WorldWideScience

Sample records for bioinspired polymer-calcium phosphate

  1. Crystallization at the polymer/calcium-phosphate interface in a sterilized injectable bone substitute IBS.

    Science.gov (United States)

    Schmitt, M; Weiss, P; Bourges, X; Amador del Valle, G; Daculsi, G

    2002-07-01

    Calcium phosphate (CaP) ceramics are the main raw materials used to elaborate blocks or granules for bone substitutes. In this study, injectable bone substitutes (IBS) were developed for applications in orthopedic or dental surgery. Sterile, ready-to-use composite containing CaP granules (biphasic calcium phosphate, BCP) and polymer (hydroxypropylmethylcellulose, HPMC) was prepared. Steam sterilization produced new phenomena at the CaP/polymer interface, resulting in crystal growth. These phenomena may constitute a model for the biomineralization study. Scanning electron microscopy showed that the formed crystallites organize themselves into a three-dimensional structure. Currently, the mechanisms of crystal growth are unknown and have been observed with only one combination of polymer/BCP ceramics after steam sterilization. PMID:12059030

  2. Synthesis and characterization of carbonated hydroxyapatite and bioinspired polymer-calcium phosphate nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Yusufoglu, Yusuf

    2009-08-15

    Nature offers many exciting ideas and inspiration for the development of new materials and processes. The toughness of spider silk, the strength and lightweight of bone, and the adhesion abilities of the gecko's feet are some of the many examples of highperformance natural materials, which have attracted the interest of scientist to duplicate their properties in man-made materials. Materials found in nature combine many inspiring properties such as miniaturization, sophistication, hierarchical organization, hybridization, and adaptability. In all biological systems, whether very basic or highly complex, nature provides a multiplicity of materials, architectures, systems and functions. Generally, the architectural configurations and material characteristics are the important features that have been duplicated from nature for building synthetic structural composites.

  3. Synthesis and characterization of carbonated hydroxyapatite and bioinspired polymer-calcium phosphate nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Yusufoglu, Yusuf [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Nature offers many exciting ideas and inspiration for the development of new materials and processes. The toughness of spider silk, the strength and lightweight of bone, and the adhesion abilities of the gecko's feet are some of the many examples of highperformance natural materials, which have attracted the interest of scientist to duplicate their properties in man-made materials. Materials found in nature combine many inspiring properties such as miniaturization, sophistication, hierarchical organization, hybridization, and adaptability. In all biological systems, whether very basic or highly complex, nature provides a multiplicity of materials, architectures, systems and functions. Generally, the architectural configurations and material characteristics are the important features that have been duplicated from nature for building synthetic structural composites.

  4. Bioinspired amphiphilic phosphate block copolymers as non-fluoride materials to prevent dental erosion

    OpenAIRE

    Lei, Yanda; Wang, Tongxin; Mitchell, James W; Zaidel, Lynette; Qiu, Jianhong; Kilpatrick-Liverman, LaTonya

    2014-01-01

    Inspired by the fact that certain natural proteins, e.g. casein phosphopeptide or amelogenin, are able to prevent tooth erosion (mineral loss) and to enhance tooth remineralization, a synthetic amphiphilic diblock copolymer, containing a hydrophilic methacryloyloxyethyl phosphate block (MOEP) and a hydrophobic methyl methacrylate block (MMA), was designed as a novel non-fluoride agent to prevent tooth erosion under acidic conditions. The structure of the polymer, synthesized by reversible add...

  5. Bioinspired amphiphilic phosphate block copolymers as non-fluoride materials to prevent dental erosion.

    Science.gov (United States)

    Lei, Yanda; Wang, Tongxin; Mitchell, James W; Zaidel, Lynette; Qiu, Jianhong; Kilpatrick-Liverman, LaTonya

    2014-01-01

    Inspired by the fact that certain natural proteins, e.g. casein phosphopeptide or amelogenin, are able to prevent tooth erosion (mineral loss) and to enhance tooth remineralization, a synthetic amphiphilic diblock copolymer, containing a hydrophilic methacryloyloxyethyl phosphate block (MOEP) and a hydrophobic methyl methacrylate block (MMA), was designed as a novel non-fluoride agent to prevent tooth erosion under acidic conditions. The structure of the polymer, synthesized by reversible addition-fragment transfer (RAFT) polymerization, was confirmed by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR). While the hydrophilic PMOEP block within the amphiphilic block copolymer strongly binds to the enamel surface, the PMMA block forms a hydrophobic shell to prevent acid attack on tooth enamel, thus preventing/reducing acid erosion. The polymer treatment not only effectively decreased the mineral loss of hydroxyapatite (HAP) by 36-46% compared to the untreated control, but also protected the surface morphology of the enamel specimen following exposure to acid. Additionally, experimental results confirmed that low pH values and high polymer concentrations facilitate polymer binding. Thus, the preliminary data suggests that this new amphiphilic diblock copolymer has the potential to be used as a non-fluoride ingredient for mouth-rinse or toothpaste to prevent/reduce tooth erosion. PMID:25419457

  6. Bioinspired Poly(2-oxazolines

    Directory of Open Access Journals (Sweden)

    Helmut Schlaad

    2011-02-01

    Full Text Available Poly(2-oxazolines are regarded as pseudopeptides, thus bioinspired polymers, due to their structural relationship to polypeptides. Materials and solution properties can be tuned by varying the side-chain (hydrophilic-hydrophobic, chiral, bioorganic, etc., opening the way to advanced stimulus-responsive materials and complex colloidal structures. The bioinspired “smart” solution and aggregation behavior of poly(2-oxazolines in aqueous environments are discussed in this review.

  7. Designing Bioinspired Robots Editorial

    Directory of Open Access Journals (Sweden)

    Claudio Moriconi

    2015-10-01

    Full Text Available This IJARS issue is dedicated to a new international conference series, which has been promoted by ENEA and IARP (International Advanced Robotics Programme. The first conference, entitled Bio-inspired Robotics, was held on 14th-15th May 2014 at the ENEA’s Frascati Centre. The conference was dedicated to young researchers and scholars with promising ideas, methods and products for innovation and technology transfer in the field of service robots with bio-inspired design and operation.

  8. Designing Bioinspired Robots Editorial

    OpenAIRE

    Claudio Moriconi; Marco Ceccarelli

    2015-01-01

    This IJARS issue is dedicated to a new international conference series, which has been promoted by ENEA and IARP (International Advanced Robotics Programme). The first conference, entitled Bio-inspired Robotics, was held on 14th-15th May 2014 at the ENEA’s Frascati Centre. The conference was dedicated to young researchers and scholars with promising ideas, methods and products for innovation and technology transfer in the field of service robots with bio-inspired design and operation.

  9. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...

  10. Bioinspired Sensor Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2011-10-01

    Full Text Available This editorial summarizes and classifies the contributions presented by different authors to the special issue of the journal Sensors dedicated to Bioinspired Sensor Systems. From the coupling of sensor arrays or networks, plus computer processing abilities, new applications to mimic or to complement human senses are arising in the context of ambient intelligence. Principles used, and illustrative study cases have been presented permitting readers to grasp the current status of the field.

  11. Bioinspired swimming simulations

    Science.gov (United States)

    Bergmann, Michel; Iollo, Angelo

    2016-10-01

    We present a method to simulate the flow past bioinspired swimmers starting from pictures of an actual fish. The overall approach requires i) a skeleton graph generation to get a level-set function from pictures; ii) optimal transportation to obtain the velocity on the body surface; iii) flow simulations realized with a Cartesian method based on penalization. This technique can be used to automate modeling swimming motion from data collected by biologists. We illustrate this paradigm by simulating the swimming of a mackerel fish.

  12. Bio-inspired vision

    Science.gov (United States)

    Posch, C.

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980`s, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ``neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  13. Bio-inspired vision

    International Nuclear Information System (INIS)

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980's, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ''neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  14. Bioinspired Materials for Water Purification

    OpenAIRE

    Alfredo Gonzalez-Perez; Persson, Kenneth M.

    2016-01-01

    Water scarcity issues associated with inadequate access to clean water and sanitation is a ubiquitous problem occurring globally. Addressing future challenges will require a combination of new technological development in water purification and environmental remediation technology with suitable conservation policies. In this scenario, new bioinspired materials will play a pivotal role in the development of more efficient and environmentally friendly solutions. The role of amphiphilic self-ass...

  15. From bioinspired multifunctionality to mimumes

    CERN Document Server

    Lakhtakia, Akhlesh

    2015-01-01

    The methodologies of bioinspiration, biomimetics, and bioreplication are inevitably pointing to the incorporation of multifunctionality in engineered materials when designing ever more complex systems. Optimal multifunctionality is also the defining characteristic of metamaterials. As fibrous materials are commonly manufactured from a variety of source materials, mimumes---i.e., microfibrous multifunctional metamaterials---are industrially viable even today, as exemplified by mimumes of parylene C. The microfibrous morphology of mimumes will enhance surface-dominated effects in comparison to those evinced by bulk materials.

  16. Bio-inspired computation in telecommunications

    CERN Document Server

    Yang, Xin-She; Ting, TO

    2015-01-01

    Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

  17. Phosphate salts

    Science.gov (United States)

    ... reduces the body's ability to absorb phosphate and iron. To avoid this interaction, phosphate should be taken at least 2 hours before or after taking iron.MagnesiumPhosphate can combine with magnesium. This reduces ... phosphate and magnesium. To avoid this interaction, phosphate should ...

  18. Bioinspiration From Nano to Micro Scales

    CERN Document Server

    2012-01-01

    Methods in bioinspiration and biomimicking have been around for a long time. However, due to current advances in modern physical, biological sciences, and technologies, our understanding of the methods have evolved to a new level. This is due not only to the identification of mysterious and fascinating phenomena but also to the understandings of the correlation between the structural factors and the performance based on the latest theoretical, modeling, and experimental technologies. Bioinspiration: From Nano to Micro Scale provides readers with a broad view of the frontiers of research in the area of bioinspiration from the nano to macroscopic scales, particularly in the areas of biomineralization, antifreeze protein, and antifreeze effect. It also covers such methods as the lotus effect and superhydrophobicity, structural colors in animal kingdom and beyond, as well as behavior in ion channels. A number of international experts in related fields have contributed to this book, which offers a comprehensive an...

  19. Bioinspired catalysis metal-sulfur complexes

    CERN Document Server

    Weigand, Wolfgang

    2014-01-01

    The growing interest in green chemistry calls for new, efficient and cheap catalysts. Living organisms contain a wide range of remarkably powerful enzymes, which can be imitated by chemists in the search for new catalysts. In bioinspired catalysis, chemists use the basic principles of biological enzymes when creating new catalyst analogues. In this book, an international group of experts cover the topic from theoretical aspects to applications by including a wide variety of examples of different systems. This valuable overview of bioinspired metal-sulfur catalysis is a must-have for all sci

  20. Phosphate sensing

    OpenAIRE

    Bergwitz, Clemens; Jüppner, Harald

    2011-01-01

    Human phosphate homeostasis is regulated at the level of intestinal absorption of phosphate from the diet, release of phosphate through bone resorption, and renal phosphate excretion and involves the actions of parathyroid hormone (PTH), 1,25-dihydroxy-vitamin D (1,25-(OH)2-D), and fibroblast growth factor 23 (FGF23) to maintain circulating phosphate levels within a narrow normal range, which is essential for numerous cellular functions, for the growth of tissues and for bone mineralization. ...

  1. Bioinspired Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Alfredo Gonzalez-Perez

    2016-06-01

    Full Text Available Water scarcity issues associated with inadequate access to clean water and sanitation is a ubiquitous problem occurring globally. Addressing future challenges will require a combination of new technological development in water purification and environmental remediation technology with suitable conservation policies. In this scenario, new bioinspired materials will play a pivotal role in the development of more efficient and environmentally friendly solutions. The role of amphiphilic self-assembly on the fabrication of new biomimetic membranes for membrane separation like reverse osmosis is emphasized. Mesoporous support materials for semiconductor growth in the photocatalytic degradation of pollutants and new carriers for immobilization of bacteria in bioreactors are used in the removal and processing of different kind of water pollutants like heavy metals. Obstacles to improve and optimize the fabrication as well as a better understanding of their performance in small-scale and pilot purification systems need to be addressed. However, it is expected that these new biomimetic materials will find their way into the current water purification technologies to improve their purification/removal performance in a cost-effective and environmentally friendly way.

  2. Sodium Phosphate

    Science.gov (United States)

    Sodium phosphate is used in adults 18 years of age or older to empty the colon (large intestine, bowel) ... view of the walls of the colon. Sodium phosphate is in a class of medications called saline ...

  3. Bioinspired synthesis of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    David, Anand

    2009-05-26

    The synthesis of magnetic nanoparticles has long been an area of active research. Magnetic nanoparticles can be used in a wide variety of applications such as magnetic inks, magnetic memory devices, drug delivery, magnetic resonance imaging (MRI) contrast agents, and pathogen detection in foods. In applications such as MRI, particle uniformity is particularly crucial, as is the magnetic response of the particles. Uniform magnetic particles with good magnetic properties are therefore required. One particularly effective technique for synthesizing nanoparticles involves biomineralization, which is a naturally occurring process that can produce highly complex nanostructures. Also, the technique involves mild conditions (ambient temperature and close to neutral pH) that make this approach suitable for a wide variety of materials. The term 'bioinspired' is important because biomineralization research is inspired by the naturally occurring process, which occurs in certain microorganisms called 'magnetotactic bacteria'. Magnetotactic bacteria use biomineralization proteins to produce magnetite crystals having very good uniformity in size and morphology. The bacteria use these magnetic particles to navigate according to external magnetic fields. Because these bacteria synthesize high quality crystals, research has focused on imitating aspects of this biomineralization in vitro. In particular, a biomineralization iron-binding protein found in a certain species of magnetotactic bacteria, magnetospirillum magneticum, AMB-1, has been extracted and used for in vitro magnetite synthesis; Pluronic F127 gel was used to increase the viscosity of the reaction medium to better mimic the conditions in the bacteria. It was shown that the biomineralization protein mms6 was able to facilitate uniform magnetite synthesis. In addition, a similar biomineralization process using mms6 and a shorter version of this protein, C25, has been used to synthesize cobalt ferrite

  4. Bioinspired synthesis of magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    David, Anand [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    The synthesis of magnetic nanoparticles has long been an area of active research. Magnetic nanoparticles can be used in a wide variety of applications such as magnetic inks, magnetic memory devices, drug delivery, magnetic resonance imaging (MRI) contrast agents, and pathogen detection in foods. In applications such as MRI, particle uniformity is particularly crucial, as is the magnetic response of the particles. Uniform magnetic particles with good magnetic properties are therefore required. One particularly effective technique for synthesizing nanoparticles involves biomineralization, which is a naturally occurring process that can produce highly complex nanostructures. Also, the technique involves mild conditions (ambient temperature and close to neutral pH) that make this approach suitable for a wide variety of materials. The term 'bioinspired' is important because biomineralization research is inspired by the naturally occurring process, which occurs in certain microorganisms called 'magnetotactic bacteria'. Magnetotactic bacteria use biomineralization proteins to produce magnetite crystals having very good uniformity in size and morphology. The bacteria use these magnetic particles to navigate according to external magnetic fields. Because these bacteria synthesize high quality crystals, research has focused on imitating aspects of this biomineralization in vitro. In particular, a biomineralization iron-binding protein found in a certain species of magnetotactic bacteria, magnetospirillum magneticum, AMB-1, has been extracted and used for in vitro magnetite synthesis; Pluronic F127 gel was used to increase the viscosity of the reaction medium to better mimic the conditions in the bacteria. It was shown that the biomineralization protein mms6 was able to facilitate uniform magnetite synthesis. In addition, a similar biomineralization process using mms6 and a shorter version of this protein, C25, has been used to synthesize cobalt ferrite

  5. Bio-inspired flapping UAV design: a university perspective

    Science.gov (United States)

    Han, Jae-Hung; Lee, Jun-Seong; Kim, Dae-Kwan

    2009-03-01

    Bio-inspired design to make artificial flappers fly does not just imitate biological systems as closely as possible, but also transferring the flappers' own functionalities to engineering solutions. This paper summarizes some key technical issues and the states-of-art of bio-inspired design of flapping UAVs with an introduction to authors' recent research results in this field.

  6. Soft robotics: a bioinspired evolution in robotics.

    Science.gov (United States)

    Kim, Sangbae; Laschi, Cecilia; Trimmer, Barry

    2013-05-01

    Animals exploit soft structures to move effectively in complex natural environments. These capabilities have inspired robotic engineers to incorporate soft technologies into their designs. The goal is to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments. Here, we review emerging soft-bodied robotic systems, and in particular recent developments inspired by soft-bodied animals. Incorporating soft technologies can potentially reduce the mechanical and algorithmic complexity involved in robot design. Incorporating soft technologies will also expedite the evolution of robots that can safely interact with humans and natural environments. Finally, soft robotics technology can be combined with tissue engineering to create hybrid systems for medical applications.

  7. Bio-inspired computational techniques based on advanced condition monitoring

    Institute of Scientific and Technical Information of China (English)

    Su Liangcheng; He Shan; Li Xiaoli; Li Xinglin

    2011-01-01

    The application of bio-inspired computational techniques to the field of condition monitoring is addressed.First, the bio-inspired computational techniques are briefly addressed; the advantages and disadvantages of these computational methods are made clear. Then, the roles of condition monitoring in the predictive maintenance and failures prediction and the development trends of condition monitoring are discussed. Finally, a case study on the condition monitoring of grinding machine is described, which shows the application of bio-inspired computational technique to a practical condition monitoring system.

  8. Bioinspired Composite Materials: Applications in Diagnostics and Therapeutics

    Science.gov (United States)

    Prasad, Alisha; Mahato, Kuldeep; Chandra, Pranjal; Srivastava, Ananya; Joshi, Shrikrishna N.; Maurya, Pawan Kumar

    2016-08-01

    Evolution-optimized specimens from nature with inimitable properties, and unique structure-function relationships have long served as a source of inspiration for researchers all over the world. For instance, the micro/nanostructured patterns of lotus-leaf and gecko feet helps in self-cleaning, and adhesion, respectively. Such unique properties shown by creatures are results of billions of years of adaptive transformation, that have been mimicked by applying both science and engineering concepts to design bioinspired materials. Various bioinspired composite materials have been developed based on biomimetic principles. This review presents the latest developments in bioinspired materials under various categories with emphasis on diagnostic and therapeutic applications.

  9. Advances in bio-inspired computing for combinatorial optimization problems

    CERN Document Server

    Pintea, Camelia-Mihaela

    2013-01-01

    Advances in Bio-inspired Combinatorial Optimization Problems' illustrates several recent bio-inspired efficient algorithms for solving NP-hard problems.Theoretical bio-inspired concepts and models, in particular for agents, ants and virtual robots are described. Large-scale optimization problems, for example: the Generalized Traveling Salesman Problem and the Railway Traveling Salesman Problem, are solved and their results are discussed.Some of the main concepts and models described in this book are: inner rule to guide ant search - a recent model in ant optimization, heterogeneous sensitive a

  10. Bioinspired Functional Surfaces for Technological Applications

    Science.gov (United States)

    Sharma, Vipul; Kumar, Suneel; Reddy, Kumbam Lingeshwar; Bahuguna, Ashish; Krishnan, Venkata

    2016-08-01

    Biological matters have been in continuous encounter with extreme environmental conditions leading to their evolution over millions of years. The fittest have survived through continuous evolution, an ongoing process. Biological surfaces are the important active interfaces between biological matters and the environment, and have been evolving over time to a higher state of intelligent functionality. Bioinspired surfaces with special functionalities have grabbed attention in materials research in the recent times. The microstructures and mechanisms behind these functional biological surfaces with interesting properties have inspired scientists to create artificial materials and surfaces which possess the properties equivalent to their counterparts. In this review, we have described the interplay between unique multiscale (micro- and nano-scale) structures of biological surfaces with intrinsic material properties which have inspired researchers to achieve the desired wettability and functionalities. Inspired by naturally occurring surfaces, researchers have designed and fabricated novel interfacial materials with versatile functionalities and wettability, such as superantiwetting surfaces (superhydrophobic and superoleophobic), omniphobic, switching wettability and water collecting surfaces. These strategies collectively enable functional surfaces to be utilized in different applications such as fog harvesting, surface-enhanced Raman spectroscopy (SERS), catalysis, sensing and biological applications. This paper delivers a critical review of such inspiring biological surfaces and artificial bioinspired surfaces utilized in different applications, where material science and engineering have merged by taking inspiration from the natural systems.

  11. Bioinspired polarization navigation sensor for autonomous munitions systems

    Science.gov (United States)

    Giakos, G. C.; Quang, T.; Farrahi, T.; Deshpande, A.; Narayan, C.; Shrestha, S.; Li, Y.; Agarwal, M.

    2013-05-01

    Small unmanned aerial vehicles UAVs (SUAVs), micro air vehicles (MAVs), Automated Target Recognition (ATR), and munitions guidance, require extreme operational agility and robustness which can be partially offset by efficient bioinspired imaging sensor designs capable to provide enhanced guidance, navigation and control capabilities (GNC). Bioinspired-based imaging technology can be proved useful either for long-distance surveillance of targets in a cluttered environment, or at close distances limited by space surroundings and obstructions. The purpose of this study is to explore the phenomenology of image formation by different insect eye architectures, which would directly benefit the areas of defense and security, on the following four distinct areas: a) fabrication of the bioinspired sensor b) optical architecture, c) topology, and d) artificial intelligence. The outcome of this study indicates that bioinspired imaging can impact the areas of defense and security significantly by dedicated designs fitting into different combat scenarios and applications.

  12. Bioinspired Nanoscale Materials for Biomedical and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Priyanka; Du, Dan; Lin, Yuehe

    2014-05-01

    The demand of green, affordable and environmentally sustainable materials has encouraged scientists in different fields to draw inspiration from nature in developing materials with unique properties such as miniaturization, hierarchical organization, and adaptability. Together with the exceptional properties of nanomaterials, over the past century, the field of bioinspired nanomaterials has taken huge leaps. While on one hand, the sophistication of hierarchical structures endow biological systems with multifunctionality, the synthetic control on the creation of nanomaterials enables the design of materials with specific functionalities. The aim of this review is to provide a comprehensive, up-to-date overview of the field of bioinspired nanomaterials, which we have broadly categorized into biotemplates and biomimics. We will discuss the application of bioinspired nanomaterials as biotemplates in catalysis, nanomedicine, immunoassays and in energy, drawing attention to novel materials such as protein cages. Further, the applications of bioinspired materials in tissue engineering and biomineralization will also be discussed.

  13. Bio-inspired computation in unmanned aerial vehicles

    CERN Document Server

    Duan, Haibin

    2014-01-01

    Bio-inspired Computation in Unmanned Aerial Vehicles focuses on the aspects of path planning, formation control, heterogeneous cooperative control and vision-based surveillance and navigation in Unmanned Aerial Vehicles (UAVs) from the perspective of bio-inspired computation. It helps readers to gain a comprehensive understanding of control-related problems in UAVs, presenting the latest advances in bio-inspired computation. By combining bio-inspired computation and UAV control problems, key questions are explored in depth, and each piece is content-rich while remaining accessible. With abundant illustrations of simulation work, this book links theory, algorithms and implementation procedures, demonstrating the simulation results with graphics that are intuitive without sacrificing academic rigor. Further, it pays due attention to both the conceptual framework and the implementation procedures. The book offers a valuable resource for scientists, researchers and graduate students in the field of Control, Aeros...

  14. Mechatronics and Bioinspiration in Actuator Design and Control

    OpenAIRE

    J. L. Pons; A. Forner-Cordero; Rocon, E.; Moreno, J. C.

    2008-01-01

    Actuators are components of motion control systems in which mechatronics plays a crucial role. They can be regarded as a paradigmatic case in which this mechatronic approach is required. Furthermore, actuator technologies can get new sources of inspiration from nature (bioinspiration). Biological systems are the result of an evolutionary process and show excellent levels of performance. In this paper, we analyse the actuator as a bioinspired mechatronic system through analogies between mechat...

  15. Bioinspired computation in combinatorial optimization: algorithms and their computational complexity

    DEFF Research Database (Denmark)

    Neumann, Frank; Witt, Carsten

    2012-01-01

    Bioinspired computation methods, such as evolutionary algorithms and ant colony optimization, are being applied successfully to complex engineering and combinatorial optimization problems, and it is very important that we understand the computational complexity of these algorithms. This tutorials...... problems. Classical single objective optimization is examined first. They then investigate the computational complexity of bioinspired computation applied to multiobjective variants of the considered combinatorial optimization problems, and in particular they show how multiobjective optimization can help...

  16. Soft robotics: a bioinspired evolution in robotics.

    Science.gov (United States)

    Kim, Sangbae; Laschi, Cecilia; Trimmer, Barry

    2013-05-01

    Animals exploit soft structures to move effectively in complex natural environments. These capabilities have inspired robotic engineers to incorporate soft technologies into their designs. The goal is to endow robots with new, bioinspired capabilities that permit adaptive, flexible interactions with unpredictable environments. Here, we review emerging soft-bodied robotic systems, and in particular recent developments inspired by soft-bodied animals. Incorporating soft technologies can potentially reduce the mechanical and algorithmic complexity involved in robot design. Incorporating soft technologies will also expedite the evolution of robots that can safely interact with humans and natural environments. Finally, soft robotics technology can be combined with tissue engineering to create hybrid systems for medical applications. PMID:23582470

  17. Damping by branching: a bioinspiration from trees

    CERN Document Server

    Theckes, Benoit; Boutillon, Xavier

    2011-01-01

    Man-made slender structures are known to be sensitive to high levels of vibration, due to their flexibility, which often cause irreversible damage. In nature, trees repeatedly endure large amplitudes of motion, mostly caused by strong climatic events, yet with minor or no damage in most cases. A new damping mechanism inspired by the architecture of trees is here identified and characterized in the simplest tree-like structure, a Y-shape branched structure. Through analytical and numerical analyses of a simple two-degree-of-freedom model, branching is shown to be the key ingredient in this protective mechanism that we call damping-by-branching. It originates in the geometrical nonlinearities so that it is specifically efficient to damp out large amplitudes of motion. A more realistic model, using flexible beam approximation, shows that the mechanism is robust. Finally, two bioinspired architectures are analyzed, showing significant levels of damping achieved via branching with typically 30% of the energy being...

  18. A bioinspired micro-composite structure

    Science.gov (United States)

    Chen, Li

    2005-11-01

    This thesis involves the design, fabrication and mechanical testing of a bioinspired composite structure with characteristic dimensions of the order of tens of microns. The particular microarchitecture, designed and fabricated using microelectromechanical systems (MEMS) technology, involves two distinct length scales and represents a first attempt at mimicking the crossed-lamellar microstructure of the shell of the Giant Queen Conch Strombus gigas , which contains features the dimensions of which span five distinct length scales. After giving a review of the mechanical properties of mollusks, the detailed design of the microstructure, which approximates the crossed-lamellar arrangement of Strombus gigas, is presented. Fabrication of the microstructure using multi-microfabrication methods is conducted in terms of the designed fabrication flow. The problems encountered during the processes are discussed. The measurements of the flexural strength and toughening of the fabricated microstructure are conducted using a commercially available nanoindenter. Testing results are discussed and conclusions about the mechanical behaviors of the microstructure are drawn to summarize the achievement of this thesis. Finally, future work is outlined to point out the possible directions for improving the mechanical performance of the bioinspired composite. In parallel with my thesis research, I have developed a theoretical model for the experimentally observed cyclic loading-induced strengthening in MEMS polycrystalline silicon. The model relies on atomistic calculations that predict plastic-like behavior of amorphous silicon, which depending on initial density, is associated with dilatancy or compaction. The amorphous silicon is approximated as a Drucker-Prager plastic material, whose parameters are chosen to match the predictions of the atomistic calculations. The constitutive model is used to simulate the mechanical response to cyclic loads of notched polysilicon MEMS specimens

  19. Bioarchitecture: bioinspired art and architecture--a perspective.

    Science.gov (United States)

    Ripley, Renee L; Bhushan, Bharat

    2016-08-01

    Art and architecture can be an obvious choice to pair with science though historically this has not always been the case. This paper is an attempt to interact across disciplines, define a new genre, bioarchitecture, and present opportunities for further research, collaboration and professional cooperation. Biomimetics, or the copying of living nature, is a field that is highly interdisciplinary, involving the understanding of biological functions, structures and principles of various objects found in nature by scientists. Biomimetics can lead to biologically inspired design, adaptation or derivation from living nature. As applied to engineering, bioinspiration is a more appropriate term, involving interpretation, rather than direct copying. Art involves the creation of discrete visual objects intended by their creators to be appreciated by others. Architecture is a design practice that makes a theoretical argument and contributes to the discourse of the discipline. Bioarchitecture is a blending of art/architecture and biomimetics/bioinspiration, and incorporates a bioinspired design from the outset in all parts of the work at all scales. Herein, we examine various attempts to date of art and architecture to incorporate bioinspired design into their practice, and provide an outlook and provocation to encourage collaboration among scientists and designers, with the aim of achieving bioarchitecture.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.

  20. Bioarchitecture: bioinspired art and architecture--a perspective.

    Science.gov (United States)

    Ripley, Renee L; Bhushan, Bharat

    2016-08-01

    Art and architecture can be an obvious choice to pair with science though historically this has not always been the case. This paper is an attempt to interact across disciplines, define a new genre, bioarchitecture, and present opportunities for further research, collaboration and professional cooperation. Biomimetics, or the copying of living nature, is a field that is highly interdisciplinary, involving the understanding of biological functions, structures and principles of various objects found in nature by scientists. Biomimetics can lead to biologically inspired design, adaptation or derivation from living nature. As applied to engineering, bioinspiration is a more appropriate term, involving interpretation, rather than direct copying. Art involves the creation of discrete visual objects intended by their creators to be appreciated by others. Architecture is a design practice that makes a theoretical argument and contributes to the discourse of the discipline. Bioarchitecture is a blending of art/architecture and biomimetics/bioinspiration, and incorporates a bioinspired design from the outset in all parts of the work at all scales. Herein, we examine various attempts to date of art and architecture to incorporate bioinspired design into their practice, and provide an outlook and provocation to encourage collaboration among scientists and designers, with the aim of achieving bioarchitecture.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. PMID:27354727

  1. Water collection behavior and hanging ability of bioinspired fiber.

    Science.gov (United States)

    Hou, Yongping; Chen, Yuan; Xue, Yan; Zheng, Yongmei; Jiang, Lei

    2012-03-13

    Since the water-collecting ability of the wetted cribellate spider capture silk is the result of a unique fiber structure, bioinspired fibers have been researched significantly so as to expose a new water-acquiring route in fogging-collection projects. However, the design of the geometry of bioinspired fiber is related to the ability of hanging drops, which has not been investigated in depth so far. Here, we fabricate bioinspired fibers to investigate the water collection behavior and the influence of geometry (i.e., periodicity of spindle knot) on the hanging-drop ability. We especially discuss water collection related to the periodicity of geometry on the bioinspired fiber. We reveal the length of the three phase contact line (TCL) at threshold conditions in conjunction with the maximal volume of a hanging drop at different modes. The study demonstrates that the geometrical structure of bioinspired fiber induces much stronger water hanging ability than that of uniform fiber, attributed to such special geometry that offers effectively an increasing TCL length or limits the contact length to be shorted. In addition, the geometry also improves the fog-collection efficiency by controlling tiny water drops to be collected in the large water drops at a given location.

  2. Bioinspired, dynamic, structured surfaces for biofilm prevention

    Science.gov (United States)

    Epstein, Alexander K.

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature's antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ˜40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving

  3. Bio-inspired nanotechnology from surface analysis to applications

    CERN Document Server

    Walsh, Tiffany

    2014-01-01

    This book focuses on the use of bio-inspired and biomimetic methods for the fabrication and activation of nanomaterials. This includes studies concerning the binding of the biomolecules to the surface of inorganic structures, structure/function relationships of the final materials, and extensive discussions on the final applications of such biomimetic materials in unique applications including energy harvesting/storage, biomedical diagnostics, and materials assembly. This book also: ·          Covers the sustainable features of bio-inspired nanotechnology ·          Includes studies on the unique applications of biomimetic materials, such as energy harvesting and biomedical diagnostics Bio-Inspired Nanotechnology: From Surface Analysis to Applications is an ideal book for researchers, students, nanomaterials engineers, bioengineers, chemists, biologists, physicists, and medical researchers.

  4. Green processes for nanotechnology from inorganic to bioinspired nanomaterials

    CERN Document Server

    Basiuk, Elena

    2015-01-01

    This book provides the state-of-the-art survey of green techniques in preparation of different classes of nanomaterials, with an emphasis on the use of renewable sources. Key topics covered include fabrication of nanomaterials using green techniques as well as their properties and applications, the use of renewable sources to obtain nanomaterials of different classes, from simple metal and metal oxide nanoparticles to complex bioinspired nanomaterials, economic contributions of nanotechnology to green and sustainable growth, and more. This is an ideal book for students, lecturers, researchers and engineers dealing with versatile (mainly chemical, biological, and medical) aspects of nanotechnology, including fabrication of nanomaterials using green techniques and their properties and applications. This book also: Maximizes reader insights into the design and fabrication of bioinspired nanomaterials and the design of complex bio-nanohybrids Covers many different applications for nanomaterials, bioinspired nanom...

  5. Enhancing dropwise condensation through bioinspired wettability patterning.

    Science.gov (United States)

    Ghosh, Aritra; Beaini, Sara; Zhang, Bong June; Ganguly, Ranjan; Megaridis, Constantine M

    2014-11-01

    Dropwise condensation (DWC) heat transfer depends strongly on the maximum diameter (Dmax) of condensate droplets departing from the condenser surface. This study presents a facile technique implemented to gain control of Dmax in DWC within vapor/air atmospheres. We demonstrate how this approach can enhance the corresponding heat transfer rate by harnessing the capillary forces in the removal of the condensate from the surface. We examine various hydrophilic-superhydrophilic patterns, which, respectively, sustain and combine DWC and filmwise condensation on the substrate. The material system uses laser-patterned masking and chemical etching to achieve the desired wettability contrast and does not employ any hydrophobizing agent. By applying alternating straight parallel strips of hydrophilic (contact angle ∼78°) mirror-finish aluminum and superhydrophilic regions (etched aluminum) on the condensing surface, we show that the average maximum droplet size on the less-wettable domains is nearly 42% of the width of the corresponding strips. An overall improvement in the condensate collection rate, up to 19% (as compared to the control case of DWC on mirror-finish aluminum) was achieved by using an interdigitated superhydrophilic track pattern (on the mirror-finish hydrophilic surface) inspired by the vein network of plant leaves. The bioinspired interdigitated pattern is found to outperform the straight hydrophilic-superhydrophilic pattern design, particularly under higher humidity conditions in the presence of noncondensable gases (NCG), a condition that is more challenging for maintaining sustained DWC.

  6. Self-Organization of Bioinspired Fibrous Surfaces

    Science.gov (United States)

    Kang, Sung Hoon

    Nature uses fibrous surfaces for a wide range of functions such as sensing, adhesion, structural color, and self-cleaning. However, little is known about how fiber properties enable them to self-organize into diverse and complex functional forms. Using polymeric micro/nanofiber arrays with tunable properties as model systems, we demonstrate how the combination of mechanical and surface properties can be harnessed to transform an array of anchored nanofibers into a variety of complex, hierarchically organized dynamic functional surfaces. We show that the delicate balance between fiber elasticity and surface adhesion plays a critical role in determining the shape, chirality, and hierarchy of the assembled structures. We further report a strategy for controlling the long-range order of fiber assemblies by manipulating the shape and movement of the liquid-vapor interface. Our study provides fundamental understanding of the pattern formation by self-organization of bioinspired fibrous surfaces. Moreover, our new strategies offer a foundation for designing a vast assortment of functional surfaces with adhesive, optical, water-repellent, capture and release, and many more capabilities with the structural and dynamic sophistication of their biological counterparts.

  7. Catalytic applications of bio-inspired nanomaterials

    Science.gov (United States)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  8. Bioinspired Nanonetworks for Targeted Cancer Drug Delivery.

