonged period of cold nutrient rich water uplifting into the euphotic zone, which stimulated productivity and consequently attracted zooplankton. Second, it allowed the zooplankton, prey for the juvenile fish, to be retained inside the eddy, which attracted the juvenile fish. We conclude that biological productivity inside mesoscale eddies may be linked to the stability of its three-dimensional rotational structure and consequently its ability to retain particles.

  10. Determination of production biology of cladocera in a reservoir receiving hyperthermal effluents from a nuclear production reactor. [Par Pond

    Energy Technology Data Exchange (ETDEWEB)

    Vigerstad, T J

    1980-01-01

    The effects on zooplankton of residence in a cooling reservoir receiving hyperthermal effluents directly from a nuclear-production-reactor were studied. Rates of cladoceran population production were compared at two stations in the winter and summer of 1976 on Par Pond located on the Savannah River Plant, Aiken, SC. One station was located in an area of the reservoir directly receiving hyperthermal effluent (Station MAS) and the second was located about 4 km away in an area where surface temperatures were normal for reservoirs in the general geographical region (Station CAS). A non-parametric comparison between stations of standing stock and fecundity data for Bosmina longirostris, taken for the egg ratio model, was used to observe potential hyperthermal effluent effects. There was a statistically higher incidence of deformed eggs in the Bosmina population at Station MAS in the summer. Bosmina standing stock underwent two large oscillations in the winter and three large oscillations in the summer at Station MAS compared with two in the winter and one in the summer at Station CAS. These results are consistent with almost all other Par Pond studies which have found the two stations to be essentially similar in spectra composition but with some statistically significant differences in various aspects of the biology of the species.

  11. Biological re-cultivation of industrial technological waste banks after steel production

    Science.gov (United States)

    Sokolovska, Maria; Zhiyanski, Miglena; Bech, Jaume

    2010-05-01

    The problem of re-cultivation of disturbed lands, after the creation of waste banks, is very important and of great scientific interest. The studies on the effectiveness of biological re-cultivation are focused mainly on activities and techniques for the acceleration of soil formation processes as. The relationship between substrate and plants is also studied, in order to create modern biotechnologies and contributes to the remediation of the re-cultivated lands within the territorial system. In this work we have studied three parts of an industrial waste bank named "The 7th of September" located in the green system of Sofia - Pernik agglomeration in Bulgaria. It consists of technological wastes produced by the steel industry. Its area of 20 dca is of special local importance. The aim of this study was to propose an appropriate technology for the biological re-cultivation, which could take place after all production activities had ceased. To achieve this aim a detailed study on the characteristics of climatic elements was carried out focusing on precipitation - limiting factor for future afforestation of waste banks. Analyses on hydro-physical and chemical parameters of substrates were undertaken in order to elaborate recommendations for their improvement and utility in biological re-cultivation. Here we present the characteristics of the vegetation which existed before the production activities and the approaches for choice of tree species in afforestation with different schemes and methods applied. On the basis of this study we were able to establish that the hydrological properties of substrates are quite similar to those of natural soils in the region. The variations obtained for some soil substrate layers were not significant. In relation to this we also outlined the quantity of organic matter and nutrient elements in waste banks as determining parameters for further biological re-cultivation. The studied site is located in the lower forest zone of the country

  12. Silicon shortage: ''Industry did not heed the signs''; Siliziumengpass: ''Die Branche hat geschlafen''

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, J.

    2005-03-30

    As early as six years ago, experts predicted a shortage of silicon. Now, it has come about. Enhanced production with new production capacities for ultrapure silicon are not in sight until 2006; from 2007, there will also be alternative production processes. (orig.)

  13. Are staffing shortages changing the culture of midwifery?

    Science.gov (United States)

    Edwards, Nadine; Gilbert, Arianna; Mander, Rosemary; McHugh, Nessa; Murphy-Lawless, Jo; Patterson, Jenny

    2016-03-01

    The effects of budgetary changes on midwives' practice environment have raised concerns in many settings. A survey of midwives and student midwives in the UK and Republic of Ireland in 2014 produced 280 responses. Staffing shortages were regarded as underpinning many changes, one of which was that of previously optional 'extra' activities, such as unpaid overtime, becoming mandatory. Shortages were aggravated in less acute areas by the transfer of midwives to more acute settings. One of the fears expressed by midwives was that a permanent change in the culture of midwifery would result. These phenomena are the everyday experiences of practising midwives, but they have failed to be addressed in the documents published by regulatory and review bodies.

  14. A Shortage of Medical Residency Positions: Parallels with Psychology.

    Science.gov (United States)

    LaPaglia, Donna; Robiner, William N; Yozwiak, John A; Brosig, Cheryl; Cubic, Barbara; Leventhal, Gerald

    2015-12-01

    Physician shortages in the US are expected to intensify with the implementation of the Patient Protection and Affordable Care Act. These shortages may negatively impact access to care, quality of care, and confidence in the system's ability to adequately provide for health needs in the US. Concerns regarding physician demand underscore how critical Graduate Medical Education funding is to preparing the physician workforce. In 2014 5.6 % of US medical school seniors did not match into residency. Psychology has faced longstanding training imbalance issues with a misalignment between the number of internship positions and the number of applicants. The authors summon attention to the damaging effects a training imbalance poses to a health care profession, its trainees, and ultimately the public it serves.

  15. Addressing the Donor Liver Shortage with EX VIVO Machine Perfusion

    OpenAIRE

    Maria-Louisa Izamis; Berendsen, Tim A.; Korkut Uygun; Yarmush, Martin L.

    2012-01-01

    Despite a critical shortage of viable donor livers for transplantation, only a fraction of the available organs are used. Donor organ defects, which in the majority of cases are caused by extensive exposure to ischemia, cannot be reversed by static cold storage, the current gold standard of organ preservation. In this review, the role of machine perfusion (MP) in the recovery of non-transplantable ischemic donor organs is discussed. Though still in the experimental phase, various models of MP...

  16. Challenges of Organ Shortage for Transplantation: Solutions and Opportunities

    OpenAIRE

    Saidi, R. F.; Hejazii Kenari, S. K.

    2014-01-01

    Organ shortage is the greatest challenge facing the field of organ transplantation today. A variety of approaches have been implemented to expand the organ donor pool including live donation, a national effort to expand deceased donor donation, split organ donation, paired donor exchange, national sharing models and greater utilization of expanded criteria donors. Increased public awareness, improved efficiency of the donation process, greater expectations for transplantation, expansion of th...

  17. Modeling Water Shortage Management Using an Object-Oriented Approach

    Science.gov (United States)

    Wang, J.; Senarath, S.; Brion, L.; Niedzialek, J.; Novoa, R.; Obeysekera, J.

    2007-12-01

    As a result of the increasing global population and the resulting urbanization, water shortage issues have received increased attention throughout the world . Water supply has not been able to keep up with increased demand for water, especially during times of drought. The use of an object-oriented (OO) approach coupled with efficient mathematical models is an effective tool in addressing discrepancies between water supply and demand. Object-oriented modeling has been proven powerful and efficient in simulating natural behavior. This research presents a way to model water shortage management using the OO approach. Three groups of conceptual components using the OO approach are designed for the management model. The first group encompasses evaluation of natural behaviors and possible related management options. This evaluation includes assessing any discrepancy that might exist between water demand and supply. The second group is for decision making which includes the determination of water use cutback amount and duration using established criteria. The third group is for implementation of the management options which are restrictions of water usage at a local or regional scale. The loop is closed through a feedback mechanism where continuity in the time domain is established. Like many other regions, drought management is very important in south Florida. The Regional Simulation Model (RSM) is a finite volume, fully integrated hydrologic model used by the South Florida Water Management District to evaluate regional response to various planning alternatives including drought management. A trigger module was developed for RSM that encapsulates the OO approach to water shortage management. Rigorous testing of the module was performed using historical south Florida conditions. Keywords: Object-oriented, modeling, water shortage management, trigger module, Regional Simulation Model

  18. The global nursing shortage: an overview of issues and actions.

    Science.gov (United States)

    Oulton, Judith A

    2006-08-01

    Today's global nursing shortage is having an adverse impact on health systems around the world. A major initiative by the International Council of Nurses (ICN) yielded important information regarding the shortage and solutions to it. These are organized into five priority areas: policy intervention; macroeconomics and health sector funding; workforce planning and policy, including regulation; positive practice environments; and retention and recruitment (includes migration); and nursing leadership. Internationally momentum is building, providing the opportunity to bring attention to these issues and to take action. This article presents an overview of the global nursing shortage (which, since 2002, has been termed a global crisis), provides the perspectives of the ICN, and discusses the ICN's initiatives regarding that crisis. Founded in 1899, the ICN is the world's first and largest organization for health professionals. As a federation of national nurses' associations in 129 countries, ICN represents the more than 13 million nurses working worldwide. It works to ensure quality nursing care for all, sound health policies globally, the advancement of nursing knowledge, and the presence worldwide of a respected, competent professional workforce. PMID:17071693

  19. Xenotransplantation: A Potential Solution to the Critical Organ Donor Shortage

    Directory of Open Access Journals (Sweden)

    K Howe Sim

    1999-01-01

    Full Text Available The success of allotransplantation as a treatment for end-stage organ failure has resulted in the need for an increasing number of organ donors. Attempts to meet this need include the use of organs from living related and unrelated donors, financial or other incentives for the donor family, and even the reuse of transplanted organs. Despite these initiatives, the supply of organs for transplantation still falls far short of the demand, as evidenced by longer waiting times for transplantation and decreasing transplantation rates. Even if Canada were able to increase its organ donor rate to that of Spain (40 to 50/million, where organ donation is governed by ‘presumed consent’ legislation, this would not alleviate the problem of donor shortage. Interest in xenotransplantation stems from the need to overcome this increasingly severe shortage of human organs. Indeed, some argue that xenotransplantation is the only potential way of addressing this shortage. As immunological barriers to xenotransplantation are better understood, those hurdles are being addressed through genetic engineering of donor animals and the development of new drug therapies. However, before xenotransplantation can be fully implemented, both the scientific/medical communities and the general public must seriously consider and attempt to resolve the many complex ethical, social and economic issues that it presents.

  20. Use of chemicals and biological products in Asian aquacultire and their potential environmental risks: a critical review

    NARCIS (Netherlands)

    Rico, A.; Satapornvanit, K.; Haque, M.M.; Min, J.; Nguyen, P.T.; Telfer, T.; Brink, van den P.J.

    2012-01-01

    Over the past few decades, Asian aquaculture production has intensified rapidly through the adoption of technological advances, and the use of a wide array of chemical and biological products to control sediment and water quality and to treat and prevent disease outbreaks. The use of chemicals in aq

  1. When do tissues and cells become products? Regulatory oversight of emerging biological therapies.

    Science.gov (United States)

    Farrugia, Albert

    2006-01-01

    Although therapeutics derived from biological sources have been subjected to regulatory oversight for some time, the products used in transplantation procedures have historically been exempt from this oversight. These products have been viewed as being part of medical practice rather than as the result of mainstream pharmaceutical manufacture. Furthermore, their unique source makes them difficult to assess in traditional regulatory systems based on the tenets of pharmaceutical quality control. With the increasing use of transplantation therapies to both replace dysfunctional organs and to influence genetic and metabolic processes, public health concerns on these therapies have increased. In addition, it is recognized that therapeutic claims for some of these interventions need to be properly assessed. These considerations have led the established regulatory agencies of the developed world to develop new regulatory paradigms for the products of transplantation practice. While a number of concerns have driven these developments, the minimization of infectious disease risk remains the paramount driver for introducing these regulatory systems. More than the regulation of medicines and medical devices manufactured in traditional pharmaceutical modes, the regulation of cell and tissue products is intimately linked to areas of public health policy and funding. This places regulators in a challenging position as they attempt to reconcile their roles as independent assessors with the needs of the overall public health framework. This is particularly difficult when considering measures which may affect access to life saving therapies. Regulators have recognized the need to assess these therapies through systems which incorporate consideration of risk-benefit ratios and include mechanisms for transparent and accountable release of products when full compliance to traditional concepts of manufacturing practice is not possible.

  2. Biological and Energy Productivity of Natural Spruce Forests in the Ukrainian Carpathians

    Directory of Open Access Journals (Sweden)

    R. D. Vasilishyn

    2014-10-01

    Full Text Available The modern practice of forestry production in Ukraine, which is in the process of implementing the conceptual changes in forest management and harmonization of its basic approaches to the basics of sustainable development, requires a significant expansion of the current regulatory and informational tools used to assess the ecological functions of forests. For this purpose, during the 2012–2014, as part of an international project GESAPU, models and tables of bioproductivity for forest tree species in Ukraine were completed. The article presents the results of modeling the dynamics of the conversion coefficients for the main components of phytomass of modal natural spruce forests of the Carpathian region of Ukraine based on information from 32 plots in the database of «Forest Phytomass of Ukraine». According to the state forest accounting of Ukraine as of January 1, 2011, the spruce forests in the Ukrainian Carpathians cover an area of 426.2 thousand ha, 45 % of which are spruce of natural origin. To evaluate the productivity of modal dynamics of pure and mixed spruce stands, the study developed models of the stock and overall productivity, derived by Bertalanffy growth function. On the basis of these models, normative reference tables of biological productivity of natural modal spruce forests of the Ukrainian Carpathians were developed. To successfully meet the challenges of evaluating the energy possibilities of forestry of Ukraine, the study used tables of energetic productivity of investigated stands. Built on the basis of the tables of bioproductivity, they reflect the dynamic processes of energy storage in the phytomass components and can be used in forest management to predict volumes of energetic woods.

  3. A model of the ocean iron cycle and its influence on biological production

    Science.gov (United States)

    Dutkiewicz, S.; Parekh, P.; Follows, M.

    2003-04-01

    Biological productivity in large regions of the ocean, specifically high nutrient, low chlorophyll regions, is limited by the deficit in iron relative to other nutrients. We have developed a parameterization of the iron cycle of the world's oceans which attempts to explicitly represent the processes by which this deficit in iron occurs. We have implemented this parameterization in the context of the MIT three dimensional global ocean model and examined the consequences for nutrient distributions, new production and primary production. The iron model parameterizes the mechanisms of scavenging of iron onto sinking particles and complexation with an organic ligand and is driven by specified aeolian flux patterns. First, using an idealized representation of export production, limited by light, phosphate and iron, the model reproduces the broad features of the observed ocean phosphate and iron distributions. We replace the simplified export parameterization with an explicit, but highly idealized, ecosystem model. The model represents a simplified food web with two phytoplankton size classes and a single grazer. The base currency for this model is phosphorus, but the larger phytoplankton class (i.e. diatoms) is also limited by silica. Both classes are limited by the availability of iron. The results of this model are also generally consistent with the observed patterns of phosphate and iron. In addition, the model captures the broad features of the distributions and cycles of silica, chlorophyll and primary production. We will also explore the sensitivities of this model to the forcing fields (e.g. aeolian iron flux) and parameter choices of the ecosystem model. This model represents a step towards the explicit representation of the ocean iron cycle, and its biogeochemical influences, in global biogeochemical models.

  4. Applying complex models to poultry production in the future--economics and biology.

    Science.gov (United States)

    Talpaz, H; Cohen, M; Fancher, B; Halley, J

    2013-09-01

    The ability to determine the optimal broiler feed nutrient density that maximizes margin over feeding cost (MOFC) has obvious economic value. To determine optimal feed nutrient density, one must consider ingredient prices, meat values, the product mix being marketed, and the projected biological performance. A series of 8 feeding trials was conducted to estimate biological responses to changes in ME and amino acid (AA) density. Eight different genotypes of sex-separate reared broilers were fed diets varying in ME (2,723-3,386 kcal of ME/kg) and AA (0.89-1.65% digestible lysine with all essential AA acids being indexed to lysine) levels. Broilers were processed to determine carcass component yield at many different BW (1.09-4.70 kg). Trial data generated were used in model constructed to discover the dietary levels of ME and AA that maximize MOFC on a per broiler or per broiler annualized basis (bird × number of cycles/year). The model was designed to estimate the effects of dietary nutrient concentration on broiler live weight, feed conversion, mortality, and carcass component yield. Estimated coefficients from the step-wise regression process are subsequently used to predict the optimal ME and AA concentrations that maximize MOFC. The effects of changing feed or meat prices across a wide spectrum on optimal ME and AA levels can be evaluated via parametric analysis. The model can rapidly compare both biological and economic implications of changing from current practice to the simulated optimal solution. The model can be exploited to enhance decision making under volatile market conditions.

  5. Applying complex models to poultry production in the future--economics and biology.

    Science.gov (United States)

    Talpaz, H; Cohen, M; Fancher, B; Halley, J

    2013-09-01

    The ability to determine the optimal broiler feed nutrient density that maximizes margin over feeding cost (MOFC) has obvious economic value. To determine optimal feed nutrient density, one must consider ingredient prices, meat values, the product mix being marketed, and the projected biological performance. A series of 8 feeding trials was conducted to estimate biological responses to changes in ME and amino acid (AA) density. Eight different genotypes of sex-separate reared broilers were fed diets varying in ME (2,723-3,386 kcal of ME/kg) and AA (0.89-1.65% digestible lysine with all essential AA acids being indexed to lysine) levels. Broilers were processed to determine carcass component yield at many different BW (1.09-4.70 kg). Trial data generated were used in model constructed to discover the dietary levels of ME and AA that maximize MOFC on a per broiler or per broiler annualized basis (bird × number of cycles/year). The model was designed to estimate the effects of dietary nutrient concentration on broiler live weight, feed conversion, mortality, and carcass component yield. Estimated coefficients from the step-wise regression process are subsequently used to predict the optimal ME and AA concentrations that maximize MOFC. The effects of changing feed or meat prices across a wide spectrum on optimal ME and AA levels can be evaluated via parametric analysis. The model can rapidly compare both biological and economic implications of changing from current practice to the simulated optimal solution. The model can be exploited to enhance decision making under volatile market conditions. PMID:23960140

  6. Characterization of soluble microbial products in a drinking water biological aerated filter.

    Science.gov (United States)

    Kang, Jia; Ma, Teng-Fei; Zhang, Peng; Gao, Xu; Chen, You-Peng

    2016-05-01

    Utilization-associated products (UAPs) and biomass-associated products (BAPs) were quantified separately in this study to characterize soluble microbial products (SMPs) in a drinking water lab-scale biological aerated filter (BAF), and their basic characteristics were explored using gel filtration chromatography and three-dimensional excitation-emission matrix (3D-EEM) spectrophotometry with fluorescence regional integration analysis and parallel factor model. UAPs were observed increased with the increase of filter media depth and accumulated after BAF treatment, whereas BAPs were basically constant. 3D-EEM spectroscopy analysis result showed that tryptophan and protein-like compounds were the main components of UAPs and BAPs, and fulvic-acid-like substance was a major component of BAPs, rather than UAPs. In terms of molecular weight (MW) distribution, UAP MW presented a bimodal distribution in the range of 1-5 and >10 kDa, while BAP MW exhibited unimodal distribution with MW >20 kDa fraction accounting for more than 90 %. The macromolecules of UAPs accumulated after BAF treatment. This study provides theoretical support for in-depth study of SMP characteristics. PMID:26801929

  7. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    Science.gov (United States)

    Lachkar, Z.; Gruber, N.

    2012-01-01

    Eastern Boundary Upwelling Systems (EBUS) are highly productive ocean regions. Yet, substantial differences in net primary production (NPP) exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The NPP drivers are identified with the aid of an artificial neural network analysis based on self-organizing-maps (SOM). Our results suggest that in addition to the expected NPP enhancing effect of stronger equatorward alongshore wind, three factors have an inhibiting effect: (1) strong eddy activity, (2) narrow continental shelf, and (3) deep mixed layer. The co-variability of these 4 drivers defines in the context of the SOM a continuum of 100 patterns of NPP regimes in EBUS. These are grouped into 4 distinct classes using a Hierarchical Agglomerative Clustering (HAC) method. Our objective classification of EBUS reveals important variations of NPP regimes within each of the four EBUS, particularly in the Canary and Benguela Current systems. Our results show that the Atlantic EBUS are generally more productive and more sensitive to upwelling favorable winds because of weaker factors inhibiting NPP. Perturbations of alongshore winds associated with climate change may therefore lead to contrasting biological responses in the Atlantic and the Pacific EBUS.

  8. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2011-10-01

    Full Text Available Eastern Boundary Upwelling Systems (EBUS are highly productive ocean regions. Yet, substantial differences in net primary production (NPP exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The identification of NPP drivers is done with the aid of an artificial neural network analysis based on self-organizing-maps (SOMs. We show that in addition to the expected NPP enhancing effect of stronger alongshore wind, three factors have an inhibiting effect: (1 strong eddy activity, (2 narrow continental shelf, and (3 deep mixed layer. The co-variability of these 4 drivers defines in the context of the SOM a continuum of 100 patterns of NPP regimes in EBUS. These are grouped into 4 distinct classes using a Hierarchical Agglomerative Clustering (HAC method. Our objective classification of EBUS reveals important variations of NPP regimes within each of the four EBUS, particularly in the Canary and Benguela Current systems. Our results show that the Atlantic EBUS are generally more productive and more sensitive to upwelling favorable winds because of a weaker factors inhibiting NPP. Perturbations of alongshore winds associated with climate change may therefore lead to contrasting biological responses in the Atlantic and the Pacific EBUS.

