WorldWideScience

Sample records for biologic product shortages

  1. Parenteral nutrition product shortages: impact on safety.

    Science.gov (United States)

    Holcombe, Beverly

    2012-03-01

    The drug shortage crisis continues in the United States and threatens the integrity of the pharmaceutical supply chain and compromises patient care, especially patients requiring parenteral nutrition (PN) therapy. The number of new drug shortages has increased rapidly over the past 5 years, with the most significant increase in sterile injectable products. The most common reason for a shortage of a sterile injectable medication is a product quality issue. Two surveys of healthcare professionals have assessed the impact of drug shortages on patient safety. Participants in one survey reported over 1000 medication errors or patient adverse events as the result of shortages. The American Society for Parenteral and Enteral Nutrition also conducted a survey of healthcare professionals regarding PN product shortages and the associated patient care implications. Safety risks were reported throughout the entire PN process, from procurement of PN products to patient outcomes. Providing PN therapy during product shortages requires vigilance and continuous assessment of the entire PN process to optimize patient care quality and avoid patient harm. PMID:22282871

  2. A Fuzzy Production-Distribution Inventory Model with Shortage

    OpenAIRE

    G. M. Arun Prasath; C. V. Seshaiah

    2013-01-01

    A Production-Distribution inventory model with shortages and unit cost dependent demand has been formulated along with possible constraints. In most of the real world situations, the cost parameters are imprecise in nature. Hence, the unit cost is imposed here in fuzzy environment. Due to complexity, the proposed model has been solved by LINGO software. The model is also solved for without shortages as the special case. The model is illustrated with a numerical example.

  3. A production inventory model with deteriorating items and shortages

    OpenAIRE

    Samanta G.P.; Roy Ajanta

    2004-01-01

    A continuous production control inventory model for deteriorating items with shortages is developed. A number of structural properties of the inventory system are studied analytically. The formulae for the optimal average system cost, stock level, backlog level and production cycle time are derived when the deterioration rate is very small. Numerical examples are taken to illustrate the procedure of finding the optimal total inventory cost, stock level, backlog level and production cycle time...

  4. A production inventory model with deteriorating items and shortages

    Directory of Open Access Journals (Sweden)

    Samanta G.P.

    2004-01-01

    Full Text Available A continuous production control inventory model for deteriorating items with shortages is developed. A number of structural properties of the inventory system are studied analytically. The formulae for the optimal average system cost, stock level, backlog level and production cycle time are derived when the deterioration rate is very small. Numerical examples are taken to illustrate the procedure of finding the optimal total inventory cost, stock level, backlog level and production cycle time. Sensitivity analysis is carried out to demonstrate the effects of changing parameter values on the optimal solution of the system.

  5. Mitigation of maximum world oil production: Shortage scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Robert L. [Management Information Services, Inc., 723 Fords Landing Way, Alexandria, VA 22314 (United States)

    2008-02-15

    A framework is developed for planning the mitigation of the oil shortages that will be caused by world oil production reaching a maximum and going into decline. To estimate potential economic impacts, a reasonable relationship between percent decline in world oil supply and percent decline in world GDP was determined to be roughly 1:1. As a limiting case for decline rates, giant fields were examined. Actual oil production from Europe and North America indicated significant periods of relatively flat oil production (plateaus). However, before entering its plateau period, North American oil production went through a sharp peak and steep decline. Examination of a number of future world oil production forecasts showed multi-year rollover/roll-down periods, which represent pseudoplateaus. Consideration of resource nationalism posits an Oil Exporter Withholding Scenario, which could potentially overwhelm all other considerations. Three scenarios for mitigation planning resulted from this analysis: (1) A Best Case, where maximum world oil production is followed by a multi-year plateau before the onset of a monatomic decline rate of 2-5% per year; (2) A Middling Case, where world oil production reaches a maximum, after which it drops into a long-term, 2-5% monotonic annual decline; and finally (3) A Worst Case, where the sharp peak of the Middling Case is degraded by oil exporter withholding, leading to world oil shortages growing potentially more rapidly than 2-5% per year, creating the most dire world economic impacts. (author)

  6. Alternative production methods to face global molybdenum-99 supply shortage.

    Science.gov (United States)

    Lyra, Maria; Charalambatou, Paraskevi; Roussou, Eirini; Fytros, Stavros; Baka, Irini

    2011-01-01

    The sleeping giant of molybdenum-99 ((99)Mo) production is grinding to a halt and the world is wondering how this happened. Fewer than 10 reactors in the world are capable of producing radio nuclides for medicine; approximately 50% of the world's supply of raw material comes from National Research Universal (NRU) reactor in Canada. Many of these reactors, like the NRU, are old and aging. No one of these reactors, and probably not even all of them in combination, can replace the production of NRU. As the healthcare industry faces an aging population and the demand for diagnostic services using (99m)Tc continues to rise, the need for a consistent, reliable supply of (99)Mo has become increasingly important, so alternative methods to produce (99)Mo or even directly (99m)Tc had to be considered to avoid a supply shortage in the coming years. This need guides to the production of (99)Mo by replacing the Highly Enriched Uranium (HEU) target in a nuclear reactor with Low Enriched Uranium (LEU) and furthermore to the use of accelerators for manufacturing (99)Mo or for directly producing (99m)Tc. PMID:21512666

  7. Production-inventory Management model for a weibull deteriorating item with linear demand and shortages

    Directory of Open Access Journals (Sweden)

    Gobinda Chandra Panda

    2013-06-01

    Full Text Available Background: Physical decay or deterioration of goods in stock is an important feature of real inventory systems. Material and methods: In the present paper, we discuss an production inventory model for a Weibull deteriorating item over a finite planning horizon with a linearly time-varying demand rate and a uniform production rate, allowing shortages, which are completely backlogged. Results and conclusions:  A production inventory model is developed for a Weibull deteriorating item over a finite planning horizon with a linear time varying demand, finite production rate and shortages. The optimal number of production cycles that minimizes the average system cost is determined.

  8. A Warehouse Imperfect Fuzzified Production Model with Shortages under Inflationary Conditions

    Directory of Open Access Journals (Sweden)

    S. R. Singh

    2012-01-01

    Full Text Available We develop a two-warehouse production model with imperfect items. Production rate is taken as the linear combination of on-hand inventory and demand, while demand rate is taken as function of time. Most of the researchers consider that the production rate is independent from the demand rate. In this paper we assume production rate as being dependent on the demand rate, and this assumption is more realistic. Shortages are allowed and partially backlogged with time-dependent backlogging rate. Due to different preservation facilities we consider that the deterioration rate is time dependent in own warehouse (OW and Weibull distribution deterioration in rented warehouse (RW. Holding cost in RW is greater than in OW. We developed a fuzzy model with fuzzifying all the costs of the model as triangular fuzzy numbers. The present model is developed in both crisp and fuzzy senses. Finally, numerical example is shown, and sensitivity is also illustrated.

  9. Developing an EPQ Model with Considering Preventive Maintenance, Imperfect Product, Shortage and Work in Process Inventory

    Directory of Open Access Journals (Sweden)

    Akbar Nilipour Tabatabaei

    2013-08-01

    Full Text Available Determination of optimal production lot size has been always noticed by researchers and various models have been proposed in this area. Among the subjects, which has been less considered in these models is machine failure. Obviously, a machine may encounter random failures during its working period and this makes clear the need for applying an appropriate maintenance policy for the machinery. In this paper based on assumptions such as authorized shortage, work in process inventory and possibility of producing defective products with and without the ability to re-work, EPQ model has been investigated and developed to select Preventive Maintenance (PM policy for the machinery. In addition, by minimizing system’s total cost over a period of time, a formula has been presented for determining optimal production lot size and its application has been examined using various numerical examples.

  10. Strategic analysis of a midstream oil production service provider experiencing a labour shortage

    OpenAIRE

    Iannarelli, Robyn Marie

    2006-01-01

    Recently, Flint Energy Services Limited announced its objective to double revenue in five years by becoming Service Provider of Choice and Employer of Choice. This paper will look at the challenges facing this organization concerning the current shortage of labour in the oil and gas industry of Alberta. For Flint, to double revenue, a Human Resource Strategy is fundamental. Continued success will depend on retention of its knowledge capital as competition for qualified personnel intensifies. ...

  11. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  12. Raising labour productivity to solve the paradox; labour shortage in the labour surplus economy; Malawi. (Is targeted fertilizer subsidy the solution?)

    OpenAIRE

    Assefa, Thomas Woldu

    2010-01-01

    Rural Malawian households are facing seasonal labour shortage problem at the peak time of their agricultural season while they are farming in a generally labour surplus economy. This problem is shared by many developing economies and several factors could cause it. Malawi’s economy is characterized by low level of labour productivity which partly accounts for this seasonal labour shortage problem. Thus, it is paramount to increase labour productivity in Malawi as it affects the performance o...

  13. 78 FR 65904 - Permanent Discontinuance or Interruption in Manufacturing of Certain Drug or Biological Products

    Science.gov (United States)

    2013-11-04

    ...(D) Immune Globulin and Hepatitis B Immune Globulin; Coagulation Factor VIIa (Recombinant); and..., or mitigate shortages of these products. b. Vaccines. We are proposing to apply section 506C of the FD&C Act to all biological products, including vaccines. Under section 506C(i)(3)(B) of the FD&C...

  14. Ph.D. shortage

    Science.gov (United States)

    The late 1990s will see a shortage of Ph.D. graduates, according to the Association of American Universities, Washington, D.C. AAU's new comprehensive study, “The Ph.D. Shortage: The Federal Role,” reports that competition for new Ph.D.s is already intense and can only intensify because demand is greater than supply in both academic and nonacademic markets.Doctoral education plays an increasingly important role in U.S. research and development programs. Students have a pivotal part in doing research and enriching it with new ideas. The AAU report says that graduate students are “major determinants of the creativity and productivity of U.S. academic research, the source of more than 50% of the nation's basic research.’ The market for doctoral education extends beyond the university. In 1985, about 43% of all Ph.D.s employed in this country were working outside higher education; the demand for doctorate recipients in nonacademic sectors continues to grow.

  15. 27 CFR 19.565 - Shortages of bottled distilled spirits.

    Science.gov (United States)

    2010-04-01

    ... distilled spirits. 19.565 Section 19.565 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Losses and Shortages Shortages § 19.565 Shortages of bottled distilled spirits. (a) Determination of shortage. Unexplained...

  16. Radical production in biological systems

    International Nuclear Information System (INIS)

    This paper describes our effort to develop a metric for radiation exposure that is more fundamental than adsorbed dose and upon which a metric for exposure to chemicals could be based. This metric is based on the production of radicals by the two agents. Radicals produced by radiation in biological systems commonly assumed to be the same as those produced in water despite the presence of a variety of complex molecules. This may explain why the extensive efforts to describe the relationship between energy deposition (track structure) and molecular damage to DNA, based on the spectrum of radicals produced, have not been successful in explaining simple biological effects such as cell killing. Current models assume that DNA and its basic elements are immersed in water-like media and only model the production and diffusion of water-based radicals and their interaction with DNA structures; these models lack the cross sections associated with each macro-component of DNA and only treat water-based radicals. It has been found that such models are not realistic because DNA is not immersed in pure water. A computer code capable of simulating electron tracks, low-energy electrons, energy deposition in small molecules, and radical production and diffusion in water like media has been developed. This code is still in at a primitive stage and development is continuing. It is being used to study radical production by radiation, and radical diffusion and interactions in simple molecular systems following their production. We are extending the code to radical production by chemicals to complement our PBPK modeling efforts. It therefore has been developed primarily for use with radionuclides that are in biological materials, and not for radiation fields

  17. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  18. Biological hydrogen production from phytomass

    Energy Technology Data Exchange (ETDEWEB)

    Bartacek, J.; Zabranska, J. [Inst. of Chemical Technology, Prague (Czech Republic). Dept. of Water Technology and Environmental Engineering

    2004-07-01

    Renewable sources of energy have received wide attention lately. One candidate is hydrogen which has the added advantage of involving no greenhouse gases. Biological hydrogen production from wastewater or biowastes is a very attractive production technique. So far, most studies have concentrated on the use of photosynthetic bacteria. However, dark fermentation has recently become a popular topic of research as it has the advantage of not requiring light energy input, something that limits the performance of the photosynthetic method. While pure cultures have been used in most of the investigations to date, in industrial situations mixed cultures will probably be the norm because of unavoidable contamination. In this investigation the phytomass of amaranth (Amaranthus cruentus L) was used to produce hydrogen. Specific organic loading, organic loading, and pH were varied to study the effect on hydrogen production. 18 refs., 1 tab., 6 figs.

  19. Exploring the STEM shortage

    Science.gov (United States)

    Gates, S. James, Jr.; Bhulai, Alfred; IcePilot; JoeB

    2014-12-01

    In reply to Margaret Harris' article on "The STEM shortage paradox" (Graduate careers, October pp56-59, http://ow.ly/DXvIq) and a related post on the physicsworld.com blog ("The STEM employment paradox, revisited", http://ow.ly/DXvCl), both of which questioned reports that the UK is suffering from a severe shortage of graduates in science, technology, engineering and mathematics.

  20. [Drug shortage: determinants, consequences and management].

    Science.gov (United States)

    Reis, Adriano Max Moreira; Perini, Edson

    2008-04-01

    The present study analyzes drug shortage as a problem reaching beyond the logistic aspect of the health field and discusses its consequences with respect to quality, safety and cost of health care delivery. The pharmaceutical supply chain and the factors that determine the distribution and availability of drugs are discussed. The contribution of the Pharmacy and Therapeutics Committee in preventing and managing drug shortage in health institutions is stressed and measures for drug shortage management are suggested. Finally it is emphasized that drugs should be considered health products rather than consumer goods and as such be given a different treatment by the supply chain. PMID:21936164

  1. Assessment of the direct cyclotron production of (99m)Tc: An approach to crisis management of (99m)Tc shortage.

    Science.gov (United States)

    Rovais, Mohammad Reza Aboudzadeh; Aardaneh, Khosro; Aslani, Gholamreza; Rahiminejad, Ali; Yousefi, Kamran; Boulouri, Fatemeh

    2016-06-01

    Nowadays, the cyclotron production of technetium-99m ((99m)Tc) has been increased, due to the worldwide (99m)Tc generator shortage. In the present work, an improved strategy for the production of (99m)Tc, using the proton irradiation of the enriched (100)Mo was developed. The performance of this method in terms of the production yield, chemical purity, radiochemical purity, as well as radionuclide purity was evaluated. The average production yield was measured to be 356MBqμA(-1)h(-1). A good agreement was found between the calculated production yield and the experimental one. The radiochemical separation and total recovery yields of (99m)Tc were 92% and 69%, respectively. The radiochemical and the radionuclide purities of the (99m)Tc were 99% and >99.99% at the end of purification, respectively. The results of quality control tests (QC) support the concept that cyclotron-produced (99m)Tc is suitable for preparation of USP-compliant. PMID:27015650

  2. Degradation of fructans and production of propionic acid by Bacteroides thetaiotaomicron are enhanced by shortage of amino acids

    Directory of Open Access Journals (Sweden)

    Signe eAdamberg

    2014-12-01

    Full Text Available Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by the catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory and levan (synthesized using levansucrase from Pseudomonas syringae, two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (DP > 3. Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h, followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of D-lactate (82 ± 33 mmol/gDW occurred in parallel with extensive consumption (up to 17 mmol/gDW of amino acids, especially Ser, Thr and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will be studied in

  3. Degradation of Fructans and Production of Propionic Acid by Bacteroides thetaiotaomicron are Enhanced by the Shortage of Amino Acids.

    Science.gov (United States)

    Adamberg, Signe; Tomson, Katrin; Vija, Heiki; Puurand, Marju; Kabanova, Natalja; Visnapuu, Triinu; Jõgi, Eerik; Alamäe, Tiina; Adamberg, Kaarel

    2014-01-01

    Bacteroides thetaiotaomicron is commonly found in the human colon and stabilizes its ecosystem by catabolism of various polysaccharides. A model of cross-talk between the metabolism of amino acids and fructans in B. thetaiotaomicron was proposed. The growth of B. thetaiotaomicron DSM 2079 in two defined media containing mineral salts and vitamins, and supplemented with either 20 or 2 amino acids, was studied in an isothermal microcalorimeter. The polyfructans inulin (from chicory) and levan (synthesized using levansucrase from Pseudomonas syringae), two fructooligosaccharide preparations with different composition, sucrose and fructose were tested as substrates. The calorimetric power-time curves were substrate specific and typically multiauxic. A surplus of amino acids reduced the consumption of longer oligosaccharides (degree of polymerization > 3). Bacterial growth was not detected either in the carbohydrate free medium containing amino acids or in the medium with inulin as a sole carbohydrate. In amino acid-restricted medium, fermentation leading to acetic acid formation was dominant at the beginning of growth (up to 24 h), followed by increased lactic acid production, and mainly propionic and succinic acids were produced at the end of fermentation. In the medium supplemented with 20 amino acids, the highest production of d-lactate (82 ± 33 mmol/gDW) occurred in parallel with extensive consumption (up to 17 mmol/gDW) of amino acids, especially Ser, Thr, and Asp. The production of Ala and Glu was observed at growth on all substrates, and the production was enhanced under amino acid deficiency. The study revealed the influence of amino acids on fructan metabolism in B. thetaiotaomicron and showed that defined growth media are invaluable in elucidating quantitative metabolic profiles of the bacteria. Levan was shown to act as an easily degradable substrate for B. thetaiotaomicron. The effect of levan on balancing or modifying colon microbiota will

  4. Research of new Newsboy products inventory control and its optimization based on fuzzy shortage cost%基于模糊缺货成本的新Newsboy型产品库存控制优化

    Institute of Scientific and Technical Information of China (English)

    刘海军

    2013-01-01

    鉴于新Newsboy型产品库存控制中缺货成本的不确定性,考察了缺货成本对零售商最优订购量的影响,将单位缺货成本视为梯形模糊数,构建了一个基于模糊缺货成本的新Newsboy型产品库存控制优化模型,并运用模糊运算法则对该模型进行了求解.结果表明,当单位缺货成本不能准确估计时,采用模糊单位缺货成本对单位缺货成本的不确定性进行刻画以得出一个订购区间,不仅是可行的,而且也是有效的,最后的数值分析很好地证明了这一点.%Since the uncertainty of the shortage cost in new Newsboy products inventory control, this paper analyzes the influence of the shortage cost on the retailers' optimal order, and unit shortage cost being as trapezoid fuzzy number, constructs a new Newsboy products inventory control model based on the fuzzy shortage cost, solves the model by using fuzzy algorithm. Results show that when the unit shortage cost cannot be accurately estimate, it is not only feasible, but also effective that the uncertainty of unit shortage cost is scaled by fuzzy unit shortage cost in order to draw an order interval, and the numerical analysis proves this point well.

  5. Teacher Shortages: What We Know. Teacher Shortage Series

    Science.gov (United States)

    Aragon, Stephanie

    2016-01-01

    This brief is the first in a series of reports examining the teacher shortage dilemma. It considers what the research says about teacher shortages and highlights recent state task force findings. Designed to guide state leaders in policy decisions, the briefs that follow examine five strategies states are using to address shortages: (1)…

  6. Labor Shortage: Menace or Mirage?

    Science.gov (United States)

    Sargent, Jon

    1988-01-01

    There are many uncertainties about the magnitude and nature of labor shortages. Data needed to identify and quantify shortages are not available from national statistical offices so most of what is known comes from employer reports. (JOW)

  7. Current Vaccine Shortages and Delays

    Science.gov (United States)

    ... CDC.gov . Vaccines and Immunizations Share Compartir Current Vaccine Shortages & Delays Last Updated December 7, 2015 On ... schedule are included in this update. Chart of Vaccines* in Delay or Shortage Vaccines are listed in ...

  8. Synthetic biology advances for pharmaceutical production

    OpenAIRE

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems.

  9. Synthetic Biology Guides Biofuel Production

    OpenAIRE

    2010-01-01

    The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improve...

  10. Artificial Shortages and Strategic Pricing

    Directory of Open Access Journals (Sweden)

    Partha Gangopadhyay

    2012-01-01

    Full Text Available Problem statement: We consider a monopolist who manipulates the market by artificially creating shortages that result in an increase in current price that, in turn, boosts demand for the product in subsequent periods. The approach is to develop an intertemporal model of pricing strategy for a monopolist. Approach: The postulated pricing strategy creates an incentive for producers to reduce current supply and raise current prices and sacrifice current profits in order to increase future profits. The main problem is to explain the precise mathematical conditions under which the pricing strategy will be chosen by a monopolist. Results: We derive the optimal pricing strategy to argue that the monopolist has an incentive to adopt simple market manipulation that calls forth a close examination of issues concerning deregulation. Conclusion: The paper examines two possible strategies for a typical monopolist-strategic pricing vis-a-vis a myopic pricing. The intuition is that the monopolist can manipulate the market by artificially creating shortages that result in an increase in current price that, in turn, boosts demand for the product in subsequent periods.

  11. Biological production of organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jianping; Paddock, Troy; Carrieri, Damian; Maness, Pin-Ching; Seibert, Michael

    2016-04-12

    Strains of cyanobacteria that produce high levels of alpha ketoglutarate (AKG) and pyruvate are disclosed herein. Methods of culturing these cyanobacteria to produce AKG or pyruvate and recover AKG or pyruvate from the culture are also described herein. Nucleic acid sequences encoding polypeptides that function as ethylene-forming enzymes and their use in the production of ethylene are further disclosed herein. These nucleic acids may be expressed in hosts such as cyanobacteria, which in turn may be cultured to produce ethylene.

  12. Labor Shortage Looming Ahead?

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The large quantity of cheap labor resources has long been regarded as one of the important factors that make it possible for China’s economy to maintain rapid growth. However, Cai Fang, Director of the Institute of Population and Labor Economics, Chinese Academy of Social Sciences, warned at a lecture in early May that China’s surplus rural labor force is not as large as thought and that China will soon experience the transition from labor surplus to labor shortage. He predicted that the turning point would occur probably in 2009. In response, Hou Dongmin, Director of the Institute of Population, Resources and Environment of Renmin University of China, and Deng Yuwen, researcher at the China Society of Economic Reform, analyze the expected impacts of transition on China’s future growth mode (in sequence).

  13. Standardization for natural product synthetic biology.

    Science.gov (United States)

    Zhao, Huimin; Medema, Marnix H

    2016-08-27

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synthetic biology, focusing on standardization of data on biosynthetic pathways and gene clusters, as well as the role of standardization in the process of biosynthetic gene cluster engineering. PMID:27313083

  14. Standardization for natural product synthetic biology

    OpenAIRE

    Zhao, Huimin; Medema, Marnix H.

    2016-01-01

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synthetic biology, focusing on standardization of data on biosynthetic pathways and gene clusters, as well as the role of standardization in the process of biosynthetic gene cluster engineering.

  15. Standardization for natural product synthetic biology

    NARCIS (Netherlands)

    Zhao, Huimin; Medema, Marnix H.

    2016-01-01

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product synt

  16. Competence building capacity shortage

    International Nuclear Information System (INIS)

    The objective of the project 'Competence Building Capacity Shortage' has been 'to increase knowledge about central approaches aimed at solving the peaking capacity problem in restructured power systems'. With respect to reserve markets, a model was developed in the project to analyze the relations between reserve requirements and prices in the spot and reserve markets respectively. A mathematical model was also developed and implemented, which also includes the balance market, and has a good ability to predict the relations between these markets under various assumptions. With some further development, this model can be used fore realistic analyses of these markets in a Nordic context. It was also concluded that certain system requirements with respect to frequency and time deviation can be relaxed without adverse effects. However, the requirements to system bias, Frequency Activated Operating Reserves and Frequency Activated Contingency Reserves cannot be relaxed, the latter because they must cover the dimensioning fault in the system. On the other hand, Fast Contingency Reserves can be reduced by removing requirements to national balances. Costs can furthermore be reduced by increasingly adapting a Nordic as opposed to national approach. A model for stepwise power flow was developed in the project, which is especially useful to analyze slow power system dynamics. This is relevant when analysing the effects of reserve requirements. A model for the analysis of the capacity balance in Norway and Sweden was also developed. This model is useful for looking at the future balance under various assumptions regarding e.g. weather conditions, demand growth and the development of the generation system. With respect to the present situation, if there is some price flexibility on the demand side and system operators are able to use reserves from the demand side, the probability for load shedding during the peak load hour is close to zero under the weather conditions after

  17. Designated Health Professional Shortage Areas

    Data.gov (United States)

    U.S. Department of Health & Human Services — Health Professional Shortage Areas (HPSAs) Data Download makes data and information concerning Designated HPSAs readily available to our users in a one-stop...

  18. A note on models for a family of products with shelf life, and production and shortage costs in emerging markets (Short Communication

    Directory of Open Access Journals (Sweden)

    Leopoldo Eduardo Cárdenas-Barrón

    2012-01-01

    Full Text Available Recently, the economic lot scheduling problem (ELSP with common cycle time and shelf life restrictions has attracted the attention of several researchers. In this paper, a comparative study of solutions given by Xu and Sarker (2003 [Computers & Operations Research 30 (6, 925-938] with the results given by Viswanathan and Goyal (2000 [International Journal of Production Research, 38 (4, 829-836] are presented. Additionally, the paper makes some observations about two mathematical expressions, which contain a technical shortcoming.

  19. 9 CFR 112.6 - Packaging biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Packaging biological products. 112.6... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PACKAGING AND LABELING § 112.6 Packaging biological products. (a) Each multiple-dose final container of a biological...

  20. 9 CFR 114.6 - Mixing biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mixing biological products. 114.6 Section 114.6 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS PRODUCTION REQUIREMENTS FOR BIOLOGICAL PRODUCTS § 114.6...

  1. Systems biology of microbial exopolysaccharides production

    Directory of Open Access Journals (Sweden)

    Ozlem eAtes

    2015-12-01

    Full Text Available Exopolysaccharides (EPS produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture and medicine. EPSs are mainly associated with high-value applications and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore a systems-based approach constitutes an important step towards understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan and dextran.

  2. Systems Biology of Microbial Exopolysaccharides Production

    Science.gov (United States)

    Ates, Ozlem

    2015-01-01

    Exopolysaccharides (EPSs) produced by diverse group of microbial systems are rapidly emerging as new and industrially important biomaterials. Due to their unique and complex chemical structures and many interesting physicochemical and rheological properties with novel functionality, the microbial EPSs find wide range of commercial applications in various fields of the economy such as food, feed, packaging, chemical, textile, cosmetics and pharmaceutical industry, agriculture, and medicine. EPSs are mainly associated with high-value applications, and they have received considerable research attention over recent decades with their biocompatibility, biodegradability, and both environmental and human compatibility. However, only a few microbial EPSs have achieved to be used commercially due to their high production costs. The emerging need to overcome economic hurdles and the increasing significance of microbial EPSs in industrial and medical biotechnology call for the elucidation of the interrelations between metabolic pathways and EPS biosynthesis mechanism in order to control and hence enhance its microbial productivity. Moreover, a better understanding of biosynthesis mechanism is a significant issue for improvement of product quality and properties and also for the design of novel strains. Therefore, a systems-based approach constitutes an important step toward understanding the interplay between metabolism and EPS biosynthesis and further enhances its metabolic performance for industrial application. In this review, primarily the microbial EPSs, their biosynthesis mechanism, and important factors for their production will be discussed. After this brief introduction, recent literature on the application of omics technologies and systems biology tools for the improvement of production yields will be critically evaluated. Special focus will be given to EPSs with high market value such as xanthan, levan, pullulan, and dextran. PMID:26734603

  3. Biological production of ethanol from coal

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H[sub 2], CO[sub 2], CH[sub 4] and sulfur gases, is first produced using traditional gasification techniques. The CO, CO[sub 2] and H[sub 2] are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the wild strain'' produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  4. Correcting India’s Chronic Shortage of Drug Inspectors to Ensure the Production and Distribution of Safe, High-Quality Medicines

    Science.gov (United States)

    Kadam, Abhay B.; Maigetter, Karen; Jeffery, Roger; Mistry, Nerges F.; Weiss, Mitchell G.; Pollock, Allyson M.

    2016-01-01

    Background: Good drug regulation requires an effective system for monitoring and inspection of manufacturing and sales units. In India, despite widespread agreement on this principle, ongoing shortages of drug inspectors have been identified by national committees since 1975. The growth of India’s pharmaceutical industry and its large export market makes the problem more acute. Methods: The focus of this study is a case study of Maharashtra, which has 29% of India’s manufacturing units and 38% of its medicines exports. India’s regulations were reviewed, comparing international, national and state inspection norms with the actual number of inspectors and inspections. Twenty-six key informant interviews were conducted to ascertain the causes of the shortfall. Results: In 2009-2010, 55% of the sanctioned posts of drug inspectors in Maharashtra were vacant. This resulted in a shortfall of 83%, based on the Mashelkar Committee’s recommendations. Less than a quarter of the required inspections of manufacturing and sales units were undertaken. The Indian Drugs and Cosmetics Act and its Rules and Regulations make no provisions for drug inspectors and workforce planning norms, despite the growth and increasing complexity of India’s pharmaceutical industry. Conclusion: The Maharashtra Food and Drug Administration (FDA) falls short of the Mashelkar Committee’s recommended workforce planning norms. Legislation and political and operational support are required to produce needed changes

  5. Biological treatment of shrimp production wastewater.

    Science.gov (United States)

    Boopathy, Raj

    2009-07-01

    Over the last few decades, there has been an increase in consumer demand for shrimp, which has resulted in its worldwide aquaculture production. In the United States, the stringent enforcement of environmental regulations encourages shrimp farmers to develop new technologies, such as recirculating raceway systems. This is a zero-water exchange system capable of producing high-density shrimp yields. The system also produces wastewater characterized by high levels of ammonia, nitrate, nitrite, and organic carbon, which make waste management costs prohibitive. Shrimp farmers have a great need for a waste management method that is effective and economical. One such method is the sequencing batch reactor (SBR). A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same reactor to take the place of multiple reactors in a conventional treatment system. The SBR accomplishes equalization, aeration, and clarification in a timed sequence in a single reactor system. This is achieved through reactor operation in sequences, which includes fill, react, settle, decant, and idle. A laboratory scale SBR was successfully operated using shrimp aquaculture wastewater. The wastewater contained high concentrations of carbon and nitrogen. By operating the reactors sequentially, namely, aerobic and anoxic modes, nitrification and denitrification were achieved as well as removal of carbon. Ammonia in the waste was nitrified within 4 days. The denitrification of nitrate was achieved by the anoxic process, and 100% removal of nitrate was observed within 15 days of reactor operation. PMID:19396482

  6. Biological control and sustainable food production

    OpenAIRE

    Bale, J S; Van Lenteren, J.C.; Bigler, F

    2007-01-01

    The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control). Augmentative control has been successfully applied against a range of open-field and greenhouse pests, and conservation biological control schemes have been developed with indigenous predators and parasitoid...

  7. Biological control and sustainable food production

    NARCIS (Netherlands)

    Bale, J.S.; Lenteren, van J.C.; Bigler, F.

    2008-01-01

    The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control). Augmentati

  8. ROMANIAN TOURISM FACING LABOUR SHORTAGE

    Directory of Open Access Journals (Sweden)

    Cristina Simon

    2008-05-01

    Full Text Available The purpose of this paper is to present the main trends în the Romanian tourism sector andtheir impact on the labour market. The first part of the paper presents the main trends în the travel and tourismsector. The second part of the paper focuses on the challenges of the labour market în the hotel sector,highlighting essential aspect related to the declining of population, shortage of the workforce, emigration,financial compensations. The final part exposes few ideas and possible suggestions that can be applied into thetravel and tourism sector în order to better manage the multiple dimensions of growth.

  9. Cholesterol oxidation products and their biological importance.

    Science.gov (United States)

    Kulig, Waldemar; Cwiklik, Lukasz; Jurkiewicz, Piotr; Rog, Tomasz; Vattulainen, Ilpo

    2016-09-01

    The main biological cause of oxysterols is the oxidation of cholesterol. They differ from cholesterol by the presence of additional polar groups that are typically hydroxyl, keto, hydroperoxy, epoxy, or carboxyl moieties. Under typical conditions, oxysterol concentration is maintained at a very low and precisely regulated level, with an excess of cholesterol. Like cholesterol, many oxysterols are hydrophobic and hence confined to cell membranes. However, small chemical differences between the sterols can significantly affect how they interact with other membrane components, and this in turn can have a substantial effect on membrane properties. In this spirit, this review describes the biological importance and the roles of oxysterols in the human body. We focus primarily on the effect of oxysterols on lipid membranes, but we also consider other issues such as enzymatic and nonenzymatic synthesis processes of oxysterols as well as pathological conditions induced by oxysterols. PMID:26956952

  10. COTTAGE CHEESE PRODUCTS ENRICHED BIOLOGICALLY ACTIVE ADDITIVES

    OpenAIRE

    Салкинбаева Г. Т.; Байбалинова Г. М.; Смаилова М. Н.

    2015-01-01

    This article deals with a reliable means of improving the structure of supply and optimum balance of the diet of the population, is the use of biologically active additives in a daily diet of the people to food dietary supplements. Supplements such advantages as an expression of food oriented, high nutritional density, homogeneity, easy preparation and forms of transport, good taste allow us to use them successfully in catering.

  11. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    OpenAIRE

    A. S. Kayshev; N. S. Kaysheva

    2014-01-01

    A content of biologically active compounds (BAC) with signified pharmacological activity in distillers grains was proved. It is prospective for applications of these grains as a raw material resource of pharmaceuticals. A composition of BAC distillers grains received from wheat, corn, barley, millet at different spirit enterprises which use hydro fermentative grain processing. Considering polydispersity of distillers grains they were separated on solid and liquid phases preliminary. Physical ...

  12. 9 CFR 102.5 - U.S. Veterinary Biological Product License.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false U.S. Veterinary Biological Product... BIOLOGICAL PRODUCTS § 102.5 U.S. Veterinary Biological Product License. (a) Authorization to produce each biological product shall be specified on a U.S. Veterinary Biological Product License, issued by...

  13. Production and consumption of biological particles in temperate tidal estuaries

    NARCIS (Netherlands)

    Heip, C.H.R.; Goosen, N.K.; Herman, P.M.J.; Kromkamp, J.C.; Middelburg, J.J.; Soetaert, K.E.R.

    1995-01-01

    The question is reviewed whether a balance exists between production and consumption of biological particles in temperate tidal estuaries and what the relationships are between the magnitude of production and consumption processes and system carbon metabolism. The production terms considered are pri

  14. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  15. Identifying shortage occupations in the UK

    OpenAIRE

    Anna Downs

    2009-01-01

    This article describes the top-down methodology used by the Migration Advisory Committee (MAC) to identify shortage occupations. Identifying shortage occupations is difficult and few countries have attempted to do this in a systematic way. The methodology developed by the MAC to identify shortage occupations is the first to use a comprehensive range of indicators. The methodology dovetails national level top-down data with bottom-up micro-level data and qualitative information from stakeholde...

  16. Geochemistry and isotope evolution of groundwater flow and recharge from the uranium production center in Brazilian semi-arid region (Caetite-BA, Brazil) - Towards sustainability or shortage?

    International Nuclear Information System (INIS)

    The semi-arid region of the Northeast of Brazil is characterized by a lack of superficial waters due to the low pluviometric precipitation and high evaporation rates. Owing to these adverse climatic conditions, intense pressure is being put on the use of groundwater resources. However, there is still insufficient knowledge of the basic aquifers characteristics leading to an over exploitation of the water resources. The prevailance of crystalline rocks is connected to a fracture aquifer type of low productivity, where wells show, generally, yield rates lower than 3 m3·h-1. This work was developed in a semi-arid area located in the center-south region of Bahia State at 900 metres a.s.l., where were discovered several radioactive anomalies by aerogeophysical surveys performed during 70's decade, that allowed to set the uranium province named Lagoa Real. There were performed isotopic and geochemical analysis of groundwater sampled from twenty-five wells placed in crystalline rocks areas (granite or gneiss) covered by short layers of residual soil or alluvial sediments. The samples were analysed in a mass spectrometer for stable isotopic ratios, like δ2H, δ18O, δ13C (per mille VSMOW) and also measured for radiocarbon activity concentration (14C) to calculate the percentage of modern carbon (PMC) by AMS. The values of δ2H and δ18O defined a local evaporation line (LEL) with slope equal to 4.6 against the value of 7.4 for the Local Meteoric Water Line (Salvador station from 1972 to 1976). The radiocarbon ages, corrected by carbonate dissolution (through δ13C and DIC), showed very young waters that were recently recharged, perhaps during the last few years to several months. The supposed old ages for the fractured aquifer are not accomplished by radiocarbon dating, showing it is unconfined with no discharge of old groundwater through deep faults and short residence time. Thus, the groundwater offer for multiple uses (in terms of quantity) seems to be assured if the

  17. Recent Developments in Biological Hydrogen Production Processes

    Directory of Open Access Journals (Sweden)

    DEBABRATA DAS

    2008-07-01

    Full Text Available Biohydrogen production technology can utilize renewable energy sources like biomass for the generation of hydrogen, the cleanest form of energy for the use of mankind. However, major constraints to the commercialization of these processes include lower hydrogen yields and rates of hydrogen production. To overcome these bottlenecks intensive research work has already been carried out on the advancement of these processes such as the development of genetically modified microorganisms, the improvement of the bioreactor design, molecular engineering of the key enzyme hydrogenases, the development of two stage processes, etc. The present paper explores the recent advancements that have been made till date and also presents the state of the art in molecular strategies to improve the hydrogen production.

  18. Biological production of liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  19. Synthetic biology and microbioreactor platforms for programmable production of biologics at the point-of-care

    Science.gov (United States)

    Perez-Pinera, Pablo; Han, Ningren; Cleto, Sara; Cao, Jicong; Purcell, Oliver; Shah, Kartik A.; Lee, Kevin; Ram, Rajeev; Lu, Timothy K.

    2016-01-01

    Current biopharmaceutical manufacturing systems are not compatible with portable or distributed production of biologics, as they typically require the development of single biologic-producing cell lines followed by their cultivation at very large scales. Therefore, it remains challenging to treat patients in short time frames, especially in remote locations with limited infrastructure. To overcome these barriers, we developed a platform using genetically engineered Pichia pastoris strains designed to secrete multiple proteins on programmable cues in an integrated, benchtop, millilitre-scale microfluidic device. We use this platform for rapid and switchable production of two biologics from a single yeast strain as specified by the operator. Our results demonstrate selectable and near-single-dose production of these biologics in system with analytical, purification and polishing technologies could lead to a small-scale, portable and fully integrated personal biomanufacturing platform that could advance disease treatment at point-of-care. PMID:27470089

  20. BIOLOGICALLY ACTIVE SUBSTANCES OF SPIRIT PRODUCTION WASTE

    Directory of Open Access Journals (Sweden)

    A. S. Kayshev

    2014-01-01

    Full Text Available A content of biologically active compounds (BAC with signified pharmacological activity in distillers grains was proved. It is prospective for applications of these grains as a raw material resource of pharmaceuticals. A composition of BAC distillers grains received from wheat, corn, barley, millet at different spirit enterprises which use hydro fermentative grain processing. Considering polydispersity of distillers grains they were separated on solid and liquid phases preliminary. Physical and chemical characteristics of distillers grains' liquid base were identified. Elementary composition of distillers grains is signified by active accumulation of biogenic elements (phosphorus, potassium, magnesium, calcium, sodium, iron and low content of heavy metals. The solid phase of distillers grains accumulates carbon, hydrogen and nitrogen in high concentration. The liquid phase of distillers grains contains: proteins and amino acids (20-46%, reducing sugars (5,6%-17,5%, galacturonides (0,8-1,4%, ascorbic acid (6,2-11,4 mg%. The solid base of distillers grains contains: galacturonides (3,4-5,3%, fatty oil (8,4-11,1% with predomination of essential fatty acids, proteins and amino acids (2,1-2,5%, flavonoids (0,4-0,9%, tocopherols (3,4-7,7 mg%. A method of complex processing of distillers grains based on application of membrane filtering of liquid phase and liquid extraction by inorganic and organic solvents of solid phase, which allows almost full extraction of the sum of biologically active compounds (BAC from liquid phase (Biobardin BM and solid phase (Biobardin UL. Biobardin BM comprises the following elements: proteins and amino acids (41-69%, reducing sugars (3,5-15,6%, fatty oil (0,2-0,3%, flavonoids (0,2-0,7%, ascorbic acid (17-37 mg%. Biobardin UL includes: oligouronids (16,4-19,5%, proteins and amino acids (11-21%, fatty oil (3,2-4,9% which includes essential acids; flavonoids (0,6-1,5%, tocopherols (6,6-10,2 mg%, carotinoids (0,13-0,21 mg

  1. Concerns for Skills Shortages in the 21st Century: A Review into the Construction Industry, Australia

    Directory of Open Access Journals (Sweden)

    Michelle Watson

    2012-11-01

    Full Text Available The Australian Construction Industry is now facing skills shortages in all trades. As an industry focused on the skill of its workforce, there is now concern the Australian standard in quality, workmanship, and productivity will inhibit both at national and international level.This research paper addresses the underlying, influential factors concerning skills shortages in the Australian construction industry. The influential factors addressed include funding, training statistics, employer expectations, financial limitations, Industrial Relations and immigration. Given the reference to skills shortages within the industry, and documented in related literature, if skills shortages are to continue to exist, their effect will impact upon the overall performance of construction companies throughout Australia.

  2. Assessment of biological Hydrogen production processes: A review

    Science.gov (United States)

    Najafpour, G. D.; Shahavi, M. H.; Neshat, S. A.

    2016-06-01

    Energy crisis created a special attention on renewable energy sources. Among these sources; hydrogen through biological processes is well-known as the most suitable and renewable energy sources. In terms of process yield, hydrogen production from various sources was evaluated. A summary of microorganisms as potential hydrogen producers discussed along with advantages and disadvantages of several bioprocesses. The pathway of photo-synthetic and dark fermentative organisms was discussed. In fact, the active enzymes involved in performance of biological processes for hydrogen generation were identified and their special functionalities were discussed. The influential factors affecting on hydrogen production were known as enzymes assisting liberation specific enzymes such as nitrogenase, hydrogenase and uptake hydrogenase. These enzymes were quite effective in reduction of proton and form active molecular hydrogen. Several types of photosynthetic systems were evaluated with intension of maximum hydrogen productivities. In addition dark fermentative and light intensities on hydrogen productions were evaluated. The hydrogen productivities of efficient hydrogen producing strains were evaluated.

  3. Ionizing radiation for sterilization of medical products and biological tissues

    International Nuclear Information System (INIS)

    The article reviews the deliberations of the International Symposium on Ionizing Radiation for Sterilization of Medical Products and Biological Tissues which was held during 9-13 December 1974 under the auspices of the IAEA at the Bhabha Atomic Research Centre, Bombay. 42 papers were presented in the following broad subject areas: (1) Microbiological Control aspects of radiation sterilization, (2) Dosimetry aspects of radiation sterilization practices, (3) Effects of sterilizing radiation dose on the constituents of medical products, (4) Application of radiation sterilization of medical products of biological origin, (5) Technological aspects of radiation sterilization facilities, (6) Radiation sterilization of pharmaceutical substances, (7) Reports on current status of radiation sterilization of medical products in IAEA member states and (8) Working group discussion on the revision of the IAEA recommended code of practice for radiation sterilization of medical products. (S.K.K.)

  4. Milk kefir: composition, microbial cultures, biological activities, and related products.

    Science.gov (United States)

    Prado, Maria R; Blandón, Lina Marcela; Vandenberghe, Luciana P S; Rodrigues, Cristine; Castro, Guillermo R; Thomaz-Soccol, Vanete; Soccol, Carlos R

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir's exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir's microflora and the importance of kefiran as a beneficial health substance. PMID:26579086

  5. Biology and management of psocids infesting stored products

    Science.gov (United States)

    Previously regarded as minor nuisance pests, psocids belonging to the genus Liposcelis are now a major problem for effective protection of stored-products world-wide. In this review we examine the apparent biological and operational reasons behind this phenomenon and why conventional pest management...

  6. Irradiation of advanced health care products – Tissues and biologics

    International Nuclear Information System (INIS)

    Radiation sterilization of tissues and biologics has become more common in recent years. As a result it has become critical to understand how to adapt the typical test methods and validation approaches to a tissue or biological product scenario. Also data evaluation sometimes becomes more critical than with traditional medical devices because for many tissues and biologics a low radiation dose is required. It is the intent behind this paper to provide information on adapting bioburden tests used in radiation validations such that the data can be most effectively used on tissues and biologics. In addition challenges with data evaluation are discussed, particularly the use of less-than values for bioburden results in radiation validation studies. - Highlights: • MPN testing can provide good bioburden results for tissue/biologics. • There are appropriate situations to pool products for bioburden testing. • Options on dealing with bioburden results of “less-than” the limit of detection. • Underestimation and overestimation of bioburden and the dangers of both

  7. Capturing Biological Activity in Natural Product Fragments by Chemical Synthesis.

    Science.gov (United States)

    Crane, Erika A; Gademann, Karl

    2016-03-14

    Natural products have had an immense influence on science and have directly led to the introduction of many drugs. Organic chemistry, and its unique ability to tailor natural products through synthesis, provides an extraordinary approach to unlock the full potential of natural products. In this Review, an approach based on natural product derived fragments is presented that can successfully address some of the current challenges in drug discovery. These fragments often display significantly reduced molecular weights, reduced structural complexity, a reduced number of synthetic steps, while retaining or even improving key biological parameters such as potency or selectivity. Examples from various stages of the drug development process up to the clinic are presented. In addition, this process can be leveraged by recent developments such as genome mining, antibody-drug conjugates, and computational approaches. All these concepts have the potential to identify the next generation of drug candidates inspired by natural products. PMID:26833854

  8. Systems Biology Approaches to Understand Natural Products Biosynthesis

    Science.gov (United States)

    Licona-Cassani, Cuauhtemoc; Cruz-Morales, Pablo; Manteca, Angel; Barona-Gomez, Francisco; Nielsen, Lars K.; Marcellin, Esteban

    2015-01-01

    Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes are well-known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed toward a shift in the exploitation of actinomycete’s biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation, and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets. PMID:26697425

  9. Systems biology approaches to understand natural products biosynthesis

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc eLicona-Cassani

    2015-12-01

    Full Text Available Actinomycetes populate soils and aquatic sediments which impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams and terpenes are well known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regulation of cellular metabolism in actinomycetes and to the sparse knowledge of their physiology. The past decade, however, has seen the development of omics technologies that have significantly contributed to our better understanding of their biology. Key observations have contributed towards a shift in the exploitation of actinomycetes biology, such as using their full genomic potential, activating entire pathways through key metabolic elicitors and pathway engineering to improve biosynthesis. Here, we review recent efforts devoted to achieving enhanced discovery, activation and manipulation of natural product biosynthetic pathways in model actinomycetes using genome-scale biological datasets.

  10. Systems Biology Approaches to Understand Natural Products Biosynthesis

    OpenAIRE

    Licona-Cassani, Cuauhtemoc; Cruz-Morales, Pablo; Manteca, Angel; Barona-Gomez, Francisco; Nielsen, Lars K; Marcellin, Esteban

    2015-01-01

    Actinomycetes populate soils and aquatic sediments that impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams, and terpenes are well-known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regul...

  11. Systems biology approaches to understand natural products biosynthesis

    OpenAIRE

    Cuauhtemoc eLicona-Cassani; Pablo Cruz Morales; Angel eManteca; Francisco eBarona-Gomez; Lars Keld Nielsen; Esteban eMarcellin

    2015-01-01

    Actinomycetes populate soils and aquatic sediments which impose biotic and abiotic challenges for their survival. As a result, actinomycetes metabolism and genomes have evolved to produce an overwhelming diversity of specialized molecules. Polyketides, non-ribosomal peptides, post-translationally modified peptides, lactams and terpenes are well known bioactive natural products with enormous industrial potential. Accessing such biological diversity has proven difficult due to the complex regul...

  12. Polycyclic Xanthone Natural Products: Structure, Biological Activity and Chemical Synthesis

    OpenAIRE

    Winter, Dana K.; Sloman, David L.; Porco, John A.

    2013-01-01

    Polycyclic xanthone natural products are a family of polyketides which are characterized by highly oxygenated, angular hexacyclic frameworks. In the last decade, this novel class of molecules has attracted noticeable attention from the synthetic and biological communities due to emerging reports of their potential use as antitumour agents. The aim of this article is to highlight the most recent developments of this subset of the xanthone family by detailing the innate challenges of the constr...

  13. State of the art of biological hydrogen production processes

    International Nuclear Information System (INIS)

    Our report gives an overview of hydrogen production processes with bacteria or algae. 4 main processes are described: water biophotolysis, photo- fermentation biological CO conversion and dark fermentation. Chemical phenomena which lead to hydrogen generation are exp/aired. Performances, limits and outlook are given for each process. Main projects, programs and key players involved in this field of research have been listed. This paper resumes few results of this report. (authors)

  14. Formate Formation and Formate Conversion in Biological Fuels Production

    Directory of Open Access Journals (Sweden)

    Bryan R. Crable

    2011-01-01

    Full Text Available Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production.

  15. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast

    Science.gov (United States)

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-01-01

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and metabolism. Accumulation of unfolded proteins within the calcium-depleted lumen of the endoplasmic reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections linking disturbance of ER calcium equilibrium to ER stress and UPR signaling are evolutionary conserved and highlight the crucial role of metabolism in modulating the effects induced by calcium shortage. PMID:27305947

  16. Biological treatment of chicken feather waste for improved biogas production

    Institute of Scientific and Technical Information of China (English)

    Gergely Forgács; Saeid Alinezhad; Amir Mirabdollah; Elisabeth Feuk-Lagerstedt; Ilona Sárvári Horwáth

    2011-01-01

    A two-stage system was developed which combines the biological degradation of keratin-rich waste with the production of biogas.Chicken feather waste was treated biologically with a recombinant Bacillus megaterium strain showing keratinase activity prior to biogas production.Chopped,autoclaved chicken feathers (4%,W/V) were completely degraded,resulting in a yellowish fermentation broth with a level of 0.51 mg/mL soluble proteins after 8 days of cultivation of the recombinant strain.During the subsequent anaerobic batch digestion experiments,methane production of 0.35 Nm3/kg dry feathers (i.e.,0.4 Nm3/kg volatile solids of feathers),corresponding to 80% of the theoretical value on proteins,was achieved from the feather hydrolyzates,independently of the prehydrolysis time period of 1,2 or 8 days.Cultivation with a native keratinase producing strain,Bacillus licheniformis resulted in only 0.25 mg/mL soluble proteins in the feather hydrolyzate,which then was digested achieving a maximum accumulated methane production of 0.31 Nm3/kg dry feathers.Feather hydrolyzates treated with the wild type B.megaterium produced 0.21 Nm3 CH4/kg dry feathers as maximum yield.

  17. 76 FR 68295 - Reducing Prescription Drug Shortages

    Science.gov (United States)

    2011-11-03

    ... significantly increased. Interruptions in the supplies of these drugs endanger patient safety and burden doctors, hospitals, pharmacists, and patients. They also increase health care costs, particularly because some... potential problem. Similarly, early disclosure of a shortage can help hospitals, doctors, and patients...

  18. Coping with the influenza vaccine shortage.

    Science.gov (United States)

    Mossad, Sherif B

    2004-12-01

    Faced with a shortage of the inactivated intramuscular influenza vaccine this year, the Centers for Disease Control and Prevention (CDC) has revised its guidelines for immunization and use of antiviral agents. The most rational solution at this time is to direct the supply of scarce vaccine to patients at highest risk of influenza-related complications. PMID:15641521

  19. Nursing Shortage Generates Innovative Program Expansion

    Science.gov (United States)

    Welhan, Beverly L.; Benfield, Ruth A.

    2008-01-01

    Responding to an impending health crisis due to a national nursing shortage, Montgomery County Community College increased nursing admissions by 50% and graduates by 51% through implementing a Continuous Nursing Program (CNP). Through implementing three 14-week semesters per year, the CNP uses an accelerated timeframe while maintaining a…

  20. Molecular biology in studies of oceanic primary production

    Energy Technology Data Exchange (ETDEWEB)

    LaRoche, J.; Falkowski, P.G. [Brookhaven National Lab., Upton, NY (United States); Geider, R. [Delaware Univ., Lewes, DE (United States). Coll. of Marine Studies

    1992-07-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies.