    Science.gov (United States)

    Raz, Nasibeh Rady; Akbarzadeh-T, Mohammad-R; Tafaghodi, Mohsen

    2015-12-01

    A biomimicry approach to nanonetworks is proposed here for targeted cancer drug delivery (TDD). The swarm of bioinspired nanomachines utilizes the blood distribution network and chemotaxis to carry drug through the vascular system to the cancer site, recognized by a high concentration of vascular endothelial growth factor (VEGF). Our approach is multi-scale and includes processes that occur both within cells and with their neighbors. The proposed bionanonetwork takes advantage of several organic processes, some of which already occur within the human body, such as a plate-like structure similar to those of red blood cells for more environmental contact; a berry fruit architecture for its internal multi-foams architecture; the penetrable structure of cancer cells, tissue, as well as the porous structure of the capillaries for drug penetration; state of glycocalyx for ligand-receptor adhesion; as well as changes in pH state of blood and O 2 release for nanomachine communication. For a more appropriate evaluation, we compare our work with a conventional chemotherapy approach using a mathematical model of cancer under actual experimental parameter settings. Simulation results show the merits of the proposed method in targeted cancer therapy by improving the densities of the relevant cancer cell types and VEGF concentration, while following more organic and natural processes. PMID:26529771

  9. Polymer based interfaces as bioinspired 'smart skins'.

    Science.gov (United States)

    De Rossi, Danilo; Carpi, Federico; Scilingo, Enzo Pasquale

    2005-11-30

    This work reports on already achieved results and ongoing research on the development of complex interfaces between humans and external environment, based on organic synthetic materials and used as smart 'artificial skins'. They are conceived as wearable and flexible systems with multifunctional characteristics. Their features are designed to mimic or augment a broad-spectrum of properties shown by biological skins of humans and/or animals. The discussion is here limited to those properties whose mimicry/augmentation is achievable with currently available technologies based on polymers and oligomers. Such properties include tactile sensing, thermal sensing/regulation, environmental energy harvesting, chromatic mimetism, ultra-violet protection, adhesion and surface mediation of mobility. Accordingly, bioinspired devices and structures, proposed as suitable functional analogous of natural architectures, are analysed. They consist of organic piezoelectric sensors, thermoelectric and pyroelectric sensors and generators, photoelectric generators, thermal and ultra-violet protection systems, electro-, photo- and thermo-chromic devices, as well as structures for improved adhesion and reduced fluid-dynamic friction.

  10. Fabrication and Analysis of Bio-Inspired Smart Surfaces

    OpenAIRE

    Röhrig, Michael

    2013-01-01

    This work introduces novel techniques for the fabrication of bio-inspired hierarchical micro- and nanostructures. The enormous potential of these techniques is demonstrated by presenting a synthetic gecko-like adhesive matching the adhesion and self-cleaning of geckos very closely and a nanofur which is superhydrophobic, superoleophilic, underwater air-retaining, and even self-healing when surface treated.

  11. Enhanced adhesion of bioinspired nanopatterned elastomets via colloidal surface assembly

    NARCIS (Netherlands)

    Akerboom, S.; Appel, J.; Labonte, D.; Federle, W.; Sprakel, J.H.B.; Kamperman, M.M.G.

    2015-01-01

    We describe a scalable method to fabricate nanopatterned bioinspired dry adhesives using colloidal lithography. Close-packed monolayers of polystyrene particles were formed at the air/water interface, on which polydimethylsiloxane (PDMS) was applied. The order of the colloidal monolayer and the imme

  12. Synthesis of (±)-aureol by bioinspired rearrangements.

    Science.gov (United States)

    Rosales, Antonio; Muñoz-Bascón, Juan; Roldan-Molina, Esther; Rivas-Bascón, Nazaret; Padial, Natalia M; Rodríguez-Maecker, Roman; Rodríguez-García, Ignacio; Oltra, J Enrique

    2015-02-01

    A bioinspired and sustainable procedure for the straightforward synthesis of (±)-aureol has been achieved in eight steps (14% overall yield) from epoxyfarnesol. The key steps are the titanocene(III)-catalyzed radical cascade cyclization of an epoxyfarnesol derivative and a biosynthetically inspired sequence of 1,2-hydride and methyl shifts. PMID:25591135

  13. Intestinal Phosphate Transport

    OpenAIRE

    Sabbagh, Yves; Giral, Hector; Caldas, Yupanqui; Levi, Moshe; Schiavi, Susan C.

    2011-01-01

    Phosphate is absorbed in the small intestine by at least two distinct mechanisms: paracellular phosphate transport which is dependent on passive diffusion and active transport which occurs through the sodium-dependent phosphate co-transporters. Despite evidence emerging for other ions, regulation of the phosphate specific paracellular pathways remains largely unexplored. In contrast, there is a growing body of evidence that active transport through the sodium-dependent phosphate co-transporte...

  14. Mechatronics and Bioinspiration in Actuator Design and Control

    Directory of Open Access Journals (Sweden)

    J. L. Pons

    2008-01-01

    Full Text Available Actuators are components of motion control systems in which mechatronics plays a crucial role. They can be regarded as a paradigmatic case in which this mechatronic approach is required. Furthermore, actuator technologies can get new sources of inspiration from nature (bioinspiration. Biological systems are the result of an evolutionary process and show excellent levels of performance. In this paper, we analyse the actuator as a bioinspired mechatronic system through analogies between mechatronics and biological actuating mechanisms that include hierarchical control of actuators, switched control of power flow and some transduction principles. Firstly, some biological models are introduced as a source of inspiration for setting up both actuation principles and control technologies. Secondly, a particular actuator technology, the travelling wave ultrasonic motor, is taken to illustrate this approach. Eventually, the last section draws some conclusions and points out future directions.

  15. Bioinspired silica as drug delivery systems and their biocompatibility

    DEFF Research Database (Denmark)

    Steven, Christopher R.; Busby, Grahame A.; Mather, Craig;

    2014-01-01

    Silica nanoparticles have been shown to have great potential as drug delivery systems (DDS), however, their fabrication often involves harsh chemicals and energy intensive laborious methods. This work details the employment of a bioinspired "green" method for the controlled synthesis of silica, use...... of the products to entrap and release drug molecules and their cytotoxicity in order to develop novel DDS. Bioinspired silica synthesis occurs at pH 7, room temperature and in less than 5 minutes, resulting in a rapid, cheaper and greener route. Drugs were loaded into silica during the silica formation, thus...... allowing a one step and one pot method for simultaneous silica synthesis and drug loading. We established that the drug release profile can be modulated by synthetic parameters, which can allow design of tailored DDS. A systematic investigation using a two level factorial design was adopted in order...

  16. Bioinspired Mechanical Gradients in Cellulose Nanofibril/Polymer Nanopapers.

    Science.gov (United States)

    Wang, Baochun; Benitez, Alejandro J; Lossada, Francisco; Merindol, Remi; Walther, Andreas

    2016-05-10

    Mechanical gradients are important as tough joints, for strain field engineering in printable electronics, for actuators, and for biological studies, yet they are difficult to prepare and quantitatively characterize. We demonstrate the additive fabrication of gradient bioinspired nanocomposites based on stiff, renewable cellulose nanofibrils that are bottom-up toughened via a tailor-made copolymer. Direct filament writing of different nanocomposite hydrogels in patterns, and subsequent healing of the filaments into continuous films while drying leads to a variety of linear, parabolic and striped bulk gradients. In situ digital image correlation under tensile deformation reveals important differences in the strain fields regarding asymmetry and step heights of the patterns. We envisage that merging top-down and bottom-up structuring of nanocellulose hybrids opens avenues for aperiodic and multiscale, bioinspired nanocomposites with optimized combinations of stiffness and toughness. PMID:27061218

  17. Sensitivity Analysis of a Bioinspired Refractive Index Based Gas Sensor

    Institute of Scientific and Technical Information of China (English)

    Yang Gao; Qi Xia; Guanglan Liao; Tielin Shi

    2011-01-01

    It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In the present study, Rigorous Coupled-Wave Analysis (RCWA) was described briefly, and the partial derivative of optical reflection efficiency with respect to the refractive index of ambient gas, i.e., sensitivity of the sensor, was derived based on RCWA. A bioinspired grating model was constructed by mimicking the nanostructure on the ground scale of Morpho didius butterfly's wing. The analytical sensitivity was verified and the effect of the grating shape on the reflection spectra and its sensitivity were discussed. The results show that by tuning shape parameters of the grating, we can obtain desired reflection spectra and sensitivity, which can be applied to the design of the bioinspired refractive index based gas sensor.

  18. Biotechnologies and bioinspired materials for the construction industry : an overview

    OpenAIRE

    Torgal, Fernando Pacheco; J. A. Labrincha

    2014-01-01

    Published online: 16 Oct 2013 Looking back to less than three centuries of industrialization, responsible for alarming levels of pollution and consumption of non-renewable resources that has led to the exhaustion of the earth’s capacity, the humankind only now begins to grasp the overwhelming potential of natural systems. During almost 40 million centuries, Nature has developed materials and processes with optimal performance which are totally biodegradable. Analysis of bioinspire...

  19. Hemodynamic aspects of reduced platelet adhesion on bioinspired microstructured surfaces.

    Science.gov (United States)

    Pham, Tam Thanh; Wiedemeier, Stefan; Maenz, Stefan; Gastrock, Gunter; Settmacher, Utz; Jandt, Klaus D; Zanow, Jürgen; Lüdecke, Claudia; Bossert, Jörg

    2016-09-01

    Occlusion by thrombosis due to the absence of the endothelial cell layer is one of the most frequent causes of failure of artificial vascular grafts. Bioinspired surface structures may have a potential to reduce the adhesion of platelets contributing to hemostasis. The aim of this study was to investigate the hemodynamic aspects of platelet adhesion, the main cause of thrombosis, on bioinspired microstructured surfaces mimicking the endothelial cell morphology. We tested the hypothesis that platelet adhesion is statistically significantly reduced on bioinspired microstructured surfaces compared to unstructured surfaces. Platelet adhesion as a function of the microstructure dimensions was investigated under flow conditions on polydimethylsiloxane (PDMS) surfaces by a combined experimental and theoretical approach. Platelet adhesion was statistically significantly reduced (by up to 78%; p≤0.05) on the microstructured PDMS surfaces compared to that on the unstructured control surface. Finite element method (FEM) simulations of blood flow dynamic revealed a micro shear gradient on the microstructure surfaces which plays a pivotal role in reducing platelet adhesion. On the surfaces with the highest differences of the shear stress between the top of the microstructures and the ground areas, platelet adhesion was reduced most. In addition, the microstructures help to reduce the interaction strength between fluid and surfaces, resulting in a larger water contact angle but no higher resistance to flow compared to the unstructured surface. These findings provide new insight into the fundamental mechanisms of reducing platelet adhesion on microstructured bioinspired surfaces and may lay the basis for the development of innovative next generation artificial vascular grafts with reduced risk of thrombosis. PMID:27239904

  20. Bio-inspired nanomaterials and their applications as antimicrobial agents

    OpenAIRE

    Smita Sachin Zinjarde

    2012-01-01

    In the recent decades, the interdisciplinary field of nanotechnology has expanded extensively. A variety of nanoparticles (NPs) have been used for a number of specialized applications. In this era facing a major problem of microorganisms developing antibiotic resistance, NPs are a lucrative option. Most physical and chemical processes of NP synthesis are associated with drawbacks and bio-inspired NPs have now become popular. This review summarizes the recent developments on the biosynthesis, ...

  1. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    OpenAIRE

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structur...

  2. Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications

    OpenAIRE

    Mei Feng; Yang Lu; Yuan Yang; Meng Zhang; Yun-Jun Xu; Huai-Ling Gao; Liang Dong; Wei-Ping Xu; Shu-Hong Yu

    2013-01-01

    Large scale greigite with uniform dimensions has stimulated significant demands for applications such as hyperthermia, photovoltaics, medicine and cell separation, etc. However, the inhomogeneity and hydrophobicity for most of the as prepared greigite crystals has limited their applications in biomedicine. Herein, we report a green chemical method utilizing β-cyclodextrin (β-CD) and polyethylene glycol (PEG) to synthesize bioinspired greigite (Fe3S4) magnetic nanocrystals (GMNCs) with similar...

  3. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  4. Bio-inspired design of dental multilayers: experiments and model.

    Science.gov (United States)

    Niu, Xinrui; Rahbar, Nima; Farias, Stephen; Soboyejo, Wole

    2009-12-01

    This paper combines experiments, simulations and analytical modeling that are inspired by the stress reductions associated with the functionally graded structures of the dentin-enamel-junctions (DEJs) in natural teeth. Unlike conventional crown structures in which ceramic crowns are bonded to the bottom layer with an adhesive layer, real teeth do not have a distinct "adhesive layer" between the enamel and the dentin layers. Instead, there is a graded transition from enamel to dentin within a approximately 10 to 100 microm thick regime that is called the Dentin Enamel Junction (DEJ). In this paper, a micro-scale, bio-inspired functionally graded structure is used to bond the top ceramic layer (zirconia) to a dentin-like ceramic-filled polymer substrate. The bio-inspired functionally graded material (FGM) is shown to exhibit higher critical loads over a wide range of loading rates. The measured critical loads are predicted using a rate dependent slow crack growth (RDEASCG) model. The implications of the results are then discussed for the design of bio-inspired dental multilayers. PMID:19716103

  5. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  6. Bio-inspired nanomaterials and their applications as antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Smita Sachin Zinjarde

    2012-01-01

    Full Text Available In the recent decades, the interdisciplinary field of nanotechnology has expanded extensively. A variety of nanoparticles (NPs have been used for a number of specialized applications. In this era facing a major problem of microorganisms developing antibiotic resistance, NPs are a lucrative option. Most physical and chemical processes of NP synthesis are associated with drawbacks and bio-inspired NPs have now become popular. This review summarizes the recent developments on the biosynthesis, characterization, and applications of NPs with particular reference to their use as antimicrobial agents. Reviewed here is the synthesis of gold and silver NPs (AgNPs by a variety of biological forms and biomolecules as well as their effectiveness toward different fungal and bacterial pathogens. The use of gold NPs (bio-inspired by plants, fungi, and bacteria and AgNPs, synthesized by carbohydrates (of plant, animal, and microbial origin, plant parts (bark, callus, leaves, peels, and tubers, fungi, and bacteria have been highlighted. In addition, the use of zinc oxide NPs (although not bio-inspired as novel antimicrobial agents have also been discussed.

  7. Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses.

    Science.gov (United States)

    Wolff, Annalena; Hetaba, Walid; Wißbrock, Marco; Löffler, Stefan; Mill, Nadine; Eckstädt, Katrin; Dreyer, Axel; Ennen, Inga; Sewald, Norbert; Schattschneider, Peter; Hütten, Andreas

    2014-01-01

    Oriented attachment has created a great debate about the description of crystal growth throughout the last decade. This aggregation-based model has successfully described biomineralization processes as well as forms of inorganic crystal growth, which could not be explained by classical crystal growth theory. Understanding the nanoparticle growth is essential since physical properties, such as the magnetic behavior, are highly dependent on the microstructure, morphology and composition of the inorganic crystals. In this work, the underlying nanoparticle growth of cobalt ferrite nanoparticles in a bioinspired synthesis was studied. Bioinspired syntheses have sparked great interest in recent years due to their ability to influence and alter inorganic crystal growth and therefore tailor properties of nanoparticles. In this synthesis, a short synthetic version of the protein MMS6, involved in nanoparticle formation within magnetotactic bacteria, was used to alter the growth of cobalt ferrite. We demonstrate that the bioinspired nanoparticle growth can be described by the oriented attachment model. The intermediate stages proposed in the theoretical model, including primary-building-block-like substructures as well as mesocrystal-like structures, were observed in HRTEM measurements. These structures display regions of substantial orientation and possess the same shape and size as the resulting discs. An increase in orientation with time was observed in electron diffraction measurements. The change of particle diameter with time agrees with the recently proposed kinetic model for oriented attachment. PMID:24605288

  8. Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses

    Directory of Open Access Journals (Sweden)

    Annalena Wolff

    2014-02-01

    Full Text Available Oriented attachment has created a great debate about the description of crystal growth throughout the last decade. This aggregation-based model has successfully described biomineralization processes as well as forms of inorganic crystal growth, which could not be explained by classical crystal growth theory. Understanding the nanoparticle growth is essential since physical properties, such as the magnetic behavior, are highly dependent on the microstructure, morphology and composition of the inorganic crystals. In this work, the underlying nanoparticle growth of cobalt ferrite nanoparticles in a bioinspired synthesis was studied. Bioinspired syntheses have sparked great interest in recent years due to their ability to influence and alter inorganic crystal growth and therefore tailor properties of nanoparticles. In this synthesis, a short synthetic version of the protein MMS6, involved in nanoparticle formation within magnetotactic bacteria, was used to alter the growth of cobalt ferrite. We demonstrate that the bioinspired nanoparticle growth can be described by the oriented attachment model. The intermediate stages proposed in the theoretical model, including primary-building-block-like substructures as well as mesocrystal-like structures, were observed in HRTEM measurements. These structures display regions of substantial orientation and possess the same shape and size as the resulting discs. An increase in orientation with time was observed in electron diffraction measurements. The change of particle diameter with time agrees with the recently proposed kinetic model for oriented attachment.

  9. Introducing Students to Bio-Inspiration and Biomimetic Design: A Workshop Experience

    Science.gov (United States)

    Santulli, Carlo; Langella, Carla

    2011-01-01

    In recent years, bio-inspired approach to design has gained considerable interest between designers, engineers and end-users. However, there are difficulties in introducing bio-inspiration concepts in the university curriculum in that they involve multi-disciplinary work, which can only possibly be successfully delivered by a team with integrated…

  10. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  11. Potentiation of the Cytotoxic Activity of Copper by Polyphosphate on Biofilm-Producing Bacteria: A Bioinspired Approach

    Directory of Open Access Journals (Sweden)

    Heinz C. Schröder

    2012-10-01

    Full Text Available Adhesion and accumulation of organic molecules represent an ecologically and economically massive problem. Adhesion of organic molecules is followed by microorganisms, unicellular organisms and plants together with their secreted soluble and structure-associated byproducts, which damage unprotected surfaces of submerged marine structures, including ship hulls and heat exchangers of power plants. This is termed biofouling. The search for less toxic anti-biofilm strategies has intensified since the ban of efficient and cost-effective anti-fouling paints, enriched with the organotin compound tributyltin, not least because of our finding of the ubiquitous toxic/pro-apoptotic effects displayed by this compound [1]. Our proposed bio-inspired approach for controlling, suppressing and interfluencing the dynamic biofouling complex uses copper as one component in an alternative anti-fouling system. In order to avoid and overcome the potential resistance against copper acquired by microorganisms we are using the biopolymer polyphosphate (polyP as a further component. Prior to being functionally active, polyP has to be hydrolyzed to ortho-phosphate which in turn can bind to copper and export the toxic compound out of the cell. It is shown here that inhibition of the hydrolysis of polyP by the bisphosphonate DMDP strongly increases the toxic effect of copper towards the biofilm-producing Streptococcus mutans in a synergistic manner. This bisphosphonate not only increases the copper-caused inhibition of cell growth but also of biofilm production by the bacteria. The defensin-related ASABF, a marine toxin produced by the sponge Suberites domuncula, caused only an additive inhibitory effect in combination with copper. We conclude that the new strategy, described here, has a superior anti-biofilm potential and can be considered as a novel principle for developing bio-inspired antifouling compounds, or cocktails of different compounds, in the future.

  12. Potentiation of the cytotoxic activity of copper by polyphosphate on biofilm-producing bacteria: a bioinspired approach.

    Science.gov (United States)

    Müller, Werner E G; Wang, Xiaohong; Guo, Yue-Wei; Schröder, Heinz C

    2012-11-01

    Adhesion and accumulation of organic molecules represent an ecologically and economically massive problem. Adhesion of organic molecules is followed by microorganisms, unicellular organisms and plants together with their secreted soluble and structure-associated byproducts, which damage unprotected surfaces of submerged marine structures, including ship hulls and heat exchangers of power plants. This is termed biofouling. The search for less toxic anti-biofilm strategies has intensified since the ban of efficient and cost-effective anti-fouling paints, enriched with the organotin compound tributyltin, not least because of our finding of the ubiquitous toxic/pro-apoptotic effects displayed by this compound. Our proposed bio-inspired approach for controlling, suppressing and interfluencing the dynamic biofouling complex uses copper as one component in an alternative anti-fouling system. In order to avoid and overcome the potential resistance against copper acquired by microorganisms we are using the biopolymer polyphosphate (polyP) as a further component. Prior to being functionally active, polyP has to be hydrolyzed to ortho-phosphate which in turn can bind to copper and export the toxic compound out of the cell. It is shown here that inhibition of the hydrolysis of polyP by the bisphosphonate DMDP strongly increases the toxic effect of copper towards the biofilm-producing Streptococcus mutans in a synergistic manner. This bisphosphonate not only increases the copper-caused inhibition of cell growth but also of biofilm production by the bacteria. The defensin-related ASABF, a marine toxin produced by the sponge Suberites domuncula, caused only an additive inhibitory effect in combination with copper. We conclude that the new strategy, described here, has a superior anti-biofilm potential and can be considered as a novel principle for developing bio-inspired antifouling compounds, or cocktails of different compounds, in the future. PMID:23203265

  13. Bio-inspired method and system for actionable intelligence

    Science.gov (United States)

    Khosla, Deepak; Chelian, Suhas E.

    2009-05-01

    This paper describes a bio-inspired VISion based actionable INTelligence system (VISINT) that provides automated capabilities to (1) understand objects, patterns, events and behaviors in vision data; (2) translate this understanding into timely recognition of novel and anomalous entities; and (3) discover underlying hierarchies and relationships between disparate labels entered by multiple users to provide a consistent data representation. VISINT is both a system and a novel collection of novel bio-inspired algorithms/modules. These modules can be used independently for various aspects of the actionable intelligence problem or sequenced together for an end-to-end actionable intelligence system. The algorithms can be useful in many other applications such as scene understanding, behavioral analysis, automatic surveillance systems, etc. The bio-inspired algorithms are a novel combination of hierarchical spatial and temporal networks based on the Adaptive Resonance Theory (ART). The novel aspects of this work are that it is an end-to-end system for actionable intelligence that combines existing and novel implementations of various modules in innovative ways to develop a system concept for actionable intelligence. Although there are other algorithms/implementations of several of the modules in VISINT, they suffer from various limitations and often system integration is not considered. The overall VISINT system can be viewed an incremental learning system where no offline training is required and data from multiple sources and times can be seamlessly integrated. The user is in the loop, but due to the semi-supervised nature of the underlying algorithms, only significant variations of entities, not all false alarms, are shown to the user. It does not forget the past even with new learning. While VISINT is designed as a vision-based system, it could also work with other kinds of sensor data that can recognize and locate individual objects in the scene. Beyond that stage

  14. Bioinspired Artificial Sodium and Potassium Ion Channels.

    Science.gov (United States)

    Rodríguez-Vázquez, Nuria; Fuertes, Alberto; Amorín, Manuel; Granja, Juan R

    2016-01-01

    In Nature, all biological systems present a high level of compartmentalization in order to carry out a wide variety of functions in a very specific way. Hence, they need ways to be connected with the environment for communication, homeostasis equilibrium, nutrition, waste elimination, etc. The biological membranes carry out these functions; they consist of physical insulating barriers constituted mainly by phospholipids. These amphipathic molecules spontaneously aggregate in water to form bilayers in which the polar groups are exposed to the aqueous media while the non-polar chains self-organize by aggregating to each other to stay away from the aqueous media. The insulating properties of membranes are due to the formation of a hydrophobic bilayer covered at both sides by the hydrophilic phosphate groups. Thus, lipophilic molecules can permeate the membrane freely, while the small charged or very hydrophilic molecules require the assistance of other membrane components in order to overcome the energetic cost implied in crossing the non-polar region of the bilayer. Most of the large polar species (such as oligosaccharides, polypeptides or nucleic acids) cross into and out of the cell via endocytosis and exocytosis, respectively. Nature has created a series of systems (carriers and pores) in order to control the balance of small hydrophilic molecules and ions. The most important structures to achieve these goals are the ionophoric proteins that include the channel proteins, such as the sodium and potassium channels, and ionic transporters, including the sodium/potassium pumps or calcium/sodium exchangers among others. Inspired by these, scientists have created non-natural synthetic transporting structures to mimic the natural systems. The progress in the last years has been remarkable regarding the efficient transport of Na(+) and K(+) ions, despite the fact that the selectivity and the ON/OFF state of the non-natural systems remain a present and future challenge

  15. Bioinspired peptide nanotubes: Deposition technology and physical properties

    International Nuclear Information System (INIS)

    Proteins and peptides have the intrinsic ability to self-assemble into elongated solid nanofibrils, which give rise to amyloid progressive neurodegenerative diseases (Alzheimer's, Parkinson, etc.). It has been found that of the core recognition motif of Aβ peptide is the diphenylalanine element. The diphenylalanine peptide can self-assemble into well-ordered peptide nanotubes (PNT). In this paper we report on our newly developed process-vapor deposition of PNT and 'bottom-up' nanotechnological techniques of PNT patterning. Study of several physical properties of PNT such as optical and electrochemical are presented. The results may lead to the development of a new generation of PNT-based bioinspired functional nanodevices.

  16. Bioinspired Design of Building Materials for Blast and Ballistic Protection

    Directory of Open Access Journals (Sweden)

    Yu-Yan Sun

    2016-01-01

    Full Text Available Nacre in abalone shell exhibits high toughness despite the brittle nature of its major constituent (i.e., aragonite. Its specific structure is a major contributor to the energy absorption capacity of nacre. This paper reviews the mechanisms behind the performance of nacre under shear, uniaxial tension, compression, and bending conditions. The remarkable combination of stiffness and toughness on nacre can motivate the development of bioinspired building materials for impact resistance applications, and the possible toughness designs of cement-based and clay-based composite materials with a layered and staggered structure were discussed.

  17. Bio-Inspired Meta-Heuristics for Emergency Transportation Problems

    Directory of Open Access Journals (Sweden)

    Min-Xia Zhang

    2014-02-01

    Full Text Available Emergency transportation plays a vital role in the success of disaster rescue and relief operations, but its planning and scheduling often involve complex objectives and search spaces. In this paper, we conduct a survey of recent advances in bio-inspired meta-heuristics, including genetic algorithms (GA, particle swarm optimization (PSO, ant colony optimization (ACO, etc., for solving emergency transportation problems. We then propose a new hybrid biogeography-based optimization (BBO algorithm, which outperforms some state-of-the-art heuristics on a typical transportation planning problem.

  18. Phosphate metabolism and vitamin D

    OpenAIRE

    Fukumoto, Seiji

    2014-01-01

    Phosphate plays many essential roles in our body. To accomplish these functions, serum phosphate needs to be maintained in a certain range. Serum phosphate level is regulated by intestinal phosphate absorption, renal phosphate handling and equilibrium of extracellular phosphate with that in bone or intracellular fluid. Several hormones such as parathyroid hormone, 1,25-dihydroxyvitamin D (1,25(OH)2D) and fibroblast growth factor 23 (FGF23) regulate serum phosphate by modulating intestinal pho...

  19. Antibacterial surfaces developed from bio-inspired approaches.

    Science.gov (United States)

    Glinel, K; Thebault, P; Humblot, V; Pradier, C M; Jouenne, T

    2012-05-01

    Prevention of bacterial adhesion and biofilm formation on the surfaces of materials is a topic of major medical and societal importance. Various synthetic approaches based on immobilization or release of bactericidal substances such as metal derivatives, polyammonium salts and antibiotics were extensively explored to produce antibacterial coatings. Although providing encouraging results, these approaches suffer from the use of active agents which may be associated with side-effects such as cytotoxicity, hypersensibility, inflammatory responses or the progressive alarming phenomenon of antibiotic resistance. In addition to these synthetic approaches, living organisms, e.g. animals and plants, have developed fascinating strategies over millions of years to prevent efficiently the colonization of their surfaces by pathogens. These strategies have been recently mimicked to create a new generation of bio-inspired biofilm-resistant surfaces. In this review, we discuss some of these bio-inspired methods devoted to the development of antibiofilm surfaces. We describe the elaboration of antibacterial coatings based on natural bactericidal substances produced by living organisms such as antimicrobial peptides, bacteriolytic enzymes and essential oils. We discuss also the development of layers mimicking algae surfaces and based on anti-quorum-sensing molecules which affect cell-to-cell communication. Finally, we report on very recent strategies directly inspired from marine animal life and based on surface microstructuring. PMID:22289644

  20. Cytocompatibility of bio-inspired silicon carbide ceramics.

    Science.gov (United States)

    López-Alvarez, M; de Carlos, A; González, P; Serra, J; León, B

    2010-10-01

    Due to its good mechanical and biochemical properties and, also, because of its unique interconnected porosity, bio-inspired silicon carbide (bioSiC) can be considered as a promising material for biomedical applications, including controlled drug delivery devices and tissue engineering scaffolds. This innovative material is produced by molten-Si infiltration of carbon templates, obtained by controlled pyrolysis of vegetable precursors. The final SiC ceramic presents a porous-interconnected microstructure that mimics the natural hierarchical structure of bone tissue and allows the internal growth of tissue, as well as favors angiogenesis. In the present work, the in vitro cytocompatibility of the bio-inspired SiC ceramics obtained, in this case, from the tree sapelli (Entandrophragma cylindricum) was evaluated. The attachment, spreading, cytoskeleton organization, proliferation, and mineralization of the preosteoblastic cell line MC3T3-E1 were analyzed for up to 28 days of incubation by scanning electron microscopy, interferometric profilometry, confocal laser scanning microscopy, MTT assay, as well as red alizarin staining and quantification. Cells seeded onto these ceramics were able to attach, spread, and proliferate properly with the maintenance of the typical preosteoblastic morphology throughout the time of culture. A certain level of mineralization on the surface of the sapelli-based SiC ceramics is observed. These results demonstrated the cytocompatibility of this porous and hierarchical material. PMID:20737554

  1. Fast nastic motion of plants and bioinspired structures.

    Science.gov (United States)

    Guo, Q; Dai, E; Han, X; Xie, S; Chao, E; Chen, Z

    2015-09-01

    The capability to sense and respond to external mechanical stimuli at various timescales is essential to many physiological aspects in plants, including self-protection, intake of nutrients and reproduction. Remarkably, some plants have evolved the ability to react to mechanical stimuli within a few seconds despite a lack of muscles and nerves. The fast movements of plants in response to mechanical stimuli have long captured the curiosity of scientists and engineers, but the mechanisms behind these rapid thigmonastic movements are still not understood completely. In this article, we provide an overview of such thigmonastic movements in several representative plants, including Dionaea, Utricularia, Aldrovanda, Drosera and Mimosa. In addition, we review a series of studies that present biomimetic structures inspired by fast-moving plants. We hope that this article will shed light on the current status of research on the fast movements of plants and bioinspired structures and also promote interdisciplinary studies on both the fundamental mechanisms of plants' fast movements and biomimetic structures for engineering applications, such as artificial muscles, multi-stable structures and bioinspired robots. PMID:26354828

  2. Self-shaping composites with programmable bioinspired microstructures

    Science.gov (United States)

    Erb, Randall M.; Sander, Jonathan S.; Grisch, Roman; Studart, André R.

    2013-04-01

    Shape change is a prevalent function apparent in a diverse set of natural structures, including seed dispersal units, climbing plants and carnivorous plants. Many of these natural materials change shape by using cellulose microfibrils at specific orientations to anisotropically restrict the swelling/shrinkage of their organic matrices upon external stimuli. This is in contrast to the material-specific mechanisms found in synthetic shape-memory systems. Here we propose a robust and universal method to replicate this unusual shape-changing mechanism of natural systems in artificial bioinspired composites. The technique is based upon the remote control of the orientation of reinforcing inorganic particles within the composite using a weak external magnetic field. Combining this reinforcement orientational control with swellable/shrinkable polymer matrices enables the creation of composites whose shape change can be programmed into the material’s microstructure rather than externally imposed. Such bioinspired approach can generate composites with unusual reversibility, twisting effects and site-specific programmable shape changes.

  3. Bio-Inspired Cyber Security for Smart Grid Deployments

    Energy Technology Data Exchange (ETDEWEB)

    McKinnon, Archibald D.; Thompson, Seth R.; Doroshchuk, Ruslan A.; Fink, Glenn A.; Fulp, Errin W.

    2013-05-01

    mart grid technologies are transforming the electric power grid into a grid with bi-directional flows of both power and information. Operating millions of new smart meters and smart appliances will significantly impact electric distribution systems resulting in greater efficiency. However, the scale of the grid and the new types of information transmitted will potentially introduce several security risks that cannot be addressed by traditional, centralized security techniques. We propose a new bio-inspired cyber security approach. Social insects, such as ants and bees, have developed complex-adaptive systems that emerge from the collective application of simple, light-weight behaviors. The Digital Ants framework is a bio-inspired framework that uses mobile light-weight agents. Sensors within the framework use digital pheromones to communicate with each other and to alert each other of possible cyber security issues. All communication and coordination is both localized and decentralized thereby allowing the framework to scale across the large numbers of devices that will exist in the smart grid. Furthermore, the sensors are light-weight and therefore suitable for implementation on devices with limited computational resources. This paper will provide a brief overview of the Digital Ants framework and then present results from test bed-based demonstrations that show that Digital Ants can identify a cyber attack scenario against smart meter deployments.

  4. Bio-inspired antireflective hetero-nanojunctions with enhanced photoactivity

    Science.gov (United States)

    Qi, Dianpeng; Zheng, Liyan; Cao, Xuebo; Jiang, Yueyue; Xu, Hongbo; Zhang, Yanyan; Yang, Bingjie; Sun, Yinghui; Hng, Huey Hoon; Lu, Nan; Chi, Lifeng; Chen, Xiaodong

    2013-11-01

    A bio-inspired antireflective hetero-nanojunction structure has been fabricated by the hydrothermal growth of ZnO nanorods on silicon micro-pyramids. It has been shown that this structure suppresses light reflection more effectively resulting in a high photocurrent response and good charge separation simultaneously. The strategy provides a means to enhance solar energy conversion.A bio-inspired antireflective hetero-nanojunction structure has been fabricated by the hydrothermal growth of ZnO nanorods on silicon micro-pyramids. It has been shown that this structure suppresses light reflection more effectively resulting in a high photocurrent response and good charge separation simultaneously. The strategy provides a means to enhance solar energy conversion. Electronic supplementary information (ESI) available: HRTEM image and XRD pattern of a ZnO nanorod; schematic representation of the photoanode behavior, as well as the concentration change of rhodamine 6G through the photodegradation process over many repeats. See DOI: 10.1039/c3nr04011a

  5. Heterogeneous sensor networks: a bio-inspired overlay architecture

    Science.gov (United States)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Klein, Daniel; Isaacs, Jason; Venkateswaran, Sriram; Pham, Tien

    2010-04-01

    Teledyne Scientific Company, the University of California at Santa Barbara (UCSB) and the Army Research Lab are developing technologies for automated data exfiltration from heterogeneous sensor networks through the Institute for Collaborative Biotechnologies (ICB). Unmanned air vehicles (UAV) provide an effective means to autonomously collect data from unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous data-driven collection routes. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data across heterogeneous sensors. A fast and accurate method has been developed for routing UAVs and localizing an event by fusing data from a sparse number of UGSs; it leverages a bio-inspired technique based on chemotaxis or the motion of bacteria seeking nutrients in their environment. The system was implemented and successfully tested using a high level simulation environment using a flight simulator to emulate a UAV. A field test was also conducted in November 2009 at Camp Roberts, CA using a UAV provided by AeroMech Engineering. The field test results showed that the system can detect and locate the source of an acoustic event with an accuracy of about 3 meters average circular error.

  6. Discussion about magnesium phosphating

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-07-01

    Full Text Available The paper describes results from recently published research focused on production of non-conventional magnesium phosphate Mg3(PO42・4H2O – bobierrite, or MgHPO4・3H2O – newberyite coating for both magnesium alloys and/or mild steel. This new kind of coating is categorized in the context of current state of phosphating technology and its potential advantages and crystal structure is discussed. At the same time, the suitable comparison techniques for magnesium phosphate coating and conventional zinc phosphate coating are discussed.

  7. Bio-Inspired Autonomous Communications Systems with Anomaly Detection Monitoring Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and demonstrate BioComm, a bio-inspired autonomous communications system (ACS) aimed at dynamically reconfiguring and redeploying autonomous...

  8. Robust, Self-Contained and Bio-Inspired Shear Sensor Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a robust, bio-inspired, and self-contained sensor array for the measurement of shear stress. The proposed system uses commercially...

  9. Fifth International Conference on Innovations in Bio-Inspired Computing and Applications

    CERN Document Server

    Abraham, Ajith; Snášel, Václav

    2014-01-01

    This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at IBICA2014, the 5th International Conference on Innovations in Bio-inspired Computing and Applications. The aim of IBICA 2014 was to provide a platform for world research leaders and practitioners, to discuss the full spectrum of current theoretical developments, emerging technologies, and innovative applications of Bio-inspired Computing. Bio-inspired Computing remains to be one of the most exciting research areas, and it is continuously demonstrating exceptional strength in solving complex real life problems. The main driving force of the conference was to further explore the intriguing potential of Bio-inspired Computing. IBICA 2014 was held in Ostrava, Czech Republic and hosted by the VSB - Technical University of Ostrava.