  9. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    Science.gov (United States)

    Montesinos, Laura; Bundó, Mireia; Izquierdo, Esther; Campo, Sonia; Badosa, Esther; Rossignol, Michel; Montesinos, Emilio; San Segundo, Blanca; Coca, María

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation. PMID:26760761

  10. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    Directory of Open Access Journals (Sweden)

    Laura Montesinos

    Full Text Available Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation.

  11. Anticipatory maternal effects in two different clones of Daphnia magna in response to food shortage

    Directory of Open Access Journals (Sweden)

    Valeria ROSSI

    2011-08-01

    Full Text Available The effects of food shortage on growth, fecundity, male production and offspring size and starvation tolerance in two different clones of Daphnia magna (Clone L and Clone P were evaluated by disentangling the effects of resource depletion and crowding per se. Three experimental conditions were tested: high food - low daphnid density (the optimum, low food - low daphnid density and high food - high daphnid density. In the two first conditions, daphnids experienced the same population density but they had different food availability. In the two latter conditions, daphnids had the same per capita, low, food availability but they lived at different algae and daphnid densities. Moreover, the response of crowded females to recovery at high food availability and low population density was evaluated. Low food availability reduced growth and fecundity of both clones and increased male production only in the Clone L. Crowding per se did not affect growth but reduced fecundity. In both clones, low food availability due to low algae density enhanced investment in offspring size and resistance to starvation. In response to food shortage either due to low algae density and to crowding, Clone P increased the investment in offspring size and starvation tolerance but reduced fecundity to a lesser extent than Clone L and did not produce males. Clone L, in response to food shortage due to crowding at high algae density, increased development time, produced more males, as at low algae density, but halved fecundity producing offspring that were not starvationtolerant. These results might reflect differences in anticipatory maternal effects between clones and suggest that neonate quality varies according to either, the environment the mother experienced and the competitive environment the neonates will cope due to their mother life strategy.

  12. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production.

    Science.gov (United States)

    López-Abelairas, M; Álvarez Pallín, M; Salvachúa, D; Lú-Chau, T; Martínez, M J; Lema, J M

    2013-09-01

    The biological pretreatment of lignocellulosic biomass for the production of bioethanol is an environmentally friendly alternative to the most frequently used process, steam explosion (SE). However, this pretreatment can still not be industrially implemented due to long incubation times. The main objective of this work was to test the viability of and optimise the biological pretreatment of lignocellulosic biomass, which uses ligninolytic fungi (Pleurotus eryngii and Irpex lacteus) in a solid-state fermentation of sterilised wheat straw complemented with a mild alkali treatment. In this study, the most important parameters of the mechanical and thermal substrate conditioning processes and the most important parameters of the fungal fermentation process were optimised to improve sugar recovery. The largest digestibilities were achieved with fermentation with I. lacteus under optimised conditions, under which cellulose and hemicellulose digestibility increased after 21 days of pretreatment from 16 to 100 % and 12 to 87 %, respectively. The maximum glucose yield (84 %) of cellulose available in raw material was obtained after only 14 days of pretreatment with an overall ethanol yield of 74 % of the theoretical value, which is similar to that reached with SE.

  13. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    Science.gov (United States)

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L. PMID:24520716

  14. Removal of disinfection by-products formation potential by biologically intensified process

    Institute of Scientific and Technical Information of China (English)

    AN Dong; LI Wei-guang; CUI Fu-yi; HE Xin; ZHANG Jin-song

    2005-01-01

    The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation ( R2 = 0.9562 and R2 = 0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R2 = 0.9782. In addition certain linear correlations between THMFP, HAAFP and UV254 ( R2 = 0.855 and R2 = 0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.

  15. Production of Some Biologically Active Secondary Metabolites From Marine-derived Fungus Varicosporina ramulosa

    Directory of Open Access Journals (Sweden)

    Atalla, M. M.

    2008-01-01

    Full Text Available In a screening of fungal isolates associated with marine algae collected from Abou-keer, Alexanderia during the four seasons of 2004, to obtain new biologically active compounds. Varicosporina ramulosa isolate was identified and selected as a producer of 13 compounds. Out of 13 pure compounds produced, compounds 3 and 10 were considered as antibacterial and antifungal compounds, respectively as they were active against gram positive, gram negative bacteria and a fungus. Optimization of conditions (fermentation media, incubation period, temperature, initial pH, aeration levels which activate compounds 3 and 10 production were studied. Also the spectral properties (UV, MS, GC/MS, IR and 1H-NMR of the purified compounds were determined. Compound 3 suggested to be dibutyl phthalate and compound 10 may be ergosterol or one of its isomers. Biological evaluation of the two compounds towards 6 different types of tumor cell lines showed weak effect of compound 3 at different concentrations on the viable cell count of the different tumor cell lines. While compound 10 showed different activities against the viable cell count of the 6 different tumor cell lines. It kills 50% of the viable infected liver and lung cells at concentrations equal to 99.7 µg/mL, 74.9µg/mL, respectively. Compound 10 can be recommended as new anticancer compounds.

  16. Back to the Roots: Prediction of Biologically Active Natural Products from Ayurveda Traditional Medicine

    DEFF Research Database (Denmark)

    Polur, Honey; Joshi, Tejal; Workman, Christopher;

    2011-01-01

    . We hereby present a number of examples where the traditional medicinal use of the plant matches with the medicinal use of the drug that is structurally similar to a plant component. With this approach, we have brought to light a number of obscure compounds of natural origin (e.g. kanugin......Ayurveda, the traditional Indian medicine is one of the most ancient, yet living medicinal traditions. In the present work, we developed an in silico library of natural products from Ayurveda medicine, coupled with structural information, plant origin and traditional therapeutic use. Following this......, we compared their structures with those of drugs from DrugBank and we constructed a structural similarity network. Information on the traditional therapeutic use of the plants was integrated in the network in order to provide further evidence for the predicted biologically active natural compounds...

  17. Production and Analysis of Biological Properties of Recombinant Human Apolipoprotein A-I.

    Science.gov (United States)

    Ryabchenko, A V; Kotova, M V; Tverdohleb, N V; Knyazev, R A; Polyakov, L M

    2015-11-01

    Production of recombinant human apolipoprotein A-I (apoA-I) in E. coli cells is described and its biological properties are compared with those of natural protein. Recombinant apoA-I was isolated as a chimeric polypeptide and then processed to a mature form apoA-I (rapo-I). We studied the ability of the resulting protein to penetrate into hepatocyte nuclei and regulate the rate of DNA biosynthesis in complex with estriol. Penetration of rapoA-I conjugated with FITC into hepatocyte nuclei was demonstrated. rapoA-I-estriol and apoA-I-estriol complexes induced similar increase in DNA biosynthesis rate in isolated hepatocytes, which confi rms functional similarity of the obtained recombinant mature protein (rapoA-I) and native human apoA-I. PMID:26612626

  18. Postmarketing safety reports for human drug and biological products; electronic submission requirements. Final rule.

    Science.gov (United States)

    2014-06-10

    The Food and Drug Administration (FDA or we) is amending its postmarketing safety reporting regulations for human drug and biological products to require that persons subject to mandatory reporting requirements submit safety reports in an electronic format that FDA can process, review, and archive. FDA is taking this action to improve the Agency's systems for collecting and analyzing postmarketing safety reports. The change will help the Agency to more rapidly review postmarketing safety reports, identify emerging safety problems, and disseminate safety information in support of FDA's public health mission. In addition, the amendments will be a key element in harmonizing FDA's postmarketing safety reporting regulations with international standards for the electronic submission of safety information.

  19. Power Shortage Likely to Affect Operating Ratio of Non-ferrous Metals Enterprises

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>Since this March,many places in China have been plagued by "power shortage" in low sea-son.Zhejiang,Guangdong,Hunan,Jiangxi and Guizhou have taken electricity rationing measures to cope with electric power shortage.

  20. 78 FR 75959 - Agency Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...

    Science.gov (United States)

    2013-12-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Agency Information Collection (Regulation on Reduction of Nursing Shortages in State Homes....'' SUPPLEMENTARY INFORMATION: Title: Regulation on Reduction of Nursing Shortages in State Homes; Application...

  1. 75 FR 62185 - Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...

    Science.gov (United States)

    2010-10-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...: Regulation on Reduction of Nursing Shortages in State Homes; Application for Assistance for Hiring...

  2. 75 FR 45207 - Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...

    Science.gov (United States)

    2010-08-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...: Regulation on Reduction of Nursing Shortages in State Homes; Application for Assistance for Hiring...

  3. 78 FR 55778 - Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...

    Science.gov (United States)

    2013-09-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...: Regulation on Reduction of Nursing Shortages in State Homes; Application for Assistance for Hiring...

  4. Simulated influence of postweaning production system on performance of different biological types of cattle: III. Biological efficiency.

    Science.gov (United States)

    Williams, C B; Bennett, G L; Keele, J W

    1995-03-01

    Methods were developed and incorporated into a previously published computer model to predict ME intake and calculate biological efficiencies in terms of grams of empty BW (EBW) and fat-free matter (FFM) gained/megacalorie of ME consumed from weaning to slaughter. Efficiencies were calculated for steers from F1 crosses of 16 sire breeds (Hereford, Angus, Jersey, South Devon, Limousin, Simmental, Charolais, Red Poll, Brown Swiss, Gelbvieh, Maine Anjou, Chianina, Brahman, Sahiwal, Pinzgauer, and Tarentaise) mated to Hereford and Angus dams, grown under nine backgrounding systems, finished at either a low (1.0 kg) or high (1.36 kg) ADG, and slaughtered at 300 kg carcass weight, small or greater degree of marbling, and 28% carcass fat. Backgrounding systems were high ADG (.9 kg) for 111, 167, or 222 d, medium ADG (.5 kg) for 200, 300, or 400 d, and low ADG (.25 kg) for 300 or 400 d, and 0 d backgrounding. The high ADG finishing system was more biologically efficient than the low ADG finishing system, and generally backgrounding systems were less biologically efficient than direct finishing after weaning (0 d backgrounding). Large-framed breeds were more efficient at the constant carcass weight and carcass fatness end point, and breeds that achieved the marbling end point at low levels of carcass fatness were more efficient at this end point. Some small-framed breeds gained EBW more efficiently but gained FFM less efficiently than some of the large-framed breeds. Variation in efficiency between genotypes was greatest with 0 d backgrounding and decreased in the other backgrounding systems. PMID:7608001

  5. Simulated influence of postweaning production system on performance of different biological types of cattle: III. Biological efficiency.

    Science.gov (United States)

    Williams, C B; Bennett, G L; Keele, J W

    1995-03-01

    Methods were developed and incorporated into a previously published computer model to predict ME intake and calculate biological efficiencies in terms of grams of empty BW (EBW) and fat-free matter (FFM) gained/megacalorie of ME consumed from weaning to slaughter. Efficiencies were calculated for steers from F1 crosses of 16 sire breeds (Hereford, Angus, Jersey, South Devon, Limousin, Simmental, Charolais, Red Poll, Brown Swiss, Gelbvieh, Maine Anjou, Chianina, Brahman, Sahiwal, Pinzgauer, and Tarentaise) mated to Hereford and Angus dams, grown under nine backgrounding systems, finished at either a low (1.0 kg) or high (1.36 kg) ADG, and slaughtered at 300 kg carcass weight, small or greater degree of marbling, and 28% carcass fat. Backgrounding systems were high ADG (.9 kg) for 111, 167, or 222 d, medium ADG (.5 kg) for 200, 300, or 400 d, and low ADG (.25 kg) for 300 or 400 d, and 0 d backgrounding. The high ADG finishing system was more biologically efficient than the low ADG finishing system, and generally backgrounding systems were less biologically efficient than direct finishing after weaning (0 d backgrounding). Large-framed breeds were more efficient at the constant carcass weight and carcass fatness end point, and breeds that achieved the marbling end point at low levels of carcass fatness were more efficient at this end point. Some small-framed breeds gained EBW more efficiently but gained FFM less efficiently than some of the large-framed breeds. Variation in efficiency between genotypes was greatest with 0 d backgrounding and decreased in the other backgrounding systems.

  6. Online Availability and Safety of Drugs in Shortage: A Descriptive Study of Internet Vendor Characteristics

    OpenAIRE

    Liang, Bryan A.; Mackey, Tim K.

    2012-01-01

    Background Unprecedented drug shortages announced by the US Food and Drug Administration (FDA) have severely affected therapeutic access, patient safety, and public health. With continued shortages, patients may seek drugs online. Objective To assess the prevalence of online marketing for current FDA shortage drugs and potential patient safety risks. Methods We performed a descriptive study of the prevalence of online marketing for shortage drugs—that is, offers for sale of each drug, includi...

  7. Biological hydrogen production by Anabaena sp. – Yield, energy and CO2 analysis including fermentative biomass recovery

    OpenAIRE

    Ferreira, Ana F.; Marques, Ana C.; Batista, Ana Paula; Marques, Paula Alexandra; de Gouveia, L.; Carla M. Silva

    2012-01-01

    This paper presents laboratory results of biological production of hydrogen by photoautrotophic cyanobacterium Anabaena sp. Additional hydrogen production from residual Cyanobacteria fermentation was achieved by Enterobacter aerogenes bacteria. The authors evaluated the yield of H2 production, the energy consumption and CO2 emissions and the technological bottlenecks and possible improvements of the whole energy and CO2 emission chain. The authors did not attempt to extrapolate the results to...

  8. Pollinator shortage and global crop yield: Looking at the whole spectrum of pollinator dependency.

    Science.gov (United States)

    Garibaldi, Lucas A; Aizen, Marcelo A; Cunningham, Saul A; Klein, Alexandra M

    2009-01-01

    A pollinator decline caused by environmental degradation might be compromising the production of pollinator-dependent crops. In a recent article, we compared 45 year series (1961-2006) in yield, production and cultivated area of pollinator-dependent and nondependent crop around the world. If pollinator shortage is occurring globally, we expected a lower annual growth rate in yield for pollinator-dependent than nondependent crops, but a higher growth in cultivated area to compensate the lower yield. We have found little evidence for the first "yield" prediction but strong evidence for the second "area" prediction. Here, we present an additional analysis to show that the first and second predictions are both supported for crops that vary in dependency levels from nondependent to moderate dependence (i.e., up to 65% average yield reduction without pollinators). However, those crops for which animal pollination is essential (i.e., 95% average yield reduction without pollinators) showed higher growth in yield and lower expansion in area than expected in a pollination shortage scenario. We propose that pollination management for highly pollinator-dependent crops, such us renting hives or hand pollination, might have compensated for pollinator limitation of yield. PMID:19704865

  9. Biological determinants of plant and crop productivity of flax (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Tadeusz Zając

    2012-12-01

    Full Text Available In Poland the cultivation of the fibrous form of flax (Linum usitatissimum L. is dying out, but the acreage of its oilseed form, linseed, which provides seed (Semen lini used in therapy and being a source of -linolenic acid, is expanding. Nowadays, linseed is grown in 64 countries of the world, but yield levels in these countries vary greatly. Under European conditions, seed yield of linseed shows high variation, which is evidence of little knowledge of the biology of this plant and the lack of precise cultivation solutions in agricultural technologies used. A major reason is the difficulty in obtaining optimal crop density. A sparse crop results in low above-ground biomass yield, which is translated into insufficient crop yields. The selection of highly productive domestic and foreign varieties can partially increase linseed yield; apart from some domestic varieties, the Canadian cultivar 'Flanders' and the Hungarian cultivar 'Barbara' are positive examples in this respect. There is a possibility of effective selection at early stages of linseed breeding, which bodes well for the prospect of obtaining highly productive varieties with normal or very low -linolenic acid content.

  10. Human chorionic gonadotropin: Different glycoforms and biological activity depending on its source of production.

    Science.gov (United States)

    Fournier, Thierry

    2016-06-01

    Human chorionic gonadotropin (hCG) is the first hormonal message from the placenta to the mother. It is detectable in maternal blood two days after implantation and behaves like a super LH agonist stimulating progesterone secretion by the corpus luteum. In addition to maintaining the production of progesterone until the placenta itself produces it, hCG also has a role in myometrial quiescence and local immune tolerance. Specific to humans, hCG is a complex glycoprotein composed of two highly glycosylated subunits. The α-subunit is identical to the pituitary gonadotropin hormones (LH, FSH, TSH), contains two N-glycosylation sites, and is encoded by a single gene (CGA). By contrast, the β-subunits are distinct for each hormones and confer both receptor and biological specificity, although LH and hCG bind to the same receptor (LH/CG-R). The hCG ß-subunit is encoded by a cluster of genes (CGB) and contains two sites of N-glycosylation and four sites of O-glycosylation. The hCG glycosylation state varies with the stage of pregnancy, its source of production and in the pathology. It is well established that hCG is mainly secreted into maternal blood, where it peaks at 8-10weeks of gestation (WG), by the syncytiotrophoblast (ST), which represents the endocrine tissue of the human placenta. The invasive extravillous trophoblast (iEVT) also secretes hCG, and in particular hyperglycosylated forms of hCG (hCG-H) also produced by choriocarcinoma cells. In maternal blood, hCG-H is elevated during early first trimester corresponding to the trophoblastic cell invasion process and then decreases. In addition to its endocrine role, hCG has autocrine and paracrine roles. It promotes formation of the ST and angiogenesis through LH/CG-R but has no effect on trophoblast invasion in vitro. By contrast, hCG-H stimulates trophoblast invasion and angiogenesis by interacting with the TGFß receptor in a LH/CG-R independent signalling pathway. hCG is largely used in antenatal screening

  11. Biological material (DNA and RNA) bank of nuclear production workers and residents of nearby territories

    International Nuclear Information System (INIS)

    Seversk Biophysical Research Centre (SBRC) has been engaged in creating DNA and biological material bank of workers of nuclear production (Siberian Group of Chemical Enterprises - SGCE) and residents of nearby areas (the town of Seversk) since 2002. Following the developed methodology, for each person this bank includes three units of storage: DNA sample extracted by standard method using proteinase K (the main sample), DNA sample isolated by means of 'quick' extraction method (work sample), and 1.5 ml blood sample (spare sample). For each DNA donor there have been obtained cytogenetic agents to estimate frequency and spectrum of chromosome aberrations. There has been completed DNA bank of SGCE workers (healthy individuals, cancer patients and those who survived acute myocardial infarction) as well as Seversk children aged 9-11 examined within SBRC special screening programme to diagnose thyroid diseases. At present, this DNA and biological material bank includes 5,988 units of storage (DNA samples extracted by means of standard method, DNA work samples isolated by quick extraction method, and spare blood samples). For every donor there has been obtained an informed consent. Storage conditions comply with technical regulations and provide for long-term (for decades) safety of the material. Personal information on DNA donors (age, internal and external doses, length of service, occupational data and case history) is contained in the Regional Medicodosimetric Register. Currently work is underway to create RNA bank identical to the existing DNA bank. For each person this bank contains two units of storage: the main high quality RNA sample isolated by hot phenol extraction; a work sample - of single stranded cDNA, extracted on RNA matrix through reverse transcription reaction. RNA bank will allow complex study of radiation effects in low dose range on the transcript of nuclear production workers and people living nearby. Thus, SBNC DNA and biological material bank

  12. Removal of Review and Reclassification Procedures for Biological Products Licensed Prior to July 1, 1972. Final rule.

    Science.gov (United States)

    2016-02-12

    The Food and Drug Administration (FDA, the Agency, or we) is removing two regulations that prescribe procedures for FDA's review and classification of biological products licensed before July 1, 1972. FDA is taking this action because the two regulations are obsolete and no longer necessary in light of other statutory and regulatory authorities established since 1972, which allow FDA to evaluate and monitor the safety and effectiveness of all biological products. In addition, other statutory and regulatory authorities authorize FDA to revoke a license for biological products because they are not safe and effective, or are misbranded. FDA is taking this action as part of its retrospective review of its regulations to promote improvement and innovation. PMID:26878738

  13. Desabastecimento de medicamentos: determinantes, conseqüências e gerenciamento Drug shortage: determinants, consequences and management

    Directory of Open Access Journals (Sweden)

    Adriano Max Moreira Reis

    2008-04-01

    Full Text Available O artigo analisa o desabastecimento de medicamentos como um problema que transcende o aspecto logístico da área de saúde, discutindo suas implicações para a qualidade, segurança e custo da assistência. A cadeia de abastecimento farmacêutico e os fatores que interferem na capilaridade da distribuição e na disponibilidade do medicamento são discutidos. Ressalta a contribuição da comissão de farmácia e terapêutica para a prevenção e gerenciamento do desabastecimento de medicamentos nos estabelecimentos de saúde. Sugestões de medidas para gestão do desabastecimento de medicamentos são apresentadas. Enfatiza-se a necessidade do medicamento ser considerado pelos componentes da cadeia logística um produto de saúde, com tratamento diferenciado dos bens de consumo comuns.The present study analyzes drug shortage as a problem reaching beyond the logistic aspect of the health field and discusses its consequences with respect to quality, safety and cost of health care delivery. The pharmaceutical supply chain and the factors that determine the distribution and availability of drugs are discussed. The contribution of the Pharmacy and Therapeutics Committee in preventing and managing drug shortage in health institutions is stressed and measures for drug shortage management are suggested. Finally it is emphasized that drugs should be considered health products rather than consumer goods and as such be given a different treatment by the supply chain.