  1. Molecular biology in studies of oceanic primary production

    Energy Technology Data Exchange (ETDEWEB)

    LaRoche, J.; Falkowski, P.G. (Brookhaven National Lab., Upton, NY (United States)); Geider, R. (Delaware Univ., Lewes, DE (United States). Coll. of Marine Studies)

    1992-01-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies.

  2. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  3. Assessment of nitrogen and sulphur cycle bacteria and shrimp production in ponds treated with biological products

    Institute of Scientific and Technical Information of China (English)

    Thangapalam Jawahar Abraham; Shubhadeep Ghosh; Debasis Sasmal

    2015-01-01

    Objective:To study the influence of biological products on the levels of nitrogen and sulphur cycle bacteria in shrimp culture systems of West Bengal, India. Methods: The pond water and sediment samples were analyzed for physico-chemical parameters as per standard methods. The bacteria involved in ammonification, nitrification, denitrification, sulphate reduction and sulphur oxidation were enumerated by most probable number technique. Results:The semi-intensive and modified extensive shrimp farms used a variety of biological products during various stages of production. No biological products were used in traditional farms. The water and sediment samples of modified extensive system recorded significantly higher mean heterotrophic bacterial counts. The counts of ammonia, nitrite and sulphur oxidizers, and nitrate and sulphate reducers varied among the systems. The cycling of nitrogen and sulphur appeared to be affected with the intensification of culture practices. Conclusions:The application of biological products in certain systems helped to maintain the bacteria involved in nitrogen and sulphur cycles and safe levels of ammonia, nitrite and nitrate. An assessment of these metabolically active bacteria in shrimp culture ponds and the application of right kind microbial products would help ameliorate the organic pollution in shrimp aquaculture.

  4. Biological hydrogen production from biomass by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T. [Wageningen UR, Agrotechnology and Food Sciences Group (AFSG), Business Unit Biobased Products, P.O. Box 17, 6700 AA Wageningen, (Netherlands); van Niel, E.W.J. [Lund University, Applied microbiology, P.O. Box 124, 221 000 Lund, (Sweden)

    2006-07-01

    To meet the reduction of the emission of CO{sub 2} imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  5. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    To meet the reduction of the emission of CO2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient requirements

  6. Production of biologically active recombinant human lactoferrin in Aspergillus oryzae.

    Science.gov (United States)

    Ward, P P; Lo, J Y; Duke, M; May, G S; Headon, D R; Conneely, O M

    1992-07-01

    We report the production of recombinant human lactoferrin in Aspergillus oryzae. Expression of human lactoferrin (hLF), a 78 kD glycoprotein, was achieved by placing the cDNA under the control of the A. oryzae alpha-amylase promoter and the 3' flanking region of the A. niger glucoamylase gene. Using this system, hLF is expressed and secreted into the growth medium at levels up to 25 mg/l. The recombinant lactoferrin is indistinguishable from human milk lactoferrin with respect to its size, immunoreactivity, and iron-binding capacity. The recombinant protein appears to be appropriately N-linked glycosylated and correctly processed at the N-terminus by the A. oryzae secretory apparatus. Lactoferrin is the largest heterologous protein and the first mammalian glycoprotein expressed in the Aspergillus system to date. Hence, this expression system appears suitable for the large-scale production and secretion of biologically active mammalian glycoproteins. PMID:1368268

  7. Current studies on physiological functions and biological production of lactosucrose.

    Science.gov (United States)

    Mu, Wanmeng; Chen, Qiuming; Wang, Xiao; Zhang, Tao; Jiang, Bo

    2013-08-01

    Lactosucrose (O-β-D-galactopyranosyl-(1,4)-O-α-D-glucopyranosyl-(1,2)-β-D-fructofuranoside) is a trisaccharide formed from lactose and sucrose by enzymatic transglycosylation. This rare trisaccharide is a kind of indigestible carbohydrate, has good prebiotic effect, and promotes intestinal mineral absorption. It has been used as a functional ingredient in a range of food products which are approved as foods for specified health uses in Japan. Using lactose and sucrose as substrates, lactosucrose can be produced through transfructosylation by β-fructofuranosidase from Arthrobacter sp. K-1 or a range of levansucrases, or through transgalactosylation by β-galactosidase from Bacillus circulans. This article presented a review of recent studies on the physiological functions of lactosucrose and the biological production from lactose and sucrose by different enzymes. PMID:23828605

  8. Biological risks associated with consumption of reptile products

    DEFF Research Database (Denmark)

    Magnino, S.; Colin, P.; Dei-Cas, E.;

    2009-01-01

    The consumption of a wide variety of species of reptiles caught from the wild has been an important source of protein for humans world-wide for millennia. Terrapins. snakes, lizards, crocodiles and iguanas are now farmed and the consumption and trade of their meat and other edible products have...... recently increased in some areas of the world. Biological risks associated with the consumption of products from both farmed and wild reptile meat and eggs include infections caused by bacteria (Salmonella spp., Vibrio spp.). parasites (Spirometra, Trichinella, Gnathostoma, pentastomids), as well as......, gnathostomiasis and sparganosis can be acquired through consumption of contaminated crocodile, monitor lizard, turtle and snake meat. respectively. Other reptiles. although found to harbour the above parasites. have not been implicated with their transmission to humans. Freezing treatment inactivates Spirometra...

  9. 37 CFR 1.779 - Calculation of patent term extension for a veterinary biological product.

    Science.gov (United States)

    2010-07-01

    ... extension for a veterinary biological product. 1.779 Section 1.779 Patents, Trademarks, and Copyrights... Calculation of patent term extension for a veterinary biological product. (a) If a determination is made pursuant to § 1.750 that a patent for a veterinary biological product is eligible for extension, the...

  10. An overview of biological production of L-theanine.

    Science.gov (United States)

    Mu, Wanmeng; Zhang, Tao; Jiang, Bo

    2015-01-01

    L-Theanine (γ-glutamylethylamide) is a unique non-protein amino acid that is naturally found in tea plants. It contributes to the umami taste and unique flavor to green tea infusion, and thus its content in tea leaves highly impacts the tea quality and price. In addition to the graceful taste, it has been proved to have many beneficial physiological effects, especially promoting relaxation and improving concentration and learning ability. Based on these promising advantages, L-theanine has been commercially developed as a valuable ingredient for use in food and beverages to improve and/or maintain human health. L-Theanine can be obtained by chemical synthesis or isolation from tea, while chemical synthesis of L-theanine is hard to be accepted by consumers and is not allowed to use in food industry, and isolation of L-theanine in high purity generally involves time-consuming, cost-ineffective, and complicated operational processes. Accordingly, the biological production of L-theanine has recently attracted much attention. Four kinds of bacterial enzymes, including L-glutamine synthetase, γ-glutamylmethylamide synthetase, γ-glutamyltranspeptidase, and L-glutaminase, have been characterized to have L-theanine-producing ability. Herein, an overview of recent studies on the biological production of L-theanine was presented. PMID:25871834

  11. Isotope shortage triggers delays for patients

    Science.gov (United States)

    Gould, Paula

    2009-07-01

    An unplanned shutdown of a nuclear reactor in Canada is disrupting the supply of medical isotopes across North America and forcing some hospitals to cancel or postpone patients' tests. The closure of the National Research Universal (NRU) reactor in Chalk River, Ontario, has also embarrassed Canadian officials, including a senior government minister who was forced to apologize after calling the isotope shortage a "sexy" career challenge.

  12. Farmer strategies to face labor shortages in Chilean agriculture

    Directory of Open Access Journals (Sweden)

    Verónica Aguirre

    2013-08-01

    Full Text Available This study analyzes the strategies that farmers in the south of Chile use to face current labor shortages and identify the variables that determine each of these strategies. A multinomial logit model and odds ratios plots with predicted probabilities were applied to a sample of 384 farmers. Interviews and focus groups were applied to specific producers, professionals and public officials. The main results show that only 32.3% of farmers declared that labor shortage is a problem. Of this percentage 52% chose the strategy of paying better, 13.8% chose improve the workers' working conditions, 9.5% chose to mechanize, and 24.1% did not follow a strategy. The production of labor-intensive products (e.g., exportable fruit determines the strategy of paying better; the farmer's educational level influences the strategy of improving the working conditions, and the farmer's age affects the strategy of mechanizing. However, the production of labor-intensive products exhibits the greater effect. The main disadvantage of the "pay better" strategy is that workers do not want to commit to their job.

  13. Biological evaluation of nanosilver incorporated cellulose pulp for hygiene products.

    Science.gov (United States)

    Kavitha Sankar, P C; Ramakrishnan, Reshmi; Rosemary, M J

    2016-04-01

    Cellulose pulp has a visible market share in personal hygiene products such as sanitary napkins and baby diapers. However it offers good surface for growth of microorganisms. Huge amount of research is going on in developing hygiene products that do not initiate microbial growth. The objective of the present work is to produce antibacterial cellulose pulp by depositing silver nanopowder on the cellulose fiber. The silver nanoparticles used were of less than 100 nm in size and were characterised using transmission electron microscopy and X-ray powder diffraction studies. Antibacterial activity of the functionalized cellulose pulp was proved by JIS L 1902 method. The in-vitro cytotoxicity, in-vivo vaginal irritation and intracutaneous reactivity studies were done with silver nanopowder incorporated cellulose pulp for introducing a new value added product to the market. Cytotoxicity evaluation suggested that the silver nanoparticle incorporated cellulose pulp is non-cytotoxic. No irritation and skin sensitization were identified in animals tested with specific extracts prepared from the test material in the in-vivo experiments. The results indicated that the silver nanopowder incorporated cellulose pulp meets the requirements of the standard practices recommended for evaluating the biological reactivity and has good biocompatibility, hence can be classified as a safe hygiene product. PMID:26838891

  14. The nursing shortage: a worldwide problem

    Directory of Open Access Journals (Sweden)

    Booth Rachel Z.

    2002-01-01

    Full Text Available A worldwide shortage of nurses has been acknowledged by the multidisciplinary Global Advisory Group of the World Health Organization. The shortage is caused by an increased demand for nurses, while fewer people are choosing nursing as a profession and the current nurses worldwide are aging. The shortage applies to nurses in practice as well as the nurse faculty who teach students. The inter-country recruitment and migration of nurses from developing countries to developed countries exacerbates the problem. Although public opinion polls identifies the nurse as the person who makes the health care system work for them, the conditions of the work environment in which the nurse functions is unsatisfactory and must change. Numerous studies have shown the positive effects on the nurse of a healthy work environment and the positive relationships between nursing care and patient outcomes. It is important that government officials, insurance companies, and administrators and leaders of health care systems acknowledge and operationalize the value of nurses to the health care system in order to establish and maintain the integrity and viability of that system.

  15. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    Science.gov (United States)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  16. Biological productivity and carbon cycling in the Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Primary production, bacterial production, particulate organic carbon fluxes and organic carbon burial rates were quantified during the summer period of 1999 in the Arctic Ocean via 14C uptake, 3H uptake, 234Th/238U disequilibrium and 210Pbex dating, respectively. The integrated primary production in the water column was as high as 197 mmolC/(m2@d) in the Chukchi shelf and was 3.8 mmolC/(m2@d) in the Canada Basin. These rates are higher than those reported previously. The ratios of bacterial production to primary production in the study region were higher than 0.5, indicating that microbial activity is not depressed but important in cold Arctic waters. 234Th/238U disequilibria were evident at the station in the Canada Basin. The presence of significant 234Th deficiency suggested that scavenging and removal processes are also important to biogeochemical cycles of trace elements in the Arctic Ocean. Particulate organic carbon export flux was estimated to be 1.0 mmolC/(m2@d). Measurements of sediment excess 210Pb profile in the Chukchi shelf allowed us to estimate the amount of organic carbon buried in the bottom sediment, which ranged from 25 to 35 mmolC/(m2@d) and represented about 59%-82% of the mean primary production in the euphotic zone. Overall, our results indicated that the Arctic Ocean has active carbon cycling and is not a biological desert as previously believed. Therefore, the Arctic Ocean may play an important role in the global carbon cycle and climate change.

  17. Biological production of ethanol from coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H{sub 2}, CO{sub 2}, CH{sub 4} and sulfur gases, is first produced using traditional gasification techniques. The CO, CO{sub 2} and H{sub 2} are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the ``wild strain`` produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

  18. Enhanced saccharification of biologically pretreated wheat straw for ethanol production.

    Science.gov (United States)

    López-Abelairas, M; Lu-Chau, T A; Lema, J M

    2013-02-01

    The biological pretreatment of lignocellulosic biomass with white-rot fungi for the production of bioethanol is an alternative to the most used physico-chemical processes. After biological treatment, a solid composed of cellulose, hemicellulose, and lignin-this latter is with a composition lower than that found in the initial substrate-is obtained. On the contrary, after applying physico-chemical methods, most of the hemicellulose fraction is solubilized, while cellulose and lignin fractions remain in the solid. The optimization of the combination of cellulases and hemicellulases required to saccharify wheat straw pretreated with the white-rot fungus Irpex lacteus was carried out in this work. The application of the optimal dosage made possible the increase of the sugar yield from 33 to 54 %, and at the same time the reduction of the quantity of enzymatic mixture in 40 %, with respect to the initial dosage. The application of a pre-hydrolysis step with xylanases was also studied. PMID:23306886

  19. Find Shortage Areas: HPSA & MUA/P by Address

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Find Shortage Areas: Health Professional Shortage Area (HPSA) and Medically Underserved Area/Population (MUA/P) by Address tool is a locator tool designed to...

  20. Production and biological activities of yellow pigments from Monascus fungi.

    Science.gov (United States)

    Chen, Gong; Wu, Zhenqiang

    2016-08-01

    Monascus yellow pigments (MYPs), are azaphilone compounds and one of the three main components of total Monascus pigments (MPs). Thirty-five hydrophilic or hydrophobic MYPs have been identified, with the majority being hydrophobic. Apart from screening special Monascus strains, some advanced approaches, such as extractive and high-cell-density fermentations, have been applied for developing or producing new MYPs, especially extracellular hydrophilic MYPs. The outstanding performance of MYPs in terms of resistance to photodegradation, as well as tolerance for temperature and pH, give natural MYPs reasonable prospects, compared with the orange and red MPs, for practical use in the present and future. Meanwhile, MYPs have shown promising potential for applications in the food and pharmaceutical industries based on their described bioactivities. This review briefly summarizes the reports to date on chemical structures, biological activities, biosynthetic pathways, production technologies, and physicochemical performances of MYPs. The existing problems for MYPs are discussed and research prospects proposed. PMID:27357404

  1. Solving Shortage in a Priceless Market: Insights from Blood Donation

    OpenAIRE

    Tianshu Sun; Susan Feng Lu; Ginger Zhe Jin

    2015-01-01

    Shortage is common in many markets, such as those for human organs or blood, but the problem is often difficult to solve through price adjustment, given safety and ethical concerns. In this paper, we investigate whether market designers can use non-price methods to address shortage. Specifically, we study two methods that are used to alleviate shortage in the market for human blood. The first method is informing existing donors of a current shortage via a mobile message and encouraging them t...

  2. MODERN TECHNOLOGICAL SOLUTIONS USED IN THE PRODUCTION OF BAKERY PRODUCTS WITH HIGH BIOLOGICAL VALUE

    Directory of Open Access Journals (Sweden)

    Marta Brodowska

    2014-06-01

    Full Text Available Biological value of the food products is a result of the presence of bioactive substances and the proportions of the components. Technological development allows to optimize and accelerate the processes of bread production and increase value of food. Bakery industry used whole grains and pseudocereals as additional source of active compounds, biotechnological techniques as using appropriate yeast strain and encapsulation, which provide protection of substance and their controlled release in production of functional bread. The adding to bread fruits, vegetables and condiments may increase content of vitamin, minerals, dietary fiber and other bioactive compounds.

  3. 9 CFR 105.3 - Notices re: worthless, contaminated, dangerous, or harmful biological products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Notices re: worthless, contaminated, dangerous, or harmful biological products. 105.3 Section 105.3 Animals and Animal Products ANIMAL AND PLANT... Notices re: worthless, contaminated, dangerous, or harmful biological products. (a) If at any time...

  4. 77 FR 3780 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-01-25

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... portion of the meeting will be closed to the public. Name of Committee: Vaccines and Related Biological..., Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics...

  5. Organ shortage crisis: problems and possible solutions.

    Science.gov (United States)

    Abouna, G M

    2008-01-01

    The demand for organ transplantation has rapidly increased all over the world during the past decade due to the increased incidence of vital organ failure, the rising success and greater improvement in posttransplant outcome. However, the unavailability of adequate organs for transplantation to meet the existing demand has resulted in major organ shortage crises. As a result there has been a major increase in the number of patients on transplant waiting lists as well as in the number of patients dying while on the waiting list. In the United States, for example, the number of patients on the waiting list in the year 2006 had risen to over 95,000, while the number of patient deaths was over 6,300. This organ shortage crisis has deprived thousands of patients of a new and better quality of life and has caused a substantial increase in the cost of alternative medical care such as dialysis. There are several procedures and pathways which have been shown to provide practical and effective solutions to this crisis. These include implementation of appropriate educational programs for the public and hospital staff regarding the need and benefits of organ donation, the appropriate utilization of marginal (extended criteria donors), acceptance of paired organ donation, the acceptance of the concept of "presumed consent," implementation of a system of "rewarded gifting" for the family of the diseased donor and also for the living donor, developing an altruistic system of donation from a living donor to an unknown recipient, and accepting the concept of a controlled system of financial payment for the donor. As is outlined in this presentation, we strongly believe that the implementation of these pathways for obtaining organs from the living and the dead donors, with appropriate consideration of the ethical, religious and social criteria of the society, the organ shortage crisis will be eliminated and many lives will be saved through the process of organ donation and

  6. Hormones in international meat production: biological, sociological and consumer issues.

    Science.gov (United States)

    Galbraith, Hugh

    2002-12-01

    Beef and its products are an important source of nutrition in many human societies. Methods of production vary and include the use of hormonal compounds ('hormones') to increase growth and lean tissue with reduced fat deposition in cattle. The hormonal compounds are naturally occurring in animals or are synthetically produced xenobiotics and have oestrogenic (oestradiol-17beta and its esters; zeranol), androgenic (testosterone and esters; trenbolone acetate) or progestogenic (progesterone; melengestrol acetate) activity. The use of hormones as production aids is permitted in North American countries but is no longer allowed in the European Union (EU), which also prohibits the importation of beef and its products derived from hormone-treated cattle. These actions have resulted in a trade dispute between the two trading blocs. The major concern for EU authorities is the possibility of adverse effects on human consumers of residues of hormones and metabolites. Methods used to assess possible adverse effects are typical of those used by international agencies to assess acceptability of chemicals in human food. These include analysis of quantities present in the context of known biological activity and digestive, absorptive, post-absorptive and excretory processes. Particular considerations include the low quantities of hormonal compounds consumed in meat products and their relationships to endogenous production particularly in prepubertal children, enterohepatic inactivation, cellular receptor- and non-receptor-mediated effects and potential for interference with growth, development and physiological function in consumers. There is particular concern about the role of oestradiol-17beta as a carcinogen in certain tissues. Now subject to a 'permanent' EU ban, current evidence suggests that certain catechol metabolites may induce free-radical damage of DNA in cell and laboratory animal test systems. Classical oestrogen-receptor mediation is considered to stimulate

  7. Inflow shortages in deregulated power markets - Reasons for concern?

    International Nuclear Information System (INIS)

    In many countries hydropower constitutes a large share of the electricity producing capacity. In the earlier regulated electricity markets, production capacities exceeded demand due to security of supply concerns. The present deregulated markets base investments upon profitability alone, and security of supply issues are claimed to be less important. Market operators trust the pricing mechanism in competitive markets to clear. Then low inflow constitutes a less problem. Several markets, both under regulated and deregulated regimes, have faced serious droughts. Some of them have experienced problems with market clearance (Chile, Brazil, California) while other markets functioned well (The Nordic market). Important features to the market response are the flexibility of demand, the pattern of inflow shortage, the storage capacities, the possibility of trade between regions with different production technologies, and the market design and concentration. We apply an empirical based market model to simulate the effects under two inflow shortage scenarios in an international market with combined hydro and thermal capacities and restricted transmission capacities. We compare the scenarios with actual events and show that the model and the real market outcome are comparable. The simulations do not reveal any problems with the functioning of the market, which should calm down the anxiousness about security of supply in deregulated markets with stochastic energy supply

  8. Inflow shortages in deregulated power markets - Reasons for concern?

    International Nuclear Information System (INIS)

    In many countries hydropower constitutes a large share of the electricity producing capacity. In the earlier regulated electricity markets, production capacities exceeded demand due to security of supply concerns. The present deregulated markets base investments upon profitability alone, and security of supply issues are claimed to be less important. Market operators trust the pricing mechanism in competitive markets to clear. Then low inflow constitutes a less problem. Several markets, both under regulated and deregulated regimes, have faced serious droughts. Some of them have experienced problems with market clearance (Chile, Brazil, California) while other markets functioned well (The Nordic market). Important features to the market response are the flexibility of demand, the pattern of inflow shortage, the storage capacities, the possibility of trade between regions with different production technologies, and the market design and concentration. We apply an empirical based market model to simulate the effects under two inflow shortage scenarios in an international market with combined hydro and thermal capacities and restricted transmission capacities. We compare the scenarios with actual events and show that the model and the real market outcome are comparable. The simulations do not reveal any problems with the functioning of the market, which should calm down the anxiousness about security of supply in deregulated markets with stochastic energy supply. (author)

  9. Workforce shortages are a global issue.

    Science.gov (United States)

    Christmas, Kate; Hart, Karen A

    2007-01-01

    A consortium of international organizations convened a first-ever Global Health Care Workforce Conference to discuss the worldwide shortages of health care workers and the migration patterns of health care workers from developing nations to the first world. Over 300 participants from 47 countries, including one-third from developing countries, discussed a variety of critical issues ranging from global immigration, recruitment, economics, to partnerships. Results, recommendations, and actionable items generated from the conference, as well as ways to put these ideas into practice, will be critical for sustaining and improving world health and the plight and numbers of health care providers. PMID:17803002

  10. Identifying biomass fuel shortages in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Howes, Michael (Sussex Univ., Brighton (UK). Inst. of Development Studies)

    1989-01-01

    This paper analyses data from the Sri Lankan Forestry Master Plan and other sources, to explore the causes of biomass shortages, and to identify the areas where interventions are likely to have most impact. Five districts, concentrated in the wet lowland and hill country zones, are found to be in overall biomass fuel deficit whilst in a further five, which include dry zone locations, fuelwood consumption exceeds potential supply, Within the area of overall deficit, poorer urban groups and rural families with no home gardens - who together comprise 15% of all households nationally - are affected most severely. Another 10% of households are likely to suffer to a lesser extent. (author).

  11. Biological conversion of pyrolytic products to ethanol and lipids

    Science.gov (United States)

    Lian, Jieni

    Pyrolysis is a promising technology that can convert up to 75 % of lignocellulosic biomass into crude bio-oil. However, due to the complex chemical compositions of bio-oil, its further refining into fuels and high value chemicals faces great challenges. This dissertation research proposed new technologies for biological conversion of pyrolytic products derived from cellulose and hemicellulose, such as anhydrosugars and carbolic acids to fuels and chemicals. First, the pyrolytic anhydrosugars (chiefly levoglucosan (LG)) were hydrolysed into glucose followed by neutralization, detoxification and fermentation to produce ethanol by ethanogenetic yeast and lipids by oleaginous yeasts. Second, a novel process for the conversion of C1-C4 pyrolytic products to lipid with oleaginous yeasts was investigated. Third, oleaginous yeasts that can directly convert LG to lipids were studied and a recombined yeast with LG kinase was constructed for the direct convertion of LG into lipids. This allowed a reduction of existing process for LG fermentation from four steps into two steps and eliminated the need for acids and bases as well as the disposal of chemicals. The development of genetic modified organisms with LG kinase opens a promising avenue for the direct LG fermentation to produce a wide range of fuels and chemicals. The simplification of LG utilization process would enhance the economic viability of this technology.

  12. Crop production in salt affected soils: A biological approach

    International Nuclear Information System (INIS)

    Plant are susceptible to deleterious effects of various abiotic and biotic stresses, thus grossly affecting the growth and productivity. Amongst the abiotic stresses, soil salinity is most significant and prevalent in both developed and developing countries. As a consequences, good productive lands are being desertified at a very high pace. To combat this problem various approaches involving soil management and drainage are underway but with little success. It seems that a durable solution of the salinity and water-logging problems may take a long time and we may have to learn to live with salinity and to find other ways to utilize the affected lands fruitfully. A possible approach could be to tailor plants to suit the deleterious environment. The saline-sodic soils have excess of sodium, are impermeable, have little or no organic matter and are biologically almost dead. Introduction of a salt tolerant crop will provide a green cover and will improve the environment for biological activity, increase organic matter and will improve the soil fertility. The plant growth will result in higher carbon dioxide levels, and would thus create acidic conditions in the soil which would dissolve the insoluble calcium carbonate and will help exchange sodium with calcium ions on the soil complex. The biomass produced could be used directly as fodder or by the use of biotechnological and other procedures it could be converted into other value added products. However, in order to tailor plants to suit these deleterious environments, acquisition of better understanding of the biochemical and genetic aspects of salt tolerance at the cellular/molecular level is essential. For this purpose model systems have been carefully selected to carry out fundamental basic research that elucidates and identifies the major factors that confer salt tolerance in a living system. With the development of modern biotechnological methods it is now possible to introduce any foreign genetic material known

  13. Integrated anaerobic/aerobic biological treatment for intensive swine production.

    Science.gov (United States)

    Bortone, Giuseppe

    2009-11-01

    Manure processing could help farmers to effectively manage nitrogen (N) surplus load. Many pig farms have to treat wastewater. Piggery wastewater treatment is a complex challenge, due to the high COD and N concentrations and low C/N ratio. Anaerobic digestion (AD) could be a convenient pre-treatment, particularly from the energetic view point and farm income, but this causes further reduction of C/N ratio and makes denitrification difficult. N removal can only be obtained integrating anaerobic/aerobic treatment by taking into account the best use of electron donors. Experiences gained in Italy during development of integrated biological treatment approaches for swine manure, from bench to full scale, are reported in this paper. Solid/liquid separation as pre-treatment of raw manure is an efficient strategy to facilitate liquid fraction treatment without significantly lowering C/N ratio. In Italy, two full scale SBRs showed excellent efficiency and reliability. Current renewable energy policy and incentives makes economically attractive the application of AD to the separated solid fraction using high solid anaerobic digester (HSAD) technology. Economic evaluation showed that energy production can reduce costs up to 60%, making sustainable the overall treatment. PMID:19135363

  14. [Organs shortage in the United States].

    Science.gov (United States)

    Hattori, Masahiro; Iwaki, Yuichi

    2005-11-01

    Since the law pertaining to deceased transplantation was legalized in October 1997 in Japan, 140 cases of deceased transplants have been performed through March 2005. Patients on waiting lists, however, are increasing every year. Meanwhile patients traveling abroad in desperations to require donors also increase. In the United States, over 25,000 transplantations are performed annually. The number of patients on waiting list exceeded 86,000 in 2003. Organ shortages are a serious problem, even in the United States. Expanded criteria donor(ECD) and Model for endstage liver disease (MELD) scoring systems were implemented to improve some problems in kidney and liver allocation systems, respectively in 2002. Utilization of donated organs for non-citizens is limited in the United States. Japan must independently increase deceased donor transplantations. PMID:16277249

  15. The Role of Drinking Water Shortages on Human Psychological Functioning

    Directory of Open Access Journals (Sweden)

    Siamak Khodarahimi

    2014-08-01

    Full Text Available This study is grounded on an ecopsychological approach towards the effect of water shortages on human psychological functioning. The purpose of this study was to: (1 to examine the prevalence of psychological problems in rural residents with and without water shortages; (2 to evaluate human attributions about the possible causes of water scarcity; (3 to explore human coping styles towards water shortage; and (4 to recognize the role of sociocultural factors on the aforesaid factors. Participants included 3850 Iranian rural residents, those with water shortages (WWS, and those without water shortages (WOWS. A demographic questionnaire and several self-rating measures were used. Resulting data indicates that the prevalence of mental health problems is significantly higher in rural residents who suffer with water shortages. Attributional styles towards water shortages consisted of four components: personal, social, natural, and organizational. Coping styles of participants (with water shortages indicated an emotional-avoidant coping style, the utilization of water consumption methods to optimize water usage, the use of water-free technologies, social adaptation to life with regards to water, and the application of high quality technologies for water saving. Demographic and sociocultural factors influence psychological functioning with regards to water scarcity. This study demonstrates that mental health problems are more prevalent in areas with water shortages. It also indicates the impact of attributional styles, coping methods and the role of demographic and sociocultural factors on psychological functioning when water shortages occur,

  16. Biological evaluation of recombinant human erythropoietin in pharmaceutical products

    Directory of Open Access Journals (Sweden)

    Ramos A.S.

    2003-01-01

    Full Text Available The potencies of mammalian cell-derived recombinant human erythropoietin pharmaceutical preparations, from a total of five manufacturers, were assessed by in vivo bioassay using standardized protocols. Eight-week-old normocythemic mice received a single subcutaneous injection followed by blood sampling 96 h later or multiple daily injections with blood sampling 24 h after the last injection. Reticulocyte counting by microscopic examination was employed as the end-point using the brilliant cresyl blue or selective hemolysis methods, together with automated flow cytometry. Different injection schedules were investigated and dose-response curves for the European Pharmacopoeia Biological Reference Preparation of erythropoietin were compared. Manual and automated methods of reticulocyte counting were correlated with respect to assay validity and precision. Using 8 mice per treatment group, intra-assay precision determined for all of the assays in the study showed coefficients of variation of 12.1-28.4% for the brilliant cresyl blue method, 14.1-30.8% for the selective hemolysis method and 8.5-19.7% for the flow cytometry method. Applying the single injection protocol, a combination of at least two independent assays was required to achieve the precision potency and confidence limits indicated by the manufacturers, while the multiple daily injection protocol yielded the same acceptable results within a single assay. Although the latter protocol using flow cytometry for reticulocyte counting gave more precise and reproducible results (intra-assay coefficients of variation: 5.9-14.2%, the well-characterized manual methods provide equally valid alternatives for the quality control of recombinant human erythropoietin therapeutic products.

  17. Solving shortage in a priceless market: Insights from blood donation.

    Science.gov (United States)

    Sun, Tianshu; Lu, Susan Feng; Jin, Ginger Zhe

    2016-07-01

    Shortage is common in many markets, such as those for human organs or blood, but the problem is often difficult to solve through price adjustment, given safety and ethical concerns. In this paper, we study two non-price methods that are often used to alleviate shortage for human blood. The first method is informing existing donors of a current shortage via a mobile message and encouraging them to donate voluntarily. The second method is asking the patient's family or friends to donate in a family replacement (FR) program at the time of shortage. Using 447,357 individual donation records across 8 years from a large Chinese blood bank, we show that both methods are effective in addressing blood shortage in the short run but have different implications for total blood supply in the long run. We compare the efficacy of these methods and discuss their applications under different scenarios to alleviate shortage. PMID:27263024

  18. Development of biological platform for the autotrophic production of biofuels

    Science.gov (United States)

    Khan, Nymul

    The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO 2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E's (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country's petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpae. energy.gov/ProgramsProjects/Electrofuels.aspx). The Electrofuels initiative aimed to develop liquid biofuels that avoid the issues encountered in the current generation of biofuels: (1) the reliance of biomass-derived technologies on the inefficient process of photosynthesis, (2) the relatively energy- and resource-intensive nature of agronomic processes, and (3) the occupation of large areas of arable land for feedstock production. The process proceeds by the capture of solar energy into electrical energy via photovoltaic cells, using the generated electricity to split water into molecular hydrogen (H2) and oxygen (O2), and feeding these gases, along with carbon dioxide (CO2) emitted from point sources such as a biomass or coal-fired power plant, to a microbial bioprocessing platform. The proposed microbial bioprocessing platform leverages a chemolithoautotrophic microorganism (Rhodobacter capsulatus or Ralstonia eutropha) naturally able to utilize these gases as growth substrates, and genetically modified to produce a triterpene hydrocarbon fuel

  19. The Role of Drinking Water Shortages on Human Psychological Functioning

    OpenAIRE

    Siamak Khodarahimi; Abdolrahman Rahimian Boogar; Cheryl-anne Johnston

    2014-01-01

    This study is grounded on an ecopsychological approach towards the effect of water shortages on human psychological functioning. The purpose of this study was to: (1) to examine the prevalence of psychological problems in rural residents with and without water shortages; (2) to evaluate human attributions about the possible causes of water scarcity; (3) to explore human coping styles towards water shortage; and (4) to recognize the role of sociocultural factors on the aforesaid factors. Part...

  20. Natural product synthesis at the interface of chemistry and biology

    OpenAIRE

    Hong, Jiyong

    2014-01-01

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in ...

  1. Hydrological structure and biological productivity of the tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, U.D.; Muraleedharan, P.M.

    Hydrological structure analyses of regions in the tropical Atlantic Ocean have consistently revealed the existence of a typical tropical structure characterized by a nitrate-depleted mixed layer above the thermocline. The important biological...

  2. 76 FR 3639 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-01-20

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory Committee... selection of strains to be included in the influenza virus vaccine for the 2011-2012 influenza season....

  3. 75 FR 2876 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-01-19

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory Committee... selection of strains to be included in the influenza virus vaccine for the 2010 - 2011 influenza season....

  4. 78 FR 5465 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-01-25

    ... HUMAN SERVICES Food and Drug Administration Vaccines and Related Biological Products Advisory Committee... be open to the public. Name of Committee: Vaccines and Related Biological Products Advisory Committee... strains to be included in the influenza virus vaccine for the 2013- 2014 influenza season. FDA intends...

  5. Overview of allied health personnel shortages.

    Science.gov (United States)

    Elwood, T W

    1991-01-01

    Upon learning that 95% of all fatal traffic accidents occur within three miles of one's home, an acquaintance moved to another residence four miles away and is still alive today. The world might be a much better place if most obstacles could be overcome this handily. Unfortunately, the problem of allied health personnel shortages appears to be more intractable. Because the situation is complicated in nature, it is most unlikely that any single remedy will suffice. Public and private interests have joined forces in many states, but it is abundantly clear that conventional market forces are unlikely to prevail. These forces usually focus on supply and demand. While shortages may cause entry-level salaries to rise, they do not stimulate academic institutions to increase their output nor will they affect the availability of research funding and/or doctoral training programs. Current market forces compel health facilities to engage in bidding wars for scarce manpower. Although individual job seekers may benefit, this practice does not increase the number of training program graduates. The federal government has a decisive role to play in assuring an adequate number of personnel to meet this nation's health care needs. Assistance is necessary in the form of providing entry- and advanced-level traineeships to accelerate the flow of part-time students pursuing doctorates, and to fund model student recruitment/retention projects. This role should encompass attracting students (particularly from minority and underserved portions of the population) to academic programs. The Disadvantaged Minority Health Improvement Act, PL 101-527 that was enacted in November 1990, contains only minimal provisions for allied health. Eligibility for student scholarship assistance is restricted to a small handful of allied health professions. Moreover, allied health is not eligible for the loan repayment program aimed at individuals who agree to serve on the faculty of health professions

  6. Desalination - A solution to water shortage

    International Nuclear Information System (INIS)

    Pakistan as well as neighbouring countries are faced with critical water shortage for the last few decades. The demand for water has outstripped its supply making the availability of safe water sources an issue Also conflicts over water sharing are expected in many regions of the world. Thus, because of this looming crisis water problems are getting increasing attention all over the world. With the advancement of desalination technology many countries had resorted removal of salts from brackish and sea water as an alternative water supply and they are now viewing desalination as a future solution to problems of lack of water. Today, over 100 countries use desalting requirement. A total of 12,451 desalting units (of a unit size of 100 m/sup 3//d or more) with a total capacity of 22,735,000 m /d had been installed or contracted worldwide. Brackish water desalination plants contribute with 9,400,000 m3/d, whereas the capacity of the sea water plants had reached up to 13,300,000 m3/d. This paper will discuss the use of desalination to produce potable water from saline water for domestic or municipal purposes and also the available desalination techniques that have been developed over the years and have achieved commercial success. (author)

  7. An EOQ Model for Time Dependent Weibull Deterioration with Linear Demand and Shortages

    Directory of Open Access Journals (Sweden)

    Umakanta Mishra

    2012-06-01

    Full Text Available Background. The study of control and maintenance of production inventories of deteriorating items with and without shortages  has grown in its importance recently. The effect of deterioration is very important in many inventory systems. Deterioration is defined as decay or damage such that the item cannot be used for its original purpose. Methods: In this article order level inventory models have been developed for deteriorating items with linear demand and Weibull deterioration.  In developing the model we have assumed that the production rate and the demand rate are time dependent. The unit production cost is inversely proportional to demand. Inventory-production system has two parameters Weibull deterioration.  Results and conclusions:  Two models have been developed considering without shortage cases and with shortage case where the shortages are completely backlogged. The objective of the model is to develop an optimal policy that minimizes the total average cost. Sensitivity analysis has been carried out to show the effect of changes in the parameter on the optimum total average cost.  

  8. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites.

    Science.gov (United States)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup; Weber, Tilmann

    2016-08-27

    Covering: 2012 to 2016Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites. The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production. PMID:27072921

  9. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup;

    2016-01-01

    for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites......Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  10. 77 FR 47397 - Request for Nominations of Specific Drug/Biologic Product(s) That Could Be Brought Before the...

    Science.gov (United States)

    2012-08-08

    ... nominations. SUMMARY: The Food and Drug Administration's (FDA) Office of Hematology and Oncology Products... HUMAN SERVICES Food and Drug Administration Request for Nominations of Specific Drug/Biologic Product(s) That Could Be Brought Before the Food and Drug Administration's Pediatric Subcommittee of the...

  11. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. PMID:26479184

  12. The American Nursing Shortage: Implications for Community Colleges

    Science.gov (United States)

    Friedel, Janice Nahra

    2012-01-01

    This article examines national employment and program trends in the nursing profession, the nursing shortage in Iowa, and state policy and community college responses in Iowa. During the seven-year period 2001-2008, two Iowa governors convened special task forces to study the nursing shortage and to make recommendations. The policy responses dealt…

  13. The Continuing Shortage of Child and Adolescent Psychiatrists

    Science.gov (United States)

    Thomas, Christopher R.; Holzer, Charles E., III

    2006-01-01

    Objective: The national shortage of child and adolescent psychiatrists has prompted efforts to improve recruitment. It is uncertain whether these efforts will be sufficient to address this shortage and its impact on youth mental health services. Method: Data were compared from 1990 to 2001 by state, county characteristics, number of youths, and…

  14. 19 CFR 146.53 - Shortages and overages.

    Science.gov (United States)

    2010-04-01

    ..., in its inventory control and recordkeeping system. The operator shall record all shortages and overages as required in the annual reconciliation report under § 146.25. (b) Certain domestic merchandise..., or note in the annual reconciliation report, any shortage or overage concerning domestic...

  15. Biological Pretreatment of Rubberwood with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Bioethanol Production

    OpenAIRE

    Forough Nazarpour; Dzulkefly Kuang Abdullah; Norhafizah Abdullah; Nazila Motedayen; Reza Zamiri

    2013-01-01

    Rubberwood (Hevea brasiliensis), a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm) and pretreatment time on the biological pretreatmen...

  16. Importance of systems biology in engineering microbes for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Aindrila; Redding, Alyssa M.; Rutherford, Becky J.; Keasling, Jay D.

    2009-12-02

    Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable resources has catalyzed numerous research endeavors that focus on developing microbial systems for production of such natural products. Eliminating bottlenecks in microbial metabolic pathways and alleviating the stresses due to production of these chemicals are crucial in the generation of robust and efficient production hosts. The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose stresses due to product synthesis, and provides the rationale to cost-effectively engineer optimal industrial microorganisms.

  17. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia

    International Nuclear Information System (INIS)

    In this letter we analyse the temporal development of physical population-driven water scarcity, i.e. water shortage, over the period 0 AD to 2005 AD. This was done using population data derived from the HYDE dataset, and water resource availability based on the WaterGAP model results for the period 1961-90. Changes in historical water resources availability were simulated with the STREAM model, forced by climate output data of the ECBilt-CLIO-VECODE climate model. The water crowding index, i.e. Falkenmark water stress indicator, was used to identify water shortage in 284 sub-basins. Although our results show a few areas with moderate water shortage (1000-1700 m3/capita/yr) around the year 1800, water shortage began in earnest at around 1900, when 2% of the world population was under chronic water shortage (3/capita/yr). By 1960, this percentage had risen to 9%. From then on, the number of people under water shortage increased rapidly to the year 2005, by which time 35% of the world population lived in areas with chronic water shortage. In this study, the effects of changes in population on water shortage are roughly four times more important than changes in water availability as a result of long-term climatic change. Global trends in adaptation measures to cope with reduced water resources per capita, such as irrigated area, reservoir storage, groundwater abstraction, and global trade of agricultural products, closely follow the recent increase in global water shortage.

  18. The chemistry and biology of guanidine natural products.

    Science.gov (United States)

    Berlinck, Roberto G S; Romminger, Stelamar

    2016-03-01

    Covering: 2012 to 2014. Previous review: Nat. Prod. Rep., 2012, 29, 1382The present review discusses the isolation, structure determination, synthesis, biosynthesis and biological activities of secondary metabolites bearing a guanidine group. Topics include non-ribosomal peptides, alkaloids, guanidine-bearing terpenes, polyketides and shikimic acid derivatives from natural sources. A critical analysis of some yet underdeveloped aspects of guanidine metabolites is also presented. PMID:26689539

  19. Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions.

    Science.gov (United States)

    Rodríguez Couto, Susana

    2008-07-01

    Biological wastes contain several reusable substances of high value such as soluble sugars and fibre. Direct disposal of such wastes to soil or landfill causes serious environmental problems. Thus, the development of potential value-added processes for these wastes is highly attractive. These biological wastes can be used as support-substrates in solid-state fermentation (SSF) to produce industrially relevant metabolites with great economical advantage. In addition, it is an environmentally friendly method of waste management. This paper reviews the reutilization of biological wastes for the production of value-added products using the SSF technique. PMID:18543242

  20. Biology Needs a Modern Assessment System for Professional Productivity

    Science.gov (United States)

    McDade, Lucinda A.; Maddison, David R.; Guralnick, Robert; Piwowar, Heather A.; Jameson, Mary Liz; Helgen, Kristofer M.; Herendeen, Patrick S.; Hill, Andrew; Vis, Morgan L.

    2011-01-01

    Stimulated in large part by the advent of the Internet, research productivity in many academic disciplines has changed dramatically over the last two decades. However, the assessment system that governs professional success has not kept pace, creating a mismatch between modes of scholarly productivity and academic assessment criteria. In this…

  1. Pollinator shortage and global crop yield: Looking at the whole spectrum of pollinator dependency

    OpenAIRE

    Garibaldi, Lucas A.; Aizen, Marcelo A.; Cunningham, Saul A.; Klein, Alexandra M.

    2009-01-01

    A pollinator decline caused by environmental degradation might be compromising the production of pollinator-dependent crops. In a recent article, we compared 45 year series (1961–2006) in yield, production and cultivated area of pollinator-dependent and nondependent crop around the world. If pollinator shortage is occurring globally, we expected a lower annual growth rate in yield for pollinator-dependent than nondependent crops, but a higher growth in cultivated area to compensate the lower ...

  2. Biological carbon monoxide conversion to acetate production by mixed culture.

    Science.gov (United States)

    Nam, Chul Woo; Jung, Kyung A; Park, Jong Moon

    2016-07-01

    To utilize waste CO for mixed culture gas fermentation, carbon sources (CO, CO2) and pH were optimized in the batch system to find out the center point and boundary of response surface method (RSM) for higher acetate (HAc) production (center points: 25% CO, 40% CO2, and pH 8). The concentrations of CO and CO2, and pH had significant effects on acetate production, but the pH was the most significant on the HAc production. The optimum condition for HAc production in the gas fermentation was 20.81% CO, 41.38% CO2, 37.81% N2, and pH 7.18. The continuous gas fermentation under the optimum condition obtained 1.66g/L of cell DW, 23.6g/L HAc, 3.11g/L propionate, and 3.42g/L ethanol. PMID:27035481

  3. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Strucko, Tomas; Eriksen, Carsten; Nielsen, J.;

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo...... biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of vanillin produced in this S. cerevisiae strain is insufficient for commercial production and improvements...... need to be done. We have introduced the genes necessary for vanillin production in an identical manner in two different yeast strains S288c and CEN.PK,where comprehensive – omics datasets are available, hence, allowing vanillin production in the two strain backgrounds to be evaluated and compared in a...

  4. Hydrodynamics-Biology Coupling for Algae Culture and Biofuel Production

    OpenAIRE

    Bernard, Olivier; Sainte-Marie, Jacques; Sialve, Bruno; Steyer, Jean-Philippe

    2013-01-01

    Biofuel production from microalgae represents an acute optimization problem for industry. There is a wide range of parameters that must be taken into account in the development of this technology. Here, mathematical modelling has a vital role to play. The potential of microalgae as a source of biofuel and as a technological solution for CO2 fixation is the subject of intense academic and industrial research. Large-scale production of microalgae has potential for biofuel applications owing to ...

  5. Strategies for optimizing algal biology for enhanced biomass production

    Directory of Open Access Journals (Sweden)

    Amanda N. Barry

    2015-02-01

    Full Text Available One of the more environmentally sustainable ways to produce high energy density (oils feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source and subsequent carbon capture and sequestration (BECCS has also been proposed in the Intergovernmental Panel on Climate Change Report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic carbon capture efficiency and energy-return-on-investment, we must develop biomass production systems that achieve the greatest yields with the lowest inputs. Numerous studies have demonstrated that microalgae have among the greatest potentials for biomass production. This is in part due to the fact that all alga cells are photoautotrophic, they have active carbon concentrating mechanisms to increase photosynthetic productivity, and all the biomass is harvestable unlike plants. All photosynthetic organisms, however, convert only a fraction of the solar energy they capture into chemical energy (reduced carbon or biomass. To increase aerial carbon capture rates and biomass productivity it will be necessary to identify the most robust algal strains and increase their biomass production efficiency often by genetic manipulation. We review recent large-scale efforts to identify the best biomass producing strains and metabolic engineering strategies to improve aerial productivity. These strategies include optimization of photosynthetic light-harvesting antenna size to increase energy capture and conversion efficiency and the potential development of advanced molecular breeding techniques. To date, these strategies have resulted in up to two-fold increases in biomass productivity.

  6. Milk kefir: composition, microbial cultures, biological activities, and related products

    OpenAIRE

    Prado, Maria R.; Blandón, Lina Marcela; Vandenberghe, Luciana P. S.; Rodrigues, Cristine; Castro, Guillermo R; Thomaz-Soccol, Vanete; Carlos R Soccol

    2015-01-01

    In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kef...

  7. Some aspects of biological production and fishery resources of the EEZ of India

    Digital Repository Service at National Institute of Oceanography (India)

    Bhargava, R.M.S.

    Region and season-wise biological production in the Exclusive Economic Zone (EEZ) of India has been computed from the data of more than twenty years available at the Indian National Oceanographic Data Centre of the National Institute of Oceanography...

  8. 75 FR 17929 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-04-08

    ... for the prevention of rotavirus gastroenteritis in infants. The committee will discuss what additional... characterization of cell substrates, viral seeds, and other biological materials used in the production of...

  9. Sustainable Production Process of Biological Mineral Feed Additives

    Directory of Open Access Journals (Sweden)

    Agnieszka Zielinska

    2009-01-01

    Full Text Available Problem statement: This study discussed the problem of accumulation of Zn and Cu in the topsoil as a result of application of mineral feed additives that possess low bioavailability in animal diet. The review considered the production process of mineral feed additives in which a product supplies microelements in highly bioavailable form. Enrichment of natural biomass of edible microalgae with microelement metal ions, which supply microelements of feeding significance in livestock diet, is considered in term of sustainable production. Approach: Production of microalgae-derived products as mineral feed additives requires elaboration of the processes for cultivation of alga, enrichment process and afterwards recovery of the enriched biomass from the solution to obtain liquid free of cells that could be reused in the next process. In this study membrane bioreactor was considered as a method for separation, both in photobioreactor (growth of microorganism as well as in the enrichment process. Results: Effort involved in thermal and chemical separation techniques is higher than that in mechanical techniques. Membrane bioreactors which are usually applied to treat wastewater, both industrial and domestic. This study discussed method to separate a valuable biomass of enriched microalgae and reuse the solution with residual metal ions that can be used once again in the subsequent biosorption process. Conclusion/Recommendation: Taking into consideration care about the environment it is better to apply membrane modules in the production process in terms of sustainable production. The proposed solution assumed the application of membrane modules as a separation step after enrichment process and biomass recovery.

  10. Biological Methanol Production by a Type II Methanotroph Methylocystis bryophila.

    Science.gov (United States)

    Patel, Sanjay K S; Mardina, Primata; Kim, Sang-Yong; Lee, Jung-Kul; Kim, In-Won

    2016-04-28

    Methane (CH₄) is the most abundant component in natural gas. To reduce its harmful environmental effect as a greenhouse gas, CH₄ can be utilized as a low-cost feed for the synthesis of methanol by methanotrophs. In this study, several methanotrophs were examined for their ability to produce methanol from CH₄; including Methylocella silvestris, Methylocystis bryophila, Methyloferula stellata, and Methylomonas methanica. Among these methanotrophs, M. bryophila exhibited the highest methanol production. The optimum process parameters aided in significant enhancement of methanol production up to 4.63 mM. Maximum methanol production was observed at pH 6.8, 30°C, 175 rpm, 100 mM phosphate buffer, 50 mM MgCl₂ as a methanol dehydrogenase inhibitor, 50% CH₄ concentration, 24 h of incubation, and 9 mg of dry cell mass ml(-1) inoculum load, respectively. Optimization of the process parameters, screening of methanol dehydrogenase inhibitors, and supplementation with formate resulted in significant improvements in methanol production using M. bryophila. This report suggests, for the first time, the potential of using M. bryophila for industrial methanol production from CH₄. PMID:26838340

  11. Biodiesel Projects Helpful to Ease Energy Shortage

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Nearly 7,000 hectares of biodiesel forest will take shape in the northern province of Hebei in 2008, part of a national campaign to fuel the fast growing economy in a green way. In no more than five years, the Pistacia chinensis Bunge, whose seeds have an oil content of up to 40 percent, will yield five tons of fruit and contribute about two tons of high-quality biological diesel oil,according to the provincial forestry administration.

  12. Systems-Level Synthetic Biology for Advanced Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Travis J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strickland, Lucas Marshall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tallant, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  13. Recent advances in biological production of sugar alcohols.

    Science.gov (United States)

    Park, Yong-Cheol; Oh, Eun Joong; Jo, Jung-Hyun; Jin, Yong-Su; Seo, Jin-Ho

    2016-02-01

    Sugar alcohols, such as xylitol, mannitol, sorbitol, and erythritol are emerging food ingredients that provide similar or better sweetness/sensory properties of sucrose, but are less calorigenic. Also, sugar alcohols can be converted into commodity chemicals through chemical catalysis. Biotechnological production offers the safe and sustainable supply of sugar alcohols from renewable biomass. In contrast to early studies that aimed to produce sugar alcohols with microorganisms capable of producing sugar alcohols naturally, recent studies have focused on rational engineering of metabolic pathways to improve yield and productivity as well as to use inexpensive and abundant substrates. Metabolic engineering strategies to utilize inexpensive substrates, alleviate catabolite repression, reduce byproduct formation, and manipulate redox balances led to enhanced production of sugar alcohols. PMID:26723007

  14. Increasing algal photosynthetic productivity by integrating ecophysiology with systems biology.

    Science.gov (United States)

    Peers, Graham

    2014-11-01

    Oxygenic photosynthesis is the process by which plants, algae, and cyanobacteria convert sunlight and CO2 into chemical energy and biomass. Previously published estimates suggest that algal photosynthesis is, at best, able to convert approximately 5-7% of incident light energy to biomass and there is opportunity for improvement. Recent analyses of in situ photophysiology in mass cultures of algae and cyanobacteria show that cultivation methods can have detrimental effects on a cell's photophysiology - reinforcing the need to understand the complex responses of cell biology to a highly variable environment. A systems-based approach to understanding the stresses and efficiencies associated with light-energy harvesting, CO2 fixation, and carbon partitioning will be necessary to make major headway toward improving photosynthetic yields. PMID:25306192

  15. Bovine mammary stem cells: Cell biology meets production agriculture

    Science.gov (United States)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  16. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    International Nuclear Information System (INIS)

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  17. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

    2009-07-01

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  18. Biological production of monoethanolamine by engineered Pseudomonas putida S12

    NARCIS (Netherlands)

    Foti, M.J.; Médici, R.; Ruijssenaars, H.J.