  10. 4th International Conference on Innovations in Bio-Inspired Computing and Applications

    CERN Document Server

    Krömer, Pavel; Snášel, Václav

    2014-01-01

    This volume of Advances in Intelligent Systems and Computing contains accepted papers presented at IBICA2013, the 4th International Conference on Innovations in Bio-inspired Computing and Applications. The aim of IBICA 2013 was to provide a platform for world research leaders and practitioners, to discuss the full spectrum of current theoretical developments, emerging technologies, and innovative applications of Bio-inspired Computing. Bio-inspired Computing is currently one of the most exciting research areas, and it is continuously demonstrating exceptional strength in solving complex real life problems. The main driving force of the conference is to further explore the intriguing potential of Bio-inspired Computing. IBICA 2013 was held in Ostrava, Czech Republic and hosted by the VSB - Technical University of Ostrava.

  11. 2012 BIOINSPIRED MATERIALS GORDON RESEARCH CONFERENCE, JUNE 24-29, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Chilkoti, Ashutosh

    2013-06-29

    The emerging, interdisciplinary field of Bioinspired Materials focuses on developing a fundamental understanding of the synthesis, directed self-assembly and hierarchical organization of natural occurring materials, and uses this understanding to engineer new bioinspired artificial materials for diverse applications. The inaugural 2012 Gordon Conference on Bioinspired Materials seeks to capture the excitement of this burgeoning field by a cutting-edge scientific program and roster of distinguished invited speakers and discussion leaders who will address the key issues in the field. The Conference will feature a wide range of topics, such as materials and devices from DNA, reprogramming the genetic code for design of new materials, peptide, protein and carbohydrate based materials, biomimetic systems, complexity in self-assembly, and biomedical applications of bioinspired materials.

  12. A new bio-inspired decision chain for UAV sense-and-avoid applications

    Science.gov (United States)

    Fallavollita, P.; Cimini, F.; Balsi, M.; Esposito, S.; Jankowski, S.

    This work, after a preliminary feasibility study using a Matlab environment simulation, defines the design and the real hardware testing of a new bio-inspired decision chain for UAV sense-and-avoid applications. Relying on a single and cheap visible camera sensor, computer vision, bio-inspired and automatic decision algorithms have been adopted and implemented on a specific ARM embedded platform through C++/OpenCV coding. A first data set processing, really captured on flight, has been presented.

  13. A bio-inspired test system for bionic above-knee prosthetic knees

    Science.gov (United States)

    Wang, Dai-Hua; Xu, Lei; Fu, Qiang; Yuan, Gang

    2013-04-01

    Recently, prosthetic knees in the developing stage are usually tested by installing them on amputees' stumps directly or on above-knee prostheses (AKPs) test platforms. Although amputees can fully provide the actual motion state of the thigh, immature prosthetic knees may hurt amputees. For AKPs test platforms, it just can partly simulate the actual motion state of the thigh with limitation of the motion curve of the thigh, the merits or demerits of newly developed bionic above-knee prosthetic knees cannot be accessed thoroughly. Aiming at the defects of two testing methods, this paper presents a bio-inspired AKPs test system for bionic above-knee prosthetic knees. The proposed bio-inspired AKPs test system is composed of a AKPs test platform, a control system, and a bio-inspired system. The AKPs test platform generates the motion of the thigh simulation mechanism (TSM) via two screw pairs with servo motors. The bio-inspired system includes the tester and the bio-inspired sensor wore by the tester. The control system, which is inspired by the bio-inspired system, generates the control command signal to move the TSM of the AKPs test platform. The bio-inspired AKPs test system is developed and experimentally tested with a commercially available prosthetic knee. The research results show that the bio-inspired AKPs test system can not only ensure the safety of the testers, but also track all kinds of the actual motion state of the thigh of the testers in real time.

  14. A Drosera-bioinspired hydrogel for catching and killing cancer cells

    OpenAIRE

    Shihui Li; Niancao Chen; Gaddes, Erin R.; Xiaolong Zhang; Cheng Dong; Yong Wang

    2015-01-01

    A variety of bioinspired materials have been successfully synthesized to mimic the sophisticated structures or functions of biological systems. However, it is still challenging to develop materials with multiple functions that can be performed synergistically or sequentially. The purpose of this work was to demonstrate a novel bioinspired hydrogel that can interact with cancer cells, functionally similar to Drosera in catching and killing prey. This hydrogel had two layers with the top one fu...

  15. Editorial:Mechanics of biological and bio-inspired materials%Editorial: Mechanics of biological and bio-inspired materials

    Institute of Scientific and Technical Information of China (English)

    Baohua Jia

    2012-01-01

    The field of mechanics of biological and bio-inspired materials underwent an exciting development over the past several years,which made it stand at the cutting edge of both engineering mechanics and biomechanics.As an intriguing interdisciplinary research field,it aims at elucidating the fundamental principles in nature's design of strong,multi-functional and smart Materials by focusing on the assembly,deformation,stability and failure of the materials.These principles should have wide applications in not only material sciences and mechanical engineering but also biomedical engineering.For instance,the knowledge in Mechanical principles of biological materials is very helpful for addressing some major challenges in material sciences and engineering.They also have the potential to provide quantitative understanding about how forces and deformation affect human being's health,diseases and treatment at tissue,cellular and molecular levels.This special subject on "mechanics of biological and bio-inspired materials" collects a few studies on recent development by leading scientists in this field.The biological materials or systems in these studies include cell,cytoskeleton (e.g.,microtubulus,intermediate filaments),lipid molecules and composite system of lipid and nanoparticle,tissue,and biological attachment systems,etc.

  16. Radioactivity of phosphate mineral products

    OpenAIRE

    Mitrović Branislava; Vitorović Gordana; Stojanović Mirjana; Vitorović Duško

    2011-01-01

    The phosphate industry is one of the biggest polluters of the environment with uranium. Different products are derived after processing phosphoric ore, such as mineral and phosphate fertilizers and phosphate mineral supplements (dicalcium-and monocalcium phosphate) for animal feeding. Phosphate mineral additives used in animal food may contain a high activity of uranium. Research in this study should provide an answer to the extent in which phosphate minera...

  17. PHOSPHATE MANAGEMENT: FY2010 RESULTS OF PHOSPHATE PRECIPITATION TESTS

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.; King, W.

    2011-04-04

    The Phosphate Management program seeks to develop treatment options for caustic phosphate solutions resulting from the caustic leaching of the bismuth phosphate sludge. The SRNL subtask investigated the precipitation of phosphate salts from caustic solutions through addition of fluoride and by crystallization. The scoping tests examined the: precipitation of phosphate by the addition of sodium fluoride to form the sodium fluorophosphate double salt, Na{sub 7}F(PO{sub 4}){sub 2} {center_dot} 19H{sub 2}O, crystallization of phosphate by reducing the temperature of saturated phosphate solutions, and combinations of precipitation and crystallization. A simplified leachate simulant was used in the study produced by dissolving sodium phosphate in 1 M to 3.5 M sodium hydroxide solutions. The results show that all three processes; precipitation with sodium fluoride, crystallization, and combined precipitation/crystallization can be effective for removing large amounts of phosphate from solution. The combined process of precipitation/crystallization showed >90% removal of phosphate at all hydroxide concentrations when cooling a non-saturated phosphate solution from 65 C to 25 C. Based on the measured solubility of sodium phosphate, pH adjustment/caustic addition will also remove large amounts of phosphate from solution (>80%). For all three processes, the phosphate concentration in the caustic solution must be managed to keep the phosphate from becoming too concentrated and thereby potentially forming a solid mass of sodium phosphate after an effective phosphate removal process.

  18. Bio-Inspired Optimization of Sustainable Energy Systems: A Review

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zheng

    2013-01-01

    Full Text Available Sustainable energy development always involves complex optimization problems of design, planning, and control, which are often computationally difficult for conventional optimization methods. Fortunately, the continuous advances in artificial intelligence have resulted in an increasing number of heuristic optimization methods for effectively handling those complicated problems. Particularly, algorithms that are inspired by the principles of natural biological evolution and/or collective behavior of social colonies have shown a promising performance and are becoming more and more popular nowadays. In this paper we summarize the recent advances in bio-inspired optimization methods, including artificial neural networks, evolutionary algorithms, swarm intelligence, and their hybridizations, which are applied to the field of sustainable energy development. Literature reviewed in this paper shows the current state of the art and discusses the potential future research trends.

  19. Bioinspired peptide nanotubes: Deposition technology and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Shklovsky, J.; Beker, P. [Department of Physical Electronics, School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Amdursky, N. [Department of Physical Electronics, School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv (Israel); Gazit, E. [Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv (Israel); Rosenman, G., E-mail: gilr@eng.tau.ac.il [Department of Physical Electronics, the School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel)

    2010-05-25

    Proteins and peptides have the intrinsic ability to self-assemble into elongated solid nanofibrils, which give rise to amyloid progressive neurodegenerative diseases (Alzheimer's, Parkinson, etc.). It has been found that of the core recognition motif of A{beta} peptide is the diphenylalanine element. The diphenylalanine peptide can self-assemble into well-ordered peptide nanotubes (PNT). In this paper we report on our newly developed process-vapor deposition of PNT and 'bottom-up' nanotechnological techniques of PNT patterning. Study of several physical properties of PNT such as optical and electrochemical are presented. The results may lead to the development of a new generation of PNT-based bioinspired functional nanodevices.

  20. Optimal Design of a Bio-Inspired Anthropocentric Shoulder Rehabilitator

    Directory of Open Access Journals (Sweden)

    S. K. Mustafa

    2006-01-01

    Full Text Available This paper presents the design of a bio-inspired anthropocentric 7-DOF wearable robotic arm for the purpose of stroke rehabilitation. The proposed arm rehabilitator synergistically utilizes the human arm structure with non-invasive kinematically under-deterministic cable-driven mechanisms to form a completely deterministic structure. It offers the advantages of being lightweight and having high dexterity. Adopting an anthropocentric design concept also allows it to conform to the human anatomical structure. The focus of this paper is on the analysis and design of the 3-DOF-shoulder module, called the shoulder rehabilitator. The design methodology is divided into three main steps: (1 performance evaluation of the cable-driven shoulder rehabilitator, (2 performance requirements of the shoulder joint based on its physiological characteristics and (3 design optimization of the shoulder rehabilitator based on shoulder joint physiological limitations. The aim is to determine a suitable configuration for the development of a shoulder rehabilitator prototype.

  1. Bio-inspired polarized skylight navigation: a review

    Science.gov (United States)

    Zhang, Xi; Wan, Yongqin; Li, Lijing

    2015-12-01

    The idea of using skylight polarization in navigation is learned from animals such as desert ants and honeybees. Various research groups have been working on the development of novel navigation systems inspired by polarized skylight. The research of background in polarized skylight navigation is introduced, and basic principle of the insects navigation is expatiated. Then, the research progress status at home and abroad in skylight polarization pattern, three bio-inspired polarized skylight navigation sensors and polarized skylight navigation are reviewed. Finally, the research focuses in the field of polarized skylight navigation are analyzed. At the same time, the trend of development and prospect in the future are predicted. It is believed that the review is helpful to people understand polarized skylight navigation and polarized skylight navigation sensors.

  2. Fast nastic motion of plants and bio-inspired structures

    CERN Document Server

    Guo, Qiaohang; Han, Xiaomin; Xie, Stephen; Chao, Eric; Chen, Zi

    2015-01-01

    The capability to sense and respond to external mechanical stimuli at various timescales is essential to many physiological aspects in plants, including self-protection, intake of nutrients, and reproduction. Remarkably, some plants have evolved the ability to react to mechanical stimuli within a few seconds despite a lack of muscles and nerves. The fast movements of plants in response to mechanical stimuli have long captured the curiosity of scientists and engineers, but the mechanisms behind these rapid thigmonastic movements still are not understood completely. In this article, we provide an overview of such thigmonastic movements in several representative plants, including Dionaea, Utricularia, Aldrovanda, Drosera, and Mimosa. In addition, we review a series of studies that present biomimetic structures inspired by fast moving plants. We hope that this article will shed light on the current status of research on the fast movements of plants and bioinspired structures and also promote interdisciplinary stu...

  3. Bioinspired Knee Joint for a Power-Assist Suit

    Directory of Open Access Journals (Sweden)

    Takehito Kikuchi

    2016-01-01

    Full Text Available Movement of the knee joint of a human includes rolling and sliding. There also exist rotations in the frontal and horizontal planes. To assist the standing movement of a human, we developed a bioinspired knee joint and torque adjustment mechanism. We evaluated the motion, torque characteristics, and stress of the developed mechanism. This joint allows deep flexion of the knee with small resistance for both the user and the device. In addition, in spite of 33% error in deep flexion, the measured torque over less than 120 degrees fits the designed torque curve. We conducted evaluation tests for a human subject. The electromyogram (EMG of musculus rectus femoris was measured during standing with or without the assistance. The result shows 30% and 63% reduction with the assistance from 100-degree and 80-degree knee angles, respectively. In addition, the proposed device reduced up to 80% of stress in the frontal plane during standing.

  4. Bioinspired Reductionistic Peptide Engineering for Exceptional Mechanical Properties

    Science.gov (United States)

    Avinash, M. B.; Raut, Devaraj; Mishra, Manish Kumar; Ramamurty, Upadrasta; Govindaraju, T.

    2015-11-01

    A simple solution-processing and self-assembly approach that exploits the synergistic interactions between multiple hydrogen bonded networks and aromatic interactions was utilized to synthesize molecular crystals of cyclic dipeptides (CDPs), whose molecular weights (~0.2 kDa) are nearly three orders of magnitude smaller than that of natural structural proteins (50-300 kDa). Mechanical properties of these materials, measured using the nanoindentation technique, indicate that the stiffness and strength are comparable and sometimes better than those of natural fibres. The measured mechanical responses were rationalized by recourse to the crystallographic structural analysis and intermolecular interactions in the self-assembled single crystals. With this work we highlight the significance of developing small molecule based bioinspired design strategies to emulate biomechanical properties. A particular advantage of the successfully demonstrated reductionistic strategy of the present work is its amenability for realistic industrial scale manufacturing of designer biomaterials with desired mechanical properties.

  5. Copper removal using bio-inspired polydopamine coated natural zeolites

    International Nuclear Information System (INIS)

    Highlights: • Natural zeolites were modified with bio-inspired polydopamine. • A 91.4% increase in Cu(II) ion adsorption capacity was observed. • Atomic absorption and neutron activation analysis gave corroborative results. • Neutron activation analysis was used to provide accurate information on 30+ elements. • Approximately 90% of the adsorbed copper could be recovered by 0.1 M HCl treatment. - Abstract: Herein, for the first time, natural clinoptilolite-rich zeolite powders modified with a bio-inspired adhesive, polydopamine (PDA), have been systematically studied as an adsorbent for copper cations (Cu(II)) from aqueous solution. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed successful grafting of PDA onto the zeolite surface. The effects of pH (2–5.5), PDA treatment time (3–24 h), contact time (0 to 24 h) and initial Cu(II) ion concentrations (1 to 500 mg dm−3) on the adsorption of Cu(II) ions were studied using atomic absorption spectroscopy (AAS) and neutron activation analysis (NAA). The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. The maximum adsorption capacities of Cu(II) were shown to be 14.93 mg g−1 for pristine natural zeolite and 28.58 mg g−1 for PDA treated zeolite powders. This impressive 91.4% increase in Cu(II) ion adsorption capacity is attributed to the chelating ability of the PDA on the zeolite surface. Furthermore studies of recyclability using NAA showed that over 50% of the adsorbed copper could be removed in mild concentrations (0.01 M or 0.1 M) of either acid or base

  6. Copper removal using bio-inspired polydopamine coated natural zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yang; Shapter, Joseph G. [Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide 5042, SA (Australia); Popelka-Filcoff, Rachel [School of Chemical and Physical Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide 5042, SA (Australia); Bennett, John W. [Centre for Nuclear Applications, Australian Nuclear Science and Technology Organisation, Lucas Heights 2234, NSW (Australia); Ellis, Amanda V., E-mail: Amanda.Ellis@flinders.edu.au [Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Sturt Road, Bedford Park, Adelaide 5042, SA (Australia)

    2014-05-01

    Highlights: • Natural zeolites were modified with bio-inspired polydopamine. • A 91.4% increase in Cu(II) ion adsorption capacity was observed. • Atomic absorption and neutron activation analysis gave corroborative results. • Neutron activation analysis was used to provide accurate information on 30+ elements. • Approximately 90% of the adsorbed copper could be recovered by 0.1 M HCl treatment. - Abstract: Herein, for the first time, natural clinoptilolite-rich zeolite powders modified with a bio-inspired adhesive, polydopamine (PDA), have been systematically studied as an adsorbent for copper cations (Cu(II)) from aqueous solution. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed successful grafting of PDA onto the zeolite surface. The effects of pH (2–5.5), PDA treatment time (3–24 h), contact time (0 to 24 h) and initial Cu(II) ion concentrations (1 to 500 mg dm{sup −3}) on the adsorption of Cu(II) ions were studied using atomic absorption spectroscopy (AAS) and neutron activation analysis (NAA). The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. The maximum adsorption capacities of Cu(II) were shown to be 14.93 mg g{sup −1} for pristine natural zeolite and 28.58 mg g{sup −1} for PDA treated zeolite powders. This impressive 91.4% increase in Cu(II) ion adsorption capacity is attributed to the chelating ability of the PDA on the zeolite surface. Furthermore studies of recyclability using NAA showed that over 50% of the adsorbed copper could be removed in mild concentrations (0.01 M or 0.1 M) of either acid or base.

  7. Bio-inspired Autonomic Structures: a middleware for Telecommunications Ecosystems

    Science.gov (United States)

    Manzalini, Antonio; Minerva, Roberto; Moiso, Corrado

    Today, people are making use of several devices for communications, for accessing multi-media content services, for data/information retrieving, for processing, computing, etc.: examples are laptops, PDAs, mobile phones, digital cameras, mp3 players, smart cards and smart appliances. One of the most attracting service scenarios for future Telecommunications and Internet is the one where people will be able to browse any object in the environment they live: communications, sensing and processing of data and services will be highly pervasive. In this vision, people, machines, artifacts and the surrounding space will create a kind of computational environment and, at the same time, the interfaces to the network resources. A challenging technological issue will be interconnection and management of heterogeneous systems and a huge amount of small devices tied together in networks of networks. Moreover, future network and service infrastructures should be able to provide Users and Application Developers (at different levels, e.g., residential Users but also SMEs, LEs, ASPs/Web2.0 Service roviders, ISPs, Content Providers, etc.) with the most appropriate "environment" according to their context and specific needs. Operators must be ready to manage such level of complication enabling their latforms with technological advanced allowing network and services self-supervision and self-adaptation capabilities. Autonomic software solutions, enhanced with innovative bio-inspired mechanisms and algorithms, are promising areas of long term research to face such challenges. This chapter proposes a bio-inspired autonomic middleware capable of leveraging the assets of the underlying network infrastructure whilst, at the same time, supporting the development of future Telecommunications and Internet Ecosystems.

  8. Bio-inspired approach for intelligent unattended ground sensors

    Science.gov (United States)

    Hueber, Nicolas; Raymond, Pierre; Hennequin, Christophe; Pichler, Alexander; Perrot, Maxime; Voisin, Philippe; Moeglin, Jean-Pierre

    2015-05-01

    Improving the surveillance capacity over wide zones requires a set of smart battery-powered Unattended Ground Sensors capable of issuing an alarm to a decision-making center. Only high-level information has to be sent when a relevant suspicious situation occurs. In this paper we propose an innovative bio-inspired approach that mimics the human bi-modal vision mechanism and the parallel processing ability of the human brain. The designed prototype exploits two levels of analysis: a low-level panoramic motion analysis, the peripheral vision, and a high-level event-focused analysis, the foveal vision. By tracking moving objects and fusing multiple criteria (size, speed, trajectory, etc.), the peripheral vision module acts as a fast relevant event detector. The foveal vision module focuses on the detected events to extract more detailed features (texture, color, shape, etc.) in order to improve the recognition efficiency. The implemented recognition core is able to acquire human knowledge and to classify in real-time a huge amount of heterogeneous data thanks to its natively parallel hardware structure. This UGS prototype validates our system approach under laboratory tests. The peripheral analysis module demonstrates a low false alarm rate whereas the foveal vision correctly focuses on the detected events. A parallel FPGA implementation of the recognition core succeeds in fulfilling the embedded application requirements. These results are paving the way of future reconfigurable virtual field agents. By locally processing the data and sending only high-level information, their energy requirements and electromagnetic signature are optimized. Moreover, the embedded Artificial Intelligence core enables these bio-inspired systems to recognize and learn new significant events. By duplicating human expertise in potentially hazardous places, our miniature visual event detector will allow early warning and contribute to better human decision making.

  9. Metal-phosphate binders

    Science.gov (United States)

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  10. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity

    OpenAIRE

    Brown, Ronald B; Razzaque, Mohammed S

    2015-01-01

    Phosphate homeostasis is coordinated and regulated by complex cross-organ talk through delicate hormonal networks. Parathyroid hormone (PTH), secreted in response to low serum calcium, has an important role in maintaining phosphate homeostasis by influencing renal synthesis of 1,25-dihydroxyvitamin D, thereby increasing intestinal phosphate absorption. Moreover, PTH can increase phosphate efflux from bone and contribute to renal phosphate homeostasis through phosphaturic effects. In addition,...

  11. A Protocol for Bioinspired Design: A Ground Sampler Based on Sea Urchin Jaws.

    Science.gov (United States)

    Frank, Michael B; Naleway, Steven E; Wirth, Taylor S; Jung, Jae-Young; Cheung, Charlene L; Loera, Faviola B; Medina, Sandra; Sato, Kirk N; Taylor, Jennifer R A; McKittrick, Joanna

    2016-01-01

    Bioinspired design is an emerging field that takes inspiration from nature to develop high-performance materials and devices. The sea urchin mouthpiece, known as the Aristotle's lantern, is a compelling source of bioinspiration with an intricate network of musculature and calcareous teeth that can scrape, cut, chew food and bore holes into rocky substrates. We describe the bioinspiration process as including animal observation, specimen characterization, device fabrication and mechanism bioexploration. The last step of bioexploration allows for a deeper understanding of the initial biology. The design architecture of the Aristotle's lantern is analyzed with micro-computed tomography and individual teeth are examined with scanning electron microscopy to identify the microstructure. Bioinspired designs are fabricated with a 3D printer, assembled and tested to determine the most efficient lantern opening and closing mechanism. Teeth from the bioinspired lantern design are bioexplored via finite element analysis to explain from a mechanical perspective why keeled tooth structures evolved in the modern sea urchins we observed. This circular approach allows for new conclusions to be drawn from biology and nature.

  12. A Protocol for Bioinspired Design: A Ground Sampler Based on Sea Urchin Jaws.

    Science.gov (United States)

    Frank, Michael B; Naleway, Steven E; Wirth, Taylor S; Jung, Jae-Young; Cheung, Charlene L; Loera, Faviola B; Medina, Sandra; Sato, Kirk N; Taylor, Jennifer R A; McKittrick, Joanna

    2016-01-01

    Bioinspired design is an emerging field that takes inspiration from nature to develop high-performance materials and devices. The sea urchin mouthpiece, known as the Aristotle's lantern, is a compelling source of bioinspiration with an intricate network of musculature and calcareous teeth that can scrape, cut, chew food and bore holes into rocky substrates. We describe the bioinspiration process as including animal observation, specimen characterization, device fabrication and mechanism bioexploration. The last step of bioexploration allows for a deeper understanding of the initial biology. The design architecture of the Aristotle's lantern is analyzed with micro-computed tomography and individual teeth are examined with scanning electron microscopy to identify the microstructure. Bioinspired designs are fabricated with a 3D printer, assembled and tested to determine the most efficient lantern opening and closing mechanism. Teeth from the bioinspired lantern design are bioexplored via finite element analysis to explain from a mechanical perspective why keeled tooth structures evolved in the modern sea urchins we observed. This circular approach allows for new conclusions to be drawn from biology and nature. PMID:27166636

  13. Bio-inspired 3D microenvironments: a new dimension in tissue engineering.

    Science.gov (United States)

    Magin, Chelsea M; Alge, Daniel L; Anseth, Kristi S

    2016-04-01

    Biomaterial scaffolds have been a foundational element of the tissue engineering paradigm since the inception of the field. Over the years there has been a progressive move toward the rational design and fabrication of bio-inspired materials that mimic the composition as well as the architecture and 3D structure of tissues. In this review, we chronicle advances in the field that address key challenges in tissue engineering as well as some emerging applications. Specifically, a summary of the materials and chemistries used to engineer bio-inspired 3D matrices that mimic numerous aspects of the extracellular matrix is provided, along with an overview of bioprinting, an additive manufacturing approach, for the fabrication of engineered tissues with precisely controlled 3D structures and architectures. To emphasize the potential clinical impact of the bio-inspired paradigm in biomaterials engineering, some applications of bio-inspired matrices are discussed in the context of translational tissue engineering. However, focus is also given to recent advances in the use of engineered 3D cellular microenvironments for fundamental studies in cell biology, including photoresponsive systems that are shedding new light on how matrix properties influence cell phenotype and function. In an outlook for future work, the need for high-throughput methods both for screening and fabrication is highlighted. Finally, microscale organ-on-a-chip technologies are highlighted as a promising area for future investment in the application of bio-inspired microenvironments. PMID:26942469

  14. Phosphate taxis in Pseudomonas aeruginosa.

    OpenAIRE

    Kato, J.; Ito, A.; Nikata, T; Ohtake, H

    1992-01-01

    Pseudomonas aeruginosa was shown to be attracted to phosphate. The chemotactic response was induced by phosphate starvation. The specificity of chemoreceptors for phosphate was high so that no other tested phosphorus compounds elicited a chemotactic response as strong as that elicited by phosphate. Competition experiments showed that the chemoreceptors for phosphate appeared to be different from those for the common amino acids. Mutants constitutive for alkaline phosphatase showed the chemota...

  15. Genetic disorders of phosphate regulation

    OpenAIRE

    Gattineni, Jyothsna; Baum, Michel

    2012-01-01

    Regulation of phosphate homeostasis is critical for many biological processes, and both hypophosphatemia and hyperphosphatemia can have adverse clinical consequences. Only a very small percentage (1%) of total body phosphate is present in the extracellular fluid, which is measured by routine laboratory assays and does not reflect total body phosphate stores. Phosphate is absorbed from the gastrointestinal tract via the transcellular route [sodium phosphate cotransporter 2b (NaPi2b)] and acros...

  16. Phosphate control in dialysis

    Directory of Open Access Journals (Sweden)

    Cupisti A

    2013-10-01

    Full Text Available Adamasco Cupisti,1 Maurizio Gallieni,2 Maria Antonietta Rizzo,2 Stefania Caria,3 Mario Meola,4 Piergiorgio Bolasco31Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; 2Nephrology and Dialysis Unit, San Carlo Borromeo Hospital, Milan, Italy; 3Territorial Department of Nephrology and Dialysis, ASL Cagliari, Italy; 4Sant'Anna School of Advanced Studies, University of Pisa, Pisa, ItalyAbstract: Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source

  17. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer N. [Univ. of California, San Diego, CA (United States); Wang, Joseph [Univ. of California, San Diego, CA (United States)

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  18. Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor.

    Science.gov (United States)

    Li, Fang; Cheng, Qianxun; Tian, Qing; Yang, Bo; Chen, Qianyuan

    2016-07-01

    Forward osmosis (FO) has received considerable interest for water and energy related applications in recent years. Biofouling behavior and performance of cellulose triacetate (CTA) forward osmosis membranes with bioinspired surface modification via polydopamine (PD) coating and poly (ethylene glycol) (PEG) grafting (PD-g-PEG) in a submerged osmotic membrane bioreactor (OMBR) were investigated in this work. The modified membranes exhibited lower flux decline than the pristine one in OMBR, confirming that the bioinspired surface modification improved the antifouling ability of the CTA FO membrane. The result showed that the decline of membrane flux related to the increase of the salinity and MLSS concentration of the mixed liquid. It was concluded that the antifouling ability of modified membranes ascribed to the change of surface morphology in addition to the improvement of membrane hydrophilicity. The bioinspired surface modifications might improve the anti-adhesion for the biopolymers and biocake.

  19. Phosphate Mines, Jordan

    Science.gov (United States)

    2008-01-01

    Jordan's leading industry and export commodities are phosphate and potash, ranked in the top three in the world. These are used to make fertilizer. The Jordan Phosphate Mines Company is the sole producer, having started operations in 1935. In addition to mining activities, the company produces phosphoric acid (for fertilizers, detergents, pharmaceuticals), diammonium phosphate (for fertilizer), sulphuric acid (many uses), and aluminum fluoride (a catalyst to make aluminum and magnesium). The image covers an area of 27.5 x 49.4 km, was acquired on September 17, 2005, and is located near 30.8 degrees north latitude, 36.1 degrees east longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  20. Bio-Inspired Metal-Coordination Dynamics: A Unique Tool for Engineering Soft Matter Mechanics

    Science.gov (United States)

    Holten-Andersen, Niels

    Growing evidence supports a critical role of metal-coordination in soft biological material properties such as self-healing, underwater adhesion and autonomous wound plugging. Using bio-inspired metal-binding polymers, initial efforts to mimic these properties with metal-coordination crosslinked polymer materials have shown promise. In addition, with polymer network mechanics strongly coupled to coordinate crosslink dynamics material properties can be easily tuned from visco-elastic fluids to solids. Given their exploitation in desirable material applications in Nature, bio-inspired metal-coordinate complex crosslinking provides an opportunity to further advance synthetic polymer materials design. Early lessons from this pursuit are presented.

  1. Bio-inspired Self-Adaptive Agents in Distributed Systems

    Directory of Open Access Journals (Sweden)

    Ichiro SATOH

    2013-06-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} This paper proposes a bio-inspired middleware for selfadaptive software agents on distributed systems. It is unique to other existing approaches for software adaptation because it introduces the notions of differentiation, dedifferentiation, and cellular division in cellular slime molds, e.g., dictyostelium discoideum, into real distributed systems. When an agent delegates a function to another agent coordinating with it, if the former has the function, this function becomes lessdeveloped and the latter’s function becomes welldeveloped.

  2. Optical properties of bio-inspired peptide nanotubes

    Science.gov (United States)

    Handelman, Amir; Apter, Boris; Rosenman, Gil

    2016-04-01

    Supramolecular self-assembled bio-inspired peptide nanostructures are favorable to be implemented in diverse nanophotonics applications due to their superior physical properties such as wideband optical transparency, high second-order nonlinear response, waveguiding properties and more. Here, we focus on the optical properties found in di-phenylalanine peptide nano-architectures, with special emphasize on their linear and nonlinear optical waveguiding effects. Using both simulation and experiments, we show their ability to passively guide light at both fundamental and second-harmonic frequencies. In addition, we show that at elevated temperatures, 140-180°C, these native supramolecular structures undergo irreversible thermally induced transformation via re-assembling into completely new thermodynamically stable phase having nanofiber morphology similar to those of amyloid fibrils. In this new phase, the peptide nanofibers lose their second-order nonlinear response, while exhibit profound modification of optoelectronic properties followed by the appearance of visible (blue and green) photoluminescence (PL). Our study propose a new generation of multifunctional optical waveguides with variety of characteristics, which self-assembled into 1D-elongated nanostructures and could be used as building blocks of many integrated photonic devices.

  3. A Bio-Inspired Herbal Tea Flavour Assessment Technique

    Directory of Open Access Journals (Sweden)

    Nur Zawatil Isqi Zakaria

    2014-07-01

    Full Text Available Herbal-based products are becoming a widespread production trend among manufacturers for the domestic and international markets. As the production increases to meet the market demand, it is very crucial for the manufacturer to ensure that their products have met specific criteria and fulfil the intended quality determined by the quality controller. One famous herbal-based product is herbal tea. This paper investigates bio-inspired flavour assessments in a data fusion framework involving an e-nose and e-tongue. The objectives are to attain good classification of different types and brands of herbal tea, classification of different flavour masking effects and finally classification of different concentrations of herbal tea. Two data fusion levels were employed in this research, low level data fusion and intermediate level data fusion. Four classification approaches; LDA, SVM, KNN and PNN were examined in search of the best classifier to achieve the research objectives. In order to evaluate the classifiers’ performance, an error estimator based on k-fold cross validation and leave-one-out were applied. Classification based on GC-MS TIC data was also included as a comparison to the classification performance using fusion approaches. Generally, KNN outperformed the other classification techniques for the three flavour assessments in the low level data fusion and intermediate level data fusion. However, the classification results based on GC-MS TIC data are varied.

  4. Bio-Inspired Stretchable Absolute Pressure Sensor Network.

    Science.gov (United States)

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4'' wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  5. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    Directory of Open Access Journals (Sweden)

    Yue Guo

    2016-01-01

    Full Text Available A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles.

  6. Miniaturized unified imaging system using bio-inspired fluidic lens

    Science.gov (United States)

    Tsai, Frank S.; Cho, Sung Hwan; Qiao, Wen; Kim, Nam-Hyong; Lo, Yu-Hwa

    2008-08-01

    Miniaturized imaging systems have become ubiquitous as they are found in an ever-increasing number of devices, such as cellular phones, personal digital assistants, and web cameras. Until now, the design and fabrication methodology of such systems have not been significantly different from conventional cameras. The only established method to achieve focusing is by varying the lens distance. On the other hand, the variable-shape crystalline lens found in animal eyes offers inspiration for a more natural way of achieving an optical system with high functionality. Learning from the working concepts of the optics in the animal kingdom, we developed bio-inspired fluidic lenses for a miniature universal imager with auto-focusing, macro, and super-macro capabilities. Because of the enormous dynamic range of fluidic lenses, the miniature camera can even function as a microscope. To compensate for the image quality difference between the central vision and peripheral vision and the shape difference between a solid-state image sensor and a curved retina, we adopted a hybrid design consisting of fluidic lenses for tunability and fixed lenses for aberration and color dispersion correction. A design of the world's smallest surgical camera with 3X optical zoom capabilities is also demonstrated using the approach of hybrid lenses.

  7. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    Science.gov (United States)

    Potyrailo, Radislav; Naik, Rajesh R.

    2013-07-01

    At present, monitoring of air at the workplace, in urban environments, and on battlefields; exhaled air from medical patients; air in packaged food containers; and so forth can be accomplished with different types of analytical instruments. Vapor sensors have their niche in these measurements when an unobtrusive, low-power, and cost-sensitive technical solution is required. Unfortunately, existing vapor sensors often degrade their vapor-quantitation accuracy in the presence of high levels of interferences and cannot quantitate several components in complex gas mixtures. Thus, new sensing approaches with improved sensor selectivity are required. This technological task can be accomplished by the careful design of sensing materials with new performance properties and by coupling these materials with the suitable physical transducers. This review is focused on the assessment of the capabilities of bionanomaterials and bioinspired nanostructures for selective vapor sensing. We demonstrate that these sensing materials can operate with diverse transducers based on electrical, mechanical, and optical readout principles and can provide vapor-response selectivity previously unattainable by using other sensing materials. This ability for selective vapor sensing provides opportunities to significantly impact the major directions in development and application scenarios of vapor sensors.