  14. Biological Production of Methane from Lunar Mission Solid Waste: An Initial Feasibility Assessment

    Science.gov (United States)

    Strayer, Richard; Garland, Jay; Janine, Captain

    A preliminary assessment was made of the potential for biological production of methane from solid waste generated during an early planetary base mission to the moon. This analysis includes: 1) estimation of the amount of biodegradable solid waste generated, 2) background on the potential biodegradability of plastics given their significance in solid wastes, and 3) calculation of potential methane production from the estimate of biodegradable waste. The completed analysis will also include the feasibility of biological methane production costs associated with the biological processing of the solid waste. NASA workshops and Advanced Life Support documentation have estimated the projected amount of solid wastes generated for specific space missions. From one workshop, waste estimates were made for a 180 day transit mission to Mars. The amount of plastic packaging material was not specified, but our visual examination of trash returned from stocktickerSTS missions indicated a large percentage would be plastic film. This plastic, which is not biodegradable, would amount to 1.526 kgdw crew-1 d-1 or 6.10 kgdw d-1 for a crew of 4. Over a mission of 10 days this would amount to 61 kgdw of plastics and for an 180 day lunar surface habitation it would be nearly 1100 kgdw . Approx. 24 % of this waste estimate would be biodegradable (human fecal waste, food waste, and paper), but if plastic packaging was replaced with biodegradable plastic, then 91% would be biodegradable. Plastics are man-made long chain polymeric molecules, and can be divided into two main groups; thermoplastics and thermoset plastics. Thermoplastics comprise over 90% of total plastic use in the placecountry-regionUnited States and are derived from polymerization of olefins via breakage of the double bond and subsequent formation of additional carbon to carbon bonds. The resulting sole-carbon chain polymers are highly resistant to biodegradation and hydrolytic cleavage. Common thermoplastics include low

  15. Nutrient availability affects pigment production but not growth in lichens of biological soil crusts

    Science.gov (United States)

    Bowker, M.A.; Koch, G.W.; Belnap, J.; Johnson, N.C.

    2008-01-01

    Recent research suggests that micronutrients such as Mn may limit growth of slow-growing biological soil crusts (BSCs) in some of the drylands of the world. These soil surface communities contribute strongly to arid ecosystem function and are easily degraded, creating a need for new restoration tools. The possibility that Mn fertilization could be used as a restoration tool for BSCs has not been tested previously. We used microcosms in a controlled greenhouse setting to investigate the hypothesis that Mn may limit photosynthesis and consequently growth in Collema tenax, a dominant N-fixing lichen found in BSCs worldwide. We found no evidence to support our hypothesis; furthermore, addition of other nutrients (primarily P, K, and Zn) had a suppressive effect on gross photosynthesis (P = 0.05). We also monitored the growth and physiological status of our microcosms and found that other nutrients increased the production of scytonemin, an important sunscreen pigment, but only when not added with Mn (P = 0.01). A structural equation model indicated that this effect was independent of any photosynthesis-related variable. We propose two alternative hypotheses to account for this pattern: (1) Mn suppresses processes needed to produce scytonemin; and (2) Mn is required to suppress scytonemin production at low light, when it is an unnecessary photosynthate sink. Although Mn fertilization does not appear likely to increase photosynthesis or growth of Collema, it could have a role in survivorship during environmentally stressful periods due to modification of scytonemin production. Thus, Mn enrichment should be studied further for its potential to facilitate BSC rehabilitation. ?? 2008 Elsevier Ltd.

  16. REDUCING OF EXCESS SLUDGE PRODUCTION IN WASTEWATER TREATMENT USING COMBINED ANAEROBIC/AEROBIC SUBMERGED BIOLOGICAL FILTERS

    Directory of Open Access Journals (Sweden)

    M. A. Baghapour

    2011-09-01

    Full Text Available In this research, possibility of reducing excess sludge production in wastewater treatment was investigated using a combined anaerobic and aerobic submerged biological filter in a pilot scale. The physical model designed, erected and operated consisted of two pipes of PVC type with 147mm and 237mm diameter used as aerobic and anaerobic filters, respectively. The effective height of porous media in these filters was 70cm. Two filters were connected to eachother in a series form and the resulted system was loaded using synthetic wastewater based on sucrose in the range of 1.91 to 30.61 kg/m3 for anaerobic filter and 1.133 to 53.017 kg/m3 for aerobic filter. For similar loadings, the aerobic filter showed efficiency of 1.8 times that of anaerobic filter in removal of soluble COD. Return of 100% flow from the aerobic filter to the anaerobic filter for 30kg/m3.d of organic loading increased the efficiencies of the anaerobic filter, the aerobic filter and the combined system as 17%, 14% and 15%, respectively and the effect of the return of the flow was more pronounced in smaller hydraulic retention times and larger loadings. 100% return of the flow reduced the yield coefficient for the whole system to 0.037 for 53 kg/m3 loading which is a suitable value with regard to the scheme and no use of chemical materials such as chlorine and ozone. This coefficient reached a value as small as 0.007 in common loadings (7.5kg/m3 for 100% return of the flow which is very close to zero. So, this method could be considered as a complete biological treatment with low excess sludge and could be assessed in full scale.

  17. Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties.

    Science.gov (United States)

    Osińska-Jaroszuk, Monika; Jarosz-Wilkołazka, Anna; Jaroszuk-Ściseł, Jolanta; Szałapata, Katarzyna; Nowak, Artur; Jaszek, Magdalena; Ozimek, Ewa; Majewska, Małgorzata

    2015-12-01

    Fungal polysaccharides (PSs) are the subject of research in many fields of science and industry. Many properties of PSs have already been confirmed and the list of postulated functions continues to grow. Fungal PSs are classified into different groups according to systematic affinity, structure (linear and branched), sugar composition (homo- and heteropolysaccharides), type of bonds between the monomers (β-(1 → 3), β-(1 → 6), and α-(1 → 3)) and their location in the cell (cell wall PSs, exoPSs, and endoPSs). Exopolysaccharides (EPSs) are most frequently studied fungal PSs but their definition, classification, and origin are still not clear and should be explained. Ascomycota and Basidiomycota fungi producing EPS have different ecological positions (saprotrophic and endophytic, pathogenic or symbiotic-mycorrhizae fungi); therefore, EPSs play different biological functions, for example in the protection against environmental stress factors and in interactions with other organisms. EPSs obtained from Ascomycota and Basidiomycota fungal cultures are known for their antioxidant, immunostimulating, antitumor, and antimicrobial properties. The major objective of the presented review article was to provide a detailed description of the state-of-the-art knowledge of the effectiveness of EPS production by filamentous and yeast Ascomycota and Basidiomycota fungi and techniques of derivation of EPSs, their biochemical characteristics, and biological properties allowing comprehensive analysis as well as indication of similarities and differences between these fungal groups. Understanding the role of EPSs in a variety of processes and their application in food or pharmaceutical industries requires improvement of the techniques of their derivation, purification, and characterization. The detailed analyses of data concerning the derivation and application of Ascomycota and Basidiomycota EPSs can facilitate development and trace the direction of application of these EPSs

  18. Removal of anaerobic soluble microbial products in a biological activated carbon reactor

    Institute of Scientific and Technical Information of China (English)

    Xiaojing Dong; Weili Zhou; Shengbing He

    2013-01-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable.Focusing on the biodegradation of anaerobic SMP,the biological activated carbon (BAC) was introduced into the anaerobic system.The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors.The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2,i.e.,BAC) functioned as a polishing step to remove SMP produced in UASB1.The results showed that 90% of the SMP could be removed before granular activated carbon was saturated.After the saturation,the SMP removal decreased to 60% on the average.Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation.A strain of SMP-degrading bacteria,which was found highly similar to Klebsiella sp.,was isolated,enriched and inoculated back to the BAC reactor.When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3·day),the effluent from the BAC reactor could meet the discharge standard without further treatment.Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective,cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.

  19. Reproductive resilience to food shortage in a small heterothermic primate.

    Science.gov (United States)

    Canale, Cindy I; Huchard, Elise; Perret, Martine; Henry, Pierre-Yves

    2012-01-01

    The massive energetic costs entailed by reproduction in most mammalian females may increase the vulnerability of reproductive success to food shortage. Unexpected events of unfavorable climatic conditions are expected to rise in frequency and intensity as climate changes. The extent to which physiological flexibility allows organisms to maintain reproductive output constant despite energetic bottlenecks has been poorly investigated. In mammals, reproductive resilience is predicted to be maximal during early stages of reproduction, due to the moderate energetic costs of ovulation and gestation relative to lactation. We experimentally tested the consequences of chronic-moderate and short-acute food shortages on the reproductive output of a small seasonally breeding primate, the grey mouse lemur (Microcebus murinus) under thermo-neutral conditions. These two food treatments were respectively designed to simulate the energetic constraints imposed by a lean year (40% caloric restriction over eight months) or by a sudden, severe climatic event occurring shortly before reproduction (80% caloric restriction over a month). Grey mouse lemurs evolved under the harsh, unpredictable climate of the dry forest of Madagascar and should thus display great potential for physiological adjustments to energetic bottlenecks. We assessed the resilience of the early stages of reproduction (mating success, fertility, and gestation) to these contrasted food treatments, and on the later stages (lactation and offspring growth) in response to the chronic food shortage only. Food deprived mouse lemurs managed to maintain constant most reproductive parameters, including oestrus timing, estrogenization level at oestrus, mating success, litter size, and litter mass as well as their overall number of surviving offspring at weaning. However, offspring growth was delayed in food restricted mothers. These results suggest that heterothermic, fattening-prone mammals display important reproductive

  20. Reproductive resilience to food shortage in a small heterothermic primate.

    Directory of Open Access Journals (Sweden)

    Cindy I Canale

    Full Text Available The massive energetic costs entailed by reproduction in most mammalian females may increase the vulnerability of reproductive success to food shortage. Unexpected events of unfavorable climatic conditions are expected to rise in frequency and intensity as climate changes. The extent to which physiological flexibility allows organisms to maintain reproductive output constant despite energetic bottlenecks has been poorly investigated. In mammals, reproductive resilience is predicted to be maximal during early stages of reproduction, due to the moderate energetic costs of ovulation and gestation relative to lactation. We experimentally tested the consequences of chronic-moderate and short-acute food shortages on the reproductive output of a small seasonally breeding primate, the grey mouse lemur (Microcebus murinus under thermo-neutral conditions. These two food treatments were respectively designed to simulate the energetic constraints imposed by a lean year (40% caloric restriction over eight months or by a sudden, severe climatic event occurring shortly before reproduction (80% caloric restriction over a month. Grey mouse lemurs evolved under the harsh, unpredictable climate of the dry forest of Madagascar and should thus display great potential for physiological adjustments to energetic bottlenecks. We assessed the resilience of the early stages of reproduction (mating success, fertility, and gestation to these contrasted food treatments, and on the later stages (lactation and offspring growth in response to the chronic food shortage only. Food deprived mouse lemurs managed to maintain constant most reproductive parameters, including oestrus timing, estrogenization level at oestrus, mating success, litter size, and litter mass as well as their overall number of surviving offspring at weaning. However, offspring growth was delayed in food restricted mothers. These results suggest that heterothermic, fattening-prone mammals display important

  1. NEWS Nonferrous Metals Shortage Expected in China for Years

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> China has become the largest nonferrous metalsconsumer country in the world. Along with thehigh-speed development of industrialization,China’s demand for nonferrous metals is grow-ing with more dependence on the internationalmarket supply and more shortages are expectedfor the years to come.Statistics show that with constant and high-speed economic development,China’s refinedmetals consumption grew from 4.5 million tonsin 1995 to 12 million tons in 2003,increasingby almost 2.7 times over a period of nine years.And with direct import of fabricated materials

  2. Regulatory and information support for evaluation of biological productivity of Ukrainian forests and climate change

    Science.gov (United States)

    Lakyda, Petro; Vasylyshyn, Roman; Lakyda, Ivan

    2013-04-01

    Stabilization and preservation of the planet's climate system today is regarded as one of the most important global political-economic, environmental and social problems of mankind. Rising concentration of carbon dioxide in the planet's atmosphere due to anthropogenic impact is the main reason leading to global climate change. Due to the above mentioned, social demands on forests are changing their biosphere role and function of natural sink of greenhouse gases becomes top priority. It is known that one of the most essential components of biological productivity of forests is their live biomass. Absorption, long-term sequestration of carbon and generation of oxygen are secured by its components. System research of its parametric structure and development of regulatory and reference information for assessment of aboveground live biomass components of trees and stands of the main forest-forming tree species in Ukraine began over twenty-five years ago at the department of forest mensuration and forest inventory of National University of Life and Environmental Sciences of Ukraine, involving staff from other research institutions. Today, regulatory and reference materials for evaluation of parametric structure of live biomass are developed for trees of the following major forest-forming tree species of Ukraine: Scots pine of natural and artificial origin, Crimean pine, Norway spruce, silver fir, pedunculate oak, European beech, hornbeam, ash, common birch, aspen and black alder (P.I. Lakyda et al., 2011). An ongoing process on development of similar regulatory and reference materials for forest stands of the abovementioned forest-forming tree species of Ukraine is secured by scientists of departments of forest management, and forest mensuration and forest inventory. The total experimental research base is 609 temporary sample plots, where 4880 model trees were processed, including 3195 model trees with estimates of live biomass components. Laboratory studies conducted

  3. Shortage management in power transmission networks; Engpassmanagement im Uebertragungsnetz

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, G. [VDE, Inst. fuer Elektrische Anlagen und Energiewirtschaft an der Technischen Univ. Wien (Austria)

    2002-08-01

    Deregulation of the electricity market has raised co-ordination problems of power plant and network operation, which may lead to short-term power shortage. This danger is made even more acute by large-area power trading and a reluctance to make investments. Regionally balancing of power generation and sufficient 380 kW networks will make power supply more reliable. Measures to ensure short-term power shortage management by network operators are presented. [German] Die Deregulierung der Elektrizitaetswirtschaft hat zu einer Aufspaltung in die Geschaeftsbereiche Erzeugung, Uebertragung, Verteilung und Handel gefuehrt. Die Koordinierung des Kraftwerks- und Netzbetriebs ist hierdurch erschwert worden, was sich im Besonderen bei kurzfristigen Engpaessen bemerkbar macht. Der weitraeumigere Stromhandel und die deutliche Zurueckhaltung bei den Investitionen erhoeht zukuenftig die Gefahr von Engpaessen. Durch eine regional ausgeglichene Erzeugungsbilanz und ausreichend verstaerkte 380-kV-Netze ist auch zukuenftig eine sichere Versorgung moeglich. Insbesondere fuer das kurzfristige Engpassmanagement sollten die Netzbetreiber mit verbesserten Massnahmepaketen ausgestattet werden. (orig.)

  4. Careers : the next generation addressing the labour shortage

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-07-01

    This article described the activities of CAREERS: The Next Generation, a group formed 20 years ago to address anticipated labour shortages in Alberta. The group has reached out to over 350 schools and 225,000 students in the province in order to promote trades, forestry, and health services careers. The province has had a shortage of at 150,000 skilled workers in both trades and technical jobs in the petroleum industry. CAREERS now has many partners in the oil and gas industry, and has recently launched an initiative involving a basic apprenticeship model designed for young people to explore different trades. CAREERS is now focusing its efforts on high schools in order to promote trades amongst students. The Registered Apprenticeship Program (RAP) allows high school students to gain up to a year's worth of hours towards a journeyman status in the trade of their choice. CAREERS is now developing programs for the province's health services and has just completed a 3-year health care pilot program. A study has shown that 87 per cent of the students involved in the program plan to continue on to a career in the health services field. CAREERS is now involved in an Aboriginal Youth Initiative designed to bring career education and workplace learning opportunities to young people across the province. 2 figs.

  5. Wine as a biological fluid: history, production, and role in disease prevention.

    Science.gov (United States)

    Soleas, G J; Diamandis, E P; Goldberg, D M

    1997-01-01

    Wine has been part of human culture for 6,000 years, serving dietary and socio-religious functions. Its production takes place on every continent, and its chemical composition is profoundly influenced by enological techniques, the grape cultivar from which it originates, and climatic factors. In addition to ethanol, which in moderate consumption can reduce mortality from coronary heart disease by increasing high-density lipoprotein cholesterol and inhibiting platelet aggregation, wine (especially red wine) contains a range of polyphenols that have desirable biological properties. These include the phenolic acids (p-coumaric, cinnamic, caffeic, gentisic, ferulic, and vanillic acids), trihydroxy stilbenes (resveratrol and polydatin), and flavonoids (catechin, epicatechin, and quercetin). They are synthesized by a common pathway from phenylalanine involving polyketide condensation reactions. Metabolic regulation is provided by competition between resveratrol synthase and chalcone synthase for a common precursor pool of acyl-CoA derivatives. Polymeric aggregation gives rise, in turn to the viniferins (potent antifungal agents) and procyanidins (strong antioxidants that also inhibit platelet aggregation). The antioxidant effects of red wine and of its major polyphenols have been demonstrated in many experimental systems spanning the range from in vitro studies (human low-density lipoprotein, liposomes, macrophages, cultured cells) to investigations in healthy human subjects. Several of these compounds (notably catechin, quercetin, and resveratrol) promote nitric oxide production by vascular endothelium; inhibit the synthesis of thromboxane in platelets and leukotriene in neutrophils, modulate the synthesis and secretion of lipoproteins in whole animals and human cell lines, and arrest tumour growth as well as inhibit carcinogenesis in different experimental models. Target mechanisms to account for these effects include inhibition of phospholipase A2 and cyclo

  6. Petroleum: a shortage after 2015?; Petrole: la penurie a partir de 2015?

    Energy Technology Data Exchange (ETDEWEB)

    Gaullier, V.

    1997-08-01

    This article confronts the opinions of 2 scientists about the possibility of petroleum shortage in a near future. Graig Bond Hatfield a geologist from Toledo university (Usa) predicts a sharp crisis during the next century due to the declining production of most present oil fields and the continuous huge increase in energy demand from the developing world. Olivier Appert from the French institute of petroleum (IFP) thinks that the petroleum production will be sustained by technological progress. New exploitation techniques will enable to extract up to 50% of the petroleum contained in any oil field instead of the present 35%.According to Appert 80% of worldwide oil resources are not yet exploited because of political reasons. (A.C.)

  7. Metabolic and Kidney Diseases in the Setting of Climate Change, Water Shortage, and Survival Factors.

    Science.gov (United States)

    Johnson, Richard J; Stenvinkel, Peter; Jensen, Thomas; Lanaspa, Miguel A; Roncal, Carlos; Song, Zhilin; Bankir, Lise; Sánchez-Lozada, Laura G

    2016-08-01

    Climate change (global warming) is leading to an increase in heat extremes and coupled with increasing water shortage, provides a perfect storm for a new era of environmental crises and potentially, new diseases. We use a comparative physiologic approach to show that one of the primary mechanisms by which animals protect themselves against water shortage is to increase fat mass as a means for providing metabolic water. Strong evidence suggests that certain hormones (vasopressin), foods (fructose), and metabolic products (uric acid) function as survival signals to help reduce water loss and store fat (which also provides a source of metabolic water). These mechanisms are intricately linked with each other and stimulated by dehydration and hyperosmolarity. Although these mechanisms were protective in the setting of low sugar and low salt intake in our past, today, the combination of diets high in fructose and salty foods, increasing temperatures, and decreasing available water places these survival signals in overdrive and may be accelerating the obesity and diabetes epidemics. The recent discovery of multiple epidemics of CKD occurring in agricultural workers in hot and humid environments may represent harbingers of the detrimental consequences of the combination of climate change and overactivation of survival pathways.

  8. Coordinating vendor-buyer decisions for imperfect quality items considering trade credit and fully backlogged shortages

    Science.gov (United States)

    Khanna, Aditi; Gautam, Prerna; Jaggi, Chandra K.

    2016-03-01

    Supply chain management has become a critical issue for modern business environments. In today's world of cooperative decision-making, individual decisions in order to reduce inventory costs may not lead to an overall optimal solution. Coordination is necessary among participants of supply chain to achieve better performance. There are legitimate and important efforts from the vendor to enhance the relation with buyer; one such effort is offering trade credit which has been a driver of growth and development of business between them. The cost of financing is a core consideration in effective financial management, in general and in context of business. Also, due to imperfect production a vendor may produce defective items which results in shortages. Motivated with these aspects, an integrated vendor-buyer inventory model is developed for imperfect quality items with allowable shortages; in which the vendor offers credit period to the buyer for payment. The objective is to minimize the total joint annual costs incurred by the vendor and the buyer by using integrated decision making approach. The expected total annual integrated cost is derived and a solution procedure is provided to find the optimal solution. Numerical analysis shows that the integrated model gives an impressive cost reduction, in comparison to independent decision policies by the vendor and the buyer.