    2013-01-01

    Pseudomonas putida S12 was engineered for the production of monoethanolamine (MEA) from glucose via the decarboxylation of the central metabolite l-serine, which is catalyzed by the enzyme l-serine decarboxylase (SDC).The host was first evaluated for its tolerance towards MEA as well as its endogeno

  19. 9 CFR 113.3 - Sampling of biological products.

    Science.gov (United States)

    2010-01-01

    ... bacterial vaccines; (iii) Two samples of Coccidiosis Vaccine; (iv) Eighteen samples of Rabies Vaccine...) Twenty-two single-dose or 14 multiple-dose samples of Rabies Vaccine, Killed Virus; (viii) Sixteen single... be stated in the filed Outline of Production. (b) Unless otherwise prescribed by the...

  20. Shortages of Lifesaving Drugs Linger in U.S.

    Science.gov (United States)

    ... 158708.html Shortages of Lifesaving Drugs Linger in U.S. Longer wait time for vital acute-care meds ... professor of emergency medicine. Since 2012, when the U.S. Food and Drug Administration was authorized to deal ...

  1. Farmer strategies to face labor shortages in Chilean agriculture

    OpenAIRE

    Verónica Aguirre; Rodrigo Echeverría; Clara Olmedo; Gustavo Blanco

    2013-01-01

    This study analyzes the strategies that farmers in the south of Chile use to face current labor shortages and identify the variables that determine each of these strategies. A multinomial logit model and odds ratios plots with predicted probabilities were applied to a sample of 384 farmers. Interviews and focus groups were applied to specific producers, professionals and public officials. The main results show that only 32.3% of farmers declared that labor shortage is a problem. Of this perce...

  2. Energy Policies Cause Unexpected Diesel Shortage in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ An unprecedented diesel shortage is sweeping through Chinese cities, as numerous enterprises have to resort to diesel fuel to generate electricity to continue operation during periods of forced power outages.For example, the diesel shortage has recently paralyzed traffic on a pivotal expressway in Northwest China, with trucks waiting in long lines to fill their fuel tanks.China's Ministry of Commerce has recently required the local bureaus to ensure ample supply of fuel amid rising inflation.

  3. Biological pretreatment and ethanol production from olive cake

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Baroi, George Nabin;

    2010-01-01

    the three-phase olive oil production process could be used as low price feedstock for lignocellulosic ethanol production due to its high concentration in carbohydrates. However, the binding of the carbohydrates with lignin may significantly hinder the necessary enzymatic hydrolysis of the polymeric...... sugars before ethanol fermentation. Treatment with three white rot fungi, Phaneroachaete chrysosporium, Ceriporiopsis subvermispora and Ceriolopsis polyzona has been applied on olive cake in order to investigate the potential for performing delignification and thus enhancing the efficiency of the...... subsequent enzymatic hydrolysis and ethanol fermentation process steps. It has been concluded that the conditions tested were not adequate for reaching satisfactory delignification and thus studying different conditions (humidity, pH and nitrogen levels) is necessary. Another possibility for lowering the...

  4. Production of biological reagents for radioimmunoassay second antibody

    International Nuclear Information System (INIS)

    The experimental production of second antibody to be used in hormonal assays, in which the first antibody is raised in rabbits, is described. Four sheep were immunized with the rabbit immunoglobulin prepared at IPEN-CNEN laboratory. Their antisera were evaluated by the human thyrotropin radioimmunoassay employing materials provided by the National Hormone and Pituitary Program (USA), in comparison with a reference antiserum of known quality, produced in goat by the Radioassay Systems Laboratories - RSL (USA). From the fourth booster injection the animals developed antiserum with titer similar to that exhibited by the commercial product, even presenting higher values. These antisera are now being examinated for the optimal conditions of precipitation before be packed for future use and distribution. (author)

  5. Time-ordered product expansions for computational stochastic system biology

    International Nuclear Information System (INIS)

    The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie’s stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems. (paper)

  6. Biological Impact of Bioactive Glasses and Their Dissolution Products.

    Science.gov (United States)

    Hoppe, Alexander; Boccaccini, Aldo R

    2015-01-01

    For many years, bioactive glasses (BGs) have been widely considered for bone tissue engineering applications due to their ability to bond to hard as well as soft tissue (a property termed bioactivity) and for their stimulating effects on bone formation. Ionic dissolution products released during the degradation of the BG matrix induce osteogenic gene expression leading to enhanced bone regeneration. Recently, adding bioactive metallic ions (e.g. boron, copper, cobalt, silver, zinc and strontium) to silicate (or phosphate and borate) glasses has emerged as a promising route for developing novel BG formulations with specific therapeutic functionalities, including antibacterial, angiogenic and osteogenic properties. The degradation behaviour of BGs can be tailored by adjusting the glass chemistry making these glass matrices potential carrier systems for controlled therapeutic ion release. This book chapter summarises the fundamental aspects of the effect of ionic dissolution products from BGs on osteogenesis and angiogenesis, whilst discussing novel BG compositions with controlled therapeutic ion release. PMID:26201273

  7. Applied systems biology - vanillin production in Saccharomyces cerevisiae

    OpenAIRE

    Strucko, Tomas; Eriksen, Carsten; Nielsen, J.; Mortensen, Uffe Hasbro

    2012-01-01

    Vanillin is the most important aroma compound based on market value, and natural vanillin is extracted from the cured seed pods of the Vanilla orchid. Most of the world’s vanillin, however, is obtained by chemical synthesis from petrochemicals or wood pulp lignins. As an alternative, de novo biosynthesis of vanillin in baker’s yeast Saccharomyces cerevisiae was recently demonstrated by successfully introducing the metabolic pathway for vanillin production in yeast. Nevertheless, the amount of...

  8. Biological Activity and Nutritional Properties of Processed Onion Products

    OpenAIRE

    Rolán Marín, María Eduvigis

    2009-01-01

    The first part of the PhD Thesis aimed to evaluate in vitro effects of food processing and preservation technologies on onion nutritional and technological properties. The first in vitro study analyzed ‘Figueres’ and ‘Recas’ onion by-products (juices, pastes and bagasses) stabilized by sterilization, pasteurization, and freezing technologies. Results demonstrated that processing ‘Recas’ onion wastes to obtain onion pastes and the subsequent stabilization with pasteurization trigge...

  9. Strategies for optimizing algal biology for enhanced biomass production

    OpenAIRE

    Barry, Amanda N.; Starkenburg, Shawn R.; Richard eSayre

    2015-01-01

    One of the more environmentally sustainable ways to produce high energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration (BECCS) has also been proposed in the Intergovernmental Panel on Climate Change Report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosyn...

  10. Strategies for Optimizing Algal Biology for Enhanced Biomass Production

    OpenAIRE

    Barry, Amanda N.; Starkenburg, Shawn R.; Sayre, Richard T.

    2015-01-01

    One of the most environmentally sustainable ways to produce high-energy density (oils) feed stocks for the production of liquid transportation fuels is from biomass. Photosynthetic carbon capture combined with biomass combustion (point source) and subsequent carbon capture and sequestration has also been proposed in the intergovernmental panel on climate change report as one of the most effective and economical strategies to remediate atmospheric greenhouse gases. To maximize photosynthetic c...

  11. BIOLOGICAL AND PRODUCTIVE RESOURCES OF LACTATING COWS AT DENITRIFICATION

    Directory of Open Access Journals (Sweden)

    Kokaeva M. G.

    2015-09-01

    Full Text Available The article presents the results obtained in the process of two scientific-practical experiments carried jut on two milk cows (Shvitskay breed aimed at the antioxidants detoxication properties and mould inhibitor revealing. This factor is actual in the Republic of North Ossetia-Alania as the intensive technologies of the fodder crops cultivation using the nitrate fertilizers are widely applied in the region leading to the excess nitrates and nitrite penetration into the animals’ organism. During the first experiment, the antioxidants of epophen and vitamin C were added into the ration of the lactating cows with the subtoxic dosage of nitrates both separately and in complex. The complex feeding proved to increase the milk productivity, the fat mass and protein mass in milk while reducing the fodder expenditure per product unit. Beside, the lactating cows revealed the digestive and intermediate exchange betterment and the reduction of nitrates and nitrites level in blood. The second experiment helped to study Khadoks antioxidant and mould inhibitor called Mold-Zap efficiency use for the nitrates and aflotoxicin B1 detoxication. The researches showed that the complex admixtures of the said preparations introduction into the rations of the animals increased the milk productivity, fat and protein content and reduced aflatoxineM1 content. The cows activated the digestive and intermediate exchange, accompanied with the nitrates and nitrites level reduction in the organism

  12. Biological fouling of ethylene production water recycling system

    Energy Technology Data Exchange (ETDEWEB)

    Kurdish, I.K.; Khenkina, L.M.; Pavlenko, N.I.

    A study was made of biotic factors determining the intensity of biological overgrowth of ethylene as well as the distribution of sulfate-reducing bacteria in the system. The total quantity of microorganisms was determined by counting on membrane filters. The content of heterotrophic aerobic and anaerobic microorganisms was determined by inoculating specimens on meat-peptone agar and wort agar. The resistance of the microflora in the water supply system to high temperatures was studied by exposure of the specimens to various temperatures for one hour. The results indicated presence of large quantities of a number of biogenous substances in the water, including compounds of phosphorus and carbon. Large numbers of both aerobic and anaerobic microorganisms were present, consuming the oxygen absorbed by the water in the cooling tower, creating favorable conditions for development of both aerobic and anaerobic microorganisms. The sulfate-reducing bacteria present caused accumulation of hydrogen sulfide in the system, increasing corrosion. One possible means of controlling the fouling organisms might be to heat the water. Heating to 60C for sixty minutes significantly reduces the microorganism population, while 70C results in almost total elimination. 8 references, 4 figures.

  13. Biological Hydrogen Production Using Chloroform-treated Methanogenic Granules

    Science.gov (United States)

    Hu, Bo; Chen, Shulin

    In fermentative hydrogen production, the low-hydrogen-producing bacteria retention rate limits the suspended growth reactor productivity because of the long hydraulic retention time (HRT) required to maintain adequate bacteria population. Traditional bacteria immobilization methods such as calcium alginate entrapment have many application limitations in hydrogen fermentation, including limited duration time, bacteria leakage, cost, and so on. The use of chloroform-treated anaerobic granular sludge as immobilized hydrogen-producing bacteria in an immobilized hydrogen culture may be able to overcome the limitations of traditional immobilization methods. This paper reports the findings on the performance of fed-batch cultures and continuous cultures inoculated with chloroform-treated granules. The chloroform-treated granules were able to be reused over four fed-batch cultures, with pH adjustment. The upflow reactor packed with chloroform-treated granules was studied, and the HRT of the upflow reactor was found to be as low as 4 h without any decrease in hydrogen production yield. Initial pH and glucose concentration of the culture medium significantly influenced the performance of the reactor. The optimum initial pH of the culture medium was neutral, and the optimum glucose concentration of the culture medium was below 20 g chemical oxygen demand/L at HRT 4 h. This study also investigated the possibility of integrating immobilized hydrogen fermentation using chloroform-treated granules with immobilized methane production using untreated granular sludge. The results showed that the integrated batch cultures produced 1.01 mol hydrogen and 2 mol methane per mol glucose. Treating the methanogenic granules with chloroform and then using the treated granules as immobilized hydrogen-producing sludge demonstrated advantages over other immobilization methods because the treated granules provide hydrogen-producing bacteria with a protective niche, a long duration of an active

  14. An economic order quantity model with shortage and inflation

    Science.gov (United States)

    Wulan, Elis Ratna; Nurjaman, Wildan

    2015-09-01

    The effect of inflation has become a persistent characteristic and more significant problem of many developing economies especially in the third world countries. While making effort to achieve optimal quantity of product to be produced or purchased using the simplest and on the shelf classical EOQ model, the non-inclusion of conflicting economic realities as shortage and inflation has rendered its result quite uneconomical and hence the purpose for this study. Mathematical expression was developed for each of the cost components the sum of which become the total inventory model over the period (0,L) ((TIC(0,L)). L is planning horizon and TIC(0,L) is total inventory cost over a period of (0,L). Significant savings with increase in quantity was achieved based on deference in the varying price regime. With the assumptions considered and subject to the availability of reliable inventory cost element, the developed model is found to produce a feasible, and economic inventory stock-level with the numerical example of a material supply of a manufacturing company.

  15. Production, Secretion and Biological Activity of Bacillus cereus Enterotoxins

    Directory of Open Access Journals (Sweden)

    Sonia Senesi

    2010-06-01

    Full Text Available Bacillus cereus behaves as an opportunistic pathogen frequently causing gastrointestinal diseases, and it is increasingly recognized to be responsible for severe local or systemic infections. Pathogenicity of B. cereus mainly relies on the secretion of a wide array of toxins and enzymes and also on the ability to undergo swarming differentiation in response to surface-sensing. In this report, the pathogenicity exerted by B. cereus toxins is described with particular attention to the regulatory mechanisms of production and secretion of HBL, Nhe and CytK enterotoxins.

  16. Application of Olefin Cross-Metathesis to the Synthesis of Biologically Active Natural Products

    OpenAIRE

    Prunet, Joëlle

    2005-01-01

    An overview of the use of olefin cross-metathesis in the synthesis of biologically active natural products is presented. The diverse examples are organized according to the outcome of the olefin constructed by the cross-metathesis reaction: this olefin can be either present in the final product, reduced, engaged in other transformations, or involved in tandem processes.

  17. Natural product diversity and its role in chemical biology and drug discovery

    OpenAIRE

    Hong, Jiyong

    2011-01-01

    Through the natural selection process, natural products possess a unique and vast chemical diversity and have been evolved for optimal interactions with biological macromolecules. Owing to their diversity, target affinity, and specificity, natural products have demonstrated enormous potential as modulators of biomolecular function, been an essential source for drug discovery, and provided design principles for combinatorial library development.

  18. New opportunities by synthetic biology for biopharmaceutical production in Pichia pastoris

    OpenAIRE

    Vogl, Thomas; Franz S. Hartner; Glieder, Anton

    2013-01-01

    Biopharmaceuticals are an integral part of modern medicine and pharmacy. Both, the development and the biotechnological production of biopharmaceuticals are highly cost-intensive and require suitable expression systems. In this review we discuss established and emerging tools for reengineering the methylotrophic yeast Pichia pastoris for biopharmaceutical production. Recent advancements of this industrial expression system through synthetic biology include synthetic promoters to avoid methano...

  19. Pharmacogenomic Biomarkers: an FDA Perspective on Utilization in Biological Product Labeling.

    Science.gov (United States)

    Schuck, Robert N; Grillo, Joseph A

    2016-05-01

    Precision medicine promises to improve both the efficacy and safety of therapeutic products by better informing why some patients respond well to a drug, and some experience adverse reactions, while others do not. Pharmacogenomics is a key component of precision medicine and can be utilized to select optimal doses for patients, more precisely identify individuals who will respond to a treatment and avoid serious drug-related toxicities. Since pharmacogenomic biomarker information can help inform drug dosing, efficacy, and safety, pharmacogenomic data are critically reviewed by FDA staff to ensure effective use of pharmacogenomic strategies in drug development and appropriate incorporation into product labels. Pharmacogenomic information may be provided in drug or biological product labeling to inform health care providers about the impact of genotype on response to a drug through description of relevant genomic markers, functional effects of genomic variants, dosing recommendations based on genotype, and other applicable genomic information. The format and content of labeling for biologic drugs will generally follow that of small molecule drugs; however, there are notable differences in pharmacogenomic information that might be considered useful for biologic drugs in comparison to small molecule drugs. Furthermore, the rapid entry of biologic drugs for treatment of rare genetic diseases and molecularly defined subsets of common diseases will likely lead to increased use of pharmacogenomic information in biologic drug labels in the near future. In this review, we outline the general principles of therapeutic product labeling and discuss the utilization of pharmacogenomic information in biologic drug labels. PMID:26912182

  20. Development of biological functional material and product from Nelumbo nucifera

    International Nuclear Information System (INIS)

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient

  1. Development of biological functional material and product from Nelumbo nucifera

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Il Yun; Park, Yong Dae; Jin, Chang Hyun; Choi, Dae Seong

    2008-01-15

    The solvent extracts of Nelumbo nucifera G. were investigated for the activities of antioxidant, whitening, anti-wrinkle and antimicrobial effects to apply as a functional ingredient for cosmetic products. The electron donating ability of irradiated NN-L extract was above 85% at the concentration of 50ppm. The superoxide dismutase(SOD)-like activity of irradiated NN-L extract was about 76% at 1,000ppm concentration. The xanthine oxidase inhibitory effect of irradiated NN-L extract was about 15% at 1,000ppm. The tyrosinase inhibitory effect of irradiated NN-L extract was about 18% at 1,000ppm. Anti-wrinkle effect, the elastase inhibition activity of irradiated NN-L extract was about 45% at 1,000ppm concentration. All these findings suggested that Nelumbo nucifera G. has a great potential as a cosmeceutical ingredient.

  2. A novel biological hydrogen production system. Impact of organic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, Hisham; Nakhla, George; El Naggar, Hesham [Western Ontario Univ. (Canada)

    2010-07-01

    The patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. Two biohydrogenators were operated for 220 days at 37 C, hydraulic retention time 8 h and solids retention time ranged from 1.4 to 2 days under four different glucose concentrations of 2, 8, 16, 32, 48 and 64 g/L, corresponding to organic loading rates of 6.5-206 kg COD/m{sup 3}-d, and started up using anaerobically-digested sludge from the St. Marys wastewater treatment plant (St.Mary, Ontario, Canada) as the seed. The system steadily produced hydrogen with no methane. A maximum hydrogen yield of 3.1 mol H{sub 2} /mol glucose was achieved in the system for all the organic loading rates with an average of 2.8mol H{sub 2} /mol glucose. Acetate and butyrate were the main effluent liquid products at concentrations ranging from 640-7400 mg/L and 400-4600 mg/l, respectively, with no lactate detection. Microbial community analysis using denaturing gradient gel electrophoresis (DGGE) confirmed the absence of lactate producing bacteria Lactobacillus fermentum and other non-hydrogen producing species, and the predominance of various Clostridium species. Biomass concentrations in the biohydrogenators were steady, during the runs, varying form 1500 mg/L at the OLR of 6.5 kg COD/m{sup 3}-d to 14000 mg/L at the 104 kg COD/m{sup 3}-d, thus emphasizing the potential of this novel system for sustained stable hydrogen production and prevention of biomass washout. (orig.)

  3. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  4. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  5. Models of risk assessments for biologicals or related products in the European Union.

    Science.gov (United States)

    Moos, M

    1995-12-01

    In the context of veterinary biologicals, environmental risk assessment means the evaluation of the risk to human health and the environment (which includes plants and animals) connected with the release of such products. The following categories or types of veterinary biologicals can be distinguished: non-genetically modified organisms (non-GMOs) (inactivated/live) GMOs (inactivated/live) carrier products related products (e.g. non-specific "inducers'). Suitable models used in risk assessment for these products should aim to identify all possible adverse effects. A good working model should lead, at least, to a qualitative judgement on the environmental risk of the biological product (e.g. negligible, low, medium, severe, unacceptable). Quantifiable outcomes are rare; therefore, the producer of a biological product and the European control authorities should accept only models which are based on testable points and which are relevant to the type of product and its instructions for use. In view of animal welfare aspects, models working without animals should be preferred. In recent years, some of these methods have been integrated into safety tests described in European Union Directives and in monographs of the European Pharmacopoeia. By reviewing vaccine/registration problems (e.g. Aujeszky's disease live vaccine for pigs, and vaccinia-vectored rabies vaccine), several models used in risk assessment are demonstrated and discussed. PMID:8639943

  6. Potential for widespread application of biological control of stored-product pests

    DEFF Research Database (Denmark)

    Hansen, Lise Stengaard

    2007-01-01

    Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biologica...... situations will contribute to ensuring that stored food products are protected from insect and mite pests using techniques that are safe for consumers, workers and the environment.......Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biological...... control of stored-product pests and has considered a number of existing and potential fields for application of biological control. Three situations were identified where biological control would be a valuable component of integrated pest management: (1) Empty room treatment against stored-product mites...

  7. Biological production of hydroxylated aromatics: Optimization strategies for Pseudomonas putida S12

    OpenAIRE

    A. Verhoef

    2010-01-01

    To replace environmentally unfriendly petrochemical production processes, the demand for bio-based production of organic chemicals is increasing. This thesis focuses on the biological production of hydroxylated aromatics from renewable substrates by engineered P. putida S12 including several cases of strain improvement. Chapter 2 describes the construction of a P. putida S12 strain that produces p-hydroxybenzoate via the aromatic amino acid tyrosine. Previous research on biosynthesis of aroma...

  8. Organic Production Systems: What the Biological Cell Can Teach Us About Manufacturing

    OpenAIRE

    Lieven Demeester; Knut Eichler; Christoph H. Loch

    2004-01-01

    Biological cells run complicated and sophisticated production systems. The study of the cell's production technology provides us with insights that are potentially useful in industrial manufacturing. When comparing cell metabolism with manufacturing techniques in industry, we find some striking commonalities, but also some important differences. Like today's well-run factories, the cell operates a very lean production system, assures quality at the source, and uses component commonality to si...

  9. Current good manufacturing practice in plant automation of biological production processes

    OpenAIRE

    Dorresteijn, R. C.; Wieten, G.; van Santen, P. T. E.; Philippi, M. C.; de Gooijer, C. D.; Tramper, J.; Beuvery, E.C.

    1997-01-01

    The production of biologicals is subject to strict governmental regulations. These are drawn up in current good manufacturing practices (cGMP), a.o. by the U.S. Food and Drug Administration. To implement cGMP in a production facility, plant automation becomes an essential tool. For this purpose Manufacturing Execution Systems (MES) have been developed that control all operations inside a production facility. The introduction of these recipe-driven control systems that follow ISA S88 standards...

  10. Antibacterial Activity within Degradation Products of Biological Scaffolds Composed of Extracellular Matrix

    OpenAIRE

    BRENNAN, ELLEN P.; Reing, Janet; CHEW, DOUGLAS; MYERS-IRVIN, JULIE M.; YOUNG, E.J.; Badylak, Stephen F.

    2006-01-01

    Biological scaffolds composed of extracellular matrix (ECM) have been shown to be resistant to deliberate bacterial contamination in preclinical in vivo studies. The present study evaluated the degradation products resulting from the acid digestion of ECM scaffolds for antibacterial effects against clinical strains of Staphylococcus aureus and Escherichia coli. The ECM scaffolds were derived from porcine urinary bladder (UBM-ECM) and liver (L-ECM). These biological scaffolds were digested wit...

  11. Combustion and emissions characterization of terpenes with a view to their biological production in cyanobacteria

    OpenAIRE

    Hellier, P.; Al-Haj, L.; Talibi, M.; Purton, S.; Ladommatos, N.

    2013-01-01

    In developing future fuels there is an opportunity to make use of advances in many fields of science and engineering to ensure that such fuels are sustainable in both production and utilization. One such advance is the use of synthetic biology to re-engineer photosynthetic micro-organisms such that they are able to produce novel hydrocarbons directly from CO2. Terpenes are a class of hydrocarbons that can be produced biologically and have potential as liquid transport fuels. This paper presen...

  12. An analysis of news flow on the nation's nurse shortage.

    Science.gov (United States)

    Kalisch, B J; Kalisch, P A; Clinton, J

    1981-09-01

    Using data from national newspaper clipping services, this article analyzes characteristics of 1978 news coverage of the nation's nurse shortage. Based on a content analysis of nearly 3,000 newspaper articles, findings revealed that 14 per cent of the articles mentioned problems of nurse supply. Articles on nurse shortage were most frequent in the Pacific, Mid-Atlantic and South-Atlantic states and occurred least in the West-North Central and East-South Central states. Articles mentioning nurse shortage were more frequently placed on page 1, associated with clinical nursing in hospital settings and explained as the result of maldistribution of nurses, poor salaries, deficient working conditions and lack of job satisfaction. The reading public was confronted with three major consequences of current and continued shortages in nursing: 1) decline in the availability and diversity of health services; 2) erosion in the quality of care offered the public and jeopardized patient welfare; and 3) escalating health care costs. Solutions to the nurse shortage appear to be closely tied to further expansion of the issue among the public, the initiation of remedial governmental action and timely relocation of scarce resources within the health care industry. PMID:7289679

  13. Recent progress in synthetic biology for microbial production of C3-C10 alcohols

    Directory of Open Access Journals (Sweden)

    Edna N. Lamsen

    2012-06-01

    Full Text Available The growing need to address current energy and environmental problems has sparked an interest in developing improved biological methods to produce liquid fuels from renewable sources. While microbial ethanol production is well established, higher chain alcohols possess chemical properties that are more similar to gasoline. Unfortunately, these alcohols (except 1-butanol are not produced efficiently in natural microorganisms, and thus economical production in industrial volumes remains a challenge. Synthetic biology, however, offers additional tools to engineer synthetic pathways in user-friendly hosts to help increase titers and productivity of these advanced biofuels. This review concentrates on recent developments in synthetic biology to produce higher-chain alcohols as viable renewable replacements for traditional fuel.

  14. Studies on production and biological potential of prodigiosin by Serratia marcescens.

    Science.gov (United States)

    Suryawanshi, Rahul K; Patil, Chandrashekhar D; Borase, Hemant P; Salunke, Bipinchandra K; Patil, Satish V

    2014-07-01

    Efficacy of Serratia marcescens for pigment production and biological activity was investigated. Natural substrates like sweet potato, mahua flower extract (Madhuca latifolia L.), and sesam at different concentrations were taken. As a carbon source microorganism favored potato powder was followed by sesam and mannitol, and as nitrogen source casein hydrolysate was followed by yeast and malt extract. The effect of inorganic salts on pigment production was also studied. At final optimized composition of suitable carbon, nitrogen source, and trace materials and at suitable physiological conditions, prodigiosin production was 4.8 g L(-1). The isolated pigment showed antimicrobial activity against different pathogenic bacteria and fungi. Extracted pigment was characterized by spectroscopy, Fourier transform infrared (FTIR), and thin layer chromatography (TLC) which confirm production of biological compound prodigiosin. This study suggests that use of sweet potato powder and casein can be a potential alternative bioresource for commercial production of pigment prodigiosin. PMID:24781979

  15. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

    DEFF Research Database (Denmark)

    Jullesson, David; David, Florian; Pfleger, Brian;

    2015-01-01

    Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an imp...... chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes.......Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an...... important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine...

  16. Bioinformatics for the synthetic biology of natural products: integrating across the Design-Build-Test cycle.

    Science.gov (United States)

    Carbonell, Pablo; Currin, Andrew; Jervis, Adrian J; Rattray, Nicholas J W; Swainston, Neil; Yan, Cunyu; Takano, Eriko; Breitling, Rainer

    2016-08-27

    Covering: 2000 to 2016Progress in synthetic biology is enabled by powerful bioinformatics tools allowing the integration of the design, build and test stages of the biological engineering cycle. In this review we illustrate how this integration can be achieved, with a particular focus on natural products discovery and production. Bioinformatics tools for the DESIGN and BUILD stages include tools for the selection, synthesis, assembly and optimization of parts (enzymes and regulatory elements), devices (pathways) and systems (chassis). TEST tools include those for screening, identification and quantification of metabolites for rapid prototyping. The main advantages and limitations of these tools as well as their interoperability capabilities are highlighted. PMID:27185383

  17. Supply-based dynamic Ramsey pricing: Avoiding water shortages

    Science.gov (United States)

    Saǧlam, Yiǧit

    2015-01-01

    In many countries, current water-pricing policies are dictated by the sole objective of financial breaking even. This results in large withdrawals, which are not sustainable in the long run, hence not optimal. In this paper, we derive the optimal dynamic pricing policy, which targets efficient distribution while breaking even through a rebate scheme. Using data from Turkey, we estimate the demand for water by user groups. We carry out simulations to compare the effects of the current and optimal pricing policies on the frequency and severity of shortages. We find that, under the policy of break-even prices, the supplier runs into a shortage every 8 years. In contrast, if the prices were to set optimally, shortages would be practically nonexistent over the next century.

  18. The nurse manager: job satisfaction, the nursing shortage and retention.

    Science.gov (United States)

    Andrews, Diane Randall; Dziegielewski, Sophia F

    2005-07-01

    A critical shortage of registered nurses exists in the United States and this shortage is expected to worsen. It is predicted that unless this issue is resolved, the demand for nursing services will exceed the supply by nearly 30% in 2020. Extensive analysis of this pending crisis has resulted in numerous recommendations to improve both recruitment and retention. The purpose of this article is to clearly outline the issues contributing to this problem, and to provide the nurse manager with information regarding specific influences on job satisfaction as it relates to job turnover and employee retention. To accomplish this, an analysis of the literature using both national and international sources is used to formulate the lessons learned as well as strategies and future courses of action designed to address this shortage. PMID:15946168

  19. The nursing shortage and ethics: up front and personal.

    Science.gov (United States)

    Silva, M C; Ludwick, R

    2001-01-01

    In times of crisis it is often that values and beliefs and, subsequently, our ethics are challenged. Authors in OJIN have addressed some of the ethical issues that nurses face in relation to crises in health care. For example, P. J. Maddox (1998) addressed ethical issues surrounding economic constraints and scarce resources. In this current issue of OJIN, Cheryl Peterson (2001) writes of the ethical dilemma nurses face in trying to comply with the Code for Nurses with Interpretive Statement, 1985 in light of the present nursing shortage. We invite you to read these and the other OJIN articles on the shortage and then submit to this column a story about how the nursing shortage has ethically affected you or your patients/clients. PMID:11936945

  20. Can alternative sugar sources buffer pollinators from nectar shortages?

    Science.gov (United States)

    Gardner-Gee, Robin; Dhami, Manpreet K; Paulin, Katherine J; Beggs, Jacqueline R

    2014-12-01

    Honeydew is abundant in many ecosystems and may provide an alternative food source (a buffer) for pollinators during periods of food shortage, but the impact of honeydew on pollination systems has received little attention to date. In New Zealand, kānuka trees (Myrtaceae: Kunzea ericoides (A. Rich) Joy Thompson) are often heavily infested by the endemic honeydew-producing scale insect Coelostomidia wairoensis (Maskell) (Hemiptera: Coelostomidiidae) and the period of high honeydew production can overlap with kānuka flowering. In this study, we quantified the sugar resources (honeydew and nectar) available on kānuka and recorded nocturnal insect activity on infested and uninfested kānuka during the flowering period. Insects were abundant on infested trees, but flowers on infested trees received fewer insect visitors than flowers on uninfested trees. There was little evidence that insects had switched directly from nectar-feeding to honeydew-feeding, but it is possible that some omnivores (e.g., cockroaches) were distracted by the other honeydew-associated resources on infested branches (e.g., sooty molds, prey). Additional sampling was carried out after kānuka flowering had finished to determine honeydew usage in the absence of adjacent nectar resources. Moths, which had fed almost exclusively on nectar earlier, were recorded feeding extensively on honeydew after flowering had ceased; hence, honeydew may provide an additional food source for potential pollinators. Our results show that honeydew resources can impact floral visitation patterns and suggest that future pollinator studies should consider the full range of sugar resources present in the study environment. PMID:25368982

  1. A field survey of chemicals and biological products used in shrimp farming

    International Nuclear Information System (INIS)

    This study documented the use of chemicals and biological products in marine and brackish water shrimp farming in Thailand, the world's top producer of farmed shrimp. Interviews were conducted with 76 shrimp farmers in three major shrimp producing regions, the eastern Gulf coast, the southern Gulf coast and the Andaman coast area. Farmers in the study used on average 13 different chemicals and biological products. The most commonly used products were soil and water treatment products, pesticides and disinfectants. Farmers in the southern Gulf coast area used a larger number of products than farmers in the other two areas. In the study, the use of more than 290 different chemicals and biological products was documented. Many of the pesticides, disinfectants and antibiotics used by the farmers could have negative effects on the cultured shrimps, cause a risk for food safety, occupational health, and/or have negative effects on adjacent ecosystems. Manufacturers and retailers of the products often neglected to provide farmers with necessary information regarding active ingredient and relevant instructions for safe and efficient use

  2. New approaches to estimation of peat deposits for production of biologically active compounds

    Science.gov (United States)

    Stepchenko, L. M.; Yurchenko, V. I.; Krasnik, V. G.; Syedykh, N. J.

    2009-04-01

    It is known, that biologically active preparations from peat increase animals productivity as well as resistance against stress-factors and have adaptogeneous, antioxidant, immunomodulative properties. Optymal choice of peat deposits for the production of biologically active preparations supposes the detailed comparative analysis of peat properties from different deposits. For this the cadastre of peat of Ukraine is developed in the humic substances laboratory named after prof. Khristeva L.A. (Dnipropetrovsk Agrarian University, Ukraine). It based on the research of its physical and chemical properties, toxicity and biological activity, and called Biocadastre. The Biocadastre is based on the set of parameters, including the descriptions of physical and chemical properties (active acidity, degree of decomposition, botanical composition etc.), toxicity estimation (by parabyotyc, infusorial, inhibitor and other tests), biological activity indexes (growth-promoting, antioxidative, adaptogeneous, immunomodulative antistress and other actions). The blocks of Biocadastre indexes are differentiated, taking into account their use for creation the preparations for vegetable, animals and microorganisms. The Biocadastre will allow to choose the peat deposits, most suitable for the production of different biologically active preparations, both wide directed and narrow spectrum of action, depending on application fields (medicine, agriculture, veterinary medicine, microbiological industry, balneology, cosmetology).

  3. Biological Constraints in Tomato Production in the Western Highlands of Cameroon

    Directory of Open Access Journals (Sweden)

    Fontem, DA.

    1999-01-01

    Full Text Available Tomato (Lycopersicon esculentum production is handicapped by damage due to pests and pathogens. Farmers' fields in the western highlands of Cameroon were surveyed during 1993 to 1996 to identify biological constraints in production. Diseases and insect pests are the most important biological limitations in tomato production. Late blight caused by Phytophthora infestans and early blight caused by Alternaria solani are the most severe diseases, while the melon fruitfly (Dacus cucurbitae is the most prevalent insect pest. Yield losses due to pest damage are high and reach 100 % when the crop is not treated in the wet season. Pest-resistant varieties are not available to farmers. Consequently, growers practise intensive pesticidal spray programmes to limit losses caused by pests and diseases. Results indicate the necessity for the adoption of integrated pest management strategies in tomato production in Cameroon.

  4. Compound Activity Mapping: Integrating Chemical and Biological Profiling for the Functional Annotation of Natural Product Libraries

    OpenAIRE

    Kurita, Kenji Long

    2015-01-01

    Natural products research has had a significant impact on human-health and our understanding of the natural world as a pillar of pharmacognosy, organic chemistry, ecology, and chemical biology. But while this science has yielded countless discoveries such as penicillin, taxol, and artimesinin and will continue to improve quality of life around the world, the idea that natural products is a panacea of chemical diversity has been challenged by problems including the endless rediscovery of known...

  5. REGULATION OF PRODUCTION PERFORMANCE OF CHICORY PLANTS BY FOLIAR APPLICATION OF BIOLOGICALLY ACTIVE SUBSTANCES

    OpenAIRE

    MAREK KOVÁR; IVAN ČERNÝ

    2012-01-01

    In this study were evaluated both the growth and yield potentials of three chicory (Cichorium intybus var. sativum) varieties ('Fredonia Nova', 'Oesia' a 'Maurane') growing in natural agro-ecological conditions from 2006 to 2008. Regulation of the crop productivity by foliar application of biologically active substances (Atonik, Polybor 150, and Biafit Gold) was also studied. Evaluation of growth-production performance of chicory was realized as: leaf area index (LAI), photosynthetic potentia...

  6. What controls biological productivity in coastal upwelling systems? Insights from a comparative modeling study

    OpenAIRE

    Z. Lachkar; Gruber, N.

    2011-01-01

    The magnitude of the biological productivity in Eastern Boundary Upwelling Systems (EBUS) is traditionally viewed as directly reflecting the upwelling intensity. Yet, different EBUS show different sensitivities of productivity to upwelling-favorable winds (Carr and Kearns, 2003). Here, using a comparative modeling study of the California Current System (California CS) and Canary Current System (Canary CS), we show how physical and environmental factors, such as light, temperature and c...

  7. Are radioisotope shortages a thing of the past?

    Energy Technology Data Exchange (ETDEWEB)

    Peykov, Pavel; Cameron, Ron [OECD Nuclear Energy Agency, Issy-les-Moulineaux (France)

    2014-10-15

    Since June 2009, the NEA and its High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR) have examined the causes of {sup 99}Mo/{sup 99m}Tc supply shortages and developed a policy approach, including principles and supporting recommendations to address those causes. The NEA has also reviewed the global {sup 99}Mo/{sup 99m}Tc supply situation periodically, using the most up-to-date data from supply chain participants, to highlight periods of reduced supply and underscore the case for implementing the HLG-MR policy approach in a timely and globally-consistent manner. In 2012, the NEA released a {sup 99}Mo supply and demand update for the period up to 2030 (A Supply and Demand Update of the Molybdenum-99 Market, OECD/NEA, 2012), identifying periods of low supply relative to demand. This paper presents the preliminary results from an updated {sup 99}Mo supply and demand forecast, focusing on the potentially critical 2015-2020 period, when two major {sup 99}Mo producers (the NRU reactor in Canada and the OSIRIS reactor in France) are scheduled to cease {sup 99}Mo irradiations. On the demand side, the NEA had previously released a study with the results from a global survey of future demand for {sup 99}Mo/{sup 99m}Tc (OECD-NEA, 2011), devising a scenario based on a data assessment by an expert advisory group. In the current analysis, the expected demand growth rate and total demand have been modified, based on the latest information from supply chain participants. On the supply side, the NEA has updated the list of current and planned new {sup 99}Mo/{sup 99m}Tc irradiation and processing projects. The modelling results incorporate revisions to production start/end dates, potential additional projects, and impacts of converting to the use of low-enriched uranium (LEU) targets on {sup 99}Mo/{sup 99m}Tc capacity and production. The supply forecast horizon (2015 to 2020) has been chosen to reflect upcoming, important changes in global production capacity

  8. Biological productivity and potential resources of the exclusive economic zone (EEZ) of India

    Digital Repository Service at National Institute of Oceanography (India)

    Goswami, S.C.

    An assessment of the biological production and the potential fishery resources has been made based on the data collected over a period of 15 years (1976-1991). The entire Exclusive Economic Zone (EEZ), measuring 2.02 million km sup(2) was divided...

  9. 9 CFR 113.51 - Requirements for primary cells used for production of biologics.

    Science.gov (United States)

    2010-01-01

    ... biological product shall be shown free of mycoplasma as prescribed in § 113.28. The sample for testing shall...) Monolayers of avian origin shall be maintained for at least 14 days and shall be subcultured at least once.... (ii) Monolayers not of avian origin shall be maintained for at least 28 days and shall be...

  10. 21 CFR 310.4 - Biologics; products subject to license control.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Biologics; products subject to license control. 310.4 Section 310.4 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... to license control. (a) If a drug has an approved license under section 351 of the Public...

  11. [Special considerations for the regulation of biological medicinal products in individualised medicine. More than stratified medicine].

    Science.gov (United States)

    Müller-Berghaus, J; Volkers, P; Scherer, J; Cichutek, K

    2013-11-01

    The term individualised medicine, also called personalised medicine, is commonly used as an equivalent to stratified medicine. However, this is erroneous since quite often it is forgotten that especially biological medicinal products have other aspects of individualization that go beyond mere stratification. The principles of stratified medicine have been applied for biological medicinal products for many years. A historical example is diphtheria antitoxin made from horse serum, while current examples are transfusion of red blood cells and the administration of factor VIII in haemophilia A. The stratifying aspects of these medicinal products are given by the following considerations: diphtheria antitoxin is only administered after a diagnosis of diphtheria and not in other forms of tonsillitis, red blood cells should only be transfused once blood group compatibility as been established and factor VIII replacement is only administered in haemophilia A as opposed to other acquired or hereditary disease of the coagulation system. The peculiarities of biological medicinal products, in particular the inherent variability of the drug, are especially important for autologous cellular medicinal products. In addition to the expected variability of the biological source material there is interindividual variability of patients as cell donors, which make definition of specifications and determination of criteria for pharmaceutical quality and potency tests difficult. Therapy with modified autologous cells, a common and important application of advanced therapy medicinal products, is exemplary for the special considerations that must be made when evaluating pharmaceutical quality, mode of action and toxicological properties of the biological medicine. The clinical investigation of advanced therapy medicinal products with the intent of demonstrating safety and efficacy is particularly challenging because of the complexity of therapy, which often involves invasive interventions

  12. The Human Constraint; The Coming Shortage of Managerial Talent.

    Science.gov (United States)

    Miner, John B.

    The prospect of a massive managerial talent shortage in the United States and what can be done about it are the central concerns of the study, which revealed a notable decline in motivation to manage among business students and young managers. Part 1 defines the components of motivation to manage and their vital relationship to personal and…

  13. Energy network dispatch optimization under emergency of local energy shortage

    International Nuclear Information System (INIS)

    The consequence of short-time energy shortage under extreme conditions, such as earthquake, tsunami, and hurricane, may cause local areas to suffer from delayed rescues, widespread power outages, tremendous economic losses, and even public safety threats. In such urgent events of local energy shortage, agile energy dispatching through an effective energy transportation network, targeting the minimum energy recovery time, should be a top priority. In this paper, a novel methodology is developed for energy network dispatch optimization under emergency of local energy shortage, which includes four stages of work. First, emergency-area-centered energy network needs to be characterized, where the capacity, quantity, and availability of various energy sources are determined. Second, the energy initial situation under emergency conditions needs to be identified. Then, the energy dispatch optimization is conducted based on a developed MILP (mixed-integer linear programming) model in the third stage. Finally, the sensitivity of the minimum dispatch time with respect to uncertainty parameters is characterized by partitioning the entire space of uncertainty parameters into multiple subspaces. The efficacy of the developed methodology is demonstrated via a case study with in-depth discussions. -- Highlights: ► Address the energy network dispatch problem under emergency of local energy shortage. ► Minimize the energy restoration time for the entire energy network under emergency events. ► Develop a new MILP model and a sensitivity analysis method with respect to uncertainties.

  14. Statistical and regulatory considerations in assessments of interchangeability of biological drug products.

    Science.gov (United States)

    Tóthfalusi, Lászlo; Endrényi, László; Chow, Shein-Chung

    2014-05-01

    When the patent of a brand-name, marketed drug expires, new, generic products are usually offered. Small-molecule generic and originator drug products are expected to be chemically identical. Their pharmaceutical similarity can be typically assessed by simple regulatory criteria such as the expectation that the 90% confidence interval for the ratio of geometric means of some pharmacokinetic parameters be between 0.80 and 1.25. When such criteria are satisfied, the drug products are generally considered to exhibit therapeutic equivalence. They are then usually interchanged freely within individual patients. Biological drugs are complex proteins, for instance, because of their large size, intricate structure, sensitivity to environmental conditions, difficult manufacturing procedures, and the possibility of immunogenicity. Generic and brand-name biologic products can be expected to show only similarity but not identity in their various features and clinical effects. Consequently, the determination of biosimilarity is also a complicated process which involves assessment of the totality of the evidence for the close similarity of the two products. Moreover, even when biosimilarity has been established, it may not be assumed that the two biosimilar products can be automatically substituted by pharmacists. This generally requires additional, careful considerations. Without declaring interchangeability, a new product could be prescribed, i.e. it is prescribable. However, two products can be automatically substituted only if they are interchangeable. Interchangeability is a statistical term and it means that products can be used in any order in the same patient without considering the treatment history. The concepts of interchangeability and prescribability have been widely discussed in the past but only in relation to small molecule generics. In this paper we apply these concepts to biosimilars and we discuss: definitions of prescribability and interchangeability and

  15. Immobilized Biofilm in Thermophilic Biohydrogen Production using Synthetic versus Biological Materials

    Directory of Open Access Journals (Sweden)

    Jaruwan Wongthanate

    2015-02-01

    Full Text Available Biohydrogen production was studied from the vermicelli processing wastewater using synthetic and biological materials as immobilizing substrate employing a mixed culture in a batch reactor operated at the initial pH 6.0 and thermophilic condition (55 ± 1ºC. Maximum cumulative hydrogen production (1,210 mL H2/L wastewater was observed at 5% (v/v addition of ring-shaped synthetic material, which was the ring-shaped hydrophobic acrylic. Regarding 5% (v/v addition of synthetic and biological materials, the maximum cumulative hydrogen production using immobilizing synthetic material of ball-shaped hydrophobic polyethylene (HBPE (1,256.5 mL H2/L wastewater was a two-fold increase of cumulative hydrogen production when compared to its production using immobilizing biological material of rope-shaped hydrophilic ramie (609.8 mL H2/L wastewater. SEM observation of immobilized biofilm on a ball-shaped HBPE or a rope-shaped hydrophilic ramie was the rod shape and gathered into group.

  16. Performance of biological hydrogen production process from synthesis gas, mass transfer in batch and continuous bioreactors

    International Nuclear Information System (INIS)

    Biological hydrogen production by anaerobic bacterium, rhodospirillum rubrum was studied in batch and continuous bioreactors using synthesis gas(Co) as substrate. The systems were operated at ambient temperature and pressure. Correlations available in the literature were used to estimate the gas-liquid mass transfer coefficients (KLa) in batch reactor. Based on experimental results for the continuous reactor, new correlation was generated. The results showed that the agitation. gas flow rate and dilution rate were greatly influenced the hydrogen production as well as on KLa. It was found that the KLa of continuous bioreactor was 180 times higher than the mass transfer coefficient reported in batch reactor. It can be considered that the estimation of KLa for the continuous bioreactor may be successful for the large-scale biological hydrogen production

  17. Optimization of Biohydrogen Production with Biomechatronics

    OpenAIRE

    Shao-Yi Hsia; Yu-Tuan Chou

    2014-01-01

    Massive utilization of petroleum and natural gas caused fossil fuel shortages. Consequently, a large amount of carbon dioxide and other pollutants are produced and induced environmental impact. Hydrogen is considered a clean and alternative energy source. It contains relatively high amount of energy compared with other fuels and by-product is water. In this study, the combination of ultrasonic mechanical and biological effects is utilized to increase biohydrogen production from dark fermentat...

  18. What controls biological productivity in coastal upwelling systems? Insights from a comparative modeling study

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2011-06-01

    Full Text Available The magnitude of the biological productivity in Eastern Boundary Upwelling Systems (EBUS is traditionally viewed as directly reflecting the upwelling intensity. Yet, different EBUS show different sensitivities of productivity to upwelling-favorable winds (Carr and Kearns, 2003. Here, using a comparative modeling study of the California Current System (California CS and Canary Current System (Canary CS, we show how physical and environmental factors, such as light, temperature and cross-shore circulation modulate the response of biological productivity to upwelling strength. To this end, we made a series of eddy-resolving simulations of the California CS and Canary CS using the Regional Ocean Modeling System (ROMS, coupled to a nitrogen based Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD ecosystem model. We find the nutrient content of the euphotic zone to be 20 % smaller in the Canary CS relative to the California CS. Yet, the biological productivity is 50 % smaller in the latter. This is due to: (1 a faster nutrient-replete growth in the Canary CS relative to the California CS, related to a more favorable light and temperature conditions in the Canary CS, and (2 the longer nearshore water residence times in the Canary CS which lead to larger buildup of biomass in the upwelling zone, thereby enhancing the productivity. The longer residence times in the Canary CS appear to be associated with the wider continental shelves and the lower eddy activity characterizing this upwelling system. This results in a weaker offshore export of nutrients and organic matter, thereby increasing local nutrient recycling and enhancing the coupling between new and export production in the Northwest African system. Our results suggest that climate change induced perturbations such as upwelling favorable wind intensification might lead to contrasting biological responses in the California CS and the Canary CS, with major implications for the biogeochemical cycles

  19. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  20. Hematoxylin shortages: their causes and duration, and other dyes that can replace hemalum in routine hematoxylin and eosin staining.

    Science.gov (United States)

    Dapson, R; Horobin, R W; Kiernan, J

    2010-02-01

    The origins of repeated hematoxylin shortages are outlined. Lack of integration in the hematoxylin trade exacerbates the problems inherent in using a natural product. Separate corporations are engaged in tree growth and harvesting, dye extraction, processing of extracts to yield hematoxylin, and formulation and sale of hematoxylin staining solutions to the end users in biomedical laboratories. Hematoxylin has many uses in biological staining and no single dye can replace it for all applications. Probably, the most satisfactory substitutes for aluminum-hematoxylin (hemalum) are the ferric complexes of celestine blue (CI 51050; mordant blue 14) and eriochrome cyanine R (CI 43820; mordant blue 3, also known as chromoxane cyanine R and solochrome cyanine R). The iron-celestine blue complex is a cationic dye that binds to nucleic acids and other polyanions, such as those of cartilage matrix and mast cell granules. Complexes of iron with eriochrome cyanine R are anionic and give selective nuclear staining similar to that obtained with acidic hemalum solutions. Iron complexes of gallein (CI 45445; mordant violet 25), a hydroxyxanthene dye, can replace iron-hematoxylin in formulations for staining nuclei, myelin, and protozoa. PMID:19562570

  1. The potential of plants as a system for the development and production of human biologics

    OpenAIRE

    Qiang Chen; Davis, Keith R.

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics...

  2. Solid recovered fuel production through the mechanical-biological treatment of wastes

    OpenAIRE

    Velis, C.A.

    2010-01-01

    This thesis is concerned with the production of solid recovered fuel (SRF) from municipal solid waste using mechanical biological treatment (MBT) plants. It describes the first in-depth analysis of a UK MBT plant and addresses the fundamental research question: are MBT plants and their unit operations optimised to produce high quality SRF in the UK? A critical review of the process science and engineering of MBT provides timely insights into the quality management and standa...

  3. Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa)

    Digital Repository Service at National Institute of Oceanography (India)

    Madhu, N.V.; Maheswaran, P.A.; Jyothibabu, R.; Sunil, V.; Revichandran, C.; Balasubramanian, T.; Gopalakrishnan, T.C.; Nair, K.K.C.

    COMMUNICATIONS CURRENT SCIENCE, VOL. 82, NO. 12, 25 JUNE 2002 *For correspondence. (e - mail: madhu@niokochi.org) Enhanced biological production off Chennai triggered by October 1999 super cyclone (Orissa) N. V. Madhu*, P. A. Maheswaran, R... the Paradeep coast on 29 October 1999. After crossing the coast, it moved in a northwesterly direction and weakened gradually. RESEARCH COMMUNICATIONS CURRENT SCIENCE, VOL. 82, NO. 12, 25 JUNE 2002 1473 Tuticorin Nagapatnam Chennai Kakinada...

  4. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant.

    Science.gov (United States)

    Jiang, Su; Chen, Yinguang; Zhou, Qi; Gu, Guowei

    2007-07-01

    Short-chain fatty acids (SCFAs), the preferred carbon sources for biological nutrient removal, are the important intermediate products in sludge anaerobic fermentation. Sodium dodecylbenzene sulfonate (SDBS) is a widespread used surfactant, which can be easily found in waste-activated sludge (WAS). In this investigation, the effect of SDBS on SCFAs production from WAS was investigated, and the potential of using fermentative SCFAs to promote enhanced biological phosphorus removal (EBPR) was tested. Results showed that the total SCFAs production increased significantly in the presence of SDBS at room temperature. At fermentation time of 6 days, the maximum SCFAs was 2599.1mg chemical oxygen demand (COD)/L in the presence of SDBS 0.02g/g, whereas it was only 339.1mg (COD)/L in the absence of SDBS. The SCFAs produced in the case of SDBS 0.02g/g and fermentation time 6 days consisted of acetic acid (27.1%), propionic acid (22.8%), iso-valeric acid (20.1%), iso-butyric acid (11.9%), n-butyric acid (10.4%) and n-valeric acid (7.7%). It was found that during sludge anaerobic fermentation, the solubilization of sludge particulate organic-carbon and hydrolysis of solubilized substrate as well as acidification of hydrolyzed products were all increased in the presence of SDBS, while the methane formation was decreased, the SCFAs production was therefore remarkably improved. Further investigation showed that the production of SCFAs enhanced by SDBS was caused mainly by biological effects, rather than by chemical effects and SDBS decomposition. With the fermentative SCFAs as the main carbon source, the EBPR maintained high phosphorus removal efficiency ( approximately 97%). PMID:17499838

  5. Self-help Books on Avoiding Time Shortage

    OpenAIRE

    Larsson, Jörgen; Sanne, Christer

    2005-01-01

    Abstract Self-help books are tokens of our reflexive individualized society. The widespread experience of too high a pace in daily life and too little time for recovery and for social relations have resulted in books focusing on avoiding time shortage. In our analysis of the advice in such books we found time-management categories such as streamlining activities and buying services. Other identified categor...