  8. An antioxidant bioinspired phenolic polymer for efficient stabilization of polyethylene.

    Science.gov (United States)

    Ambrogi, Veronica; Panzella, Lucia; Persico, Paola; Cerruti, Pierfrancesco; Lonz, Carlo A; Carfagna, Cosimo; Verotta, Luisella; Caneva, Enrico; Napolitano, Alessandra; d'Ischia, Marco

    2014-01-13

    The synthesis, structural characterization and properties of a new bioinspired phenolic polymer (polyCAME) produced by oxidative polymerization of caffeic acid methyl ester (CAME) with horseradish peroxidase (HRP)-H2O2 is reported as a new sustainable stabilizer toward polyethylene (PE) thermal and photo-oxidative degradation. PolyCAME exhibits high stability toward decarboxylation and oxidative degradation during the thermal processes associated with PE film preparation. Characterization of PE films by thermal methods, photo-oxidative treatments combined with chemiluminescence, and FTIR spectroscopy and mechanical tests indicate a significant effect of polyCAME on PE durability. Data from antioxidant capacity tests suggest that the protective effects of polyCAME are due to the potent scavenging activity on aggressive OH radicals, the efficient H-atom donor properties inducing free radical quenching, and the ferric ion reducing ability. PolyCAME is thus proposed as a novel easily accessible, eco-friendly, and biocompatible biomaterial for a sustainable approach to the stabilization of PE films in packaging and other applications. PMID:24313867

  9. Synthesis of Bioinspired Carbohydrate Amphiphiles that Promote and Inhibit Biofilms.

    Science.gov (United States)

    Dane, Eric L; Ballok, Alicia E; O'Toole, George A; Grinstaff, Mark W

    2014-02-01

    The synthesis and characterization of a new class of bioinspired carbohydrate amphiphiles that modulate Pseudomonas aeruginosa biofilm formation are reported. The carbohydrate head is an enantiopure poly-amido-saccharide (PAS) prepared by a controlled anionic polymerization of β-lactam monomers derived from either glucose or galactose. The supramolecular assemblies formed by PAS amphiphiles are investigated in solution using fluorescence assays and dynamic light scattering. Dried samples are investigated using X-ray, infrared spectroscopy, and transmission electron microscopy. Additionally, the amphiphiles are evaluated for their ability to modulate biofilm formation by the Gram-negative bacterium Pseudomonas aeruginosa. Remarkably, from a library of eight amphiphiles, we identify a structure that promotes biofilm formation and two structures that inhibit biofilm formation. Using biological assays and electron microscopy, we relate the chemical structure of the amphiphiles to the observed activity. Materials that modulate the formation of biofilms by bacteria are important both as research tools for microbiologists to study the process of biofilm formation and for their potential to provide new drug candidates for treating biofilm-associated infections.

  10. Porphyrin-based design of bioinspired multitarget quadruplex ligands.

    Science.gov (United States)

    Laguerre, Aurélien; Desbois, Nicolas; Stefan, Loic; Richard, Philippe; Gros, Claude P; Monchaud, David

    2014-09-01

    Secondary nucleic acid structures, such as DNA and RNA quadruplexes, are potential targets for cancer therapies. Ligands that interact with these targets could thus find application as anticancer agents. Synthetic G-quartets have recently found numerous applications, including use as bioinspired G-quadruplex ligands. Herein, the design, synthesis and preliminary biophysical evaluation of a new prototype multitarget G-quadruplex ligand, (PNA)PorphySQ, are reported, where peptidic nucleic acid guanine ((PNA)G) was incorporated in the porphyrin-templated synthetic G-quartet (PorphySQ). Using fluorescence resonance energy transfer (FRET)-melting experiments, PorphySQ was shown to possess enhanced quadruplex-interacting properties thanks to the presence of four positively charged (PNA)G residues that improve its electrostatic interactions with the binding site of both DNA and RNA quadruplexes (i.e., their negatively charged and accessible G-quartets), thereby making (PNA)PorphySQ an interesting prototype of a multitarget ligand. Both the chemical stability and water solubility of (PNA)PorphySQ are improved over the non-PNA derivative (PorphySQ), which are desirable properties for drug development, and while improvements remain to be made, this ligand is a promising lead for the further development of multitarget G-quadruplex ligands. PMID:24678052

  11. A bio-inspired image coder with temporal scalability

    CERN Document Server

    Masmoudi, Khaled; Kornprobst, Pierre

    2011-01-01

    We present a novel bio-inspired and dynamic coding scheme for static images. Our coder aims at reproducing the main steps of the visual stimulus processing in the mammalians retina taking into account its time behavior. The main novelty of this work is to show how to exploit the time behavior of the retina cells to ensure, in a simple way, scalability and bit allocation. To do so, our main source of inspiration will be the biologically plausible retina model called Virtual Retina. Following a similar structure, our model has two stages. The first stage is an image transform which is performed by the outer layers in the retina. Here it is modelled by filtering the image with a bank of difference of Gaussians with time-delays. The second stage is a time-dependent analog-to-digital conversion which is performed by the inner layers in the retina. Thanks to its conception, our coder enables scalability and bit allocation across time. Also, compared to the JPEG standards, our decoded images do not show annoying art...

  12. Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications

    Science.gov (United States)

    Feng, Mei; Lu, Yang; Yang, Yuan; Zhang, Meng; Xu, Yun-Jun; Gao, Huai-Ling; Dong, Liang; Xu, Wei-Ping; Yu, Shu-Hong

    2013-10-01

    Large scale greigite with uniform dimensions has stimulated significant demands for applications such as hyperthermia, photovoltaics, medicine and cell separation, etc. However, the inhomogeneity and hydrophobicity for most of the as prepared greigite crystals has limited their applications in biomedicine. Herein, we report a green chemical method utilizing β-cyclodextrin (β-CD) and polyethylene glycol (PEG) to synthesize bioinspired greigite (Fe3S4) magnetic nanocrystals (GMNCs) with similar structure and magnetic property of magnetosome in a large scale. β-CD and PEG is responsible to control the crystal phase and morphology, as well as to bound onto the surface of nanocrystals and form polymer layers. The GMNCs exhibit a transverse relaxivity of 94.8 mM-1s-1 which is as high as iron oxide nanocrystals, and an entrapment efficiency of 58.7% for magnetic guided delivery of chemotherapeutic drug doxorubicin. Moreover, enhanced chemotherapeutic treatment of mice tumor was obtained via intravenous injection of doxorubicin loaded GMNCs.

  13. Optimized bio-inspired stiffening design for an engine nacelle.

    Science.gov (United States)

    Lazo, Neil; Vodenitcharova, Tania; Hoffman, Mark

    2015-12-01

    Structural efficiency is a common engineering goal in which an ideal solution provides a structure with optimized performance at minimized weight, with consideration of material mechanical properties, structural geometry, and manufacturability. This study aims to address this goal in developing high performance lightweight, stiff mechanical components by creating an optimized design from a biologically-inspired template. The approach is implemented on the optimization of rib stiffeners along an aircraft engine nacelle. The helical and angled arrangements of cellulose fibres in plants were chosen as the bio-inspired template. Optimization of total displacement and weight was carried out using a genetic algorithm (GA) coupled with finite element analysis. Iterations showed a gradual convergence in normalized fitness. Displacement was given higher emphasis in optimization, thus the GA optimization tended towards individual designs with weights near the mass constraint. Dominant features of the resulting designs were helical ribs with rectangular cross-sections having large height-to-width ratio. Displacement reduction was at 73% as compared to an unreinforced nacelle, and is attributed to the geometric features and layout of the stiffeners, while mass is maintained within the constraint. PMID:26531222

  14. Copper removal using bio-inspired polydopamine coated natural zeolites.

    Science.gov (United States)

    Yu, Yang; Shapter, Joseph G; Popelka-Filcoff, Rachel; Bennett, John W; Ellis, Amanda V

    2014-05-30

    Herein, for the first time, natural clinoptilolite-rich zeolite powders modified with a bio-inspired adhesive, polydopamine (PDA), have been systematically studied as an adsorbent for copper cations (Cu(II)) from aqueous solution. Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) revealed successful grafting of PDA onto the zeolite surface. The effects of pH (2-5.5), PDA treatment time (3-24h), contact time (0 to 24h) and initial Cu(II) ion concentrations (1 to 500mgdm(-3)) on the adsorption of Cu(II) ions were studied using atomic absorption spectroscopy (AAS) and neutron activation analysis (NAA). The adsorption behavior was fitted to a Langmuir isotherm and shown to follow a pseudo-second-order reaction model. The maximum adsorption capacities of Cu(II) were shown to be 14.93mgg(-1) for pristine natural zeolite and 28.58mgg(-1) for PDA treated zeolite powders. This impressive 91.4% increase in Cu(II) ion adsorption capacity is attributed to the chelating ability of the PDA on the zeolite surface. Furthermore studies of recyclability using NAA showed that over 50% of the adsorbed copper could be removed in mild concentrations (0.01M or 0.1M) of either acid or base. PMID:24731937

  15. Biomimetic and bio-inspired uses of mollusc shells.

    Science.gov (United States)

    Morris, J P; Wang, Y; Backeljau, T; Chapelle, G

    2016-06-01

    Climate change and ocean acidification are likely to have a profound effect on marine molluscs, which are of great ecological and economic importance. One process particularly sensitive to climate change is the formation of biominerals in mollusc shells. Fundamental research is broadening our understanding of the biomineralization process, as well as providing more informed predictions on the effects of climate change on marine molluscs. Such studies are important in their own right, but their value also extends to applied sciences. Biominerals, organic/inorganic hybrid materials with many remarkable physical and chemical properties, have been studied for decades, and the possibilities for future improved use of such materials for society are widely recognised. This article highlights the potential use of our understanding of the shell biomineralization process in novel bio-inspired and biomimetic applications. It also highlights the potential for the valorisation of shells produced as a by-product of the aquaculture industry. Studying shells and the formation of biominerals will inspire novel functional hybrid materials. It may also provide sustainable, ecologically- and economically-viable solutions to some of the problems created by current human resource exploitation. PMID:27083864

  16. Stick-Slip Friction of PDMS Surfaces for Bioinspired Adhesives.

    Science.gov (United States)

    Xue, Longjian; Pham, Jonathan T; Iturri, Jagoba; Del Campo, Aránzazu

    2016-03-15

    Friction plays an important role in the adhesion of many climbing organisms, such as the gecko. During the shearing between two surfaces, periodic stick-slip behavior is often observed and may be critical to the adhesion of gecko setae and gecko-inspired adhesives. Here, we investigate the influence of short oligomers and pendent chains on the stick-slip friction of polydimethylsiloxane (PDMS), a commonly used material for bioinspired adhesives. Three different stick-slip patterns were observed on these surfaces (flat or microstructured) depending on the presence or absence of oligomers and their ability to diffuse out of the material. After washing samples to remove any untethered oligomeric chains, or after oxygen plasma treatment to convert the surface to a thin layer of silica, we decouple the contributions of stiffness, oligomers, and pendant chains to the stick-slip behavior. The stick phase is mainly controlled by the stiffness while the amount of untethered oligomers and pendant chains available at the contact interface defines the slip phase. A large amount of oligomers and pendant chains resulted in a large slip time, dominating the period of stick-slip motion. PMID:26903477

  17. Bio-Inspired Stretchable Absolute Pressure Sensor Network.

    Science.gov (United States)

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X

    2016-01-02

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4'' wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles.

  18. Glucose-6-phosphate dehydrogenase deficiency

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000528.htm Glucose-6-phosphate dehydrogenase deficiency To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a condition ...

  19. Research on Uncrystallized Phosphating Film

    Institute of Scientific and Technical Information of China (English)

    TANG En-jun; XING Ze-kuan

    2004-01-01

    This article excogitated a kind of uncrystallized phosphating film bears wearing capacity goodly by adding Ca2 + in normal phosphating solution. This technology is very useful to protect steel parts working in oil from abrasion.

  20. Bioinspired engineering of exploration systems for NASA and DoD: from bees to BEES

    Science.gov (United States)

    Thakoor, S.; Zornetzer, S.; Hine, B.; Chahl, J.; Werblin, F.; Srinivasan, M. V.; Young, L.

    2003-01-01

    The intent of Bio-inspired Engineering of Exploration Systems (BEES) is to distill the principles found in successful, nature-tested mechanisms of specific crucial functions that are hard to accomplish by conventional methods, but accomplished rather deftly in nature by biological organisms.

  1. Stability of hard plates on soft substrates and application to the design of bioinspired segmented armor

    Science.gov (United States)

    Martini, R.; Barthelat, F.

    2016-07-01

    Flexible natural armors from fish, alligators or armadillo are attracting an increasing amount of attention from their unique and attractive combinations of hardness, flexibility and light weight. In particular, the extreme contrast of stiffness between hard plates and surrounding soft tissues give rise to unusual and attractive mechanisms, which now serve as model for the design of bio-inspired armors. Despite a growing interest in bio-inspired flexible protection, there is little guidelines as to the choice of materials, optimum thickness, size, shape and arrangement for the protective plates. In this work, we focus on a failure mode we recently observed on natural and bio-inspired scaled armors: the unstable tilting of individual scales subjected to off-centered point forces. We first present a series of experiments on this system, followed by a model based on contact mechanics and friction. We condense the result into a single stability diagram which capture the key parameters that govern the onset of plate tilting from a localized force. We found that the stability of individual plates is governed by the location of the point force on the plate, by the friction at the surface of the plate, by the size of the plate and by the stiffness of the substrate. We finally discuss how some of these parameters can be optimized at the design stage to produce bio-inspired protective systems with desired combination of surface hardness, stability and flexural compliance.

  2. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.

    Science.gov (United States)

    Cen, L; Erturk, A

    2013-03-01

    This paper investigates fish-like aquatic robotics using flexible bimorphs made of macro-fiber composite (MFC) piezoelectric laminates for carangiform locomotion. In addition to noiseless and efficient actuation over a range of frequencies, geometric scalability, and simple design, bimorph propulsors made of MFCs offer a balance between the actuation force and velocity response for performance enhancement in bio-inspired swimming. The experimental component of the presented work focuses on the characterization of an elastically constrained MFC bimorph propulsor for thrust generation in quiescent water as well as the development of a robotic fish prototype combining a microcontroller and a printed-circuit-board amplifier to generate high actuation voltage for untethered locomotion. From the theoretical standpoint, a distributed-parameter electroelastic model including the hydrodynamic effects and actuator dynamics is coupled with the elongated-body theory for predicting the mean thrust in quiescent water. In-air and underwater experiments are performed to verify the incorporation of hydrodynamic effects in the linear actuation regime. For electroelastically nonlinear actuation levels, experimentally obtained underwater vibration response is coupled with the elongated-body theory to predict the thrust output. The measured mean thrust levels in quiescent water (on the order of ∼10 mN) compare favorably with thrust levels of biological fish. An untethered robotic fish prototype that employs a single bimorph fin (caudal fin) for straight swimming and turning motions is developed and tested in free locomotion. A swimming speed of 0.3 body-length/second (7.5 cm s⁻¹ swimming speed for 24.3 cm body length) is achieved at 5 Hz for a non-optimized main body-propulsor bimorph combination under a moderate actuation voltage level. PMID:23348365

  3. Principle of bio-inspired insect wing rotational hinge design

    Science.gov (United States)

    Fei, Fan

    A principle for designing and fabricating bio-inspired miniature artificial insect flapping wing using flexure rotational hinge design is presented. A systematic approach of selecting rotational hinge stiffness value is proposed. Based on the understanding of flapping wing aerodynamics, a dynamic simulation is constructed using the established quasi-steady model and the wing design. Simulations were performed to gain insight on how different parameters affect the wing rotational response. Based on system resonance a model to predict the optimal rotational hinge stiffness based on given wing parameter and flapping wing kinematic is proposed. By varying different wing parameters, the proposed method is shown to be applicable to a wide range of wing designs with different sizes and shapes. With the selected hinge stiffness value, aspects of the rotational joint design is discussed and an integrated wing-hinge structure design using laminated carbon fiber and polymer film is presented. Manufacturing process of such composite structure is developed to achieve high accuracy and repeatability. The yielded hinge stiffness is verified by measurements. To validate the proposed model, flapping wing experiments were conducted. A flapping actuation set up is built using DC motor and a controller is implemented on a microcontroller to track desired wing stroke kinematic. Wing stroke and rotation kinematic were extracted using a high speed camera and the lift generation is evaluated. A total of 49 flapping experiments were presented, experimental data shows good correlation with the model's prediction. With the wing rotational hinge stiffness designed so that the rotational resonant frequency is twice as the stroke frequency, the resulting wing rotation generates near optimal lift. With further simulation, the proposed model shows low sensitivity to wing parameter variation. As a result, giving a design parameter of a flapping wing robot platform, the proposed principle can

  4. 21 CFR 184.1434 - Magnesium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic...

  5. Calcium Phosphate Biomaterials: An Update

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Current calcium phosphate (CaP) biomaterials for bone repair, substitution, augmentation and regeneration include hydroxyapatite ( HA ) from synthetic or biologic origin, beta-tricalcium phosphate ( β-TCP ) , biphasic calcium phosphate (BCP), and are available as granules, porous blocks, components of composites (CaP/polymer) cements, and as coatings on orthopedic and dental implants. Experimental calcium phosphate biomaterials include CO3- and F-substituted apatites, Mg-and Zn-substituted β-TCP, calcium phosphate glasses. This paper is a brief review of the different types of CaP biomaterials and their properties such as bioactivity, osteoconductivity, osteoinductivity.

  6. Layered metal uranyl phosphates

    International Nuclear Information System (INIS)

    HUO2PO4·4H2O (HUP) forms a laminar intercalate with butylamine, c = 29.30(5) angstrom, which accepts cationic metals in exchange for the n-butylammonium ions. Hydrated uranyl metal phosphates M(UO2PO4)2·nH2O (M=Mn,Co,Ni,Cu,Zn,Cd) are obtained by ionic exchange and were studied by thermal analysis and X-ray diffraction. The tetragonal structures of all these product compounds are derived from HUP. The diffuse electronic reflectance spectra of every sample show characteristic UO22+ absorption bands. In the spectra of the Co, Ni and Cu phosphates there are other bands in the 500-800 nm zone compatible with their observed aquocation transitions

  7. Correction: Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis.

    Science.gov (United States)

    Alqahtani, Norah; Porwal, Suheel K; James, Elle D; Bis, Dana M; Karty, Jonathan A; Lane, Amy L; Viswanathan, Rajesh

    2015-09-21

    Correction for 'Synergism between genome sequencing, tandem mass spectrometry and bio-inspired synthesis reveals insights into nocardioazine B biogenesis' by Norah Alqahtani et al., Org. Biomol. Chem., 2015, 13, 7177-7192.

  8. Dysregulation of phosphate metabolism and conditions associated with phosphate toxicity.

    Science.gov (United States)

    Brown, Ronald B; Razzaque, Mohammed S

    2015-01-01

    Phosphate homeostasis is coordinated and regulated by complex cross-organ talk through delicate hormonal networks. Parathyroid hormone (PTH), secreted in response to low serum calcium, has an important role in maintaining phosphate homeostasis by influencing renal synthesis of 1,25-dihydroxyvitamin D, thereby increasing intestinal phosphate absorption. Moreover, PTH can increase phosphate efflux from bone and contribute to renal phosphate homeostasis through phosphaturic effects. In addition, PTH can induce skeletal synthesis of another potent phosphaturic hormone, fibroblast growth factor 23 (FGF23), which is able to inhibit renal tubular phosphate reabsorption, thereby increasing urinary phosphate excretion. FGF23 can also fine-tune vitamin D homeostasis by suppressing renal expression of 1-alpha hydroxylase (1α(OH)ase). This review briefly discusses how FGF23, by forming a bone-kidney axis, regulates phosphate homeostasis, and how its dysregulation can lead to phosphate toxicity that induces widespread tissue injury. We also provide evidence to explain how phosphate toxicity related to dietary phosphorus overload may facilitate incidence of noncommunicable diseases including kidney disease, cardiovascular disease, cancers and skeletal disorders. PMID:26131357

  9. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis

    OpenAIRE

    Liu, Jinlong; Yang, Lei; Luan, Mingda; Wang, Yuan; Zhang, Chi; Zhang, Bin; Shi, Jisen; Zhao, Fu-Geng; Lan, Wenzhi; Luan, Sheng

    2015-01-01

    Phosphate is an essential nutrient for plant growth, and inorganic phosphate (Pi) is stored largely in the vacuole of plant cells. Thus, vacuolar Pi maintains homeostasis of cytosolic Pi to ensure an optimal Pi supply for plants under variable Pi status in the soil. This study uncovered in Arabidopsis a vacuolar phosphate transporter, VPT1, that mediates vacuolar Pi sequestration. Lack of VPT1 caused growth defects under both low-Pi and high-Pi conditions, implicating VPT1 in plant adaptation...

  10. Pyridoxal phosphate-dependent neonatal epileptic encephalopathy

    OpenAIRE

    Bagci, S.; Zschocke, J.; Hoffmann, G F; Bast, T.; Klepper, J; Müller, A.; Heep, A; Bartmann, P.; Franz, A R

    2009-01-01

    Pyridox(am)ine-5′-phosphate oxidase converts pyridoxine phosphate and pyridoxamine phosphate to pyridoxal phosphate, a cofactor in many metabolic reactions, including neurotransmitter synthesis. A family with a mutation in the pyridox(am)ine-5′-phosphate oxidase gene presenting with neonatal seizures unresponsive to pyridoxine and anticonvulsant treatment but responsive to pyridoxal phosphate is described. Pyridoxal phosphate should be considered in neonatal epileptic encephalopathy unrespons...

  11. Integrated assessment of the phosphate industry

    International Nuclear Information System (INIS)

    The phosphate industry in the United States includes three major activities, namely, mining and milling of phosphate rock, phosphate product manufacture, and phosphate product use. Phosphatic materials contain uranium, thorium, and their decay products in greater than background amounts. This assessment of the radiological impacts associated with the redistribution of radioactive components of phosphate materials may provide insight into the effects of uranium extraction from phosphate materials for use in the nuclear fuel cycle

  12. Bio-inspired Nanomaterials for Biosensing and Cell Response

    Science.gov (United States)

    Stevens, Molly

    2012-02-01

    This talk will provide an overview of our recent developments in bio-inspired nanomaterials for tissue regeneration and sensing. Bio-responsive nanomaterials are of growing importance with potential applications including drug delivery, diagnostics and tissue engineering [1]. DNA-, protein- or peptide-functionalised nanoparticle (NP) aggregates are particularly useful systems since triggered changes in their aggregation states may be readily monitored. Our recent simple conceptually novel approaches to real-time monitoring of protease, lipase and kinase enzyme action using modular peptide functionalized NPs will be presented [2,3,4]. The highly interdisciplinary field of Tissue Engineering (TE) can also benefit from advances in the design of bio-responsive nanomaterials. TE involves the development of artificial scaffold structures on which new cells are encouraged to grow. The ability to control topography and chemistry at the nanoscale offers exciting possibilities for stimulating growth of new tissue through the development of novel nanostructured scaffolds that mimic the nanostructure of the tissues in the body [1,5,6]. Recent developments in this context will be discussed as well as novel approaches to in vivo tissue regeneration of large volumes of highly vascularised and hierarchically organized tissue [7,8,9]. [4pt] [1] MM Stevens, J George. Science 310:1135-1138 (2005)[0pt] [2] A Laromaine, L Koh, M Murugesan, RV Ulijn, MM Stevens. Journal of the American Chemical Society 129:4156-4157 (2007)[0pt] [3] J Ghadiali, MM Stevens. Advanced Materials 20: 4359-4363 (2008); J Ghadiali et al, ACS Nano 4:4915-4919 (2010)[0pt] [4] D Aili, M Mager, D Roche, MM Stevens. Nano Letters 11:1401-1405 (2011) [0pt] [5] E Place, ND Evans, MM Stevens. Nature Materials 8:457-470 (2009)[0pt] [6] MD Mager, V LaPointe, MM Stevens. Nature Chemistry 3:582-589 (2011)[0pt] [7] MM Stevens et. al. Proc. Natl. Acad. Sci. USA 102:11450-11455 (2005)[0pt] [8] E Gentleman et al. Nature

  13. Bioinspired Collagen/Glycosaminoglycan-Based Cellular Microenvironments for Tuning Osteoclastogenesis.

    Science.gov (United States)

    Rother, Sandra; Salbach-Hirsch, Juliane; Moeller, Stephanie; Seemann, Thomas; Schnabelrauch, Matthias; Hofbauer, Lorenz C; Hintze, Vera; Scharnweber, Dieter

    2015-10-28

    Replicating the biocomplexity of native extracellular matrices (ECM) is critical for a deeper understanding of biochemical signals influencing bone homeostasis. This will foster the development of bioinspired biomaterials with adjustable bone-inducing properties. Collagen-based coatings containing single HA derivatives have previously been reported to promote osteogenic differentiation and modulate osteoclastogenesis and resorption depending on their sulfation degree. However, the potential impact of different GAG concentrations as well as the interplay of multiple GAGs in these coatings is not characterized in detail to date. These aspects were addressed in the current study by integrating HA and different sulfate-modified HA derivatives (sHA) during collagen in vitro fibrillogenesis. Besides cellular microenvironments with systematically altered single-GAG concentrations, matrices containing both low and high sHA (sHA1, sHA4) were characterized by biochemical analysis such as agarose gel electrophoresis, performed for the first time with sHA derivatives. The morphology and composition of the collagen coatings were altered in a GAG sulfation- and concentration-dependent manner. In multi-GAG microenvironments, atomic force microscopy revealed intermediate collagen fibril structures with thin fibrils and microfibrils. GAG sulfation altered the surface charge of the coatings as demonstrated by ζ-potential measurements revealed for the first time as well. This highlights the prospect of GAG-containing matrices to adjust defined surface charge properties. The sHA4- and the multi-GAG coatings alike significantly enhanced the viability of murine osteoclast-precursor-like RAW264.7 cells. Although in single-GAG matrices there was no dose-dependent effect on cell viability, osteoclastogenesis was significantly suppressed only on sHA4-coatings in a dose-dependent fashion. The multi-GAG coatings led to an antiosteoclastogenic effect in-between those with single-GAGs which

  14. Phosphate Test 2.0

    OpenAIRE

    Stalder, Etienne; Zumbuehl, Andreas

    2014-01-01

    The accurate measurement of the phosphate content of a liposomal suspension is important when working with differential scanning calorimetry. Standard phosphate tests date back several decades and require extended hands-on time. Here, we present a rapid version of a phosphate test taking advantage of microwave-assisted chemical digestion and multiwell plate reading technology allowing for the fast and accurate testing of many samples in parallel.

  15. Bio-inspired citrate-functionalized apatite thin films crystallized on Ti-6Al-4V implants pre-coated with corrosion resistant layers.

    Science.gov (United States)

    Delgado-López, José Manuel; Iafisco, Michele; Rodríguez-Ruiz, Isaac; Gómez-Morales, Jaime

    2013-10-01

    In this paper the crystallization of a bioinspired citrate-functionalized apatite (cit-Ap) thin film (thickness about 2μm) on Ti-6Al-4V supports pre-coated with bioactive and corrosion resistant buffer layer of silicon nitride (Si3N4), silicon carbide (SiC) or titanium nitride (TiN) is reported. The apatitic coatings were produced by a new coating technique based on the induction heating of the implants immersed in a flowing calcium-citrate-phosphate solution at pH11. The influence of the buffer layers and the surface roughness of the substrate on the chemical-physical features and adhesion of the cit-Ap films were investigated. The best plasticity, compactness and adherence properties have been found in the Ap layer grown on Si3N4, followed by the Ap grown on SiC and TiN, respectively. The adhesion property was likely related to the roughness of the buffered substrates, whereas the compactness and plasticity were closely related to the operating conditions during the Ap crystallization (flow rate of the solution and increase of temperature) rather than to the nature of the buffer layer.

  16. Overcoming the brittleness of glass through bio-inspiration and micro-architecture

    Science.gov (United States)

    Mirkhalaf, M.; Dastjerdi, A. Khayer; Barthelat, F.

    2014-01-01

    Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of ‘stamp holes’. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.

  17. Biophysics and Thermodynamics: The Scientific Building Blocks of Bio-inspired Drug Delivery Nano Systems.

    Science.gov (United States)

    Demetzos, Costas

    2015-06-01

    Biophysics and thermodynamics are considered as the scientific milestones for investigating the properties of materials. The relationship between the changes of temperature with the biophysical variables of biomaterials is important in the process of the development of drug delivery systems. Biophysics is a challenge sector of physics and should be used complementary with the biochemistry in order to discover new and promising technological platforms (i.e., drug delivery systems) and to disclose the 'silence functionality' of bio-inspired biological and artificial membranes. Thermal analysis and biophysical approaches in pharmaceuticals present reliable and versatile tools for their characterization and for the successful development of pharmaceutical products. The metastable phases of self-assembled nanostructures such as liposomes should be taken into consideration because they represent the thermal events can affect the functionality of advanced drug delivery nano systems. In conclusion, biophysics and thermodynamics are characterized as the building blocks for design and development of bio-inspired drug delivery systems.

  18. 6th International Conference on Innovations in Bio-Inspired Computing and Applications

    CERN Document Server

    Abraham, Ajith; Krömer, Pavel; Pant, Millie; Muda, Azah

    2016-01-01

    This Volume contains the papers presented during the 6th International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2015 which was held in Kochi, India during December 16-18, 2015. The 51 papers presented in this Volume were carefully reviewed and selected. The 6th International Conference IBICA 2015 has been organized to discuss the state-of-the-art as well as to address various issues in the growing research field of Bio-inspired Computing which is currently one of the most exciting research areas, and is continuously demonstrating exceptional strength in solving complex real life problems. The Volume will be a valuable reference to researchers, students and practitioners in the computational intelligence field.

  19. A bio-inspired apposition compound eye machine vision sensor system.

    Science.gov (United States)

    Davis, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2009-12-01

    The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm. PMID:19901450

  20. A bio-inspired apposition compound eye machine vision sensor system

    International Nuclear Information System (INIS)

    The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm.

  1. Bio-inspired solutions in design for manufacturing of micro fuel cell

    DEFF Research Database (Denmark)

    Omidvarnia, Farzaneh; Hansen, Hans Nørgaard

    2014-01-01

    In this paper the application of biomimetic principles in design for micro manufacturing is investigated. A micro direct methanol fuel cell (μDMFC) for power generation in hearing aid devices is considered as the case study in which the bioinspired functions are replicated. The focus in design of μ......DMFC is mainly on solving the problem of fuel delivery to the anode in the fuel chamber. Two different biological phenomena are suggested, and based on them different bioinspired solutions are proposed and modeled in CAD software. Considering the manufacturing constraints and design specifications......, the advantages and drawbacks of each proposed solution is discussed. Finally, the most feasible idea, in terms of manufacturing and function, is selected and an initial experimental verification is carried out....

  2. Recent Progress on Bioinspired Self-Propelled Micro/Nanomotors via Controlled Molecular Self-Assembly.

    Science.gov (United States)

    Wu, Zhiguang; Lin, Xiankun; Si, Tieyan; He, Qiang

    2016-06-01

    The combination of bottom-up controllable self-assembly technique with bioinspired design has opened new horizons in the development of self-propelled synthetic micro/nanomotors. Over the past five years, a significant advances toward the construction of bioinspired self-propelled micro/nanomotors has been witnessed based on the controlled self-assembly technique. Such a strategy permits the realization of autonomously synthetic motors with engineering features, such as sizes, shapes, composition, propulsion mechanism, and function. The construction, propulsion mechanism, and movement control of synthetic micro/nanomotors in connection with controlled self-assembly in recent research activities are summarized. These assembled nanomotors are expected to have a tremendous impact on current artificial nanomachines in future and hold potential promise for biomedical applications including drug targeted delivery, photothermal cancer therapy, biodetoxification, treatment of atherosclerosis, artificial insemination, crushing kidney stones, cleaning wounds, and removing blood clots and parasites. PMID:27073065

  3. A bio-inspired apposition compound eye machine vision sensor system

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J D [Applied Research Laboratories, University of Texas, 10000 Burnet Rd, Austin, TX 78757 (United States); Barrett, S F; Wright, C H G [Electrical and Computer Engineering, University of Wyoming, Dept 3295 1000 E. University Ave, Laramie, WY 82071 (United States); Wilcox, M, E-mail: steveb@uwyo.ed [Department of Biology, United States Air Force Academy, CO 80840 (United States)

    2009-12-15

    The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm.

  4. A bio-inspired apposition compound eye machine vision sensor system.

    Science.gov (United States)

    Davis, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2009-12-01

    The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm.

  5. Programmable thermal emissivity structures based on bioinspired self-shape materials

    OpenAIRE

    Athanasopoulos, N.; N. J. Siakavellas

    2015-01-01

    Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievabl...

  6. Bioinspired Microfluidic Assay for In Vitro Modeling of Leukocyte–Endothelium Interactions

    OpenAIRE

    Lamberti, Giuseppina; Prabhakarpandian, Balabhaskar; Garson, Charles; Smith, Ashley; Pant, Kapil; Wang, Bin; Kiani, Mohammad F.

    2014-01-01

    Current in vitro models of the leukocyte adhesion cascade cannot be used for real-time studies of the entire leukocyte adhesion cascade, including rolling, adhesion, and migration in a single assay. In this study, we have developed and validated a novel bioinspired microfluidic assay (bMFA) and used it to test the hypothesis that blocking of specific steps in the adhesion/migration cascade significantly affects other steps of the cascade. The bMFA consists of an endothelialized microvascular ...

  7. Bio-inspired optimization algorithms for optical parameter extraction of dielectric materials: A comparative study

    Science.gov (United States)

    Ghulam Saber, Md; Arif Shahriar, Kh; Ahmed, Ashik; Hasan Sagor, Rakibul

    2016-10-01

    Particle swarm optimization (PSO) and invasive weed optimization (IWO) algorithms are used for extracting the modeling parameters of materials useful for optics and photonics research community. These two bio-inspired algorithms are used here for the first time in this particular field to the best of our knowledge. The algorithms are used for modeling graphene oxide and the performances of the two are compared. Two objective functions are used for different boundary values. Root mean square (RMS) deviation is determined and compared.

  8. A Bioinspired Multifunctional Heterogeneous Membrane with Ultrahigh Ionic Rectification and Highly Efficient Selective Ionic Gating.

    Science.gov (United States)

    Zhang, Zhen; Kong, Xiang-Yu; Xiao, Kai; Xie, Ganhua; Liu, Qian; Tian, Ye; Zhang, Huacheng; Ma, Jie; Wen, Liping; Jiang, Lei

    2016-01-01

    A bioinspired multifunctional heterogeneous membrane composed of a block copolymer (PS-b-P4VP) membrane and a porous anodic alumina membrane is fabricated. The ionic rectification is so strong that the maximum ratio is ≈489, and the chemical actuation of the anion or cation gate from the "OFF" to the "ON" state promotes a 98.5% increase in the channel conductance.

  9. A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion

    OpenAIRE

    Manfredi, L.; Assaf, T.; Mintchev, S.; Marrazza, S.; Capantini, L.; Orofino, S.; Ascari, L.; Grillner, Sten; Wallén, Peter; Ekeberg, Örjan; Stefanini, C.; Dario, Paulo

    2013-01-01

    The bioinspired approach has been key in combining the disciplines of robotics with neuroscience in an effective and promising fashion. Indeed, certain aspects in the field of neuroscience, such as goal-directed locomotion and behaviour selection, can be validated through robotic artefacts. In particular, swimming is a functionally important behaviour where neuromuscular structures, neural control architecture and operation can be replicated artificially following models from biology and neur...

  10. Protocols for Bio-Inspired Resource Discovery and Erasure Coded Replication in P2P Networks

    CERN Document Server

    Thampi, Sabu M

    2010-01-01

    Efficient resource discovery and availability improvement are very important issues in unstructured P2P networks. In this paper, a bio-inspired resource discovery scheme inspired by the principle of elephants migration is proposed. A replication scheme based on Q-learning and erasure codes is also introduced. Simulation results show that the proposed schemes significantly increases query success rate and availability, and reduces the network traffic as the resources are effectively distributed to well-performing nodes.

  11. Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.

    Science.gov (United States)

    Shoemaker, Patrick A; Hyslop, Andrew M; Humbert, J Sean

    2011-05-01

    We generated panoramic imagery by simulating a fly-like robot carrying an imaging sensor, moving in free flight through a virtual arena bounded by walls, and containing obstructions. Flight was conducted under closed-loop control by a bio-inspired algorithm for visual guidance with feedback signals corresponding to the true optic flow that would be induced on an imager (computed by known kinematics and position of the robot relative to the environment). The robot had dynamics representative of a housefly-sized organism, although simplified to two-degree-of-freedom flight to generate uniaxial (azimuthal) optic flow on the retina in the plane of travel. Surfaces in the environment contained images of natural and man-made scenes that were captured by the moving sensor. Two bio-inspired motion detection algorithms and two computational optic flow estimation algorithms were applied to sequences of image data, and their performance as optic flow estimators was evaluated by estimating the mutual information between outputs and true optic flow in an equatorial section of the visual field. Mutual information for individual estimators at particular locations within the visual field was surprisingly low (less than 1 bit in all cases) and considerably poorer for the bio-inspired algorithms that the man-made computational algorithms. However, mutual information between weighted sums of these signals and comparable sums of the true optic flow showed significant increases for the bio-inspired algorithms, whereas such improvement did not occur for the computational algorithms. Such summation is representative of the spatial integration performed by wide-field motion-sensitive neurons in the third optic ganglia of flies. PMID:21626306

  12. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation.