  9. Metabolic and Kidney Diseases in the Setting of Climate Change, Water Shortage, and Survival Factors.

    Science.gov (United States)

    Johnson, Richard J; Stenvinkel, Peter; Jensen, Thomas; Lanaspa, Miguel A; Roncal, Carlos; Song, Zhilin; Bankir, Lise; Sánchez-Lozada, Laura G

    2016-08-01

    Climate change (global warming) is leading to an increase in heat extremes and coupled with increasing water shortage, provides a perfect storm for a new era of environmental crises and potentially, new diseases. We use a comparative physiologic approach to show that one of the primary mechanisms by which animals protect themselves against water shortage is to increase fat mass as a means for providing metabolic water. Strong evidence suggests that certain hormones (vasopressin), foods (fructose), and metabolic products (uric acid) function as survival signals to help reduce water loss and store fat (which also provides a source of metabolic water). These mechanisms are intricately linked with each other and stimulated by dehydration and hyperosmolarity. Although these mechanisms were protective in the setting of low sugar and low salt intake in our past, today, the combination of diets high in fructose and salty foods, increasing temperatures, and decreasing available water places these survival signals in overdrive and may be accelerating the obesity and diabetes epidemics. The recent discovery of multiple epidemics of CKD occurring in agricultural workers in hot and humid environments may represent harbingers of the detrimental consequences of the combination of climate change and overactivation of survival pathways. PMID:27283495

  10. Biological Denitrification of High Nitrate Processing Wastewaters from Explosives Production Plant.

    Science.gov (United States)

    Cyplik, Paweł; Marecik, Roman; Piotrowska-Cyplik, Agnieszka; Olejnik, Anna; Drożdżyńska, Agnieszka; Chrzanowski, Lukasz

    2012-05-01

    Wastewater samples originating from an explosives production plant (3,000 mg N l(-1) nitrate, 4.8 mg l(-1) nitroglycerin, 1.9 mg l(-1) nitroglycol and 1,200 mg l(-1) chemical oxygen demand) were subjected to biological purification. An attempt to completely remove nitrate and to decrease the chemical oxygen demand was carried out under anaerobic conditions. A soil isolated microbial consortium capable of biodegrading various organic compounds and reduce nitrate to atmospheric nitrogen under anaerobic conditions was used. Complete removal of nitrates with simultaneous elimination of nitroglycerin and ethylene glycol dinitrate (nitroglycol) was achieved as a result of the conducted research. Specific nitrate reduction rate was estimated at 12.3 mg N g(-1) VSS h(-1). Toxicity of wastewater samples during the denitrification process was studied by measuring the activity of dehydrogenases in the activated sludge. Mutagenicity was determined by employing the Ames test. The maximum mutagenic activity did not exceed 0.5. The obtained results suggest that the studied wastewater samples did not exhibit mutagenic properties. PMID:22593607

  11. A biological/chemical process for reduced waste and energy consumption: caprolactam production. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    A biological/chemical process for converting cyclohexane into caprolactam was investigated: microorganisms in a bioreactor would be used to convert cyclohexane into caprolactone followed by chemical synthesis of caprolactam using ammonia. Four microorganisms were isolated from natural soil and water, that can utilize cyclohexane as a sole source of C and energy for growth. They were shown to have the correct metabolic intermediates and enzymes to convert cyclohexane into cyclohexanol, cyclohexanone, and caprolactone. Genetic techniques to create and select for caprolactone hydrolase negative-mutants were developed; those are used to convert cyclohexane into caprolactone but, because of the block, are unable to metabolize the caprolactone further. Because of a new nylon carpet reycle process and the long time frame for a totally new bioprocess, a limited study was done to evaluate whether a simplified bioprocess to convert cyclohexanol into cyclohexanone or caprolactone was feasible; growth rates and key enzyme levels were measured in a collection of microorganisms that metabolize cyclohexanol to determine if the bioactivity is high enough to support an economical cyclohexanol bioprocess. Although these microorganisms had sufficient bioactivity, they could tolerate only low levels (<1%) of cyclohexanol and thus are not suitable for developing a cost effective bioprocess because of the high cost of dilute product recovery.

  12. The classification of gene products in the molecular biology domain: Realism, objectivity, and the limitations of the Gene Ontology

    OpenAIRE

    Mayor, Charlie

    2012-01-01

    Background: Controlled vocabularies in the molecular biology domain exist to facilitate data integration across database resources. One such tool is the Gene Ontology (GO), a classification designed to act as a universal index for gene products from any species. The Gene Ontology is used extensively in annotating gene products and analysing gene expression data, yet very little research exists from a library and information science perspective exploring the design principles, philosophy and s...

  13. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    Science.gov (United States)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  14. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Science.gov (United States)

    2010-07-01

    ... Human Services that applicant did not act with due diligence; (iii) One-half the number of days... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human...

  15. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity

    OpenAIRE

    Birkhofer, Klaus; Bezemer, TM; . Bloem, J.; Bonkowski, M.; Christensen, S; Dubois, David; Ekelund , F; Fließbach, Andreas; Gunst, Lucie; K. Hedlund; Mäder, Paul; Mikola, J.; Robin, C.; Setälä, Heikki; Tatin-Froux , F

    2008-01-01

    Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differences ...

  16. Long-term organic farming fosters below- and aboveground biota: Implications for soil quality, biological control and productivity

    OpenAIRE

    Birkhofer, K.; Bezemer, TM; . Bloem, J.; Bonkowski, M.; Christensen, S; Dubois, D; Ekelund , F; Fließbach, A.; Gunst , L; K. Hedlund; Mäder, P.; Mikola, J.; Robin, C.; Setälä , H; Tatin-Froux , F

    2008-01-01

    Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differenc...

  17. Long-term organic farming fosters below- and aboveground biota: Implications for soil quality, biological control, and productivity

    OpenAIRE

    Birkhofer, Klaus; Bezemer, T. Martijn; Bloem, Jaap; Bonkowski, Michael; Christensen, Søren; Dubois, David; Ekelund, Fleming; Fließbach, Andreas; Gunst, Lucie; Hedlund, Katarina; Mäder, Paul; Mikola, Juha; Robin, Christophe; Setälä, Heikki; Tatin-Froux, Fabienne

    2008-01-01

    Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differences ...

  18. Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide

    NARCIS (Netherlands)

    Jourdin, Ludovic; Lu, Yang; Flexer, Victoria; Keller, Jurg; Freguia, Stefano

    2016-01-01

    Electron-transfer pathways occurring in biocathodes are still unknown. We demonstrate here that high rates of acetate production by microbial electrosynthesis are mainly driven by an electron flux from the electrode to carbon dioxide, occurring via biologically induced hydrogen, with (99±1)% elec

  19. Skilled labour supply in the South African construction industry: The nexus between certification, quality of work output and shortages

    Directory of Open Access Journals (Sweden)

    Abimbola O. Windapo

    2016-02-01

    Full Text Available Orientation: Construction human resource management.Research purpose: The study examines the skilled labour supply in the South African construction industry and determines whether there is a relationship between trade certification, quality of work output and scarce labour skills.Motivation for the study: The rationale for the investigation is based on the view of scholars that a skilled labour shortage is preponderant in the South African construction industry even though there is a high level of youth unemployment in South Africa and that the perceived skills shortage contributes to a decrease in productivity and product quality.Research design, approach and method: The paper reviews relevant literature and employs a mixed method research approach in collecting empirical data from contracting companies within the Western Cape Province of South Africa that are listed on the Construction Industry Development Board contractor register.Main findings: The study demonstrated that there is no shortage of manpower, but there is a shortage of qualified or skilled tradesmen, such as electricians, plumbers, welders, fitters and carpenters, whose professions are more technical and require formal training and certification. The level of supply of skilled tradesmen is attributed to the lack of high-quality basic education, the state of the economy, compulsory certification of tradesmen and an ageing workforce. It was also found that there is a significant relationship between skilled labour shortages and the requirement that labour be certified and that work output is unsatisfactory when there is no certification requirement.Practical/managerial implications: Based on these findings, the study concludes that skilled labour shortages and poor work output quality continue to be experienced in the South African construction industry when workers are unable to obtain formal certification for informal work experience acquired through years of practice on

  20. Doing Gener in Brazilian Biology: Obstacles and Prejudices on Knowledge Production within the FAFESP Genome Proyect

    Directory of Open Access Journals (Sweden)

    Conceição da Costa, Maria

    2008-10-01

    Full Text Available This article aims to analyse the participation of women scientist in knowledge production within the Genome Project sponsored by FAPESP (The State of São Paulo Research Foundation. Between 1997 and 2003, FAPESP invested approximately 33 million euros to develop the FAPESP Genome Project (PGF, generating major changes in Molecular Biology in Brazil: institutions devoted to fostering science and technology have been investing large sum of money; bioinformatics became one of the fields with great demand for professionals, and the results of the Xylella Genome Project, first organism sequenced in Brazil, were published in several international scientific journals including Nature, and Brazil became the first country to develop genome projects outside USA, Europe and Japan. As a consequence of this process, women scientists were loosing space as “spokespersons of this new science”, playing secondary roles at the project.Este artículo tiene como objetivo analizar la participación de las mujeres en la producción de conocimiento del proyecto genoma financiado por la FAPESP (Fundación de Apoyo a la Investigación del Estado de São Paulo. Entre 1997 y 2003, FAPESP invirtió aproximadamente 33 millones de euros en el desarrollo del Proyecto Genoma Fapesp (PGF, provocando importantes cambios en la Biología Molecular brasileña: las instituciones de fomento a la investigación comenzaron a promoverla con grandes financiaciones; la bioinformática se tornó uno de los campos con mayor demanda de profesionales y, por fin, los resultados del Proyecto Genoma de la Xylella Fastidiosa, primer organismo vivo secuenciado en Brasil, se publicaron en revistas científicas internacionales, como Nature. Con ello se convierte en el primer país fuera de la tríada EUA-Europa-Japón en desarrollar proyectos genoma. Como consecuencia del proceso, las mujeres están perdiendo espacio como “portavoces de esta nueva ciencia”, ocupando papeles secundarios en el

  1. Transcriptional changes in the nuc-2A mutant strain of Neurospora crassa cultivated under conditions of phosphate shortage.

    Science.gov (United States)

    Gras, Diana E; Silveira, Henrique C S; Peres, Nalu T A; Sanches, Pablo R; Martinez-Rossi, Nilce M; Rossi, Antonio

    2009-01-01

    The molecular mechanism that controls the response to phosphate shortage in Neurospora crassa involves four regulatory genes -nuc-2, preg, pgov, and nuc-1. Phosphate shortage is sensed by the nuc-2 gene, the product of which inhibits the functioning of the PREG-PGOV complex. This allows the translocation of the transcriptional factor NUC-1 into the nucleus, which activates the transcription of phosphate-repressible phosphatases. The nuc-2A mutant strain of N. crassa carries a loss-of-function mutation in the nuc-2 gene, which encodes an ankyrin-like repeat protein. In this study, we identified transcripts that are downregulated in the nuc-2A mutant strain. Functional grouping of these expressed sequence tags allowed the identification of genes that play essential roles in different cellular processes such as transport, transcriptional regulation, signal transduction, metabolism, protein synthesis, protein fate, and development. These results reveal novel aspects of the phosphorus-sensing network in N. crassa.

  2. Predictive Analyses of Biological Effects of Natural Products: From Plant Extracts to Biomolecular Laboratory and Computer Modeling

    Directory of Open Access Journals (Sweden)

    Roberto Gambari

    2011-01-01

    Full Text Available Year by year, the characterization of the biological activity of natural products is becoming more competitive and complex, with the involvement in this research area of experts belonging to different scientific fields, including chemistry, biochemistry, molecular biology, immunology and bioinformatics. These fields are becoming of great interest for several high-impact scientific journals, including eCAM. The available literature in general, and a survey of reviews and original articles recently published, establishes that natural products, including extracts from medicinal plants and essential oils, retain interesting therapeutic activities, including antitumor, antiviral, anti-inflammatory, pro-apoptotic and differentiating properties. In this commentary, we focus attention on interest in networks based on complementary activation and comparative evaluation of different experimental strategies applied to the discovery and characterization of bioactive natural products. A representative flow chart is shown in the paper.

  3. Changes in biological productivity along the northwest African margin over the past 20,000 years

    Science.gov (United States)

    Bradtmiller, Louisa I.; McGee, David; Awalt, Mitchell; Evers, Joseph; Yerxa, Haley; Kinsley, Christopher W.; deMenocal, Peter B.

    2016-01-01

    The intertropical convergence zone and the African monsoon system are highly sensitive to climate forcing at orbital and millennial timescales. Both systems influence the strength and direction of the trade winds along northwest Africa and thus directly impact coastal upwelling. Sediment cores from the northwest African margin record upwelling-related changes in biological productivity connected to changes in regional and hemispheric climate. We present records of 230Th-normalized biogenic opal and Corg fluxes using a meridional transect of four cores from 19°N-31°N along the northwest African margin to examine changes in paleoproductivity since the last glacial maximum. We find large changes in biogenic fluxes synchronous with changes in eolian fluxes calculated using end-member modeling, suggesting that paleoproductivity and dust fluxes were strongly coupled, likely linked by changes in wind strength. Opal and Corg fluxes increase at all sites during Heinrich Stadial 1 and the Younger Dryas, consistent with an overall intensification of the trade winds, and changes in the meridional flux gradient indicate a southward wind shift at these times. Biogenic fluxes were lowest, and the meridional flux gradients were weakest during the African Humid Period when the monsoon was invigorated due to precessional changes, with greater rainfall and weaker trade winds over northwest Africa. These results expand the spatial coverage of previous paleoproxy studies showing similar changes, and they provide support for modeling studies showing changes in wind strength and direction consistent with increased upwelling during abrupt coolings and decreased upwelling during the African Humid Period.

  4. Photolytic transformation products and biological stability of the hydrological tracer Uranine.

    Science.gov (United States)

    Gutowski, Lukasz; Olsson, Oliver; Lange, Jens; Kümmerer, Klaus

    2015-11-15

    Among many fluorescence tracers, Uranine (sodium fluorescein, UR) has most widely been used in hydrological research. Extensive use of UR for tracing experiments or commercial use might cause a potential risk of long-term environmental contamination. As any organic substance released to the environment, also UR is subjected to chemical and physical reactions that can be chemical, biological and photolysis processes. These processes transform the parent compound (PC) and have not been extensively investigated for UR. This study applies two OECDs (301 D and 301 F) tests and a screening water sediment test (WST) to investigate the biodegradability of the PC. Photolysis in water was explored by Xe lamp irradiation. Subsequently, the biodegradability of the photolysis mixtures was examined. The primary elimination of UR was monitored and structures of its transformation products (TPs) were elucidated by HPLC-FLD-MS/MS. UR was found not readily biodegradable, although small degradation rates could be observed in the OECD 301 D and WST. HPLC-FLD analysis showed high primary elimination of the tracer during photolysis. However, the low degree of mineralization found indicates that the UR was not fully degraded, instead transformed to TPs. A total of 5 photo-TPs were identified. According to MS/MS data, chemical structures could be proposed for all identified photo-TPs. Likewise the parent compound it was demonstrated that photo-TPs were largely recalcitrant to microbial degradation. Although we did not find indications for toxicity, target-oriented studies on the environmental impact of these photo-TPs are warranted. Results obtained in this study show that deeper investigations are necessary to fully understand fate and risk connected to the use of UR. PMID:26179782

  5. Addressing the Donor Liver Shortage with EX VIVO Machine Perfusion

    Directory of Open Access Journals (Sweden)

    Maria-Louisa Izamis

    2012-01-01

    Full Text Available Despite a critical shortage of viable donor livers for transplantation, only a fraction of the available organs are used. Donor organ defects, which in the majority of cases are caused by extensive exposure to ischemia, cannot be reversed by static cold storage, the current gold standard of organ preservation. In this review, the role of machine perfusion (MP in the recovery of non-transplantable ischemic donor organs is discussed. Though still in the experimental phase, various models of MP have consistently demonstrated that ischemic donor organs can be recovered to a transplantable state through continuous perfusion. MP can also provide dynamic quantitative assessments of the extent of ischemia, in addition to predicting the likelihood of organ recovery. Continued endeavors to translate MP into clinical use and eventually incorporate it into routine donor organ care will have a significant impact on the quality and availability of transplantable donor organs.

  6. What controls biological production in coastal upwelling systems? Insights from a comparative modeling study

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2011-10-01

    Full Text Available The magnitude of net primary production (NPP in Eastern Boundary Upwelling Systems (EBUS is traditionally viewed as directly reflecting the wind-driven upwelling intensity. Yet, different EBUS show different sensitivities of NPP to upwelling-favorable winds (Carr and Kearns, 2003. Here, using a comparative modeling study of the California Current System (California CS and Canary Current System (Canary CS, we show how physical and environmental factors, such as light, temperature and cross-shore circulation modulate the response of NPP to upwelling strength. To this end, we made a series of eddy-resolving simulations of the two upwelling systems using the Regional Oceanic Modeling System (ROMS, coupled to a nitrogen-based Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD ecosystem model. Using identical ecological/biogeochemical parameters, our coupled model simulates a level of NPP in the California CS that is 50 % smaller than that in the Canary CS, in agreement with observationally based estimates. We find this much lower NPP in the California CS despite phytoplankton in this system having nearly 20 % higher nutrient concentrations available to fuel their growth. This conundrum can be explained by: (1 phytoplankton having a faster nutrient-replete growth in the Canary CS relative to the California CS; a consequence of more favorable light and temperature conditions in the Canary CS, and (2 the longer nearshore water residence times in the Canary CS, which permit a larger buildup of biomass in the upwelling zone, thereby enhancing NPP. The longer residence times in the Canary CS appear to be a result of the wider continental shelves and the lower mesoscale activity characterizing this upwelling system. This results in a weaker offshore export of nutrients and organic matter, thereby increasing local nutrient recycling and reducing the spatial decoupling between new and export production in the Canary CS. Our results suggest that climate change

  7. The knowledge status EFFEKT: Efficiency shortage. Basis for further research

    International Nuclear Information System (INIS)

    This report gives a survey of results from the ''Norges forskningsraad'' ( The Norwegian Research Council) program EFFEKT (1996-2000) and some other relevant projects. The report focuses on areas relevant to the efficiency shortage problems and is made as a part of the foundation for the start of the competence project ''Competence Building - Capacity Shortage''. The challenge is to find adequate solutions that satisfies the demands from market participants, systems operators and market actors. This mainly contains problems of both operational and long term strategic character which primarily touches the following main areas: Peak load coverage, operating security and reserves, network capacity and environmental aspects. The results are reported under these headings from several relevant projects. The major challenges in the future will be: 1) Development of mechanisms that bring the right incentives for improved use of the flexibility in the end consumption. 2) Adaptation of the market and organisational conditions in order to improve the consumer flexibility. 3) Further development of the incentive structures for the network owners and systems operators so that the existing transferring capacity is used as well as possible and the macro economic development of the network is encouraged. 4) Profit estimations and financing of larger co-originated connections particularly across the country borders, in deregulated power markets. Particularly the first two challenges are probably a condition for the deregulated power markets as the Nordic one, shall be able to survive in the long run. In an appendix main data studied in the projects as a basis for this report, are referred

  8. The nursing shortage: part way down the slippery slope.

    Science.gov (United States)

    Cowin, Leanne; Jacobsson, Denise

    2003-07-01

    The shortage of nurses has reached a crisis point for health care services. A number of issues including the effects of economic rationalism, generational differences, working conditions and nurse education are revisited in a discussion that aims to refuel the debate on workplace reform for nurses. Economic rationalism has altered the healthcare service landscape. Attempts to balance service delivery with workforce resources have led to possibly unforeseen changes. Highly skilled nurses are required in acute services, however resource allocation may prevent this. The nursing workforce is aging although the current nursing workforce consists of three generations: baby boomers, generation X and generation Y. There are significant ideological and work organisational differences between these generations leading to possible conflict between nurses. The pool of available nurses to fill employment vacancies is finite. Attracting overseas nurses to fill nurse vacancies will leave vacancies elsewhere and is not a long-term solution to the nursing shortage. Moreover, if the workplace has not addressed the reasons why nurses have left the health care workplace then there is a real danger of losing those recently attracted back into the workplace. Working conditions are a critical element within the retention puzzle. Job satisfaction dimensions such as autonomy and professional relationships are key components for improving working conditions. The final issue explored is the question of whether the tertiary education system is the most appropriate place in which to develop and educate nurses. It is suggested that workplace reforms should be the target of retention strategies rather than changes in the educational process of nursing. PMID:14582950

  9. Despite Federal Legislation, Shortages Of Drugs Used In Acute Care Settings Remain Persistent And Prolonged.

    Science.gov (United States)

    Chen, Serene I; Fox, Erin R; Hall, M Kennedy; Ross, Joseph S; Bucholz, Emily M; Krumholz, Harlan M; Venkatesh, Arjun K

    2016-05-01

    Early evidence suggests that provisions of the Food and Drug Administration Safety and Innovation Act of 2012 are associated with reductions in the total number of new national drug shortages. However, drugs frequently used in acute unscheduled care such as the care delivered in emergency departments may be increasingly affected by shortages. Our estimates, based on reported national drug shortages from 2001 to 2014 collected by the University of Utah's Drug Information Service, show that although the number of new annual shortages has decreased since the act's passage, half of all drug shortages in the study period involved acute care drugs. Shortages affecting acute care drugs became increasingly frequent and prolonged compared with non-acute care drugs (median duration of 242 versus 173 days, respectively). These results suggest that the drug supply for many acutely and critically ill patients in the United States remains vulnerable despite federal efforts. PMID:27140985

  10. Medical isotope shortage 2009-2010 and future options NRU, SLOWPOKE and MAPLE

    Energy Technology Data Exchange (ETDEWEB)

    Hilborn, J. [Deep River, Ontario (Canada)

    2013-07-01

    The 15 month shutdown of NRU and the unexpected termination of the AECL/Nordion MAPLE project caused a world-wide shortage of medical isotopes. After the recent repair of NRU, AECL is confident that it could continue operating safely and reliably as a multi-purpose reactor until 2021 or longer. There is convincing evidence that the restoration of the MAPLE reactors is technically feasible, but it is highly improbable that a 10 MW MAPLE production reactor can ever be cost-effective. However, conversion of the present 10 MW reactors to 3 MW, without major changes to the structural hardware, warrants serious consideration. Finally, even the 20 kW SLOWPOKE reactor could produce useful quantities of Mo-99. If the present fuel rods were replaced with a small tank containing a solution of low-enriched uranyl sulphate in water, three of these liquid core reactors could supply all of Canada. (author)

  11. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity

    DEFF Research Database (Denmark)

    Birkhofer, K.; Bezemer, TM; Bloem, J;

    2008-01-01

     Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological...... promoting negative environmental impacts of agriculture by reducing internal biological cycles and pest control. On the contrary, organic farming fosters microbial and faunal decomposers and this propagates into the aboveground system via generalist predators thereby increasing conservation biological...... of aboveground herbivore pests (aphids) in these systems. Long-term organic farming and the application of farmyard manure promoted soil quality, microbial biomass and fostered natural enemies and ecosystem engineers, suggesting enhanced nutrient cycling and pest control. Mineral fertilizers and herbicide...