  6. Addressing the Donor Liver Shortage with EX VIVO Machine Perfusion

    OpenAIRE

    Maria-Louisa Izamis; Berendsen, Tim A.; Korkut Uygun; Yarmush, Martin L.

    2012-01-01

    Despite a critical shortage of viable donor livers for transplantation, only a fraction of the available organs are used. Donor organ defects, which in the majority of cases are caused by extensive exposure to ischemia, cannot be reversed by static cold storage, the current gold standard of organ preservation. In this review, the role of machine perfusion (MP) in the recovery of non-transplantable ischemic donor organs is discussed. Though still in the experimental phase, various models of MP...

  7. Challenges of Organ Shortage for Transplantation: Solutions and Opportunities

    OpenAIRE

    Saidi, R. F.; Hejazii Kenari, S. K.

    2014-01-01

    Organ shortage is the greatest challenge facing the field of organ transplantation today. A variety of approaches have been implemented to expand the organ donor pool including live donation, a national effort to expand deceased donor donation, split organ donation, paired donor exchange, national sharing models and greater utilization of expanded criteria donors. Increased public awareness, improved efficiency of the donation process, greater expectations for transplantation, expansion of th...

  8. Towards risk-based drought management in the Netherlands: quantifying the welfare effects of water shortage

    Science.gov (United States)

    van der Vat, Marnix; Femke, Schasfoort; Rhee Gigi, Van; Manfred, Wienhoven; Nico, Polman; Joost, Delsman; den Hoek Paul, Van; Maat Judith, Ter; Marjolein, Mens

    2016-04-01

    It is widely acknowledged that drought management should move from a crisis to a risk-based approach. A risk-based approach to managing water resources requires a sound drought risk analysis, quantifying the probability and impacts of water shortage due to droughts. Impacts of droughts are for example crop yield losses, hydropower production losses, and water shortage for municipal and industrial use. Many studies analyse the balance between supply and demand, but there is little experience in translating this into economic metrics that can be used in a decision-making process on investments to reduce drought risk. We will present a drought risk analysis method for the Netherlands, with a focus on the underlying economic method to quantify the welfare effects of water shortage for different water users. Both the risk-based approach as well as the economic valuation of water shortage for various water users was explored in a study for the Dutch Government. First, an historic analysis of the effects of droughts on revenues and prices in agriculture as well as on shipping and nature was carried out. Second, a drought risk analysis method was developed that combines drought hazard and drought impact analysis in a probabilistic way for various sectors. This consists of a stepwise approach, from water availability through water shortage to economic impact, for a range of drought events with a certain return period. Finally, a local case study was conducted to test the applicability of the drought risk analysis method. Through the study, experience was gained into integrating hydrological and economic analyses, which is a prerequisite for drought risk analysis. Results indicate that the risk analysis method is promising and applicable for various sectors. However, it was also found that quantification of economic impacts from droughts is time-consuming, because location- and sector-specific data is needed, which is not always readily available. Furthermore, for some

  9. Mapping the patent landscape of synthetic biology for fine chemical production pathways.

    Science.gov (United States)

    Carbonell, Pablo; Gök, Abdullah; Shapira, Philip; Faulon, Jean-Loup

    2016-09-01

    A goal of synthetic biology bio-foundries is to innovate through an iterative design/build/test/learn pipeline. In assessing the value of new chemical production routes, the intellectual property (IP) novelty of the pathway is important. Exploratory studies can be carried using knowledge of the patent/IP landscape for synthetic biology and metabolic engineering. In this paper, we perform an assessment of pathways as potential targets for chemical production across the full catalogue of reachable chemicals in the extended metabolic space of chassis organisms, as computed by the retrosynthesis-based algorithm RetroPath. Our database for reactions processed by sequences in heterologous pathways was screened against the PatSeq database, a comprehensive collection of more than 150M sequences present in patent grants and applications. We also examine related patent families using Derwent Innovations. This large-scale computational study provides useful insights into the IP landscape of synthetic biology for fine and specialty chemicals production. PMID:27489206

  10. The potential of plants as a system for the development and production of human biologics.

    Science.gov (United States)

    Chen, Qiang; Davis, Keith R

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology. PMID:27274814

  11. The potential of plants as a system for the development and production of human biologics

    Science.gov (United States)

    Chen, Qiang; Davis, Keith R.

    2016-01-01

    The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology. PMID:27274814

  12. The global nursing shortage: an overview of issues and actions.

    Science.gov (United States)

    Oulton, Judith A

    2006-08-01

    Today's global nursing shortage is having an adverse impact on health systems around the world. A major initiative by the International Council of Nurses (ICN) yielded important information regarding the shortage and solutions to it. These are organized into five priority areas: policy intervention; macroeconomics and health sector funding; workforce planning and policy, including regulation; positive practice environments; and retention and recruitment (includes migration); and nursing leadership. Internationally momentum is building, providing the opportunity to bring attention to these issues and to take action. This article presents an overview of the global nursing shortage (which, since 2002, has been termed a global crisis), provides the perspectives of the ICN, and discusses the ICN's initiatives regarding that crisis. Founded in 1899, the ICN is the world's first and largest organization for health professionals. As a federation of national nurses' associations in 129 countries, ICN represents the more than 13 million nurses working worldwide. It works to ensure quality nursing care for all, sound health policies globally, the advancement of nursing knowledge, and the presence worldwide of a respected, competent professional workforce. PMID:17071693

  13. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid Ali Khan; Nafees Bacha; Bashir Ahmad; Ghosia Lutfullah; Umar Farooq; Russell John Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites. Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions. The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques, for example, homologous and heterologous expressions. This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites;also the biosynthetic pathways of the bio-organic-molecules were reported.

  14. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid; Ali; Khan; Nafees; Bacha; Bashir; Ahmad; Ghosia; Lutfullah; Umar; Farooq; Russell; John; Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites.Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions.The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques,for example,homologous and heterologous expressions.This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites:also the biosynthetic pathways of the bio-organic-molecules were reported.

  15. Technical Key Figures for Photo-biological Hydrogen Production by Micro-algae

    Energy Technology Data Exchange (ETDEWEB)

    Trudewind, C.A.; Petrovic, T.J.; Wagner, H.J. [Ruhr-Universitat Bochum, Universitats str. 150, 44801 Bochum, (Germany)

    2006-07-01

    One regenerative path to produce hydrogen is the photo-biological hydrogen production by the green micro-alga Chlamydomonas reinhardtii. This process can be divided into three phases: a growth phase, a phase in which the algae adapt from oxygen production and CO{sub 2}-fixation to fermentative H{sub 2} production, and a phase in which H{sub 2} is produced. In a research project carried out at Ruhr-Universitat Bochum, a new developed flat panel bioreactor was investigated. A system analysis was conducted and energetic and environmental key figures were determined. The intention of this assessment on a very early technological stage was to collect first technical data in order to classify the current technological status of the photo-biological H{sub 2} production to identify future potentials and to uncover weaknesses. For this reason the key figures were evaluated for the status quo and for two scenarios which allow an outlook on the mid and the long term. The results were compared with other ways of regenerative H{sub 2} production. (authors)

  16. Technical Key Figures for Photo-biological Hydrogen Production by Micro-algae

    International Nuclear Information System (INIS)

    One regenerative path to produce hydrogen is the photo-biological hydrogen production by the green micro-alga Chlamydomonas reinhardtii. This process can be divided into three phases: a growth phase, a phase in which the algae adapt from oxygen production and CO2-fixation to fermentative H2 production, and a phase in which H2 is produced. In a research project carried out at Ruhr-Universitat Bochum, a new developed flat panel bioreactor was investigated. A system analysis was conducted and energetic and environmental key figures were determined. The intention of this assessment on a very early technological stage was to collect first technical data in order to classify the current technological status of the photo-biological H2 production to identify future potentials and to uncover weaknesses. For this reason the key figures were evaluated for the status quo and for two scenarios which allow an outlook on the mid and the long term. The results were compared with other ways of regenerative H2 production. (authors)

  17. Potential of chicken by-products as sources of useful biological resources

    International Nuclear Information System (INIS)

    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications

  18. Potential of chicken by-products as sources of useful biological resources

    Energy Technology Data Exchange (ETDEWEB)

    Lasekan, Adeseye [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abu Bakar, Fatimah, E-mail: fatim@putra.upm.edu.my [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hashim, Dzulkifly [Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2013-03-15

    By-products from different animal sources are currently being utilised for beneficial purposes. Chicken processing plants all over the world generate large amount of solid by-products in form of heads, legs, bones, viscera and feather. These wastes are often processed into livestock feed, fertilizers and pet foods or totally discarded. Inappropriate disposal of these wastes causes environmental pollution, diseases and loss of useful biological resources like protein, enzymes and lipids. Utilisation methods that make use of these biological components for producing value added products rather than the direct use of the actual waste material might be another viable option for dealing with these wastes. This line of thought has consequently led to researches on these wastes as sources of protein hydrolysates, enzymes and polyunsaturated fatty acids. Due to the multi-applications of protein hydrolysates in various branches of science and industry, and the large body of literature reporting the conversion of animal wastes to hydrolysates, a large section of this review was devoted to this subject. Thus, this review reports the known functional and bioactive properties of hydrolysates derived from chicken by-products as well their utilisation as source of peptone in microbiological media. Methods of producing these hydrolysates including their microbiological safety are discussed. Based on the few references available in the literature, the potential of some chicken by-product as sources of proteases and polyunsaturated fatty acids are pointed out along with some other future applications.

  19. Methods for genetic optimization of biocatalysts for biofuel production from dairy waste through synthetic biology.

    Science.gov (United States)

    Pasotti, Lorenzo; Zucca, Susanna; Casanova, Michela; Politi, Nicolo; Massaiu, Ilaria; Mazzini, Giuliano; Micoli, Giuseppina; Calvio, Cinzia; Cusella De Angelis, Maria Gabriella; Magni, Paolo

    2015-08-01

    Whey is an abundant by-product of cheese production process and it is considered a special waste due to its high nutritional load and hypertrophic potential. Technologies for whey valorization are available. They can convert such waste into high-value products, like whey proteins. However, the remaining liquid (called permeate) is still considered as a polluting waste due to its high lactose concentration. The alcoholic fermentation of lactose into ethanol will simultaneously achieve two important goals: safe disposal of a pollutant waste and green energy production. This methodology paper illustrates the workflow carried out to design and realize an optimized microorganism that can efficiently perform the lactose-to-ethanol conversion, engineered via synthetic biology experimental and computational approaches. PMID:26736421

  20. Microbial production of amino acids and derived chemicals: synthetic biology approaches to strain development.

    Science.gov (United States)

    Wendisch, Volker F

    2014-12-01

    Amino acids are produced at the multi-million-ton-scale with fermentative production of l-glutamate and l-lysine alone being estimated to amount to more than five million tons in the year 2013. Metabolic engineering constantly improves productivities of amino acid producing strains, mainly Corynebacterium glutamicum and Escherichia coli strains. Classical mutagenesis and screening have been accelerated by combination with intracellular metabolite sensing. Synthetic biology approaches have allowed access to new carbon sources to realize a flexible feedstock concept. Moreover, new pathways for amino acid production as well as fermentative production of non-native compounds derived from amino acids or their metabolic precursors were developed. These include dipeptides, α,ω-diamines, α,ω-diacids, keto acids, acetylated amino acids and ω-amino acids. PMID:24922334

  1. Techno-economic evaluation of a two-step biological process for hydrogen production.

    Science.gov (United States)

    Ljunggren, Mattias; Zacchi, Guido

    2010-01-01

    An integrated biological process for the production of hydrogen based on thermophilic and photo-heterotrophic fermentation was evaluated from a technical and economic standpoint. Besides the two fermentation steps the process also includes pretreatment of the raw material (potato steam peels) and purification of hydrogen using amine absorption. The study aimed neither at determining the absolute cost of biohydrogen nor at an economic optimization of the production process, but rather at studying the effects of different parameters on the production costs of biohydrogen as a guideline for future improvements. The effect of the key parameters, hydrogen productivity and yield and substrate concentration in the two fermentations on the cost of the hydrogen produced was studied. The selection of the process conditions was based mainly on laboratory data. The process was simulated by use of the software Aspen Plus and the capital costs were estimated using the program Aspen Icarus Process Evaluator. The study shows that the photo-fermentation is the main contributor to the hydrogen production cost mainly because of the cost of plastic tubing, for the photo-fermentors, which represents 40.5% of the hydrogen production cost. The costs of the capital investment and chemicals were also notable contributors to the hydrogen production cost. Major economic improvements could be achieved by increasing the productivity of the two fermentation steps on a medium-term to long-term scale. PMID:20039381

  2. Anticipatory maternal effects in two different clones of Daphnia magna in response to food shortage

    Directory of Open Access Journals (Sweden)

    Valeria ROSSI

    2011-08-01

    Full Text Available The effects of food shortage on growth, fecundity, male production and offspring size and starvation tolerance in two different clones of Daphnia magna (Clone L and Clone P were evaluated by disentangling the effects of resource depletion and crowding per se. Three experimental conditions were tested: high food - low daphnid density (the optimum, low food - low daphnid density and high food - high daphnid density. In the two first conditions, daphnids experienced the same population density but they had different food availability. In the two latter conditions, daphnids had the same per capita, low, food availability but they lived at different algae and daphnid densities. Moreover, the response of crowded females to recovery at high food availability and low population density was evaluated. Low food availability reduced growth and fecundity of both clones and increased male production only in the Clone L. Crowding per se did not affect growth but reduced fecundity. In both clones, low food availability due to low algae density enhanced investment in offspring size and resistance to starvation. In response to food shortage either due to low algae density and to crowding, Clone P increased the investment in offspring size and starvation tolerance but reduced fecundity to a lesser extent than Clone L and did not produce males. Clone L, in response to food shortage due to crowding at high algae density, increased development time, produced more males, as at low algae density, but halved fecundity producing offspring that were not starvationtolerant. These results might reflect differences in anticipatory maternal effects between clones and suggest that neonate quality varies according to either, the environment the mother experienced and the competitive environment the neonates will cope due to their mother life strategy.

  3. Biological Pretreatment of Rubberwood with Ceriporiopsis subvermispora for Enzymatic Hydrolysis and Bioethanol Production

    Directory of Open Access Journals (Sweden)

    Forough Nazarpour

    2013-01-01

    Full Text Available Rubberwood (Hevea brasiliensis, a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm and pretreatment time on the biological pretreatment were first determined by chemical analysis and X-ray diffraction and their best condition obtained with 1 mm particle size and 90 days pretreatment. Further morphological study on rubberwood with 1 mm particle size pretreated by fungus was performed by FT-IR spectra analysis and SEM observation and the result indicated the ability of this fungus for pretreatment. A study on enzymatic hydrolysis resulted in an increased sugar yield of 27.67% as compared with untreated rubberwood (2.88%. The maximum ethanol concentration and yield were 17.9 g/L and 53% yield, respectively, after 120 hours. The results obtained demonstrate that rubberwood pretreated by C. subvermispora can be used as an alternative material for the enzymatic hydrolysis and bioethanol production.

  4. 78 FR 55778 - Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...

    Science.gov (United States)

    2013-09-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...: Regulation on Reduction of Nursing Shortages in State Homes; Application for Assistance for Hiring...

  5. 75 FR 45207 - Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...

    Science.gov (United States)

    2010-08-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...: Regulation on Reduction of Nursing Shortages in State Homes; Application for Assistance for Hiring...

  6. 75 FR 62185 - Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...

    Science.gov (United States)

    2010-10-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Proposed Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...: Regulation on Reduction of Nursing Shortages in State Homes; Application for Assistance for Hiring...

  7. 78 FR 75959 - Agency Information Collection (Regulation on Reduction of Nursing Shortages in State Homes...

    Science.gov (United States)

    2013-12-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Agency Information Collection (Regulation on Reduction of Nursing Shortages in State Homes....'' SUPPLEMENTARY INFORMATION: Title: Regulation on Reduction of Nursing Shortages in State Homes; Application...

  8. The Effect of Peat and Vermicompost Cavitation Products on the Soil Biological Activity

    Directory of Open Access Journals (Sweden)

    Steinberga Vilhelmine

    2014-12-01

    Full Text Available Commercial products with humic substances have often been recommended for plant growth stimulation and yield improvement. The aim of this study was to clarify the effects of two products, containing cavited peat and vermicompost respectively on the soil biological activity. Vegetation experiments with garden cress and cucumbers were arranged in pots with a peat substratum in the greenhouses of the Latvia University of Agriculture. The plants were treated with the preparations once a month. The first treatment was done at sowing. Dose of 20, 2, 0.2 mL per m2 during each treatment time were used. A control variant was without peat or vermicompost preparation. Field experiments with onions were carried out in the organic farming experimental field of the Latvia State Institute of Cereal Breeding. Plant growth and soil (substratum biological activity (respiration and enzymatic activity were tested. Plant growth and response to the different preparations depended on the plant species and its development stage. The effect of preparations decreases during plant development. The impact of peat or vermicompost preparation on soil biological activity depended not only on the concentration of preparation, but was influenced by the soil or growth media type. The decrease of onion yield in field conditions as a result of preparations was observed.

  9. Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production

    Science.gov (United States)

    Gnanadesikan, Anand; Sarmiento, Jorge L.; Slater, Richard D.

    2003-06-01

    Increasing oceanic productivity by fertilizing nutrient-rich regions with iron has been proposed as a mechanism to offset anthropogenic emissions of carbon dioxide. Earlier studies examined the impact of large-scale fertilization of vast reaches of the ocean for long periods of time. We use an ocean general circulation model to consider more realistic scenarios involving fertilizing small regions (a few hundred kilometers on a side) for limited periods of time (of order 1 month). A century after such a fertilization event, the reduction of atmospheric carbon dioxide is between 2% and 44% of the initial pulse of organic carbon export to the abyssal ocean. The fraction depends on how rapidly the surface nutrient and carbon fields recover from the fertilization event. The modeled recovery is very sensitive to the representation of biological productivity and remineralization. Direct verification of the uptake would be nearly impossible since changes in the air-sea flux due to fertilization would be much smaller than those resulting from natural spatial variability. Because of the sensitivity of the uptake to the long-term fate of the iron and organic matter, indirect verification by measurement of the organic matter flux would require high vertical resolution and long-term monitoring. Finally, the downward displacement of the nutrient profile resulting from an iron-induced productivity spurt may paradoxically lead to a long-term reduction in biological productivity. In the worst-case scenario, removing 1 ton of carbon from the atmosphere for a century is associated with a 30-ton reduction in biological export of carbon.

  10. Online Availability and Safety of Drugs in Shortage: A Descriptive Study of Internet Vendor Characteristics

    OpenAIRE

    Liang, Bryan A.; Mackey, Tim K.

    2012-01-01

    Background Unprecedented drug shortages announced by the US Food and Drug Administration (FDA) have severely affected therapeutic access, patient safety, and public health. With continued shortages, patients may seek drugs online. Objective To assess the prevalence of online marketing for current FDA shortage drugs and potential patient safety risks. Methods We performed a descriptive study of the prevalence of online marketing for shortage drugs—that is, offers for sale of each drug, includi...

  11. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    Science.gov (United States)

    Yin, Yanan; Wang, Jianlong

    2016-04-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCODconsumed. It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production.

  12. Berry productivity estimation of biological(botanical) reservations 'Milevichsky' and 'Zalyuchitsky'

    International Nuclear Information System (INIS)

    The necessity of creation of local status biological (botanical) reservations in Zhitkovichi district is scientifically substantiated on he basis of performed investigations and analysis of location nature conditions of declared reservations, their nature potential and on the estimation of productivity of wild berr plantation and radiation situation. Forest districts of these reservations have high productivity of wild bilberries and great bilberry and natural background radiation. The specific radiation activity of bilverries collected in the foregoing districts of Milevichi and Zalyutichi forestry does not exceed 60 Bk/kg, that is less than 30% of the permissible rate. Main recommendations were developed for protection and utilization of reservations, for conservation of the conditions required for growing forests with optimum characteristics, which promote vegetation and high productivity of wild berry reservations

  13. Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis.

    Science.gov (United States)

    Seifert, A H; Rittmann, S; Bernacchi, S; Herwig, C

    2013-05-01

    This contribution presents a method for quantification of the impact of emission gasses on the methane production with hydrogenotrophic methanogenic archaea. The developed method allows a robust quantification of the influence of real gasses on the volumetric productivity of methanogenic cultures by uncoupling physiological and mass transfer effects. This is achieved over reference experiments with pure H2 and CO2, simulating the mass transfer influence of the non-convertible side components by addition of N2 to the reactant stream. Furthermore, this method was used to examine the performance of Methanothermobacter marburgensis on different emission gasses. None of the present side components had a negative effect on the volumetric methane production rate. The presented method showed to be ready to use as a generic tool for feasibility studies and quantification of the physiological impact regarding the use of exhaust gasses as reactant gas for the biological methanogenesis. PMID:23582218

  14. Studies of the Production of Fungal Polyketides in Aspergillus nidulans by Using Systems Biology Tools

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Andersen, Mikael Rørdam; Grotkjær, Thomas;

    2009-01-01

    that overexpression of xpkA does not directly improve 6-MSA production on glucose, but it is possible, if the metabolic flux through the lower part of glycolysis is reduced, to obtain quite high yields for conversion of sugar to 6-MSA. Systems biology tools were employed for in-depth analysis of the metabolic...... are virtually unlimited, and it is thus of great interest to develop a well-described microbial production platform for polyketides. Using genetic engineering tools available for the model organism Aspergillus nidulans, we constructed two recombinant strains, one expressing the Penicillium griseofulvum 6...... processes. Transcriptome analysis of 6-MSA-producing strains grown on glucose and xylose in the presence and absence of xpkA overexpression, combined with flux and physiology data, enabled us to propose an xpkA-msaS interaction model describing the competition between biomass formation and 6-MSA production...

  15. The reduction of biological production induced by mesoscale mixing: a modelling study in the Benguela upwelling

    CERN Document Server

    Hernández-Carrasco, Ismael; Hernández-García, Emilio; Garçon, Veronique; López, Cristóbal

    2013-01-01

    Recent studies, both based on remote sensed data and coupled models, showed a reduction of biological productivity due to vigorous horizontal mixing in upwelling systems. In order to better understand this phenomenon, we have considered a system of oceanic flow in the Benguela area coupled with a simple biogeochemical model of Nutrient-Phyto-Zooplankton (NPZ) type. For the flow three different surface velocity fields are considered: one derived from satellite altimetry data, and the other two from a regional numerical model at two different spatial resolutions. We computed horizontal particle dispersion in terms of Lyapunov Exponents, and analyzed their correlations with phytoplankton concentrations. Our modelling approach confirms that in the south Benguela, there is a reduction of biological activity when stirring is increased. Two-dimensional offshore advection seems to be the dominant process involved. In the northern area, other factors not taken into account in our simulation are influencing the ecosyst...

  16. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    Science.gov (United States)

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. PMID:26724182

  17. The prospects of synthetic biology for the production of fuel from biomass

    International Nuclear Information System (INIS)

    When applied to engineering the metabolism of microorganisms, synthetic biology produces a broad spectrum of biomolecules from carbohydrates and, in the near future, from the biomass in general. The markets for biofuels and for chemicals are thus hooked up through a common technological core. Synthetic biology also opens new possibilities for switching from different types of biomass to different products, thus allowing for more flexibility in development strategies and eventually in industrial operations. This opening is welcomed even though the economic and societal environments hardly favors biofuels. A few more years of research and development are needed to bring these new possibilities to industrial maturity. Advanced biofuels will pass the threshold at which they become profitable and will no longer need subsidies. (author)

  18. Removal of disinfection by-product formation potentials by biologically assisted GAC treatment

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The object of this paper is to evaluate the removal of disinfection by-products formation potential by artificially intensified biological activated carbon(BAC) process which is developed on the basis of traditional ozone granular activated carbon (GAC). The results show that 23.1% of trihalomethane formation potential (THMFP) and 68% of haloacetic acid formation potential (HAAFP) can be removed by BAC,respectively. Under the same conditions, the removal rates of the same substances were 12.2% and 13-25 % respectively only by GAC process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. BAC process has some advantages such as long backwashing cycle time, low backwashing intensity and prolonged activated carbon lifetime, etc.

  19. 42 CFR 414.67 - Incentive payments for Health Professional Shortage Areas.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Incentive payments for Health Professional Shortage... SERVICES Physicians and Other Practitioners § 414.67 Incentive payments for Health Professional Shortage... Shortage Area (HPSA) are eligible for a 10 percent incentive payment above the amount paid for...

  20. The future coastal ocean: the impact of increased stratification on biological production and carbon cycling

    Science.gov (United States)

    Lachkar, Z.; Gruber, N.

    2012-04-01

    Eastern boundary upwelling systems (EBUS) are regions of intense biogeochemical cycling and air-sea CO2 exchange. EBUS are particularly sensitive to changes in vertical stratification induced by upper ocean warming. However, neither the biological response to such physical perturbation nor the extent to which air-sea CO2 exchange might be altered under increased stratification are well understood. Here, we investigate the vulnerability of EBUS to such changes by conducting eddy-resolving simulations with the Regional Oceanic Modeling System (ROMS) coupled to a state-of-the art ecosystem model for the California and the Canary Current Systems. We examine how potential changes in stratification might affect the productivity in both upwelling systems and explore related changes in air-sea CO2 fluxes and biological pump efficiency. A particular focus of our analyses is on the role of local vs large scale changes in stratification. Overall, our initial results show for both EBUS a substantial increase of the CO2 outgassing with only a relatively modest change in productivity. We also found that identical changes in the vertical stratification lead to contrasting biological responses within and between these two EBUS characterized with only modestly different physical and environmental conditions. This is essentially due to varying initial temperature and nutrient conditions in addition to factors associated with the nearshore-offshore exchange timescales such as the shelf topography and the level of mesoscale eddy activity which differ substantially between the two EBUS. Finally, our results show that the depth of the maximum warming as well as the vertical penetration of the warm temperature anomaly play a key role in controlling the magnitude of the biological response in each EBUS.

  1. A cell-free expression and purification process for rapid production of protein biologics.

    Science.gov (United States)

    Sullivan, Challise J; Pendleton, Erik D; Sasmor, Henri H; Hicks, William L; Farnum, John B; Muto, Machiko; Amendt, Eric M; Schoborg, Jennifer A; Martin, Rey W; Clark, Lauren G; Anderson, Mark J; Choudhury, Alaksh; Fior, Raffaella; Lo, Yu-Hwa; Griffey, Richard H; Chappell, Stephen A; Jewett, Michael C; Mauro, Vincent P; Dresios, John

    2016-02-01

    Cell-free protein synthesis has emerged as a powerful technology for rapid and efficient protein production. Cell-free methods are also amenable to automation and such systems have been extensively used for high-throughput protein production and screening; however, current fluidic systems are not adequate for manufacturing protein biopharmaceuticals. In this work, we report on the initial development of a fluidic process for rapid end-to-end production of recombinant protein biologics. This process incorporates a bioreactor module that can be used with eukaryotic or prokaryotic lysates that are programmed for combined transcription/translation of an engineered DNA template encoding for specific protein targets. Purification of the cell-free expressed product occurs through a series of protein separation modules that are configurable for process-specific isolation of different proteins. Using this approach, we demonstrate production of two bioactive human protein therapeutics, erythropoietin and granulocyte-macrophage colony-stimulating factor, in yeast and bacterial extracts, respectively, each within 24 hours. This process is flexible, scalable and amenable to automation for rapid production at the point-of-need of proteins with significant pharmaceutical, medical, or biotechnological value. PMID:26427345

  2. Reduce, reuse and recycle: a green solution to Canada's medical isotope shortage.

    Science.gov (United States)

    Galea, R; Ross, C; Wells, R G

    2014-05-01

    Due to the unforeseen maintenance issues at the National Research Universal (NRU) reactor at Chalk River and coincidental shutdowns of other international reactors, a global shortage of medical isotopes (in particular technetium-99m, Tc-99m) occurred in 2009. The operation of these research reactors is expensive, their age creates concerns about their continued maintenance and the process results in a large amount of long-lived nuclear waste, whose storage cost has been subsidized by governments. While the NRU has since revived its operations, it is scheduled to cease isotope production in 2016. The Canadian government created the Non-reactor based medical Isotope Supply Program (NISP) to promote research into alternative methods for producing medical isotopes. The NRC was a member of a collaboration looking into the use of electron linear accelerators (LINAC) to produce molybdenum-99 (Mo-99), the parent isotope of Tc-99m. This paper outlines NRC's involvement in every step of this process, from the production, chemical processing, recycling and preliminary animal studies to demonstrate the equivalence of LINAC Tc-99m with the existing supply. This process stems from reusing an old idea, reduces the nuclear waste to virtually zero and recycles material to create a green solution to Canada's medical isotope shortage. PMID:24332878

  3. US braces itself for gasoline and diesel shortages

    International Nuclear Information System (INIS)

    New fuel regulations that are progressively being introduced in the US from the beginning of this year are likely to lead to radical changes in the gasoline and diesel fuel markets. The main change for gasoline is the replacement of methyl tertiary butyl ether (MTBE) by ethanol, whilst for diesel the principal development is the reduction in the permitted sulphur content. A shortage of the new fuels could increase price volatility and drive up prices. This is not a pleasant prospect for the White House, already under criticism for another energy plan: to cut imports of crude oil from the Middle East. (author)

  4. The affordable housing shortage: considering the problem, causes and solutions

    OpenAIRE

    2002-01-01

    Many observers claim that we are in the midst of an “affordable housing shortage” or, even worse, an “affordable housing crisis.” The primary concern is that too many households live in “unaffordable” rental units. We hope to clarify the current debate by first measuring the size of the problem, then diagnosing its underlying causes and, finally, discussing treatments that policymakers should consider. While our review is hardly exhaustive, we conclude that a shortage of income is largely beh...

  5. Desabastecimento de medicamentos: determinantes, conseqüências e gerenciamento Drug shortage: determinants, consequences and management

    Directory of Open Access Journals (Sweden)

    Adriano Max Moreira Reis

    2008-04-01

    Full Text Available O artigo analisa o desabastecimento de medicamentos como um problema que transcende o aspecto logístico da área de saúde, discutindo suas implicações para a qualidade, segurança e custo da assistência. A cadeia de abastecimento farmacêutico e os fatores que interferem na capilaridade da distribuição e na disponibilidade do medicamento são discutidos. Ressalta a contribuição da comissão de farmácia e terapêutica para a prevenção e gerenciamento do desabastecimento de medicamentos nos estabelecimentos de saúde. Sugestões de medidas para gestão do desabastecimento de medicamentos são apresentadas. Enfatiza-se a necessidade do medicamento ser considerado pelos componentes da cadeia logística um produto de saúde, com tratamento diferenciado dos bens de consumo comuns.The present study analyzes drug shortage as a problem reaching beyond the logistic aspect of the health field and discusses its consequences with respect to quality, safety and cost of health care delivery. The pharmaceutical supply chain and the factors that determine the distribution and availability of drugs are discussed. The contribution of the Pharmacy and Therapeutics Committee in preventing and managing drug shortage in health institutions is stressed and measures for drug shortage management are suggested. Finally it is emphasized that drugs should be considered health products rather than consumer goods and as such be given a different treatment by the supply chain.

  6. Biological and productive characteristics of apple cultivars resistant or tolerant to scab [Venturia inaequalis (Cooke) Wint.

    OpenAIRE

    Đorđević Boban S.; Vulić Todor B.; Đurović Dejan B.; Milatović Dragan P.; Zec Gordan N.; Radović Aleksandar R.

    2013-01-01

    Biological and productive characteristics of 11 scab-resistant apple cultivars were studied in the period 2011-2012 on the estate of the monastery Žiča in Central Serbia. Control cultivar for comparison was ‘Idared’, as the most spread apple cultivar in Serbia. The earliest blooming was found in cultivar ‘Topaz’, and the latest in cultivar ‘Rewena’. Based on the time of fruit maturation, three cultivars belong to the summer and autumn group, and five cultiv...

  7. Biological Denitrification of High Nitrate Processing Wastewaters from Explosives Production Plant

    OpenAIRE

    Cyplik, Paweł; Marecik, Roman; Piotrowska-Cyplik, Agnieszka; Olejnik, Anna; Drożdżyńska, Agnieszka; Chrzanowski, Łukasz

    2011-01-01

    Wastewater samples originating from an explosives production plant (3,000 mg N l−1 nitrate, 4.8 mg l−1 nitroglycerin, 1.9 mg l−1 nitroglycol and 1,200 mg l−1 chemical oxygen demand) were subjected to biological purification. An attempt to completely remove nitrate and to decrease the chemical oxygen demand was carried out under anaerobic conditions. A soil isolated microbial consortium capable of biodegrading various organic compounds and reduce nitrate to atmospheric nitrogen under anaerobic...

  8. The Effect of Fasting Pattern on Biological Performance of Quail at Early Production Period

    OpenAIRE

    Efka Tugiyanti

    2005-01-01

    The objective of this research was to find out the effect of fasting pattern on biological performance of quail at early production period. 50 kg commercial feed, vitamins and medicine were applied on 140 heads of seven old day quail. Four different fasting pattern were employed as treatment, i.e. ad libitum diet (Po); every two days fasting (P1); every three days fasting (P2); every four days fasting (P3); and every five days fasting (P4). Ad libitum amount of corn and water were offered...

  9. Is the biological productivity in the Bay of Bengal light limited?

    Digital Repository Service at National Institute of Oceanography (India)

    PrasannaKumar, S.; Narvekar, J.; Nuncio, M.; Kumar, A.; Ramaiah, N.; Sardessai, S.; Gauns, M.; Fernandes, V.; Paul, J.

    SCIENCE, VOL. 98, NO. 10, 25 MAY 2010 1331 *For correspondence. (e-mail: prasanna@nio.org) Is the biological productivity in the Bay of Bengal light limited? S. Prasanna Kumar 1, *, Jayu Narvekar 1 , M. Nuncio 2 , Ajoy Kumar 3 , N. Ramaiah 1 , S.../30L RESEARCH ARTICLES CURRENT SCIENCE, VOL. 98, NO. 10, 25 MAY 2010 1332 Go-Flo bottles. Water samples were analysed for nitrate and silicate with a SKALAR auto-analyser during sum- mer and with spectrophotometer following Grasshoff et al. 11...

  10. Informed consent should be obtained from patients to use products (skin substitutes) and dressings containing biological material

    OpenAIRE

    Enoch, S; Shaaban, H; Dunn, K.

    2005-01-01

    Background: Biological products (tissue engineered skin, allograft and xenograft, and biological dressings) are widely used in the treatment of burns, chronic wounds, and other forms of acute injury. However, the religious and ethical issues, including consent, arising from their use have never been addressed in the medical literature.

  11. Suppressing and enhancing effects of mesoscale dynamics on biological production in the Mozambique Channel

    Science.gov (United States)

    José, Y. S.; Penven, P.; Aumont, O.; Machu, E.; Moloney, C. L.; Shillington, F.; Maury, O.

    2016-06-01

    We used a coupled physical-biogeochemical model to investigate how the strong eddy activity typical of the Mozambique Channel affects biological production. A numerical experiment was carried out, in which mesoscale dynamics were suppressed by cancelling the nonlinear terms for horizontal momentum in the Naviers-Stokes equation. Mesoscale dynamics were found to be responsible for (1) increased offshore production in the Mozambique Channel as a result of net eddy-induced offshore transport of nutrient-rich coastal waters; (2) decreased shelf production along the central Mozambican and south-west Madagascar coast caused by a reduction in nutrient availability related to the net eddy-induced lateral transport of nutrients; (3) increased coastal production along the northern Mozambican coast caused by eddy-induced nutrient supply. The model results also showed an intensification and shallowing of the subsurface production, related to increased upper layer nutrient concentrations caused by eddy activity. In addition, by driving the detachment of the East Madagascar Current at the southern tip of the island, inertial processes intensify the southern Madagascar upwelling and causes offshore diffusion of the upwelled waters. These results emphasize the complex role played by eddy activity and, more generally, inertial processes on marine ecosystems in this region.

  12. The Pig PeptideAtlas: A resource for systems biology in animal production and biomedicine.

    Science.gov (United States)

    Hesselager, Marianne O; Codrea, Marius C; Sun, Zhi; Deutsch, Eric W; Bennike, Tue B; Stensballe, Allan; Bundgaard, Louise; Moritz, Robert L; Bendixen, Emøke

    2016-02-01

    Biological research of Sus scrofa, the domestic pig, is of immediate relevance for food production sciences, and for developing pig as a model organism for human biomedical research. Publicly available data repositories play a fundamental role for all biological sciences, and protein data repositories are in particular essential for the successful development of new proteomic methods. Cumulative proteome data repositories, including the PeptideAtlas, provide the means for targeted proteomics, system-wide observations, and cross-species observational studies, but pigs have so far been underrepresented in existing repositories. We here present a significantly improved build of the Pig PeptideAtlas, which includes pig proteome data from 25 tissues and three body fluid types mapped to 7139 canonical proteins. The content of the Pig PeptideAtlas reflects actively ongoing research within the veterinary proteomics domain, and this article demonstrates how the expression of isoform-unique peptides can be observed across distinct tissues and body fluids. The Pig PeptideAtlas is a unique resource for use in animal proteome research, particularly biomarker discovery and for preliminary design of SRM assays, which are equally important for progress in research that supports farm animal production and veterinary health, as for developing pig models with relevance to human health research. PMID:26699206

  13. Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance or Death Disco?

    Science.gov (United States)

    O'Dowd, Colin; Ceburnis, Darius; Ovadnevaite, Jurgita; Bialek, Jakub; Stengel, Dagmar B.; Zacharias, Merry; Nitschke, Udo; Connan, Solene; Rinaldi, Matteo; Fuzzi, Sandro; Decesari, Stefano; Cristina Facchini, Maria; Marullo, Salvatore; Santoleri, Rosalia; Dell'Anno, Antonio; Corinaldesi, Cinzia; Tangherlini, Michael; Danovaro, Roberto

    2015-10-01

    Bursting bubbles at the ocean-surface produce airborne salt-water spray-droplets, in turn, forming climate-cooling marine haze and cloud layers. The reflectance and ultimate cooling effect of these layers is determined by the spray’s water-uptake properties that are modified through entrainment of ocean-surface organic matter (OM) into the airborne droplets. We present new results illustrating a clear dependence of OM mass-fraction enrichment in sea spray (OMss) on both phytoplankton-biomass, determined from Chlorophyll-a (Chl-a) and Net Primary Productivity (NPP). The correlation coefficient for OMss as a function of Chl-a increased form 0.67 on a daily timescale to 0.85 on a monthly timescale. An even stronger correlation was found as a function of NPP, increasing to 0.93 on a monthly timescale. We suggest the observed dependence is through the demise of the bloom, driven by nanoscale biological processes (such as viral infections), releasing large quantities of transferable OM comprising cell debris, exudates and other colloidal materials. This OM, through aggregation processes, leads to enrichment in sea-spray, thus demonstrating an important coupling between biologically-driven plankton bloom termination, marine productivity and sea-spray modification with potentially significant climate impacts.

  14. Coordinating vendor-buyer decisions for imperfect quality items considering trade credit and fully backlogged shortages

    Science.gov (United States)

    Khanna, Aditi; Gautam, Prerna; Jaggi, Chandra K.

    2016-03-01

    Supply chain management has become a critical issue for modern business environments. In today's world of cooperative decision-making, individual decisions in order to reduce inventory costs may not lead to an overall optimal solution. Coordination is necessary among participants of supply chain to achieve better performance. There are legitimate and important efforts from the vendor to enhance the relation with buyer; one such effort is offering trade credit which has been a driver of growth and development of business between them. The cost of financing is a core consideration in effective financial management, in general and in context of business. Also, due to imperfect production a vendor may produce defective items which results in shortages. Motivated with these aspects, an integrated vendor-buyer inventory model is developed for imperfect quality items with allowable shortages; in which the vendor offers credit period to the buyer for payment. The objective is to minimize the total joint annual costs incurred by the vendor and the buyer by using integrated decision making approach. The expected total annual integrated cost is derived and a solution procedure is provided to find the optimal solution. Numerical analysis shows that the integrated model gives an impressive cost reduction, in comparison to independent decision policies by the vendor and the buyer.

  15. Metabolic and Kidney Diseases in the Setting of Climate Change, Water Shortage, and Survival Factors.

    Science.gov (United States)

    Johnson, Richard J; Stenvinkel, Peter; Jensen, Thomas; Lanaspa, Miguel A; Roncal, Carlos; Song, Zhilin; Bankir, Lise; Sánchez-Lozada, Laura G

    2016-08-01

    Climate change (global warming) is leading to an increase in heat extremes and coupled with increasing water shortage, provides a perfect storm for a new era of environmental crises and potentially, new diseases. We use a comparative physiologic approach to show that one of the primary mechanisms by which animals protect themselves against water shortage is to increase fat mass as a means for providing metabolic water. Strong evidence suggests that certain hormones (vasopressin), foods (fructose), and metabolic products (uric acid) function as survival signals to help reduce water loss and store fat (which also provides a source of metabolic water). These mechanisms are intricately linked with each other and stimulated by dehydration and hyperosmolarity. Although these mechanisms were protective in the setting of low sugar and low salt intake in our past, today, the combination of diets high in fructose and salty foods, increasing temperatures, and decreasing available water places these survival signals in overdrive and may be accelerating the obesity and diabetes epidemics. The recent discovery of multiple epidemics of CKD occurring in agricultural workers in hot and humid environments may represent harbingers of the detrimental consequences of the combination of climate change and overactivation of survival pathways. PMID:27283495

  16. Biomarkers in natural fish populations indicate adverse biological effects of offshore oil production.

    Directory of Open Access Journals (Sweden)

    Lennart Balk

    Full Text Available BACKGROUND: Despite the growing awareness of the necessity of a sustainable development, the global economy continues to depend largely on the consumption of non-renewable energy resources. One such energy resource is fossil oil extracted from the seabed at offshore oil platforms. This type of oil production causes continuous environmental pollution from drilling waste, discharge of large amounts of produced water, and accidental spills. METHODS AND PRINCIPAL FINDINGS: Samples from natural populations of haddock (Melanogrammus aeglefinus and Atlantic cod (Gadus morhua in two North Sea areas with extensive oil production were investigated. Exposure to and uptake of polycyclic aromatic hydrocarbons (PAHs were demonstrated, and biomarker analyses revealed adverse biological effects, including induction of biotransformation enzymes, oxidative stress, altered fatty acid composition, and genotoxicity. Genotoxicity was reflected by a hepatic DNA adduct pattern typical for exposure to a mixture of PAHs. Control material was collected from a North Sea area without oil production and from remote Icelandic waters. The difference between the two control areas indicates significant background pollution in the North Sea. CONCLUSION: It is most remarkable to obtain biomarker responses in natural fish populations in the open sea that are similar to the biomarker responses in fish from highly polluted areas close to a point source. Risk assessment of various threats to the marine fish populations in the North Sea, such as overfishing, global warming, and eutrophication, should also take into account the ecologically relevant impact of offshore oil production.

  17. Biological effects of activation products and other chemicals released from fusion power plants

    International Nuclear Information System (INIS)

    Literature reviews indicate that existing information is incomplete, often contradictory, and of questionable value for the prediction and assessment of ultimate impact from fusion-associated activation products and other chemical releases. It is still uncertain which structural materials will be used in the blanket and first wall of fusion power plants. However, niobium, vanadium, vanadium-chromium alloy, vanadium-titanium alloy, sintered aluminum product, and stainless steel have been suggested. The activation products of principal concern will be the longer-lived isotopes of 26Al, 49V, 51Cr, 54Mn, 55Fe, 58Co, 60Co, 93Nb, and 94Nb. Lithium released to the environment either during the mining cycle, from power plant operation or accident, may be in the form of a number of compound types varying in solubility and affinity for biological organisms. The effects of a severe liquid metal fire or explosion involving Na or K will vary according to inherent abiotic and biotic features of the affected site. Saline, saline-alkaline, and sodic soils of arid lands would be particularly susceptible to alkaline stress. Beryllium released to the environment during the mining cycle or reactor accident situation could be in the form of a number of compound types. Adverse effects to aquatic species from routine chemical releases (biocides, corrosion inhibitors, dissolution products) may occur in the discharge of both fission and fusion power plant designs

  18. Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion

    Directory of Open Access Journals (Sweden)

    Celio I. Chagas

    2014-10-01

    Full Text Available Grain production has displaced livestock to marginal lands in most of the productive regions in Argentina since 1990. In the fertile Rolling Pampa region, extensive cattle production has been concentrated in lowlands subjected to flooding, salt excess, erosion and sedimentation processes but also in some feedlots recently located in sloping arable lands prone to soil erosion. We studied the concentration of microbiological contamination indicators in runoff water and sediments accumulated in depressions along the tributary network from these lands devoted to cattle production. The aims of this work were: (i to gather a reliable set of data from different monitoring periods and scales, (ii to search for simple and sensible variables to be used as indicators for surface water quality advising purposes and (iii to corroborate previous biological contamination conceptual models for this region. Concentration of pollution indicators in these ponds was related to mean stocking rates from nearby fields and proved to depend significantly on the accumulated water and sediments. Viable mesophiles and total coliforms were found mainly attached to large sediments rather than in the runoff water phase. Seasonal sampling showed that the time period between the last significant runoff event and each sampling date regarding enterococci proved to be a sensible variable for predicting contamination. Enterococci concentration tended to increase gradually until the next extraordinary runoff event washed away contaminants. The mentioned relationship may be useful for designing early warning surface water contamination programs regarding enterococci dynamics and other related microbial pollutants as well.

  19. Use of biologically reclaimed minerals for continuous hydroponic potato production in a CELSS.

    Science.gov (United States)

    Mackowiak, C L; Wheeler, R M; Stutte, G W; Yorio, N C; Sager, J C

    1997-01-01

    Plant-derived nutrients were successfully recycled in a Controlled Ecological Life Support System (CELSS) using biological methods. The majority of the essential nutrients were recovered by microbiologically treating the plant biomass in an aerobic bioreactor. Liquid effluent containing the nutrients was then returned to the biomass production component via a recirculating hydroponic system. Potato (Solanum tuberosum L.) cv. Norland plants were grown on those nutrients in either a batch production mode (same age plants on a nutrient solution) or a staggered production mode (4 different ages of plants on a nutrient solution). The study continued over a period of 418 days, within NASA Breadboard Project's Biomass Production Chamber at the Kennedy Space Center. During this period, four consecutive batch cycles (104-day harvests) and 13 consecutive staggered cycles (26-day harvests) were completed using reclaimed minerals and compared to plants grown with standard nutrient solutions. All nutrient solutions were continually recirculated during the entire 418 day study. In general, tuber yields with reclaimed minerals were within 10% of control solutions. Contaminants, such as sodium and recalcitrant organics tended to increase over time in solutions containing reclaimed minerals, however tuber composition was comparable to tubers grown in the control solutions. PMID:11542555

  20. A retrosynthetic biology approach to metabolic pathway design for therapeutic production

    Directory of Open Access Journals (Sweden)

    Faulon Jean-Loup

    2011-08-01

    Full Text Available Abstract Background Synthetic biology is used to develop cell factories for production of chemicals by constructively importing heterologous pathways into industrial microorganisms. In this work we present a retrosynthetic approach to the production of therapeutics with the goal of developing an in situ drug delivery device in host cells. Retrosynthesis, a concept originally proposed for synthetic chemistry, iteratively applies reversed chemical transformations (reversed enzyme-catalyzed reactions in the metabolic space starting from a target product to reach precursors that are endogenous to the chassis. So far, a wider adoption of retrosynthesis into the manufacturing pipeline has been hindered by the complexity of enumerating all feasible biosynthetic pathways for a given compound. Results In our method, we efficiently address the complexity problem by coding substrates, products and reactions into molecular signatures. Metabolic maps are represented using hypergraphs and the complexity is controlled by varying the specificity of the molecular signature. Furthermore, our method enables candidate pathways to be ranked to determine which ones are best to engineer. The proposed ranking function can integrate data from different sources such as host compatibility for inserted genes, the estimation of steady-state fluxes from the genome-wide reconstruction of the organism's metabolism, or the estimation of metabolite toxicity from experimental assays. We use several machine-learning tools in order to estimate enzyme activity and reaction efficiency at each step of the identified pathways. Examples of production in bacteria and yeast for two antibiotics and for one antitumor agent, as well as for several essential metabolites are outlined. Conclusions We present here a unified framework that integrates diverse techniques involved in the design of heterologous biosynthetic pathways through a retrosynthetic approach in the reaction signature space

  1. Linking Physical Dynamics and Biological Productivity in a Coastal Mesoscale Eddy

    Science.gov (United States)

    Simons, R. D.; Nishimoto, M. M.; Washburn, L.; Brown, K. S.; Siegel, D. A.

    2014-12-01

    The Santa Barbara Channel (SBC) eddy is a cyclonic mesoscale eddy located off the coast of Southern California, USA. In the summer of 1998 and 1999, the SBC eddy was surveyed for juvenile fishes. In 1998, very high numbers of juvenile fishes were observed within the eddy, but not in 1999. The ocean conditions that contributed to the differences in fish abundances inside the eddy were investigated with three-dimensional numerical modeling. The physical dynamics of the SBC eddy, which included eddy size, three-dimensional rotational structure, and isopycnal uplift, were evaluated using a three-dimensional Regional Ocean Modeling System (ROMS). The retention ability of the eddy was quantified using a three-dimensional particle tracking model driven by the ROMS. The physical dynamics and particle retention of the SBC eddy were found to differ significantly in 1998 and 1999. In 1998, when the SBC eddy was rotating at a steady rate spatially and temporally and cycling consistently in and out of solid-body rotation, the particle retention was high and the isopycnal uplift sustained. However in 1999, when the SBC eddy was rotating unsteadily in space and time and did not have periods of solid-body rotation, the particle retention was low and the isopycnal uplift unstable. We theorize that the steady symmetric rotation of the eddy in 1998 had two important impacts on the biological productivity inside the eddy. First, it provided a prolonged period of cold nutrient rich water uplifting into the euphotic zone, which stimulated productivity and consequently attracted zooplankton. Second, it allowed the zooplankton, prey for the juvenile fish, to be retained inside the eddy, which attracted the juvenile fish. We conclude that biological productivity inside mesoscale eddies may be linked to the stability of its three-dimensional rotational structure and consequently its ability to retain particles.