    Science.gov (United States)

    Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie

    2016-01-01

    Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications. PMID:27378844

  13. Functional lipid membranes: Bio-inspired nanomaterials for sensing and catalysis

    OpenAIRE

    Gruber, Benjamin

    2013-01-01

    This work describes the functionalization of biomimetic vesicle membranes by the incorporation of various synthetic amphiphiles. The presented approach enables rapid and simple development of bio-inspired nanomaterials for applications in biomolecule sensing and catalysis. Chapter 1 introduces the general concept of functional synthetic vesicle membranes and provides a brief overview about significant developments in this area. Chapter 2 describes synthesis and membrane-embedding of amp...

  14. Optic flow estimation on trajectories generated by bio-inspired closed-loop flight.

    Science.gov (United States)

    Shoemaker, Patrick A; Hyslop, Andrew M; Humbert, J Sean

    2011-05-01

    We generated panoramic imagery by simulating a fly-like robot carrying an imaging sensor, moving in free flight through a virtual arena bounded by walls, and containing obstructions. Flight was conducted under closed-loop control by a bio-inspired algorithm for visual guidance with feedback signals corresponding to the true optic flow that would be induced on an imager (computed by known kinematics and position of the robot relative to the environment). The robot had dynamics representative of a housefly-sized organism, although simplified to two-degree-of-freedom flight to generate uniaxial (azimuthal) optic flow on the retina in the plane of travel. Surfaces in the environment contained images of natural and man-made scenes that were captured by the moving sensor. Two bio-inspired motion detection algorithms and two computational optic flow estimation algorithms were applied to sequences of image data, and their performance as optic flow estimators was evaluated by estimating the mutual information between outputs and true optic flow in an equatorial section of the visual field. Mutual information for individual estimators at particular locations within the visual field was surprisingly low (less than 1 bit in all cases) and considerably poorer for the bio-inspired algorithms that the man-made computational algorithms. However, mutual information between weighted sums of these signals and comparable sums of the true optic flow showed significant increases for the bio-inspired algorithms, whereas such improvement did not occur for the computational algorithms. Such summation is representative of the spatial integration performed by wide-field motion-sensitive neurons in the third optic ganglia of flies.

  15. An experimental study on adhesive or antiadhesiveand strong bio-inspired nanomaterials

    OpenAIRE

    Lepore, Emiliano

    2012-01-01

    This experimental PhD thesis presents the results of research performed in five different facilities: in the Laboratory of Bio-inspired Nanomechanics "Giuseppe Maria Pugno" at the Politecnico of Torino, the "Nanofacility Piemonte" at the INRIM Institute in Torino, the Division of Dental Sciences and Biomaterials of the Department of Biomedicine at the University of Trieste, the Physics Department of the Politecnico of Torino, the Toscano- Buono Veterinary Surgery in Torino and the Department ...

  16. 7th International Conference on Bio-Inspired Computing : Theories and Applications

    CERN Document Server

    Singh, Pramod; Deep, Kusum; Pant, Millie; Nagar, Atulya

    2013-01-01

    The book is a collection of high quality peer reviewed research papers presented in Seventh International Conference on Bio-Inspired Computing (BIC-TA 2012) held at ABV-IIITM Gwalior, India. These research papers provide the latest developments in the broad area of "Computational Intelligence". The book discusses wide variety of industrial, engineering and scientific applications of nature/bio-inspired computing and presents invited papers from the inventors/originators of novel computational techniques.

  17. Bio-Inspired Prototype-Based Models and Applied Gompertzian Dynamics in Cluster Analysis

    OpenAIRE

    Pastorek, Lukáš

    2010-01-01

    The thesis deals with the analysis of the clustering and mapping techniques derived from the principles of the neural and statistical learning and growth theory. The selected branch of the unsupervised bio-inspired prototype-based models is described in terms of the proposed logical framework, which highlights the continuity of these methods with the classical "pure" statistical methods. Moreover, as those methods are broadly understood as the "black boxes" with the unpredictable, unclear and...

  18. A Bio-Inspired QoS-Oriented Handover Model in Heterogeneous Wireless Networks

    Directory of Open Access Journals (Sweden)

    Daxin Tian

    2014-01-01

    Full Text Available We propose a bio-inspired model for making handover decision in heterogeneous wireless networks. It is based on an extended attractor selection model, which is biologically inspired by the self-adaptability and robustness of cellular response to the changes in dynamic environments. The goal of the proposed model is to guarantee multiple terminals’ satisfaction by meeting the QoS requirements of those terminals’ applications, and this model also attempts to ensure the fairness of network resources allocation, in the meanwhile, to enable the QoS-oriented handover decision adaptive to dynamic wireless environments. Some numerical simulations are preformed to validate our proposed bio-inspired model in terms of adaptive attractor selection in different noisy environments. And the results of some other simulations prove that the proposed handover scheme can adapt terminals’ network selection to the varying wireless environment and benefits the QoS of multiple terminal applications simultaneously and automatically. Furthermore, the comparative analysis also shows that the bio-inspired model outperforms the utility function based handover decision scheme in terms of ensuring a better QoS satisfaction and a better fairness of network resources allocation in dynamic heterogeneous wireless networks.

  19. Cochlear outer hair cell bio-inspired metamaterial with negative effective parameters

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Zhang, Siwen

    2016-05-01

    Inspired by periodical outer hair cells (OHCs) and stereocilia clusters of mammalian cochlear, a type of bio-inspired metamaterial with negative effective parameters based on the OHC structure is proposed. With the structural parameters modified and some common engineering materials adopted, the bio-inspired structure design with length scales of millimeter and lightweight is presented, and then, a bending wave bandgap in a favorable low-frequency with width of 55 Hz during the interval 21-76 or 116 Hz during the interval 57-173 Hz is obtained, i.e., the excellent low-frequency acoustic performance turns up. Compared with the local resonance unit in previous literatures, both the size and weight are greatly reduced in our bio-inspired structure. In addition, the lower edge of low-frequency bandgap is reduced by an order of magnitude, almost to the lower limit frequency of the hearing threshold as well, which achieves an important breakthrough on the aspect of low-frequency and great significance on the noise and vibration reduction in low-frequency range.

  20. New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Bio-inspired intelligence is in the spotlight in the field of international artificial intelligence,and unmanned combat aerial vehicle(UCAV),owing to its potential to perform dangerous,repetitive tasks in remote and hazardous,is very promising for the technological leadership of the nation and essential for improving the security of society.On the basis of introduction of bioinspired intelligence and UCAV,a series of new development thoughts on UCAV control are proposed,including artificial brain based high-level autonomous control for UCAV,swarm intelligence based cooperative control for multiple UCAVs,hy-brid swarm intelligence and Bayesian network based situation assessment under complicated combating environments, bio-inspired hardware based high-level autonomous control for UCAV,and meta-heuristic intelligence based heterogeneous cooperative control for multiple UCAVs and unmanned combat ground vehicles(UCGVs).The exact realization of the proposed new development thoughts can enhance the effectiveness of combat,while provide a series of novel breakthroughs for the intelligence,integration and advancement of future UCAV systems.

  1. Bio-inspired approaches to sensing for defence and security applications.

    Science.gov (United States)

    Biggins, Peter D E; Kusterbeck, Anne; Hiltz, John A

    2008-05-01

    Interdisciplinary research in biotechnology and related scientific areas has increased tremendously over the past decade. This rapid pace, in conjunction with advances in microfabricated systems, computer hardware, bioengineering and the availability of low-powered miniature components, has now made it feasible to design bio-inspired materials, sensors and systems with tremendous potential for defence and security applications. To realize the full potential of biotechnology and bio-inspiration, there is a need to define specific requirements to meet the challenges of the changing world and its threats. One approach to assisting the defence and security communities in defining their requirements is through the use of a conceptual model. The distributed or intelligent autonomous sensing (DIAS) system is one such model. The DIAS model is not necessarily aimed at a single component, for instance a sensor, but can include a system, or even a system of systems in the same way that a single organism, a multi-cellular organism or group of organisms is configured. This paper provides an overview of the challenges to and opportunities for bio-inspired sensors and systems together with examples of how they are being implemented. Examples focus on both learning new things from biological organisms that have application to the defence and security forces and adapting known discoveries in biology and biochemistry for practical use by these communities. PMID:18427675

  2. Vision-based bio-inspired guidance law for small aerial vehicle

    Institute of Scientific and Technical Information of China (English)

    Wang Zhengjie; Huang Weilin; Yan Yonghong

    2015-01-01

    During predation, a flying insect can form a stealth flight path. This behavior is called motion camouflage. Based on the study results of this behavior, the perception and neurology of flying insects, a novel bio-inspired guidance law is proposed for the terminal guidance for small aer-ial vehicle with charge-coupled device imaging seekers. The kinematics relationship between a small aerial vehicle and target is analyzed, and a two-dimensional guidance law model is established by using artificial neural networks. To compare with the proportional guidance law, the numerical sim-ulations are carried out in the vertical plane and in the horizontal plane respectively. The simulation results show that the ballistic of the small aerial vehicle is straighter and the normal acceleration is smaller by using the bio-inspired guidance law than by using the proportional guidance law. That is to say, the bio-inspired guidance law just uses the information of the target from the imaging seeker, but the performance of it can be better than that of the proportional guidance law.

  3. Vision-based bio-inspired guidance law for small aerial vehicle

    Directory of Open Access Journals (Sweden)

    Wang Zhengjie

    2015-02-01

    Full Text Available During predation, a flying insect can form a stealth flight path. This behavior is called motion camouflage. Based on the study results of this behavior, the perception and neurology of flying insects, a novel bio-inspired guidance law is proposed for the terminal guidance for small aerial vehicle with charge-coupled device imaging seekers. The kinematics relationship between a small aerial vehicle and target is analyzed, and a two-dimensional guidance law model is established by using artificial neural networks. To compare with the proportional guidance law, the numerical simulations are carried out in the vertical plane and in the horizontal plane respectively. The simulation results show that the ballistic of the small aerial vehicle is straighter and the normal acceleration is smaller by using the bio-inspired guidance law than by using the proportional guidance law. That is to say, the bio-inspired guidance law just uses the information of the target from the imaging seeker, but the performance of it can be better than that of the proportional guidance law.

  4. Unified Switching between Active Flying and Perching of a Bioinspired Robot Using Impedance Control

    Directory of Open Access Journals (Sweden)

    Shanshan Du

    2015-01-01

    Full Text Available Currently, a bottleneck problem for battery-powered microflying robots is time of endurance. Inspired by flying animal behavior in nature, an innovative mechanism with active flying and perching in the three-dimensional space was proposed to greatly increase mission life and more importantly execute tasks perching on an object in the stationary way. In prior work, we have developed some prototypes of flying and perching robots. However, when the robots switch between flying and perching, it is a challenging issue to deal with the contact between the robot and environment under the traditional position control without considering the stationary obstacle and external force. Therefore, we propose a unified impedance control approach for bioinspired flying and perching robots to smoothly contact with the environment. The dynamic model of the bioinspired robot is deduced, and the proposed impedance control method is employed to control the contact force and displacement with the environment. Simulations including the top perching and side perching and the preliminary experiments were conducted to validate the proposed method. Both simulation and experimental results validate the feasibility of the proposed control methods for controlling a bioinspired flying and perching robot.

  5. Highly Thermally Conductive Composite Papers Prepared Based on the Thought of Bioinspired Engineering.

    Science.gov (United States)

    Yao, Yimin; Zeng, Xiaoliang; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2016-06-22

    The rapid development of modern electronics and three-dimensional integration sets stringent requirements for efficient heat removal of thermal-management materials to ensure the long lifetime of the electronics. However, conventional polymer composites that have been used widely as thermal-management materials suffer from undesired thermal conductivity lower than 10 W m(-1) K(-1). In this work, we report a novel thermally conductive composite paper based on the thought of bioinspired engineering. The advantage of the bioinspired papers over conventional composites lies in that they possess a very high in-plane thermal conductivity up to 21.7 W m(-1) K(-1) along with good mechanical properties and high electrical insulation. We attribute the high thermal conductivity to the improved interfacial interaction between assembled components through the introduction of silver nanoparticles and the oriented structure based on boron nitride nanosheets and silicon carbide nanowires. This thought based on bioinspired engineering provides a creative opportunity for design and fabrication of novel thermally conductive materials, and this kind of composite paper has potential applications in powerful integrated microelectronics. PMID:27253387

  6. Bioinspired matrices assembled by polysaccharide-protein interactions

    Science.gov (United States)

    Zhang, Le

    Bioinspired matrices assembled on the basis of noncovalent interactions between proteins and polysaccharides have been proved suitable to deliver therapeutically relevant proteins or DNAs. Our initial efforts were dedicated to the relationship between mechanical properties of hydrogels assembled based on specific interactions between low molecular weight heparin (LMWH) and heparin binding peptides (HBPs) such as HIP, ATIII, and PF4ZIP peptides. The measured differences in affinity and kinetics for LMWH-HBP binding likely lead to observed differences in the phase separation behavior of the poly (ethylene glycol) (PEG)-LMWH/PEG-HIP hydrogels versus the PEG-LMWH/PEG-ATIII hydrogels. More attention has been given to the PF4ZIP peptide employed for the noncovalent assembly of heparinized hydrogels. Multifunctional star PEG-PF4ZIP bioconjugates complexed with star PEG-LMWH form hydrogels that exhibit increasing elastic moduli with increasing mole ratio of PEG-PF4ZIP. The viscoelastic properties of the hydrogels can be controlled via alterations in the ratio between LMWH and PF4ZIP peptide, and comparisons with other PEG-LMWH/PEG-HBP hydrogels suggest the importance of both LMWH/HBP binding kinetics and the binding capacity of LMWH in determining rheological properties in these hydrogels. Characterization of the PEG-LMWH/PEG-PF4ZIP hydrogels suggests that useful moduli for soft tissue engineering applications are obtained at physiological temperatures and after applying high shear. Furthermore, in the basic fibroblast growth factor (bFGF) release, bFGF/vascular endothelial growth factor (VEGF) co-release, and hydrogel erosion results, the combination of growth factor (GF) release profiles and hydrogel erosion profiles suggests that GF delivery from the assembled hydrogels is mainly an erosion-controlled process that may permit co-release of GF with PEG-LMWH and may therefore also improve the bioactivity of GF delivered from these matrices. Hydrogels with such engineered

  7. Light weight phosphate cements

    Science.gov (United States)

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  8. Phosphate transport and sensing in Saccharomyces cerevisiae.

    OpenAIRE

    Wykoff, D D; O'Shea, E K

    2001-01-01

    Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate; however, little is known about how phosphate concentrations are sensed. The similarity of Pho84p, a high-affinity phosphate transporter in Saccharomyces cerevisiae, to the glucose sensors Snf3p and Rgt2p has led to the hypothesis that Pho84p is an inorganic phosphate sensor. Furthermore, pho84Delta strains have defects in phosphate signaling; they constitutively express PHO5, a phosphate starvat...

  9. Genetic Determinants of Phosphate Response in Drosophila

    OpenAIRE

    Clemens Bergwitz; Wee, Mark J.; Sumi Sinha; Joanne Huang; Charles DeRobertis; Mensah, Lawrence B.; Jonathan Cohen; Adam Friedman; Meghana Kulkarni; Yanhui Hu; Arunachalam Vinayagam; Michael Schnall-Levin; Bonnie Berger; Perkins, Lizabeth A.; Mohr, Stephanie E.

    2012-01-01

    Phosphate is required for many important cellular processes and having too little phosphate or too much can cause disease and reduce life span in humans. However, the mechanisms underlying homeostatic control of extracellular phosphate levels and cellular effects of phosphate are poorly understood. Here, we establish Drosophila melanogaster as a model system for the study of phosphate effects. We found that Drosophila larval development depends on the availability of phosphate in the medium. ...

  10. Triphenyl phosphate allergy from spectacle frames

    DEFF Research Database (Denmark)

    Carlsen, L; Andersen, K E; Egsgaard, Helge;

    1986-01-01

    A case of triphenyl phosphate allergy from spectacle frames is reported. Patch tests with analytical grade triphenyl phosphate, tri-m-cresyl phosphate, and tri-p-cresyl phosphate in the concentrations 5%, 0.5% and 0.05% pet. showed positive reactions to 0.05% triphenyl phosphate and 0.5% tri......-m-cresyl phosphate, but no reaction to tri-p-cresyl phosphate. Gas chromatography of the tricresyl phosphate 5% pet. patch test material supplied from Trolab showed that it contained a mixture of a wide range of triaryl phosphates, including 0.08% triphenyl phosphate which is above the threshold for detecting...... triphenyl phosphate allergy in our patient....

  11. 21 CFR 520.823 - Erythromycin phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Erythromycin phosphate. 520.823 Section 520.823... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.823 Erythromycin phosphate. (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance...

  12. 21 CFR 573.320 - Diammonium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diammonium phosphate. 573.320 Section 573.320 Food... Additive Listing § 573.320 Diammonium phosphate. The food additive diammonium phosphate may be safely used... crude protein from diammonium phosphate, adequate directions for use and a prominent statement,...

  13. 1H-detected solid-state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials characterization

    Science.gov (United States)

    Ravera, Enrico; Cerofolini, Linda; Martelli, Tommaso; Louka, Alexandra; Fragai, Marco; Luchinat, Claudio

    2016-06-01

    Proton-detection in solid-state NMR, enabled by high magnetic fields (>18 T) and fast magic angle spinning (>50 kHz), allows for the acquisition of traditional 1H-15N experiments on systems that are too big to be observed in solution. Among those, proteins entrapped in a bioinspired silica matrix are an attractive target that is receiving a large share of attention. We demonstrate that 1H-detected SSNMR provides a novel approach to the rapid assessment of structural integrity in proteins entrapped in bioinspired silica.

  14. Multiple Decoupled CPGs with Local Sensory Feedback for Adaptive Locomotion Behaviors of Bio-inspired Walking Robots

    DEFF Research Database (Denmark)

    Shaker Barikhan, Subhi; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    , and their interactions during body and leg movements through the environment. Based on this concept, we present here an artificial bio-inspired walking system. Its intralimb coordination is formed by multiple decoupled CPGs while its interlimb coordination is attained by the interactions between body dynamics...... and the environment through local sensory feedback of each leg. Simulation results show that this bio-inspired approach generates self-organizing emergent locomotion allowing the robot to adaptively form regular patterns, to stably walk while pushing an object with its front legs or performing multiple stepping...

  15. Combretastatin A4 phosphate.

    Science.gov (United States)

    West, Catharine M L; Price, Pat

    2004-03-01

    Combretastatin A4 phosphate (CA4P) is a water-soluble prodrug of combretastatin A4 (CA4). The vascular targeting agent CA4 is a microtubule depolymerizing agent. The mechanism of action of the drug is thought to involve the binding of CA4 to tubulin leading to cytoskeletal and then morphological changes in endothelial cells. These changes increase vascular permeability and disrupt tumor blood flow. In experimental tumors, anti-vascular effects are seen within minutes of drug administration and rapidly lead to extensive ischemic necrosis in areas that are often resistant to conventional anti-cancer treatments. Following single-dose administration a viable tumor rim typically remains from which tumor regrowth occurs. When given in combination with therapies targeted at the proliferating viable rim, enhanced tumor responses are seen and in some cases cures. Results from the first clinical trials have shown that CA4P monotherapy is safe and reduces tumor blood flow. There has been some promising demonstration of efficacy. CA4P in combination with cisplatin is also safe. Functional imaging studies have been used to aid the selection of doses for phase II trials. Both dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and positron emission tomography can measure the anti-vascular effects of CA4P in humans. This review describes the background to the development of CA4P, its proposed mechanism of action, the results from the first clinical trials with CA4P and the role of imaging techniques in its clinical development.

  16. Characterization of Ca-phosphate biological materials by scanning transmission X-ray microscopy (STXM) at the Ca L2,3-, P L2,3- and C K-edges.

    Science.gov (United States)

    Cosmidis, Julie; Benzerara, Karim; Nassif, Nadine; Tyliszczak, Tolek; Bourdelle, Franck

    2015-01-01

    Several naturally occurring biological materials, including bones and teeth, pathological calcifications, microbial mineral deposits formed in marine phosphogenesis areas, as well as bio-inspired cements used for bone and tooth repair are composed of Ca-phosphates. These materials are usually identified and characterized using bulk-scale analytical tools such as X-ray diffraction, Fourier transform infrared spectroscopy or nuclear magnetic resonance. However, there is a need for imaging techniques that provide information on the spatial distribution and chemical composition of the Ca-phosphate phases at the micrometer- and nanometer scales. Such analyses provide insightful indications on how the materials may have formed, e.g. through transient precursor phases that eventually remain spatially separated from the mature phase. Here, we present scanning transmission X-ray microscopy (STXM) analyses of Ca-phosphate reference compounds, showing the feasibility of fingerprinting Ca-phosphate-based materials. We calibrate methods to determine important parameters of Ca-phosphate phases, such as their Ca/P ratio and carbonate content at the ∼25nm scale, using X-ray absorption near-edge spectra at the C K-, Ca L2,3- and P L2,3-edges. As an illustrative case study, we also perform STXM analyses on hydroxyapatite precipitates formed in a dense fibrillar collagen matrix. This study paves the way for future research on Ca-phosphate biomineralization processes down to the scale of a few tens of nanometers.

  17. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    Directory of Open Access Journals (Sweden)

    Hiroshi Fudouzi

    2011-01-01

    Full Text Available In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  18. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    International Nuclear Information System (INIS)

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  19. Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates

    Science.gov (United States)

    Song, Z. Q.; Ni, Y.; Peng, L. M.; Liang, H. Y.; He, L. H.

    2016-01-01

    Bioinspired discontinuous nanolaminate design becomes an efficient way to mitigate the strength-ductility tradeoff in brittle materials via arresting the crack at the interface followed by controllable interface failure. The analytical solution and numerical simulation based on the nonlinear shear-lag model indicates that propagation of the interface failure can be unstable or stable when the interfacial shear stress between laminae is uniform or highly localized, respectively. A dimensionless key parameter defined by the ratio of two characteristic lengths governs the transition between the two interface-failure modes, which can explain the non-monotonic size-dependent mechanical properties observed in various laminate composites. PMID:27029955

  20. Mechanical implications of the arthropod exoskeleton microstructures and the mechanical behavior of the bioinspired composites

    Science.gov (United States)

    Cheng, Liang

    investigated exoskeletons, the helicoidal structure, was incorporated in the design and manufacture of the subsequent bio-inspired laminated composites. The mechanical performance of the resulted composites was evaluated and significant improvement over the traditional man-made structures was observed. This original research work encompassed a full cycle for a particular bioinspired material development, starting from the bio-material structure observation, the corresponding mechanical modeling and analysis, and the final bio-inspired composite design, manufacture and evaluation. Important knowledge on the microstructures of the investigated exoskeletons was established or clarified, and their mechanical implications were revealed for the first time based on appropriate modeling and simulation. The resulted bio-inspired composites demonstrate superior mechanical performance over the traditional composite structure widely used in industry, thus possess the potential for future practical application.

  1. Bio-inspired tactile sensor with arrayed structures based on electroactive polymers

    Science.gov (United States)

    Wang, Jin; Sato, Hiroshi; Taya, Minoru

    2009-03-01

    We reported some work on flexible tactile sensors based on Flemion ionic polymer metal composites previously. In this work, we compared the signals in both voltage and current with the signals obtained from a giant nerve fiber reported previously by other researchers. We found some similarities between the artificial tactile sensor and the nerve fiber, in both of which ionic movement play a very important role. This bio-inspired Flemion based ionic polymer metal composites would be a good candidate for bio-related sensors especially for prosthetic limb socket interface applications.

  2. The framework for simulation of bioinspired security mechanisms against network infrastructure attacks.

    Science.gov (United States)

    Shorov, Andrey; Kotenko, Igor

    2014-01-01

    The paper outlines a bioinspired approach named "network nervous system" and methods of simulation of infrastructure attacks and protection mechanisms based on this approach. The protection mechanisms based on this approach consist of distributed procedures of information collection and processing, which coordinate the activities of the main devices of a computer network, identify attacks, and determine necessary countermeasures. Attacks and protection mechanisms are specified as structural models using a set-theoretic approach. An environment for simulation of protection mechanisms based on the biological metaphor is considered; the experiments demonstrating the effectiveness of the protection mechanisms are described.

  3. Bio-inspiring cyber security and cloud services trends and innovations

    CERN Document Server

    Kim, Tai-Hoon; Kacprzyk, Janusz; Awad, Ali

    2014-01-01

    This volume presents recent research in cyber security, and reports how organizations can gain competitive advantages by applying the different security techniques in real-world scenarios. The volume provides reviews of cutting–edge technologies, algorithms, applications and insights for bio-inspiring cyber security-based systems. The book will be a valuable companion and comprehensive reference for both postgraduate and senior undergraduate students who are taking a course in cyber security. The volume is organized in self-contained chapters to provide greatest reading flexibility.  

  4. A Bio-Inspired Method for the Constrained Shortest Path Problem

    Directory of Open Access Journals (Sweden)

    Hongping Wang

    2014-01-01

    optimization, crew scheduling, network routing and so on. It is an open issue since it is a NP-hard problem. In this paper, we propose an innovative method which is based on the internal mechanism of the adaptive amoeba algorithm. The proposed method is divided into two parts. In the first part, we employ the original amoeba algorithm to solve the shortest path problem in directed networks. In the second part, we combine the Physarum algorithm with a bio-inspired rule to deal with the CSP. Finally, by comparing the results with other method using an examples in DCLC problem, we demonstrate the accuracy of the proposed method.

  5. Interface failure modes explain non-monotonic size-dependent mechanical properties in bioinspired nanolaminates

    Science.gov (United States)

    Song, Z. Q.; Ni, Y.; Peng, L. M.; Liang, H. Y.; He, L. H.

    2016-03-01

    Bioinspired discontinuous nanolaminate design becomes an efficient way to mitigate the strength-ductility tradeoff in brittle materials via arresting the crack at the interface followed by controllable interface failure. The analytical solution and numerical simulation based on the nonlinear shear-lag model indicates that propagation of the interface failure can be unstable or stable when the interfacial shear stress between laminae is uniform or highly localized, respectively. A dimensionless key parameter defined by the ratio of two characteristic lengths governs the transition between the two interface-failure modes, which can explain the non-monotonic size-dependent mechanical properties observed in various laminate composites.

  6. Visual Attention: from Bio-Inspired Modeling to Real-Time Implementation

    OpenAIRE

    Ouerhani, Nabil; Hügli, Heinz

    2004-01-01

    Visual Attention: From Bio-Inspired Modeling to Visual attention is the ability of a vision system, be it biological or artificial, to rapidly select the most salient and thus the most relevant data about the environment in which the system is operating. The main goal of this visual mechanism is to drastically reduce the amount of visual information that must be processed by high level and thus complex tasks, such as object recognition, which leads to a considerable speed up of the entire vis...

  7. Autonomic networking-on-chip bio-inspired specification, development, and verification

    CERN Document Server

    Cong-Vinh, Phan

    2011-01-01

    Despite the growing mainstream importance and unique advantages of autonomic networking-on-chip (ANoC) technology, Autonomic Networking-On-Chip: Bio-Inspired Specification, Development, and Verification is among the first books to evaluate research results on formalizing this emerging NoC paradigm, which was inspired by the human nervous system. The FIRST Book to Assess Research Results, Opportunities, & Trends in ""BioChipNets"" The third book in the Embedded Multi-Core Systems series from CRC Press, this is an advanced technical guide and reference composed of contributions from prominent re

  8. Bio-Inspired Energy-Aware Protocol Design for Cooperative Wireless Networks

    DEFF Research Database (Denmark)

    Perrucci, Gian Paolo; Anggraeni, Puri Novelti; Wardana, Satya Ardhy;

    2011-01-01

    In this work, bio-inspired cooperation rules are applied to wireless communication networks. The main goal is to derive cooperative behaviour rules to improve the energy consumption of each mobile device. A medium access control (MAC) protocol particularly designed for peer-to-peer communication...... among cooperative wireless mobile devices is described. The work is based on a novel communication architecture, where a group of mobile devices are connected both to a cellular base station and among them using short-range communication links. A prior work has investigated the energy saving that can...

  9. THz Discrimination of materials: demonstration of a bioinspired apparatus based on metasurfaces selective filters

    CERN Document Server

    Carelli1, P; Torrioli, G; Castellano, M G

    2016-01-01

    We present an apparatus for terahertz fingerprint discrimination of materials designed to be fast, simple, compact and economical in order to be suitable for preliminary on-field analysis. The system working principles, bioinspired by the human vision of colors, are based on the use of microfabricated metamaterials selective filters and of a very compact optics based on metallic ellipsoidal mirrors in air. We experimentally demonstrate the operation of the apparatus in discriminating simple substances such as salt, staple foods and grease in an accurate and reproducible manner. We present the system and the obtained results and discuss issues and possible developments.

  10. Bio-inspired catechol chemistry: a new way to develop a re-moldable and injectable coacervate hydrogel.

    Science.gov (United States)

    Oh, Yeon Jeong; Cho, Il Hwan; Lee, Haeshin; Park, Ki-Jung; Lee, Hyukjin; Park, Sung Young

    2012-12-18

    A new way is demonstrated to develop a bio-inspired coacervate hydrogel by following catechol chemistry showing injectable and re-moldable physical properties. The formed coacervate shows potential long-term stability under water. Depending on pH, formation of the coacervate has been verified which is confirmed by XPS and zeta potential measurements.

  11. Uranium endowments in phosphate rock

    International Nuclear Information System (INIS)

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. - Highlights: • We identify components that underlie the recovery of uranium from phosphate rock. • We estimate that 11,000 tU may have been recoverable from phosphoric acid in 2010. • Recovery is a resource conservation and environmental pollution control strategy. • To ensure investment in recovery technology, profitability needs to be secured

  12. [Phosphate metabolism and iron deficiency].

    Science.gov (United States)

    Yokoyama, Keitaro

    2016-02-01

    Autosomal dominant hypophosphatemic rickets(ADHR)is caused by gain-of-function mutations in FGF23 that prevent its proteolytic cleavage. Fibroblast growth factor 23(FGF23)is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. Low iron status plays a role in the pathophysiology of ADHR. Iron deficiency is an environmental trigger that stimulates FGF23 expression and hypophosphatemia in ADHR. It was reported that FGF23 elevation in patients with CKD, who are often iron deficient. In patients with nondialysis-dependent CKD, treatment with ferric citrate hydrate resulted in significant reductions in serum phosphate and FGF23.

  13. Tissue-Engineered Fibrin-Based Heart Valve with Bio-Inspired Textile Reinforcement.

    Science.gov (United States)

    Moreira, Ricardo; Neusser, Christine; Kruse, Magnus; Mulderrig, Shane; Wolf, Frederic; Spillner, Jan; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Mela, Petra

    2016-08-01

    The mechanical properties of tissue-engineered heart valves still need to be improved to enable their implantation in the systemic circulation. The aim of this study is to develop a tissue-engineered valve for the aortic position - the BioTexValve - by exploiting a bio-inspired composite textile scaffold to confer native-like mechanical strength and anisotropy to the leaflets. This is achieved by multifilament fibers arranged similarly to the collagen bundles in the native aortic leaflet, fixed by a thin electrospun layer directly deposited on the pattern. The textile-based leaflets are positioned into a 3D mould where the components to form a fibrin gel containing human vascular smooth muscle cells are introduced. Upon fibrin polymerization, a complete valve is obtained. After 21 d of maturation by static and dynamic stimulation in a custom-made bioreactor, the valve shows excellent functionality under aortic pressure and flow conditions, as demonstrated by hydrodynamic tests performed according to ISO standards in a mock circulation system. The leaflets possess remarkable burst strength (1086 mmHg) while remaining pliable; pronounced extracellular matrix production is revealed by immunohistochemistry and biochemical assay. This study demonstrates the potential of bio-inspired textile-reinforcement for the fabrication of functional tissue-engineered heart valves for the aortic position. PMID:27377438

  14. Bioinspired production of magnetic laccase-biotitania particles for the removal of endocrine disrupting chemicals.

    Science.gov (United States)

    Ardao, Inés; Magnin, Delphine; Agathos, Spiros N

    2015-10-01

    Microbial laccases are powerful enzymes capable of degrading lignin and other recalcitrant compounds including endocrine disrupting chemicals (EDCs). Efficient EDC removal on an industrial scale requires robust, stable, easy to handle and cost-effective immobilized biocatalysts. In this direction, magnetic biocatalysts are attractive due to their easy separation through an external magnetic field. Recently, a bioinspired immobilization technique that mimics the natural biomineralization reactions in diatoms has emerged as a fast and versatile tool for generating robust, cheap, and highly stable (nano) biocatalysts. In this work, bioinspired formation of a biotitania matrix is triggered on the surface of magnetic particles in the presence of laccase in order to produce laccase-biotitania (lac-bioTiO2 ) biocatalysts suitable for environmental applications using a novel, fast and versatile enzyme entrapment technique. Highly active lac-bioTiO2 particles have been produced and the effect of different parameters (enzyme loading, titania precursor concentration, pH, duration of the biotitania formation, and laccase adsorption steps) on the apparent activity yield of these biocatalysts were evaluated, the concentration of the titania precursor being the most influential. The lac-bioTiO2 particles were able to catalyze the removal of bisphenol A, 17α-ethinylestradiol and diclofenac in a mixture of six model EDCs and retained 90% of activity after five reaction cycles and 60% after 10 cycles.

  15. A Bioinspired Neural Model Based Extended Kalman Filter for Robot SLAM

    Directory of Open Access Journals (Sweden)

    Jianjun Ni

    2014-01-01

    Full Text Available Robot simultaneous localization and mapping (SLAM problem is a very important and challenging issue in the robotic field. The main tasks of SLAM include how to reduce the localization error and the estimated error of the landmarks and improve the robustness and accuracy of the algorithms. The extended Kalman filter (EKF based method is one of the most popular methods for SLAM. However, the accuracy of the EKF based SLAM algorithm will be reduced when the noise model is inaccurate. To solve this problem, a novel bioinspired neural model based SLAM approach is proposed in this paper. In the proposed approach, an adaptive EKF based SLAM structure is proposed, and a bioinspired neural model is used to adjust the weights of system noise and observation noise adaptively, which can guarantee the stability of the filter and the accuracy of the SLAM algorithm. The proposed approach can deal with the SLAM problem in various situations, for example, the noise is in abnormal conditions. Finally, some simulation experiments are carried out to validate and demonstrate the efficiency of the proposed approach.

  16. A Drosera-bioinspired hydrogel for catching and killing cancer cells.

    Science.gov (United States)

    Li, Shihui; Chen, Niancao; Gaddes, Erin R; Zhang, Xiaolong; Dong, Cheng; Wang, Yong

    2015-01-01

    A variety of bioinspired materials have been successfully synthesized to mimic the sophisticated structures or functions of biological systems. However, it is still challenging to develop materials with multiple functions that can be performed synergistically or sequentially. The purpose of this work was to demonstrate a novel bioinspired hydrogel that can interact with cancer cells, functionally similar to Drosera in catching and killing prey. This hydrogel had two layers with the top one functionalized with oligonucleotide aptamers and the bottom one functionalized with double-stranded DNA. The results show that the top hydrogel layer was able to catch target cells with high efficiency and specificity, and that the bottom hydrogel layer could sequester doxorubicin (Dox) for sustained drug release. Importantly, the released Dox could kill 90% of the cells after 1-h residence of the cells on the hydrogel. After the cell release, this bifunctional hydrogel could be regenerated for continuous cell catching and killing. Therefore, the data presented in this study has successfully demonstrated the potential of developing a material system with the functions of attracting, catching and killing diseased cells (e.g., circulating tumor cells) or even invading microorganisms (e.g., bacteria). PMID:26396063

  17. Bio-Inspired Control of an Arm Exoskeleton Joint with Active-Compliant Actuation System

    Directory of Open Access Journals (Sweden)

    Michele Folgheraiter

    2009-01-01

    Full Text Available This paper presents the methodology followed on the design of a multi-contact point haptic interface that uses a bio-inspired control approach and a novel actuation system. The combination of these components aims at creating a system that increases the operability of the target, and, at the same time, enables an intuitive and safe tele-operation of any complex robotic system of any given morphology. The novelty lies on the combination of a thoughtful kinematic structure driven by an active-compliant actuation system and a bio-inspired paradigm for its regulation. Due to the proposed actuation approach, the final system will achieve the condition of wearable system. On that final solution, each joint will be able to change its stiffness depending on the task to be executed, and on the anatomical features of each individual. Moreover, the system provides a variety of safety mechanisms at different levels to prevent causing any harm to the operator. In future, the system should allow the complete virtual immersion of the user within the working scenario.