  12. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.

    Science.gov (United States)

    Whitaker, William B; Sandoval, Nicholas R; Bennett, Robert K; Fast, Alan G; Papoutsakis, Eleftherios T

    2015-06-01

    Synthetic methylotrophy is the development of non-native methylotrophs that can utilize methane and methanol as sole carbon and energy sources or as co-substrates with carbohydrates to produce metabolites as biofuels and chemicals. The availability of methane (from natural gas) and its oxidation product, methanol, has been increasing, while prices have been decreasing, thus rendering them as attractive fermentation substrates. As they are more reduced than most carbohydrates, methane and methanol, as co-substrates, can enhance the yields of biologically produced metabolites. Here we discuss synthetic biology and metabolic engineering strategies based on the native biology of aerobic methylotrophs for developing synthetic strains grown on methanol, with Escherichia coli as the prototype. PMID:25796071

  13. Reduce, reuse and recycle: A green solution to Canada's medical isotope shortage

    International Nuclear Information System (INIS)

    Due to the unforeseen maintenance issues at the National Research Universal (NRU) reactor at Chalk River and coincidental shutdowns of other international reactors, a global shortage of medical isotopes (in particular technetium-99m, Tc-99m) occurred in 2009. The operation of these research reactors is expensive, their age creates concerns about their continued maintenance and the process results in a large amount of long-lived nuclear waste, whose storage cost has been subsidized by governments. While the NRU has since revived its operations, it is scheduled to cease isotope production in 2016. The Canadian government created the Non-reactor based medical Isotope Supply Program (NISP) to promote research into alternative methods for producing medical isotopes. The NRC was a member of a collaboration looking into the use of electron linear accelerators (LINAC) to produce molybdenum-99 (Mo-99), the parent isotope of Tc-99m. This paper outlines NRC’s involvement in every step of this process, from the production, chemical processing, recycling and preliminary animal studies to demonstrate the equivalence of LINAC Tc-99m with the existing supply. This process stems from reusing an old idea, reduces the nuclear waste to virtually zero and recycles material to create a green solution to Canada's medical isotope shortage. - Highlights: • Commercial power electron accelerators are realistic option to produce 99Mo. • Could cover national demand of Canada. Demonstrate LINAC-99Mo as environmental and economical solution to isotope crisis. • Demonstrate LINAC-99mTc to be clinically equivalent to current fission-99mTc supply

  14. High-throughput assay for optimising microbial biological control agent production and delivery

    Science.gov (United States)

    Lack of technologies to produce and deliver effective biological control agents (BCAs) is a major barrier to their commercialization. A myriad of variables associated with BCA cultivation, formulation, drying, storage, and reconstitution processes complicates agent quality maximization. An efficie...

  15. An ethical framework for responding to drug shortages in pediatric oncology.

    Science.gov (United States)

    Beck, Jill C; Smith, Laurie D; Gordon, Bruce G; Garrett, Jeremy R

    2015-06-01

    The frequency of drug shortages has increased considerably over the last decade. Important ethical issues arise whenever the supply of an effective drug is insufficient to meet demand. Using the ethical principles of beneficence, non-maleficence, and justice, institutions can guide prioritization of drug distribution before a shortage occurs to avoid unfair and unethical distribution of resources. This analysis will give a historical context for drug shortages, identify, and explore the central ethical concerns raised by drug shortages, and propose an ethical framework for addressing them in the context of pediatric oncology.

  16. Exploratory research on bioactive natural products with a focus on biological phenomena

    OpenAIRE

    Uemura, Daisuke

    2010-01-01

    The discovery of new basic compounds holds the key for advancing material sciences. We have focused on the identification and characterization of natural key compounds that control biologically and physiologically intriguing phenomena. The discovery of new bioactive molecules, facilitated by a deeper understanding of nature, should advance our knowledge of biological processes and lead to new strategies to treat disease. The structure and function of natural compounds are sometimes unexpected...

  17. Distributions of inorganic nitrogen and biological production in the equatorial Pacific: a basin-scale model sensitivity study of nitrification

    Science.gov (United States)

    Wang, Xiujun; Murtugudde, Raghu

    2015-12-01

    Recent evidence indicates that there is stronger nitrification in the euphotic zone than previously thought. We employ a physical-biogeochemical model to study the implications of nitrification for basin-scale distributions of nitrate, ammonium, and biological production in the equatorial Pacific. The model can faithfully reproduce observed features in nitrate distribution, with or without photoinhibition of nitrification in the euphotic zone. In addition, new production, net community production and export production are not very sensitive to the parameterization of nitrification in this model. However, simulated ammonium distribution, nitrate uptake and ammonium uptake are sensitive to this parameterization. High nitrification results in low ammonium concentration, low ammonium uptake rate, and high nitrate uptake rate in the euphotic zone. This study suggests that nitrification may be responsible for up to 40% of nitrate uptake in the equatorial Pacific. This modeling study also demonstrates large differences (in terms of the magnitude and spatial distribution) between nitrate uptake, new production and export production, reflecting decoupling of upward nutrient supply, biological uptake and downward export.

  18. Parameterizing ice-edge biological productivity in a changing Arctic: Growth factors associated with specific ice provenances

    Science.gov (United States)

    Sambrotto, R.

    2015-12-01

    Sea ice plays a significant role in the ecology of polar seas and a significant portion of the biological production in the Arctic occurs at ice edges. These environments are inherently variable in space and time and subject to climate variation as the summer ice extent changes. Recent field results from the northern Bering Sea suggest that the parameterization of ice edge production in coupled physical-biological models that ignore processes specific to the ice-melt environment will be insufficient to describe the variability and intensity of Arctic production. In addition to the stabilizing the surface layer, ice may contribute phytoplankton growth factors such as trace metals that have been derived from the regions of ice formation as well as aeolian deposition. Results of an analysis of sea ice formation, flow and melt suggests regions that are likely to receive trace metals from ice and has been validated with regions of known ice edge productivity in the Bering Sea. A similar analysis for the Chukchi Sea compared the likely ice-edge productivity regions between pre-2000 ice conditions and those in the more recent period of reduced summer ice cover. Changes are predicted in both the timing and distribution of these regions in proportion to the variations in the dominant ice flow patterns. Ways in which the non-local processes important to elevated ice edge productivity can be incorporated into couple arctic models will be discussed.

  19. Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production

    Energy Technology Data Exchange (ETDEWEB)

    Papoutsakis, Elefterios [Univ. of Delaware, Newark, DE (United States)

    2015-04-30

    This is the final project report for project "Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production" for the funding period of 9/1/12 to 2/28/2015 (three years with a 6-month no-cost extension) OVERVIEW AND PROJECT GOALS The bottleneck of achieving higher rates and titers of toxic metabolites (such as solvents and carboxylic acids that can used as biofuels or biofuel precursors) can be overcome by engineering the stress response system. Thus, understanding and modeling the response of cells to toxic metabolites is a problem of great fundamental and practical significance. In this project, our goal is to dissect at the molecular systems level and build models (conceptual and quantitative) for the stress response of C. acetobutylicum (Cac) to its two toxic metabolites: butanol (BuOH) and butyrate (BA). Transcriptional (RNAseq and microarray based), proteomic and fluxomic data and their analysis are key requirements for this goal. Transcriptional data from mid-exponential cultures of Cac under 4 different levels of BuOH and BA stress was obtained using both microarrays (Papoutsakis group) and deep sequencing (RNAseq; Meyers and Papoutsakis groups). These two sets of data do not only serve to validate each other, but are also used for identification of stress-induced changes in transcript levels, small regulatory RNAs, & in transcriptional start sites. Quantitative proteomic data (Lee group), collected using the iTRAQ technology, are essential for understanding of protein levels and turnover under stress and the various protein-protein interactions that orchestrate the stress response. Metabolic flux changes (Antoniewicz group) of core pathways, which provide important information on the re-allocation of energy and carbon resources under metabolite stress, were examined using 13C-labelled chemicals. Omics data are integrated at different levels and scales. At the metabolic-pathway level, omics data are integrated into a 2nd generation genome

  20. Photolytic transformation products and biological stability of the hydrological tracer Uranine

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, Lukasz, E-mail: gutowski@leuphana.de; Olsson, Oliver, E-mail: oliver.olsson@leuphana.de; Lange, Jens, E-mail: jens.lange@hydrology.uni-freiburg.de; Kümmerer, Klaus, E-mail: Klaus.Kuemmerer@uni.leuphana.de

    2015-11-15

    Among many fluorescence tracers, Uranine (sodium fluorescein, UR) has most widely been used in hydrological research. Extensive use of UR for tracing experiments or commercial use might cause a potential risk of long-term environmental contamination. As any organic substance released to the environment, also UR is subjected to chemical and physical reactions that can be chemical, biological and photolysis processes. These processes transform the parent compound (PC) and have not been extensively investigated for UR. This study applies two OECDs (301 D and 301 F) tests and a screening water sediment test (WST) to investigate the biodegradability of the PC. Photolysis in water was explored by Xe lamp irradiation. Subsequently, the biodegradability of the photolysis mixtures was examined. The primary elimination of UR was monitored and structures of its transformation products (TPs) were elucidated by HPLC–FLD–MS/MS. UR was found not readily biodegradable, although small degradation rates could be observed in the OECD 301 D and WST. HPLC–FLD analysis showed high primary elimination of the tracer during photolysis. However, the low degree of mineralization found indicates that the UR was not fully degraded, instead transformed to TPs. A total of 5 photo-TPs were identified. According to MS/MS data, chemical structures could be proposed for all identified photo-TPs. Likewise the parent compound it was demonstrated that photo-TPs were largely recalcitrant to microbial degradation. Although we did not find indications for toxicity, target-oriented studies on the environmental impact of these photo-TPs are warranted. Results obtained in this study show that deeper investigations are necessary to fully understand fate and risk connected to the use of UR. - Highlights: • Uranine (UR) was not biodegraded in water and water-sediment system (WST). • Only small degradation rate occurred in OECD 301 D and WST. • Photolysis leads to incomplete mineralization of UR.

  1. [Comparative biological value of the proteins comprising the products for the tube and regular feeding of patients with mandibular fractures].

    Science.gov (United States)

    Kholodov, S V; Vitollo, A S; Kalamkarova, O M; Rud'ko, V F; Vysotskiĭ, V G

    1988-01-01

    A comparative clinical evaluation was made of the biological effectiveness of protein components in the composition of three types of diet for patients with fractures of the mandible who had received "Ensure" (USA), a product for complete tube feeding; an experimental sample developed at the Institute of Nutrition, Academy of Medical Sciences of the USSR; and a routine clinical diet. The biological effectiveness of the proteins was estimated by some anthropometric and biochemical parameters as well as on the basis of nitrogenous metabolism in the patients. It has been established that the protein content in the routine clinical diets does not meet the high requirements in amino acids of patients with fracture of the mandible. In this respect the products for tube and dietotherapy have proved to be effective and completely provide the need of such patients in essential amino acids that has been evidenced by the results of the investigations conducted. PMID:3146160

  2. UV effects on the primary productivity of picophytoplankton: biological weighting functions and exposure response curves of Synechococcus

    OpenAIRE

    Neale, P.J.; A. L. Pritchard; R. Ihnacik

    2014-01-01

    A model that predicts UV effects on marine primary productivity using a biological weighting function (BWF) coupled to the photosynthesis–irradiance response (BWF/P-E model) has been implemented for two strains of the picoplanktonic cyanobacteria Synechococcus, WH7803 and WH8102, which were grown at two irradiances (77 and 174 μmol m−2 s−1 photosynthetically available radiation (PAR)) and two temperatures (20 and 26 °C). The model was fit using photosynthesis measured in a ...

  3. High performance liquid chromatography-tandem mass spectrometry of pharmaceuticals and personal care products in environmental and biological matrices

    OpenAIRE

    Purcell, Martha

    2009-01-01

    Pharmaceuticals and personal care products (PPCPs) have emerged in recent years as a new class of chemical and biological pollutants in our environment. In the search for suitably sensitive and specific techniques for detection of these compounds at very low concentrations, liquid chromatography-tandem mass spectrometry (LCMS/ MS) has emerged as the new technique of choice. This work describes methods for screening and quantification of various pharmaceutical and illicit drug residues i...

  4. Mass-energy balance analysis for estimation of light energy conversion in an integrated system of biological H2 production

    OpenAIRE

    A.I. Gavrisheva; B.F. Belokopytov; V.I. Semina; E.S. Shastik; T.V. Laurinavichene; A.A. Tsygankov

    2015-01-01

    The present study investigated an integrated system of biological H2 production, which includes the accumulation of biomass of autotrophic microalgae, dark fermentation of biomass, and photofermentation of the dark fermentation effluent. Particular emphasis was placed on the estimation of the conversion efficiency of light into hydrogen energy at each stage of this system. For this purpose, the mass and energy balance regularities were applied. The efficiency of the energy transformation from...

  5. 77 FR 47397 - Request for Nominations of Specific Drug/Biologic Product(s) That Could Be Brought Before the...

    Science.gov (United States)

    2012-08-08

    ... pediatric oncology product development. DATES: Nominations must be received by September 4, 2012, to receive....gov , and please include the subject line ``Suggested Product for 2012 Pediatric Oncology Subcommittee...) That Could Be Brought Before the Food and Drug Administration's Pediatric Subcommittee of the...

  6. Vital signs: labour shortage holds drilling short of record

    Energy Technology Data Exchange (ETDEWEB)

    Lunan, D.

    2000-11-06

    At the beginning of the year 2000 the petroleum industry expected to drill 16,000 new wells during the the year. The Petroleum Services Association of Canada is now forecasting a final year-2000 total of less than 15,500 wells. The shortfall reflects continuing difficulties with labour shortages in the field, most especially in experienced drilling personnel. For 2001, the Petroleum Services Association of Canada is forecasting 16,699 completions Canada-wide. Nearly half of Alberta's total of 11,861 are expected to be in the gas-prone southeastern and east-central regions of the province. British Columbia is expected to be up to 899 completions, about 12 per cent over 2000. Although shortage of qualified labour was the principal reason for the reduced number of completions in 2000, unfavourable weather conditions during much of the summer drilling season, plus heated merger and acquisition activity throughout the industry also played a part. Rig utilization was 63 per cent , five per cent below expectations. On the brighter side, even these lower-than-expected figures are up dramatically from 1999 when just 272 rigs in a fleet of 591 were at work, for a dismal rate of only 46 per cent. Oil completions are double of what they were in 1999 (3,304 wells against 1,538) while gas wells are up 26 per cent (at 5,263 completion compared to 4,157 in 1999). Drilling success rate in 2000 was close to 85 per cent, up from 82.4 per cent last year. Non-frontier success rate was highest in Saskatchewan, with close to 93 per cent of wells drilled finding either oil or gas. The rate of success was 83 per cent in Alberta, 78 per cent in Manitoba, and 51 per cent in British Columbia. Average depth of all wells was 1,102 metres, marginally up from 1,084 metres in 1999. Largest well depth increases were experienced in British Columbia (up to 1,583 metres from 1,276 metres) as producers chased progressively deeper natural gas horizons. 2 tabs.

  7. The potential of plants as a system for the development and production of human biologics [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2016-05-01

    Full Text Available The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology.

  8. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles;

    2011-01-01

    Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2O...... the four denitrification steps, the last one (N2O reduction to N2) seems to be inhibited first when O2 is present. Overall, N2O production can account for 0.1–25% of the consumed N in different nitrification and denitrification systems, which can be well simulated by the proposed model. In conclusion, we...

  9. Towards a European definition for a drug shortage: a qualitative study

    Directory of Open Access Journals (Sweden)

    Elfi eDe Weerdt

    2015-10-01

    Full Text Available Background: Drug shortages are currently on the rise. In-depth investigation of the problem is necessary, however, a variety of definitions for ‘drug shortages’ are formulated in legislations, by different organisations, authorities and other initiatives. For international comparison, the underlying definition for drug shortages is important to allow appropriate interpretation of national databases and the results of scientific studies. The objective is to identify the different elements which should be considered in a uniform definition for drug shortages in the European Union and to detect the different conditions for reporting drug shortages.Methods: Definitions of drug shortages were searched in the scientific databases as well as in the grey literature. Similar topics were identified and organisations were contacted to formulate the reasoning underlying the definitions.Results: Over 20 different definitions for drug shortages were identified. A distinction is made between general definitions of drug shortages and definitions used for the reporting of drug shortages. Differences and similarities are observed in the elements within the definitions, e.g. when does a supply problem become a drug shortage, permanent and/or temporally shortages, the typology and time frame of a drug shortage. The moment a supply problem is considered as a shortage, can be defined at four levels: (i demand side, (ii supply side, (iii delivery of a drug and (iv availability of a drug. Permanent discontinuations of drugs are not always covered in definitions for drug shortages. Some definitions only consider those drugs used for the treatment of serious diseases or drugs for which no alternative is available. Different time frames were observed, varying between one day and 20 days.Conclusion: Obtaining a uniform definition for drug shortages is important as well as identifying which conditions are preferable to report drug shortages in order to facilitate

  10. Medicine shortages in Australia: causes, impact and management strategies in the community setting.

    Science.gov (United States)

    Tan, Yee Xi; Moles, Rebekah J; Chaar, Betty B

    2016-10-01

    Background Medicine shortages are an ongoing global problem. The Therapeutic Goods Administration (TGA) dedicated a website for monitoring of medicine shortages in Australia in May 2014, as part of the Medicine Shortage Information Initiative. This study aimed to explore the views of pharmacists regarding medicine shortages in the community setting and the impact of the TGA website in Australia. Setting Community pharmacies in New South Wales, Australia. Method Twenty semi-structured interviews were conducted with community pharmacists. Data collected were analysed thematically utilising the framework analysis method. Main outcome measure Qualitative analysis conducted using the framework approach. Results Findings clearly indicated that medicine shortages were experienced on a regular basis, but most participants were unaware of the TGA website. Medicine shortages reportedly impacted both pharmacists and consumers; and various workarounds were undertaken to manage the issue. The "price disclosure policy" was found to be a prominent contributing factor in emerging shortages. Suggestions were made for ways to improve the growing occurrence of shortages. Conclusion Overall, the study found that there was a lack of familiarity with the TGA website, despite experiencing regular shortages of medicines in practice. Also highlighted, was the importance of pharmacists prioritising patient care over business decisions. To reduce prescribing of out-of-stock medicines notifying doctors about shortages was also considered important, to allow for early action to be taken at higher levels of the supply chain. Findings of this study may help direct future policy-making around the world, as medicine shortages is a problem shared by healthcare providers in most countries around the world. PMID:27383246

  11. Is the biological productivity in the Bay of Bengal light limited?

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Narvekar, J.; Nuncio, M.; Kumar, A.; Ramaiah, N.; Sardessai, S.; Gauns, M.; Fernandes, V.; Paul, J.

    Recent measurements of chlorophyll, primary productivity (PP) and nutrients along the central Bay of Bengal (BOB) during summer, fall and spring intermonsoons showed that the northern bay becomes less productive compared to the south in summer...