  2. Biological re-cultivation of industrial technological waste banks after steel production

    Science.gov (United States)

    Sokolovska, Maria; Zhiyanski, Miglena; Bech, Jaume

    2010-05-01

    The problem of re-cultivation of disturbed lands, after the creation of waste banks, is very important and of great scientific interest. The studies on the effectiveness of biological re-cultivation are focused mainly on activities and techniques for the acceleration of soil formation processes as. The relationship between substrate and plants is also studied, in order to create modern biotechnologies and contributes to the remediation of the re-cultivated lands within the territorial system. In this work we have studied three parts of an industrial waste bank named "The 7th of September" located in the green system of Sofia - Pernik agglomeration in Bulgaria. It consists of technological wastes produced by the steel industry. Its area of 20 dca is of special local importance. The aim of this study was to propose an appropriate technology for the biological re-cultivation, which could take place after all production activities had ceased. To achieve this aim a detailed study on the characteristics of climatic elements was carried out focusing on precipitation - limiting factor for future afforestation of waste banks. Analyses on hydro-physical and chemical parameters of substrates were undertaken in order to elaborate recommendations for their improvement and utility in biological re-cultivation. Here we present the characteristics of the vegetation which existed before the production activities and the approaches for choice of tree species in afforestation with different schemes and methods applied. On the basis of this study we were able to establish that the hydrological properties of substrates are quite similar to those of natural soils in the region. The variations obtained for some soil substrate layers were not significant. In relation to this we also outlined the quantity of organic matter and nutrient elements in waste banks as determining parameters for further biological re-cultivation. The studied site is located in the lower forest zone of the country

  3. Determination of production biology of cladocera in a reservoir receiving hyperthermal effluents from a nuclear production reactor

    International Nuclear Information System (INIS)

    The effects on zooplankton of residence in a cooling reservoir receiving hyperthermal effluents directly from a nuclear-production-reactor were studied. Rates of cladoceran population production were compared at two stations in the winter and summer of 1976 on Par Pond located on the Savannah River Plant, Aiken, SC. One station was located in an area of the reservoir directly receiving hyperthermal effluent (Station MAS) and the second was located about 4 km away in an area where surface temperatures were normal for reservoirs in the general geographical region (Station CAS). A non-parametric comparison between stations of standing stock and fecundity data for Bosmina longirostris, taken for the egg ratio model, was used to observe potential hyperthermal effluent effects. There was a statistically higher incidence of deformed eggs in the Bosmina population at Station MAS in the summer. Bosmina standing stock underwent two large oscillations in the winter and three large oscillations in the summer at Station MAS compared with two in the winter and one in the summer at Station CAS. These results are consistent with almost all other Par Pond studies which have found the two stations to be essentially similar in spectra composition but with some statistically significant differences in various aspects of the biology of the species

  4. Determination of production biology of cladocera in a reservoir receiving hyperthermal effluents from a nuclear production reactor. [Par Pond

    Energy Technology Data Exchange (ETDEWEB)

    Vigerstad, T J

    1980-01-01

    The effects on zooplankton of residence in a cooling reservoir receiving hyperthermal effluents directly from a nuclear-production-reactor were studied. Rates of cladoceran population production were compared at two stations in the winter and summer of 1976 on Par Pond located on the Savannah River Plant, Aiken, SC. One station was located in an area of the reservoir directly receiving hyperthermal effluent (Station MAS) and the second was located about 4 km away in an area where surface temperatures were normal for reservoirs in the general geographical region (Station CAS). A non-parametric comparison between stations of standing stock and fecundity data for Bosmina longirostris, taken for the egg ratio model, was used to observe potential hyperthermal effluent effects. There was a statistically higher incidence of deformed eggs in the Bosmina population at Station MAS in the summer. Bosmina standing stock underwent two large oscillations in the winter and three large oscillations in the summer at Station MAS compared with two in the winter and one in the summer at Station CAS. These results are consistent with almost all other Par Pond studies which have found the two stations to be essentially similar in spectra composition but with some statistically significant differences in various aspects of the biology of the species.

  5. The nursing shortage: part way down the slippery slope.

    Science.gov (United States)

    Cowin, Leanne; Jacobsson, Denise

    2003-07-01

    The shortage of nurses has reached a crisis point for health care services. A number of issues including the effects of economic rationalism, generational differences, working conditions and nurse education are revisited in a discussion that aims to refuel the debate on workplace reform for nurses. Economic rationalism has altered the healthcare service landscape. Attempts to balance service delivery with workforce resources have led to possibly unforeseen changes. Highly skilled nurses are required in acute services, however resource allocation may prevent this. The nursing workforce is aging although the current nursing workforce consists of three generations: baby boomers, generation X and generation Y. There are significant ideological and work organisational differences between these generations leading to possible conflict between nurses. The pool of available nurses to fill employment vacancies is finite. Attracting overseas nurses to fill nurse vacancies will leave vacancies elsewhere and is not a long-term solution to the nursing shortage. Moreover, if the workplace has not addressed the reasons why nurses have left the health care workplace then there is a real danger of losing those recently attracted back into the workplace. Working conditions are a critical element within the retention puzzle. Job satisfaction dimensions such as autonomy and professional relationships are key components for improving working conditions. The final issue explored is the question of whether the tertiary education system is the most appropriate place in which to develop and educate nurses. It is suggested that workplace reforms should be the target of retention strategies rather than changes in the educational process of nursing. PMID:14582950

  6. The knowledge status EFFEKT: Efficiency shortage. Basis for further research

    International Nuclear Information System (INIS)

    This report gives a survey of results from the ''Norges forskningsraad'' ( The Norwegian Research Council) program EFFEKT (1996-2000) and some other relevant projects. The report focuses on areas relevant to the efficiency shortage problems and is made as a part of the foundation for the start of the competence project ''Competence Building - Capacity Shortage''. The challenge is to find adequate solutions that satisfies the demands from market participants, systems operators and market actors. This mainly contains problems of both operational and long term strategic character which primarily touches the following main areas: Peak load coverage, operating security and reserves, network capacity and environmental aspects. The results are reported under these headings from several relevant projects. The major challenges in the future will be: 1) Development of mechanisms that bring the right incentives for improved use of the flexibility in the end consumption. 2) Adaptation of the market and organisational conditions in order to improve the consumer flexibility. 3) Further development of the incentive structures for the network owners and systems operators so that the existing transferring capacity is used as well as possible and the macro economic development of the network is encouraged. 4) Profit estimations and financing of larger co-originated connections particularly across the country borders, in deregulated power markets. Particularly the first two challenges are probably a condition for the deregulated power markets as the Nordic one, shall be able to survive in the long run. In an appendix main data studied in the projects as a basis for this report, are referred

  7. Skilled labour supply in the South African construction industry: The nexus between certification, quality of work output and shortages

    Directory of Open Access Journals (Sweden)

    Abimbola O. Windapo

    2016-02-01

    Full Text Available Orientation: Construction human resource management.Research purpose: The study examines the skilled labour supply in the South African construction industry and determines whether there is a relationship between trade certification, quality of work output and scarce labour skills.Motivation for the study: The rationale for the investigation is based on the view of scholars that a skilled labour shortage is preponderant in the South African construction industry even though there is a high level of youth unemployment in South Africa and that the perceived skills shortage contributes to a decrease in productivity and product quality.Research design, approach and method: The paper reviews relevant literature and employs a mixed method research approach in collecting empirical data from contracting companies within the Western Cape Province of South Africa that are listed on the Construction Industry Development Board contractor register.Main findings: The study demonstrated that there is no shortage of manpower, but there is a shortage of qualified or skilled tradesmen, such as electricians, plumbers, welders, fitters and carpenters, whose professions are more technical and require formal training and certification. The level of supply of skilled tradesmen is attributed to the lack of high-quality basic education, the state of the economy, compulsory certification of tradesmen and an ageing workforce. It was also found that there is a significant relationship between skilled labour shortages and the requirement that labour be certified and that work output is unsatisfactory when there is no certification requirement.Practical/managerial implications: Based on these findings, the study concludes that skilled labour shortages and poor work output quality continue to be experienced in the South African construction industry when workers are unable to obtain formal certification for informal work experience acquired through years of practice on

  8. Determination of production biology of Cladocera in a reservoir receiving hyperthermal effluents from a nuclear production reactor

    International Nuclear Information System (INIS)

    The effects on zooplankton of residence in a cooling reservoir receiving hyperthermal effluents directly from a nuclear-production-reactor were examined. The design of the study was to compare rates of cladoceran population production at two stations in the winter and summer of 1976 on Par Pond, the cooling reservoir located on the Savannah River Plant, Aiken, SC. One station was located in an area of the reservoir directly receiving hyperthermal effluent (Station MAS), and the second was located about 4 km away in an area where surface temperatures were normal for reservoirs in the general geographical region (Station CAS). The statistical properties of the Edmondson egg ratio model (Edmondson, 1960) were examined to determine if it would be a suitable method for calculating cladoceran production rates for comparison between stations. Based on an examination of the variance associated with standing stock and fecundity measurements and other consideratios, the use of the egg ratio model was abandoned. Instead, a non-parametric comparison between stations of standing stock and fecundity data for Bosmina longirostris, taken for the egg ratio model, were used to observe potential hyperthermal effluent effects. There was a statistically higher incidence of deformed eggs in the Bosmina population at Station MAS in the summer. Bosmina standing stock underwent two large oscillations in the winter and three large oscillations in the summer at Station MAS compared with two in the winter and one in the summer at Station CAS. These results are consistent with almost all other Par Pond studies which have found the two stations to be essentially similar in species composition but with some statistically significant differences in various aspects of the biology of the species

  9. Applying complex models to poultry production in the future--economics and biology.

    Science.gov (United States)

    Talpaz, H; Cohen, M; Fancher, B; Halley, J

    2013-09-01

    The ability to determine the optimal broiler feed nutrient density that maximizes margin over feeding cost (MOFC) has obvious economic value. To determine optimal feed nutrient density, one must consider ingredient prices, meat values, the product mix being marketed, and the projected biological performance. A series of 8 feeding trials was conducted to estimate biological responses to changes in ME and amino acid (AA) density. Eight different genotypes of sex-separate reared broilers were fed diets varying in ME (2,723-3,386 kcal of ME/kg) and AA (0.89-1.65% digestible lysine with all essential AA acids being indexed to lysine) levels. Broilers were processed to determine carcass component yield at many different BW (1.09-4.70 kg). Trial data generated were used in model constructed to discover the dietary levels of ME and AA that maximize MOFC on a per broiler or per broiler annualized basis (bird × number of cycles/year). The model was designed to estimate the effects of dietary nutrient concentration on broiler live weight, feed conversion, mortality, and carcass component yield. Estimated coefficients from the step-wise regression process are subsequently used to predict the optimal ME and AA concentrations that maximize MOFC. The effects of changing feed or meat prices across a wide spectrum on optimal ME and AA levels can be evaluated via parametric analysis. The model can rapidly compare both biological and economic implications of changing from current practice to the simulated optimal solution. The model can be exploited to enhance decision making under volatile market conditions. PMID:23960140

  10. Biological and Energy Productivity of Natural Spruce Forests in the Ukrainian Carpathians

    Directory of Open Access Journals (Sweden)

    R. D. Vasilishyn

    2014-10-01

    Full Text Available The modern practice of forestry production in Ukraine, which is in the process of implementing the conceptual changes in forest management and harmonization of its basic approaches to the basics of sustainable development, requires a significant expansion of the current regulatory and informational tools used to assess the ecological functions of forests. For this purpose, during the 2012–2014, as part of an international project GESAPU, models and tables of bioproductivity for forest tree species in Ukraine were completed. The article presents the results of modeling the dynamics of the conversion coefficients for the main components of phytomass of modal natural spruce forests of the Carpathian region of Ukraine based on information from 32 plots in the database of «Forest Phytomass of Ukraine». According to the state forest accounting of Ukraine as of January 1, 2011, the spruce forests in the Ukrainian Carpathians cover an area of 426.2 thousand ha, 45 % of which are spruce of natural origin. To evaluate the productivity of modal dynamics of pure and mixed spruce stands, the study developed models of the stock and overall productivity, derived by Bertalanffy growth function. On the basis of these models, normative reference tables of biological productivity of natural modal spruce forests of the Ukrainian Carpathians were developed. To successfully meet the challenges of evaluating the energy possibilities of forestry of Ukraine, the study used tables of energetic productivity of investigated stands. Built on the basis of the tables of bioproductivity, they reflect the dynamic processes of energy storage in the phytomass components and can be used in forest management to predict volumes of energetic woods.

  11. Characterization of soluble microbial products in a drinking water biological aerated filter.

    Science.gov (United States)

    Kang, Jia; Ma, Teng-Fei; Zhang, Peng; Gao, Xu; Chen, You-Peng

    2016-05-01

    Utilization-associated products (UAPs) and biomass-associated products (BAPs) were quantified separately in this study to characterize soluble microbial products (SMPs) in a drinking water lab-scale biological aerated filter (BAF), and their basic characteristics were explored using gel filtration chromatography and three-dimensional excitation-emission matrix (3D-EEM) spectrophotometry with fluorescence regional integration analysis and parallel factor model. UAPs were observed increased with the increase of filter media depth and accumulated after BAF treatment, whereas BAPs were basically constant. 3D-EEM spectroscopy analysis result showed that tryptophan and protein-like compounds were the main components of UAPs and BAPs, and fulvic-acid-like substance was a major component of BAPs, rather than UAPs. In terms of molecular weight (MW) distribution, UAP MW presented a bimodal distribution in the range of 1-5 and >10 kDa, while BAP MW exhibited unimodal distribution with MW >20 kDa fraction accounting for more than 90 %. The macromolecules of UAPs accumulated after BAF treatment. This study provides theoretical support for in-depth study of SMP characteristics. PMID:26801929

  12. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    Science.gov (United States)

    Lachkar, Z.; Gruber, N.

    2012-01-01

    Eastern Boundary Upwelling Systems (EBUS) are highly productive ocean regions. Yet, substantial differences in net primary production (NPP) exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The NPP drivers are identified with the aid of an artificial neural network analysis based on self-organizing-maps (SOM). Our results suggest that in addition to the expected NPP enhancing effect of stronger equatorward alongshore wind, three factors have an inhibiting effect: (1) strong eddy activity, (2) narrow continental shelf, and (3) deep mixed layer. The co-variability of these 4 drivers defines in the context of the SOM a continuum of 100 patterns of NPP regimes in EBUS. These are grouped into 4 distinct classes using a Hierarchical Agglomerative Clustering (HAC) method. Our objective classification of EBUS reveals important variations of NPP regimes within each of the four EBUS, particularly in the Canary and Benguela Current systems. Our results show that the Atlantic EBUS are generally more productive and more sensitive to upwelling favorable winds because of weaker factors inhibiting NPP. Perturbations of alongshore winds associated with climate change may therefore lead to contrasting biological responses in the Atlantic and the Pacific EBUS.

  13. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2011-10-01

    Full Text Available Eastern Boundary Upwelling Systems (EBUS are highly productive ocean regions. Yet, substantial differences in net primary production (NPP exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The identification of NPP drivers is done with the aid of an artificial neural network analysis based on self-organizing-maps (SOMs. We show that in addition to the expected NPP enhancing effect of stronger alongshore wind, three factors have an inhibiting effect: (1 strong eddy activity, (2 narrow continental shelf, and (3 deep mixed layer. The co-variability of these 4 drivers defines in the context of the SOM a continuum of 100 patterns of NPP regimes in EBUS. These are grouped into 4 distinct classes using a Hierarchical Agglomerative Clustering (HAC method. Our objective classification of EBUS reveals important variations of NPP regimes within each of the four EBUS, particularly in the Canary and Benguela Current systems. Our results show that the Atlantic EBUS are generally more productive and more sensitive to upwelling favorable winds because of a weaker factors inhibiting NPP. Perturbations of alongshore winds associated with climate change may therefore lead to contrasting biological responses in the Atlantic and the Pacific EBUS.

  14. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    Science.gov (United States)

    Montesinos, Laura; Bundó, Mireia; Izquierdo, Esther; Campo, Sonia; Badosa, Esther; Rossignol, Michel; Montesinos, Emilio; San Segundo, Blanca; Coca, María

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation. PMID:26760761

  15. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    Directory of Open Access Journals (Sweden)

    Laura Montesinos

    Full Text Available Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice seeds driving the expression of the chimeric gene by the strong embryo-specific oleosin 18 own promoter, and targeting the peptide to the oil body organelle as an oleosin 18-cecropin A fusion protein. The accumulation of cecropin A in oil bodies had no deleterious effects on seed viability and seedling growth, as well as on seed yield. We also show that biologically active cecropin A can be easily purified from the transgenic rice seeds by homogenization and simple flotation centrifugation methods. Our results demonstrate that the oleosin fusion technology is suitable for the production of cecropin A in rice seeds, which can potentially be extended to other antimicrobial peptides to assist their exploitation.

  16. Removal of anaerobic soluble microbial products in a biological activated carbon reactor.

    Science.gov (United States)

    Dong, Xiaojing; Zhou, Weili; He, Shengbing

    2013-09-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable. Focusing on the biodegradation of anaerobic SMP, the biological activated carbon (BAC) was introduced into the anaerobic system. The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors. The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2, i.e., BAC) functioned as a polishing step to remove SMP produced in UASB1. The results showed that 90% of the SMP could be removed before granular activated carbon was saturated. After the saturation, the SMP removal decreased to 60% on the average. Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation. A strain of SMP-degrading bacteria, which was found highly similar to Klebsiella sp., was isolated, enriched and inoculated back to the BAC reactor. When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3 x day), the effluent from the BAC reactor could meet the discharge standard without further treatment. Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective, cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L. PMID:24520716

  17. Removal of disinfection by-products formation potential by biologically intensified process

    Institute of Scientific and Technical Information of China (English)

    AN Dong; LI Wei-guang; CUI Fu-yi; HE Xin; ZHANG Jin-song

    2005-01-01

    The removal of disinfection by-products formation potential(DBPFP) in artificially intensified biological activated carbon(IBAC) process which is developed on the basis of traditional ozone granular activated carbon was evaluated. By IBAC removals of 31% and 68% for THMFP and HAAFP were obtained respectively. Under identical conditions, the removals of the same substances were 4% and 32% respectively only by the granular activated carbon(GAC) process. Compared with GAC, the high removal rates of the two formed potential substances were due to the increasing of bioactivity of the media and the synergistic capabilities of biological degradation cooperating with activated carbon adsorption of organic compounds. A clear linear correlation ( R2 = 0.9562 and R2 = 0.9007) between DOC HAAFP removal rate and Empty Bed Contact Time(EBCT) of IBAC process was observed, while that between THMFP removal rate and EBCT of GAC was R2 = 0.9782. In addition certain linear correlations between THMFP, HAAFP and UV254 ( R2 = 0.855 and R2 = 0.7702) were found for the treated water. For IBAC process there are also more advantages such as long backwashing cycle time, low backwashing intensity and prolonging activated carbon lifetime and so on.

  18. Production and Analysis of Biological Properties of Recombinant Human Apolipoprotein A-I.

    Science.gov (United States)

    Ryabchenko, A V; Kotova, M V; Tverdohleb, N V; Knyazev, R A; Polyakov, L M

    2015-11-01

    Production of recombinant human apolipoprotein A-I (apoA-I) in E. coli cells is described and its biological properties are compared with those of natural protein. Recombinant apoA-I was isolated as a chimeric polypeptide and then processed to a mature form apoA-I (rapo-I). We studied the ability of the resulting protein to penetrate into hepatocyte nuclei and regulate the rate of DNA biosynthesis in complex with estriol. Penetration of rapoA-I conjugated with FITC into hepatocyte nuclei was demonstrated. rapoA-I-estriol and apoA-I-estriol complexes induced similar increase in DNA biosynthesis rate in isolated hepatocytes, which confi rms functional similarity of the obtained recombinant mature protein (rapoA-I) and native human apoA-I. PMID:26612626

  19. Simulated influence of postweaning production system on performance of different biological types of cattle: III. Biological efficiency.

    Science.gov (United States)

    Williams, C B; Bennett, G L; Keele, J W

    1995-03-01

    Methods were developed and incorporated into a previously published computer model to predict ME intake and calculate biological efficiencies in terms of grams of empty BW (EBW) and fat-free matter (FFM) gained/megacalorie of ME consumed from weaning to slaughter. Efficiencies were calculated for steers from F1 crosses of 16 sire breeds (Hereford, Angus, Jersey, South Devon, Limousin, Simmental, Charolais, Red Poll, Brown Swiss, Gelbvieh, Maine Anjou, Chianina, Brahman, Sahiwal, Pinzgauer, and Tarentaise) mated to Hereford and Angus dams, grown under nine backgrounding systems, finished at either a low (1.0 kg) or high (1.36 kg) ADG, and slaughtered at 300 kg carcass weight, small or greater degree of marbling, and 28% carcass fat. Backgrounding systems were high ADG (.9 kg) for 111, 167, or 222 d, medium ADG (.5 kg) for 200, 300, or 400 d, and low ADG (.25 kg) for 300 or 400 d, and 0 d backgrounding. The high ADG finishing system was more biologically efficient than the low ADG finishing system, and generally backgrounding systems were less biologically efficient than direct finishing after weaning (0 d backgrounding). Large-framed breeds were more efficient at the constant carcass weight and carcass fatness end point, and breeds that achieved the marbling end point at low levels of carcass fatness were more efficient at this end point. Some small-framed breeds gained EBW more efficiently but gained FFM less efficiently than some of the large-framed breeds. Variation in efficiency between genotypes was greatest with 0 d backgrounding and decreased in the other backgrounding systems. PMID:7608001

  20. Despite Federal Legislation, Shortages Of Drugs Used In Acute Care Settings Remain Persistent And Prolonged.

    Science.gov (United States)

    Chen, Serene I; Fox, Erin R; Hall, M Kennedy; Ross, Joseph S; Bucholz, Emily M; Krumholz, Harlan M; Venkatesh, Arjun K

    2016-05-01

    Early evidence suggests that provisions of the Food and Drug Administration Safety and Innovation Act of 2012 are associated with reductions in the total number of new national drug shortages. However, drugs frequently used in acute unscheduled care such as the care delivered in emergency departments may be increasingly affected by shortages. Our estimates, based on reported national drug shortages from 2001 to 2014 collected by the University of Utah's Drug Information Service, show that although the number of new annual shortages has decreased since the act's passage, half of all drug shortages in the study period involved acute care drugs. Shortages affecting acute care drugs became increasingly frequent and prolonged compared with non-acute care drugs (median duration of 242 versus 173 days, respectively). These results suggest that the drug supply for many acutely and critically ill patients in the United States remains vulnerable despite federal efforts. PMID:27140985

  1. Biological hydrogen production by Anabaena sp. – Yield, energy and CO2 analysis including fermentative biomass recovery

    OpenAIRE

    Ferreira, Ana F.; Marques, Ana C.; Batista, Ana Paula; Marques, Paula Alexandra; de Gouveia, L.; Carla M. Silva

    2012-01-01

    This paper presents laboratory results of biological production of hydrogen by photoautrotophic cyanobacterium Anabaena sp. Additional hydrogen production from residual Cyanobacteria fermentation was achieved by Enterobacter aerogenes bacteria. The authors evaluated the yield of H2 production, the energy consumption and CO2 emissions and the technological bottlenecks and possible improvements of the whole energy and CO2 emission chain. The authors did not attempt to extrapolate the results to...

  2. Fuzzy inventory model for deteriorating items, with time depended demand, shortages, and fully backlogging

    OpenAIRE

    Wasim Akram Mandal; Sahidul Islam

    2016-01-01

    In this paper analyzes fuzzy inventory system for deterioration item with time depended demand. Shortages are allowed under fully backlogged. Fixed cost, deterioration cost, shortages cost, holding cost are the cost considered in this model. Fuzziness is applying by allowing the cost components (holding cost, deterioration, shortage cost, holding cost, etc). In fuzzy environment it considered all required parameter to be triangular fuzzy numbers. One numerical solution of the model is obtaine...

  3. Foreign Help Wanted; Easing Japan’s Labor Shortages

    OpenAIRE

    Giovanni Ganelli; Naoko Miake

    2015-01-01

    Data and anecdotal evidence suggest that Japan is suffering from labor shortages, which are large in an international perspective, have a negative impact on potential growth, and reduce the effectiveness of monetary and fiscal stimulus. This paper focuses on policy options to ease Japan’s labor shortages. In particular, we focus on possible measures to increase reliance on foreign labor. Other policy recommendations to deal with shortages include policies aimed at increasing female labor pa...

  4. Fuzzy Inventory Model for Deteriorating Items with Shortages under Fully Backlogged Condition

    OpenAIRE

    D. Dutta,; Pavan Kumar

    2013-01-01

    In this paper, a fuzzy inventory model for deteriorating items with shortages under fully backlogged condition is formulated and solved. Deterioration rate and demand are assumed to be constant. Shortages are allowed and assumed to be fully backlogged. Fuzziness is introduced by allowing the cost components (holding cost, shortage cost, etc.), demand rate and the deterioration. In fuzzy environment, all related inventory parameters are assumed to be trapezoidal fuzzy numbers. The purpose of t...

  5. Medical isotope shortage 2009-2010 and future options NRU, SLOWPOKE and MAPLE

    International Nuclear Information System (INIS)

    The 15 month shutdown of NRU and the unexpected termination of the AECL/Nordion MAPLE project caused a world-wide shortage of medical isotopes. After the recent repair of NRU, AECL is confident that it could continue operating safely and reliably as a multi-purpose reactor until 2021 or longer. There is convincing evidence that the restoration of the MAPLE reactors is technically feasible, but it is highly improbable that a 10 MW MAPLE production reactor can ever be cost-effective. However, conversion of the present 10 MW reactors to 3 MW, without major changes to the structural hardware, warrants serious consideration. Finally, even the 20 kW SLOWPOKE reactor could produce useful quantities of Mo-99. If the present fuel rods were replaced with a small tank containing a solution of low-enriched uranyl sulphate in water, three of these liquid core reactors could supply all of Canada. (author)

  6. Medical isotope shortage 2009-2010 and future options NRU, SLOWPOKE and MAPLE

    Energy Technology Data Exchange (ETDEWEB)

    Hilborn, J. [Deep River, Ontario (Canada)

    2013-07-01

    The 15 month shutdown of NRU and the unexpected termination of the AECL/Nordion MAPLE project caused a world-wide shortage of medical isotopes. After the recent repair of NRU, AECL is confident that it could continue operating safely and reliably as a multi-purpose reactor until 2021 or longer. There is convincing evidence that the restoration of the MAPLE reactors is technically feasible, but it is highly improbable that a 10 MW MAPLE production reactor can ever be cost-effective. However, conversion of the present 10 MW reactors to 3 MW, without major changes to the structural hardware, warrants serious consideration. Finally, even the 20 kW SLOWPOKE reactor could produce useful quantities of Mo-99. If the present fuel rods were replaced with a small tank containing a solution of low-enriched uranyl sulphate in water, three of these liquid core reactors could supply all of Canada. (author)

  7. Reduce, reuse and recycle: A green solution to Canada's medical isotope shortage

    International Nuclear Information System (INIS)

    Due to the unforeseen maintenance issues at the National Research Universal (NRU) reactor at Chalk River and coincidental shutdowns of other international reactors, a global shortage of medical isotopes (in particular technetium-99m, Tc-99m) occurred in 2009. The operation of these research reactors is expensive, their age creates concerns about their continued maintenance and the process results in a large amount of long-lived nuclear waste, whose storage cost has been subsidized by governments. While the NRU has since revived its operations, it is scheduled to cease isotope production in 2016. The Canadian government created the Non-reactor based medical Isotope Supply Program (NISP) to promote research into alternative methods for producing medical isotopes. The NRC was a member of a collaboration looking into the use of electron linear accelerators (LINAC) to produce molybdenum-99 (Mo-99), the parent isotope of Tc-99m. This paper outlines NRC’s involvement in every step of this process, from the production, chemical processing, recycling and preliminary animal studies to demonstrate the equivalence of LINAC Tc-99m with the existing supply. This process stems from reusing an old idea, reduces the nuclear waste to virtually zero and recycles material to create a green solution to Canada's medical isotope shortage. - Highlights: • Commercial power electron accelerators are realistic option to produce 99Mo. • Could cover national demand of Canada. Demonstrate LINAC-99Mo as environmental and economical solution to isotope crisis. • Demonstrate LINAC-99mTc to be clinically equivalent to current fission-99mTc supply

  8. Biological determinants of plant and crop productivity of flax (Linum usitatissimum L.

    Directory of Open Access Journals (Sweden)

    Tadeusz Zając

    2012-12-01

    Full Text Available In Poland the cultivation of the fibrous form of flax (Linum usitatissimum L. is dying out, but the acreage of its oilseed form, linseed, which provides seed (Semen lini used in therapy and being a source of -linolenic acid, is expanding. Nowadays, linseed is grown in 64 countries of the world, but yield levels in these countries vary greatly. Under European conditions, seed yield of linseed shows high variation, which is evidence of little knowledge of the biology of this plant and the lack of precise cultivation solutions in agricultural technologies used. A major reason is the difficulty in obtaining optimal crop density. A sparse crop results in low above-ground biomass yield, which is translated into insufficient crop yields. The selection of highly productive domestic and foreign varieties can partially increase linseed yield; apart from some domestic varieties, the Canadian cultivar 'Flanders' and the Hungarian cultivar 'Barbara' are positive examples in this respect. There is a possibility of effective selection at early stages of linseed breeding, which bodes well for the prospect of obtaining highly productive varieties with normal or very low -linolenic acid content.

  9. Integrated side-stream reactor for biological nutrient removal and minimization of sludge production.

    Science.gov (United States)

    Coma, M; Rovira, S; Canals, J; Colprim, J

    2015-01-01

    Integrated processes to reduce in situ the sludge production in wastewater treatment plants are gaining attention in order to facilitate excess sludge management. In contrast to post-treatments, such as anaerobic digestion which is placed between the activated sludge system and dewatering processes, integrated technologies are placed in the sludge return line. This study evaluates the application of an anoxic side-stream reactor (SSR) which creates a physiological shock and uncouples the biomass metabolism and diverts the activity from assimilation for biosynthesis to non-growth activities. The effect of this system in biological nutrient removal for both nitrogen and phosphorus was evaluated for the anaerobic, anoxic and aerobic reactors. The RedOx potential within the SSR was maintained at -150 mV while the sludge loading rate was modified by increasing the percentage of recycled activated sludge feed to the SSR (0 and 40% at laboratory scale and 0, 10, 50 and 100% at pilot scale). The use of the SSR presented a slight reduction of phosphorus removal but maintained the effluent quality to the required discharge values. Nitrogen removal efficiency increased from 75 to 86% while reducing the sludge production rate by 18.3%. PMID:25860709

  10. Human chorionic gonadotropin: Different glycoforms and biological activity depending on its source of production.

    Science.gov (United States)

    Fournier, Thierry

    2016-06-01

    Human chorionic gonadotropin (hCG) is the first hormonal message from the placenta to the mother. It is detectable in maternal blood two days after implantation and behaves like a super LH agonist stimulating progesterone secretion by the corpus luteum. In addition to maintaining the production of progesterone until the placenta itself produces it, hCG also has a role in myometrial quiescence and local immune tolerance. Specific to humans, hCG is a complex glycoprotein composed of two highly glycosylated subunits. The α-subunit is identical to the pituitary gonadotropin hormones (LH, FSH, TSH), contains two N-glycosylation sites, and is encoded by a single gene (CGA). By contrast, the β-subunits are distinct for each hormones and confer both receptor and biological specificity, although LH and hCG bind to the same receptor (LH/CG-R). The hCG ß-subunit is encoded by a cluster of genes (CGB) and contains two sites of N-glycosylation and four sites of O-glycosylation. The hCG glycosylation state varies with the stage of pregnancy, its source of production and in the pathology. It is well established that hCG is mainly secreted into maternal blood, where it peaks at 8-10weeks of gestation (WG), by the syncytiotrophoblast (ST), which represents the endocrine tissue of the human placenta. The invasive extravillous trophoblast (iEVT) also secretes hCG, and in particular hyperglycosylated forms of hCG (hCG-H) also produced by choriocarcinoma cells. In maternal blood, hCG-H is elevated during early first trimester corresponding to the trophoblastic cell invasion process and then decreases. In addition to its endocrine role, hCG has autocrine and paracrine roles. It promotes formation of the ST and angiogenesis through LH/CG-R but has no effect on trophoblast invasion in vitro. By contrast, hCG-H stimulates trophoblast invasion and angiogenesis by interacting with the TGFß receptor in a LH/CG-R independent signalling pathway. hCG is largely used in antenatal screening

  11. Price signals and end consumer flexibility in shortage situations

    International Nuclear Information System (INIS)

    following alternatives: 1) Fixed part + loss part + energy part which is only active in shortage periods. 2) Fixed part + loss part + effect part which is only active in shortage periods. 3) Discontinued tariff with 15 minutes warning period

  12. Biological material (DNA and RNA) bank of nuclear production workers and residents of nearby territories

    International Nuclear Information System (INIS)

    Seversk Biophysical Research Centre (SBRC) has been engaged in creating DNA and biological material bank of workers of nuclear production (Siberian Group of Chemical Enterprises - SGCE) and residents of nearby areas (the town of Seversk) since 2002. Following the developed methodology, for each person this bank includes three units of storage: DNA sample extracted by standard method using proteinase K (the main sample), DNA sample isolated by means of 'quick' extraction method (work sample), and 1.5 ml blood sample (spare sample). For each DNA donor there have been obtained cytogenetic agents to estimate frequency and spectrum of chromosome aberrations. There has been completed DNA bank of SGCE workers (healthy individuals, cancer patients and those who survived acute myocardial infarction) as well as Seversk children aged 9-11 examined within SBRC special screening programme to diagnose thyroid diseases. At present, this DNA and biological material bank includes 5,988 units of storage (DNA samples extracted by means of standard method, DNA work samples isolated by quick extraction method, and spare blood samples). For every donor there has been obtained an informed consent. Storage conditions comply with technical regulations and provide for long-term (for decades) safety of the material. Personal information on DNA donors (age, internal and external doses, length of service, occupational data and case history) is contained in the Regional Medicodosimetric Register. Currently work is underway to create RNA bank identical to the existing DNA bank. For each person this bank contains two units of storage: the main high quality RNA sample isolated by hot phenol extraction; a work sample - of single stranded cDNA, extracted on RNA matrix through reverse transcription reaction. RNA bank will allow complex study of radiation effects in low dose range on the transcript of nuclear production workers and people living nearby. Thus, SBNC DNA and biological material bank

  13. Removal of Review and Reclassification Procedures for Biological Products Licensed Prior to July 1, 1972. Final rule.

    Science.gov (United States)

    2016-02-12

    The Food and Drug Administration (FDA, the Agency, or we) is removing two regulations that prescribe procedures for FDA's review and classification of biological products licensed before July 1, 1972. FDA is taking this action because the two regulations are obsolete and no longer necessary in light of other statutory and regulatory authorities established since 1972, which allow FDA to evaluate and monitor the safety and effectiveness of all biological products. In addition, other statutory and regulatory authorities authorize FDA to revoke a license for biological products because they are not safe and effective, or are misbranded. FDA is taking this action as part of its retrospective review of its regulations to promote improvement and innovation. PMID:26878738

  14. Nutrient availability affects pigment production but not growth in lichens of biological soil crusts

    Science.gov (United States)

    Bowker, M.A.; Koch, G.W.; Belnap, J.; Johnson, N.C.

    2008-01-01

    Recent research suggests that micronutrients such as Mn may limit growth of slow-growing biological soil crusts (BSCs) in some of the drylands of the world. These soil surface communities contribute strongly to arid ecosystem function and are easily degraded, creating a need for new restoration tools. The possibility that Mn fertilization could be used as a restoration tool for BSCs has not been tested previously. We used microcosms in a controlled greenhouse setting to investigate the hypothesis that Mn may limit photosynthesis and consequently growth in Collema tenax, a dominant N-fixing lichen found in BSCs worldwide. We found no evidence to support our hypothesis; furthermore, addition of other nutrients (primarily P, K, and Zn) had a suppressive effect on gross photosynthesis (P = 0.05). We also monitored the growth and physiological status of our microcosms and found that other nutrients increased the production of scytonemin, an important sunscreen pigment, but only when not added with Mn (P = 0.01). A structural equation model indicated that this effect was independent of any photosynthesis-related variable. We propose two alternative hypotheses to account for this pattern: (1) Mn suppresses processes needed to produce scytonemin; and (2) Mn is required to suppress scytonemin production at low light, when it is an unnecessary photosynthate sink. Although Mn fertilization does not appear likely to increase photosynthesis or growth of Collema, it could have a role in survivorship during environmentally stressful periods due to modification of scytonemin production. Thus, Mn enrichment should be studied further for its potential to facilitate BSC rehabilitation. ?? 2008 Elsevier Ltd.

  15. Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties.

    Science.gov (United States)

    Osińska-Jaroszuk, Monika; Jarosz-Wilkołazka, Anna; Jaroszuk-Ściseł, Jolanta; Szałapata, Katarzyna; Nowak, Artur; Jaszek, Magdalena; Ozimek, Ewa; Majewska, Małgorzata

    2015-12-01

    Fungal polysaccharides (PSs) are the subject of research in many fields of science and industry. Many properties of PSs have already been confirmed and the list of postulated functions continues to grow. Fungal PSs are classified into different groups according to systematic affinity, structure (linear and branched), sugar composition (homo- and heteropolysaccharides), type of bonds between the monomers (β-(1 → 3), β-(1 → 6), and α-(1 → 3)) and their location in the cell (cell wall PSs, exoPSs, and endoPSs). Exopolysaccharides (EPSs) are most frequently studied fungal PSs but their definition, classification, and origin are still not clear and should be explained. Ascomycota and Basidiomycota fungi producing EPS have different ecological positions (saprotrophic and endophytic, pathogenic or symbiotic-mycorrhizae fungi); therefore, EPSs play different biological functions, for example in the protection against environmental stress factors and in interactions with other organisms. EPSs obtained from Ascomycota and Basidiomycota fungal cultures are known for their antioxidant, immunostimulating, antitumor, and antimicrobial properties. The major objective of the presented review article was to provide a detailed description of the state-of-the-art knowledge of the effectiveness of EPS production by filamentous and yeast Ascomycota and Basidiomycota fungi and techniques of derivation of EPSs, their biochemical characteristics, and biological properties allowing comprehensive analysis as well as indication of similarities and differences between these fungal groups. Understanding the role of EPSs in a variety of processes and their application in food or pharmaceutical industries requires improvement of the techniques of their derivation, purification, and characterization. The detailed analyses of data concerning the derivation and application of Ascomycota and Basidiomycota EPSs can facilitate development and trace the direction of application of these EPSs

  16. Removal of anaerobic soluble microbial products in a biological activated carbon reactor

    Institute of Scientific and Technical Information of China (English)

    Xiaojing Dong; Weili Zhou; Shengbing He

    2013-01-01

    The soluble microbial products (SMP) in the biological treatment effluent are generally of great amount and are poorly biodegradable.Focusing on the biodegradation of anaerobic SMP,the biological activated carbon (BAC) was introduced into the anaerobic system.The experiments were conducted in two identical lab-scale up-flow anaerobic sludge blanket (UASB) reactors.The high strength organics were degraded in the first UASB reactor (UASB1) and the second UASB (UASB2,i.e.,BAC) functioned as a polishing step to remove SMP produced in UASB1.The results showed that 90% of the SMP could be removed before granular activated carbon was saturated.After the saturation,the SMP removal decreased to 60% on the average.Analysis of granular activated carbon adsorption revealed that the main role of SMP removal in BAC reactor was biodegradation.A strain of SMP-degrading bacteria,which was found highly similar to Klebsiella sp.,was isolated,enriched and inoculated back to the BAC reactor.When the influent chemical oxygen demand (COD) was 10,000 mg/L and the organic loading rate achieved 10 kg COD/(m3·day),the effluent from the BAC reactor could meet the discharge standard without further treatment.Anaerobic BAC reactor inoculated with the isolated Klebsiella was proved to be an effective,cheap and easy technical treatment approach for the removal of SMP in the treatment of easily-degradable wastewater with COD lower than 10,000 mg/L.

  17. Regional supply shortages in interconnected liberalized electricity markets

    International Nuclear Information System (INIS)

    Belgium regularly imports cheap nuclear energy from France. However, supply from France may become threatened in the future as a result of economic and population growth in other European countries. This paper estimated peak loads for Belgium from 2003-2020. The aim of the study was to determine if forecasted generation capacity will support expected increases in demand. System adequacy was forecasted for 4 different scenarios in which load was at its peak and the largest power plant was off-line for scheduled maintenance. The scenarios assumed different maintenance scheduling and peak load increases. Results of the study showed that by 2005, all scenarios required significant imports of electricity from France. However, planned grid investments are expected to mitigate shortages between 2006 to 2010. By 2008, up to 30 per cent of peak load was imported. It was anticipated that up to 45 per cent of peak load will depend on electricity imports from France in the future. It was noted that imports to Holland may impact on Belgium's supply security. It was concluded that in addition to investing in reinforcing interconnections with France, investment in generation capacity within Belgium is required in order to ensure adequate electricity supplies in the future. 24 refs., 2 tabs., 5 figs

  18. Enterprise Policies for Tackling the Digital Skills Shortage

    Directory of Open Access Journals (Sweden)

    Daniela BORISOV

    2013-06-01

    Full Text Available Nowadays as results of the turbulent crisis, economies are confronted with the effects of the financial crisis, consequently many European states members are faced with strategic challenges in decisions about personnel development. Some of industries have faced shortages in the digital skill attainment of the currently employed personnel, or short supply of IT-related personnel due to the inadequacy of new entrants on the labor market. These problems are encountered in several traditional industries affected too rapidly by the technological advance. Along to these aspects, there are other difficulties for employers and employees as well, such as structural changes in job offering in various sectors or disparity in the employees; age categories – because of high unemployment rates in youth for instance. These are complemented by fewer job opportunities for young individuals (eventually, graduates for the tertiary sector of formal education that fit according to their specializations or even new type of skills’ demand – much oriented on the digitalization. The paper intends to presents some empirical aspects raised from the statistical evidence useful to point out critical aspects in the domestic and eventually, European approach to entreprice policy, in developing proper curricula to empower the academic institutions to provide knowledge, to foster skills for current enrolled students. On short term already, the future workforce needs to be prepared for the digitalization of the professional activity, regardless the specific domain of work and, in this view; companies should be in the position to manage this potential crisis of the labour market.

  19. Biological Production of Methane from Lunar Mission Solid Waste: An Initial Feasibility Assessment

    Science.gov (United States)

    Strayer, Richard; Garland, Jay; Janine, Captain

    A preliminary assessment was made of the potential for biological production of methane from solid waste generated during an early planetary base mission to the moon. This analysis includes: 1) estimation of the amount of biodegradable solid waste generated, 2) background on the potential biodegradability of plastics given their significance in solid wastes, and 3) calculation of potential methane production from the estimate of biodegradable waste. The completed analysis will also include the feasibility of biological methane production costs associated with the biological processing of the solid waste. NASA workshops and Advanced Life Support documentation have estimated the projected amount of solid wastes generated for specific space missions. From one workshop, waste estimates were made for a 180 day transit mission to Mars. The amount of plastic packaging material was not specified, but our visual examination of trash returned from stocktickerSTS missions indicated a large percentage would be plastic film. This plastic, which is not biodegradable, would amount to 1.526 kgdw crew-1 d-1 or 6.10 kgdw d-1 for a crew of 4. Over a mission of 10 days this would amount to 61 kgdw of plastics and for an 180 day lunar surface habitation it would be nearly 1100 kgdw . Approx. 24 % of this waste estimate would be biodegradable (human fecal waste, food waste, and paper), but if plastic packaging was replaced with biodegradable plastic, then 91% would be biodegradable. Plastics are man-made long chain polymeric molecules, and can be divided into two main groups; thermoplastics and thermoset plastics. Thermoplastics comprise over 90% of total plastic use in the placecountry-regionUnited States and are derived from polymerization of olefins via breakage of the double bond and subsequent formation of additional carbon to carbon bonds. The resulting sole-carbon chain polymers are highly resistant to biodegradation and hydrolytic cleavage. Common thermoplastics include low

  20. Human resources for health in southeast Asia: shortages, distributional challenges, and international trade in health services.

    Science.gov (United States)

    Kanchanachitra, Churnrurtai; Lindelow, Magnus; Johnston, Timothy; Hanvoravongchai, Piya; Lorenzo, Fely Marilyn; Huong, Nguyen Lan; Wilopo, Siswanto Agus; dela Rosa, Jennifer Frances

    2011-02-26

    In this paper, we address the issues of shortage and maldistribution of health personnel in southeast Asia in the context of the international trade in health services. Although there is no shortage of health workers in the region overall, when analysed separately, five low-income countries have some deficit. All countries in southeast Asia face problems of maldistribution of health workers, and rural areas are often understaffed. Despite a high capacity for medical and nursing training in both public and private facilities, there is weak coordination between production of health workers and capacity for employment. Regional experiences and policy responses to address these challenges can be used to inform future policy in the region and elsewhere. A distinctive feature of southeast Asia is its engagement in international trade in health services. Singapore and Malaysia import health workers to meet domestic demand and to provide services to international patients. Thailand attracts many foreign patients for health services. This situation has resulted in the so-called brain drain of highly specialised staff from public medical schools to the private hospitals. The Philippines and Indonesia are the main exporters of doctors and nurses in the region. Agreements about mutual recognition of professional qualifications for three groups of health workers under the Association of Southeast Asian Nations Framework Agreement on Services could result in increased movement within the region in the future. To ensure that vital human resources for health are available to meet the needs of the populations that they serve, migration management and retention strategies need to be integrated into ongoing efforts to strengthen health systems in southeast Asia. There is also a need for improved dialogue between the health and trade sectors on how to balance economic opportunities associated with trade in health services with domestic health needs and equity issues. PMID:21269674

  1. A Microeconomic Model of the Personnel Shortage in Public Rehabilitation Agencies

    Science.gov (United States)

    Schultz, Jared C.; Millington, Michael J.

    2007-01-01

    There is a well-documented, growing shortage of rehabilitation counseling professionals in the public sector. Using microeconomics principles, a theoretical model is offered to account for the personnel shortage and propose potential solutions to recruit and retain rehabilitation counselors in the public sector. Suggestions for rehabilitation…

  2. 18 CFR 294.101 - Shortages of electric energy and capacity.

    Science.gov (United States)

    2010-04-01

    ... its firm power wholesale customers. (b) Accommodation of shortages. (1) Each public utility now... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Shortages of electric energy and capacity. 294.101 Section 294.101 Conservation of Power and Water Resources FEDERAL...

  3. When Shortage Coexists with Surplus of Teachers: The Case of Arab Teachers in Israel

    Science.gov (United States)

    Agbaria, Ayman K.; Pinson, Halleli

    2013-01-01

    This article explores the nexus between pre-service teacher education polices and the supply and demand of minority teachers. It problematizes the recent reports on teacher shortages in Israel, which tend to focus on the shortage of Jewish teachers while dealing with the surplus of Arab teachers only tangentially. Specifically, this article…

  4. Conversion of pesticides to biologically active products on urban hard surfaces.

    Science.gov (United States)

    Jiang, Weiying; Gan, Jay

    2016-06-15

    Impervious pavements such as concrete are a dominant feature of urban landscapes, but their role in the fate of environmental contaminants is largely ignored. This study considered the case of urban-use pesticides, and demonstrated for the first time that surfaces such as concrete were capable of converting pesticides to other biologically active intermediates. Rapid transformation of pesticides was observed in both bench and field scale setups. Under outdoor conditions, permethrin, a heavily used pyrethroid insecticide, quickly formed 3-phenoxybenzoic acid (3-PBA) that is a known endocrine disruptor, and the level of 3-PBA was >100μg/L in the runoff water even 3months after the treatment. Fipronil, a product used for termite and ant control, was quickly transformed to desulfinyl and sulfone derivatives, with the desulfinyl level exceeding that of parent in the runoff water only 1week after treatment. Fipronil derivatives have aquatic toxicity similar or even greater than the parent fipronil. Direct sampling of deposited particles from residential exterior pavements revealed widespread presence of fipronil sulfone and desulfinyl and demonstrated their in-situ formation and accumulation on concrete. The extensive transformations were likely caused by the alkalinity and metal oxides in concrete and conducive photolytic conditions at the hard surfaces. The study findings highlight the role of urban pavements and urbanization in the geochemical cycling of anthropogenic contaminants. PMID:26971210

  5. Biological Denitrification of High Nitrate Processing Wastewaters from Explosives Production Plant.

    Science.gov (United States)

    Cyplik, Paweł; Marecik, Roman; Piotrowska-Cyplik, Agnieszka; Olejnik, Anna; Drożdżyńska, Agnieszka; Chrzanowski, Lukasz

    2012-05-01

    Wastewater samples originating from an explosives production plant (3,000 mg N l(-1) nitrate, 4.8 mg l(-1) nitroglycerin, 1.9 mg l(-1) nitroglycol and 1,200 mg l(-1) chemical oxygen demand) were subjected to biological purification. An attempt to completely remove nitrate and to decrease the chemical oxygen demand was carried out under anaerobic conditions. A soil isolated microbial consortium capable of biodegrading various organic compounds and reduce nitrate to atmospheric nitrogen under anaerobic conditions was used. Complete removal of nitrates with simultaneous elimination of nitroglycerin and ethylene glycol dinitrate (nitroglycol) was achieved as a result of the conducted research. Specific nitrate reduction rate was estimated at 12.3 mg N g(-1) VSS h(-1). Toxicity of wastewater samples during the denitrification process was studied by measuring the activity of dehydrogenases in the activated sludge. Mutagenicity was determined by employing the Ames test. The maximum mutagenic activity did not exceed 0.5. The obtained results suggest that the studied wastewater samples did not exhibit mutagenic properties. PMID:22593607

  6. Applications of molecular biology to understanding genotype-environment interactions in livestock production

    International Nuclear Information System (INIS)

    There is a continual consumer demand to increase the quality and total yield from livestock production systems. One way this can be achieved is to exploit the natural variation that exists within and across different animal breeds by selecting the genotypes that produce offspring well suited to a particular environment. In this context the environment may be the physical climate, the management system, nutritional level or perhaps disease and parasite loads. The genetic differences between animals may be reflected in measurable differences in performance in a given environment or in changes in the relative performance of genotypes in different environments. The basis of these genotype-environment interactions is the underlying genotype or combination of genes. New techniques in molecular biology allow the direct assessment and manipulation of animal genotypes using methods such as DNA marker analysis, sequencing, gene mapping and transgenesis. These techniques allow the identification, localization, analysis of interaction and alteration of individual genes, and in this way will greatly expand the understanding of genotype-environment interaction and help identify ways of optimizing animal breeding programmes. (author). 37 refs, 6 figs

  7. Biological control of Indianmeal moth (Lepidoptera: Pyralidae) on finished stored products using egg and larval parasitoids.

    Science.gov (United States)

    Grieshop, Matthew J; Flinn, Paul W; Nechols, James R

    2006-08-01

    Biological control using hymenopteran parasitoids presents an attractive alternative to insecticides for reducing infestations and damage from the Indianmeal moth, Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae), in retail and warehouse environments. We examined the potential for using combinations of the egg parasitoid Trichogramma deion Riley (Hymenoptera: Trichogrammatidae), and the larval parasitoid Habrobracon hebetor (Say) (Hymenoptera: Braconidae) for preventing infestations of P. interpunctella in coarse-ground cornmeal as well as the influence of packaging on parasitoid effectiveness. Treatments included one or both parasitoids and either cornmeal infested with P. interpunctella eggs or eggs deposited on the surface of plastic bags containing cornmeal. H. hebetor had a significant impact on the number of live P. interpunctella, suppressing populations by approximately 71% in both unbagged and bagged cornmeal. In contrast, T. deion did not suppress P. interpunctella in unbagged cornmeal. However, when released on bagged cornmeal, T. deion significantly increased the level of pest suppression (87%) over bagging alone (15%). When H. hebetor was added to bagged cornmeal, there was a significant reduction of live P. interpunctella compared with the control (70.6%), with a further reduction observed when T. deion was added (96.7%). These findings suggest that, in most situations, a combined release of both T. deion and H. hebetor would have the greatest impact; because even though packaging may protect most of the stored products, there are usually areas in the storage landscape where poor sanitation is present. PMID:16937658

  8. The classification of gene products in the molecular biology domain: Realism, objectivity, and the limitations of the Gene Ontology

    OpenAIRE

    Mayor, Charlie

    2012-01-01

    Background: Controlled vocabularies in the molecular biology domain exist to facilitate data integration across database resources. One such tool is the Gene Ontology (GO), a classification designed to act as a universal index for gene products from any species. The Gene Ontology is used extensively in annotating gene products and analysing gene expression data, yet very little research exists from a library and information science perspective exploring the design principles, philosophy and s...

  9. Effect of native forest remnants on biological control and production in traditional corn (Zea mays L.) crops

    OpenAIRE

    Martínez Pachón, Eliana

    2014-01-01

    The expansion of the agricultural frontier is one of the main causes of biodiversity loss and detriment of ecosystem services essential for agricultural production, including biological pest control. In this work, the relationship between the loss of native forest cover, diversity of arthropods and weeds in crops and its relationship with herbivory and crop production was examined, using twelve traditional corn crop fields in Topaipí (Cundinamarca) during the second growing sea...

  10. Animal protein production modules in biological life support systems: Novel combined aquaculture techniques based on the closed equilibrated biological aquatic system (C.E.B.A.S.)

    Science.gov (United States)

    Blüm, V.; Andriske, M.; Kreuzberg, K.; Schreibman, M. P.

    Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.

  11. Enhanced biological phosphorus removal deterioration without significant change in microbial population under trace element shortage

    OpenAIRE

    ナランフー, ミャンダス

    2013-01-01

    報告番号: ; 学位授与年月日: 2013-09-27 ; 学位の種別: 修士 ; 学位の種類: 修士(環境学) ; 学位記番号: 修創域第4930号 ; 研究科・専攻: 新領域創成科学研究科環境学研究系社会文化環境学専攻

  12. 37 CFR 1.775 - Calculation of patent term extension for a human drug, antibiotic drug or human biological product.

    Science.gov (United States)

    2010-07-01

    ... Human Services that applicant did not act with due diligence; (iii) One-half the number of days... extension for a human drug, antibiotic drug or human biological product. 1.775 Section 1.775 Patents... Review § 1.775 Calculation of patent term extension for a human drug, antibiotic drug or human...

  13. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity

    OpenAIRE

    Birkhofer, Klaus; Bezemer, TM; . Bloem, J.; Bonkowski, M.; Christensen, S; Dubois, David; Ekelund , F; Fließbach, Andreas; Gunst, Lucie; K. Hedlund; Mäder, Paul; Mikola, J.; Robin, C.; Setälä, Heikki; Tatin-Froux , F

    2008-01-01

    Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differences ...

  14. Long-term organic farming fosters below- and aboveground biota: Implications for soil quality, biological control and productivity

    OpenAIRE

    Birkhofer, K.; Bezemer, TM; . Bloem, J.; Bonkowski, M.; Christensen, S; Dubois, D; Ekelund , F; Fließbach, A.; Gunst , L; K. Hedlund; Mäder, P.; Mikola, J.; Robin, C.; Setälä , H; Tatin-Froux , F

    2008-01-01

    Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differenc...

  15. Long-term organic farming fosters below- and aboveground biota: Implications for soil quality, biological control, and productivity

    OpenAIRE

    Birkhofer, Klaus; Bezemer, T. Martijn; Bloem, Jaap; Bonkowski, Michael; Christensen, Søren; Dubois, David; Ekelund, Fleming; Fließbach, Andreas; Gunst, Lucie; Hedlund, Katarina; Mäder, Paul; Mikola, Juha; Robin, Christophe; Setälä, Heikki; Tatin-Froux, Fabienne

    2008-01-01

    Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differences ...

  16. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles;

    2011-01-01

    Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2...

  17. Doing Gener in Brazilian Biology: Obstacles and Prejudices on Knowledge Production within the FAFESP Genome Proyect

    Directory of Open Access Journals (Sweden)

    Conceição da Costa, Maria

    2008-10-01

    Full Text Available This article aims to analyse the participation of women scientist in knowledge production within the Genome Project sponsored by FAPESP (The State of São Paulo Research Foundation. Between 1997 and 2003, FAPESP invested approximately 33 million euros to develop the FAPESP Genome Project (PGF, generating major changes in Molecular Biology in Brazil: institutions devoted to fostering science and technology have been investing large sum of money; bioinformatics became one of the fields with great demand for professionals, and the results of the Xylella Genome Project, first organism sequenced in Brazil, were published in several international scientific journals including Nature, and Brazil became the first country to develop genome projects outside USA, Europe and Japan. As a consequence of this process, women scientists were loosing space as “spokespersons of this new science”, playing secondary roles at the project.Este artículo tiene como objetivo analizar la participación de las mujeres en la producción de conocimiento del proyecto genoma financiado por la FAPESP (Fundación de Apoyo a la Investigación del Estado de São Paulo. Entre 1997 y 2003, FAPESP invirtió aproximadamente 33 millones de euros en el desarrollo del Proyecto Genoma Fapesp (PGF, provocando importantes cambios en la Biología Molecular brasileña: las instituciones de fomento a la investigación comenzaron a promoverla con grandes financiaciones; la bioinformática se tornó uno de los campos con mayor demanda de profesionales y, por fin, los resultados del Proyecto Genoma de la Xylella Fastidiosa, primer organismo vivo secuenciado en Brasil, se publicaron en revistas científicas internacionales, como Nature. Con ello se convierte en el primer país fuera de la tríada EUA-Europa-Japón en desarrollar proyectos genoma. Como consecuencia del proceso, las mujeres están perdiendo espacio como “portavoces de esta nueva ciencia”, ocupando papeles secundarios en el

  18. Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development.

    Science.gov (United States)

    Silva-Carvalho, Ricardo; Baltazar, Fátima; Almeida-Aguiar, Cristina

    2015-01-01

    The health industry has always used natural products as a rich, promising, and alternative source of drugs that are used in the health system. Propolis, a natural resinous product known for centuries, is a complex product obtained by honey bees from substances collected from parts of different plants, buds, and exudates in different geographic areas. Propolis has been attracting scientific attention since it has many biological and pharmacological properties, which are related to its chemical composition. Several in vitro and in vivo studies have been performed to characterize and understand the diverse bioactivities of propolis and its isolated compounds, as well as to evaluate and validate its potential. Yet, there is a lack of information concerning clinical effectiveness. The goal of this review is to discuss the potential of propolis for the development of new drugs by presenting published data concerning the chemical composition and the biological properties of this natural compound from different geographic origins. PMID:26106433

  19. Realistic primary and new productions in a 3D global biogeochemical model: biological complexity or physical forcing?

    Science.gov (United States)

    Popova, E. E.; Coward, A. C.

    2003-04-01

    A nitrogen-based, five compartment biological model has been coupled to a one degree OCCAM (Ocean Circulation and Climate Advanced Modelling Project) model with a KPP ("K profile parameterisation") of the vertical mixing. The biological model state variables are Phytoplankton, Zooplankton, Detritus, Nitrate, and Ammonium. A comparison of the solution with global satellite ocean colour shows that the model is capable of a realistic description of the main seasonal and regional patterns of the surface chlorophyll. Agreement is also good for satellite derived estimates of primary production. In situ data available from local study sites (such as BATS, NABE, India, Papa) are used for the detailed comparison of the model output with the observed ecosystem dynamics in different biological provinces. We discuss performance of the physical and biological model in contrasting areas of the World Ocean. In spite of the biological model being a very simple one, we are able to reproduce the major differences between ecosystem dynamics of these areas. We believe that the success of any global biogeochemical model is dependent first of all on the correct representation of the upper mixed layer (UML) dynamics. Without being able to reproduce contrasting UML regimes in different areas of the World Ocean (such as difference between the North Atlantic and Southern Ocean, or North Atlantic and North Pacific), increased complexity biological models are in danger of producing the right results by the wrong reason.

  20. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae. We describe...... computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways.......Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof...

  1. Marine biological production from in situ oxygen measurements on a profiling float in the subarctic Pacific Ocean

    Science.gov (United States)

    Bushinsky, Seth M.; Emerson, Steven

    2015-12-01

    Evaluating the organic carbon flux from the surface ocean to the interior (the marine biological pump) is essential for predictions of ocean carbon cycle feedback to climate change. One approach for determining these fluxes is to measure the concentration of oxygen in the upper ocean over a seasonal cycle, calculate the net O2 flux using an upper ocean model, and then use a stoichiometric relationship between oxygen evolved and organic carbon produced. Applying this tracer in a variety of ocean areas over seasonal cycles requires accurate O2 measurements on autonomous vehicles. Here we demonstrate this approach using an O2 sensor on a profiling float that is periodically calibrated against atmospheric pO2. Using accurate data and a model that includes all physical and biological processes influencing oxygen, we determine an annual net community production of 0.7 ± 0.5 mol C m-2 yr-1 in the northeast Pacific Ocean (50°N, 145°W) from June 2012 to June 2013. There is a strong seasonal cycle in net biological oxygen production with wintertime fluxes caused by bubble processes critical to determining the annual flux. Approximately 50% of net autotrophic production during summer months is consumed by net respiration during the winter. The result is a biological pump in the subarctic Pacific Ocean that is less than that determined by similar methods in the subtropics to the south. This estimate is significantly lower than that predicted by satellite remote sensing and global circulation models.

  2. Biological monitoring of aromatic diisocyanates in workers exposed to thermal degradation products of polyurethanes.

    Science.gov (United States)

    Rosenberg, Christina; Nikkilä, Kirsi; Henriks-Eckerman, Maj-Len; Peltonen, Kimmo; Engströrm, Kerstin

    2002-10-01

    Exposure to diisocyanates was assessed by biological monitoring among workers exposed to the thermal degradation products of polyurethanes (PURs) in five PUR-processing environments. The processes included grinding and welding in car repair shops, milling and turning of PUR-coated metal cylinders, injection moulding of thermoplastic PUR, welding and cutting of PUR-insulated district heating pipes during installation and joint welding, and heat-flexing of PUR floor covering. Isocyanate-derived amines in acid-hydrolysed urine samples were analysed as perfluoroacylated derivatives by gas chromatography mass spectrometry in negative chemical ionisation mode. The limits of quantification (LOQs) for the aromatic diamines 2,4- and 2,6-toluenediamine (2,4- and 2,6-TDA) and 4,4'-methylenedianiline (4,4'-MDA) were 0.25 nmol l(-1), 0.25 nmol l(-1) and 0.15 nmol l(-1), respectively. The LOQ for the aliphatic diamines hexamethylenediamine (HDA), isophoronediamine (IpDA) and 4,4'-diaminodicyclohexyl methane (4,4'-DDHM) was 5 nmol l(-1). TDA and MDA were detected in urine samples from workers in car repair shops and MDA in samples from workers welding district heating pipes. The 2,4-TDA isomer accounted for about 80% of the total TDA detected. No 2.6-TDA was found in the urine of non-exposed workers. The highest measured urinary TDA and MDA concentrations were 0.79 nmol mmol(-1) creatinine and 3.1 nmol mmol(-1) creatinine, respectively. The concentrations found among non-exposed workers were 0.08 nmol mmol(-1) creatinine for TDA and 0.05 nmol mmol(-1) creatinine for MDA (arithmetic means). Exposure to diisocyanates originating from the thermal degradation of PURs are often intermittent and of short duration. Nevertheless, exposure to aromatic diisocyanates can be identified by monitoring diisocyanate-derived amines in acid-hydrolysed urine samples. PMID:12400919

  3. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.

    Science.gov (United States)

    Hamilton, Trinity L; Bryant, Donald A; Macalady, Jennifer L

    2016-02-01

    Understanding the role of biology in planetary evolution remains an outstanding challenge to geobiologists. Progress towards unravelling this puzzle for Earth is hindered by the scarcity of well-preserved rocks from the Archean (4.0 to 2.5 Gyr ago) and Proterozoic (2.5 to 0.5 Gyr ago) Eons. In addition, the microscopic life that dominated Earth's biota for most of its history left a poor fossil record, consisting primarily of lithified microbial mats, rare microbial body fossils and membrane-derived hydrocarbon molecules that are still challenging to interpret. However, it is clear from the sulfur isotope record and other geochemical proxies that the production of oxygen or oxidizing power radically changed Earth's surface and atmosphere during the Proterozoic Eon, pushing it away from the more reducing conditions prevalent during the Archean. In addition to ancient rocks, our reconstruction of Earth's redox evolution is informed by our knowledge of biogeochemical cycles catalysed by extant biota. The emergence of oxygenic photosynthesis in ancient cyanobacteria represents one of the most impressive microbial innovations in Earth's history, and oxygenic photosynthesis is the largest source of O2 in the atmosphere today. Thus the study of microbial metabolisms and evolution provides an important link between extant biota and the clues from the geologic record. Here, we consider the physiology of cyanobacteria (the only microorganisms capable of oxygenic photosynthesis), their co-occurrence with anoxygenic phototrophs in a variety of environments and their persistence in low-oxygen environments, including in water columns as well as mats, throughout much of Earth's history. We examine insights gained from both the rock record and cyanobacteria presently living in early Earth analogue ecosystems and synthesize current knowledge of these ancient microbial mediators in planetary redox evolution. Our analysis supports the hypothesis that anoxygenic photosynthesis

  4. What controls biological production in coastal upwelling systems? Insights from a comparative modeling study

    Directory of Open Access Journals (Sweden)

    Z. Lachkar

    2011-10-01

    Full Text Available The magnitude of net primary production (NPP in Eastern Boundary Upwelling Systems (EBUS is traditionally viewed as directly reflecting the wind-driven upwelling intensity. Yet, different EBUS show different sensitivities of NPP to upwelling-favorable winds (Carr and Kearns, 2003. Here, using a comparative modeling study of the California Current System (California CS and Canary Current System (Canary CS, we show how physical and environmental factors, such as light, temperature and cross-shore circulation modulate the response of NPP to upwelling strength. To this end, we made a series of eddy-resolving simulations of the two upwelling systems using the Regional Oceanic Modeling System (ROMS, coupled to a nitrogen-based Nutrient-Phytoplankton-Zooplankton-Detritus (NPZD ecosystem model. Using identical ecological/biogeochemical parameters, our coupled model simulates a level of NPP in the California CS that is 50 % smaller than that in the Canary CS, in agreement with observationally based estimates. We find this much lower NPP in the California CS despite phytoplankton in this system having nearly 20 % higher nutrient concentrations available to fuel their growth. This conundrum can be explained by: (1 phytoplankton having a faster nutrient-replete growth in the Canary CS relative to the California CS; a consequence of more favorable light and temperature conditions in the Canary CS, and (2 the longer nearshore water residence times in the Canary CS, which permit a larger buildup of biomass in the upwelling zone, thereby enhancing NPP. The longer residence times in the Canary CS appear to be a result of the wider continental shelves and the lower mesoscale activity characterizing this upwelling system. This results in a weaker offshore export of nutrients and organic matter, thereby increasing local nutrient recycling and reducing the spatial decoupling between new and export production in the Canary CS. Our results suggest that climate change

  5. The nature, extent and effect of skills shortages on skills migration in South Africa

    Directory of Open Access Journals (Sweden)

    Fatima Rasool

    2011-02-01

    Full Text Available Orientation: South Africa is currently experiencing a serious shortage of skilled workers. It has a negative effect on South Africa’s economic prospects and on global participation in South Africa (SA. This skills shortage severely affects socioeconomic growth and development in SA. Research purpose: This study focuses on the causes and effects of the skills shortages in South Africa.Motivation for the study: The researchers undertook this study to highlight the role that skilled foreign workers can play in supplementing the shortage of skilled workers in South Africa. The shortage is partly because of the failure of the national education and training system to supply the economy with much-needed skills.Research design, approach and method: The researchers undertook a literature study to identify the nature, extent and effect of skills shortages in South Africa. They consulted a wide range of primary and secondary resources in order to acquire an in-depth understanding of the problem. The article explains the research approach and method comprehensively. It also outlines the research method the researchers used.Main findings: This study shows that several factors cause serious skills shortages in SA.Practical/managerial implications: The researchers mention only two significant implications. Firstly, this article provides a logical description of the nature, extent and effect of skills shortages on the economy. Secondly, it indicates clearly the implications of skills shortages for immigration policy.Contribution/value-add: This study confirms the findings of similar studies the Centre for Development and Enterprise (CDE conducted. Opening the doors to highly skilled immigrants can broaden the skills pool.

  6. Synthetic methylotrophy: engineering the production of biofuels and chemicals based on the biology of aerobic methanol utilization.

    Science.gov (United States)

    Whitaker, William B; Sandoval, Nicholas R; Bennett, Robert K; Fast, Alan G; Papoutsakis, Eleftherios T

    2015-06-01

    Synthetic methylotrophy is the development of non-native methylotrophs that can utilize methane and methanol as sole carbon and energy sources or as co-substrates with carbohydrates to produce metabolites as biofuels and chemicals. The availability of methane (from natural gas) and its oxidation product, methanol, has been increasing, while prices have been decreasing, thus rendering them as attractive fermentation substrates. As they are more reduced than most carbohydrates, methane and methanol, as co-substrates, can enhance the yields of biologically produced metabolites. Here we discuss synthetic biology and metabolic engineering strategies based on the native biology of aerobic methylotrophs for developing synthetic strains grown on methanol, with Escherichia coli as the prototype. PMID:25796071

  7. High-throughput assay for optimising microbial biological control agent production and delivery

    Science.gov (United States)

    Lack of technologies to produce and deliver effective biological control agents (BCAs) is a major barrier to their commercialization. A myriad of variables associated with BCA cultivation, formulation, drying, storage, and reconstitution processes complicates agent quality maximization. An efficie...

  8. Exploratory research on bioactive natural products with a focus on biological phenomena

    OpenAIRE

    Uemura, Daisuke

    2010-01-01

    The discovery of new basic compounds holds the key for advancing material sciences. We have focused on the identification and characterization of natural key compounds that control biologically and physiologically intriguing phenomena. The discovery of new bioactive molecules, facilitated by a deeper understanding of nature, should advance our knowledge of biological processes and lead to new strategies to treat disease. The structure and function of natural compounds are sometimes unexpected...

  9. Distributions of inorganic nitrogen and biological production in the equatorial Pacific: a basin-scale model sensitivity study of nitrification

    Science.gov (United States)

    Wang, Xiujun; Murtugudde, Raghu

    2015-12-01

    Recent evidence indicates that there is stronger nitrification in the euphotic zone than previously thought. We employ a physical-biogeochemical model to study the implications of nitrification for basin-scale distributions of nitrate, ammonium, and biological production in the equatorial Pacific. The model can faithfully reproduce observed features in nitrate distribution, with or without photoinhibition of nitrification in the euphotic zone. In addition, new production, net community production and export production are not very sensitive to the parameterization of nitrification in this model. However, simulated ammonium distribution, nitrate uptake and ammonium uptake are sensitive to this parameterization. High nitrification results in low ammonium concentration, low ammonium uptake rate, and high nitrate uptake rate in the euphotic zone. This study suggests that nitrification may be responsible for up to 40% of nitrate uptake in the equatorial Pacific. This modeling study also demonstrates large differences (in terms of the magnitude and spatial distribution) between nitrate uptake, new production and export production, reflecting decoupling of upward nutrient supply, biological uptake and downward export.

  10. Is Storage a Solution to End Water Shortage?

    Science.gov (United States)

    Narayanan, M.

    2009-12-01

    Water shortage is a problem of supply and demand. Some authors refer to it as Water Scarcity. The author has discussed this in his previous presentation at the 2008 AGU International Conference. Part of it is reproduced here for purposes of clarification. It is important to recognize that water is essential for the survival of all life on earth. Many water-rich states have thought of water conservation as an art that is practiced mainly in the arid states. But one has to recite the famous quote: “You will never miss water till the well runs dry.” Researchers have also concluded that quantity deficiency experienced by groundwater supplies are affecting many communities around the world. Furthermore federal regulations pertaining to the quality of potable or drinking water have become more stringent (Narayanan, 2008). One must observe that water conservation schemes and efficient utilization practices also benefit the environment to a large extent. These water conservation practicies indeed have a short payback period althought it may seem that there is a heavy initial investment is required. Research scientists have studied MARR (Mean Annual River Runoff) pattern over the years and have arrived at some significant conclusions. Vörsömarty and other scientists have indicated that water scarcity exists when the demand to supply ratio exceeds the number 0.4. (Vörsömarty, 2005). Furthermore other researchers claim to have documented a six-fold increase in water use in the United States during the last century. It is interesting to note that the population of the United States has hardly doubled during the last century. This obviously, is indicative of higher living standards. Nevertheless, it also emphasizes an urgent need for establishing a strong, sound, sensible and sustainable management program for utilizing the available water supplies efficiently (Narayanan, 2008). Author of the 1998 book, Last Oasis: Facing Water Scarcity, Dr. Sandra Postel predicts big

  11. Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production

    Energy Technology Data Exchange (ETDEWEB)

    Papoutsakis, Elefterios [Univ. of Delaware, Newark, DE (United States)

    2015-04-30

    This is the final project report for project "Experimental Systems-Biology Approaches for Clostridia-Based Bioenergy Production" for the funding period of 9/1/12 to 2/28/2015 (three years with a 6-month no-cost extension) OVERVIEW AND PROJECT GOALS The bottleneck of achieving higher rates and titers of toxic metabolites (such as solvents and carboxylic acids that can used as biofuels or biofuel precursors) can be overcome by engineering the stress response system. Thus, understanding and modeling the response of cells to toxic metabolites is a problem of great fundamental and practical significance. In this project, our goal is to dissect at the molecular systems level and build models (conceptual and quantitative) for the stress response of C. acetobutylicum (Cac) to its two toxic metabolites: butanol (BuOH) and butyrate (BA). Transcriptional (RNAseq and microarray based), proteomic and fluxomic data and their analysis are key requirements for this goal. Transcriptional data from mid-exponential cultures of Cac under 4 different levels of BuOH and BA stress was obtained using both microarrays (Papoutsakis group) and deep sequencing (RNAseq; Meyers and Papoutsakis groups). These two sets of data do not only serve to validate each other, but are also used for identification of stress-induced changes in transcript levels, small regulatory RNAs, & in transcriptional start sites. Quantitative proteomic data (Lee group), collected using the iTRAQ technology, are essential for understanding of protein levels and turnover under stress and the various protein-protein interactions that orchestrate the stress response. Metabolic flux changes (Antoniewicz group) of core pathways, which provide important information on the re-allocation of energy and carbon resources under metabolite stress, were examined using 13C-labelled chemicals. Omics data are integrated at different levels and scales. At the metabolic-pathway level, omics data are integrated into a 2nd generation genome

  12. Photolytic transformation products and biological stability of the hydrological tracer Uranine

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, Lukasz, E-mail: gutowski@leuphana.de; Olsson, Oliver, E-mail: oliver.olsson@leuphana.de; Lange, Jens, E-mail: jens.lange@hydrology.uni-freiburg.de; Kümmerer, Klaus, E-mail: Klaus.Kuemmerer@uni.leuphana.de

    2015-11-15

    Among many fluorescence tracers, Uranine (sodium fluorescein, UR) has most widely been used in hydrological research. Extensive use of UR for tracing experiments or commercial use might cause a potential risk of long-term environmental contamination. As any organic substance released to the environment, also UR is subjected to chemical and physical reactions that can be chemical, biological and photolysis processes. These processes transform the parent compound (PC) and have not been extensively investigated for UR. This study applies two OECDs (301 D and 301 F) tests and a screening water sediment test (WST) to investigate the biodegradability of the PC. Photolysis in water was explored by Xe lamp irradiation. Subsequently, the biodegradability of the photolysis mixtures was examined. The primary elimination of UR was monitored and structures of its transformation products (TPs) were elucidated by HPLC–FLD–MS/MS. UR was found not readily biodegradable, although small degradation rates could be observed in the OECD 301 D and WST. HPLC–FLD analysis showed high primary elimination of the tracer during photolysis. However, the low degree of mineralization found indicates that the UR was not fully degraded, instead transformed to TPs. A total of 5 photo-TPs were identified. According to MS/MS data, chemical structures could be proposed for all identified photo-TPs. Likewise the parent compound it was demonstrated that photo-TPs were largely recalcitrant to microbial degradation. Although we did not find indications for toxicity, target-oriented studies on the environmental impact of these photo-TPs are warranted. Results obtained in this study show that deeper investigations are necessary to fully understand fate and risk connected to the use of UR. - Highlights: • Uranine (UR) was not biodegraded in water and water-sediment system (WST). • Only small degradation rate occurred in OECD 301 D and WST. • Photolysis leads to incomplete mineralization of UR.

  13. Photolytic transformation products and biological stability of the hydrological tracer Uranine

    International Nuclear Information System (INIS)

    Among many fluorescence tracers, Uranine (sodium fluorescein, UR) has most widely been used in hydrological research. Extensive use of UR for tracing experiments or commercial use might cause a potential risk of long-term environmental contamination. As any organic substance released to the environment, also UR is subjected to chemical and physical reactions that can be chemical, biological and photolysis processes. These processes transform the parent compound (PC) and have not been extensively investigated for UR. This study applies two OECDs (301 D and 301 F) tests and a screening water sediment test (WST) to investigate the biodegradability of the PC. Photolysis in water was explored by Xe lamp irradiation. Subsequently, the biodegradability of the photolysis mixtures was examined. The primary elimination of UR was monitored and structures of its transformation products (TPs) were elucidated by HPLC–FLD–MS/MS. UR was found not readily biodegradable, although small degradation rates could be observed in the OECD 301 D and WST. HPLC–FLD analysis showed high primary elimination of the tracer during photolysis. However, the low degree of mineralization found indicates that the UR was not fully degraded, instead transformed to TPs. A total of 5 photo-TPs were identified. According to MS/MS data, chemical structures could be proposed for all identified photo-TPs. Likewise the parent compound it was demonstrated that photo-TPs were largely recalcitrant to microbial degradation. Although we did not find indications for toxicity, target-oriented studies on the environmental impact of these photo-TPs are warranted. Results obtained in this study show that deeper investigations are necessary to fully understand fate and risk connected to the use of UR. - Highlights: • Uranine (UR) was not biodegraded in water and water-sediment system (WST). • Only small degradation rate occurred in OECD 301 D and WST. • Photolysis leads to incomplete mineralization of UR.

  14. [Comparative biological value of the proteins comprising the products for the tube and regular feeding of patients with mandibular fractures].

    Science.gov (United States)

    Kholodov, S V; Vitollo, A S; Kalamkarova, O M; Rud'ko, V F; Vysotskiĭ, V G

    1988-01-01

    A comparative clinical evaluation was made of the biological effectiveness of protein components in the composition of three types of diet for patients with fractures of the mandible who had received "Ensure" (USA), a product for complete tube feeding; an experimental sample developed at the Institute of Nutrition, Academy of Medical Sciences of the USSR; and a routine clinical diet. The biological effectiveness of the proteins was estimated by some anthropometric and biochemical parameters as well as on the basis of nitrogenous metabolism in the patients. It has been established that the protein content in the routine clinical diets does not meet the high requirements in amino acids of patients with fracture of the mandible. In this respect the products for tube and dietotherapy have proved to be effective and completely provide the need of such patients in essential amino acids that has been evidenced by the results of the investigations conducted. PMID:3146160

  15. On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru

    OpenAIRE

    Stramma, L.; H. W. Bange; Czeschel, R.; A. Lorenzo; Frank, M.

    2013-01-01

    Mesoscale eddies seem to play an important role for both the hydrography and biogeochemistry of the eastern tropical Pacific Ocean (ETSP) off Peru. However, detailed surveys of these eddies are not available, which has so far hampered an in depth understanding of their implications for nutrient distribution and biological productivity. In this study, three eddies along a section at 16°45´ S have been surveyed intensively during R/V Meteor cruise M90 in November 2012. A coast...

  16. On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru

    OpenAIRE

    Stramma, L.; H. W. Bange; Czeschel, R.; A. Lorenzo; Frank, M.

    2013-01-01

    Mesoscale eddies seem to play an important role for both the hydrography and biogeochemistry of the eastern tropical Pacific Ocean (ETSP) off Peru. However, detailed surveys of these eddies are not available, which has so far hampered an in depth understanding of their implications for nutrient distribution and biological productivity. In this study three eddies along a section at 16°45' S have been surveyed intensively during R/V Meteor cruise M90 in November 2012. A coastal mode water e...

  17. UV effects on the primary productivity of picophytoplankton: biological weighting functions and exposure response curves of Synechococcus

    OpenAIRE

    Neale, P.J.; A. L. Pritchard; R. Ihnacik

    2014-01-01

    A model that predicts UV effects on marine primary productivity using a biological weighting function (BWF) coupled to the photosynthesis–irradiance response (BWF/P-E model) has been implemented for two strains of the picoplanktonic cyanobacteria Synechococcus, WH7803 and WH8102, which were grown at two irradiances (77 and 174 μmol m−2 s−1 photosynthetically available radiation (PAR)) and two temperatures (20 and 26 °C). The model was fit using photosynthesis measured in a ...

  18. Mass-energy balance analysis for estimation of light energy conversion in an integrated system of biological H2 production

    OpenAIRE

    A.I. Gavrisheva; B.F. Belokopytov; V.I. Semina; E.S. Shastik; T.V. Laurinavichene; A.A. Tsygankov

    2015-01-01

    The present study investigated an integrated system of biological H2 production, which includes the accumulation of biomass of autotrophic microalgae, dark fermentation of biomass, and photofermentation of the dark fermentation effluent. Particular emphasis was placed on the estimation of the conversion efficiency of light into hydrogen energy at each stage of this system. For this purpose, the mass and energy balance regularities were applied. The efficiency of the energy transformation from...

  19. Influence of green manure in physical and biological properties of soil and productivity in the culture of soybean

    OpenAIRE

    Ricardo Alves Cardoso; Anderson Soares Bento; Humberto Misdei Moreski; Francielli Gasparotto

    2014-01-01

    Green manuring is the practice of using plant species in rotation, succession or intercropped with other crops, aiming improvement, maintenance and recovery of physical, chemical and biological soil properties. The objective was to evaluate the influence of different green manures on soil characteristics and productivity of soybean. The experiment was conducted in Maringá (PR) in a randomized block design with six treatments and four replications: T1: oat (Avena Sativa), T2: black oat (Avena ...

  20. Development of bioprocesses for the production of a biological indicator for sterilization processes from Bacillus atrophaeus spores

    OpenAIRE

    Sella, Sandra Regina Barroso Ruiz

    2013-01-01

    Abstract: The genus Bacillus includes a great diversity of industrially important strains, including Bacillus atrophaeus (formerly Bacillus subtilis var. niger). This spore-forming bacterium has been established as industrial bacteria in the production of biological sterilization indicators, in studies of biodefense and astrobiology methods, and as potential adjuvants or vehicles for vaccines, among other applications. Two novels, cost-effective B. atrophaeus Sterilization Bioindicator System...

  1. High performance liquid chromatography-tandem mass spectrometry of pharmaceuticals and personal care products in environmental and biological matrices

    OpenAIRE

    Purcell, Martha

    2009-01-01

    Pharmaceuticals and personal care products (PPCPs) have emerged in recent years as a new class of chemical and biological pollutants in our environment. In the search for suitably sensitive and specific techniques for detection of these compounds at very low concentrations, liquid chromatography-tandem mass spectrometry (LCMS/ MS) has emerged as the new technique of choice. This work describes methods for screening and quantification of various pharmaceutical and illicit drug residues i...

  2. Marketing nursing as a profession: integrated marketing strategies to address the nursing shortage.

    Science.gov (United States)

    Somers, Mark John; Finch, Linda; Birnbaum, Dee

    2010-07-01

    The nursing shortage in the United States is at a crisis level characterized by critical shortages of highly trained nurses and of nursing faculty. Key issues in addressing these shortages include awareness and image-building, along with enhanced outreach programs. Although these issues are related to marketing theory, most studies in this area are based on a vocational choice model. This study was grounded in marketing theory and the results offer a new perspective for addressing the nursing shortage. In-depth interviews conducted with 31 first-year nursing students indicated that there were two distinct segments among nursing students: traditionals and instrumentals. Traditionals were attracted to nursing as a helping profession while instrumentals were interested in career-related rewards such as variety, mobility, and compensation. These findings were discussed in terms of building awareness and marketing programs for nursing students that are integrated across schools of nursing, private foundations and public agencies. PMID:20706896

  3. The potential of plants as a system for the development and production of human biologics [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2016-05-01

    Full Text Available The growing promise of plant-made biologics is highlighted by the success story of ZMapp™ as a potentially life-saving drug during the Ebola outbreak of 2014-2016. Current plant expression platforms offer features beyond the traditional advantages of low cost, high scalability, increased safety, and eukaryotic protein modification. Novel transient expression vectors have been developed that allow the production of vaccines and therapeutics at unprecedented speed to control potential pandemics or bioterrorism attacks. Plant-host engineering provides a method for producing proteins with unique and uniform mammalian post-translational modifications, providing opportunities to develop biologics with increased efficacy relative to their mammalian cell-produced counterparts. Recent demonstrations that plant-made proteins can function as biocontrol agents of foodborne pathogens further exemplify the potential utility of plant-based protein production. However, resolving the technical and regulatory challenges of commercial-scale production, garnering acceptance from large pharmaceutical companies, and obtaining U.S. Food and Drug Administration approval for several major classes of biologics are essential steps to fulfilling the untapped potential of this technology.

  4. Medical Supplies Shortages and Burnout among Greek Health Care Workers during Economic Crisis: a Pilot Study

    OpenAIRE

    Rachiotis, George; Kourousis, Christos; Kamilaraki, Maria; Symvoulakis, Emmanouil K.; Dounias, George; Hadjichristodoulou, Christos

    2014-01-01

    Greece has been seriously affected by the economic crisis. In 2011 there were reports of 40% reduction to public hospital budgets. Occasional shortages of medical supplies have been reported in mass media. We attempted to pivotally investigate the frequency of medical supplies shortages in two Greek hospital units of the National Health System and to also assess their possible impact on burnout risk of health care workers. We conducted a cross-sectional study (n=303) of health care workers in...

  5. Shortage of doctors in rural health centers: Empirical evidence from Gujarat

    OpenAIRE

    Somen Saha; Harshad Rathod

    2012-01-01

    Background: Shortage of medical graduates and post graduates in the government sector, especially in rural areas is a major problem in India. Rural and remote areas of Gujarat are facing shortages of MBBS graduates and post graduates. About 25 percent of posts in the health and family welfare department are vacant. The worst affected is the class I positions where over 40 per cent posts were vacant. This study is an attempt to identify the motivating and de-motivating factors, in joi...

  6. Successful Lung Transplant From Donor After Cardiac Death: A Potential Solution to Shortage of Thoracic Organs

    OpenAIRE

    McKellar, Stephen H.; Durham, Lucian A.; Scott, John P.; Cassivi, Stephen D.

    2010-01-01

    Lung transplant is an effective treatment for patients with end-stage lung disease but is limited because of the shortage of acceptable donor organs. Organ donation after cardiac death is one possible solution to the organ shortage because it could expand the pool of potential donors beyond brain-dead and living donors. We report the preliminary experience of Mayo Clinic with donation after cardiac death, lung procurement, and transplant.

  7. Impact of Antibiotic Shortage on H. Pylori Treatment: A Step-Wise Approach for Pharmacist Management

    Directory of Open Access Journals (Sweden)

    Ann Lloyd, Pharm.D., BCPS

    2013-01-01

    Full Text Available The current drug shortage crisis involving multiple oral antibiotics has significantly impacted preferred therapeutic options for treatment of H.pylori infection. Pharmacists may help alleviate the impact of this shortage through a proposed step-wise approach which includes proper inventory management, verification of indication, evaluation of regimen, therapeutic monitoring, and communication with patients and providers regarding alternative therapy or symptomatic relief.

  8. On the possibility of biologically active fenole substances forming during irradiation of vegetable origin products

    International Nuclear Information System (INIS)

    The purpose of this study was to find out whether biologically active substances of phenol nature can form upon irradiation of fresh fruits and vegetables with doses of 200-300 Krad, to ascertain the stability of these substances during storage and processing, and to see whether they display cytostatic effects. The results of the study led to modifications and improvements in the methods used to study biologically active substances of phenol nature in fresh fruits irradiated with 200-300 krad. The total amount of phenolic compounds was found to be somewhat increased upon their extraction with cold ethanol. Of the substances detected in extracts from red tomatoes, the contens of chlorogenic acid, caffeic acid, and naranguenine were appreciably increased. Neither chemical methods nor bioassays revealed in irradiated juices and fruits any biologically active substances affecting the living organism. (E.T.)

  9. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    OpenAIRE

    2010-01-01

    Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibito...

  10. 76 FR 36019 - Amendments to Sterility Test Requirements for Biological Products

    Science.gov (United States)

    2011-06-21

    ... or other material (e.g., bulk material or active pharmaceutical ingredient (API), in-process material... November 20, 1973 (38 FR 32048), we reorganized and republished the biologics regulations, which included... requirements. On March 11, 1976 (41 FR 10427) and March 2, 1979 (44 FR 11754), we updated Sec. 610.12...

  11. Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms

    NARCIS (Netherlands)

    Medema, Marnix H.; Breitling, Rainer; Bovenberg, Roel; Takano, Eriko

    2011-01-01

    One of the most promising applications of synthetic biology is the biosynthesis of new drugs from secondary metabolites. Here, we survey a wide range of strategies that control the activity of biosynthetic modules in the cell in space and time, and illustrate how these strategies can be used to desi

  12. Biologically Active Macrocyclic Compounds – from Natural Products to Diversity‐Oriented Synthesis

    DEFF Research Database (Denmark)

    Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2011-01-01

    Macrocyclic compounds are attractive targets when searching for molecules with biological activity. The interest in this compound class is increasing, which has led to a variety of methods for tackling the difficult macrocyclization step in their synthesis. This microreview highlights some recent...

  13. The Potential Role of Nuclear Techniques in Support of the Production of Biological Control Agents of Insect Pests

    International Nuclear Information System (INIS)

    While nuclear techniques could play a vital role in enabling cost-effective mass production of beneficial insects for use in augmentative biological control, surprisingly little use has been made of these techniques or ionizing radiation produced by other means (e.g., x-rays or electron beams from linear accelerators) for mass rearing beneficial insects. This technology has been available for quite some time, having been used to reproductively sterilize screwworm flies as early as 1951 (Bushland and Hopkins). Similarly, gamma radiation has been accepted internationally for human food preservation and disinfestation for many years (Anon., 1995). Quite a number of gamma radiation sources exist at or near USDA ARS and APHIS facilities throughout the U.S., as well as in many universities. Still, relatively little use has been made of this approach to assist in mass rearing of beneficial insects for use in augmentative biological control. As pointed out by Benbrook (1996), pest management is at a crossroads, and there still is a great need for new, biointensive pest management strategies. Nuclear techniques should play an increasing role in the future, as the overall thrust of biological control moves more and more toward augmentative releases (Knipling, 1992). It is the intent of this presentation to review some of the existing and potential uses that can be made of nuclear techniques and other sources of ionizing radiation in support of the biological control of insect pests. (author)

  14. Correlation of Arsenic Levels in Smokeless Tobacco Products and Biological Samples of Oral Cancer Patients and Control Consumers.

    Science.gov (United States)

    Arain, Sadaf S; Kazi, Tasneem G; Afridi, Hassan I; Talpur, Farah N; Kazi, Atif G; Brahman, Kapil D; Naeemullah; Panhwar, Abdul H; Kamboh, Muhammad A

    2015-12-01

    It has been extensively reported that chewing of smokeless tobacco (SLT) can lead to cancers of oral cavity. In present study, the relationship between arsenic (As) exposure via chewing/inhaling different SLT products in oral cancer patients have or/not consumed SLT products was studied. The As in different types of SLT products (gutkha, mainpuri, and snuff) and biological (scalp hair and blood) samples of different types of oral cancer patients and controls were analyzed. Both controls and oral cancer patients have same age group (ranged 30-60 years), socio-economic status, localities, and dietary habits. The concentrations of As in SLT products and biological samples were measured by electrothermal atomic absorption spectrophotometer after microwave-assisted acid digestion. The validity and accuracy of the methodology were checked by certified reference materials. The resulted data of present study indicates that the concentration of As was significantly higher in scalp hair and blood samples of oral cancer patients than those of controls (p0.01). The intake of As via consuming different SLT may have synergistic effects, in addition to other risk factors associated with oral cancer. PMID:25975948

  15. Underground coal gasification with extended CO2 utilization as economic and carbon neutral approach to address energy and fertilizer supply shortages in Bangladesh

    OpenAIRE

    Natalie Christine Nakaten; Rafiqul Islam; Thomas Kempka

    2014-01-01

    The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high- calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production....

  16. Time-Course Global Expression Profiles of Chlamydomonas reinhardtii during Photo-Biological H2 Production

    OpenAIRE

    Anh Vu Nguyen; Joerg Toepel; Steven Burgess; Andreas Uhmeyer; Olga Blifernez; Anja Doebbe; Ben Hankamer; Peter Nixon; Lutz Wobbe; Olaf Kruse

    2011-01-01

    We used a microarray study in order to compare the time course expression profiles of two Chlamydomonas reinhardtii strains, namely the high H₂ producing mutant stm6glc4 and its parental WT strain during H₂ production induced by sulfur starvation. Major cellular reorganizations in photosynthetic apparatus, sulfur and carbon metabolism upon H₂ production were confirmed as common to both strains. More importantly, our results pointed out factors which lead to the higher H₂ production in the mut...

  17. Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion

    OpenAIRE

    Celio I Chagas; Filipe B. Kraemer; Oscar J. Santanatoglia; Marta Paz; Juan Moretton

    2014-01-01

    Grain production has displaced livestock to marginal lands in most of the productive regions in Argentina since 1990. In the fertile Rolling Pampa region, extensive cattle production has been concentrated in lowlands subjected to flooding, salt excess, erosion and sedimentation processes but also in some feedlots recently located in sloping arable lands prone to soil erosion. We studied the concentration of microbiological contamination indicators in runoff water and sediments accumulated in ...

  18. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt; Nielsen, Peter Borch; Boe-Hansen, Rasmus;

    2016-01-01

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential...... enzymes in nitrification, we investigated the effect of copper dosing on nitrification in different biological rapid sand filters treating groundwater. A lab-scale column assay with filter material from a water works demonstrated that addition of a trace metal mixture, including copper, increased ammonium...... removal compared to a control without addition. Subsequently, another water works was investigated in full-scale, where copper influent concentrations were below 0.05 μg Cu L-1 and nitrification was incomplete. Copper dosing of less than 5 μg Cu L-1 to a full-scale filter stimulated ammonium removal...

  19. 75 FR 47605 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-08-06

    ... Laboratory of Respiratory & Special Pathogens, Division of Bacterial, Parasitic, & Allergenic Products... discussion where disclosure would constitute a clearly unwarranted invasion of personal privacy (5...

  20. Data-driven, data-intensive computing for modelling and analysis of biological networks: application to bioethanol production

    Science.gov (United States)

    Park, Byung-Hoon; Samatova, Nagiza F.; Karpinets, Tatiana; Jallouk, Andrew; Molony, Scott; Horton, Scott; Arcangeli, Steven

    2007-07-01

    Modelling biological networks is inherently data-driven and data-intensive. The combinatorial nature of this type of modelling, however, requires new methods capable of dealing with the enormous size and irregularity of the search. Searching via 'backtracking' is one possible solution that avoids exhaustive searches by constraining the search space to the subspace of feasible solutions. Despite its wide use in many combinatorial optimization problems, there are currently few parallel implementations of backtracking capable of effectively dealing with the memory-intensive nature of the process and the extremely unbalanced loads present. In this paper, a parallel, scalable, and memory-efficient backtracking algorithm within the context of maximal clique enumeration is presented, and its applicability to large-scale biological networks aimed at studying the mechanisms for efficient bioethanol production is discussed.

  1. Mass-energy balance analysis for estimation of light energy conversion in an integrated system of biological H2 production

    Directory of Open Access Journals (Sweden)

    A.I. Gavrisheva

    2015-12-01

    Full Text Available The present study investigated an integrated system of biological H2 production, which includes the accumulation of biomass of autotrophic microalgae, dark fermentation of biomass, and photofermentation of the dark fermentation effluent. Particular emphasis was placed on the estimation of the conversion efficiency of light into hydrogen energy at each stage of this system. For this purpose, the mass and energy balance regularities were applied. The efficiency of the energy transformation from light into the microalgal biomass did not exceed 5%. The efficiency of the energy transformation from biomass to biological H2 during the dark fermentation stage stood at about 0.3%. The photofermentation stage using the model fermentation effluent could improve this estimation to 11%, resulting in an overall efficiency 0.55%. Evidently, this scheme is counterproductive for light energy bioconversion due to numerous intermediate steps even if the best published data would be taken into account.

  2. Thermochemical pre- and biological co-treatments to improve hydrolysis and methane production from poultry litter

    OpenAIRE

    Costa, J. C.; Barbosa, S. G.; Alves, M.M.; Sousa, D.Z.

    2012-01-01

    The biochemical methane potential (BMP) of raw poultry litter waste was assessed in batch assays. Biological co-treatment with Clostridium cellulolyticum, Caldicellulosiruptor saccharolyticum and Clostridium thermocellum as bioaugmentation strains, and thermochemical pre-treatments with lime and sodium hydroxide performed at different temperatures and pressures were applied as strategies to improve the BMP by favouring the hydrolysis of the cellulolytic material in the waste. Anaerobic digest...

  3. Synthesis and biological evaluation of fatty hydrazides of by-products of oil processing industry

    Directory of Open Access Journals (Sweden)

    Toliwal S

    2009-01-01

    Full Text Available Some new 2-alkyl-5-mercapto-1,3,4-Oxadiazoles and 3-alkyl-5-mercapto-1,2,3-4H triazoles were synthesized from hydrazides of acid oil and oil recovered from spent bleaching earth. These newly synthesized compounds were characterized on the basis of elemental analysis and evaluated for biological properties. Certain derivatives exhibited fairly high antibacterial and antifungal activities when compared with streptomycin and immidil used as standard antibacterial and antifungal agents respectively.

  4. The importance of extremophile cyanobacteria in the production of biologically active compounds

    Directory of Open Access Journals (Sweden)

    Drobac-Čik Aleksandra V.

    2007-01-01

    Full Text Available Due to their ability to endure extreme conditions, terrestrial cyanobacteria belong to a group of organisms known as "extremophiles". Research so far has shown that these organisms posses a great capacity for producing biologically active compounds (BAC. The antibacterial and antifungal activities of methanol extracts of 21 cyanobacterial strains belonging to Anabaena and Nostoc genera, previously isolated from different soil types and water resources in Serbia, were evaluated. In general, larger number of cyanobacterial strains showed antifungal activity. In contrast to Nostoc, Anabaena strains showed greater diversity of antibacterial activity (mean value of percentages of sensitive targeted bacterial strains 3% and 25.9% respectively. Larger number of targeted fungi was sensitive to cultural liquid extract (CL, while crude cell extract (CE affected more bacterial strains. According to this investigation, the higher biological activity of terrestrial strains as representatives of extremophiles may present them as significant BAC producers. This kind of investigation creates very general view of cyanobacterial possibility to produce biologically active compounds but it points out the necessity of exploring terrestrial cyanobacterial extremophiles as potentially excellent sources of these substances and reveals the most prospective strains for further investigations.

  5. Production of High Viscosity Chitosan from Biologically Purified Chitin Isolated by Microbial Fermentation and Deproteinization

    Directory of Open Access Journals (Sweden)

    Ekkalak Ploydee

    2014-01-01

    Full Text Available The objective of this study was to produce high viscosity chitosan from shrimp chitin prepared by using a two-step biological treatment process: decalcification and deproteinization. Glucose was fermented with Lactobacillus pentosus L7 to lactic acid. At a pH of 3.9±0.1, the calcium carbonate of the shells was solubilized in 48 hours. The amounts of residual calcium in the form of ash (1.4±0.5% and crude protein (23.2±2.5% were further eliminated by the activity of proteolytic Bacillus thuringiensis SA. After decalcification and deproteinization of the shrimp shells, residual calcium and crude protein of shrimp chitin flakes were 1.7±0.4% and 3.8±1.3%, respectively. Chitin was deacetylated with 50% NaOH at 121°C for 5 hours. After deacetylation, the chitosan had residual calcium, crude protein content, and degree of acetylation of 1.6±0.6%, 0.4±0.3%, and 83.2±1.5%, respectively. The viscosity of chitosan prepared from chitin extracted by this two-step biological process was 1,007±14.7 mPa·s, whereas chitosan prepared from chemically processed chitin had a viscosity of 323±15.6   mPa·s, indicating that biologically purified chitin gave chitosan with a high quality.

  6. The application of residual oats flour in bread production in order to improve its quality and biological value of protein

    Directory of Open Access Journals (Sweden)

    Halina Gambuś

    2011-09-01

    Full Text Available   Background. High nutritional value of residual oat flour, which is a by-product in the production β-D-glucan concentration BETAVEN, was the reason to make a trial to apply it in the production of wheat and wheat-rye bread. The aim of the study was to establish a formulation for wheat and wheat-rye bread, in which part of wheat flour would be replaced by residual oat flour (at the level 20% of wheat flour, and to check the influence of this additive on sensory and nutritional properties of the products, with special consideration to content and biological value of the proteins. Material and methods. The material consisted of wheat flour, rye flour and residual oat flour, as well as loaves, baked with these flours. The quality of the obtained loaves was analysed taking into account: organoleptic assessment, loaf mass and volume, moisture content crumb and texture profile of the crumb. In the studied raw materials and bread, the following components were determined according to AOAC methods: protein content, fat, fiber and ash. In addition, composition of amino acids was assessed. Basing on the amino acid composition, Chemical Score (CS and Exogenic Amino Acid Index (EAAI were calculated, applying WHO/FAO protein standard (1991. Results. Bread with the share of residual oats flour received high consumer acceptance (37 points, comparable to control bread (38 points despite of lower volume. The applied amounts of oats flour did not influence moisture content and texture profile during storage. Wheat and wheat-rye loaves with the share of residual oats flour were characterised by a significantly higher level of dietary fiber, fat and protein, in comparison to control bread. It was found that biological activity of protein in wheat-rye bread was significantly higher (CS = 53.5, EAAI = 91.5 in comparison to wheat bread (CS = 47.9, EAAI = 89.9. The share of oats flour caused an increase in biological value of all bread types – wheat-oats (CS = 52

  7. Credit financing for deteriorating imperfect quality items with allowable shortages

    OpenAIRE

    Aditi Khanna; Mandeep Mittal; Prerna Gautam; Chandra K. Jaggi

    2016-01-01

    The outset of new technologies, systems and applications in manufacturing sector has no doubt lighten up our workload, yet the chance causes of variation in production system cannot be eliminated completely. Every produced/ordered lot may have some fraction of defectives which may vary from process to process. In addition the situation is more susceptible when the items are deteriorating in nature. However, the defective items can be secluded from the good quality lot through a careful inspec...

  8. MODIS vegetation products as proxies of photosynthetic potential: a look across meteorological and biologic driven ecosystem productivity

    Science.gov (United States)

    Restrepo-Coupe, N.; Huete, A.; Davies, K.; Cleverly, J.; Beringer, J.; Eamus, D.; van Gorsel, E.; Hutley, L. B.; Meyer, W. S.

    2015-12-01

    A direct relationship between gross ecosystem productivity (GEP) measured by the eddy covariance (EC) method and Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices (VIs) has been observed in many temperate and tropical ecosystems. However, in Australian evergreen forests, and particularly sclerophyll woodlands, MODIS VIs do not capture seasonality of GEP. In this study, we re-evaluate the connection between satellite and flux tower data at four contrasting Australian ecosystems, through comparisons of ecosystem photosynthetic activity (GEP) and potential (e.g. ecosystem light use efficiency and quantum yield) with MODIS vegetation satellite products, including VIs, gross primary productivity (GPPMOD), leaf area index (LAIMOD), and fraction of photosynthetic active radiation (fPARMOD). We found that satellite derived greenness products constitute a measurement of ecosystem structure (e.g. leaf area index - quantity of leaves) and function (e.g. leaf level photosynthetic assimilation capacity - quality of leaves), rather than productivity. Our results show that in primarily meteorological-driven (e.g. photosynthetic active radiation, air temperature and/or precipitation) and relatively aseasonal vegetation photosynthetic potential ecosystems (e.g. evergreen wet sclerophyll forests), there were no statistically significant relationships between GEP and satellite derived measures of greenness. In contrast, for phenology-driven ecosystems (e.g. tropical savannas), changes in the vegetation status drove GEP, and tower-based measurements of photosynthetic activity were best represented by VIs. We observed the highest correlations between MODIS products and GEP in locations where key meteorological variables and vegetation phenology were synchronous (e.g. semi-arid Acacia woodlands) and low correlation at locations where they were asynchronous (e.g. Mediterranean ecosystems). Eddy covariance data offer much more than validation and/or calibration of

  9. Energy balance of biofuel production from biological conversion of crude glycerol.

    Science.gov (United States)

    Zhang, Xiaolei; Yan, Song; Tyagi, Rajeshwar D; Surampalli, Rao Y; Valéro, Jose R

    2016-04-01

    Crude glycerol, a by-product of biodiesel production, has gained significant attention as a carbon source for biofuel production. This study evaluated the energy balance of biodiesel, hydrogen, biogas, and ethanol production from 3.48 million L of crude glycerol (80% w/v). The conversion efficiency (energy output divided by energy invested) was 1.16, 0.22, 0.27, and 0.40 for the production of biodiesel, hydrogen, biogas, and ethanol respectively. It was found that the use of crude glycerol for biodiesel production was an energy gain process, with a positive energy balance and conversion efficiency of greater than 1. The energy balance revealed a net energy gain of 5226 GJ per 1 million kg biodiesel produced. Production of hydrogen, biogas and ethanol from crude glycerol were energy loss processes. Therefore, the conversion of crude glycerol to lipids and subsequently to biodiesel is suggested to be a better option compared to hydrogen, biogas, or ethanol production with respect to energy balance. PMID:26829450

  10. Form for reporting serious adverse events and product problems with human drug and biological products and devices; availability--FDA. Notice.