  18. Bio-inspired scale-like surface textures and their tribological properties.

    Science.gov (United States)

    Greiner, Christian; Schäfer, Michael

    2015-08-01

    Friction, wear and the associated energy dissipation are major challenges in all systems containing moving parts. Examples range from nanoelectromechanical systems over hip prosthesis to off-shore wind turbines. Bionic approaches have proven to be very successful in many engineering problems, while investigating the potential of a bio-inspired approach in creating morphological surface textures is a relatively new field of research. Here, we developed laser-created textures inspired by the scales found on the skin of snakes and certain lizards. We show that this bio-inspired surface morphology reduced dry sliding friction forces by more than 40%. In lubricated contacts the same morphology increased friction by a factor of three. Two different kinds of morphologies, one with completely overlapping scales and one with the scales arranged in individual rows, were chosen. In lubricated as well as unlubricated contacts, the surface texture with the scales in rows showed lower friction forces than the completely overlapping ones. We anticipate that these results could have significant impact in all dry sliding contacts, ranging from nanoelectromechanical and micro-positioning systems up to large-scale tribological contacts which cannot be lubricated, e.g. because they are employed in a vacuum environment. PMID:26125522

  19. “Uphill” cation transport: A bioinspired photo-driven ion pump

    Science.gov (United States)

    Zhang, Zhen; Kong, Xiang-Yu; Xie, Ganhua; Li, Pei; Xiao, Kai; Wen, Liping; Jiang, Lei

    2016-01-01

    Biological ion pumps with active ionic transport properties lay the foundation for many life processes. However, few analogs have been produced because extra energy is needed to couple to this “uphill” process. We demonstrate a bioinspired artificial photo-driven ion pump based on a single polyethylene terephthalate conical nanochannel. The pumping process behaving as an inversion of zero-volt current can be realized by applying ultraviolet irradiation from the large opening. The light energy can accelerate the dissociation of the benzoic acid derivative dimers existing on the inner surface of nanochannel, which consequently produces more mobile carboxyl groups. Enhanced electrostatic interaction between the ions traversing the nanochannel and the charged groups on the inner wall is the key reason for the uphill cation transport behavior. This system creates an ideal experimental and theoretical platform for further development and design of various stimuli-driven and specific ion–selective bioinspired ion pumps, which anticipates wide potential applications in biosensing, energy conversion, and desalination. PMID:27774511

  20. Nano/Micro-Manufacturing of Bioinspired Materials: a Review of Methods to Mimic Natural Structures.

    Science.gov (United States)

    Zhang, Chaoqun; Mcadams, Daniel A; Grunlan, Jaime C

    2016-08-01

    Through billions of years of evolution and natural selection, biological systems have developed strategies to achieve advantageous unification between structure and bulk properties. The discovery of these fascinating properties and phenomena has triggered increasing interest in identifying characteristics of biological materials, through modern characterization and modeling techniques. In an effort to produce better engineered materials, scientists and engineers have developed new methods and approaches to construct artificial advanced materials that resemble natural architecture and function. A brief review of typical naturally occurring materials is presented here, with a focus on chemical composition, nano-structure, and architecture. The critical mechanisms underlying their properties are summarized, with a particular emphasis on the role of material architecture. A review of recent progress on the nano/micro-manufacturing of bio-inspired hybrid materials is then presented in detail. In this case, the focus is on nacre and bone-inspired structural materials, petals and gecko foot-inspired adhesive films, lotus and mosquito eye inspired superhydrophobic materials, brittlestar and Morpho butterfly-inspired photonic structured coatings. Finally, some applications, current challenges and future directions with regard to manufacturing bio-inspired hybrid materials are provided. PMID:27144950

  1. A Fluid-solid Numerical Model for the Analysis of Bio-inspired UUV

    Science.gov (United States)

    Mitra, Santanu; Krishnamurthy, Nagendra; Tafti, Danesh; Priya, Shashank

    2012-11-01

    This research will describe how a biology-inspired approach to engineering has placed jellyfish at the center of efforts to build next-generation underwater vehicles. In order to swim, jellyfish contract the circular muscles that line the undersurface of their bell. The motion of the bell from the relaxed position to the fully contracted position results in the mesoglea interacting with the surrounding water in such a way that causes the jellyfish to move forward. The present method uses two-dimensional fluid elements and plain strain hyperelastic structural elements for the numerical simulation of the problem. The equations of motion of the fluid are expressed as full N-S equation. A new type of bio-inspired boundary condition has been proposed. A prototype of the jellyfish setup has been developed for the experimental validation of the simulation results. The solution of the coupled system is accomplished by solving the two systems separately with the interaction effects using immersed boundary method. This study will be useful in accurate calculation of pressure distribution, maximum blocking stress, strain rate and actuator system for submerged autonomous vehicle. This study will also help in designing efficient propulsion and thruster mechanism for unmanned underwater vehicle. It is believed that the research presented in this paper advances the understanding of the dynamic behavior of bio-inspired UUV.

  2. Orientation-Induced Effects of Water Harvesting on Humps-on-Strings of Bioinspired Fibers

    Science.gov (United States)

    Chen, Yuan; Li, Dan; Wang, Ting; Zheng, Yongmei

    2016-01-01

    Smart water-collecting functions are naturally endowed on biological surfaces with unique wettable microstructures, e.g., beetle back with “alternate hydrophobic, hydrophilic micro-regions”, and spider silk with wet-rebuilt “spindle-knot, joint” structures. Enlightened by the creature features, design of bio-inspired surfaces becomes the active issue in need of human beings for fresh water resource. Recently, as observed from spider web in nature, the net of spider silk is usually set in different situations and slopes in air, thus spider silks can be placed in all kinds of orientations as capturing water. Here, we show the styles and orientations of hump-on-string to control the ability of water collection as bioinspired silks are fabricated successfully. As different strings, sizes (height, length, pitch) of humps can become the controlling on volumes of extreme water drops. It is related to the different solid/liquid contact regions resulting in the as-modulated wet adhesion due to orientations of humps-on-strings. The conversion of high-low adhesion can be achieved to rely on orientations for the effect of capturing water drops. These studies offer an insight into enhancement of water collection efficiency and are helpful to design smart materials for controlled water drop capture and release via conversions of high-low adhesion.

  3. Final Report for Bio-Inspired Approaches to Moving-Target Defense Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Glenn A.; Oehmen, Christopher S.

    2012-09-01

    This report records the work and contributions of the NITRD-funded Bio-Inspired Approaches to Moving-Target Defense Strategies project performed by Pacific Northwest National Laboratory under the technical guidance of the National Security Agency’s R6 division. The project has incorporated a number of bio-inspired cyber defensive technologies within an elastic framework provided by the Digital Ants. This project has created the first scalable, real-world prototype of the Digital Ants Framework (DAF)[11] and integrated five technologies into this flexible, decentralized framework: (1) Ant-Based Cyber Defense (ABCD), (2) Behavioral Indicators, (3) Bioinformatic Clas- sification, (4) Moving-Target Reconfiguration, and (5) Ambient Collaboration. The DAF can be used operationally to decentralize many such data intensive applications that normally rely on collection of large amounts of data in a central repository. In this work, we have shown how these component applications may be decentralized and may perform analysis at the edge. Operationally, this will enable analytics to scale far beyond current limitations while not suffering from the bandwidth or computational limitations of centralized analysis. This effort has advanced the R6 Cyber Security research program to secure digital infrastructures by developing a dynamic means to adaptively defend complex cyber systems. We hope that this work will benefit both our client’s efforts in system behavior modeling and cyber security to the overall benefit of the nation.

  4. Performance Characteristics of Bio-Inspired Metal Nanostructures as Surface-Enhanced Raman Scattered (SERS) Substrates.

    Science.gov (United States)

    Areizaga-Martinez, Hector I; Kravchenko, Ivan; Lavrik, Nickolay V; Sepaniak, Michael J; Hernández-Rivera, Samuel P; De Jesús, Marco A

    2016-09-01

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leaves and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). The substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed. PMID:27566257

  5. Biomimetic/Bioinspired Design of Enzyme@capsule Nano/Microsystems.

    Science.gov (United States)

    Shi, J; Jiang, Y; Zhang, S; Yang, D; Jiang, Z

    2016-01-01

    Enzyme@capsule nano/microsystems, which refer to the enzyme-immobilized capsules, have received tremendous interest owing to the combination of the high catalytic activities of encapsulated enzymes and the hierarchical structure of the capsule. The preparation of capsules and simultaneous encapsulation of enzymes is recognized as the core process for the rational design and construction of enzyme@capsule nano/microsystems. The strategy used has three major steps: (a) generation of the templates, (b) surface coating on the templates, and (c) removal of the templates, and it has been proven to be effective and versatile for the construction of enzyme@capsule nano/microsystems. Several conventional methods, including layer-by-layer assembly of polyelectrolytes, liquid crystalline templating method, etc., were used to design and construct enzyme@capsule nano/microsystems, but these have two major drawbacks. One is the low mechanical stability of the systems and the second is the harsh conditions used in the construction process. Learning from nature, several biomimetic/bioinspired methods such as biomineralization, biomimetic/bioinspired adhesion, and their combination have been exploited for the construction of enzyme@capsule nano/microsystems. In this chapter, we will present a general protocol for the construction of enzyme@capsule nano/microsystems using the latter approach. Some suggestions for improved design, construction, and characterization will also be presented with detailed procedures for specific examples.

  6. Bio-inspired Trajectory Generation for UAV Perching Movement Based on Tau Theory

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-09-01

    Full Text Available This paper offers a bio-inspired trajectory generation method for UAV/MAV perching (i.e., the final approach to, and landing on, a target. The method is based on tau theory, which was established based on the study of the natural motion patterns of animals (including humans when they approach a fixed or moving object for perching or capturing prey. In our research, tau theory is applied to the trajectory generation problem of an air vehicle for perching on a target object. Three bio-inspired strategies, namely the tau in the action gap strategy, the tau coupling strategy and the intrinsic tau gravity strategy are studied for perching tasks. A key parameter of the method inspired by biological systems is discussed. Two perching scenarios, one from a flight state (with non-zero initial velocity and one from a hovering state (with zero initial velocity, are studied. Numerical simulations with a rotary vehicle are presented as examples to demonstrate the performance of the proposed approach. The simulation results show that the resulting flight trajectories meet all the desired requirements for the vehicle in perching on an object.

  7. Gas barrier properties of bio-inspired Laponite-LC polymer hybrid films.

    Science.gov (United States)

    Tritschler, Ulrich; Zlotnikov, Igor; Fratzl, Peter; Schlaad, Helmut; Grüner, Simon; Cölfen, Helmut

    2016-01-01

    Bio-inspired Laponite (clay)-liquid crystal (LC) polymer composite materials with high clay fractions (>80%) and a high level of orientation of the clay platelets, i.e. with structural features similar to the ones found in natural nacre, have been shown to exhibit a promising behavior in the context of reduced oxygen transmission. Key characteristics of these bio-inspired composite materials are their high inorganic content, high level of exfoliation and orientation of the clay platelets, and the use of a LC polymer forming the organic matrix in between the Laponite particles. Each single feature may be beneficial to increase the materials gas barrier property rendering this composite a promising system with advantageous barrier capacities. In this detailed study, Laponite/LC polymer composite coatings with different clay loadings were investigated regarding their oxygen transmission rate. The obtained gas barrier performance was linked to the quality, respective Laponite content and the underlying composite micro- and nanostructure of the coatings. Most efficient oxygen barrier properties were observed for composite coatings with 83% Laponite loading that exhibit a structure similar to sheet-like nacre. Further on, advantageous mechanical properties of these Laponite/LC polymer composites reported previously give rise to a multifunctional composite system. PMID:27225326

  8. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids

    Institute of Scientific and Technical Information of China (English)

    XU Ren-kou; ZHU Yong-guan; David Chittleborough

    2004-01-01

    Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by Iow-molecular-weight organic acids.Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the pKa values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was not correlated with PKa. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearrly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.

  9. Bioinspired Engineering of Exploration Systems (BEES) - its Impact on Future Missions

    Science.gov (United States)

    Thakoor, Sarita; Hine, Butler; Zornetzer, Steve

    2004-01-01

    This paper describes an overview of our "Bioinspired Engineering of Exploration Systems for Mars" ( "BEES for Mars") project. The BEES approach distills selected biologically inspired strategies utilizing motion cues/optic flow, bioinspired pattern recognition, biological visual and neural control systems, bioinspired sensing and communication techniques, and birds of prey inspired search and track algorithmic systems. Unique capabilities so enabled, provide potential solutions to future autonomous robotic space and planetary mission applications. With the first series of tests performed in September 2003, August 2004 and September 2004, we have demonstrated the BEES technologies at the El Mirage Dry Lakebed site in the Mojave Desert using Delta Wing experimental prototypes. We call these test flyers the "BEES flyer", since we are developing them as dedicated test platform for the newly developed bioinspired sensors, processors and algorithmic strategies. The Delta Wing offers a robust airframe that can sustain high G launches and offers ease of compact stowability and packaging along with scaling to small size and low ReynOld's number performance for a potential Mars deployment. Our approach to developing light weight, low power autonomous flight systems using concepts distilled from biology promises to enable new applications, of dual use to NASA and DoD needs. Small in size (0.5 -5 Kg) BEES Flyers are demonstrating capabilities for autonomous flight and sensor operability in Mars analog conditions. The BEES project team spans JPL, NASA Ames, Australian National University (ANU), Brigham Young University(BYU), DC Berkeiey, Analogic Computers Inc. and other institutions. The highlights from our recent flight demonstrations exhibiting new Mission enabling capabilities are described. Further, this paper describes two classes of potential new missions for Mars exploration: (1) the long range exploration missions, and (2) observation missions, for real time imaging of

  10. Photorelease of phosphates: Mild methods for protecting phosphate derivatives

    Directory of Open Access Journals (Sweden)

    Sanjeewa N. Senadheera

    2014-08-01

    Full Text Available We have developed a new photoremovable protecting group for caging phosphates in the near UV. Diethyl 2-(4-hydroxy-1-naphthyl-2-oxoethyl phosphate (14a quantitatively releases diethyl phosphate upon irradiation in aq MeOH or aq MeCN at 350 nm, with quantum efficiencies ranging from 0.021 to 0.067 depending on the solvent composition. The deprotection reactions originate from the triplet excited state, are robust under ambient conditions and can be carried on to 100% conversion. Similar results were found with diethyl 2-(4-methoxy-1-naphthyl-2-oxoethyl phosphate (14b, although it was significantly less efficient compared with 14a. A key step in the deprotection reaction in aq MeOH is considered to be a Favorskii rearrangement of the naphthyl ketone motif of 14a,b to naphthylacetate esters 25 and 26. Disruption of the ketone-naphthyl ring conjugation significantly shifts the photoproduct absorption away from the effective incident wavelength for decaging of 14, driving the reaction to completion. The Favorskii rearrangement does not occur in aqueous acetonitrile although diethyl phosphate is released. Other substitution patterns on the naphthyl or quinolin-5-yl core, such as the 2,6-naphthyl 10 or 8-benzyloxyquinolin-5-yl 24 platforms, also do not rearrange by aryl migration upon photolysis and, therefore, do not proceed to completion. The 2,6-naphthyl ketone platform instead remains intact whereas the quinolin-5-yl ketone fragments to a much more complex, highly absorbing reaction mixture that competes for the incident light.

  11. Sorption properties of tantalum phosphate

    International Nuclear Information System (INIS)

    The sorption properties of tantalum phosphate prepared from solution containing fluoride ions were studied using radioactivity measurements of trace constituents. It was found that this compound is a typical cation exchanger with the capacity of up to 1.6 mmolxg-1 in neutral solution. (author)

  12. Phosphate Recognition in Structural Biology

    NARCIS (Netherlands)

    Hirsch, Anna K.H.; Fischer, Felix R.; Diederich, François

    2007-01-01

    Drug-discovery research in the past decade has seen an increased selection of targets with phosphate recognition sites, such as protein kinases and phosphatases, in the past decade. This review attempts, with the help of database-mining tools, to give an overview of the most important principles in

  13. Glucose-6-Phosphate Dehydrogenase Deficiency Overview

    Science.gov (United States)

    ... Drugs GARD Information Navigator FAQs About Rare Diseases Glucose-6-phosphate dehydrogenase deficiency Title Other Names: G6PD ... G6PD deficiency Categories: Newborn Screening Summary Summary Listen Glucose 6 phosphate dehydrogenase (G6PD) deficiency is a hereditary ...

  14. Biphasic calcium phosphate in periapical surgery

    OpenAIRE

    Suneelkumar, Chinni; Datta, Krithika; Manali R Srinivasan; Kumar, Sampath T

    2008-01-01

    Calcium phosphate ceramics like hydroxyapatite and β -tricalcium phosphate (β -TCP) possess mineral composition that closely resembles that of the bone. They can be good bone substitutes due to their excellent biocompatibility. Biphasic calcium phosphate is a bone substitute which is a mixture of hydroxyapatite and β -tricalcium phosphate in fixed ratios. Studies have demonstrated the osteoconductive potential of this composition. This paper highlights the clinical use of biphasic calcium pho...

  15. Sintering of calcium phosphate bioceramics.

    Science.gov (United States)

    Champion, E

    2013-04-01

    Calcium phosphate ceramics have become of prime importance for biological applications in the field of bone tissue engineering. This paper reviews the sintering behaviour of these bioceramics. Conventional pressureless sintering of hydroxyapatite, Ca10(PO4)6(OH)2, a reference compound, has been extensively studied. Its physico-chemistry is detailed. It can be seen as a competition between two thermally activated phenomena that proceed by solid-state diffusion of matter: densification and grain growth. Usually, the objective is to promote the first and prevent the second. Literature data are analysed from sintering maps (i.e. grain growth vs. densification). Sintering trajectories of hydroxyapatite produced by conventional pressureless sintering and non-conventional techniques, including two-step sintering, liquid phase sintering, hot pressing, hot isostatic pressing, ultrahigh pressure, microwave and spark plasma sintering, are presented. Whatever the sintering technique may be, grain growth occurs mainly during the last step of sintering, when the relative bulk density reaches 95% of the maximum value. Though often considered very advantageous, most assisted sintering techniques do not appear very superior to conventional pressureless sintering. Sintering of tricalcium phosphate or biphasic calcium phosphates is also discussed. The chemical composition of calcium phosphate influences the behaviour. Similarly, ionic substitutions in hydroxyapatite or in tricalcium phosphate create lattice defects that modify the sintering rate. Depending on their nature, they can either accelerate or slow down the sintering rate. The thermal stability of compounds at the sintering temperature must also be taken into account. Controlled atmospheres may be required to prevent thermal decomposition, and flash sintering techniques, which allow consolidation at low temperature, can be helpful. PMID:23212081

  16. Phosphate analogues in the dissection of mechanism.

    OpenAIRE

    Heidi J. Korhonen; Conway, Louis P.; Hodgson, David R. W.

    2014-01-01

    Phosphoryl group transfer is central to genetic replication, cellular signalling and many metabolic processes. Understanding the mechanisms of phosphorylation and phosphate ester and anhydride cleavage is key to efforts towards biotechnological and biomedical exploitation of phosphate-handling enzymes. Analogues of phosphate esters and anhydrides are indispensable tools, alongside protein mutagenesis and computational methods, for the dissection of phosphoryl transfer mechanisms. Hydrolysable...

  17. 21 CFR 582.6778 - Sodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  18. 21 CFR 182.6778 - Sodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  19. 21 CFR 182.8217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.8217 Section 182.8217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  20. 21 CFR 182.1778 - Sodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  1. 21 CFR 582.5434 - Magnesium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic)....

  2. 21 CFR 582.5778 - Sodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  3. 21 CFR 182.6285 - Dipotassium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  4. 21 CFR 182.8778 - Sodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  5. 21 CFR 182.6290 - Disodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized...

  6. 21 CFR 582.1778 - Sodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  7. 21 CFR 582.1217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  8. 21 CFR 182.1217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium phosphate. 182.1217 Section 182.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  9. 21 CFR 582.6285 - Dipotassium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is...

  10. 21 CFR 582.5301 - Ferric phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use....

  11. 21 CFR 582.1141 - Ammonium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b)...

  12. 21 CFR 582.6290 - Disodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is...

  13. 40 CFR 721.5995 - Polyalkyl phosphate.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyalkyl phosphate. 721.5995 Section... Substances § 721.5995 Polyalkyl phosphate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyalkyl phosphate (PMN P-95-1772)...

  14. 21 CFR 582.5217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic)....

  15. Calcium phosphate cements: study of the beta-tricalcium phosphate--monocalcium phosphate system.

    Science.gov (United States)

    Mirtchi, A A; Lemaitre, J; Terao, N

    1989-09-01

    The possibility of making cements based on beta-tricalcium phosphate (beta-TCP), a promising bone graft material, was investigated. Upon admixture with water, beta-TCP/monocalcium phosphate monohydrate (MCPM) mixtures were found to set and harden like conventional hydraulic cements. Beta-TCP powders with larger particle size, obtained by sintering at higher temperatures, increased the ultimate strength of the cement. Results show that setting occurs after dissolution of MCPM, as a result of the precipitation of dicalcium phosphate dihydrate (DCPD) in the paste. The ultimate tensile strength of the hardened cement is proportional to the amount of DCPD formed. Upon ageing above 40 degrees C, DCPD transforms progressively into anhydrous dicalcium phosphate (DCP), thereby decreasing the strength. Ageing of the pastes in 100% r.h. results in a decay of the mechanical properties. This can be ascribed to an intergranular dissolution of the beta-TCP aggregates as a result of the pH lowering brought about by the MCPM to DCPD conversion.

  16. Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption

    OpenAIRE

    Berndt, Theresa; Thomas, Leslie F.; Craig, Theodore A.; Sommer, Stacy; Li, Xujian; Bergstralh, Eric J.; Kumar, Rajiv

    2007-01-01

    The mechanisms by which phosphorus homeostasis is preserved in mammals are not completely understood. We demonstrate the presence of a mechanism by which the intestine detects the presence of increased dietary phosphate and rapidly increases renal phosphate excretion. The mechanism is of physiological relevance because it maintains plasma phosphate concentrations in the normal range after ingestion of a phosphate-containing meal. When inorganic phosphate is infused into the duodenum, there is...

  17. Nanoporous sorbent material as an oral phosphate binder and for aqueous phosphate, chromate, and arsenate removal

    OpenAIRE

    Sangvanich, Thanapon; Ngamcherdtrakul, Worapol; Lee, Richard; Morry, Jingga; Castro, David; Fryxell, Glen E.; Yantasee, Wassana

    2014-01-01

    Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by ...

  18. Phosphate uptake kinetics by Acinetobacter isolates.

    Science.gov (United States)

    Pauli, A S; Kaitala, S

    1997-02-01

    Acinetobacter isolates from activated sludge treatment plants of forest industry were used as model organisms for polyphosphate accumulating bacteria to study excess phosphate uptake by the overplus phenomenon as well as luxury uptake of phosphate during growth. The initial, rapid phosphate uptake by the phosphorus-starved Acinetobacter isolates (the overplus phenomenon) followed the Michaelis-Menten model (maximum initial phosphate uptake rate 29 mg P g(-1) dry mass (DM) h(-1), half-saturation constant for excess phosphate uptake 17 mg P L(-1)). During the rapid uptake no growth was observed, but most cells contained polyphosphate granules. Also growth and luxury uptake of phosphate could be modeled with the Michaelis-Menten equation (maximum phosphate uptake rate 3.7-12 mg P g(-1) DM h(-1), half-saturation constant for growth 0.47-6.0 mg P L(-1), maximum specific growth rate 0.15-0.55 h(-1)). PMID:18633985

  19. Bioinspired self-healing of advanced composite structures using hollow glass fibres.

    Science.gov (United States)

    Trask, R S; Williams, G J; Bond, I P

    2007-04-22

    Self-healing is receiving an increasing amount of worldwide interest as a method to autonomously address damage in materials. The incorporation of a self-healing capability within fibre-reinforced polymers has been investigated by a number of workers previously. The use of functional repair components stored inside hollow glass fibres (HGF) is one such bioinspired approach being considered. This paper considers the placement of self-healing HGF plies within both glass fibre/epoxy and carbon fibre/epoxy laminates to mitigate damage occurrence and restore mechanical strength. The study investigates the effect of embedded HGF on the host laminates mechanical properties and also the healing efficiency of the laminates after they were subjected to quasi-static impact damage. The results of flexural testing have shown that a significant fraction of flexural strength can be restored by the self-repairing effect of a healing resin stored within hollow fibres. PMID:17251131

  20. Geometric mechanics for modelling bioinspired robots locomotion: from rigid to continuous (soft) systems

    Science.gov (United States)

    Boyer, Frederic; Porez, Mathieu; Renda, Federico

    This talk presents recent geometric tools developed to model the locomotion dynamics of bio-inspired robots. Starting from the model of discrete rigid multibody systems we will rapidly shift to the case of continuous systems inspired from snakes and fish. To that end, we will build on the model of Cosserat media. This extended picture of geometric locomotion dynamics (inspired from fields' theory) will allow us to introduce models of swimming recently used in biorobotics. We will show how modeling a fish as a one-dimensional Cosserat medium allows to recover and extend the Large Amplitude Elongated Body theory of J. Lighthill and to apply it to an eel-like robot. In the same vein, modeling the mantle of cephalopods as a two dimensional Cosserat medium will build a basis for studying the jet propelling of a soft octopus like robot.

  1. 8th International Conference on Bio-Inspired Computing : Theories and Applications

    CERN Document Server

    Pan, Linqiang; Fang, Xianwen

    2013-01-01

    International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA) is one of the flagship conferences on Bio-Computing, bringing together the world’s leading scientists from different areas of Natural Computing. Since 2006, the conferences have taken place at Wuhan (2006), Zhengzhou (2007), Adelaide (2008), Beijing (2009), Liverpool & Changsha (2010), Malaysia (2011) and India (2012). Following the successes of previous events, the 8th conference is organized and hosted by Anhui University of Science and Technology in China. This conference aims to provide a high-level international forum that researchers with different backgrounds and who are working in the related areas can use to present their latest results and exchange ideas. Additionally, the growing trend in Emergent Systems has resulted in the inclusion of two other closely related fields in the BIC-TA 2013 event, namely Complex Systems and Computational Neuroscience. These proceedings are intended for researchers in the fiel...

  2. Investigation of bioinspired gecko fibers to improve adhesion of HeartLander surgical robot.

    Science.gov (United States)

    Tortora, Giuseppe; Glass, Paul; Wood, Nathan; Aksak, Burak; Menciassi, Arianna; Sitti, Metin; Riviere, Cameron

    2012-01-01

    HeartLander is a medical robot proposed for minimally invasive epicardial intervention on the beating heart. To date, all prototypes have used suction to gain traction on the epicardium. Gecko-foot-inspired micro-fibers have been proposed for repeatable adhesion to surfaces. In this paper, a method for improving the traction of HeartLander on biological tissue is presented. The method involves integration of gecko-inspired fibrillar adhesives on the inner surfaces of the suction chambers of HeartLander. Experiments have been carried out on muscle tissue ex vivo assessing the traction performance of the modified HeartLander with bio-inspired adhesive. The adhesive fibers are found to improve traction on muscle tissue by 57.3 %.

  3. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

    DEFF Research Database (Denmark)

    Hou, Yidong; Abrams, Billie L.; Vesborg, Peter Christian Kjærgaard;

    2011-01-01

    The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution, earth......-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo3S 4) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor...... that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10% (ref. 16). The experimental observations are supported by density functional theory...

  4. Artificial eye for scotopic vision with bioinspired all-optical photosensitivity enhancer

    Science.gov (United States)

    Liu, Hewei; Huang, Yinggang; Jiang, Hongrui

    2016-04-01

    The ability to acquire images under low-light conditions is critical for many applications. However, to date, strategies toward improving low-light imaging primarily focus on developing electronic image sensors. Inspired by natural scotopic visual systems, we adopt an all-optical method to significantly improve the overall photosensitivity of imaging systems. Such optical approach is independent of, and can effectively circumvent the physical and material limitations of, the electronics imagers used. We demonstrate an artificial eye inspired by superposition compound eyes and the retinal structure of elephantnose fish. The bioinspired photosensitivity enhancer (BPE) that we have developed enhances the image intensity without consuming power, which is achieved by three-dimensional, omnidirectionally aligned microphotocollectors with parabolic reflective sidewalls. Our work opens up a previously unidentified direction toward achieving high photosensitivity in imaging systems.

  5. Bio-inspired synthesis and characterization of superparamagnetic particles; Sintese e caracterizacao bioinspirada de particulas superparamagneticas

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Vinicius F., E-mail: vfc_mg@yahoo.com.br [Universidade Federal de Itajuba (UNIFEI), MG (Brazil); Queiroz, Alvaro A.A. [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Centro de Estudos e Inovacao em Materiais Biofuncionais Avancados

    2012-08-15

    This paper discusses the bio-inspired synthesis of type YFeAl ferrites encapsulated into polyglycerol dendrimers (PGLD) generation 3. The structure and morphological properties of the system YFeAl/PGLD was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The magnetic properties were studied through the techniques of Moessbauer spectroscopy and magnetization. The cytotoxicity of the nanoparticles encapsulated in dendrimers PGLD G3 at the cell membrane was studied against mammalian cell line CHO.K1 measuring the amount of lactate dehydrogenase (LDH) released by the cell damage. Microscopy TEM and XRD analysis indicate that spherical nanoparticles were obtained highly crystalline and monodisperse with size 20 nm

  6. A Bio-inspired Approach for Power and Performance Aware Resource Allocation in Clouds

    Directory of Open Access Journals (Sweden)

    Kumar Rajesh

    2016-01-01

    Full Text Available In order to cope with increasing demand, cloud market players such as Amazon, Microsoft, Google, Gogrid, Flexiant, etc. have set up large sized data centers. Due to monotonically increasing size of data centers and heterogeneity of resources have made resource allocation a challenging task. A large percentage of total energy consumption of the data centers gets wasted because of under-utilization of resources. Thus, there is a need of resource allocation technique that improves the utilization of resources with effecting performance of services being delivered to end users. In this work, a bio-inspired resource allocation approach is proposed with the aim to improve utilization and hence the energy efficiency of the cloud infrastructure. The proposed approach makes use of Cuckoo search for power and performance aware allocation of resources to the services hired by the end users. The proposed approach is implemented in CloudSim. The simulation results have shown approximately 12% saving in energy consumption.

  7. Bioinspired photonic structures by the reflector layer of firefly lantern for highly efficient chemiluminescence

    Science.gov (United States)

    Chen, Linfeng; Shi, Xiaodi; Li, Mingzhu; Hu, Junping; Sun, Shufeng; Su, Bin; Wen, Yongqiang; Han, Dong; Jiang, Lei; Song, Yanlin

    2015-08-01

    Fireflies have drawn considerable attention for thousands of years due to their highly efficient bioluminescence, which is important for fundamental research and photonic applications. However, there are few reports on the reflector layer (RL) of firefly lantern, which contributes to the bright luminescence. Here we presented the detailed microstructure of the RL consisting of random hollow granules, which had high reflectance in the range from 450 nm to 800 nm. Inspired by the firefly lantern, artificial films with high reflectance in the visible region were fabricated using hollow silica microparticles mimicking the structure of the RL. Additionally, the bioinspired structures provided an efficient RL for the chemiluminescence system and could substantially enhance the initial chemiluminescence intensity. The work not only provides new insight into the bright bioluminescence of fireflies, but also is importance for the design of photonic materials for theranostics, detection, and imaging.

  8. Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications?

    DEFF Research Database (Denmark)

    Carpi, Federico; Kornbluh, Roy; Sommer-Larsen, Peter;

    2011-01-01

    families: ionic EAPs, activated by an electrically induced transport of ions and/or solvent, and electronic EAPs, activated by electrostatic forces. Although several EAP materials and their properties have been known for many decades, they have found very limited applications. Such a trend has changed...... of efforts for industrial exploitation. As an outcome, after several years of basic research, today the EAP field is just starting to undergo transition from academia into commercialization, with significant investments from large companies. This paper presents a brief overview on the full range of EAP...... actuator types and the most significant areas of interest for applications. It is hoped that this overview can instruct the reader on how EAPs can enable bioinspired motion systems....

  9. Multi-Locomotion Robotic Systems New Concepts of Bio-inspired Robotics

    CERN Document Server

    Fukuda, Toshio; Sekiyama, Kosuke; Aoyama, Tadayoshi

    2012-01-01

    Nowadays, multiple attention have been paid on a robot working in the human living environment, such as in the field of medical, welfare, entertainment and so on. Various types of researches are being conducted actively in a variety of fields such as artificial intelligence, cognitive engineering, sensor- technology, interfaces and motion control. In the future, it is expected to realize super high functional human-like robot by integrating technologies in various fields including these types of researches. The book represents new developments and advances in the field of bio-inspired robotics research introducing the state of the art, the idea of multi-locomotion robotic system to implement the diversity of animal motion. It covers theoretical and computational aspects of Passive Dynamic Autonomous Control (PDAC), robot motion control, multi legged walking and climbing as well as brachiation focusing concrete robot systems, components and applications. In addition, gorilla type robot systems are described as...

  10. Bioinspired Functionalized Melanin Nanovariants with a Range of Properties Provide Effective Color Matched Photoprotection in Skin.

    Science.gov (United States)

    Vij, Manika; Grover, Ritika; Gotherwal, Vishvabandhu; Wani, Naiem Ahmad; Joshi, Prashant; Gautam, Hemlata; Sharma, Kanupriya; Chandna, Sudhir; Gokhale, Rajesh S; Rai, Rajkishor; Ganguli, Munia; Natarajan, Vivek T

    2016-09-12

    Melanin and related polydopamine hold great promise; however, restricted fine-tunabilility limits their usefulness in biocompatible applications. In the present study, by taking a biomimetic approach, we synthesize peptide-derived melanin with a range of physicochemical properties. Characterization of these melanin polymers indicates that they exist as nanorange materials with distinct size distribution, shapes, and surface charges. These variants demonstrate similar absorption spectra but have different optical properties that correlate with particle size. Our approach enables incorporation of chemical groups to create functionalized polyvalent organic nanomaterials and enables customization of melanin. Further, we establish that these synthetic variants are efficiently taken up by the skin keratinocytes, display appreciable photoprotection with minimal cytotoxicity, and thereby function as effective color matched photoprotective agents. In effect we demonstrate that an array of functionalized melanins with distinct properties could be synthesized using bioinspired green chemistry, and these are of immense utility in generating customized melanin/polydopamine like materials. PMID:27477067

  11. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling.

    Science.gov (United States)

    Leslie, Daniel C; Waterhouse, Anna; Berthet, Julia B; Valentin, Thomas M; Watters, Alexander L; Jain, Abhishek; Kim, Philseok; Hatton, Benjamin D; Nedder, Arthur; Donovan, Kathryn; Super, Elana H; Howell, Caitlin; Johnson, Christopher P; Vu, Thy L; Bolgen, Dana E; Rifai, Sami; Hansen, Anne R; Aizenberg, Michael; Super, Michael; Aizenberg, Joanna; Ingber, Donald E

    2014-11-01

    Thrombosis and biofouling of extracorporeal circuits and indwelling medical devices cause significant morbidity and mortality worldwide. We apply a bioinspired, omniphobic coating to tubing and catheters and show that it completely repels blood and suppresses biofilm formation. The coating is a covalently tethered, flexible molecular layer of perfluorocarbon, which holds a thin liquid film of medical-grade perfluorocarbon on the surface. This coating prevents fibrin attachment, reduces platelet adhesion and activation, suppresses biofilm formation and is stable under blood flow in vitro. Surface-coated medical-grade tubing and catheters, assembled into arteriovenous shunts and implanted in pigs, remain patent for at least 8 h without anticoagulation. This surface-coating technology could reduce the use of anticoagulants in patients and help to prevent thrombotic occlusion and biofouling of medical devices.

  12. Bioinspired hierarchical nanotubular titania immobilized with platinum nanoparticles for photocatalytic hydrogen production.

    Science.gov (United States)

    Liu, Xiaoyan; Li, Jiao; Zhang, Yiming; Huang, Jianguo

    2015-05-11

    A bioinspired nanocomposite composed of platinum nanoparticles and nanotubular titania was fabricated in which the titania matter was templated by natural cellulose substance. The composite possesses three- dimensional hierarchical structures, and ultrafine metallic platinum particles with sizes of ca. 2 nm were immobilized uniformly on the surfaces of the titania nanotubes. Such a nanocomposite with 1.06 wt % of platinum content shows the optimal photocatalytic hydrogen production activity from water splitting of 16.44 mmol h(-1)  g(-1) , and excessive loading of platinum results in poorer photocatalytic performance. The structural integrity of the nanocomposite upon cyclic water-splitting processes results in its sufficient photocatalytic stability.

  13. Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels.