  12. Enterprise Policies for Tackling the Digital Skills Shortage

    Directory of Open Access Journals (Sweden)

    Daniela BORISOV

    2013-06-01

    Full Text Available Nowadays as results of the turbulent crisis, economies are confronted with the effects of the financial crisis, consequently many European states members are faced with strategic challenges in decisions about personnel development. Some of industries have faced shortages in the digital skill attainment of the currently employed personnel, or short supply of IT-related personnel due to the inadequacy of new entrants on the labor market. These problems are encountered in several traditional industries affected too rapidly by the technological advance. Along to these aspects, there are other difficulties for employers and employees as well, such as structural changes in job offering in various sectors or disparity in the employees; age categories – because of high unemployment rates in youth for instance. These are complemented by fewer job opportunities for young individuals (eventually, graduates for the tertiary sector of formal education that fit according to their specializations or even new type of skills’ demand – much oriented on the digitalization. The paper intends to presents some empirical aspects raised from the statistical evidence useful to point out critical aspects in the domestic and eventually, European approach to entreprice policy, in developing proper curricula to empower the academic institutions to provide knowledge, to foster skills for current enrolled students. On short term already, the future workforce needs to be prepared for the digitalization of the professional activity, regardless the specific domain of work and, in this view; companies should be in the position to manage this potential crisis of the labour market.

  13. Resolving photon-shortage mystery in femtosecond magnetism

    CERN Document Server

    Si, M S

    2010-01-01

    For nearly a decade, it has been a mystery why the small average number of photons absorbed per atom from an ultrashort laser pulse is able to induce a strong magnetization within a few hundred femtoseconds. Here we resolve this mystery by directly computing the number of photons per atom layer by layer as the light wave propagates inside the sample. We find that for all the 24 experiments considered here, each atom has more than one photon. The so-called photon shortage does not exist. By plotting the relative demagnetization change versus the number of photons absorbed per atom, we show that depending on the experimental condition, 0.1 photon can induce about 4% to 72% spin moment change. Our perturbation theory reveals that the demagnetization depends linearly on the amplitude of laser field. In addition, we find that the transition frequency of a sample may also play a role in magnetization processes. As far as the intensity is not zero, the intensity of the laser field only affects the matching range of ...

  14. Resolving photon-shortage mystery in femtosecond magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Si, M S; Zhang, G P, E-mail: gpzhang@indstate.ed [Department of Physics, Indiana State University, Terre Haute, IN 47809 (United States)

    2010-02-24

    For nearly a decade, it has been a mystery why the small average number of photons absorbed per atom from an ultrashort laser pulse is able to induce a strong magnetization within a few hundred femtoseconds. Here we resolve this mystery by directly computing the number of photons per atom layer by layer as the light wave propagates inside the sample. We find that for all the 24 experiments considered here, each atom has more than one photon. The so-called photon shortage does not exist. By plotting the relative demagnetization change versus the number of photons absorbed per atom, we show that, depending on the experimental condition, 0.1 photon can induce about 4%-72% spin moment change. Our perturbation theory reveals that the demagnetization depends linearly on the amplitude of the laser field. In addition, we find that the transition frequency of a sample may also play a role in magnetization processes. As long as the intensity is not zero, the intensity of the laser field only affects the matching range of the transition frequencies, but not whether the demagnetization can happen or not.

  15. Human resources for health in southeast Asia: shortages, distributional challenges, and international trade in health services.

    Science.gov (United States)

    Kanchanachitra, Churnrurtai; Lindelow, Magnus; Johnston, Timothy; Hanvoravongchai, Piya; Lorenzo, Fely Marilyn; Huong, Nguyen Lan; Wilopo, Siswanto Agus; dela Rosa, Jennifer Frances

    2011-02-26

    In this paper, we address the issues of shortage and maldistribution of health personnel in southeast Asia in the context of the international trade in health services. Although there is no shortage of health workers in the region overall, when analysed separately, five low-income countries have some deficit. All countries in southeast Asia face problems of maldistribution of health workers, and rural areas are often understaffed. Despite a high capacity for medical and nursing training in both public and private facilities, there is weak coordination between production of health workers and capacity for employment. Regional experiences and policy responses to address these challenges can be used to inform future policy in the region and elsewhere. A distinctive feature of southeast Asia is its engagement in international trade in health services. Singapore and Malaysia import health workers to meet domestic demand and to provide services to international patients. Thailand attracts many foreign patients for health services. This situation has resulted in the so-called brain drain of highly specialised staff from public medical schools to the private hospitals. The Philippines and Indonesia are the main exporters of doctors and nurses in the region. Agreements about mutual recognition of professional qualifications for three groups of health workers under the Association of Southeast Asian Nations Framework Agreement on Services could result in increased movement within the region in the future. To ensure that vital human resources for health are available to meet the needs of the populations that they serve, migration management and retention strategies need to be integrated into ongoing efforts to strengthen health systems in southeast Asia. There is also a need for improved dialogue between the health and trade sectors on how to balance economic opportunities associated with trade in health services with domestic health needs and equity issues. PMID:21269674

  16. Human resources for health in southeast Asia: shortages, distributional challenges, and international trade in health services.

    Science.gov (United States)

    Kanchanachitra, Churnrurtai; Lindelow, Magnus; Johnston, Timothy; Hanvoravongchai, Piya; Lorenzo, Fely Marilyn; Huong, Nguyen Lan; Wilopo, Siswanto Agus; dela Rosa, Jennifer Frances

    2011-02-26

    In this paper, we address the issues of shortage and maldistribution of health personnel in southeast Asia in the context of the international trade in health services. Although there is no shortage of health workers in the region overall, when analysed separately, five low-income countries have some deficit. All countries in southeast Asia face problems of maldistribution of health workers, and rural areas are often understaffed. Despite a high capacity for medical and nursing training in both public and private facilities, there is weak coordination between production of health workers and capacity for employment. Regional experiences and policy responses to address these challenges can be used to inform future policy in the region and elsewhere. A distinctive feature of southeast Asia is its engagement in international trade in health services. Singapore and Malaysia import health workers to meet domestic demand and to provide services to international patients. Thailand attracts many foreign patients for health services. This situation has resulted in the so-called brain drain of highly specialised staff from public medical schools to the private hospitals. The Philippines and Indonesia are the main exporters of doctors and nurses in the region. Agreements about mutual recognition of professional qualifications for three groups of health workers under the Association of Southeast Asian Nations Framework Agreement on Services could result in increased movement within the region in the future. To ensure that vital human resources for health are available to meet the needs of the populations that they serve, migration management and retention strategies need to be integrated into ongoing efforts to strengthen health systems in southeast Asia. There is also a need for improved dialogue between the health and trade sectors on how to balance economic opportunities associated with trade in health services with domestic health needs and equity issues.

  17. PRESSURE OF WATER SHORTAGE ON AGRICULTURE IN ARID REGION OF CHINA

    Institute of Scientific and Technical Information of China (English)

    LI Xin

    2003-01-01

    The arid areas in China are mainly located in North China and Northwest China. The North China is themain region for food production. There is 31.19% of the total farmland and 26. 01% of the total population, but only6. 14% of the available water resources of China. Groundwater is over pumped (6. 53 × 109m3 every year) in the regionsof Beijing, Tianjin, and Hebei Province, so water supply could not meet the water demand there. The distribution of wa-ter in Northwest China is uneven, some inland rivers and lakes are dried up, and desertification has expanded since riverwater in the upper and middle reaches is diverted for irrigation. Up to 2050, population will be up to 1.6 × 109 in Chi-na, and industry will be developed fast, therefore 50% of the water supply will be used by industry and resident, andwater for agriculture will be decreased year by year. In the coming 50 years, water demand for agriculture will be in-creased by 5.6 × 109m3 in the Huanghe (Yellow) River valley, and by 1.7 × 109m3 in the Northwest China. It will beimpossible for the Huanghe River to meet the water demand, because it always dried up in the cold half year since 1984.To avoid water shortage of agriculture in the arid regions, it is necessary to divert water from the Changjiang (Yangtze)River in the south of China, and to use water efficiently. It is the best way to use drip irrigation in agriculture, recyclewater in industry and resident use, and control water pollution. Otherwise water shortage in the arid regions will restrictthe development of agriculture in China.

  18. A Microeconomic Model of the Personnel Shortage in Public Rehabilitation Agencies

    Science.gov (United States)

    Schultz, Jared C.; Millington, Michael J.

    2007-01-01

    There is a well-documented, growing shortage of rehabilitation counseling professionals in the public sector. Using microeconomics principles, a theoretical model is offered to account for the personnel shortage and propose potential solutions to recruit and retain rehabilitation counselors in the public sector. Suggestions for rehabilitation…

  19. 42 CFR 5.3 - Procedures for designation of health professional(s) shortage areas.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Procedures for designation of health professional(s) shortage areas. 5.3 Section 5.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS DESIGNATION OF HEALTH PROFESSIONAL(S) SHORTAGE AREAS § 5.3 Procedures for designation of health professional(s)...

  20. When Shortage Coexists with Surplus of Teachers: The Case of Arab Teachers in Israel

    Science.gov (United States)

    Agbaria, Ayman K.; Pinson, Halleli

    2013-01-01

    This article explores the nexus between pre-service teacher education polices and the supply and demand of minority teachers. It problematizes the recent reports on teacher shortages in Israel, which tend to focus on the shortage of Jewish teachers while dealing with the surplus of Arab teachers only tangentially. Specifically, this article…

  1. 18 CFR 294.101 - Shortages of electric energy and capacity.

    Science.gov (United States)

    2010-04-01

    ... its firm power wholesale customers. (b) Accommodation of shortages. (1) Each public utility now... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Shortages of electric energy and capacity. 294.101 Section 294.101 Conservation of Power and Water Resources FEDERAL...

  2. 76 FR 36019 - Amendments to Sterility Test Requirements for Biological Products

    Science.gov (United States)

    2011-06-21

    ... or other material (e.g., bulk material or active pharmaceutical ingredient (API), in-process material... November 20, 1973 (38 FR 32048), we reorganized and republished the biologics regulations, which included... requirements. On March 11, 1976 (41 FR 10427) and March 2, 1979 (44 FR 11754), we updated Sec. 610.12...

  3. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity‐Oriented Synthesis

    DEFF Research Database (Denmark)

    Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2011-01-01

    Macrocyclic compounds are attractive targets when searching for molecules with biological activity. The interest in this compound class is increasing, which has led to a variety of methods for tackling the difficult macrocyclization step in their synthesis. This microreview highlights some recent...

  4. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt; Nielsen, Peter Borch; Boe-Hansen, Rasmus;

    2016-01-01

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential enzy...

  5. 76 FR 13646 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-03-14

    ... personal privacy (5 U.S.C. 552b(c)(6)). The committee will discuss the report of the intramural research... the Agency on FDA's regulatory issues. Date and Time: The meeting will be held on April 6, 2011... Person: Donald W. Jehn or Denise Royster, Center for Biologics Evaluation and Research (HFM-71), Food...

  6. Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms

    NARCIS (Netherlands)

    Medema, Marnix H.; Breitling, Rainer; Bovenberg, Roel; Takano, Eriko

    2011-01-01

    One of the most promising applications of synthetic biology is the biosynthesis of new drugs from secondary metabolites. Here, we survey a wide range of strategies that control the activity of biosynthetic modules in the cell in space and time, and illustrate how these strategies can be used to desi

  7. Enhanced biological phosphorus removal deterioration without significant change in microbial population under trace element shortage

    OpenAIRE

    ナランフー, ミャンダス

    2013-01-01

    報告番号: ; 学位授与年月日: 2013-09-27 ; 学位の種別: 修士 ; 学位の種類: 修士(環境学) ; 学位記番号: 修創域第4930号 ; 研究科・専攻: 新領域創成科学研究科環境学研究系社会文化環境学専攻

  8. Correlation of Arsenic Levels in Smokeless Tobacco Products and Biological Samples of Oral Cancer Patients and Control Consumers.

    Science.gov (United States)

    Arain, Sadaf S; Kazi, Tasneem G; Afridi, Hassan I; Talpur, Farah N; Kazi, Atif G; Brahman, Kapil D; Naeemullah; Panhwar, Abdul H; Kamboh, Muhammad A

    2015-12-01

    It has been extensively reported that chewing of smokeless tobacco (SLT) can lead to cancers of oral cavity. In present study, the relationship between arsenic (As) exposure via chewing/inhaling different SLT products in oral cancer patients have or/not consumed SLT products was studied. The As in different types of SLT products (gutkha, mainpuri, and snuff) and biological (scalp hair and blood) samples of different types of oral cancer patients and controls were analyzed. Both controls and oral cancer patients have same age group (ranged 30-60 years), socio-economic status, localities, and dietary habits. The concentrations of As in SLT products and biological samples were measured by electrothermal atomic absorption spectrophotometer after microwave-assisted acid digestion. The validity and accuracy of the methodology were checked by certified reference materials. The resulted data of present study indicates that the concentration of As was significantly higher in scalp hair and blood samples of oral cancer patients than those of controls (p0.01). The intake of As via consuming different SLT may have synergistic effects, in addition to other risk factors associated with oral cancer.

  9. Correlation of Arsenic Levels in Smokeless Tobacco Products and Biological Samples of Oral Cancer Patients and Control Consumers.

    Science.gov (United States)

    Arain, Sadaf S; Kazi, Tasneem G; Afridi, Hassan I; Talpur, Farah N; Kazi, Atif G; Brahman, Kapil D; Naeemullah; Panhwar, Abdul H; Kamboh, Muhammad A

    2015-12-01

    It has been extensively reported that chewing of smokeless tobacco (SLT) can lead to cancers of oral cavity. In present study, the relationship between arsenic (As) exposure via chewing/inhaling different SLT products in oral cancer patients have or/not consumed SLT products was studied. The As in different types of SLT products (gutkha, mainpuri, and snuff) and biological (scalp hair and blood) samples of different types of oral cancer patients and controls were analyzed. Both controls and oral cancer patients have same age group (ranged 30-60 years), socio-economic status, localities, and dietary habits. The concentrations of As in SLT products and biological samples were measured by electrothermal atomic absorption spectrophotometer after microwave-assisted acid digestion. The validity and accuracy of the methodology were checked by certified reference materials. The resulted data of present study indicates that the concentration of As was significantly higher in scalp hair and blood samples of oral cancer patients than those of controls (p0.01). The intake of As via consuming different SLT may have synergistic effects, in addition to other risk factors associated with oral cancer. PMID:25975948

  10. The Potential Role of Nuclear Techniques in Support of the Production of Biological Control Agents of Insect Pests

    International Nuclear Information System (INIS)

    While nuclear techniques could play a vital role in enabling cost-effective mass production of beneficial insects for use in augmentative biological control, surprisingly little use has been made of these techniques or ionizing radiation produced by other means (e.g., x-rays or electron beams from linear accelerators) for mass rearing beneficial insects. This technology has been available for quite some time, having been used to reproductively sterilize screwworm flies as early as 1951 (Bushland and Hopkins). Similarly, gamma radiation has been accepted internationally for human food preservation and disinfestation for many years (Anon., 1995). Quite a number of gamma radiation sources exist at or near USDA ARS and APHIS facilities throughout the U.S., as well as in many universities. Still, relatively little use has been made of this approach to assist in mass rearing of beneficial insects for use in augmentative biological control. As pointed out by Benbrook (1996), pest management is at a crossroads, and there still is a great need for new, biointensive pest management strategies. Nuclear techniques should play an increasing role in the future, as the overall thrust of biological control moves more and more toward augmentative releases (Knipling, 1992). It is the intent of this presentation to review some of the existing and potential uses that can be made of nuclear techniques and other sources of ionizing radiation in support of the biological control of insect pests. (author)

  11. Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion

    OpenAIRE

    Celio I Chagas; Filipe B. Kraemer; Oscar J. Santanatoglia; Marta Paz; Juan Moretton

    2014-01-01

    Grain production has displaced livestock to marginal lands in most of the productive regions in Argentina since 1990. In the fertile Rolling Pampa region, extensive cattle production has been concentrated in lowlands subjected to flooding, salt excess, erosion and sedimentation processes but also in some feedlots recently located in sloping arable lands prone to soil erosion. We studied the concentration of microbiological contamination indicators in runoff water and sediments accumulated in ...

  12. Time-Course Global Expression Profiles of Chlamydomonas reinhardtii during Photo-Biological H2 Production

    OpenAIRE

    Anh Vu Nguyen; Joerg Toepel; Steven Burgess; Andreas Uhmeyer; Olga Blifernez; Anja Doebbe; Ben Hankamer; Peter Nixon; Lutz Wobbe; Olaf Kruse

    2011-01-01

    We used a microarray study in order to compare the time course expression profiles of two Chlamydomonas reinhardtii strains, namely the high H₂ producing mutant stm6glc4 and its parental WT strain during H₂ production induced by sulfur starvation. Major cellular reorganizations in photosynthetic apparatus, sulfur and carbon metabolism upon H₂ production were confirmed as common to both strains. More importantly, our results pointed out factors which lead to the higher H₂ production in the mut...

  13. MODIS vegetation products as proxies of photosynthetic potential: a look across meteorological and biologic driven ecosystem productivity

    Science.gov (United States)

    Restrepo-Coupe, N.; Huete, A.; Davies, K.; Cleverly, J.; Beringer, J.; Eamus, D.; van Gorsel, E.; Hutley, L. B.; Meyer, W. S.

    2015-12-01

    A direct relationship between gross ecosystem productivity (GEP) measured by the eddy covariance (EC) method and Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices (VIs) has been observed in many temperate and tropical ecosystems. However, in Australian evergreen forests, and particularly sclerophyll woodlands, MODIS VIs do not capture seasonality of GEP. In this study, we re-evaluate the connection between satellite and flux tower data at four contrasting Australian ecosystems, through comparisons of ecosystem photosynthetic activity (GEP) and potential (e.g. ecosystem light use efficiency and quantum yield) with MODIS vegetation satellite products, including VIs, gross primary productivity (GPPMOD), leaf area index (LAIMOD), and fraction of photosynthetic active radiation (fPARMOD). We found that satellite derived greenness products constitute a measurement of ecosystem structure (e.g. leaf area index - quantity of leaves) and function (e.g. leaf level photosynthetic assimilation capacity - quality of leaves), rather than productivity. Our results show that in primarily meteorological-driven (e.g. photosynthetic active radiation, air temperature and/or precipitation) and relatively aseasonal vegetation photosynthetic potential ecosystems (e.g. evergreen wet sclerophyll forests), there were no statistically significant relationships between GEP and satellite derived measures of greenness. In contrast, for phenology-driven ecosystems (e.g. tropical savannas), changes in the vegetation status drove GEP, and tower-based measurements of photosynthetic activity were best represented by VIs. We observed the highest correlations between MODIS products and GEP in locations where key meteorological variables and vegetation phenology were synchronous (e.g. semi-arid Acacia woodlands) and low correlation at locations where they were asynchronous (e.g. Mediterranean ecosystems). Eddy covariance data offer much more than validation and/or calibration of

  14. Biological sand filters: low-cost bioremediation technique for production of clean drinking water.

    Science.gov (United States)

    Lea, Michael

    2014-05-01

    Approximately 1.1 billion people in rural and peri-urban communities of developing countries do not have access to safe drinking water. The mortality from diarrheal-related diseases amounts to ∼2.2 million people each year from the consumption of unsafe water. Most of them are children under 5 years of age--250 deaths an hour from microbiologically contaminated water. There is conclusive evidence that one low-cost household bioremediation intervention, use of biological sand filters, is capable of dramatically improving the microbiological quality of drinking water. This unit will describe this relatively new and proven bioremediation technology's ability to empower at-risk populations to use naturally occurring biological principles and readily available materials as a sustainable way to achieve the health benefits of safe drinking water.

  15. Synthesis and biological evaluation of fatty hydrazides of by-products of oil processing industry

    Directory of Open Access Journals (Sweden)

    Toliwal S

    2009-01-01

    Full Text Available Some new 2-alkyl-5-mercapto-1,3,4-Oxadiazoles and 3-alkyl-5-mercapto-1,2,3-4H triazoles were synthesized from hydrazides of acid oil and oil recovered from spent bleaching earth. These newly synthesized compounds were characterized on the basis of elemental analysis and evaluated for biological properties. Certain derivatives exhibited fairly high antibacterial and antifungal activities when compared with streptomycin and immidil used as standard antibacterial and antifungal agents respectively.

  16. Mass-energy balance analysis for estimation of light energy conversion in an integrated system of biological H2 production

    Directory of Open Access Journals (Sweden)

    A.I. Gavrisheva

    2015-12-01

    Full Text Available The present study investigated an integrated system of biological H2 production, which includes the accumulation of biomass of autotrophic microalgae, dark fermentation of biomass, and photofermentation of the dark fermentation effluent. Particular emphasis was placed on the estimation of the conversion efficiency of light into hydrogen energy at each stage of this system. For this purpose, the mass and energy balance regularities were applied. The efficiency of the energy transformation from light into the microalgal biomass did not exceed 5%. The efficiency of the energy transformation from biomass to biological H2 during the dark fermentation stage stood at about 0.3%. The photofermentation stage using the model fermentation effluent could improve this estimation to 11%, resulting in an overall efficiency 0.55%. Evidently, this scheme is counterproductive for light energy bioconversion due to numerous intermediate steps even if the best published data would be taken into account.