    Science.gov (United States)

    1993-06-01

    The Food and Drug Administration (FDA) is announcing the availability of a new form for reporting adverse events and product problems with human drug products, biologic products, medical devices (including in-vitro diagnostics), special nutritional products (dietary supplements, medical foods, infant formulas), and other products regulated by FDA. There are two versions of the form. One version of the form (FDA Form 3500) is available for use by health professionals for voluntary reporting; the other version of the form (FDA Form 3500A) is to be used by user facilities, distributors, and manufacturers for reporting that is required by statute or FDA regulations. The new form will simplify and consolidate the reporting of adverse events and product problems and will enhance agency-wide consistency in the collection of postmarketing data. This notice also responds to written comments the agency received on proposed versions of this form. Copies of both versions of the new form appear at the end of this document. PMID:10171452

  11. Biologic Activities of Honeybee Products Obtained From Different Phytogeographical Regions of Turkey

    Directory of Open Access Journals (Sweden)

    Hamide Doğan

    2014-06-01

    Full Text Available Honeybee products are rich in phenolic compounds, which effect as natural antioxidants. These compounds may be attached as indicators in studies into the floral and geographical origin of the natural bee products. In this study, we aimed to determine average total antioxidant capacity, average total oxidant capacity and average oxidative stress index of natural bee products obtained from different regions of Turkey. Collected honeybee samples were kept at +4o C until extracted. Natural bee products were extracted with specific methods and antioxidant capacities were defined with in vitro analyses and data were compared. As a result, the highest average total antioxidant capacities were observed in propolis and pollen samples. Total antioxidant capacities of honeybee products collected from various regions demonstrated differences (P<0.05 because of different phytogeographical characteristics of regions of Turkey.

  12. Biological production and spatial variation of dimethylated sulfur compounds and their relation with plankton in the North Yellow Sea

    Science.gov (United States)

    Li, Cheng-Xuan; Yang, Gui-Peng; Wang, Bao-Dong

    2015-07-01

    The concentrations of dimethylated sulfur compounds and chlorophyll a, as well as biological production and consumption rates of dimethylsulfide (DMS), were measured in the surface water of the North Yellow Sea (NYS, 37-40°N to 121-124°E) in winter 2007. Surface DMS, dissolved and particulate dimethylsulfoniopropionate (DMSPd and DMSPp) concentrations in the study area increased significantly from offshore to inshore sites, with the average values of 2.00, 4.52 and 7.21 nM, respectively. The biological production and consumption rates of DMS were estimated, with the average values of 5.41 and 3.84 nM d-1, respectively. The spatial variation of chlorophyll a was consistent with that of DMS and DMSP, as well as with that of DMS biological production, suggesting that phytoplankton biomass might play an important role in controlling the distribution of DMS and DMSP in the study area. According to the collective data of dimethylated sulfur compounds and DMS biological conversion in China Seas, the dimethylated sulfur compounds concentrations in the NYS during winter were a factor of 2 and 1.3 higher than those in the East China Sea and South China Sea, respectively. Less DMS (DMSP) in NYS was released in winter than that in spring and summer, which could be attributed to the shift in phytoplankton community composition dominated by diatoms to non-diatoms from winter to summer. Quantitative comparison analysis pointed to DMSPp rather than DMSPd as an important precursor of DMS in the surface water. The estimated sea-to-air fluxes of DMS using Liss and Merlivat (LM86), Wanninkhof (W92) and Nightingale (N2000) formulae were 2.72, 5.12 and 4.28 μmol m-2 d-1, respectively. In the surface water, the biological turnover time of DMS varied from 0.21 to 1.73 d with an average of 0.83 d, which was about 5.43-fold faster than the mean DMS sea-air turnover time (3.12 d), implying that microbial consumption was a main sink of DMS in the surface water.

  13. Brown rot fungal early stage decay mechanism as a biological pretreatment for softwood biomass in biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Michael J.; Leak, David J.; Spanu, Pietro D.; Murphy, Richard J. [Division of Biology, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ (United Kingdom); Porter Alliance, Imperial College London, London SW7 2AZ (United Kingdom)

    2010-08-15

    A current barrier to the large-scale production of lignocellulosic biofuels is the cost associated with the energy and chemical inputs required for feedstock pretreatment and hydrolysis. The use of controlled partial biological degradation to replace elements of the current pretreatment technologies would offer tangible energy and cost benefits to the whole biofuel process. It has been known for some time from studies of wood decay that, in the early stages of growth in wood, brown rot fungi utilise a mechanism that causes rapid and extensive depolymerisation of the carbohydrate polymers of the wood cell wall. The brown rot hyphae act as delivery vectors to the plant cell wall for what is thought to be a combination of a localised acid pretreatment and a hydroxyl radical based depolymerisation of the cell wall carbohydrate polymers. It is this quality that we have exploited in the present work to enhance the saccharification potential of softwood forest residues for biofuel production. Here we show that after restricted exposure of pine sapwood to brown rot fungi, glucose yields following enzymatic saccharification are significantly increased. Our results demonstrate the potential of using brown rot fungi as a biological pretreatment for biofuel production. (author)

  14. Heat treatment of curdlan enhances the enzymatic production of biologically active β-(1,3)-glucan oligosaccharides.

    Science.gov (United States)

    Kumagai, Yuya; Okuyama, Masayuki; Kimura, Atsuo

    2016-08-01

    Biologically active β-(1,3)-glucan oligosaccharides were prepared from curdlan using GH64 enzyme (KfGH64). KfGH64 showed low activity toward native curdlan; thereby pretreatment conditions of curdlan were evaluated. KfGH64 showed the highest activity toward curdlan with heat treatment. The most efficient pretreatment (90°C for 0.5h) converted approximately 60% of curdlan into soluble saccharides under the optimized enzyme reaction conditions (pH 5.5, 37°C, 100rpm mixing speed, 24h, and 10μg of KfGH64/1g of curdlan). The resulting products were predominantly laminaripentaose and a small amount of β-(1,3)-glucans with an average degree of polymerization (DP) of 13 and 130. The products did not contain small oligosaccharides (DPhydrolysis of heat-treated curdlan by KfGH64 is a suitable method for the production of biologically active β-(1,3)-glucan oligosaccharides. PMID:27112889

  15. The Biological Diversity and Production of Volatile Organic Compounds by Stem-Inhabiting Endophytic Fungi of Ecuador

    Directory of Open Access Journals (Sweden)

    Susan M. Rundell

    2015-12-01

    Full Text Available Fungal endophytes colonize every major lineage of land plants without causing apparent harm to their hosts. Despite their production of interesting and potentially novel compounds, endophytes—particularly those inhabiting stem tissues—are still a vastly underexplored component of microbial diversity. In this study, we explored the diversity of over 1500 fungal endophyte isolates collected from three Ecuadorian ecosystems: lowland tropical forest, cloud forest, and coastal dry forest. We sought to determine whether Ecuador’s fungal endophytes are hyperdiverse, and whether that biological diversity is reflected in the endophytes’ chemical diversity. To assess this chemical diversity, we analyzed a subset of isolates for their production of volatile organic compounds (VOCs, a representative class of natural products. This study yielded a total of 1526 fungal ITS sequences comprising some 315 operational taxonomic units (OTUs, resulting in a non-asymptotic OTU accumulation curve and characterized by a Fisher’s α of 120 and a Shannon Diversity score of 7.56. These figures suggest that the Ecuadorian endophytes are hyperdiverse. Furthermore, the 113 isolates screened for VOCs produced more than 140 unique compounds. These results present a mere snapshot of the remarkable biological and chemical diversity of stem-inhabiting endophytic fungi from a single neotropical country.

  16. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting

    International Nuclear Information System (INIS)

    Composting is a technique that is used to convert organic waste into agriculturally useful products. Composting is an aerobic, solid-state biological process, which typically can be divided into two phases, a high-rate composting phase and a curing phase. High-rate composting plays an important role during the composting process, owing to the high microbial activity occurring during this phase. It requires an accurate plant design to prevent the formation of anaerobic conditions and odors. The formation of anaerobic conditions mainly depends on the rate of O2 consumption needed to degrade the substrate, i.e., the biological stability of the substrate. In this study, we investigated the relationship between the biological activity, measured by the dynamic respiration index (DRI) and the odor molecules production, measured by an electronic nose (EN) during two food-waste high-rate composting processes. Although the O2 concentration in the biomass free air space (FAS) was kept optimal (O2 > 140 ml l-1, v/v) during composting, strong anaerobic conditions developed. This was indicated by the high levels of sulfur compounds, methane, and hydrogen in the outlet air stream. Both the high level of O2 consumption, needed to degrade the high-degradable water-soluble organic matter and the low water O2 solubility, caused by high temperature reached in this stage (up to 60 deg. C), led to the anaerobic conditions observed in the biofilm-particle level. The application of the partial least square (PLS) analysis demonstrated a good regression between the DRI and the odor molecules produced that was detected by the EN (R2 = 0.991; R2CV = 0.990), signifying the usefulness of the DRI as a parameter to estimate the potential production of odor molecules of the biomass

  17. Medical supplies shortages and burnout among greek health care workers during economic crisis: a pilot study.

    Science.gov (United States)

    Rachiotis, George; Kourousis, Christos; Kamilaraki, Maria; Symvoulakis, Emmanouil K; Dounias, George; Hadjichristodoulou, Christos

    2014-01-01

    Greece has been seriously affected by the economic crisis. In 2011 there were reports of 40% reduction to public hospital budgets. Occasional shortages of medical supplies have been reported in mass media. We attempted to pivotally investigate the frequency of medical supplies shortages in two Greek hospital units of the National Health System and to also assess their possible impact on burnout risk of health care workers. We conducted a cross-sectional study (n=303) of health care workers in two Greek hospitals who were present at the workplace during a casually selected working day (morning shift work). The Maslach Burnout Inventory (MBI) was used as the measure of burnout. An additional questionnaire was used about demographics, and working conditions (duration of employment, cumulative night shifts, type of hospital including medical supplies shortages and their impact on quality of healthcare. The prevalence of emotional exhaustion, depersonalization and low personal accomplishment was 44.5%, 43.2% and 51.5%, respectively. Medical supply shortages were significantly associated with emotional exhaustion and depersonalization. This finding provides preliminary evidence that austerity has affected health care in Greece. Moreover, the medical supply shortages in Greek hospitals may reflect the unfolding humanitarian crisis of the country. PMID:24688306

  18. Biological hydrogen production from sucrose and sugar beet by Caldicellulosiruptor saccharolyticus

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotopoulos, John [National Technical Univ. of Athens (Greece); Wageningen UR Food and Biobased Research (Netherlands); Bakker, Robert; Vrieje, Truus de; Claassen, Pieternel [Wageningen UR Food and Biobased Research (Netherlands); Koukios, Emmanuel [National Technical Univ. of Athens (Greece)

    2010-07-01

    Hydrogen production needs to be based on renewable resources in order to be sustainable. Sugar beet is an ideal raw material for fermentative production of hydrogen in the EU and possibly in the USA due to its environmental profile and its potential availability in these areas. In this work, the fermentative production of hydrogen from sucrose of analytical grade and sugar beet extract by pure cultures of Caldicellulosiruptor saccharolyticus was investigated, under uncontrolled and controlled conditions. In the first case, growth of pure cultures of C. saccharolyticus on sucrose derived from sugar beet was compared to growth of the microorganism on sucrose of analytical grade. The production of hydrogen and organic acids (acetate and lactate) from sugar beet was largely equal to or slightly higher than the production of the control. In the second case, fermentation of sugar beet extract at sucrose concentration 10 g/l was comparable to the fermentation on pure sucrose except that the hydrogen yield was slightly higher on sugar beet extract. In particular, hydrogen yields of 2.9 and 3.0 mol/mol hexose were determined in fermentations of sucrose and sugar beet extract, respectively, corresponding to 73% and 75% of the theoretical value of 4 mol hydrogen/mol hexose. Acetic acid was the main product and very low production of lactic acid was observed. (orig.)

  19. Seasonal variability in biological carbon biomass standing stocks and production in the surface layers of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Fernandes, V.; Paul, J.T.; Jyothibabu, R.; Gauns, M.; Jayraj, E.A.

    of Marine Sciences Vol. 39(3), September 2010, pp. 369-379 Seasonal variability in biological carbon biomass standing stocks and production in the surface layers of the Bay of Bengal N Ramaiah1*, V Fernandes1, J T Paul1, R Jyothibabu2, G... Mangesh1& E A Jayraj2 1National Institute of Oceanography, Dona Paula, Goa 403004, India 2Regional Centre of NIO, Kochi 682 018. India [Email: ramaiah@nio.org] Received 9 June 2010; revised 13 October 2010 As a part of the Bay of Bengal Process Study...

  20. Biological determinants of plant and crop productivity of flax (Linum usitatissimum L.)

    OpenAIRE

    Tadeusz Zając; Andrzej Oleksy; Agnieszka Klimek-Kopyra; Bogdan Kulig

    2012-01-01

    In Poland the cultivation of the fibrous form of flax (Linum usitatissimum L.) is dying out, but the acreage of its oilseed form, linseed, which provides seed (Semen lini) used in therapy and being a source of -linolenic acid, is expanding. Nowadays, linseed is grown in 64 countries of the world, but yield levels in these countries vary greatly. Under European conditions, seed yield of linseed shows high variation, which is evidence of little knowledge of the biology of this plant and the lac...

  1. Methanol regulated yeast promoters: production vehicles and toolbox for synthetic biology.

    Science.gov (United States)

    Gasser, Brigitte; Steiger, Matthias G; Mattanovich, Diethard

    2015-01-01

    Promoters are indispensable elements of a standardized parts collection for synthetic biology. Regulated promoters of a wide variety of well-defined induction ratios and expression strengths are highly interesting for many applications. Exemplarily, we discuss the application of published genome scale transcriptomics data for the primary selection of methanol inducible promoters of the yeast Pichia pastoris (Komagataella sp.). Such a promoter collection can serve as an excellent toolbox for cell and metabolic engineering, and for gene expression to produce heterologous proteins. PMID:26627685

  2. Application of vascular aquatic plants for pollution removal, energy and food production in a biological system

    Science.gov (United States)

    Wolverton, B. C.; Barlow, R. M.; Mcdonald, R. C.

    1975-01-01

    Vascular aquatic plants such as water hyacinths (Eichhornia crassipes) (Mart.) Solms and alligator weeds (Alternanthera philoxeroides) (Mart.) Griesb., when utilized in a controlled biological system (including a regular program of harvesting to achieve maximum growth and pollution removal efficiency), may represent a remarkably efficient and inexpensive filtration and disposal system for toxic materials and sewage released into waters near urban and industrial areas. The harvested and processed plant materials are sources of energy, fertilizer, animal feed, and human food. Such a system has industrial, municipal, and agricultural applications.

  3. THE USE OF BIOLOGICAL PRODUCTS IN ABDOMINAL SURGERY AND LIVER TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    N. I. Gabrielyan

    2013-01-01

    Full Text Available This article provides an overview of new approaches to the prevention of infectious complications of bacterial nature after the high-technology operations in the abdominal surgery, first of all, after liver transplantation. At- tention is drawn to the first positive results of randomized studies on the use of biological preparations - probi- otics, prebiotics and synbiotics in patients after liver transplantation. The authors prove the prospects of further development of this subject based on successful model experiments on animals and various operational interven- tions in abdominal surgery. 

  4. Laser-assisted production of tricalcium phosphate nanoparticles from biological and synthetic hydroxyapatite in aqueous medium

    Science.gov (United States)

    Boutinguiza, M.; Pou, J.; Lusquiños, F.; Comesaña, R.; Riveiro, A.

    2011-04-01

    Pulsed laser ablation technique has attracted great attention as a method for preparing nanoparticles. In this work, calcined fish bones and synthetic hydroxyapatite, have been used as target to be ablated in de-ionized water with a pulsed CO 2 laser to produce calcium phosphate nanoparticles. The obtained nanoparticles were amorphous and spherical in shape with a mean diameter of about 25 nm. The microanalyses revealed that nanoparticles obtained from the synthetic HA undergo transformation to tricalcium phosphate. While nanoparticles obtained from the biological hydroxyapatite mostly preserve the composition of precursor material.

  5. Biological production of organic solvents from cellulosic wastes. Six-month progress report, June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Forro, J.R.; Nolan, E.J.

    1977-01-01

    Progress is reported in the following studies: production of cellulose by culturing Thermoactinomyces YX and derived mutants; the development of mutation techniques; cellulose mutant screening techniques; quantification of cellulose mutants; and alternate enhancement techniques. (JGB)

  6. 76 FR 44016 - Vaccines and Related Biological Products Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-07-22

    ..., Division of Bacterial, Parasitic and Allergenic Products, Office of Vaccines Research and Review, Center... disclosure would constitute a clearly unwarranted invasion of personal privacy (5 U.S.C. 552b(c)(6))....

  7. 75 FR 61497 - Approval Pathway for Biosimilar and Interchangeable Biological Products; Public Hearing; Request...

    Science.gov (United States)

    2010-10-05

    ... drug, thereby saving time and resources and avoiding unnecessary duplication of human or animal testing... the approval of drug products under the Federal Food, Drug, and Cosmetic Act (FD&C Act). The BPCI...

  8. Time-course global expression profiles of Chlamydomonas reinhardtii during photo-biological H₂ production.

    Directory of Open Access Journals (Sweden)

    Anh Vu Nguyen

    Full Text Available We used a microarray study in order to compare the time course expression profiles of two Chlamydomonas reinhardtii strains, namely the high H₂ producing mutant stm6glc4 and its parental WT strain during H₂ production induced by sulfur starvation. Major cellular reorganizations in photosynthetic apparatus, sulfur and carbon metabolism upon H₂ production were confirmed as common to both strains. More importantly, our results pointed out factors which lead to the higher H₂ production in the mutant including a higher starch accumulation in the aerobic phase and a lower competition between the H₂ase pathway and alternative electron sinks within the H₂ production phase. Key candidate genes of interest with differential expression pattern include LHCSR3, essential for efficient energy quenching (qE. The reduced LHCSR3 protein expression in mutant stm6glc4 could be closely related to the high-light sensitive phenotype. H₂ measurements carried out with the LHCSR3 knock-out mutant npq4 however clearly demonstrated that a complete loss of this protein has almost no impact on H₂ yields under moderate light conditions. The nuclear gene disrupted in the high H₂ producing mutant stm6glc4 encodes for the mitochondrial transcription termination factor (mTERF MOC1, whose expression strongly increases during -S-induced H₂ production in WT strains. Studies under phototrophic high-light conditions demonstrated that the presence of functional MOC1 is a prerequisite for proper LHCSR3 expression. Furthermore knock-down of MOC1 in a WT strain was shown to improve the total H₂ yield significantly suggesting that this strategy could be applied to further enhance H₂ production in other strains already displaying a high H₂ production capacity. By combining our array data with previously published metabolomics data we can now explain some of the phenotypic characteristics which lead to an elevated H₂ production in stm6glc4.

  9. Thermochemical pre- and biological co-treatments to improve hydrolysis and methane production from poultry wastes

    OpenAIRE

    Costa, J.C.; Barbosa, S. G.; Alves, M. M.; Sousa, D.Z.

    2011-01-01

    Poultry industry wastes, namely feathers and poultry litter, are an interesting source of substrate for biogas production. The aim of this work was to assess the biomethane potential of raw poultry wastes, as well as the possibility of enhancing this potential by favouring the hydrolysis of cellulolytic and proteinaceous material in the wastes by using bioaugmentation and thermochemical pre-treatments. Biomethane production from poultry litter and chicken feathers was assessed in batch ass...

  10. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    OpenAIRE

    Z. Lachkar; Gruber, N.

    2012-01-01

    Eastern Boundary Upwelling Systems (EBUS) are highly productive ocean regions. Yet, substantial differences in net primary production (NPP) exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The NPP drivers are identified with the aid of an artifici...

  11. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network

    OpenAIRE

    Z. Lachkar; Gruber, N.

    2011-01-01

    Eastern Boundary Upwelling Systems (EBUS) are highly productive ocean regions. Yet, substantial differences in net primary production (NPP) exist within and between these systems for reasons that are still not fully understood. Here, we explore the leading physical processes and environmental factors controlling NPP in EBUS through a comparative study of the California, Canary, Benguela, and Humboldt Current systems. The identification of NPP drivers is done with the aid of an artificial neur...

  12. Production of Biologically Active Cecropin A Peptide in Rice Seed Oil Bodies.

    OpenAIRE

    Laura Montesinos; Mireia Bundó; Esther Izquierdo; Sonia Campo; Esther Badosa; Michel Rossignol; Emilio Montesinos; Blanca San Segundo; María Coca

    2016-01-01

    Cecropin A is a natural antimicrobial peptide that exhibits fast and potent activity against a broad spectrum of pathogens and neoplastic cells, and that has important biotechnological applications. However, cecropin A exploitation, as for other antimicrobial peptides, is limited by their production and purification costs. Here, we report the efficient production of this bioactive peptide in rice bran using the rice oleosin 18 as a carrier protein. High cecropin A levels were reached in rice ...

  13. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  14. Heterotrophic bacterial production: Relationships to biological and abiological factors in estuarine environments

    International Nuclear Information System (INIS)

    Ecotoxicological effects of creosote contamination on benthic bacterial communities in the Elizabeth River, Virginia were investigated using both structural an functional microbial parameters. Results indicated that cell specific and total heterotrophic bacterial production parameters were depressed in a dose-dependent manner with increasing sediment PAH concentrations. Toxicity effects upon production were modified by temporal trends associated with temperature as well as spatial sediment characteristics. Of the parameters employed, the tritiated thymidine production assay was found to be the most sensitive for detection of ecotoxicological effects. Bacterial abundance and production were examined during a destratification event in the lower James River, Virginia. Bacterial abundance, although significantly different between stations, did not change over the study. Bacterial production (3H-Tdr incorporation) in surface waters was significantly less during the mixed period 187 μg C·1-1· d-1 compared to the most stratified state (324μg C·1-1· d-1). Correlations between bacteria and chlorophyll were diminished during the mixed period. Total and flagellate specific grazing rates upon bacteria were reduced during the onset of destratification. Relationships between bacterial and nutrient parameters also indicated a strong influence of destratification. These results indicate that destratification changes trophic interactions within the microbial loop, which are not necessarily reflected in temporal patterns of bacterial abundance. Bacterioplankton production, and ammonium assimilation and remineralization were examined between April and August 1988 in the lower York River, Va

  15. Production of biologically active scFv and VHH antibody fragments in Bifidobacterium longum.

    Science.gov (United States)

    Shkoporov, A N; Khokhlova, E V; Savochkin, K A; Kafarskaia, L I; Efimov, B A

    2015-06-01

    Bifidobacteria constitute a significant part of healthy intestinal microbiota in adults and infants and present a promising platform for construction of genetically modified probiotic agents for treatment of gastrointestinal disorders. In this study, three strains of Bifidobacterium longum were constructed that express and secrete biologically active single-chain antibodies against human TNF-α and Clostridium difficile exotoxin A. Anti-TNF-α scFv antibody D2E7 was produced at the level of 25 μg L(-1) in broth culture and was mostly retained in the cytoplasm, while VHH-type antibodies A20.1 and A26.8 against C. difficile exotoxin A were produced at the levels of 0.3-1 mg L(-1) and secreted very efficiently. The biological activity of both antibody types was demonstrated in the mammalian cell-based assays. Expression of A20.1 and A26.8 was also observed in vivo after intragastric administration of transformed B. longum strains to (C57/BL6 × DBA/2)F1 mice. The obtained B. longum strains may serve as prototypes for construction of novel probiotic medications against inflammatory bowel disease and C. difficile-associated disease. PMID:25994292

  16. Milligram production and biological activity characterization of the human chemokine receptor CCR3.

    Directory of Open Access Journals (Sweden)

    Mingqing Wang

    Full Text Available Human chemokine receptor CCR3 (hCCR3 belongs to the G protein-coupled receptors (GPCRs superfamily of membrane proteins and plays major roles in allergic diseases and angiogenesis. In order to study the structural and functional mechanism of hCCR3, it is essential to produce pure protein with biological functions on a milligram scale. Here we report the expression of hCCR3 gene in a tetracycline-inducible stable mammalian cell line. A cell clone with high hCCR3 expression was selected from 46 stably transfected cell clones and from this cell line pure hCCR3 on a milligram scale was obtained after two-step purification. Circular dichroism spectrum with a characteristic shape and magnitude for α-helix indicated proper folding of hCCR3 after purification. The biological activity of purified hCCR3 was verified by its high binding affinity with its endogenous ligands CCL11 and CCL24, with K D in the range of 10(-8 M to 10(-6 M.

  17. Reproductive biology and nectar production of the Mexican endemic Psittacanthus auriculatus (Loranthaceae), a hummingbird-pollinated mistletoe.

    Science.gov (United States)

    Pérez-Crespo, M J; Ornelas, J F; Martén-Rodríguez, S; González-Rodríguez, A; Lara, C

    2016-01-01

    Many mistletoe species produce 'bird'-pollinated flowers; however, the reproductive biology of the majority of these species has not been studied. Psittacanthus auriculatus is a Mexican endemic mistletoe, most common in open, dry mesquite grassland. Knowledge of the reproductive biology of P. auriculatus is essential for understanding species formation and diversification of Psittacanthus mistletoes, but it is currently poorly understood. Thus, we studied floral biology and phenology, nectar production and breeding system and pollination of this species. The hermaphroditic red-pink flowers open from the middle to the tip and petals are curly, but remain partially fused forming a floral tube of ca. 20-mm long. Flowers are partially protandrous, produce large amounts of nectar, last 2 days, and stigma receptivity is highest during the second day. We recorded hummingbirds (Cynanthus latirostris, Hylocharis leucotis, Amazilia beryllina, A. violiceps, Calothorax lucifer, Archilochus colubris) and less commonly butterflies (Agraulis vanillae, Anteos clorinde, Papilio multicaudatus, Phocides urania, Phoebis sennae) as floral visitors. P. auriculatus flowers are self-compatible. However, this mistletoe is an obligate animal-pollinated species, as the sensitive stigma avoids self-pollination. Under natural conditions, reproductive success was higher than in manually selfed or cross-pollinated flowers, likely due to the traplining foraging behaviour of hummingbirds. We suggest that the apparent efficient foraging behaviour of hummingbirds maintains gene flow among P. auriculatus, promoting outcrossing. PMID:26154599

  18. Sputtering effect of low-energy ions on biological target: The analysis of sputtering product of urea and capsaicin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lili [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering of Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China); Xu, Xue [Rice Research Institute, Anhui Academy of Agricultural Sciences, Nongke South Road 40, Hefei 230031 (China); Wu, Yuejin, E-mail: yjwu@ipp.ac.cn [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering of Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China)

    2013-08-01

    Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles. Recent years, ion implantation was successfully applied to biological research based on the fragments sputtering and form open paths in cell structure caused by ion sputtering. In this study, we focused on urea and chilli pepper pericarp samples implanted with N{sup +} and Ar{sup +} ions. To investigate the sputtering effect, we designed a collecting unit containing a disk sample and a glass pipe. The urea content and capsaicin content recovered from glass pipes were adopted to represent the sputtering product. The result of urea showed that the sputtering effect is positively correlated with the ion energy and dose, also affected by the ion type. The result of capsaicin was different from that of urea at 20 keV and possibly due to biological complex composition and structure. Therefore the sputtering yield depended on both the parameters of incident ions and the state of target materials. The sputtering yield of urea was also simulated by computational method achieved through the TRIM program. The trajectories of primary and recoiled atoms were calculated on the basis of the binary collision approximation using Monte Carlo method. The experimental results were much higher than the calculated results. The possible explanation is that in the physical model the target were assumed as a disordered lattice and independent atoms, which is much less complicated than that of the biological models.

  19. Sputtering effect of low-energy ions on biological target: The analysis of sputtering product of urea and capsaicin

    Science.gov (United States)

    Zhang, Lili; Xu, Xue; Wu, Yuejin

    2013-08-01

    Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles. Recent years, ion implantation was successfully applied to biological research based on the fragments sputtering and form open paths in cell structure caused by ion sputtering. In this study, we focused on urea and chilli pepper pericarp samples implanted with N+ and Ar+ ions. To investigate the sputtering effect, we designed a collecting unit containing a disk sample and a glass pipe. The urea content and capsaicin content recovered from glass pipes were adopted to represent the sputtering product. The result of urea showed that the sputtering effect is positively correlated with the ion energy and dose, also affected by the ion type. The result of capsaicin was different from that of urea at 20 keV and possibly due to biological complex composition and structure. Therefore the sputtering yield depended on both the parameters of incident ions and the state of target materials. The sputtering yield of urea was also simulated by computational method achieved through the TRIM program. The trajectories of primary and recoiled atoms were calculated on the basis of the binary collision approximation using Monte Carlo method. The experimental results were much higher than the calculated results. The possible explanation is that in the physical model the target were assumed as a disordered lattice and independent atoms, which is much less complicated than that of the biological models.

  20. Sputtering effect of low-energy ions on biological target: The analysis of sputtering product of urea and capsaicin

    International Nuclear Information System (INIS)

    Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles. Recent years, ion implantation was successfully applied to biological research based on the fragments sputtering and form open paths in cell structure caused by ion sputtering. In this study, we focused on urea and chilli pepper pericarp samples implanted with N+ and Ar+ ions. To investigate the sputtering effect, we designed a collecting unit containing a disk sample and a glass pipe. The urea content and capsaicin content recovered from glass pipes were adopted to represent the sputtering product. The result of urea showed that the sputtering effect is positively correlated with the ion energy and dose, also affected by the ion type. The result of capsaicin was different from that of urea at 20 keV and possibly due to biological complex composition and structure. Therefore the sputtering yield depended on both the parameters of incident ions and the state of target materials. The sputtering yield of urea was also simulated by computational method achieved through the TRIM program. The trajectories of primary and recoiled atoms were calculated on the basis of the binary collision approximation using Monte Carlo method. The experimental results were much higher than the calculated results. The possible explanation is that in the physical model the target were assumed as a disordered lattice and independent atoms, which is much less complicated than that of the biological models

  1. Biology Notes.

    Science.gov (United States)

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  2. Production, characterization and biological features of bacterial cellulose from scum obtained during preparation of sugarcane jaggery (gur).

    Science.gov (United States)

    Khattak, Waleed Ahmad; Khan, Taous; Ul-Islam, Mazhar; Ullah, Muhammad Wajid; Khan, Shaukat; Wahid, Fazli; Park, Joong Kon

    2015-12-01

    Bacterial cellulose (BC) has been given an ample attention due to its high potential for many industrial applications. However, the high cost of production medium has hindered the commercialization of BC. Several efforts have been made to explore cheep, raw and waste sources for BC production. The current study aims at investigating the BC production from a waste source; the scum obtained during preparation of sugarcane jaggery or gur (JS). JS was five-fold diluted with distilled water and used as culturing medium without any additional nutrients. The production of BC was monitored till 10th days of cultivation both at static and shaking culturing conditions. A maximum of 2.51 g/L and 2.13 g/L BC was produced in shaking and static cultures, respectively, after 10 days. The structure features of BC were confirmed through FTIR, XRD and SEM analysis. The chemical structure and physical appearance strongly resembled the BC produced form synthetic media. It was noteworthy that the BC produced from JS showed higher mechanical and thermal properties. The cell adhesion and proliferation capabilities of produced BC were observed that depicted definite animal cell adhesion without any considerable cytotoxicity. Besides providing an economically feasible way for BC production, the high level of physico-mechanical and biological properties insured the importance in medical fields. PMID:26604413

  3. Biological hydrogen production: Simultaneous saccharification and fermentation with nitrogen and phosphorus removal from wastewater effluent

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Steve; Dixon, Melissa [U.S. Army Edgewood Chemical Biological Center, 5183 Blackhawk Road Building E3160, Aberdeen Proving Ground, MD 21010-5424 (United States)

    2010-09-15

    A simple anaerobic biodegradation process using wastewater treatment plant (WWTP) effluent, shredded paper, and a purge of nitrogen gas was used to produce hydrogen and simultaneously capture nitrogen and phosphorus. Two reactor configurations, a sequencing batch reactor (SBR) and a classic batch reactor (CBR) were tested as simultaneous saccharification and fermentation reactors (enzymatic hydrolysis and fermentation in one tank). The CBR demonstrated greater stability of hydrogen production and simplicity of operation, while the SBR provided better nitrogen and phosphorus removal efficiencies. Nuclear magnetic resonance analyses showed acetic acid to be the main product from both reactors. Optimal CBR conditions were found to be pH 5, 4 g/L loading, 0.45 ml/g Accellerase 1500, and 38 C. Experiments with an argon purge in place of nitrogen and with ammonium chloride spiking suggested that hydrogenase and nitrogenase enzymes contributed similarly to hydrogen production in the cultures. Analysis of a single fermentation showed that hydrogen production occurred relatively early in the course of TOC removal, and that follow-on treatments might extract more energy from the products. (author)

  4. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production.

    Science.gov (United States)

    Wagner, Florian B; Nielsen, Peter Borch; Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen

    2016-05-15

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential enzymes in nitrification, we investigated the effect of copper dosing on nitrification in different biological rapid sand filters treating groundwater. A lab-scale column assay with filter material from a water works demonstrated that addition of a trace metal mixture, including copper, increased ammonium removal compared to a control without addition. Subsequently, another water works was investigated in full-scale, where copper influent concentrations were below 0.05 μg Cu L(-1) and nitrification was incomplete. Copper dosing of less than 5 μg Cu L(-1) to a full-scale filter stimulated ammonium removal within one day, and doubled the filter's removal from 0.22 to 0.46 g NH4-N m(-3) filter material h(-1) within 20 days. The location of ammonium and nitrite oxidation shifted upwards in the filter, with an almost 14-fold increase in ammonium removal rate in the filter's top 10 cm, within 57 days of dosing. To study the persistence of the stimulation, copper was dosed to another filter at the water works for 42 days. After dosing was stopped, nitrification remained complete for at least 238 days. Filter effluent concentrations of up to 1.3 μg Cu L(-1) confirmed that copper fully penetrated the filters, and determination of copper content on filter media revealed a buildup of copper during dosing. The amount of copper stored on filter material gradually decreased after dosing stopped; however at a slower rate than it accumulated. Continuous detection of copper in the filter effluent confirmed a release of copper to the bulk phase. Overall, copper dosing to poorly performing biological rapid sand filters increased ammonium removal rates significantly, achieving effluent

  5. Carbon, oxygen and biological productivity in the Southern Ocean in and out the Kerguelen plume: CARIOCA drifter results

    Directory of Open Access Journals (Sweden)

    L. Merlivat

    2014-12-01

    Full Text Available The Kerguelen Plateau region in the Indian sector of the Southern Ocean supports annually a large-scale phytoplankton bloom which is naturally fertilized with iron. As part of the second Kerguelen Ocean and Plateau compared Study expedition (KEOPS2 in austral spring (October–November 2011, one Carioca buoy was deployed east of the Kerguelen plateau. It drifted eastward downstream in the Kerguelen plume. Hourly surface measurements of pCO2, O2 and ancillary observations were collected between 1 November 2011 to 12 February 2012 with the aim of characterizing the spatial and temporal variability of the biological Net Community Production (NCP downstream the Kerguelen plateau, assess the impact of iron-induced productivity on the biological carbon consumption and consequently on the CO2 flux exchanged at the air–sea interface. The trajectory of the buoy until mid-December was within the longitude range, 72–83° E, close to the polar front and then in the polar frontal zone, PFZ, until 97° E. From 17 November to 16 December, the buoy drifted within the Kerguelen plume following a filament carrying dissolved iron, DFe, for a total distance of 700 km. In the first part of the trajectory, the ocean surface waters are a sink for CO2 and a source for CO2, with fluxes of respective mean values equal to −8 and +38 mmol CO2 m−2 d−1. Eastward, as the buoy escapes the iron enriched filament, the fluxes are in opposite direction, with respective mean values of +5 and −48 mmol O2 m−2 d−1. These numbers clearly indicate the strong impact of biological processes on the biogeochemistry in the surface waters within the Kerguelen plume in November-mid-December, while it is undetectable eastward in the PFZ from mid-December to mid-February. While the buoy follows the Fe enriched filament, simultaneous observations of dissolved inorganic carbon, DIC, and dissolved oxygen, O2, highlight biological events lasting from 2 to 4 days. Stoichiometric

  6. Biological production of ethanol from coal. Task 4 report, Continuous reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle was particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.

  7. Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora

    Energy Technology Data Exchange (ETDEWEB)

    Sivaramakrishna, D.; Sreekanth, D.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad 500072, Andhra Pradesh (India); Anjaneyulu, Y. [TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2009-03-15

    Biohydrogen production from probiotic wastewater using mixed anaerobic consortia is reported in this paper. Batch tests are carried out in a 5.0 L batch reactor under constant mesophillic temperature (37 C). The maximum hydrogen yield 1.8 mol-hydrogen/mol-carbohydrate is obtained at an optimum pH of 5.5 and substrate concentration 5 g/L. The maximum hydrogen production rate is 168 ml/h. The hydrogen content in the biogas is more than 65% and no significant methane is observed throughout the study. In addition to hydrogen, acetate, propionate, butyrate and ethanol are found to be the main by-products in the metabolism of hydrogen fermentation. (author)

  8. On the possibility of biologically active carbonhydrate substances forming during irradiation of vegetable products

    International Nuclear Information System (INIS)

    The purpose of this study was to find out whether desoxy-derivative sugars can form in fruits subjected to radurization. Tomato and apple fruits and natural apple juices were employed as test-objects, using gamma radiation from Co60 at the dose rate of 260 rad/s. Doses of 200-300 Krad and 1 Mrad were used to irradiate fruits and juices respectively. The data obtained on model systems cannot be used to draw conclusions regarding the appearance or otherwise of cytotoxic products in irradiated test plants. No desoxy sugars were found t form in fruits irradiated with 300 Krad. Tests aimed to detect certain products of carbohydrate radiolysis revealed the presence of these products in quantities which have no cytotoxic effect on the living organism. (E.T.)

  9. Prospects of utilization of sugar beet carbohydrates for biological hydrogen production in the EU

    Energy Technology Data Exchange (ETDEWEB)

    Panagiotopoulos, J.A.; Koukios, E.G. [Bioresource Technology Unit, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens, GR-15700 (Greece); Bakker, R.R.; De Vrije, T.; Claassen, P.A.M. [Wageningen UR Agrotechnology and Food Innovations, P.O. Box 17, 6700 AA Wageningen (Netherlands); Urbaniec, K. [CERED Centre of Excellence, Warsaw University of Technology, Jachowicza 2/4, 09-402 Plock (Poland)

    2010-12-15

    Hydrogen can be produced through dark anaerobic fermentation using carbohydrate-rich biomass, and through photofermentation using the organic acids produced from dark fermentation. Sugar beet is an ideal energy crop for fermentative production of hydrogen in the EU due to its environmental profile and its potential availability in the area. In this work, various aspects of cultivating sugar beet in the EU for biohydrogen were highlighted, with special focus on The Netherlands and Greece. Moreover, fermentation of sugar beet juice with Caldicellulosiruptor saccharolyticus at sucrose concentration 10 g/l was performed, and was found comparable to the fermentation on pure sucrose except that the hydrogen production was 10% higher on sugar beet juice. A conservative estimate of the annual hydrogen potential in the EU was made (300x10{sup 6} kg hydrogen), considering the utilization of sugar beet pulp in hydrogen production.

  10. Heterotrophic bacterial production: Relationships to biological and abiological factors in estuarine environments

    Energy Technology Data Exchange (ETDEWEB)

    Koepfler, E.T.

    1989-01-01

    Ecotoxicological effects of creosote contamination on benthic bacterial communities in the Elizabeth River, Virginia were investigated using both structural an functional microbial parameters. Results indicated that cell specific and total heterotrophic bacterial production parameters were depressed in a dose-dependent manner with increasing sediment PAH concentrations. Toxicity effects upon production were modified by temporal trends associated with temperature as well as spatial sediment characteristics. Of the parameters employed, the tritiated thymidine production assay was found to be the most sensitive for detection of ecotoxicological effects. Bacterial abundance and production were examined during a destratification event in the lower James River, Virginia. Bacterial abundance, although significantly different between stations, did not change over the study. Bacterial production ({sup 3}H-Tdr incorporation) in surface waters was significantly less during the mixed period 187 {mu}g C{center dot}1-1{center dot} d{sup {minus}1} compared to the most stratified state (324{mu}g C{center dot}1-1{center dot} d{sup {minus}1}). Correlations between bacteria and chlorophyll were diminished during the mixed period. Total and flagellate specific grazing rates upon bacteria were reduced during the onset of destratification. Relationships between bacterial and nutrient parameters also indicated a strong influence of destratification. These results indicate that destratification changes trophic interactions within the microbial loop, which are not necessarily reflected in temporal patterns of bacterial abundance. Bacterioplankton production, and ammonium assimilation and remineralization were examined between April and August 1988 in the lower York River, Va.

  11. Natural products-prompted chemical biology: phenotypic screening and a new platform for target identification.

    Science.gov (United States)

    Kakeya, Hideaki

    2016-05-01

    Covering: 1993 to 2016The exploitation of small molecules from natural sources, such as microbial metabolites, has contributed to the discovery of not only new drugs but also new research tools for chemical biology. My research team has discovered several novel bioactive small molecules using in vivo cell-based phenotypic screening, and has investigated their modes of action using chemical genetics and chemical genomics. This highlight focuses on our recent discoveries and chemical genetics approaches for bioactive microbial metabolites that target cancer cells, the cancer microenvironment and cell membrane signalling. In addition, the development of two new platforms, 5-sulfonyl tetrazole-based and thiourea-modified amphiphilic lipid-based probe technologies, to identify the cellular targets of these molecules is also discussed. PMID:26883503

  12. Reduction of Biological Sludge Production Applying an Alternating Oxic/anoxic Process in Water Line.

    Science.gov (United States)

    Eusebi, Anna Laura; Panigutti, Maximiliano; Battistoni, Paolo

    2016-06-01

    Alternating oxic/anoxic process, applied for the main objective of the improvement of nitrogen performances, was studied in terms of secondary effect of biomass reduction. The process was carried out in one real water resource recovery facility and the data were compared with the previous conventional period when a conventional process was adopted. The main mechanism of the process for the sludge minimization is recognized in the metabolic uncoupling. In fact, an increase of the specific oxygen uptake rate in the biological reactor was recorded stimulated by the change of the oxidation reduction potential environment. Moreover, the heterotrophic growth yield was measured equal to 0.385 kgVSS/kgCOD. The global percentage of reduction was tested with the mass balance of solids. The process is able to decrease the observed sludge yield up to 20%. The specific energy consumption was evaluated. PMID:27225780

  13. The Jordan Romero Case; A Biological Super Athlete or a Product of the Sport Industry

    Directory of Open Access Journals (Sweden)

    George Kipreos

    2012-08-01

    Full Text Available Many questions have arisen in regards to Jordan Romero’s climbing actions, in terms of ethics and legality. Although, he has already successfully climbed most of the highest summits, his last expedition to climb mountain Everest, has found strong opposition and criticism. Jordan’s decision to climb Everest, at the age of 13, comes into contradiction with the convention on Human Rights, the International Public Law, the climbing rules and regulations of Nepal, and the Law of U.S.A. What should also be put into reference is the fact that Romero’s pursuit violates the Article No. 1 in the Declaration of Tyrol 2002 (Mountaineering, which defines individual responsibility for the activities of the climber. This paper outlines the legal and ethical aspects of Jordan’s venture, taking into account the biological hazards.

  14. The cultivation of Rhizobial cells in sewage sludge and waste for the production of biological fertilizer

    International Nuclear Information System (INIS)

    The study on the growth of Rhizobium japonicum THA-7 in carriers: Peat Sludge, Filter press cake from sugar industry and the mixer compone nts of Sludge and Filter press cake. These carriers were sterilized by Gamm a radiation at 55 Kilograys. Then rhizobium suspension which grew to late log phase in Mannitol Yeast Extract broth were transfer to carriers. The initial rhizobial cells were 107 cfu at 50 percent moisture content. The maximum growth (109 cfu) was found after incubation at 30oC for 17 days in all carriers. The rhizobial cells were stored in carriers at 4o- 5oC for 120 days. The amount of cells in all carriers were detected at 108 cfu. Maximum survival rate was in the mixture of sludge and filter press cake at the ratio of 1 : 3. Therefore, It should be used as biological fertilizer better than other carriers

  15. Approaches to tenofovir and abacavir drug shortages in South Africa: A guide for clinicians

    Directory of Open Access Journals (Sweden)

    Laurie Schowalter

    2012-06-01

    Full Text Available Shortages of the nucleoside reverse transcriptase inhibitors (NRTI abacavir and tenofovir have been reported recently at health facilities across South Africa. The Society issued the following clinical advice to healthcare providers experiencing shortages on 29 March 2012. These recommendations are intended only as a guide to clinical therapy, based on expert consensus and best available evidence. Treatment decisions for patients should be made by their responsible clinicians, with due consideration for individual circumstances. S Afr J HIV Med 2012;13(2:56-57.

  16. The Effectiveness of South Africa’s Immigration Policy for Addressing Skills Shortages

    Directory of Open Access Journals (Sweden)

    Fatima Rasool

    2012-01-01

    Full Text Available South Africa is presently experiencing a serious shortage of skilledworkers. This situation is negatively influencing the economicprospects and global participation of the country. The primary purposeof the study was to determine the effectiveness of sa’s immigrationpolicy to support skills immigration. The outcome of this studyindicated that South Africa’s immigration policy is restrictive and hasundoubtedly influenced the shortage of skills in the country. This studyhas confirmed the findings of similar studies undertaken by the Centrefor Development and Enterprise that South Africa’s skills immigrationpolicy is very restrictive and is thus not helpful in addressing the skillsshortages of the country

  17. Are word-of-mouth communications contributing to a shortage of nephrology nurses?

    Science.gov (United States)

    Wolfe, William A

    2014-01-01

    Nephrology nurse shortages have historically been viewed as a subset of the overall nursing supply in the United States. Not-here-to-fore considered as a contributing factor are the effects of word-of-mouth and Internet-based word-of-mouth communications from nurses who have had disappointing work experiences in hemodialysis clinics. This article discusses the potential effects of word-of-mouse communications and posits that negative word-of-mouse communications may discourage new and experienced nurses from considering the specialty of nephrology nursing, thus contributing to a nephrology nursing shortage. PMID:25244892

  18. Finding new solutions in pediatric parenteral admixtures: how to improve quality and to deal with shortages

    Directory of Open Access Journals (Sweden)

    Dorota Watrobska-Swietlikowska

    2014-07-01

    Full Text Available Introduction: Pediatric parenteral nutrition enables normal growth even of preterm infants. Those children require, however, tailored parenteral nutrition and the creation of such can be challenging due to the risk of instability and shortages. Objective: Prototypical parenteral admixtures were created using different calcium salts (organic and inorganic and different lipid emulsions and tested for stability. 36 of parenteral admixtures containing two types of calcium salts: chloride or gluconolactobionate and different lipid emulsions (SMOFlipid® or Lipofundin MCT/LCT® were under investigation. Methods: Preliminary admixtures were prepared in two-chamber bags whereas lipid emulsions were placed separately in the second chamber. Pre-admixtures were stored for up to 21 days at +4ºC. Contents of the two chambers were combined at t = 0 or after 21 days of storage. Physical analysis of completed admixtures (visual inspection, microscopic observation, pH measurement and determination of the size distribution of oily droplets was carried out after 21 days of the storage. Stability of lipid, commercial emulsions stored in ethylene vinyl acetate (EVA bags for 42 days was also studied. Results: Irrespectively of the time of storage of preadmixtures and type of calcium salt and different lipid emulsions among 36 total parenteral admixtures only one showed signs of destabilization after preparation and one was unstable when stored for longer than 14 days. All other formulations were qualified to be stable during the study. All investigated commercial lipid emulsions were physically stable in EVA bags even when stored at room temperature. Conclusion: The study proved that it was possible to store pre-admixture in EVA bags for 21 days at 4ºC as well as that CAN (critical aggregation number and CaxP (the products of multiplication of calcium and phosphate ions concentration should not be used as reliable indicators of admixture physical stability. No

  19. The cost of natural gas shortages in Ireland

    International Nuclear Information System (INIS)

    This paper investigates the economic implications of disruptions of one to ninety days to the supply of natural gas in Ireland. We assess the impact of a hypothetical gas supply disruption in both winter and summer in 2008 (with observed market characteristics) and in 2020 (with projected market characteristics). The cost of a natural gas outage includes the cost of natural gas being unavailable for heating and other purposes in the industrial and commercial sectors, lost consumer surplus in the residential sector, the cost of lost electricity in all sectors and lost VAT on the sale of gas and electricity. Ireland generates much of its electricity from natural gas and the loss of this electricity accounts for the majority of the cost of a natural gas outage. Losing gas-fired electricity would cost 0.1–1.0 billion euro per day, depending on the time to the week, the time of year and rationing. Industry should be rationed before households to minimise economic losses, but current emergency protocols do the opposite. If gas-fired electricity is unavailable for three months, the economic loss could be up to 80 billion euro, about half of Gross Domestic Product. Losing gas for heating too would add up to approximately 8 billion euro in economic losses. We also discuss some options to increase Ireland’s security of supply, and find that the cost is a small fraction of the avoided maximum damage. - Highlights: ► The cost of losing three months of gas-fired power could be as high as 80 billion euro or 50% of GDP in Ireland. ► Losing gas for heating for three months would add another 8 billion euro on average. ► The best response in an outage is to cut power to industry first. ► The costs of a 90 day gas disruption in Ireland would far outweigh the cost of investing in a 90 day storage facility.

  20. Will Science and Technique Head Off Energy Shortage?

    International Nuclear Information System (INIS)

    Fluctuations in the price of the standard barrel of oil have been making headlines for several years now. In remaining at a high level in 2008 (with a peak of 150 US dollars in July), it seems to have left a marked impression on consumers, sensitizing them to the ever more imminent advent of a new energy era. Unless there is something approaching a technical revolution in this field, there is a danger that the increasing scarcity of fossil resources will appreciably raise energy costs and changed consumer habits will ensue. Is the prospect of such a revolution plausible? Can there be scientific and technical breakthroughs in the coming years that produce improvements or new paths in energy production? Pierre Papon has examined this question. After briefly summing up the current energy situation (in a context, we should remember, of climate change), he offers a detailed overview of the various options for the exploration and use of fossil fuels, bio-fuels, hydrogen etc. He also demonstrates the potential and limits of renewable, together with the prospects for the nuclear industry. In all these fields there seems little hope of a revolution before 2030: adaptation to a context of growing scarcity of energy supplies remains, then, a pressing question. However, as Pierre Papon reminds us, we cannot rule out the emergence of a new paradigm in physics that could radically alter the situation (such as occurred, for example, with the theory of relativity); hence the indispensable research effort that must be put in by both scientists and founders. (author)

  1. [Our investigation on the chemistry of biologically active natural products. With the object of exploitation for structure determination methods, and elucidation of vital function].

    Science.gov (United States)

    Komori, T

    1993-03-01

    Our investigation on the chemistry of biologically active natural products during the last 40 years since 1953 are reviewed in this paper. The following subjects are discussed: I. photochemical relationship between rhodopsin and compounds related to areca alkaloid, II. furanoid diterpenoid constituents from dioscoreaceae plants and colombo root, III. field desorption and fast atom bombardment mass spectrometry of biologically active natural glycosides and glycosphingolipids, IV. investigation of biologically active marine natural products, 1) constituents of steroid glycoside sulfates from Asteroidea, 2) spine toxins from Acanthaster planci, 3) constituents of triterpenoid glycoside sulfates from Holothuroidea, 4) constituents of isoprenoids from Opisthobranchia and Octocorallia, 5) constituents of glycosphingolipids from Asteroidea. PMID:8509990

  2. 77 FR 26162 - Amendments to Sterility Test Requirements for Biological Products

    Science.gov (United States)

    2012-05-03

    ... active pharmaceutical ingredient (API), in-process material, stock concentrate material), as appropriate... Federal Register of June 21, 2011 (76 FR 36019), FDA published a proposed rule that proposed revisions to... proposed rule (76 FR 36019 at 36019 to 36020), any product that purports to be sterile should be free...