    Science.gov (United States)

    Wang, Tao; Huang, Jiahe; Yang, Yiqing; Zhang, Enzhong; Sun, Weixiang; Tong, Zhen

    2015-10-28

    Rapid response and strong mechanical properties are desired for smart materials used in soft actuators. A bioinspired hybrid hydrogel actuator was designed and prepared by series combination of three trunks of tough polymer-clay hydrogels to accomplish the comprehensive actuation of "extension-grasp-retraction" like a fishing rod. The hydrogels with thermo-creep and thermo-shrinking features were successively irradiated by near-infrared (NIR) to execute extension and retraction, respectively. The GO in the hydrogels absorbed the NIR energy and transformed it into thermo-energy rapidly and effectively. The hydrogel with adhesion or magnetic force was adopted as the "hook" of the hybrid hydrogel actuator for grasping object. The hook of the hybrid hydrogel actuator was replaceable according to applications, even with functional materials other than hydrogels. This study provides an innovative concept to explore new soft actuators through combining response hydrogels and programming the same stimulus.

  14. A Bio-Inspired Approach for the Reduction of Left Ventricular Workload

    Science.gov (United States)

    Pahlevan, Niema M.; Gharib, Morteza

    2014-01-01

    Previous studies have demonstrated the existence of optimization criteria in the design and development of mammalians cardiovascular systems. Similarities in mammalian arterial wave reflection suggest there are certain design criteria for the optimization of arterial wave dynamics. Inspired by these natural optimization criteria, we investigated the feasibility of optimizing the aortic waves by modifying wave reflection sites. A hydraulic model that has physical and dynamical properties similar to a human aorta and left ventricle was used for a series of in-vitro experiments. The results indicate that placing an artificial reflection site (a ring) at a specific location along the aorta may create a constructive wave dynamic that could reduce LV pulsatile workload. This simple bio-inspired approach may have important implications for the future of treatment strategies for diseased aorta. PMID:24475239

  15. A bio-inspired approach for the reduction of left ventricular workload.

    Directory of Open Access Journals (Sweden)

    Niema M Pahlevan

    Full Text Available Previous studies have demonstrated the existence of optimization criteria in the design and development of mammalians cardiovascular systems. Similarities in mammalian arterial wave reflection suggest there are certain design criteria for the optimization of arterial wave dynamics. Inspired by these natural optimization criteria, we investigated the feasibility of optimizing the aortic waves by modifying wave reflection sites. A hydraulic model that has physical and dynamical properties similar to a human aorta and left ventricle was used for a series of in-vitro experiments. The results indicate that placing an artificial reflection site (a ring at a specific location along the aorta may create a constructive wave dynamic that could reduce LV pulsatile workload. This simple bio-inspired approach may have important implications for the future of treatment strategies for diseased aorta.

  16. Multi-AUV Hunting Algorithm Based on Bio-inspired Neural Network in Unknown Environments

    Directory of Open Access Journals (Sweden)

    Daqi Zhu

    2015-11-01

    Full Text Available The multi-AUV hunting problem is one of the key issues in multi-robot system research. In order to hunt the target efficiently, a new hunting algorithm based on a bio-inspired neural network has been proposed in this paper. Firstly, the AUV’s working environment can be represented, based on the biological-inspired neural network model. There is one-to-one correspondence between each neuron in the neural network and the position of the grid map in the underwater environment. The activity values of biological neurons then guide the AUV’s sailing path and finally the target is surrounded by AUVs. In addition, a method called negotiation is used to solve the AUV’s allocation of hunting points. The simulation results show that the algorithm used in the paper can provide rapid and highly efficient path planning in the unknown environment with obstacles and non-obstacles.

  17. Towards a Bio-inspired Security Framework for Mission-Critical Wireless Sensor Networks

    Science.gov (United States)

    Ren, Wei; Song, Jun; Ma, Zhao; Huang, Shiyong

    Mission-critical wireless sensor networks (WSNs) have been found in numerous promising applications in civil and military fields. However, the functionality of WSNs extensively relies on its security capability for detecting and defending sophisticated adversaries, such as Sybil, worm hole and mobile adversaries. In this paper, we propose a bio-inspired security framework to provide intelligence-enabled security mechanisms. This scheme is composed of a middleware, multiple agents and mobile agents. The agents monitor the network packets, host activities, make decisions and launch corresponding responses. Middleware performs an infrastructure for the communication between various agents and corresponding mobility. Certain cognitive models and intelligent algorithms such as Layered Reference Model of Brain and Self-Organizing Neural Network with Competitive Learning are explored in the context of sensor networks that have resource constraints. The security framework and implementation are also described in details.

  18. UV-curable nanocasting technique to prepare bioinspired superhydrophobic organic-inorganic composite anticorrosion coatings

    Directory of Open Access Journals (Sweden)

    K. C. Chang

    2015-02-01

    Full Text Available A UV-curing technique was used to develop advanced anticorrosive coatings made of a poly(methyl methacrylate (PMMA/silica composite (PSC with bioinspired Xanthosoma sagittifolium leaf-like superhydrophobic surfaces. First of all, a transparent soft template with negative patterns of xanthosoma sagittifolium leaf can be fabricated by thermally curing the polydimethylsiloxane (PDMS pre-polymer in molds at 60°C for 4 h, followed by detaching PDMS template from the surface of natural leaf. PSC coatings with biomimetic structures can be prepared by performing the UV-radiation process upon casting UV-curable precursor with photo-initiator onto cold-rolled steel (CRS electrode under PDMS template. Subsequently, UV-radiation process was carried out by using light source with light intensity of 100 mW/cm2 with exposing wavelength of 365 nm. Surface morphologies of the as-synthesized hydrophobic PMMA (HP and superhydrophobic PSC (SPSC coatings showed a large number of micro-scaled mastoids, each decorated with many nano-scaled wrinkles that were systematically investigated by using scanning electron microscopy (SEM. The contact angles of water droplets on the sample surfaces can be increased from ~81 and 103° on PMMA and PSC surfaces to ~148 and 163° on HP and SPSC surfaces, respectively. The SPSC coating was found to provide an advanced corrosion protection effect on CRS electrodes compared to that of neat PMMA, PSC, and HP coatings based on a series of electrochemical corrosion measurements in 3.5 wt% NaCl electrolyte. Enhanced corrosion protection of SPSC coatings on CRS electrodes can be illustrated by that the silica nanoparticles on the small papillary hills of the bioinspired structure of the surface further increased the surface roughness, making the surface exhibit superior superhydrophobic, and thus leading to much better anticorrosion performance.

  19. Molecular Simulation Study of the Early Stages of Formation of Bioinspired Mesoporous Silica Materials.

    Science.gov (United States)

    Centi, Alessia; Jorge, Miguel

    2016-07-19

    The use of bioinspired templates, such as polyamines and polypeptides, could lead to significant improvements in the synthesis conditions under which mesoporous materials are traditionally produced, removing the need for strong pH as well as high temperature or pressure. In this work, we perform atomistic molecular dynamics simulations of 1,12-diaminododecane surfactants, in water and in the presence of silica monomers, to investigate the early stages of synthesis of one of the first examples of bioinspired silica materials. Different surfactant concentrations and pH were considered, clarifying the influence of the charge state of the molecules on the self-assembly process. We show that the amphiphilic amines form stable lamellar structures at equilibrium in the range from intermediate to high pH values. In a later stage, when silica species are added to the system, our results reveal that, in the same range of pH, silicates strongly adsorb around these aggregates at the interface with water. This causes a considerable modification of the curvature of the layer, which suggests a tendency for the system to evolve from a lamellar phase to the formation of vesicle structures. Furthermore, we show that silica monomers are able to penetrate the layer spontaneously when defects are created as a result of surfactants' head-to-head repulsion. These findings are in agreement with experimental observations and support the pillaring mechanism postulated for this class of materials. However, our simulations indicate that the aggregation process is driven by charge matching between surfactant heads and silica monomers rather than by hydrogen bond interactions between neutral species, as had been previously hypothesized. PMID:27340948

  20. Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors

    International Nuclear Information System (INIS)

    Biomorphic self-supporting MFI-type zeolite frameworks with hierarchical porosity and complex architecture were prepared using a 2-step (in-situ seeding and secondary crystal growth) hydrothermal synthesis in the presence of a biological template (Luffa sponge), employed as a macroscale sacrificial structure builder. The bio-inspired zeolitic replica inherited the complex spongy morphology and the intricate open-porous architecture of the biotemplate. Moreover, it exhibited reasonable mechanical stability in order to study the applicability of the biomorphic catalyst in a technical catalytic process. A bio-inspired catalytic reactor utilising the self-supporting ZSM-5 scaffold in monolithic configuration was developed in order to test the catalytic performance of the material

  1. Electrochemical construction of a bio-inspired micro/nano-textured structure with cell-sized microhole arrays on biomedical titanium to enhance bioactivity

    International Nuclear Information System (INIS)

    Highlights: • The bio-inspired structure mimicked mulit-level structures of natural bone. • Ordered cell-sized microhole arrays were employed as microscale structure. • High surface roughness and superhydrophilicity were achieved on the titanium surface. • The bio-inspired titanium surface showed superior ability of biomineralization. • Cell responses were enhanced on the bio-inspired micro/nano-texutred surface. - Abstract: Biomimetic surface design of medical implants is vitally crucial to improve cellular responses and the integration of tissue onto materials. In this study, a novel hierarchical cell-sized microhole array combined with a nano-network structure was fabricated on a medical titanium surface to mimic multi-level bone structure. A three-step procedure was developed as follows: 1) electrochemical self-organization of etching on titanium substrate to create highly ordered cell-sized microhole arrays, 2) suitable dual acid etching to increase the roughness of the microholes, and then 3) electrochemical anodization in a NaOH electrolyte to construct a nano-network porous titania layer on the above micro-roughened surface. The bio-inspired micro/nano-textured structure presented the enhanced wettability and superhydrophilicity. The ability of in vitro biomineralization and corrosion resistance of the bio-inspired micro/nano-textured structure were enhanced after annealing treatment. More importantly, the bio-inspired micro/nano-textured structure on the titanium surface possessed a favourable interfacial environment to enhance attachment and proliferation of human osteoblast-like MG63 cells. All of the results demonstrated that such a bio-inspired surface of micro/nano-textured porous TiO2 is a most promising candidate for the next generation of titanium implants

  2. Alstoscholarisines H-J, Indole Alkaloids from Alstonia scholaris: Structural Evaluation and Bioinspired Synthesis of Alstoscholarisine H.

    Science.gov (United States)

    Pan, Zhiqiang; Qin, Xu-Jie; Liu, Ya-Ping; Wu, Ting; Luo, Xiao-Dong; Xia, Chengfeng

    2016-02-19

    Alstoscholarisines H-J (1-3), new monoterpenoid indole alkaloids with an unprecedented skeleton created via the formation of a C-3/N-1 bond, were isolated from Alstonia scholaris. Their structures were established by extensive spectroscopic analyses and the assessment of single-crystal X-ray diffraction data. The total synthesis of alstoscholarisine H was achieved via the regioselective nucleophilic addition of pyridinium through a bioinspired iminium ion intermediate followed by Pictet-Spengler-like cyclization. PMID:26800290

  3. Development of a Bio-Inspired Structural Health Monitoring System Based on Multi-Scale Sample Entropy

    OpenAIRE

    Lin, Tzu-Kang; Liang, Jui-Chang

    2014-01-01

    International audience A bio-inspired structural health monitoring (SHM) system based on multi-scale Sample Entropy (SampEn) is proposed in this paper. Recently, studies on entropy have shown that the healthy state of human can be evaluated by analyzing the measured electrocardiogram. As similar circumstance is also faced in the field of structural health monitoring, where the vibration signal of the structure can be measured by deployed sensors, a multi-disciplinary research is inspired a...

  4. A Systematic Approach to the Design of Embodiment with Application to Bio-Inspired Compliant Legged Robots

    OpenAIRE

    Kurowski, Stefan

    2016-01-01

    Bio-inspired legged robots with compliant actuation can potentially achieve motion properties in real world scenarios which are superior to conventionally actuated robots. In this thesis, a methodology is presented to systematically design and tailor passive and active control elements for elastically actuated robots. It is based on a formal specification of requirements derived from the main design principles for embodied agents as proposed by Pfeifer et al. which are transfered to dyn...

  5. Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot

    International Nuclear Information System (INIS)

    Compliance can increase the thrust generated by the fin of a bio-inspired underwater vehicle. To improve the performance of a compliant fin, the compliance should change with the operating conditions; a fin should become stiffer as the oscillating frequency increases. This paper presents a novel variable-stiffness flapping (VaSF) mechanism that can change its stiffness to maximize the thrust of a bio-inspired underwater robot. The mechanism is designed on the basis of an endoskeleton structure, composed of compliant and rigid segments alternately connected in series. To determine the attachment point of tendons, the anatomy of a dolphin's fluke is considered. Two tendons run through the mechanism to adjust the stiffness. The fluke becomes stiffer when the tendons are pulled to compress the structure. The thrust generated by a prototype mechanism is measured under different conditions to show that the thrust can be maximized by changing the stiffness. The thrust of the VaSF device can approximately triple at a certain frequency just by changing the stiffness. This VaSF mechanism can be used to improve the efficiency of a bio-inspired underwater robot that uses compliance. (paper)

  6. Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications.

    Science.gov (United States)

    Chen, Chengjun; Liu, Kai; Li, Junbai; Yan, Xuehai

    2015-11-01

    Getting inspiration from nature and further developing functional architectures provides an effective way to design innovative materials and systems. Among bio-inspired materials, dipeptides and its self-assembled architectures with functionalities have recently been the subject of intensive studies. However, there is still a great challenge to explore its applications likely due to the lack of effective adaptation of their self-assembled structures as well as a lack of understanding of the self-assembly mechanisms. In this context, taking diphenylalanine (FF, a core recognition motif for molecular self-assembly of the Alzheimer's β-amyloid polypeptides) as a model of bio-inspired dipeptides, recent strategies on modulation of dipeptide-based architectures were introduced with regard to both covalent (architectures modulation by coupling functional groups) and non-covalent ways (controlled architectures by different assembly pathways). Then, applications are highlighted in some newly emerging fields of innovative photoelectronic devices and materials, such as artificial photosynthetic systems for renewable solar energy storage and renewable optical waveguiding materials for optoelectronic devices. At last, the challenges and future perspectives of these bio-inspired dipeptides are also addressed.

  7. Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications.

    Science.gov (United States)

    Chen, Chengjun; Liu, Kai; Li, Junbai; Yan, Xuehai

    2015-11-01

    Getting inspiration from nature and further developing functional architectures provides an effective way to design innovative materials and systems. Among bio-inspired materials, dipeptides and its self-assembled architectures with functionalities have recently been the subject of intensive studies. However, there is still a great challenge to explore its applications likely due to the lack of effective adaptation of their self-assembled structures as well as a lack of understanding of the self-assembly mechanisms. In this context, taking diphenylalanine (FF, a core recognition motif for molecular self-assembly of the Alzheimer's β-amyloid polypeptides) as a model of bio-inspired dipeptides, recent strategies on modulation of dipeptide-based architectures were introduced with regard to both covalent (architectures modulation by coupling functional groups) and non-covalent ways (controlled architectures by different assembly pathways). Then, applications are highlighted in some newly emerging fields of innovative photoelectronic devices and materials, such as artificial photosynthetic systems for renewable solar energy storage and renewable optical waveguiding materials for optoelectronic devices. At last, the challenges and future perspectives of these bio-inspired dipeptides are also addressed. PMID:26365127

  8. Application of Calcium Phosphate Materials in Dentistry

    Directory of Open Access Journals (Sweden)

    Jabr S. Al-Sanabani

    2013-01-01

    Full Text Available Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1 application of calcium phosphate into various fields in dentistry; (2 improving mechanical properties of calcium phosphate; (3 biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields.

  9. Insight into biological phosphate recovery from sewage.

    Science.gov (United States)

    Ye, Yuanyao; Ngo, Huu Hao; Guo, Wenshan; Liu, Yiwen; Zhang, Xinbo; Guo, Jianbo; Ni, Bing-Jie; Chang, Soon Woong; Nguyen, Dinh Duc

    2016-10-01

    The world's increasing population means that more food production is required. A more sustainable supply of fertilizers mainly consisting of phosphate is needed. Due to the rising consumption of scarce resources and limited natural supply of phosphate, the recovery of phosphate and their re-use has potentially high market value. Sewage has high potential to recover a large amount of phosphate in a circular economy approach. This paper focuses on utilization of biological process integrated with various subsequent processes to concentrate and recycle phosphate which are derived from liquid and sludge phases. The phosphate accumulation and recovery are discussed in terms of mechanism and governing parameters, recovery efficiency, application at plant-scale and economy. PMID:27434305

  10. Alpha Klotho and phosphate homeostasis

    OpenAIRE

    Bian, Ao; Xing, Changying; Hu, Ming Chang

    2014-01-01

    The Klotho family consists of three single-pass transmembrane proteins—αKlotho, βKlotho and γKlotho. Each of them combines with fibroblast growth factor (FGF) receptors (FGFRs) to form receptor complexes for various FGF’s. αKlotho is a co-receptor for physiological FGF23 signaling and appears essential for FGF23-mediated regulation of mineral metabolism. αKlotho protein also plays a FGF23-independent role in phosphate homeostasis. Animal experimental studies and clinical observations have dem...

  11. Variability of nitrate and phosphate

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Sundar, D.

    as shown in the schedule in table 5.1. Samples were taken at seven stations (M1?M7) in the Mandovi and at five stations in Zuari (Z1?Z5) (Map B). The locations covered a stretch of about 50km in the Mandovi and 52km in the Zuari. Samples were also taken... mangroves, which harbour sediments rich in organic matter (Wafar 1987). Wafar et al. (1997) noted that the dissolved organic nitrates (DON) and dissolved organic phosphates (DOP) Table 5.1 Schedule of sample collection in the Mandovi and Zuari estuaries...

  12. Analytical development of a binuclear oxo-manganese complex bio-inspired on oxidase enzyme for doping control analysis of acetazolamide.

    Science.gov (United States)

    Machini, Wesley B S; Teixeira, Marcos F S

    2016-05-15

    A bio-inspired electrochemical sensor using a binuclear oxo-manganese complex was evaluated and applied in the detection of a substance associated with doping in sports: acetazolamide (ACTZ). Investigation was made of the influence of different experimental variables on the electrocatalytic oxidation of ACTZ by the bio-inspired sensor, such as pH and interfering species. The bio-inspired sensor showed the best response in the range from 5.00×10(-9) to 7.00×10(-8) mol L(-1) ACTZ, with a linear range from 5.00×10(-9) to 2.50×10(-8) mol L(-1) and a detection limit of 4.76×10(-9) mol L(-1). The sensor exhibited characteristics similar to the Michaelis-Menten model of an enzymatic electrode, due to the use of a multinucleated complex of manganese with μ-oxo units, which was able to mimic the properties of enzymes with manganese as a cofactor in their composition, such as Mn-containing oxidase. The determination of ACTZ with the bio-inspired sensor was evaluated using three different synthetic biological fluids (plasma, saliva, and urine), demonstrating its viability for use with real samples. The analysis of ACTZ in real urine samples using the bio-inspired sensor, simulating the method adopted by the World Anti-Doping Agency, which revealed viable, suggesting a new and promising platform to be used in these analysis.

  13. Preparation of porous lanthanum phosphate with templates

    Energy Technology Data Exchange (ETDEWEB)

    Onoda, Hiroaki, E-mail: onoda@kpu.ac.jp [Department of Informatics and Environmental Sciences, Faculty of Life and Environmental Sciences, Kyoto Prefectural University, 1-5, Shimogamo Nakaragi-cyo, Sakyo-ku, Kyoto 606-8522 (Japan); Ishima, Yuya [Department of Applied Chemistry, Faculty of Life Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Takenaka, Atsushi [Department of Materials Science, Yonago National College of Technology, 4448, Hikona-cho, Yonago, Tottori 683-8502 (Japan); Tanaka, Isao [Department of Materials Science and Engineering, Faculty of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2009-08-05

    Malonic acid, propionic acid, glycine, n-butylamine, and urea were added to the preparation of lanthanum phosphate from lanthanum nitrate and phosphoric acid solutions. All additives were taken into lanthanum phosphate particles. The additives that have a basic site were easy to contain in precipitates. The addition of templates improved the specific surface area of lanthanum phosphate. The amount of pore, with radius smaller than 4 nm, increased with the addition of templates. The remained additives had influence on the acidic properties of lanthanum phosphate.

  14. Iron-based phosphate binders: do they offer advantages over currently available phosphate binders?

    OpenAIRE

    Negri, Armando Luis; Ureña Torres, Pablo Antonio

    2014-01-01

    Increased cardiovascular morbidity and mortality has been associated with the hyperphosphatemia seen in patients with end-stage chronic kidney disease (CKD). Oral phosphate binders are prescribed in these patients to prevent intestinal absorption of dietary phosphate and reduce serum phosphate. In prospective observational cohorts they have shown to decrease all-cause and cardiovascular mortality risk. Different problems have been associated with currently available phosphate binders as posit...

  15. Phosphate transporters and their function.

    Science.gov (United States)

    Biber, Jürg; Hernando, Nati; Forster, Ian

    2013-01-01

    Plasma phosphate concentration is maintained within a relatively narrow range by control of renal reabsorption of filtered inorganic phosphate (P(i)). P(i) reabsorption is a transcellular process that occurs along the proximal tubule. P(i) flux at the apical (luminal) brush border membrane represents the rate-limiting step and is mediated by three Na(+)-dependent P(i) cotransporters (members of the SLC34 and SLC20 families). The putative proteins responsible for basolateral P(i) flux have not been identified. The transport mechanism of the two kidney-specific SLC34 proteins (NaPi-IIa and NaPi-IIc) and of the ubiquitously expressed SLC20 protein (PiT-2) has been studied by heterologous expression to reveal important differences in kinetics, stoichiometry, and substrate specificity. Studies on the regulation of the abundance of the respective proteins highlight significant differences in the temporal responses to various hormonal and nonhormonal factors that can influence P(i) homeostasis. The phenotypes of mice deficient in NaPi-IIa and NaPi-IIc indicate that NaPi-IIa is responsible for most P(i) renal reabsorption. In contrast, in the human kidney, NaPi-IIc appears to have a relatively greater role. The physiological relevance of PiT-2 to P(i) reabsorption remains to be elucidated. PMID:23398154

  16. Neuartige Glucose-6-Phosphat Isomerasen und Glucosamin-6-Phosphat Deaminasen in Archaea

    OpenAIRE

    Schlichting, Bettina

    2007-01-01

    In der vorliegenden Arbeit wurden Glucose-6-Phosphat Isomerasen (PGIs) und archaeelle Glucosamin-6-Phosphat Deaminasen (GPDAs) untersucht sowie erstmalig die Aktivität einer archaeellen Glutamin:Fructose-6-Phosphat Transaminase nachgewiesen. Neuartige PGIs aus Methanothermobacter thermoautotrophicus, Methanosphaera stadtmanae, Thermoplasma acidophilum und Salmonella enterica serovar typhimurium sowie eine klassische PGI aus Thermotoga maritima wurden als rekombinante Proteine gereinigt und...

  17. Con: Phosphate binders in chronic kidney disease.

    Science.gov (United States)

    Kestenbaum, Bryan

    2016-02-01

    Phosphate binders are prescribed to chronic kidney disease (CKD) patients based on associations of serum phosphate concentrations with mortality and calcification, experimental evidence for direct calcifying effects of phosphate on vascular smooth muscle tissue and the central importance of phosphate retention in CKD-mineral and bone disorder (CKD-MBD). Current knowledge regarding phosphate metabolism in CKD provides important insight into disease mechanisms and supports future clinical trials of phosphate binders in CKD patients to determine the impact of these medications on clinically relevant outcomes. The risks and benefits of phosphate binders cannot be inferred from association studies of serum phosphate concentrations, which are inconsistent and subject to confounding, animal-experimental data, which are based on conditions that differ from human disease, or physiological arguments, which are limited to known regulatory factors. Many interventions that targeted biochemical pathways suggested by association studies and suspected biological importance have yielded null or harmful results. Clinical trials of phosphate binders are of high clinical and scientific importance to nephrology. Demonstration of reduced rates of clinical disease in such trials could lead to important health benefits for CKD patients, whereas negative results would refocus efforts to understand and treat CKD-MBD. Clinical trials that employ highly practical or 'pragmatic' designs represent an optimal approach for determining the safety and effectiveness of phosphate binders in real-world settings. Absent clinical trial data, observational studies of phosphate binders in large CKD populations could provide important information regarding the benefits, risks and/or unintended side effects of these medications. PMID:26681747

  18. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.

    Science.gov (United States)

    Liu, Mingjie; Zheng, Yongmei; Zhai, Jin; Jiang, Lei

    2010-03-16

    Super-antiwetting interfaces, such as superhydrophobic and superamphiphobic surfaces in air and superoleophobic interfaces in water, with special liquid-solid adhesion have recently attracted worldwide attention. Through tuning surface microstructures and compositions to achieve certain solid/liquid contact modes, we can effectively control the liquid-solid adhesion in a super-antiwetting state. In this Account, we review our recent progress in the design and fabrication of these bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Low-adhesion superhydrophobic surfaces are biologically inspired, typically by the lotus leaf. Wettability investigated at micro- and nanoscale reveals that the low adhesion of the lotus surface originates from the composite contact mode, a microdroplet bridging several contacts, within the hierarchical structures. Recently high-adhesion superhydrophobic surfaces have also attracted research attention. These surfaces are inspired by the surfaces of gecko feet and rose petals. Accordingly, we propose two biomimetic approaches for the fabrication of high-adhesion superhydrophobic surfaces. First, to mimic a sticky gecko's foot, we designed structures with nanoscale pores that could trap air isolated from the atmosphere. In this case, the negative pressure induced by the volume change of sealed air as the droplet is pulled away from surface can produce a normal adhesive force. Second, we constructed microstructures with size and topography similar to that of a rose petal. The resulting materials hold air gaps in their nanoscale folds, controlling the superhydrophobicity in a Wenzel state on the microscale. Furthermore, we can tune the liquid-solid adhesion on the same superhydrophobic surface by dynamically controlling the orientations of microstructures without altering the surface composition. The superhydrophobic wings of the butterfly (Morpho aega) show directional adhesion: a droplet easily rolls off the surface

  19. Adsorption of Phosphate on Variable Charge Soils

    Institute of Scientific and Technical Information of China (English)

    HUGUO-SONG; ZHUZU-XIANG; 等

    1992-01-01

    The study about the adsorption of phosphate on four variable charge soils and some minerals revealed that two stage adsorption appeared in the adsorption isothems of phosphate on 4 soils and there was a maximum adsorption on Al-oxide-typed surfaces between pH 3.5 to pH 5.5 as suspension pH changed from 2 to 9,but the adsorption amount of phosphate decreased continually as pH rose on Fe-oxide typed surfaces.The adsorption amount of phosphate and the maximum phosphate adsorption pH decreased in the order of yellow-red soil> lateritic red soil> red soil> paddy soil,which was coincided with the content order of amorphous Al oxide.The removement of organic matter and Fe oxide made the maximum phosphate adsorption pH rise from 4.0 to 5.0 and 4.5,respectively.The desorption curves with pH of four soils showed that phosphate desorbed least at pH 5.Generally the desorption was contrary to the adsorption with pH changing.There was a good accordance between adsorption or desorption and the concentration of Al in the suspension.The possible mechanisms of phosphate adsorption are discussed.

  20. 21 CFR 184.1301 - Ferric phosphate.

    Science.gov (United States)

    2010-04-01

    ... reaction of sodium phosphate with ferric chloride or ferric citrate. (b) The ingredient meets the... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric phosphate. 184.1301 Section 184.1301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD...

  1. Electrochemical phosphate recovery from nanofiltration concentrates

    NARCIS (Netherlands)

    Kappel, C.; Yasadi, K.; Temmink, B.G.; Metz, S.J.; Kemperman, A.J.B.; Nijmeijer, K.; Zwijnenburg, A.; Witkamp, G.J.; Rijnaarts, H.

    2013-01-01

    The high total phosphorus content of raw domestic wastewater with its significant eutrophication potential offers an excellent possibility for phosphate recovery. Continuous recirculation of NF concentrate to an MBR and simultaneous phosphate recovery from the NF concentrate can be applied to produc

  2. Phosphate recycling in the phosphorus industry

    NARCIS (Netherlands)

    Schipper, W.J.; Klapwijk, A.; Potjer, A.; Rulkens, W.H.; Temmink, B.G.; Kiestra, F.D.G.; Lijmbach, A.C.M.

    2001-01-01

    The feasibility of phosphate recycling in the white phosphorus production process is discussed. Several types of materials may be recycled, provided they are dry inorganic materials, low in iron, copper and zinc. Sewage sludge ash may be used if no iron is used for phosphate precipitation in the tre

  3. Stable Development of Phosphate Fertilizer Sector

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The rapid growth of China's economy in recent years gave rise to a sound external environment for the development of the phosphate fertilizer industry. With quite a few state agricultural incentives, the initiative of farmers in grain production is much higher, and consumption of phosphate fertilizers has increased constantly.

  4. Effects of Nickel on Calcium Phosphate Formation

    Science.gov (United States)

    Guerra-López, J.; González, R.; Gómez, A.; Pomés, R.; Punte, G.; Della Védova, C. O.

    2000-05-01

    We have investigated the effect of nickel on calcium phosphate formation from aqueous solutions. The calcium phosphates prepared under different reaction conditions (pH, temperature, and nickel concentration) were characterized by X-ray diffraction, FTIR spectroscopy, and chemical analysis. The apatite compounds were also studied thermogravimetrically. From the combined results of the techniques employed we have determined that nickel favors the formation of brushite and amorphous calcium phosphate. We have found, as well, that the presence of nickel in the solution inhibits calcium hydroxyapatite (CaHAP) and octacalcium phosphate formation. However in the synthesis performed at basic pH and 95°C the apatitic phase (HAP) could be obtained. The present results suggest that the presence of nickel may modify the precipitation of oral calcium phosphate.

  5. Genetics Home Reference: pyridoxal 5'-phosphate-dependent epilepsy

    Science.gov (United States)

    ... 5'-phosphate-dependent epilepsy pyridoxal 5'-phosphate-dependent epilepsy Enable Javascript to view the expand/collapse boxes. ... All Close All Description Pyridoxal 5'-phosphate-dependent epilepsy is a condition that involves seizures beginning soon ...

  6. Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite.

    Science.gov (United States)

    Fulmer, M T; Brown, P W

    1998-04-01

    Dicalcium phosphate dihydrate (DCPD) was hydrolysed in water and in 1 M Na2HPO4 solution at temperatures from 25-60 degrees C. Hydrolysis was incomplete in water. At 25 degrees C, DCPD partially hydrolysed to hydroxyapatite (HAp). Formation of HAp is indicative of incongruent DCPD dissolution. At the higher temperatures, hydrolysis to HAp was more extensive and was accompanied by the formation of anhydrous dicalcium phosphate (DCP). Both of these processes are endothermic. When hydrolysis was carried out in 1 M Na2HPO4 solution, heat absorption was greater at any given temperature than for hydrolysis in water. Complete hydrolysis to HAp occurred in this solution. The hydrolysis of DCPD to HAp in sodium phosphate solution was also endothermic. The complete conversion of DCPD to HAp in sodium phosphate solution would not be expected if the only effect of this solution was to cause DCPD dissolution to become congruent. Because of the buffering capacity of a dibasic sodium phosphate solution, DCPD hydrolysed completely to HAp. Complete conversion to HAp was accompanied by the conversion of dibasic sodium phosphate to monobasic sodium phosphate. The formation of DCP was not observed indicating that the sodium phosphate solution precluded the DCPD-to-DCP dehydration reaction. In addition to affecting the extent of hydrolysis, reaction in the sodium phosphate solution also caused a morphological change in the HAp which formed. HAp formed by hydrolysis in water was needle-like to globular while that formed in the sodium phosphate solution exhibited a florette-like morphology.

  7. Dominant oceanic bacteria secure phosphate using a large extracellular buffer

    OpenAIRE

    M. V. Zubkov; Martin, A. P.; Hartmann, M.; C. Grob; Scanlan, D. J.

    2015-01-01

    The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting 33P-phosphate-pulsed 32P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellul...

  8. Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis.

    OpenAIRE

    Thiel, T.

    1988-01-01

    Cells of the cyanobacterium Anabaena variabilis starved for phosphate for 3 days took up phosphate at about 100 times the rate of unstarved cells. Kinetic data suggested that a new transport system had been induced by starvation for phosphate. The inducible phosphate transport system was quickly repressed by addition of Pi. Phosphate-starved cells were more sensitive to the toxic effects of arsenate than were unstarved cells, but phosphate could alleviate some of the toxicity. Arsenate was a ...

  9. Symmetric Kullback-Leibler Metric Based Tracking Behaviors for Bioinspired Robotic Eyes

    Science.gov (United States)

    Liu, Hengli; Luo, Jun; Wu, Peng; Xie, Shaorong; Li, Hengyu

    2015-01-01

    A symmetric Kullback-Leibler metric based tracking system, capable of tracking moving targets, is presented for a bionic spherical parallel mechanism to minimize a tracking error function to simulate smooth pursuit of human eyes. More specifically, we propose a real-time moving target tracking algorithm which utilizes spatial histograms taking into account symmetric Kullback-Leibler metric. In the proposed algorithm, the key spatial histograms are extracted and taken into particle filtering framework. Once the target is identified, an image-based control scheme is implemented to drive bionic spherical parallel mechanism such that the identified target is to be tracked at the center of the captured images. Meanwhile, the robot motion information is fed forward to develop an adaptive smooth tracking controller inspired by the Vestibuloocular Reflex mechanism. The proposed tracking system is designed to make the robot track dynamic objects when the robot travels through transmittable terrains, especially bumpy environment. To perform bumpy-resist capability under the condition of violent attitude variation when the robot works in the bumpy environment mentioned, experimental results demonstrate the effectiveness and robustness of our bioinspired tracking system using bionic spherical parallel mechanism inspired by head-eye coordination. PMID:27019592

  10. A Novel Bioinspired Vision System: A Step toward Real-Time Human-Robot Interactions

    Directory of Open Access Journals (Sweden)

    Abdul Rahman Hafiz

    2011-01-01

    Full Text Available Building a human-like robot that could be involved in our daily lives is a dream of many scientists. Achieving a sophisticated robot's vision system, which can enhance the robot's real-time interaction ability with the human, is one of the main keys toward realizing such an autonomous robot. In this work, we are suggesting a bioinspired vision system that helps to develop an advanced human-robot interaction in an autonomous humanoid robot. First, we enhance the robot's vision accuracy online by applying a novel dynamic edge detection algorithm abstracted from the rules that the horizontal cells play in the mammalian retina. Second, in order to support the first algorithm, we improve the robot's tracking ability by designing a variant photoreceptors distribution corresponding to what exists in the human vision system. The experimental results verified the validity of the model. The robot could have a clear vision in real time and build a mental map that assisted it to be aware of the frontal users and to develop a positive interaction with them.

  11. Medical Image Registration by means of a Bio-Inspired Optimization Strategy

    Directory of Open Access Journals (Sweden)

    Hariton Costin

    2012-07-01

    Full Text Available Medical imaging mainly treats and processes missing, ambiguous, complementary, redundant and distorted data. Biomedical image registration is the process of geometric overlaying or alignment of two or more 2D/3D images of the same scene, taken at different time slots, from different angles, and/or by different acquisition systems. In medical practice, it is becoming increasingly important in diagnosis, treatment planning, functional studies, computer-guided therapies, and in biomedical research. Technically, image registration implies a complex optimization of different parameters, performed at local or/and global levels. Local optimization methods frequently fail because functions of the involved metrics with respect to transformation parameters are generally nonconvex and irregular. Therefore, global methods are often required, at least at the beginning of the procedure. In this paper, a new evolutionary and bio-inspired approach -- bacterial foraging optimization -- is adapted for single-slice to 3-D PET and CT multimodal image registration. Preliminary results of optimizing the normalized mutual information similarity metric validated the efficacy of the proposed method by using a freely available medical image database.

  12. Programmable thermal emissivity structures based on bioinspired self-shape materials.

    Science.gov (United States)

    Athanasopoulos, N; Siakavellas, N J

    2015-01-01

    Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a "game" of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable - and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (εEff_H/εEff_L) equal to 28.