  17. Data-driven, data-intensive computing for modelling and analysis of biological networks: application to bioethanol production

    Science.gov (United States)

    Park, Byung-Hoon; Samatova, Nagiza F.; Karpinets, Tatiana; Jallouk, Andrew; Molony, Scott; Horton, Scott; Arcangeli, Steven

    2007-07-01

    Modelling biological networks is inherently data-driven and data-intensive. The combinatorial nature of this type of modelling, however, requires new methods capable of dealing with the enormous size and irregularity of the search. Searching via 'backtracking' is one possible solution that avoids exhaustive searches by constraining the search space to the subspace of feasible solutions. Despite its wide use in many combinatorial optimization problems, there are currently few parallel implementations of backtracking capable of effectively dealing with the memory-intensive nature of the process and the extremely unbalanced loads present. In this paper, a parallel, scalable, and memory-efficient backtracking algorithm within the context of maximal clique enumeration is presented, and its applicability to large-scale biological networks aimed at studying the mechanisms for efficient bioethanol production is discussed.

  18. Production of High Viscosity Chitosan from Biologically Purified Chitin Isolated by Microbial Fermentation and Deproteinization

    Directory of Open Access Journals (Sweden)

    Ekkalak Ploydee

    2014-01-01

    Full Text Available The objective of this study was to produce high viscosity chitosan from shrimp chitin prepared by using a two-step biological treatment process: decalcification and deproteinization. Glucose was fermented with Lactobacillus pentosus L7 to lactic acid. At a pH of 3.9±0.1, the calcium carbonate of the shells was solubilized in 48 hours. The amounts of residual calcium in the form of ash (1.4±0.5% and crude protein (23.2±2.5% were further eliminated by the activity of proteolytic Bacillus thuringiensis SA. After decalcification and deproteinization of the shrimp shells, residual calcium and crude protein of shrimp chitin flakes were 1.7±0.4% and 3.8±1.3%, respectively. Chitin was deacetylated with 50% NaOH at 121°C for 5 hours. After deacetylation, the chitosan had residual calcium, crude protein content, and degree of acetylation of 1.6±0.6%, 0.4±0.3%, and 83.2±1.5%, respectively. The viscosity of chitosan prepared from chitin extracted by this two-step biological process was 1,007±14.7 mPa·s, whereas chitosan prepared from chemically processed chitin had a viscosity of 323±15.6   mPa·s, indicating that biologically purified chitin gave chitosan with a high quality.

  19. The importance of extremophile cyanobacteria in the production of biologically active compounds

    Directory of Open Access Journals (Sweden)

    Drobac-Čik Aleksandra V.

    2007-01-01

    Full Text Available Due to their ability to endure extreme conditions, terrestrial cyanobacteria belong to a group of organisms known as "extremophiles". Research so far has shown that these organisms posses a great capacity for producing biologically active compounds (BAC. The antibacterial and antifungal activities of methanol extracts of 21 cyanobacterial strains belonging to Anabaena and Nostoc genera, previously isolated from different soil types and water resources in Serbia, were evaluated. In general, larger number of cyanobacterial strains showed antifungal activity. In contrast to Nostoc, Anabaena strains showed greater diversity of antibacterial activity (mean value of percentages of sensitive targeted bacterial strains 3% and 25.9% respectively. Larger number of targeted fungi was sensitive to cultural liquid extract (CL, while crude cell extract (CE affected more bacterial strains. According to this investigation, the higher biological activity of terrestrial strains as representatives of extremophiles may present them as significant BAC producers. This kind of investigation creates very general view of cyanobacterial possibility to produce biologically active compounds but it points out the necessity of exploring terrestrial cyanobacterial extremophiles as potentially excellent sources of these substances and reveals the most prospective strains for further investigations.

  20. The application of residual oats flour in bread production in order to improve its quality and biological value of protein

    Directory of Open Access Journals (Sweden)

    Halina Gambuś

    2011-09-01

    Full Text Available   Background. High nutritional value of residual oat flour, which is a by-product in the production β-D-glucan concentration BETAVEN, was the reason to make a trial to apply it in the production of wheat and wheat-rye bread. The aim of the study was to establish a formulation for wheat and wheat-rye bread, in which part of wheat flour would be replaced by residual oat flour (at the level 20% of wheat flour, and to check the influence of this additive on sensory and nutritional properties of the products, with special consideration to content and biological value of the proteins. Material and methods. The material consisted of wheat flour, rye flour and residual oat flour, as well as loaves, baked with these flours. The quality of the obtained loaves was analysed taking into account: organoleptic assessment, loaf mass and volume, moisture content crumb and texture profile of the crumb. In the studied raw materials and bread, the following components were determined according to AOAC methods: protein content, fat, fiber and ash. In addition, composition of amino acids was assessed. Basing on the amino acid composition, Chemical Score (CS and Exogenic Amino Acid Index (EAAI were calculated, applying WHO/FAO protein standard (1991. Results. Bread with the share of residual oats flour received high consumer acceptance (37 points, comparable to control bread (38 points despite of lower volume. The applied amounts of oats flour did not influence moisture content and texture profile during storage. Wheat and wheat-rye loaves with the share of residual oats flour were characterised by a significantly higher level of dietary fiber, fat and protein, in comparison to control bread. It was found that biological activity of protein in wheat-rye bread was significantly higher (CS = 53.5, EAAI = 91.5 in comparison to wheat bread (CS = 47.9, EAAI = 89.9. The share of oats flour caused an increase in biological value of all bread types – wheat-oats (CS = 52

  1. Biological productivity and potential resources of the exclusive economic zone (EEZ) of India

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    degree square was calculated from the production data. The potential fishery resources including demersal fishery of the entire EEZ of India worked out to be 3.45 million tones yr sup(-1). Since the annual fishery production is around 2.7 million tones...

  2. Energy balance of biofuel production from biological conversion of crude glycerol.

    Science.gov (United States)

    Zhang, Xiaolei; Yan, Song; Tyagi, Rajeshwar D; Surampalli, Rao Y; Valéro, Jose R

    2016-04-01

    Crude glycerol, a by-product of biodiesel production, has gained significant attention as a carbon source for biofuel production. This study evaluated the energy balance of biodiesel, hydrogen, biogas, and ethanol production from 3.48 million L of crude glycerol (80% w/v). The conversion efficiency (energy output divided by energy invested) was 1.16, 0.22, 0.27, and 0.40 for the production of biodiesel, hydrogen, biogas, and ethanol respectively. It was found that the use of crude glycerol for biodiesel production was an energy gain process, with a positive energy balance and conversion efficiency of greater than 1. The energy balance revealed a net energy gain of 5226 GJ per 1 million kg biodiesel produced. Production of hydrogen, biogas and ethanol from crude glycerol were energy loss processes. Therefore, the conversion of crude glycerol to lipids and subsequently to biodiesel is suggested to be a better option compared to hydrogen, biogas, or ethanol production with respect to energy balance.

  3. Form for reporting serious adverse events and product problems with human drug and biological products and devices; availability--FDA. Notice.

    Science.gov (United States)

    1993-06-01

    The Food and Drug Administration (FDA) is announcing the availability of a new form for reporting adverse events and product problems with human drug products, biologic products, medical devices (including in-vitro diagnostics), special nutritional products (dietary supplements, medical foods, infant formulas), and other products regulated by FDA. There are two versions of the form. One version of the form (FDA Form 3500) is available for use by health professionals for voluntary reporting; the other version of the form (FDA Form 3500A) is to be used by user facilities, distributors, and manufacturers for reporting that is required by statute or FDA regulations. The new form will simplify and consolidate the reporting of adverse events and product problems and will enhance agency-wide consistency in the collection of postmarketing data. This notice also responds to written comments the agency received on proposed versions of this form. Copies of both versions of the new form appear at the end of this document. PMID:10171452

  4. Biologic Activities of Honeybee Products Obtained From Different Phytogeographical Regions of Turkey

    Directory of Open Access Journals (Sweden)

    Hamide Doğan

    2014-06-01

    Full Text Available Honeybee products are rich in phenolic compounds, which effect as natural antioxidants. These compounds may be attached as indicators in studies into the floral and geographical origin of the natural bee products. In this study, we aimed to determine average total antioxidant capacity, average total oxidant capacity and average oxidative stress index of natural bee products obtained from different regions of Turkey. Collected honeybee samples were kept at +4o C until extracted. Natural bee products were extracted with specific methods and antioxidant capacities were defined with in vitro analyses and data were compared. As a result, the highest average total antioxidant capacities were observed in propolis and pollen samples. Total antioxidant capacities of honeybee products collected from various regions demonstrated differences (P<0.05 because of different phytogeographical characteristics of regions of Turkey.

  5. Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Michael J.; Leak, David J.; Spanu, Pietro D.; Murphy, Richard J. [Division of Biology, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ (United Kingdom); Porter Alliance, Imperial College London, London SW7 2AZ (United Kingdom)

    2010-08-15

    A current barrier to the large-scale production of lignocellulosic biofuels is the cost associated with the energy and chemical inputs required for feedstock pretreatment and hydrolysis. The use of controlled partial biological degradation to replace elements of the current pretreatment technologies would offer tangible energy and cost benefits to the whole biofuel process. It has been known for some time from studies of wood decay that, in the early stages of growth in wood, brown rot fungi utilise a mechanism that causes rapid and extensive depolymerisation of the carbohydrate polymers of the wood cell wall. The brown rot hyphae act as delivery vectors to the plant cell wall for what is thought to be a combination of a localised acid pretreatment and a hydroxyl radical based depolymerisation of the cell wall carbohydrate polymers. It is this quality that we have exploited in the present work to enhance the saccharification potential of softwood forest residues for biofuel production. Here we show that after restricted exposure of pine sapwood to brown rot fungi, glucose yields following enzymatic saccharification are significantly increased. Our results demonstrate the potential of using brown rot fungi as a biological pretreatment for biofuel production. (author)

  6. The Biological Diversity and Production of Volatile Organic Compounds by Stem-Inhabiting Endophytic Fungi of Ecuador

    Directory of Open Access Journals (Sweden)

    Susan M. Rundell

    2015-12-01

    Full Text Available Fungal endophytes colonize every major lineage of land plants without causing apparent harm to their hosts. Despite their production of interesting and potentially novel compounds, endophytes—particularly those inhabiting stem tissues—are still a vastly underexplored component of microbial diversity. In this study, we explored the diversity of over 1500 fungal endophyte isolates collected from three Ecuadorian ecosystems: lowland tropical forest, cloud forest, and coastal dry forest. We sought to determine whether Ecuador’s fungal endophytes are hyperdiverse, and whether that biological diversity is reflected in the endophytes’ chemical diversity. To assess this chemical diversity, we analyzed a subset of isolates for their production of volatile organic compounds (VOCs, a representative class of natural products. This study yielded a total of 1526 fungal ITS sequences comprising some 315 operational taxonomic units (OTUs, resulting in a non-asymptotic OTU accumulation curve and characterized by a Fisher’s α of 120 and a Shannon Diversity score of 7.56. These figures suggest that the Ecuadorian endophytes are hyperdiverse. Furthermore, the 113 isolates screened for VOCs produced more than 140 unique compounds. These results present a mere snapshot of the remarkable biological and chemical diversity of stem-inhabiting endophytic fungi from a single neotropical country.

  7. Heat treatment of curdlan enhances the enzymatic production of biologically active β-(1,3)-glucan oligosaccharides.

    Science.gov (United States)

    Kumagai, Yuya; Okuyama, Masayuki; Kimura, Atsuo

    2016-08-01

    Biologically active β-(1,3)-glucan oligosaccharides were prepared from curdlan using GH64 enzyme (KfGH64). KfGH64 showed low activity toward native curdlan; thereby pretreatment conditions of curdlan were evaluated. KfGH64 showed the highest activity toward curdlan with heat treatment. The most efficient pretreatment (90°C for 0.5h) converted approximately 60% of curdlan into soluble saccharides under the optimized enzyme reaction conditions (pH 5.5, 37°C, 100rpm mixing speed, 24h, and 10μg of KfGH64/1g of curdlan). The resulting products were predominantly laminaripentaose and a small amount of β-(1,3)-glucans with an average degree of polymerization (DP) of 13 and 130. The products did not contain small oligosaccharides (DPhydrolysis of heat-treated curdlan by KfGH64 is a suitable method for the production of biologically active β-(1,3)-glucan oligosaccharides. PMID:27112889

  8. Inhibitory effects of butyrate on biological hydrogen production with mixed anaerobic cultures.

    Science.gov (United States)

    Zheng, Xian-Jun; Yu, Han-Qing

    2005-01-01

    In this study batch experiments were conducted to investigate the inhibitory effects of butyrate addition on hydrogen production from glucose by using anaerobic mixed cultures. Experimental results showed that addition of butyrate at 4.18 and 6.27 g/l only slightly inhibited hydrogen production, and addition of butyrate at 8.36-12.54 g/l imposed a moderate inhibitory effect on hydrogen production. At addition of 25.08 g/l, butyrate had a strong inhibitory influence on substrate degradation and hydrogen production. The distribution of the volatile fatty acids produced from the acidogeneisis of glucose was significantly influenced by the addition of butyrate. The inhibition of butyrate addition on hydrogen production was described well by a non-competitive and non-linear inhibition model, with the maximum hydrogen production rate of 59.3 ml/g-SS/h, critical added butyrate concentration of 25.08 g/l, and inhibition degree of 0.323, respectively. The C(I,50) values (the butyrate concentration at which bioactivity is reduced by 50%) for hydrogen production rate and yield were estimated as 19.39 and 20.78 g/l of added butyrate, respectively.

  9. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting

    International Nuclear Information System (INIS)

    Composting is a technique that is used to convert organic waste into agriculturally useful products. Composting is an aerobic, solid-state biological process, which typically can be divided into two phases, a high-rate composting phase and a curing phase. High-rate composting plays an important role during the composting process, owing to the high microbial activity occurring during this phase. It requires an accurate plant design to prevent the formation of anaerobic conditions and odors. The formation of anaerobic conditions mainly depends on the rate of O2 consumption needed to degrade the substrate, i.e., the biological stability of the substrate. In this study, we investigated the relationship between the biological activity, measured by the dynamic respiration index (DRI) and the odor molecules production, measured by an electronic nose (EN) during two food-waste high-rate composting processes. Although the O2 concentration in the biomass free air space (FAS) was kept optimal (O2 > 140 ml l-1, v/v) during composting, strong anaerobic conditions developed. This was indicated by the high levels of sulfur compounds, methane, and hydrogen in the outlet air stream. Both the high level of O2 consumption, needed to degrade the high-degradable water-soluble organic matter and the low water O2 solubility, caused by high temperature reached in this stage (up to 60 deg. C), led to the anaerobic conditions observed in the biofilm-particle level. The application of the partial least square (PLS) analysis demonstrated a good regression between the DRI and the odor molecules produced that was detected by the EN (R2 = 0.991; R2CV = 0.990), signifying the usefulness of the DRI as a parameter to estimate the potential production of odor molecules of the biomass

  10. THE USE OF BIOLOGICAL PRODUCTS IN ABDOMINAL SURGERY AND LIVER TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    N. I. Gabrielyan

    2013-01-01

    Full Text Available This article provides an overview of new approaches to the prevention of infectious complications of bacterial nature after the high-technology operations in the abdominal surgery, first of all, after liver transplantation. At- tention is drawn to the first positive results of randomized studies on the use of biological preparations - probi- otics, prebiotics and synbiotics in patients after liver transplantation. The authors prove the prospects of further development of this subject based on successful model experiments on animals and various operational interven- tions in abdominal surgery. 

  11. Laser-assisted production of tricalcium phosphate nanoparticles from biological and synthetic hydroxyapatite in aqueous medium

    Science.gov (United States)

    Boutinguiza, M.; Pou, J.; Lusquiños, F.; Comesaña, R.; Riveiro, A.

    2011-04-01

    Pulsed laser ablation technique has attracted great attention as a method for preparing nanoparticles. In this work, calcined fish bones and synthetic hydroxyapatite, have been used as target to be ablated in de-ionized water with a pulsed CO 2 laser to produce calcium phosphate nanoparticles. The obtained nanoparticles were amorphous and spherical in shape with a mean diameter of about 25 nm. The microanalyses revealed that nanoparticles obtained from the synthetic HA undergo transformation to tricalcium phosphate. While nanoparticles obtained from the biological hydroxyapatite mostly preserve the composition of precursor material.

  12. Biological determinants of plant and crop productivity of flax (Linum usitatissimum L.)

    OpenAIRE

    Tadeusz Zając; Andrzej Oleksy; Agnieszka Klimek-Kopyra; Bogdan Kulig

    2012-01-01

    In Poland the cultivation of the fibrous form of flax (Linum usitatissimum L.) is dying out, but the acreage of its oilseed form, linseed, which provides seed (Semen lini) used in therapy and being a source of -linolenic acid, is expanding. Nowadays, linseed is grown in 64 countries of the world, but yield levels in these countries vary greatly. Under European conditions, seed yield of linseed shows high variation, which is evidence of little knowledge of the biology of this plant and the lac...

  13. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Science.gov (United States)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  14. Physical forcing of biological productivity in the northern Arabian Sea during the northeast monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Ramaiah, N.; Gauns, M.; Sarma, V.V.S.S.; Muraleedharan, P.M.; Raghukumar, S.; DileepKumar, M.; Madhupratap, M.

    to the inference that even a 1 degree C decrease in SST could lead to significantly higher primary productivity. Satellite data on sea surface temperature (advanced very high-resolution radiometer, AVHRR) and TOPEX/POSEIDON altimeter data suggest...

  15. Biological production of organic solvents from cellulosic wastes. Six-month progress report, June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Forro, J.R.; Nolan, E.J.

    1977-01-01

    Progress is reported in the following studies: production of cellulose by culturing Thermoactinomyces YX and derived mutants; the development of mutation techniques; cellulose mutant screening techniques; quantification of cellulose mutants; and alternate enhancement techniques. (JGB)

  16. Time-course global expression profiles of Chlamydomonas reinhardtii during photo-biological H₂ production.

    Directory of Open Access Journals (Sweden)

    Anh Vu Nguyen

    Full Text Available We used a microarray study in order to compare the time course expression profiles of two Chlamydomonas reinhardtii strains, namely the high H₂ producing mutant stm6glc4 and its parental WT strain during H₂ production induced by sulfur starvation. Major cellular reorganizations in photosynthetic apparatus, sulfur and carbon metabolism upon H₂ production were confirmed as common to both strains. More importantly, our results pointed out factors which lead to the higher H₂ production in the mutant including a higher starch accumulation in the aerobic phase and a lower competition between the H₂ase pathway and alternative electron sinks within the H₂ production phase. Key candidate genes of interest with differential expression pattern include LHCSR3, essential for efficient energy quenching (qE. The reduced LHCSR3 protein expression in mutant stm6glc4 could be closely related to the high-light sensitive phenotype. H₂ measurements carried out with the LHCSR3 knock-out mutant npq4 however clearly demonstrated that a complete loss of this protein has almost no impact on H₂ yields under moderate light conditions. The nuclear gene disrupted in the high H₂ producing mutant stm6glc4 encodes for the mitochondrial transcription termination factor (mTERF MOC1, whose expression strongly increases during -S-induced H₂ production in WT strains. Studies under phototrophic high-light conditions demonstrated that the presence of functional MOC1 is a prerequisite for proper LHCSR3 expression. Furthermore knock-down of MOC1 in a WT strain was shown to improve the total H₂ yield significantly suggesting that this strategy could be applied to further enhance H₂ production in other strains already displaying a high H₂ production capacity. By combining our array data with previously published metabolomics data we can now explain some of the phenotypic characteristics which lead to an elevated H₂ production in stm6glc4.

  17. Thermochemical pre- and biological co-treatments to improve hydrolysis and methane production from poultry wastes

    OpenAIRE

    Costa, J.C.; Barbosa, S. G.; Alves, M. M.; Sousa, D.Z.

    2011-01-01

    Poultry industry wastes, namely feathers and poultry litter, are an interesting source of substrate for biogas production. The aim of this work was to assess the biomethane potential of raw poultry wastes, as well as the possibility of enhancing this potential by favouring the hydrolysis of cellulolytic and proteinaceous material in the wastes by using bioaugmentation and thermochemical pre-treatments. Biomethane production from poultry litter and chicken feathers was assessed in batch ass...

  18. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    OpenAIRE

    Z. Lachkar; Gruber, N.

    2012-01-01

    Eastern Boundary Upwelling Systems (EBUS) are highly productive ocean regions. Yet, substantial differences in net primary production (NPP) exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The NPP drivers are identified with the aid of an artifici...

  19. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    OpenAIRE

    Z. Lachkar; Gruber, N.

    2011-01-01

    Eastern Boundary Upwelling Systems (EBUS) are highly productive ocean regions. Yet, substantial differences in net primary production (NPP) exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The identification of NPP drivers is done with the aid of an artificial neur...

  20. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    OpenAIRE

    Laura Montesinos; Mireia Bundó; Esther Izquierdo; Sonia Campo; Esther Badosa; Michel Rossignol; Emilio Montesinos; Blanca San Segundo; María Coca

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice ...