  3. Application of cyclic phosphonamide reagents in the total synthesis of natural products and biologically active molecules

    OpenAIRE

    Thilo Focken; Stephen Hanessian

    2014-01-01

    A review of the synthesis of natural products and bioactive compounds adopting phosphonamide anion technology is presented highlighting the utility of phosphonamide reagents in stereocontrolled bond-forming reactions. Methodologies utilizing phosphonamide anions in asymmetric alkylations, Michael additions, olefinations, and cyclopropanations will be summarized, as well as an overview of the synthesis of the employed phosphonamide reagents.

  4. Biological Production in Lakes. Physical Processes in Terrestrial and Aquatic Ecosystems, Ecological Processes.

    Science.gov (United States)

    Walters, R. A.; Carey, G. F.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. Primary production in aquatic ecosystems is carried out by phytoplankton, microscopic plants…

  5. 21 CFR 610.53 - Dating periods for licensed biological products.

    Science.gov (United States)

    2010-04-01

    ... years 5 years. Blood Group Substance AB ......do ......do 2 years. Blood Group Substance A ......do ......do Do. Blood Group Substance B ......do ......do Do. Botulism Antitoxin ......do Not applicable 5... blood cells ......do ......do Do. 3. Enzyme conjugated products ......do ......do Do. Iodinated...

  6. 76 FR 52668 - Vaccines and Related Biological Products Advisory Committee; Amendment of Notice

    Science.gov (United States)

    2011-08-23

    ... Products Advisory Committee. This meeting was announced in the Federal Register of July 22, 2011 (76 FR... Laboratory of Enteric and Sexually Transmitted Diseases, Division of Bacterial, Parasitic, and Allergenic... where disclosure would constitute a clearly unwarranted invasion of personal privacy (5 U.S.C....

  7. Back to the Roots: Prediction of Biologically Active Natural Products from Ayurveda Traditional Medicine

    DEFF Research Database (Denmark)

    Polur, Honey; Joshi, Tejal; Workman, Christopher;

    2011-01-01

    Ayurveda, the traditional Indian medicine is one of the most ancient, yet living medicinal traditions. In the present work, we developed an in silico library of natural products from Ayurveda medicine, coupled with structural information, plant origin and traditional therapeutic use. Following this...... basis of Ayurveda medicine and in drug repurposing....

  8. Prospects of utilization of sugar beet carbohydrates for biological hydrogen production in the EU

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Vrije, de G.J.; Urbaniec, K.; Koukios, E.G.; Claassen, P.A.M.

    2010-01-01

    Hydrogen can be produced through dark anaerobic fermentation using carbohydrate-rich biomass, and through photofermentation using the organic acids produced from dark fermentation. Sugar beet is an ideal energy crop for fermentative production of hydrogen in the EU due to its environmental profile a

  9. 9 CFR 113.52 - Requirements for cell lines used for production of biologics.

    Science.gov (United States)

    2010-01-01

    ... limited to, the source, passage history, and medium used for propagation. (2) A Master Cell Stock (MCS... vaccine production. (4) If nonspecific fluorescence is found in the monolayers stained with conjugate from... cell line of the species for which the vaccine is recommended if different than provided in...

  10. Oleaginous yeasts for biodiesel: current and future trends in biology and production.

    Science.gov (United States)

    Sitepu, Irnayuli R; Garay, Luis A; Sestric, Ryan; Levin, David; Block, David E; German, J Bruce; Boundy-Mills, Kyria L

    2014-11-15

    Production of biodiesel from edible plant oils is quickly expanding worldwide to fill a need for renewable, environmentally-friendly liquid transportation fuels. Due to concerns over use of edible commodities for fuels, production of biodiesel from non-edible oils including microbial oils is being developed. Microalgae biodiesel is approaching commercial viability, but has some inherent limitations such as requirements for sunlight. While yeast oils have been studied for decades, recent years have seen significant developments including discovery of new oleaginous yeast species and strains, greater understanding of the metabolic pathways that determine oleaginicity, optimization of cultivation processes for conversion of various types of waste plant biomass to oil using oleaginous yeasts, and development of strains with enhanced oil production. This review examines aspects of oleaginous yeasts not covered in depth in other recent reviews. Topics include the history of oleaginous yeast research, especially advances in the early 20th century; the phylogenetic diversity of oleaginous species, beyond the few species commonly studied; and physiological characteristics that should be considered when choosing yeast species and strains to be utilized for conversion of a given type of plant biomass to oleochemicals. Standardized terms are proposed for units that describe yeast cell mass and lipid production. PMID:25172033

  11. Changes in Biological Production and Lake Chemistry in Lake Tanganyika over the Past 400 Years

    Science.gov (United States)

    Hartwell, A. M.; Montanye, B.; Cohen, A.; McKay, J. L.; Severmann, S.; McManus, J.

    2015-12-01

    We present biogenic silica (BSi) data as a proxy for primary productivity in three cores from the Luiche Platform region of Lake Tanganyika. We also present complementary sedimentary records of the nitrogen and organic carbon isotopes. Preliminary analysis of the BSi data suggests that in two cores located at approximately 100 meters, productivity began to decline at approximately 1700 CE with an initial plateau at roughly 1800 CE. Since approximately 1800 CE, the sedimentary biogenic silica contents vary, but are generally lower than in the earlier portions of the record. These observations are consistent with prior work; however, our results suggest that the decline in primary production may have occurred earlier at these shallower sites than previously inferred for a deeper core (Tierney et al., 2010). This different response between the shallower sites and deeper off shore sites may be driven by differences in nutrient supply, spatial variability, or some other factor. Sedimentary nitrogen isotope data generally show an inverse relationship to the BSi data in the shallower cores. One possible interpretation of this inverse relationship is that there is a shift in the source of the primary nitrogen being utilized within the photic zone, with a larger contribution of nitrogen fixation occurring during times of lower productivity and a larger contribution of upwelled nitrogen occurring during times of higher productivity. Tierney, J.E., M.M. Mayes, N. Meyer, C. Johnson, P. Swarzenski, A.S. Cohen, and J.M. Russell (2010) The Unprecedented Warming of Lake Tanganyika. Nature Geoscience, 3, 422-425, DOI: 10.1038/NGEO865

  12. Influence of green manure in physical and biological properties of soil and productivity in the culture of soybean

    Directory of Open Access Journals (Sweden)

    Ricardo Alves Cardoso

    2014-12-01

    Full Text Available Green manuring is the practice of using plant species in rotation, succession or intercropped with other crops, aiming improvement, maintenance and recovery of physical, chemical and biological soil properties. The objective was to evaluate the influence of different green manures on soil characteristics and productivity of soybean. The experiment was conducted in Maringá (PR in a randomized block design with six treatments and four replications: T1: oat (Avena Sativa, T2: black oat (Avena strigosa, T3: dwarf pigeon pea (Cajanus cajan, T4: radish (Raphanus sativus L., T5: white lupine (Lupinus albus and T6: control (fallow. At the end of the experiment, relations were established between the green manure used for soybean production, the production of biomass, the development of microorganisms and soil bulk density. The data were analyzed with statistical software and means were compared by Tukey test at 5% probability. The coverages provided higher content of dry matter were lupine, black oat and faba bean. Treatments that most influenced the increase of soil microorganisms were lupine, radish and pigeonpea. Regarding productivity, higher values were obtained in treatments with pigeon pea, lupine and oat. The apparent density of the soil, treatment with turnip showed better results.

  13. Sustainable production of cultivations, using biological and conservationists techniques; an applicable model to the Colombian warm tropic

    International Nuclear Information System (INIS)

    The hot Colombian tropics represent nearly 82% of the national territory. The intensive and wrongly use of the soil has been subjected for years in agricultural areas of the inter-Andean valleys, Caribbean region, the eastern plains and others sectors of the commercial agriculture in the hot climate it is promoting a progressive physical, chemical and biological degradation of the soil. The physical losses of soil and organic matter due to erosion, excessive mechanization, flooding rice as single crop, burning of crop residues, unsuitable systems of irrigation and drainage, alkalinization an compaction in cropping areas, and the problems with more incidence in the deployment of land productivity in the areas. The methods to overcome these limitations agree with the application of modem and sustainable technologies focusing production systems. The management of production systems, selecting tillage systems according to the physical development of the soil, planting species in continuous rotation cycles, planting and incorporation of green manure, between two agricultural semesters, the appropriate management of water in non-irrigated crops an modem irrigation and the utilization of crop residues, to return to the soil, part of the nutrients extracted constitute some of the factors management dependent that could affect favorably the land productivity, for the benefit of future generations. Based on these concepts, it is presented in this article some of the experimental results obtained by national of Agriculture Colombian Institute (ICA) in the Regional Soil Program Center of Agricultural Research (Nataima), located in El Espinal, Tolima State, Colombia

  14. Addressing Canada's Commercialization Crisis and Shortage of Venture Capital: Will the Federal Government’s Solution Work?

    OpenAIRE

    Stephen A. Hurwitz

    2013-01-01

    Lack of funding is a major challenge to innovation in Canada’s emerging technology industry. This article will focus on this supply-side challenge within the complex venture capital ecosystem and discuss: i) the current shortage of venture capital available to commercialize Canada’s R&D; ii) the causes and consequences of that venture capital shortage; iii) how the federal government will address this shortage through its innovative 2013 Venture Capital Action Plan, which commits $400 million...

  15. Biological and Histological Studies of Purified Product from Streptomyces janthinus M7 Metabolites

    Directory of Open Access Journals (Sweden)

    Tawfik Zahira S.

    2015-02-01

    Full Text Available Fifteen clinical samples were taken out from patients suffering cancer, these patients being under the treatment with radio- and/or chemotherapy. The samples were used for the isolation of bacterial cells surrounding tumor; the samples were collected from Center of Cancer Therapy, Ain Shams University, Cairo, Egypt. The clinical bacterial isolates were purified and identified according to Bergey's manual of determinative bacteriology ninth edition (1994. The bacterial isolates were found to be Klebsiella oxytoca m1; Enterobacter cancerogenus m2; P. aeruginosa m3; Citrobacter diversus m4; Enterobacter agglomerans m5; Klebsiella oxytoca m6; Enterobacter dissolvens m7; Serratia fonticola m8; Escherichia coli m9; Citrobacter freundii m10; Staphylococcus aureus m11; Escherichia coli m12; P. aeruginosa m13; Staphylococcus aureus m14; and Bacillus cereus m15. In the present study both primary and secondary screening methods were used to screen the antibacterial activity of St. janthinus M7 against fifteen clinical bacterial isolates. The St. janthinus M7 showed an increase in antibacterial activity against all the tested human bacterial pathogens. In this study Gamma irradiation at dose levels (0.5 and 1.5 kGy was used for the enhancement of the antibacterial activity of Streptomyces strain against the clinical isolates. Several commercial antibiotic discs (Doxorubicin, Augmentin, Norfloxacin, Ofloxacin, Oxacillin, and Cefazolin were used for comparing their antimicrobial activity with purified product. The results declared a significant increase in the antibacterial activity in most cases. The physiochemical properties of the purified product were carried out for determination of Rf, empirical formula, M.W, and chemical structure of product and then analyzed by thin layer chromatography, elemental analysis, UV, Mass, and NMR. The result exhibited brown color, one spot, Rf (0.76, M.W (473, while it recorded 270 nm in UV region and the calculated

  16. Genetic and Biological Changes of Newcastle Disease Virus Due to The Development of Chicken Production System

    Directory of Open Access Journals (Sweden)

    Sudarisman

    2009-09-01

    Full Text Available In many countries, Newcastle Disease (ND is one of the most important diseases of poultry. It causes serious economic losses in poultry industry. Newcastle Disease or pseudo-fowl pest is a highly infectious viral disease that causes very high mortality (up to 100% in severe epidemics in poultry and wild birds around the world. Newcastle Disease remains endemic in many regions and continues to severely limit poultry production in some developing countries. The disease is currently being controlled by routine vaccinations in many countries. However, it was reported that outbreaks of ND in vaccinated flocks often occur on the field may not only be due to differences in the antigenicity of the NDV wild field strains and vaccine strains, but could also be as a result of differences in pathogenicity and virulence between different strains used as vaccine seed in NDV vaccine production.

  17. Biological Hydrogen Production from Corn-Syrup Waste Using a Novel System

    Directory of Open Access Journals (Sweden)

    George Nakhla

    2009-06-01

    Full Text Available The reported patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. The biohydrogenator was operated for 100 days at 37 °C, hydraulic retention time 8 h and solids retention time ranging from 2.2–2.5 days. The feed was a corn-syrup waste generated as a byproduct from an industrial facility for bioethanol production located in southwestern Ontario, Canada. The system was initially started up with a synthetic feed containing glucose at concentration of 8 g/L and other essential inorganics. Anaerobicaly-digested sludge from the St. Mary’s wastewater treatment plant (St. Mary, Ontario, Canada was used as the seed, and was heat treated at 70 °C for 30 min to inhibit methanogens. After 10 days, when the hydrogen production was steady, the corn-syrup waste was introduced to the system. Glucose was the main constituent in the corn-syrup; its concentration was varied over a period of 90 days from 8 to 25 g/L. The change in glucose concentration was used to study the impact of variable organic loading on the stability of hydrogen production in the biohydrogenator. Hydrogen production rate increased from 10 L H2/L·d to 34 L H2/L·d with the increase of organic loading rate (OLR from 26 to 81 gCOD/L·d, while a maximum hydrogen yield of 430 mL H2/gCOD was achieved in the system with an overall average of 385 mL H2/gCOD.

  18. Development of molecular biology techniques for the detection of genetically modified organisms in maize food products

    OpenAIRE

    Sousa, S.C.; Mafra, I; Silva, C.S. Ferreira da; Amaral, J S; Oliveira, M.B.P.P.

    2008-01-01

    In the last years, the increase in the cultivated area of genetically modified (GM) maize has become a reality. GA21, MON810 and MON 863 maize crops are some of the authorized maize events for food and feed under the European Union (EU) regulations. These crops of transgenic maize bring profit towards the conventional ones, as they confer resistence to some plagues and/or herbices. Concerning the raise of production and consumption of foodstuffs derived from genetically modified organisms (GM...

  19. What controls biological production in coastal upwelling systems? Insights from a comparative modeling study

    OpenAIRE

    Z. Lachkar; Gruber, N.

    2011-01-01

    The magnitude of net primary production (NPP) in Eastern Boundary Upwelling Systems (EBUS) is traditionally viewed as directly reflecting the wind-driven upwelling intensity. Yet, different EBUS show different sensitivities of NPP to upwelling-favorable winds (Carr and Kearns, 2003). Here, using a comparative modeling study of the California Current System (California CS) and Canary Current System (Canary CS), we show how physical and environmental factors, such as light,...

  20. Biological treatment of solid wastes from the tobacco industry for enzyme production

    OpenAIRE

    Oliveira, Ana Iolanda; Curbelo, C.; Alvarez, G. M.; A.A. Vicente; Teixeira, J. A.

    2008-01-01

    Aiming at the production of enzymes using solid wastes from the tobacco industry, the solid fermentation kinetics of Aspergillus niger and Aspergillus terreus using waste of dark tobacco and Virginia tobacco as substrate were characterized. The efficiency of the fermentation process was evaluated by determining the enzymatic activity of the three enzymes that constitute the cellulose enzymatic system (CMCase, PFase and Xylanase). The results obtained led to the establishment of...

  1. Aquatic productivity: isotopic tracer aided studies of chemical-biological interactions

    International Nuclear Information System (INIS)

    Inland waters subject to the accumulation and effects of trace contaminants are discussed and a review of international research projects on this subject is given. The following aspects are specially discussed: aquatic nitrogen and agriculture; aquatic ecosystems in arid zones of developing countries; micronutrients in aquatic ecosystems; microbiological activity (''primary production''); enzymic methods in water quality determinations. Recommendations of the Joint FAO/IAEA Advisory Group for measures to be taken in order to protect water quality are also given

  2. Quality cost accounting of products in the context of growing of the biological assets of gardening

    OpenAIRE

    Михальська, Віра Вікторівна

    2015-01-01

    Negative influence of humanity on an environment, a high competition and openness of world markets for realization of fruits and berries require to carry out the production of high-quality goods that answers international standards and at the same time takes into account the consumer’s requirements. As a result, the creation of the quality management system at the gardening enterprises is importance and necessity. At the same time, quality cost accounting is the informative base for this syst...

  3. Solvent-Enabled Nonenyzmatic Sugar Production from Biomass for Chemical and Biological Upgrading

    OpenAIRE

    Luterbacher, Jeremy S.; Alonso, David Martin; Rand, Jacqueline M.; Questell-Santiago, Ydna M.; Yeap, Jher Hau; Pfleger, Brian F.; Dumesic, James A.

    2015-01-01

    We recently reported a nonenzymatic biomass deconstruction process for producing carbohydrates using homogeneous mixtures of γ-valerolactone (GVL) and water as a solvent. A key step in this process is the separation of the GVL from the aqueous phase, enabling GVL recycling and the production of a concentrated aqueous carbohydrate solution. In this study, we demonstrate that phenolic solvents—sec-butylphenol, nonylphenol, and lignin-derived propyl guaiacol—are effective at separating GVL from ...

  4. Studies of the Production of Fungal Polyketides in Aspergillus nidulans by Using Systems Biology Tools▿ †

    OpenAIRE

    Panagiotou, Gianni; Andersen, Mikael R.; Grotkjaer, Thomas; Regueira, Torsten B.; Nielsen, Jens; Olsson, Lisbeth

    2009-01-01

    Many filamentous fungi produce polyketide molecules with great significance as human pharmaceuticals; these molecules include the cholesterol-lowering compound lovastatin, which was originally isolated from Aspergillus terreus. The chemical diversity and potential uses of these compounds are virtually unlimited, and it is thus of great interest to develop a well-described microbial production platform for polyketides. Using genetic engineering tools available for the model organism Aspergillu...

  5. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production

    OpenAIRE

    Catlett, Jennie L.; Ortiz, Alicia M.; Buan, Nicole R.

    2015-01-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron trans...

  6. Scope for biological sensing technologies in meat production and export in northern Pakistan

    Science.gov (United States)

    Qureshi, M. S.; Qureshi, I. H.

    2013-12-01

    The Khyber Pakhtunkhwa province of Pakistan is rich in livestock resources, including 14.84 million sheep and goats (valued at US1.60 billion) and a 27% share of the national poultry sector (having an investment of US2.00 billion), and produces 834 billion kg meat. These huge assets have the potential to support the provincial economy through income generation, self employment and production of certified high-quality food items for the domestic and international Halal Food Market. A model has been developed for analyzing the gaps in the status of health, productivity, nutrition, fertility and management aspects of local farming. Improved practices would be introduced to combat the losses. The model will comprise a farming network linked to farmers' welfare centre, a central lab and an expert group. A strong sensing technology network would be introduced for data transfer and quality control of the inputs and products. The farmers will e-tag their animals for the purpose of traceability, online history and biodata. The data will be maintained in remote and central servers. A communication system would be developed utilizing mobile phones for the prices, demands and availability status of inputs and produce at local and international markets. A mobile money transfer system will be introduced to exchange, save and borrow small amounts of capital as well as take out short-term insurance policies.

  7. Robustness of nanofiltration for increasing the viral safety margin of biological products.

    Science.gov (United States)

    Caballero, Santiago; Diez, José M; Belda, Francisco J; Otegui, Magdalena; Herring, Steven; Roth, Nathan J; Lee, Douglas; Gajardo, Rodrigo; Jorquera, Juan I

    2014-03-01

    In this study, the virus-removal capacity of nanofiltration was assessed using validated laboratory scale models on a wide range of viruses (pseudorabies virus; human immunodeficiency virus; bovine viral diarrhea virus; West Nile virus; hepatitis A virus; murine encephalomyocarditis virus; and porcine parvovirus) with sizes from 18 nm to 200 nm and applying the different process conditions existing in a number of Grifols' plasma-derived manufacturing processes (thrombin, α1-proteinase inhibitor, Factor IX, antithrombin, plasmin, intravenous immunoglobulin, and fibrinogen). Spiking experiments (n = 133) were performed in process intermediate products, and removal was subsequently determined by infectivity titration. Reduction Factor (RF) was calculated by comparing the virus load before and after nanofiltration under each product purification condition. In all experiments, the RFs were close to or greater than 4 log10 (>99.99% of virus elimination). RF values were not significantly affected by the process conditions within the limits assayed (pH, ionic strength, temperature, filtration ratio, and protein concentration). The virus-removal capacity of nanofiltration correlated only with the size of the removed agent. In conclusion, nanofiltration, as used in the manufacturing of several Grifols' products, is consistent, robust, and not significantly affected by process conditions. PMID:24485384

  8. Biologic treatment of wastewater from cassava flour production using vertical anaerobic baffled reactor (VABR

    Directory of Open Access Journals (Sweden)

    Gleyce T Correia

    2008-08-01

    Full Text Available The estimate cassava production in Brazil in 2007 was of 25 million tons (= 15% of the world production and most of it is used in the production of flour. During its processing, waste that can cause environmental inequality is generated, if discharged inappropriately. One of the liquid waste generated, manipueira, is characterized by its high level of organic matter. The anaerobic treatment that uses a vertical anaerobic baffled reactor (VABR inoculated with granulated sludge, is one of the ways of treating this effluent. The anaerobic biodigestion phases are separated in this kind of reactor, allowing greater stability and resistance to load shocks. The VABR was built with a width/height rate of 1:2. The pH, acidity, alkalinity, turbidity and COD removal were analyzed in 6 different regions of the reactor, which was operated with an increasing feeding from ? 2000 to ? 10000 mg COD L?¹ and HRT between 6.0 and 2.5 days. The VABR showed decreasing acidity and turbidity, an increase in alkalinity and pH, and 96% efficiency in COD removal with 3-day HRT and feeding of 3800 mg COD L?¹.

  9. Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nan-Qi; Cao, Guang-Li; Guo, Wan-Qian; Wang, Ai-Jie; Zhu, Yu-Hong; Liu, Bing-feng; Xu, Ji-Fei [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, 2nd Campus of HIT box 2614, Harbin, Hei Longjiang 150090 (China)

    2010-04-15

    This study addressed the utilization of an agro-waste, corn stover, as a renewable lignocellulosic feedstock for the fermentative H{sub 2} production by the moderate thermophile Thermoanaerobacterium thermosaccharolyticum W16. The corn stover was first hydrolyzed by cellulase with supplementation of xylanase after delignification with 2% NaOH. It produced reducing sugar at a yield of 11.2 g L{sup -1} glucose, 3.4 g L{sup -1} xylose and 0.5 g L{sup -1} arabinose under the optimum condition of cellulase dosage 25 U g{sup -1} substrate with supplement xylanase 30 U g{sup -1} substrate. The hydrolyzed corn stover was sequentially introduced to fermentation by strain W16, where, the cell density and the maximum H{sub 2} production rate was comparable to that on simulated medium, which has the same concentration of reducing sugars with hydrolysate. The present results suggest a promising combined hydrogen production process from corn stover with enzymatic hydrolysis stage and fermentation stage using W16. (author)

  10. China's large-scale power shortages of 2004 and 2011 after the electricity market reforms of 2002: Explanations and differences

    International Nuclear Information System (INIS)

    Since the electricity market reforms of 2002, two large-scale power shortages, one occurring in 2004 and one in 2011, exerted a tremendous impact on the economic development of China and also gave rise to a fierce discussion regarding electricity system reforms. In this paper, the background and the influence scale of the two power shortages are described. Second, reasons for these two large-scale power shortages are analyzed from the perspectives of power generation, power consumption and coordination of power sources and grid network construction investments. Characteristics of these two large-scale power shortages are then summarized by comparatively analyzing the performance and the formation of the reasons behind these two large-scale power shortages. Finally, some effective measures that take into account the current status of electricity market reforms in China are suggested. This paper concludes that to eliminate power shortages in China, both the supply and the demand should be considered, and these considerations should be accompanied by supervisory policies and incentive mechanisms. - Highlights: • Reasons of these two large-scale power shortages are analyzed. • Characteristics of these two large-scale power shortages are summarized. • Some effective measures to eliminate power shortage are suggested

  11. Bionics and Structural Biology: A Novel Approach for Bio-energy Production

    Institute of Scientific and Technical Information of China (English)

    C. Karthikeyan; R. Krishnan; S. Adline Princy

    2008-01-01

    Cellular metabolism is a very complex process. The biochemical pathways are fundamental structures of biology. These pathways possess a number of regeneration steps which facilitate energy shuttling on a massive scale. This facilitates the biochemical pathways to sustain the energy currency of the cells. This concept has been mimicked using electronic circuit components and it has been used to increase the efficiency of bio-energy generation. Six of the carbohydrate biochemical pathways have been chosen in which glycolysis is the principle pathway. All the six pathways are interrelated and coordinated in a complex manner. Mimic circuits have been designed for all the six biochemical pathways. The components of the metabolic pathways such as enzymes, cofactors etc., are substituted by appropriate electronic circuit components. Enzymes arc related to the gain of transistors by the bond dissociation energies of enzyme-substrate molecules under consideration. Cofactors and coen-zymes are represented by switches and capacitors respectively. Resistors are used for proper orientation of the circuits. The energy obtained from the current methods employed for the decomposition of organic matter is used to trigger the mimic circuits. A similar energy shuttle is observed in the mimic circuits and the percentage rise for each cycle of circuit functioning is found to be 78.90. The theoretical calculations have been made using a sample of domestic waste weighing 1.182 kg. The calculations arrived at finally speak of the efficiency of the novel methodology employed.

  12. Production of Biologically Activated Carbon from Orange Peel and Landfill Leachate Subsequent Treatment Technology

    Directory of Open Access Journals (Sweden)

    Zhigang Xie

    2014-01-01

    Full Text Available In order to improve adsorption of macromolecular contaminants and promote the growth of microorganisms, active carbon for biological wastewater treatment or follow-up processing requires abundant mesopore and good biophile ability. In this experiment, biophile mesopore active carbon is produced in one-step activation with orange peel as raw material, and zinc chloride as activator, and the adsorption characteristics of orange peel active carbon is studied by static adsorption method. BET specific surface area and pore volume reached 1477 m2/g and 2.090 m3/g, respectively. The surface functional groups were examined by Fourier transform infrared spectroscopy (FT-IR. The surface of the as-prepared activated carbon contained hydroxyl group, carbonyl group, and methoxy group. The analysis based on X-ray diffraction spectrogram (XRD and three-dimensional fluorescence spectrum indicated that the as-prepared activated carbon, with smaller microcrystalline diameter and microcrystalline thickness and enhanced reactivity, exhibited enhanced adsorption performance. This research has a deep influence in effectively controlling water pollution, improving area water quality, easing orange peel waste pollution, and promoting coordinated development among society, economy, and environment.

  13. Production of feline leukemia inhibitory factor with biological activity in Escherichia coli.

    Science.gov (United States)

    Kanegi, R; Hatoya, S; Tsujimoto, Y; Takenaka, S; Nishimura, T; Wijewardana, V; Sugiura, K; Takahashi, M; Kawate, N; Tamada, H; Inaba, T

    2016-07-15

    Leukemia inhibitory factor (LIF) is a cytokine which is essential for oocyte and embryo development, embryonic stem cell, and induced pluripotent stem cell maintenance. Leukemia inhibitory factor improves the maturation of oocytes in the human and the mouse. However, feline LIF (fLIF) cloning and effects on oocytes during IVM have not been reported. Thus, we cloned complete cDNA of fLIF and examined its biological activity and effects on oocytes during IVM in the domestic cat. The aminoacid sequence of fLIF revealed a homology of 81% or 92% with that of mouse or human. The fLIF produced by pCold TF DNA in Escherichia coli was readily soluble and after purification showed bioactivity in maintaining the undifferentiated state of mouse embryonic stem cells and enhancing the proliferation of human erythrocyte leukemia cells. Furthermore, 10- and 100-ng/mL fLIF induced cumulus expansion with or without FSH and EGF (P Feline LIF will further improve reproduction and stem cell research in the feline family. PMID:27020881

  14. Microwave-assisted digestion procedures for biological samples with diluted nitric acid: identification of reaction products.

    Science.gov (United States)

    Gonzalez, Mário H; Souza, Gilberto B; Oliveira, Regina V; Forato, Lucimara A; Nóbrega, Joaquim A; Nogueira, Ana Rita A

    2009-07-15

    Microwave-assisted sample preparation using diluted nitric acid solutions is an alternative procedure for digesting organic samples. The efficiency of this procedure depends on the chemical properties of the samples and in this work it was evaluated by the determination of crude protein amount, fat and original carbon. Soybeans grains, bovine blood, bovine muscle and bovine viscera were digested in a cavity-microwave oven using oxidant mixtures in different acid concentrations. The digestion efficiency was evaluated based on the determination of residual carbon content and element recoveries using inductively coupled plasma optical emission spectrometry (ICP OES). In order to determine the main residual organic compounds, the digests were characterized by nuclear magnetic resonance ((1)H NMR). Subsequently, studies concerning separation of nitrobenzoic acid isomers were performed by ion pair reversed phase liquid chromatography using a C18 stationary phase, water:acetonitrile:methanol (75:20:5, v/v/v)+0.05% (v/v) TFA as mobile phase and ultraviolet detection at 254 nm. Sample preparation based on diluted acids proved to be feasible and a recommendable alternative for organic sample digestion, reducing both the reagent volumes and the variability of the residues as a result of the process of decomposition. It was shown that biological matrices containing amino acids, proteins and lipids in their composition produced nitrobenzoic acid isomers and other organic compounds after cleavage of chemical bonds. PMID:19559896

  15. 76 FR 80878 - Solicitation of Veterinary Shortage Situation Nominations for the Veterinary Medicine Loan...

    Science.gov (United States)

    2011-12-27

    ... Veterinary Medicine Loan Repayment Program (VMLRP; [75 FR 20239- 20248]) for fiscal year (FY) 2012, as... Nomination Process 6. Submission and Due Date 7. Period Covered 8. Definitions B. Nomination Form and...., distribution of mapped shortage situations resulting from the nomination solicitation and review...

  16. 76 FR 5131 - Solicitation of Nomination of Veterinary Shortage Situations for the Veterinary Medicine Loan...

    Science.gov (United States)

    2011-01-28

    ... Veterinary Medicine Loan Repayment Program (VMLRP; [75 FR 20239- 20248]), as authorized under the National... Nomination Process 6. Submission and Due Date 7. Period Covered 8. Definitions B. Nomination Form and...., distribution of mapped shortage situations resulting from the nomination solicitation and review...

  17. Emigration and labour shortages: an opportunity for trade unions in new member states?

    NARCIS (Netherlands)

    M.E. Kaminska; M. Kahancová

    2011-01-01

    Emigration from the post-socialist states which joined the EU in 2004 and 2007 has reduced unemployment rates and created shortages of some skills. This should provide opportunities for trade unions to improve their situation, by facilitating union organizing and strengthening their bargaining posit

  18. Personnel Needs in School Psychology: A 10-Year Follow-Up Study on Predicted Personnel Shortages

    Science.gov (United States)

    Castillo, Jose M.; Curtis, Michael J.; Tan, Sim Yin

    2014-01-01

    Concerns regarding whether a sufficient supply of school psychologists exists have been evident for decades. Studies have predicted that school psychology would face a critical personnel shortage that would peak in 2010, but continue into the foreseeable future. The current study is a 10-year follow-up investigation based on previously published…

  19. 76 FR 45268 - Center for Drug Evaluation and Research, Approach to Addressing Drug Shortage; Public Workshop

    Science.gov (United States)

    2011-07-28

    ... HUMAN SERVICES Food and Drug Administration Center for Drug Evaluation and Research, Approach to... approach of the Center for Drug Evaluation and Research (CDER) to addressing drug shortages. This public... Benner, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire...

  20. An Evaluation of Skilled Labour shortage in selected construction firms in Edo state, Nigeria

    Directory of Open Access Journals (Sweden)

    Oseghale, B.O

    2015-01-01

    Full Text Available The study investigated skilled labour requirement in the construction industry of Edo State. The study aimed at assessing the current state of the construction industry’s skilled workforce, causes and prevalence of skilled labour shortage and the effect of skilled labour shortage in construction project delivery. The method employed for collection of data includes distribution of structured questionnaires. The data collected were analyzed using Frequency tables, percentages, mean response analysis, relative importance index and cross tabulation. The research identified the most severe factors responsible for labour shortage to include; no clear carrier path, high mobility of construction workers and low wages. The study found that construction firms are not sending their skilled workforce for training, and that the skilled workers are unwilling to recommend the profession to their children. The research revealed that the construction firms were paying extra money for labour, and Schedule delay in their construction programmes as a result of skilled labour shortage. The study found aging workforce in the construction trades sampled, and that the entrance of young people into the construction trades was very low

  1. Dental School Faculty Shortages Increase: An Update on Future Dental School Faculty.

    Science.gov (United States)

    Haden, N. Karl; Beemsterboer, Phyllis L.; Weaver, Richard G.; Valachovic, Richard W.

    2000-01-01

    Gathered information about the shortage of dental school faculty through a survey of dental school deans. Respondents identified retirement and entry into private practice as the leading reasons for leaving faculty positions, and indicated that offering a salary competitive with private practice was the most critical factor in recruiting future…

  2. 42 CFR 57.312 - Repayment of loans for service in a shortage area.

    Science.gov (United States)

    2010-10-01

    ... migrant health center, a community health center, a nursing facility, a rural health clinic, or in a... LOANS Nursing Student Loans § 57.312 Repayment of loans for service in a shortage area. (a) Service in a... in section 846(a)(1) of the Act; (2) Has obtained one or more nursing student loans or any...

  3. Applying the International Medical Graduate Program Model to Alleviate the Supply Shortage of Accounting Doctoral Faculty

    Science.gov (United States)

    HassabElnaby, Hassan R.; Dobrzykowski, David D.; Tran, Oanh Thikie

    2012-01-01

    Accounting has been faced with a severe shortage in the supply of qualified doctoral faculty. Drawing upon the international mobility of foreign scholars and the spirit of the international medical graduate program, this article suggests a model to fill the demand in accounting doctoral faculty. The underlying assumption of the suggested model is…

  4. 78 FR 23742 - Nomination Form of Veterinary Shortage Situations for the Veterinary Medicine Loan Repayment...

    Science.gov (United States)

    2013-04-22

    ... National Institute of Food and Agriculture Nomination Form of Veterinary Shortage Situations for the Veterinary Medicine Loan Repayment Program (VMLRP) AGENCY: National Institute of Food and Agriculture, USDA... Act of 1995, invites the general public to comment on an information collection for the...

  5. Using Optical Sensors to Identify Water Deprivation, Nitrogen Shortage, Weed Presence and Fungal Infection in Wheat

    Directory of Open Access Journals (Sweden)

    Gerassimos G. Peteinatos

    2016-05-01

    Full Text Available The success of precision agriculture relies largely on our ability to identify how the plants’ growth limiting factors vary in time and space. In the field, several stress factors may occur simultaneously, and it is thus crucial to be able to identify the key limitation, in order to decide upon the correct contra-action, e.g., herbicide application. We performed a pot experiment, in which spring wheat was exposed to water shortage, nitrogen deficiency, weed competition (Sinapis alba L. and fungal infection (Blumeria graminis f. sp. tritici in a complete, factorial design. A range of sensor measurements were taken every third day from the two-leaf stage until booting of the wheat (BBCH 12 to 40. Already during the first 10 days after stress induction (DAS, both fluorescence measurements and spectral vegetation indices were able to differentiate between non-stressed and stressed wheat plants exposed to water shortage, weed competition or fungal infection. This meant that water shortage and fungal infection could be detected prior to visible symptoms. Nitrogen shortage was detected on the 11–20 DAS. Differentiation of more than one stress factors with the same index was difficult.

  6. The Nursing Shortage Impact on Job Outcome (The Case in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Kumari Shammika Senani Mudihanselage Hellerawa

    2015-09-01

    Full Text Available The nursing shortage is a common problem throughout the world. Nurses form the largest proportion of the healthcare system and play a significant role in providing direct patient care. Considering the importance of the role of nurses in the healthcare system, it is important to investigate how nursing shortage effects the quality of patient care, nurses’ job satisfaction and their work stress. A study was conducted to investigate the correlation between these at the Polonnaruwa District General Hospital in Sri Lanka with a random sample of nurses working in the hospital and using a self-administered questionnaire. This study uses an explanatory research design. The statistical analysis confirmed a positive relationship between nurse shortage and workload. It also shows a significant positive relationship between workload and the quality of patient care. Furthermore, a negative relationship was observed between workload and the quality of patient care. In addition, this study calculates the mean effect of emotional intelligence of these factors, and a significant correlation is found between emotional intelligence and workload as well as work stress. There is a firm evidence that in Sri Lanka, nursing shortage influences the workload of the employee, finally affecting the quality of patient care. In addition, the study recognized the capability of nurses to manage their emotions as well as emotions of others, which has increased their tolerance to control psychological stress in performing their duty. This study confirms that nurse’s emotional intelligence act as a partial oderating variable for job outcomes of nurses.

  7. Simulation of export production and biological pump structure in the South China Sea

    Science.gov (United States)

    Ma, Wentao; Chai, Fei; Xiu, Peng; Xue, Huijie; Tian, Jun

    2014-12-01

    The export flux of particulate organic carbon (POC) consumes upwelled dissolved inorganic carbon (DIC), which hinders surplus CO2 being released to the atmosphere. The export flux of POC is therefore crucial to the carbon and biogeochemical cycles. This study aims to model the long-term (1958-2009) variation of export flux and structure of the biological pump in the South China Sea (SCS) using a three-dimensional physical-biogeochemical coupled (ROMS-CoSiNE) model. The modeled POC export flux in the northeastern and north central SCS is high in winter and low in summer, whereas the flux in the central, southwestern and southern SCS varies following a "W" shape: two maxima in winter and summer, and two minima in spring and autumn. The pattern follows the variation of the East Asian monsoon and is consistent with observations. On the interannual scale, export flux is anti-phased with the El Niño-Southern Oscillation such that El Niño (La Niña) conditions correspond to low (high) export flux. Modeled annual mean POC export flux reaches up to 1.95 mmol m-2 day-1, which is underestimated comparing with field observations. The f-ratio is estimated to be ~0.4. The b value of the Martin equation for POC is 1.18±0.03. Remineralization rate of POC is greater than the classical Martin equation but is consistent with its subtropical counterparts. The modeled results indicate that the SCS is a weak source of atmospheric CO2 with a flux estimated at 1.0 mmol m-2 day-1. The modeled results provide an insight of the temporal and spatial variability of the carbon cycle in this monsoon-driven, semi-enclosed basin.

  8. Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications - A review.

    Science.gov (United States)

    Shahid-Ul-Islam; Rather, Luqman J; Mohammad, Faqeer

    2016-05-01

    Bixa orellana commonly known as annatto is one of the oldest known natural dye yielding plants native to Central and South America. Various parts of annatto have been widely used in the traditional medical system for prevention and treatment of a wide number of health disorders. The plethora of traditional uses has encouraged researchers to identify and isolate phytochemicals from all parts of this plant. Carotenoids, apocarotenoids, terpenes, terpenoids, sterols, and aliphatic compounds are main compounds found in all parts of this plant and are reported to exhibit a wide range of pharmacological activities. In recent years annatto has received tremendous scientific interest mainly due to the isolation of yellow-orange natural dye from its seeds which exhibits high biodegradability, low toxicity, and compatibility with the environment. Considerable research work has already been done and is currently underway for its applications in food, textile, leather, cosmetic, solar cells, and other industries. The present review provides up-to-date systematic and organized information on the traditional usage, phytochemistry and pharmacology of annatto. It also highlights its non-food industrial applications in order to bring more interest on this dye plant, identifies the existing gaps and provides potential for future studies. Studies reported in this review have demonstrated that annatto holds a great potential for being exploited as source of drugs and a potential natural dye. However, further efforts are required to identify extract biomolecules and their action mechanisms in exhibiting certain biological activities in order to understand the full phytochemical profile and the complex pharmacological effects of this plant. PMID:27222755

  9. Biology of flowering and nectar production in the flowers of the beauty bush (Kolkwitzia amabilis Graebn.

    Directory of Open Access Journals (Sweden)

    Marta Dmitruk

    2012-12-01

    Full Text Available Nectar production and the morphology of the nectary and pollen grains of Kolwitzia amabilis Graebn. were studied during the period 2008–2009 and in 2011. The blooming of beauty bush flowers started in the third decade of May and ended in the middle of June; flowering lasted 22–23 days. The flower life span was 4–5 days. Nectar production began at the bud break stage. The tube of the corolla in beauty bush flowers forms a spur inside which the nectary is located. The secretory surface of the nectary consists of two layers of glandular epidermal outgrowths: unicellular trichomes, with their length ranging 54.6 μm – 70.2 μm, and papillae with a length of 13.0 μm – 20.6 μm. The mean weight of nectar per 10 flowers, determined for the three years of the study, was 8.6 mg, with a sugar concentration of 50.8%. The weight of nectar sugar was on average 4.4 mg. In terms of the size, beauty bush pollen grains are classified as medium-sized. These are tricolporate grains.

  10. Biological hydrogen and methane production from bagasse bioethanol fermentation residues using a two-stage bioprocess.

    Science.gov (United States)

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Chung, Man-Chien; Chan, Kun-Chi

    2016-06-01

    This study investigated the recovery of H2 and CH4 from bagasse bioethanol fermentation residues (bagasse BEFR) using a two-stage bioprocess. In the hydrogen fermentation bioreactor (HFB), carbohydrate removal efficiency was maintained at 82-93% and the highest hydrogen yield was 8.24mL/gCOD at volumetric loading rate (VLR) of 80kgCOD/m(3)/day. The results indicated a positive correlation between hydrogen yield and butyrate-to-acetate ratio, which might be due to the mechanisms of lactate/acetate utilization for hydrogen production and acetogenesis occurring in the HFB. Remaining volatile fatty acids and alcohols in the HFB effluent were further utilized for methane production in methane fermentation bioreactor (MFB), in which the highest methane yield of 345.2mL/gCOD was attained at VLR of 2.5kgCOD/m(3)/day. Overall, the two-stage bioprocess achieved a maximum COD removal of 81% from bagasse BEFR, and converted 0.3% and 72.8% of COD in the forms of H2 and CH4, respectively. PMID:26774443

  11. Investigation of the effect of culture type on biological hydrogen production from sugar industry wastes

    International Nuclear Information System (INIS)

    The bio-hydrogen generation potential of sugar industry wastes was investigated. In the first part of the study, acidogenic anaerobic culture was enriched from the mixed anaerobic culture (MAC) through acidification of glucose. In the second part of the study, glucose acclimated acidogenic seed was used, along with the indigenous microorganisms, MAC, 2-bromoethanesulfonate treated MAC and heat treated MAC. Two different COD levels (4.5 and 30 g/L COD) were investigated for each culture type. Reactors with initial COD concentration of 4.5 g/L had higher H2 yields (20.3-87.7 mL H2/g COD) than the reactors with initial COD concentration of 30 g/L (0.9-16.6 mL H2/g COD). The 2-bromoethanesulfonate and heat treatment of MAC inhibited the methanogenic activity, but did not increase the H2 production yield. The maximum H2 production (87.7 mL H2/g COD) and minimum methanogenic activity were observed in the unseeded reactor with 4.5 g/L of initial COD.

  12. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production.

    Science.gov (United States)

    Catlett, Jennie L; Ortiz, Alicia M; Buan, Nicole R

    2015-10-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells. PMID:26162885

  13. Biological effects of radiation

    International Nuclear Information System (INIS)

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  14. Utilization of fodder yeast and agro-industrial by-products in production of spores and biologically - active endotoxins from Bacillus thuringiensis.

    Science.gov (United States)

    Salama, H S; Foda, M S; Selim, M H; El-Sharaby, A

    1983-01-01

    A number of newly-devised fermentation media were evaluated with respect to their ability to support sporulation and biosynthesis of endotoxins by strains of Bacillus thuringiensis that are biologically active against Spodoptera littoralis, Heliothis armigera, and Spodoptera exigua. Fodder yeast from dried cells of Saccharomyces cerevisiae could be used as a complete mono-component medium for production of highly active spore-delta-endotoxin complexes from B. thur., vars. entomocidus, kurstaki and galleriae. Highest sporulation titers were obtained at 2% fodder yeast concentration with endotoxin yields ranging between 7 to 9 grams per liter of medium. Ground horse beans and kidney bean seeds could also be used successfully as complete media for sporulation and endotoxin production. Extracts of potato tubers and sweet potato roots were efficient media for active endotoxin production from B. thur. var. kurstaki, although the obtained yields were much lower than those produced in fodder yeast media. The utilization of fish meal, cotton seed meal, and residues of chicken from the slaughter-house as media for the production of endotoxins active against Spodoptera littoralis, was not successful. On the other hand, minced citrus peels, ground seeds of dates, and wheat bran could be successfully used in combination with fodder yeast as media for production of endotoxins, active against Heliothis armigera and Spodoptera exigua. Re-utilization of culture supernatants in a second fermentation cycle after supplementation with some nutrients gave promising results with some of the strains tested. The data obtained are discussed in view of their feasibility of application. PMID:6666415

  15. Effects of Fe2+, Co2+and Ni2+Ions on Biological Methane Production from Residual Heavy Oil

    Institute of Scientific and Technical Information of China (English)

    Liu Chunshuang; Ma Wenjuan; Zhao Dongfeng; Jia Kuili; Zhao Chaocheng

    2015-01-01

    On the basis of single factor tests, the effect of trace elements—Fe2+, Co2+and Ni2+ions—on biological methane production from heavy oil was investigated by the response surface method. A three-level Box-Behnken design was em-ployed to study the relationship between the independent variables and the dependent variable by applying initial Fe2+, Co2+and Ni2+concentration as the independent variables (factors) and using the methane production after 270 days of cultivation as the dependent variable (response). A prediction model of quadramatic polynomial regression equation was obtained. The results showed that the methane production could be as high as 240.69 µmol after optimization compared with 235.74 µmol obtained under un-optimized condition. Furthermore, the microbial communities before and after biodegradation were ana-lyzed by PCR-DGGE method. The dominant bands were recovered and sequenced. Three strains were obtained;the strain T1 has 97%similarity with Bacillus thermoamylovorans, the strain H3 has 97%similarity with Bacillus thermoamylovorans and the strain H4 has 99%similarity with Bacillus vietnamensis.

  16. New Jersey's natural gas shortage: a policy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, J.L.; Morell, D.

    1976-12-01

    The public policy problems associated with New Jersey's natural gas shortage are extremely complex and rather difficult to examine. They involve a blend of technology, politics and economics; of regulatory mandates and profit-motivated initiatives; of Federal and state interaction and conflict. To understand the state's gas shortage and to lay the basis for recommending measures to deal with it, information about the basic technology, the organization of the gas industry, the national regulatory posture, and the possible causes of the gas shortage encompasses Part I of the overall study. In Part II, the analysis turns from the national level to a direct examination of New Jersey's gas situation. In Part III, Chapter VIII, the following are considered: the state's supply of natural gas, distribution of these supply volumes within New Jersey by the four major gas utilities, and gas consumption patterns within the state as a whole and then for each major consuming sector (electric utility, industrial, commercial, and residential). This chapter concludes with an analysis of the impacts of the gas shortage to date in New Jersey, and of its probable effects in the near-term. In the final chapter, some tentative conclusions and broad suggestions are advanced for public policies to mitigate the gravity of the state's position with respect to natural gas. Analysis proceeds, in turn, through consideration of possible state actions in several areas: increasing total interstate gas supplies; increasing New Jersey's share of whatever national total exists; making greater (or more effective) use of alternate fuels; and moderating demand for gas through aggressive conservation policies. Some short-term measures to cope better with whatever level of gas shortage exists in the state at any particular time are suggested. 151 references. (MCW)

  17. Anaerobic Biological Treatment of Vinasse for Environmental Compliance and Methane Production.

    Science.gov (United States)

    Albanez, R; Chiaranda, B C; Ferreira, R G; França, A L P; Honório, C D; Rodrigues, J A D; Ratusznei, S M; Zaiat, M

    2016-01-01

    The energy crisis resulted in increasing awareness that alternative sources of energy should be considered. During this time, Brazil implemented ethanol production from sugarcane as biofuel. However, during this process, large amounts of residues are generated, such as vinasse. This residue can be treated anaerobically to generate methane as a source of bioenergy with the use of sequencing batch reactors operated with immobilized biomass (AnSBBR). In this work, tests were conducted in an AnSBBR laboratory-scale reactor, and the main results regarding the kinetic model fitting and performance of substrate consumption (83 %), methane content in the biogas (77 %), applied organic load (5.54 g COD L(-1) day(-1)), methane productivity (973 N-mL CH4 L(-1) day(-1)), and yield (9.47 mol CH4 kg COD(-1)) show that AnSBBR is a promising technological alternative. After tests conducted in a laboratory-scale reactor, an industrial reactor was scaled and was also operated in a sequencing batch with immobilized biomass (AnSBBR) for the anaerobic treatment of vinasse with the goal of generating methane and environmental suitability to further disposal in soil. The calculations were performed based on data from a sugar and alcohol plant located in São Paulo, Brazil. This study proposes to the operation of the industrial scale reactor was the association of four AnSBBR (each one with a volume of 15849 m(3)) operating in parallel (with a feeding and discharge time of 4 h and a reaction time of 8 h), with the goal of adapting the treatment system from a discontinuous operation to a continuous operation. In this industrial scenario, the methane production was estimated at 1.65 × 10(6) mol CH4 day(-1), and the energy was approximately 17 MW, increasing the possible energy recovery contained in sugarcane from 93 to 96 %. PMID:26400496

  18. [Review of risks of biological agents and preventive measures to safeguard the health of compost production workers].

    Science.gov (United States)

    Giubileo, L; Sarti, A M; Bianchi, L A; Calcaterra, E; Colombi, A

    1998-01-01

    A review of studies made in the compost production industry showed the biological agents posing a risk for workers were fungi and thermophile bacteria, gram-negative bacteria and endotoxins, with a prevalent inhalation exposure to airborne contaminated dusts. Medical examinations revealed cases of extrinsic allergic alveolitis due to A. fumigatus, and more frequently irritative and infectious disorders occurring especially in conditions of poor environmental hygiene and macroscopic dust pollution. For the evaluation of the air dispersion of microorganisms, which is high in compost transport and turning operations, at present no exposure limit values are available for biological agents; nevertheless, the concentrations measured were often higher than the limit values proposed for other manufacturing sectors by individual authors and by regulatory agencies in Europe, and were comparable to values observed in other industrial settings for which adverse health effects have been shown. Although the number of studies available are few in number, the results suggest that the hazards posed by microorganisms and the poor environmental hygiene conditions often encountered can undoubtedly be a source of risk for workers, which at present is difficult to establish but significant considering the high airborne concentrations of contaminated dust. Besides technical measures to avoid environmental macroscopic dispersion of dusts, measurement of airborne microbiological contaminants is also recommended. Health surveillance needs to be aimed at identifying subjects with hypersusceptibility to the infectious action of the pathogenetic and/or allergenic agents or with hypersensitivity to the same, and also to periodic control of respiratory organs. PMID:9847532

  19. Elevated temperature altered photosynthetic products in wheat seedlings and organic compounds and biological activity in rhizopshere soil under cadmium stress

    Science.gov (United States)

    Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua

    2015-09-01

    The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.

  20. Biological role of pigment production for the bacterial phytopathogen Pantoea stewartii subsp. stewartii.

    Science.gov (United States)

    Mohammadi, Mojtaba; Burbank, Lindsey; Roper, M Caroline

    2012-10-01

    Pantoea stewartii subsp. stewartii, the causal agent of Stewart's wilt of sweet corn, produces a yellow carotenoid pigment. A nonpigmented mutant was selected from a bank of mutants generated by random transposon mutagenesis. The transposon insertion site was mapped to the crtB gene, encoding a putative phytoene synthase, an enzyme involved in the early steps of carotenoid biosynthesis. We demonstrate here that the carotenoid pigment imparts protection against UV radiation and also contributes to the complete antioxidant pathway of P. stewartii. Moreover, production of this pigment is regulated by the EsaI/EsaR quorum-sensing system and significantly contributes to the virulence of the pathogen in planta. PMID:22820327