  1. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  2. The nature, extent and effect of skills shortages on skills migration in South Africa

    Directory of Open Access Journals (Sweden)

    Fatima Rasool

    2011-02-01

    Full Text Available Orientation: South Africa is currently experiencing a serious shortage of skilled workers. It has a negative effect on South Africa’s economic prospects and on global participation in South Africa (SA. This skills shortage severely affects socioeconomic growth and development in SA. Research purpose: This study focuses on the causes and effects of the skills shortages in South Africa.Motivation for the study: The researchers undertook this study to highlight the role that skilled foreign workers can play in supplementing the shortage of skilled workers in South Africa. The shortage is partly because of the failure of the national education and training system to supply the economy with much-needed skills.Research design, approach and method: The researchers undertook a literature study to identify the nature, extent and effect of skills shortages in South Africa. They consulted a wide range of primary and secondary resources in order to acquire an in-depth understanding of the problem. The article explains the research approach and method comprehensively. It also outlines the research method the researchers used.Main findings: This study shows that several factors cause serious skills shortages in SA.Practical/managerial implications: The researchers mention only two significant implications. Firstly, this article provides a logical description of the nature, extent and effect of skills shortages on the economy. Secondly, it indicates clearly the implications of skills shortages for immigration policy.Contribution/value-add: This study confirms the findings of similar studies the Centre for Development and Enterprise (CDE conducted. Opening the doors to highly skilled immigrants can broaden the skills pool.

  3. The impact of the United Nations Convention on Biological Diversity on natural products research.

    Science.gov (United States)

    Cragg, Gordon M; Katz, Flora; Newman, David J; Rosenthal, Joshua

    2012-12-01

    The discovery and development of novel, biologically active agents from natural sources, whether they be drugs, agrochemicals or other bioactive entities, involve a high level of interdisciplinary as well as international collaboration. Such collaboration, particularly at the international level, requires the careful negotiation of collaborative agreements protecting the rights of all parties, with special attention being paid to the rights of host (source) country governments, communities and scientific organizations. While many biodiversity-rich source countries currently might not have the necessary resources for in-country drug discovery and advanced development, they provide valuable opportunities for collaboration in this endeavor with research organizations from more high-income nations. This chapter discusses the experiences of the US National Cancer Institute and the US government-sponsored International Cooperative Biodiversity Groups program in the establishment of international agreements in the context of the Convention of Biological Diversity's objectives of promoting fair and equitable collaboration with multiple parties in many countries, and includes some specific lessons of value in developing such collaborations.

  4. Production of biologically active scFv and VHH antibody fragments in Bifidobacterium longum.

    Science.gov (United States)

    Shkoporov, A N; Khokhlova, E V; Savochkin, K A; Kafarskaia, L I; Efimov, B A

    2015-06-01

    Bifidobacteria constitute a significant part of healthy intestinal microbiota in adults and infants and present a promising platform for construction of genetically modified probiotic agents for treatment of gastrointestinal disorders. In this study, three strains of Bifidobacterium longum were constructed that express and secrete biologically active single-chain antibodies against human TNF-α and Clostridium difficile exotoxin A. Anti-TNF-α scFv antibody D2E7 was produced at the level of 25 μg L(-1) in broth culture and was mostly retained in the cytoplasm, while VHH-type antibodies A20.1 and A26.8 against C. difficile exotoxin A were produced at the levels of 0.3-1 mg L(-1) and secreted very efficiently. The biological activity of both antibody types was demonstrated in the mammalian cell-based assays. Expression of A20.1 and A26.8 was also observed in vivo after intragastric administration of transformed B. longum strains to (C57/BL6 × DBA/2)F1 mice. The obtained B. longum strains may serve as prototypes for construction of novel probiotic medications against inflammatory bowel disease and C. difficile-associated disease. PMID:25994292

  5. Reproductive biology and nectar production of the Mexican endemic Psittacanthus auriculatus (Loranthaceae), a hummingbird-pollinated mistletoe.

    Science.gov (United States)

    Pérez-Crespo, M J; Ornelas, J F; Martén-Rodríguez, S; González-Rodríguez, A; Lara, C

    2016-01-01

    Many mistletoe species produce 'bird'-pollinated flowers; however, the reproductive biology of the majority of these species has not been studied. Psittacanthus auriculatus is a Mexican endemic mistletoe, most common in open, dry mesquite grassland. Knowledge of the reproductive biology of P. auriculatus is essential for understanding species formation and diversification of Psittacanthus mistletoes, but it is currently poorly understood. Thus, we studied floral biology and phenology, nectar production and breeding system and pollination of this species. The hermaphroditic red-pink flowers open from the middle to the tip and petals are curly, but remain partially fused forming a floral tube of ca. 20-mm long. Flowers are partially protandrous, produce large amounts of nectar, last 2 days, and stigma receptivity is highest during the second day. We recorded hummingbirds (Cynanthus latirostris, Hylocharis leucotis, Amazilia beryllina, A. violiceps, Calothorax lucifer, Archilochus colubris) and less commonly butterflies (Agraulis vanillae, Anteos clorinde, Papilio multicaudatus, Phocides urania, Phoebis sennae) as floral visitors. P. auriculatus flowers are self-compatible. However, this mistletoe is an obligate animal-pollinated species, as the sensitive stigma avoids self-pollination. Under natural conditions, reproductive success was higher than in manually selfed or cross-pollinated flowers, likely due to the traplining foraging behaviour of hummingbirds. We suggest that the apparent efficient foraging behaviour of hummingbirds maintains gene flow among P. auriculatus, promoting outcrossing. PMID:26154599

  6. Sputtering effect of low-energy ions on biological target: The analysis of sputtering product of urea and capsaicin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lili [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering of Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China); Xu, Xue [Rice Research Institute, Anhui Academy of Agricultural Sciences, Nongke South Road 40, Hefei 230031 (China); Wu, Yuejin, E-mail: yjwu@ipp.ac.cn [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering of Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China)

    2013-08-01

    Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles. Recent years, ion implantation was successfully applied to biological research based on the fragments sputtering and form open paths in cell structure caused by ion sputtering. In this study, we focused on urea and chilli pepper pericarp samples implanted with N{sup +} and Ar{sup +} ions. To investigate the sputtering effect, we designed a collecting unit containing a disk sample and a glass pipe. The urea content and capsaicin content recovered from glass pipes were adopted to represent the sputtering product. The result of urea showed that the sputtering effect is positively correlated with the ion energy and dose, also affected by the ion type. The result of capsaicin was different from that of urea at 20 keV and possibly due to biological complex composition and structure. Therefore the sputtering yield depended on both the parameters of incident ions and the state of target materials. The sputtering yield of urea was also simulated by computational method achieved through the TRIM program. The trajectories of primary and recoiled atoms were calculated on the basis of the binary collision approximation using Monte Carlo method. The experimental results were much higher than the calculated results. The possible explanation is that in the physical model the target were assumed as a disordered lattice and independent atoms, which is much less complicated than that of the biological models.

  7. Reproductive biology and nectar production of the Mexican endemic Psittacanthus auriculatus (Loranthaceae), a hummingbird-pollinated mistletoe.

    Science.gov (United States)

    Pérez-Crespo, M J; Ornelas, J F; Martén-Rodríguez, S; González-Rodríguez, A; Lara, C

    2016-01-01

    Many mistletoe species produce 'bird'-pollinated flowers; however, the reproductive biology of the majority of these species has not been studied. Psittacanthus auriculatus is a Mexican endemic mistletoe, most common in open, dry mesquite grassland. Knowledge of the reproductive biology of P. auriculatus is essential for understanding species formation and diversification of Psittacanthus mistletoes, but it is currently poorly understood. Thus, we studied floral biology and phenology, nectar production and breeding system and pollination of this species. The hermaphroditic red-pink flowers open from the middle to the tip and petals are curly, but remain partially fused forming a floral tube of ca. 20-mm long. Flowers are partially protandrous, produce large amounts of nectar, last 2 days, and stigma receptivity is highest during the second day. We recorded hummingbirds (Cynanthus latirostris, Hylocharis leucotis, Amazilia beryllina, A. violiceps, Calothorax lucifer, Archilochus colubris) and less commonly butterflies (Agraulis vanillae, Anteos clorinde, Papilio multicaudatus, Phocides urania, Phoebis sennae) as floral visitors. P. auriculatus flowers are self-compatible. However, this mistletoe is an obligate animal-pollinated species, as the sensitive stigma avoids self-pollination. Under natural conditions, reproductive success was higher than in manually selfed or cross-pollinated flowers, likely due to the traplining foraging behaviour of hummingbirds. We suggest that the apparent efficient foraging behaviour of hummingbirds maintains gene flow among P. auriculatus, promoting outcrossing.

  8. Biological hydrogen production: Simultaneous saccharification and fermentation with nitrogen and phosphorus removal from wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Steve; Dixon, Melissa [U.S. Army Edgewood Chemical Biological Center, 5183 Blackhawk Road Building E3160, Aberdeen Proving Ground, MD 21010-5424 (United States)

    2010-09-15

    A simple anaerobic biodegradation process using wastewater treatment plant (WWTP) effluent, shredded paper, and a purge of nitrogen gas was used to produce hydrogen and simultaneously capture nitrogen and phosphorus. Two reactor configurations, a sequencing batch reactor (SBR) and a classic batch reactor (CBR) were tested as simultaneous saccharification and fermentation reactors (enzymatic hydrolysis and fermentation in one tank). The CBR demonstrated greater stability of hydrogen production and simplicity of operation, while the SBR provided better nitrogen and phosphorus removal efficiencies. Nuclear magnetic resonance analyses showed acetic acid to be the main product from both reactors. Optimal CBR conditions were found to be pH 5, 4 g/L loading, 0.45 ml/g Accellerase 1500, and 38 C. Experiments with an argon purge in place of nitrogen and with ammonium chloride spiking suggested that hydrogenase and nitrogenase enzymes contributed similarly to hydrogen production in the cultures. Analysis of a single fermentation showed that hydrogen production occurred relatively early in the course of TOC removal, and that follow-on treatments might extract more energy from the products. (author)

  9. RESEARCHES REGARDING THE EFFECT OF SOME BIOLOGICALLY ACTIVE PRODUCTS UPON THE GERMINATION CAPACITIES OF SMOOTH BROME SEEDS

    Directory of Open Access Journals (Sweden)

    I. PET

    2013-12-01

    Full Text Available The carrying out of uniform forage crops represents an important technological loop for all agricultural species. The uniformity of these crops is caused especially by seed germination capacity, respectively by plant emergence capacity, depending upon the climatic and technological conditions. With regards to the researches carried out in this direction, we present here the influence exerted by some biologically-active products, used through extra-root application during plant vegetation period, upon seeds submitted to germination. The observations performed on smooth brome seeds have led to the conclusion that the per cent of germinated seeds ranges from 82%, in the untreated control variant, to 87.67% in the variant treated with the product Stimupro.

  10. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production.

    Science.gov (United States)

    Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen

    2016-05-15

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential enzymes in nitrification, we investigated the effect of copper dosing on nitrification in different biological rapid sand filters treating groundwater. A lab-scale column assay with filter material from a water works demonstrated that addition of a trace metal mixture, including copper, increased ammonium removal compared to a control without addition. Subsequently, another water works was investigated in full-scale, where copper influent concentrations were below 0.05 μg Cu L(-1) and nitrification was incomplete. Copper dosing of less than 5 μg Cu L(-1) to a full-scale filter stimulated ammonium removal within one day, and doubled the filter's removal from 0.22 to 0.46 g NH4-N m(-3) filter material h(-1) within 20 days. The location of ammonium and nitrite oxidation shifted upwards in the filter, with an almost 14-fold increase in ammonium removal rate in the filter's top 10 cm, within 57 days of dosing. To study the persistence of the stimulation, copper was dosed to another filter at the water works for 42 days. After dosing was stopped, nitrification remained complete for at least 238 days. Filter effluent concentrations of up to 1.3 μg Cu L(-1) confirmed that copper fully penetrated the filters, and determination of copper content on filter media revealed a buildup of copper during dosing. The amount of copper stored on filter material gradually decreased after dosing stopped; however at a slower rate than it accumulated. Continuous detection of copper in the filter effluent confirmed a release of copper to the bulk phase. Overall, copper dosing to poorly performing biological rapid sand filters increased ammonium removal rates significantly, achieving effluent

  11. Biological production of ethanol from coal. Task 4 report, Continuous reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle was particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.

  12. On the possibility of biologically active carbonhydrate substances forming during irradiation of vegetable products

    International Nuclear Information System (INIS)

    The purpose of this study was to find out whether desoxy-derivative sugars can form in fruits subjected to radurization. Tomato and apple fruits and natural apple juices were employed as test-objects, using gamma radiation from Co60 at the dose rate of 260 rad/s. Doses of 200-300 Krad and 1 Mrad were used to irradiate fruits and juices respectively. The data obtained on model systems cannot be used to draw conclusions regarding the appearance or otherwise of cytotoxic products in irradiated test plants. No desoxy sugars were found t form in fruits irradiated with 300 Krad. Tests aimed to detect certain products of carbohydrate radiolysis revealed the presence of these products in quantities which have no cytotoxic effect on the living organism. (E.T.)

  13. Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Sivaramakrishna, D.; Sreekanth, D.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500072, Andhra Pradesh (India); Anjaneyulu, Y. [TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2009-03-15

    Biohydrogen production from probiotic wastewater using mixed anaerobic consortia is reported in this paper. Batch tests are carried out in a 5.0 L batch reactor under constant mesophillic temperature (37 C). The maximum hydrogen yield 1.8 mol-hydrogen/mol-carbohydrate is obtained at an optimum pH of 5.5 and substrate concentration 5 g/L. The maximum hydrogen production rate is 168 ml/h. The hydrogen content in the biogas is more than 65% and no significant methane is observed throughout the study. In addition to hydrogen, acetate, propionate, butyrate and ethanol are found to be the main by-products in the metabolism of hydrogen fermentation. (author)

  14. Effects of different culture conditions on biological potential and metabolites production in three Penicillium isolates.

    Science.gov (United States)

    Reis, Filipa S; Ćirić, Ana; Stojković, Dejan; Barros, Lillian; Ljaljević-Grbić, Milica; Soković, Marina; Ferreira, Isabel C F R

    2015-02-01

    The genus Penicillium is well known for its importance in drug and food production. Certain species are produced on an industrial scale for the production of antibiotics (e.g. penicillin) or for insertion in food (e.g. cheese). In the present work, three Penicillium species, part of the natural mycobiota growing on various food products were selected - P. ochrochloron, P. funiculosum and P. verrucosum var. cyclopium. The objective of our study was to value these species from the point of view of production of bioactive metabolites. The species were obtained after inoculation and growth in Czapek and Malt media. Both mycelia and culture media were analyzed to monitor the production of different metabolites by each fungus and their release to the culture medium. The concentrations of sugars, organic acids, phenolic acids and tocopherols were determined. Antioxidant activity of the phenolic extracts was evaluated, as also the antimicrobial activity of phenolic acids, organic acids and tocopherols extracts. Rhamnose, xylose, fructose and trehalose were found in all the mycelia and culture media; the prevailing organic acids were oxalic and fumaric acids, and protocatechuic and p-hydroxybenzoic acids were the most common phenolic acids; γ-tocopherol was the most abundant vitamin E isoform. Generally, the phenolic extracts corresponding to the mycelia samples revealed higher antioxidant activity. Concerning the antimicrobial activity there were some fluctuations, however all the studied species revealed activity against the tested strains. Therefore, the in-vitro bioprocesses can be an alternative for the production of bioactive metabolites that can be used by pharmaceutical industry.

  15. Carbon, oxygen and biological productivity in the Southern Ocean in and out the Kerguelen plume: CARIOCA drifter results

    Directory of Open Access Journals (Sweden)

    L. Merlivat

    2014-12-01

    Full Text Available The Kerguelen Plateau region in the Indian sector of the Southern Ocean supports annually a large-scale phytoplankton bloom which is naturally fertilized with iron. As part of the second Kerguelen Ocean and Plateau compared Study expedition (KEOPS2 in austral spring (October–November 2011, one Carioca buoy was deployed east of the Kerguelen plateau. It drifted eastward downstream in the Kerguelen plume. Hourly surface measurements of pCO2, O2 and ancillary observations were collected between 1 November 2011 to 12 February 2012 with the aim of characterizing the spatial and temporal variability of the biological Net Community Production (NCP downstream the Kerguelen plateau, assess the impact of iron-induced productivity on the biological carbon consumption and consequently on the CO2 flux exchanged at the air–sea interface. The trajectory of the buoy until mid-December was within the longitude range, 72–83° E, close to the polar front and then in the polar frontal zone, PFZ, until 97° E. From 17 November to 16 December, the buoy drifted within the Kerguelen plume following a filament carrying dissolved iron, DFe, for a total distance of 700 km. In the first part of the trajectory, the ocean surface waters are a sink for CO2 and a source for CO2, with fluxes of respective mean values equal to −8 and +38 mmol CO2 m−2 d−1. Eastward, as the buoy escapes the iron enriched filament, the fluxes are in opposite direction, with respective mean values of +5 and −48 mmol O2 m−2 d−1. These numbers clearly indicate the strong impact of biological processes on the biogeochemistry in the surface waters within the Kerguelen plume in November-mid-December, while it is undetectable eastward in the PFZ from mid-December to mid-February. While the buoy follows the Fe enriched filament, simultaneous observations of dissolved inorganic carbon, DIC, and dissolved oxygen, O2, highlight biological events lasting from 2 to 4 days. Stoichiometric

  16. Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa)

    Digital Repository Service at National Institute of Oceanography (India)

    Madhu, N.V.; Maheswaran, P.A.; Jyothibabu, R.; Sunil, V.; Revichandran, C.; Balasubramanian, T.; Gopalakrishnan, T.C.; Nair, K.K.C.

    ? 3 in the coastal, offsh ore and open ocean r e s - pectively, and the corresponding column va l ues were 11.4 ? 24.4, 19.6 ? 20.5 and 13.9 ? 19.2 mg m ? 2 respectively. Primary production was two to three folds higher du r- ing the post...C m ? 2 d ? 1 (inshore) and 300 mgC m ? 2 d ? 1 (of f- shore) during December 1991 along the east coast of India 26 , the present average primary production val ues in November are very high (coastal, 734 mgC m ? 2 d ? 1 , of f...

  17. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  18. Reduction of Biological Sludge Production Applying an Alternating Oxic/anoxic Process in Water Line.

    Science.gov (United States)

    Eusebi, Anna Laura; Panigutti, Maximiliano; Battistoni, Paolo

    2016-06-01

    Alternating oxic/anoxic process, applied for the main objective of the improvement of nitrogen performances, was studied in terms of secondary effect of biomass reduction. The process was carried out in one real water resource recovery facility and the data were compared with the previous conventional period when a conventional process was adopted. The main mechanism of the process for the sludge minimization is recognized in the metabolic uncoupling. In fact, an increase of the specific oxygen uptake rate in the biological reactor was recorded stimulated by the change of the oxidation reduction potential environment. Moreover, the heterotrophic growth yield was measured equal to 0.385 kgVSS/kgCOD. The global percentage of reduction was tested with the mass balance of solids. The process is able to decrease the observed sludge yield up to 20%. The specific energy consumption was evaluated.

  19. Reduction of Biological Sludge Production Applying an Alternating Oxic/anoxic Process in Water Line.

    Science.gov (United States)

    Eusebi, Anna Laura; Panigutti, Maximiliano; Battistoni, Paolo

    2016-06-01

    Alternating oxic/anoxic process, applied for the main objective of the improvement of nitrogen performances, was studied in terms of secondary effect of biomass reduction. The process was carried out in one real water resource recovery facility and the data were compared with the previous conventional period when a conventional process was adopted. The main mechanism of the process for the sludge minimization is recognized in the metabolic uncoupling. In fact, an increase of the specific oxygen uptake rate in the biological reactor was recorded stimulated by the change of the oxidation reduction potential environment. Moreover, the heterotrophic growth yield was measured equal to 0.385 kgVSS/kgCOD. The global percentage of reduction was tested with the mass balance of solids. The process is able to decrease the observed sludge yield up to 20%. The specific energy consumption was evaluated. PMID:27225780

  20. The Jordan Romero Case; A Biological Super Athlete or a Product of the Sport Industry

    Directory of Open Access Journals (Sweden)

    George Kipreos

    2012-08-01

    Full Text Available Many questions have arisen in regards to Jordan Romero’s climbing actions, in terms of ethics and legality. Although, he has already successfully climbed most of the highest summits, his last expedition to climb mountain Everest, has found strong opposition and criticism. Jordan’s decision to climb Everest, at the age of 13, comes into contradiction with the convention on Human Rights, the International Public Law, the climbing rules and regulations of Nepal, and the Law of U.S.A. What should also be put into reference is the fact that Romero’s pursuit violates the Article No. 1 in the Declaration of Tyrol 2002 (Mountaineering, which defines individual responsibility for the activities of the climber. This paper outlines the legal and ethical aspects of Jordan’s venture, taking into account the biological hazards.