  13. Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey

    Directory of Open Access Journals (Sweden)

    Jianjun Ni

    2016-01-01

    Full Text Available Bioinspired intelligent algorithm (BIA is a kind of intelligent computing method, which is with a more lifelike biological working mechanism than other types. BIAs have made significant progress in both understanding of the neuroscience and biological systems and applying to various fields. Mobile robot control is one of the main application fields of BIAs which has attracted more and more attention, because mobile robots can be used widely and general artificial intelligent algorithms meet a development bottleneck in this field, such as complex computing and the dependence on high-precision sensors. This paper presents a survey of recent research in BIAs, which focuses on the research in the realization of various BIAs based on different working mechanisms and the applications for mobile robot control, to help in understanding BIAs comprehensively and clearly. The survey has four primary parts: a classification of BIAs from the biomimetic mechanism, a summary of several typical BIAs from different levels, an overview of current applications of BIAs in mobile robot control, and a description of some possible future directions for research.

  14. Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering.

    Science.gov (United States)

    Dhand, Chetna; Ong, Seow Theng; Dwivedi, Neeraj; Diaz, Silvia Marrero; Venugopal, Jayarama Reddy; Navaneethan, Balchandar; Fazil, Mobashar H U T; Liu, Shouping; Seitz, Vera; Wintermantel, Erich; Beuerman, Roger W; Ramakrishna, Seeram; Verma, Navin K; Lakshminarayanan, Rajamani

    2016-10-01

    Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca(2+). The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3. The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries. PMID:27475728

  15. Bio-Inspired Aggregation Control of Carbon Nanotubes for Ultra-Strong Composites

    Science.gov (United States)

    Han, Yue; Zhang, Xiaohua; Yu, Xueping; Zhao, Jingna; Li, Shan; Liu, Feng; Gao, Peng; Zhang, Yongyi; Zhao, Tong; Li, Qingwen

    2015-01-01

    High performance nanocomposites require well dispersion and high alignment of the nanometer-sized components, at a high mass or volume fraction as well. However, the road towards such composite structure is severely hindered due to the easy aggregation of these nanometer-sized components. Here we demonstrate a big step to approach the ideal composite structure for carbon nanotube (CNT) where all the CNTs were highly packed, aligned, and unaggregated, with the impregnated polymers acting as interfacial adhesions and mortars to build up the composite structure. The strategy was based on a bio-inspired aggregation control to limit the CNT aggregation to be sub 20–50 nm, a dimension determined by the CNT growth. After being stretched with full structural relaxation in a multi-step way, the CNT/polymer (bismaleimide) composite yielded super-high tensile strengths up to 6.27–6.94 GPa, more than 100% higher than those of carbon fiber/epoxy composites, and toughnesses up to 117–192 MPa. We anticipate that the present study can be generalized for developing multifunctional and smart nanocomposites where all the surfaces of nanometer-sized components can take part in shear transfer of mechanical, thermal, and electrical signals. PMID:26098627

  16. Programmable thermal emissivity structures based on bioinspired self-shape materials

    Science.gov (United States)

    Athanasopoulos, N.; Siakavellas, N. J.

    2015-12-01

    Programmable thermal emissivity structures based on the bioinspired self-shape anisotropic materials were developed at macro-scale, and further studied theoretically at smaller scale. We study a novel concept, incorporating materials that are capable of transforming their shape via microstructural rearrangements under temperature stimuli, while avoiding the use of exotic shape memory materials or complex micro-mechanisms. Thus, programmed thermal emissivity behaviour of a surface is achievable. The self-shape structure reacts according to the temperature of the surrounding environment or the radiative heat flux. A surface which incorporates self-shape structures can be designed to quickly absorb radiative heat energy at low temperature levels, but is simultaneously capable of passively controlling its maximum temperature in order to prevent overheating. It resembles a “game” of colours, where two or more materials coexist with different values of thermal emissivity/ absorptivity/ reflectivity. The transformation of the structure conceals or reveals one of the materials, creating a surface with programmable - and therefore, variable- effective thermal emissivity. Variable thermal emissivity surfaces may be developed with a total hemispherical emissivity ratio (ɛEff_H/ɛEff_L) equal to 28.

  17. A compact bio-inspired visible/NIR imager for image-guided surgery (Conference Presentation)

    Science.gov (United States)

    Gao, Shengkui; Garcia, Missael; Edmiston, Chris; York, Timothy; Marinov, Radoslav; Mondal, Suman B.; Zhu, Nan; Sudlow, Gail P.; Akers, Walter J.; Margenthaler, Julie A.; Liang, Rongguang; Pepino, Marta; Achilefu, Samuel; Gruev, Viktor

    2016-03-01

    Inspired by the visual system of the morpho butterfly, we have designed, fabricated, tested and clinically translated an ultra-sensitive, light weight and compact imaging sensor capable of simultaneously capturing near infrared (NIR) and visible spectrum information. The visual system of the morpho butterfly combines photosensitive cells with spectral filters at the receptor level. The spectral filters are realized by alternating layers of high and low dielectric constant, such as air and cytoplasm. We have successfully mimicked this concept by integrating pixelated spectral filters, realized by alternating silicon dioxide and silicon nitrate layers, with an array of CCD detectors. There are four different types of pixelated spectral filters in the imaging plane: red, green, blue and NIR. The high optical density (OD) of all spectral filters (OD>4) allow for efficient rejections of photons from unwanted bands. The single imaging chip weighs 20 grams with form factor of 5mm by 5mm. The imaging camera is integrated with a goggle display system. A tumor targeted agent, LS301, is used to identify all spontaneous tumors in a transgenic PyMT murine model of breast cancer. The imaging system achieved sensitivity of 98% and selectivity of 95%. We also used our imaging sensor to locate sentinel lymph nodes (SLNs) in patients with breast cancer using indocyanine green tracer. The surgeon was able to identify 100% of SLNs when using our bio-inspired imaging system, compared to 93% when using information from the lymphotropic dye and 96% when using information from the radioactive tracer.

  18. Bio-Inspired Vision-Based Leader-Follower Formation Flying in the Presence of Delays

    Directory of Open Access Journals (Sweden)

    John Oyekan

    2016-08-01

    Full Text Available Flocking starlings at dusk are known for the mesmerizing and intricate shapes they generate, as well as how fluid these shapes change. They seem to do this effortlessly. Real-life vision-based flocking has not been achieved in micro-UAVs (micro Unmanned Aerial Vehicles to date. Towards this goal, we make three contributions in this paper: (i we used a computational approach to develop a bio-inspired architecture for vision-based Leader-Follower formation flying on two micro-UAVs. We believe that the minimal computational cost of the resulting algorithm makes it suitable for object detection and tracking during high-speed flocking; (ii we show that provided delays in the control loop of a micro-UAV are below a critical value, Kalman filter-based estimation algorithms are not required to achieve Leader-Follower formation flying; (iii unlike previous approaches, we do not use external observers, such as GPS signals or synchronized communication with flock members. These three contributions could be useful in achieving vision-based flocking in GPS-denied environments on computationally-limited agents.

  19. Bio-inspired artificial muscle structure for integrated sensing and actuation

    Science.gov (United States)

    Ye, Zhihang; Faisal, Md. Shahnewaz Sabit; Asmatulu, Ramazan; Chen, Zheng

    2015-04-01

    In this paper, a novel artificial muscle/tendon structure is developed for achieving bio-inspired actuation and self-sensing. The hybrid structure consists of a dielectric elastomer (DE) material connected with carbon fibers, which incorporates the built-in sensing and actuation capability of DE and mechanical, electrical interfacing capability of carbon fibers. DEs are light weight artificial muscles that can generate compliant actuation with low power consumption. Carbon fibers act as artificial tendon due to their high electro-conductivity and mechanical strength. PDMS material is used to electrically and mechanically connect the carbon fibers with the DE material. A strip actuator was fabricated to verify the structure design and characterize its actuation and sensing capabilities. A 3M VHB 4905 tape was used as the DE material. To make compliant electrodes on the VHB tape, carbon black was sprayed on the surface of VHB tape. To join the carbon fibers to the VHB tape, PDMS was used as bonding material. Experiments have been conducted to characterize the actuation and sensing capabilities. The actuation tests have shown that the energy efficiency of artificial muscle can reach up to 0.7% and the strain can reach up to 1%. The sensing tests have verified that the structure is capable of self-sensing through the electrical impedance measurement.

  20. Computational analysis of a tip vortex structure shed from a bio-inspired blade

    Science.gov (United States)

    Gomez, Sebastian; Gilkey, Lindsay N.; Kaiser, Bryan E.; Poroseva, Svetlana V.

    2013-11-01

    Understanding and predicting a tip vortex structure and its dynamics is of significant importance for all branches of aerodynamics. A particular focus of our research is the rotorcraft performance which is substantially influenced by a tip vortex. A tip vortex also is a major source of energy losses and acoustic noise. In the present study, an impact of a blade shape on a tip vortex structure is analyzed. Simulations are conducted of flows around a rectangular blade and a bio-inspired blade of the same area. An insect wing is chosen as a blade prototype. Indeed, insects developed physical characteristics that reduce energy consumption while permitting sustained and controlled flight at low level of noise. Analysis has been done to determine what insect poses flight characteristics closest to the small rotorcraft design goals. Commercial CFD software STAR-CCM + is used for conducting computations on structured and unstructured grids and for data post-processing. The authors acknowledge support from UNM CARC in a form of access to HPC and from CD-Adapco for providing Star-CCM+ for academic purposes. The first author's work was supported by the New Mexico Space Grant Consortium.

  1. Bio-inspired Dynamic Gradients Regulated by Supramolecular Bindings in Receptor-Embedded Hydrogel Matrices.

    Science.gov (United States)

    Luan, Xinglong; Zhang, Yihe; Wu, Jing; Jonkheijm, Pascal; Li, Guangtao; Jiang, Lei; Huskens, Jurriaan; An, Qi

    2016-08-01

    The kinetics of supramolecular bindings are fundamentally important for molecular motions and spatial-temporal distributions in biological systems, but have rarely been employed in preparing artificial materials. This report proposes a bio-inspired concept to regulate dynamic gradients through the coupled supramolecular binding and diffusion process in receptor-embedded hydrogel matrices. A new type of hydrogel that uses cyclodextrin (CD) as both the gelling moiety and the receptors is prepared as the diffusion matrices. The diffusible guest, 4-aminoazobenzene, quickly and reversibly binds to matrices-bound CD during diffusion and generates steeper gradients than regular diffusion. Weakened bindings induced through UV irradiation extend the gradients. Combined with numerical simulation, these results indicate that the coupled binding-diffusion could be viewed as slowed diffusion, regulated jointly by the binding constant and the equilibrium receptor concentrations, and gradients within a bio-relevant extent of 4 mm are preserved up to 90 h. This report should inspire design strategies of biomedical or cell-culturing materials. PMID:27547643

  2. Bioinspired Molecular Co-Catalysts Bonded to a Silicon Photocathode for Solar Hydrogen Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yidong

    2011-11-08

    The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution earth-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo{sub 3}S{sub 4}) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10% (ref. 16). The experimental observations are supported by density functional theory calculations of the Mo{sub 3}S{sub 4} clusters adsorbed on the hydrogen-terminated Si(100) surface, providing insights into the nature of the active site.

  3. A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion.

    Science.gov (United States)

    Manfredi, L; Assaf, T; Mintchev, S; Marrazza, S; Capantini, L; Orofino, S; Ascari, L; Grillner, S; Wallén, P; Ekeberg, O; Stefanini, C; Dario, P

    2013-10-01

    The bioinspired approach has been key in combining the disciplines of robotics with neuroscience in an effective and promising fashion. Indeed, certain aspects in the field of neuroscience, such as goal-directed locomotion and behaviour selection, can be validated through robotic artefacts. In particular, swimming is a functionally important behaviour where neuromuscular structures, neural control architecture and operation can be replicated artificially following models from biology and neuroscience. In this article, we present a biomimetic system inspired by the lamprey, an early vertebrate that locomotes using anguilliform swimming. The artefact possesses extra- and proprioceptive sensory receptors, muscle-like actuation, distributed embedded control and a vision system. Experiments on optimised swimming and on goal-directed locomotion are reported, as well as the assessment of the performance of the system, which shows high energy efficiency and adaptive behaviour. While the focus is on providing a robotic platform for testing biological models, the reported system can also be of major relevance for the development of engineering system applications. PMID:24030051

  4. Symmetric Kullback-Leibler Metric Based Tracking Behaviors for Bioinspired Robotic Eyes

    Directory of Open Access Journals (Sweden)

    Hengli Liu

    2015-01-01

    Full Text Available A symmetric Kullback-Leibler metric based tracking system, capable of tracking moving targets, is presented for a bionic spherical parallel mechanism to minimize a tracking error function to simulate smooth pursuit of human eyes. More specifically, we propose a real-time moving target tracking algorithm which utilizes spatial histograms taking into account symmetric Kullback-Leibler metric. In the proposed algorithm, the key spatial histograms are extracted and taken into particle filtering framework. Once the target is identified, an image-based control scheme is implemented to drive bionic spherical parallel mechanism such that the identified target is to be tracked at the center of the captured images. Meanwhile, the robot motion information is fed forward to develop an adaptive smooth tracking controller inspired by the Vestibuloocular Reflex mechanism. The proposed tracking system is designed to make the robot track dynamic objects when the robot travels through transmittable terrains, especially bumpy environment. To perform bumpy-resist capability under the condition of violent attitude variation when the robot works in the bumpy environment mentioned, experimental results demonstrate the effectiveness and robustness of our bioinspired tracking system using bionic spherical parallel mechanism inspired by head-eye coordination.

  5. Optimization of PID Controller for Brushless DC Motor by using Bio-inspired Algorithms

    Directory of Open Access Journals (Sweden)

    Sanjay Kr. Singh

    2014-02-01

    Full Text Available This study presents the use and comparison of various bio-inspired algorithms for optimizing the response of a PID controller for a Brushless DC Motor in contrast to the conventional methods of tuning. For the optimization of the PID controllers Genetic Algorithm, Multi-objective Genetic Algorithm and Simulated Annealing have been used. PID controller tuning with soft-computing algorithms comprises of obtaining the best possible outcome for the three PID parameters for improving the steady state characteristics and performance indices like overshoot percentage, rise time and settling time. For the calculation and simulation of the results the Brushless DC Motor model, Maxon EC 45 flat ф 45 mm with Hall Sensors Motor has been used. The results obtained the optimization using Genetic Algorithms, Multi-objective Genetic Algorithm and Simulated Annealing is compared with the ones derived from the Ziegler-Nichols method and the MATLAB SISO Tool. And it is observed that comparatively better results are obtained by optimization using Simulated Annealing offering better steady state response.

  6. A Bio-Inspired AER Temporal Tri-Color Differentiator Pixel Array.

    Science.gov (United States)

    Farian, Łukasz; Leñero-Bardallo, Juan Antonio; Häfliger, Philipp

    2015-10-01

    This article investigates the potential of a bio-inspired vision sensor with pixels that detect transients between three primary colors. The in-pixel color processing is inspired by the retinal color opponency that are found in mammalian retinas. Color transitions in a pixel are represented by voltage spikes, which are akin to a neuron's action potential. These spikes are conveyed off-chip by the Address Event Representation (AER) protocol. To achieve sensitivity to three different color spectra within the visual spectrum, each pixel has three stacked photodiodes at different depths in the silicon substrate. The sensor has been fabricated in the standard TSMC 90 nm CMOS technology. A post-processing method to decode events into color transitions has been proposed and implemented as a custom interface to display real-time color changes in the visual scene. Experimental results are provided. Color transitions can be detected at high speed (up to 2.7 kHz). The sensor has a dynamic range of 58 dB and a power consumption of 22.5 mW. This type of sensor can be of use in industrial, robotics, automotive and other applications where essential information is contained in transient emissions shifts within the visual spectrum. PMID:26540694

  7. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients.

    Science.gov (United States)

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P; Ritchie, Robert O

    2015-12-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required. PMID:26824062

  8. Boundary layer drag reduction research hypotheses derived from bio-inspired surface and recent advanced applications.

    Science.gov (United States)

    Luo, Yuehao; Yuan, Lu; Li, Jianhua; Wang, Jianshe

    2015-12-01

    Nature has supplied the inexhaustible resources for mankind, and at the same time, it has also progressively developed into the school for scientists and engineers. Through more than four billions years of rigorous and stringent evolution, different creatures in nature gradually exhibit their own special and fascinating biological functional surfaces. For example, sharkskin has the potential drag-reducing effect in turbulence, lotus leaf possesses the self-cleaning and anti-foiling function, gecko feet have the controllable super-adhesion surfaces, the flexible skin of dolphin can accelerate its swimming velocity. Great profits of applying biological functional surfaces in daily life, industry, transportation and agriculture have been achieved so far, and much attention from all over the world has been attracted and focused on this field. In this overview, the bio-inspired drag-reducing mechanism derived from sharkskin is explained and explored comprehensively from different aspects, and then the main applications in different fluid engineering are demonstrated in brief. This overview will inevitably improve the comprehension of the drag reduction mechanism of sharkskin surface and better understand the recent applications in fluid engineering. PMID:26348428

  9. Molecular Design of Bioinspired Nanostructures for Biomedical Applications: Synthesis, Self-Assembly and Functional Properties

    Science.gov (United States)

    Xu, Hesheng Victor; Zheng, Xin Ting; Mok, Beverly Yin Leng; Ibrahim, Salwa Ali; Yu, Yong; Tan, Yen Nee

    2016-08-01

    Biomolecules are the nanoscale building blocks of cells, which play multifaceted roles in the critical biological processes such as biomineralization in a living organism. In these processes, the biological molecules such as protein and nucleic acids use their exclusive biorecognition properties enabled from their unique chemical composition, shape and function to initiate a cascade of cellular events. The exceptional features of these biomolecules, coupled with the recent advancement in nanotechnology, have led to the emergence of a new research field that focuses on the molecular design of bioinspired nanostructures that inherit the extraordinary function of natural biomaterials. These “bioinspired” nanostructures could be formulated by biomimetic approaches through either self-assembling of biomolecules or acting as a biomolecular template/precursor to direct the synthesis of nanocomposite. In either situation, the resulting nanomaterials exhibit phenomenal biocompatibility, superb aqueous solubility and excellent colloidal stability, branding them exceptionally desirable for both in vitro and in vivo biomedical applications. In this review, we will present the recent developments in the preparation of “bioinspired” nanostructures through biomimetic self-assembly and biotemplating synthesis, as well as highlight their functional properties and potential applications in biomedical diagnostics and therapeutic delivery. Lastly, we will conclude this topic with some personal perspective on the challenges and future outlooks of the “bioinspired” nanostructures for nanomedicine.

  10. Bio-inspired bending actuator for controlling conical nose shape using piezoelectric patches.

    Science.gov (United States)

    Na, Tae-Won; Jung, Jin-Young; Oh, Ii-Kwon

    2014-10-01

    In this paper, a bio-inspired bending actuator was designed and fabricated using piezoelectric patches and cantilever-shaped beam for controlling nose shape. The aim of this study is to investigate the use of the bending actuator. PZT and single crystal PMN-PT actuators were used to generate translational strain and shear stress. The piezoelectric patches were attached on the clamped cantilever beam to convert their translational strains to bending motion of the beam. First, finite element analysis was performed to identify and to make an accurate estimate of the feasibility on the bending actuation by applying various voltages and frequencies. Based on the results of the FEM analysis, the experiments were also performed. Static voltages and dynamic voltages with various frequencies were applied to the bending actuators with PZTs and PMN-PTs, and the rotation angles of the nose connected to the top of bending actuators were measured, respectively. As the results, the bending actuator using PMN-PT patches showed better performances in all cases. With the increases of signal frequency and input voltage, the rotation angle also found to be increased. Especially at the frequency of 5 Hz and input voltage of 600 V, the nose generated the maximum rotation angle of 3.15 degree. PMID:25942810

  11. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

  12. Computational Design of Multi-component Bio-Inspired Bilayer Membranes

    Directory of Open Access Journals (Sweden)

    Evan Koufos

    2014-04-01

    Full Text Available Our investigation is motivated by the need to design bilayer membranes with tunable interfacial and mechanical properties for use in a range of applications, such as targeted drug delivery, sensing and imaging. We draw inspiration from biological cell membranes and focus on their principal constituents. In this paper, we present our results on the role of molecular architecture on the interfacial, structural and dynamical properties of bio-inspired membranes. We focus on four lipid architectures with variations in the head group shape and the hydrocarbon tail length. Each lipid species is composed of a hydrophilic head group and two hydrophobic tails. In addition, we study a model of the Cholesterol molecule to understand the interfacial properties of a bilayer membrane composed of rigid, single-tail molecular species. We demonstrate the properties of the bilayer membranes to be determined by the molecular architecture and rigidity of the constituent species. Finally, we demonstrate the formation of a stable mixed bilayer membrane composed of Cholesterol and one of the phospholipid species. Our approach can be adopted to design multi-component bilayer membranes with tunable interfacial and mechanical properties. We use a Molecular Dynamics-based mesoscopic simulation technique called Dissipative Particle Dynamics that resolves the molecular details of the components through soft-sphere coarse-grained models and reproduces the hydrodynamic behavior of the system over extended time scales.

  13. Adhesive Contact in Animal: Morphology, Mechanism and Bio-Inspired Application

    Institute of Scientific and Technical Information of China (English)

    Aihong Ji; Longbao Han; Zhendong Dai

    2011-01-01

    Many animals possess adhesive pads on their feet,which are able to attach to various substrates while controlling adhesive forces during locomotion.This review article studies the morphology of adhesive devices in animals,and the physical mechanisms of wet adhesion and dry adhesion.The adhesive pads are either ‘smooth' or densely covered with special adhesive setae.Smooth pads adhere by wet adhesion,which is facilitated by fluid secreted from the pads,whereas hairy pads can adhere by dry adhesion or wet adhesion.Contact area,distance between pad and substrate,viscosity and surface tension of the liquid filling the gap between pad and substrate are the most important factors which determine the wet adhesion.Dry adhesion was found only in hairy pads,which occurs in geckos and spiders.It was demonstrated that van der Waals interaction is the dominant adhesive force in geckos' adhesion.The bio-inspired applications derived from adhesive pads are also reviewed.

  14. Boundary layer drag reduction research hypotheses derived from bio-inspired surface and recent advanced applications.

    Science.gov (United States)

    Luo, Yuehao; Yuan, Lu; Li, Jianhua; Wang, Jianshe

    2015-12-01

    Nature has supplied the inexhaustible resources for mankind, and at the same time, it has also progressively developed into the school for scientists and engineers. Through more than four billions years of rigorous and stringent evolution, different creatures in nature gradually exhibit their own special and fascinating biological functional surfaces. For example, sharkskin has the potential drag-reducing effect in turbulence, lotus leaf possesses the self-cleaning and anti-foiling function, gecko feet have the controllable super-adhesion surfaces, the flexible skin of dolphin can accelerate its swimming velocity. Great profits of applying biological functional surfaces in daily life, industry, transportation and agriculture have been achieved so far, and much attention from all over the world has been attracted and focused on this field. In this overview, the bio-inspired drag-reducing mechanism derived from sharkskin is explained and explored comprehensively from different aspects, and then the main applications in different fluid engineering are demonstrated in brief. This overview will inevitably improve the comprehension of the drag reduction mechanism of sharkskin surface and better understand the recent applications in fluid engineering.

  15. B-iTRS: A Bio-Inspired Trusted Routing Scheme for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mingchuan Zhang

    2015-01-01

    Full Text Available In WSNs, routing algorithms need to handle dynamical changes of network topology, extra overhead, energy saving, and other requirements. Therefore, routing in WSNs is an extremely interesting and challenging issue. In this paper, we present a novel bio-inspired trusted routing scheme (B-iTRS based on ant colony optimization (ACO and Physarum autonomic optimization (PAO. For trust assessment, B-iTRS monitors neighbors’ behavior in real time, receives feedback from Sink, and then assesses neighbors’ trusts based on the acquired information. For routing scheme, each node finds routes to the Sink based on ACO and PAO. In the process of path finding, B-iTRS senses the load and trust value of each node and then calculates the link load and link trust of the found routes to support the route selection. Moreover, B-iTRS also assesses the route based on PAO to maintain the route table. Simulation results show how B-iTRS can achieve the effective performance compared to existing state-of-the-art algorithms.

  16. Linear and nonlinear optical waveguiding in bio-inspired peptide nanotubes.

    Science.gov (United States)

    Handelman, Amir; Apter, Boris; Turko, Nir; Rosenman, Gil

    2016-01-01

    Unique linear and nonlinear optical properties of bioinspired peptide nanostructures such as wideband transparency and high second-order nonlinear optical response, combined with elongated tubular shape of variable size and rapid self-assembly fabrication process, make them promising for diverse bio-nano-photonic applications. This new generation of nanomaterials of biological origin possess physical properties similar to those of biological structures. Here, we focus on new specific functionality of ultrashort peptide nanotubes to guide light at fundamental and second-harmonic generation (SHG) frequency in horizontal and vertical peptide nanotubes configurations. Conducted simulations and experimental data show that these self-assembled linear and nonlinear optical bio-waveguides provide strong optical power confinement factor, demonstrate pronounced directionality of SHG and high conversion efficiency of SHG ∼10(-5). Our study gives new insight on physics of light propagation in nanostructures of biological origin and opens the avenue towards new and unexpected applications of these waveguiding effects in bio-nanomaterials both for biomedical nonlinear microscopy imaging recognition and development of novel integrated nanophotonic devices.

  17. Bio-inspired patterned networks (BIPS) for development of wearable/disposable biosensors

    Science.gov (United States)

    McLamore, E. S.; Convertino, M.; Hondred, John; Das, Suprem; Claussen, J. C.; Vanegas, D. C.; Gomes, C.

    2016-05-01

    Here we demonstrate a novel approach for fabricating point of care (POC) wearable electrochemical biosensors based on 3D patterning of bionanocomposite networks. To create Bio-Inspired Patterned network (BIPS) electrodes, we first generate fractal network in silico models that optimize transport of network fluxes according to an energy function. Network patterns are then inkjet printed onto flexible substrate using conductive graphene ink. We then deposit fractal nanometal structures onto the graphene to create a 3D nanocomposite network. Finally, we biofunctionalize the surface with biorecognition agents using covalent bonding. In this paper, BIPS are used to develop high efficiency, low cost biosensors for measuring glucose as a proof of concept. Our results on the fundamental performance of BIPS sensors show that the biomimetic nanostructures significantly enhance biosensor sensitivity, accuracy, response time, limit of detection, and hysteresis compared to conventional POC non fractal electrodes (serpentine, interdigitated, and screen printed electrodes). BIPs, in particular Apollonian patterned BIPS, represent a new generation of POC biosensors based on nanoscale and microscale fractal networks that significantly improve electrical connectivity, leading to enhanced sensor performance.

  18. Predictive modelling-based design and experiments for synthesis and spinning of bioinspired silk fibres

    Science.gov (United States)

    Lin, Shangchao; Ryu, Seunghwa; Tokareva, Olena; Gronau, Greta; Jacobsen, Matthew M.; Huang, Wenwen; Rizzo, Daniel J.; Li, David; Staii, Cristian; Pugno, Nicola M.; Wong, Joyce Y.; Kaplan, David L.; Buehler, Markus J.

    2015-05-01

    Scalable computational modelling tools are required to guide the rational design of complex hierarchical materials with predictable functions. Here, we utilize mesoscopic modelling, integrated with genetic block copolymer synthesis and bioinspired spinning process, to demonstrate de novo materials design that incorporates chemistry, processing and material characterization. We find that intermediate hydrophobic/hydrophilic block ratios observed in natural spider silks and longer chain lengths lead to outstanding silk fibre formation. This design by nature is based on the optimal combination of protein solubility, self-assembled aggregate size and polymer network topology. The original homogeneous network structure becomes heterogeneous after spinning, enhancing the anisotropic network connectivity along the shear flow direction. Extending beyond the classical polymer theory, with insights from the percolation network model, we illustrate the direct proportionality between network conductance and fibre Young's modulus. This integrated approach provides a general path towards de novo functional network materials with enhanced mechanical properties and beyond (optical, electrical or thermal) as we have experimentally verified.

  19. A Bioinspired Adaptive Congestion-Avoidance Routing for Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Huang Qiong

    2014-01-01

    Full Text Available Traditional mobile Ad Hoc network routing protocols are mainly based on the Shortest Path, which possibly results in many congestion nodes that incur routing instability and rerouting. To mitigate the side-efforts, this paper proposed a new bioinspired adaptive routing protocol (ATAR based on a mathematics biology model ARAS. This paper improved the ARAS by reducing the randomness and by introducing a new routing-decision metric “the next-hop fitness” which was denoted as the congestion level of node and the length of routing path. In the route maintenance, the nodes decide to forward the data to next node according to a threshold value of the fitness. In the recovery phase, the node will adopt random manner to select the neighbor as the next hop by calculation of the improved ARAS. With this route mechanism, the ATAR could adaptively circumvent the congestion nodes and the rerouting action is taken in advance. Theoretical analysis and numerical simulation results show that the ATAR protocol outperforms AODV and MARAS in terms of delivery ratio, ETE delay, and the complexity. In particular, ATAR can efficiently mitigate the congestion.

  20. Symmetric Kullback-Leibler Metric Based Tracking Behaviors for Bioinspired Robotic Eyes.

    Science.gov (United States)

    Liu, Hengli; Luo, Jun; Wu, Peng; Xie, Shaorong; Li, Hengyu

    2015-01-01

    A symmetric Kullback-Leibler metric based tracking system, capable of tracking moving targets, is presented for a bionic spherical parallel mechanism to minimize a tracking error function to simulate smooth pursuit of human eyes. More specifically, we propose a real-time moving target tracking algorithm which utilizes spatial histograms taking into account symmetric Kullback-Leibler metric. In the proposed algorithm, the key spatial histograms are extracted and taken into particle filtering framework. Once the target is identified, an image-based control scheme is implemented to drive bionic spherical parallel mechanism such that the identified target is to be tracked at the center of the captured images. Meanwhile, the robot motion information is fed forward to develop an adaptive smooth tracking controller inspired by the Vestibuloocular Reflex mechanism. The proposed tracking system is designed to make the robot track dynamic objects when the robot travels through transmittable terrains, especially bumpy environment. To perform bumpy-resist capability under the condition of violent attitude variation when the robot works in the bumpy environment mentioned, experimental results demonstrate the effectiveness and robustness of our bioinspired tracking system using bionic spherical parallel mechanism inspired by head-eye coordination.

  1. Bioinspired legged-robot based on large deformation of flexible skeleton

    International Nuclear Information System (INIS)

    In this article we present STARbot, a bioinspired legged robot capable of multiple locomotion modalities by using large deformation of its skeleton. We construct STARbot by using origami-style folding of flexible laminates. The long-term goal is to provide a robotic platform with maximum mobility on multiple surfaces. This paper particularly studies the quasistatic model of STARbot’s leg under different conditions. We describe the large elastic deformation of a leg under external force, payload, and friction by using a set of non-dimensional, nonlinear approximate equations. We developed a test mechanism that models the motion of a leg in STARbot. We augmented several foot shapes and then tested them on soft to rough grounds. Both simulation and experimental findings were in good agreement. We utilized the model to develop several scales of tri and quad STARbot. We demonstrated the capability of these robots to locomote by combining their leg deformations with their foot motions. The combination provided a design platform for an active suspension STARbot with controlled foot locomotion. This included the ability of STARbot to change size, run over obstacles, walk and slide. Furthermore, in this paper we discuss a cost effective manufacturing and production method for manufacturing STARbot. (paper)

  2. Pushing the lipid envelope: using bio-inspired nanocomposites to understand and exploit lipid membrane limitations

    Science.gov (United States)

    Montano, Gabriel

    Lipids serve as the organizing matrix material for biological membranes, the site of interaction of cells with the external environment. . As such, lipids play a critical role in structure/function relationships of an extraordinary number of critical biological processes. In this talk, we will look at bio-inspired membrane assemblies to better understand the roles of lipids in biological systems as well as attempt to generate materials that can mimic and potentially advance upon biological membrane processes. First, we will investigate the response of lipids to adverse conditions. In particular, I will present data that demonstrates the response of lipids to harsh conditions and how such responses can be exploited to generate nanocomposite rearrangements. I will also show the effect of adding the endotoxin lipopolysaccharide (LPS) to lipid bilayer assemblies and describe implications on our understanding of LPS organization in biological systems as well as describe induced lipid modifications that can be exploited to organize membrane composites with precise, two-dimensional geometric control. Lastly, I will describe the use of amphiphilic block copolymers to create membrane nanocomposites capable of mimicking biological systems. In particular, I will describe the use of our polymer-based membranes in creating artificial photosynthetic assemblies that rival biological systems in function in a more flexible, dynamic matrix.

  3. Bio-Inspired Supramolecular Chemistry Provides Highly Concentrated Dispersions of Carbon Nanotubes in Polythiophene

    Directory of Open Access Journals (Sweden)

    Yen-Ting Lin

    2016-06-01

    Full Text Available In this paper we report the first observation, through X-ray diffraction, of noncovalent uracil–uracil (U–U dimeric π-stacking interactions in carbon nanotube (CNT–based supramolecular assemblies. The directionally oriented morphology determined using atomic force microscopy revealed highly organized behavior through π-stacking of U moieties in a U-functionalized CNT derivative (CNT–U. We developed a dispersion system to investigate the bio-inspired interactions between an adenine (A-terminated poly(3-adeninehexyl thiophene (PAT and CNT–U. These hybrid CNT–U/PAT materials interacted through π-stacking and multiple hydrogen bonding between the U moieties of CNT–U and the A moieties of PAT. Most importantly, the U···A multiple hydrogen bonding interactions between CNT–U and PAT enhanced the dispersion of CNT–U in a high-polarity solvent (DMSO. The morphology of these hybrids, determined using transmission electron microscopy, featured grape-like PAT bundles wrapped around the CNT–U surface; this tight connection was responsible for the enhanced dispersion of CNT–U in DMSO.

  4. Hair flow sensors: from bio-inspiration to bio-mimicking—a review

    Science.gov (United States)

    Tao, Junliang; (Bill Yu, Xiong

    2012-11-01

    A great many living beings, such as aquatics and arthropods, are equipped with highly sensitive flow sensors to help them survive in challenging environments. These sensors are excellent sources of inspiration for developing application-driven artificial flow sensors with high sensitivity and performance. This paper reviews the bio-inspirations on flow sensing in nature and the bio-mimicking efforts to emulate such sensing mechanisms in recent years. The natural flow sensing systems in aquatics and arthropods are reviewed to highlight inspirations at multiple levels such as morphology, sensing mechanism and information processing. Biomimetic hair flow sensors based on different sensing mechanisms and fabrication technologies are also reviewed to capture the recent accomplishments and to point out areas where further progress is necessary. Biomimetic flow sensors are still in their early stages. Further efforts are required to unveil the sensing mechanisms in the natural biological systems and to achieve multi-level bio-mimicking of the natural system to develop their artificial counterparts.

  5. A bio-inspired aquatic flow sensor using an artificial cell membrane

    Science.gov (United States)

    Pinto, Preston A.; Garrison, Kevin; Leo, Donald J.; Sarles, Stephen A.

    2012-04-01

    Receptors known as hair cells give many animals this ability to sense a wide range of stimuli, such as sound, orientation, vibration, and flow. Previous researchers have mimicked natural hair cells by building electromechanical sensor systems that produce an electric response due to the bending of artificial hairs. Inspired by the roles of sensory hairs in fish, this work builds on previous research by investigating the flow dependent electrical response of a 'skin'-encapsulated artificial hair cell in an aqueous flow. This study presents the design, fabrication, and characterization of a flow sensor that will help close the loop between the sensing mechanisms and control strategies that aquatic organisms employ for functions such as locomotion regulation, prey capture, and particulate capture. The system is fabricated with a durable, artificial bilayer that forms at the interface between lipid-encased aqueous volumes contained in a flexible encapsulated polyurethane substrate. Flow experiments are conducted by placing the bio-inspired sensor in a flow chamber and subjecting it to pulse-like flows. Specifically, through temporal responses of the measured current and power spectral density (PSD) analysis, our results show that the amplitude and frequency of the current response are related to the flow over the hair. This preliminary study demonstrates that the encapsulated artificial hair cell flow sensor is capable of sensing changes in flow through a mechanoelectrical response and that its sensing capabilities may be altered by varying its surface morphology.

  6. Research Frontiers in Bioinspired Energy: Molecular-Level Learning from Natural Systems: A Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Zolandz, Dorothy

    2012-03-28

    An interactive, multidisciplinary, public workshop, organized by a group of experts in biochemistry, biophysics, chemical and biomolecular engineering, chemistry, microbial metabolism, and protein structure and function, was held on January 6-7, 2011 in Washington, DC. Fundamental insights into the biological energy capture, storage, and transformation processes provided by speakers was featured in this workshop which included topics such as microbes living in extreme environments such as hydrothermal vents or caustic soda lakes (extremophiles) provided a fascinating basis for discussing the exploration and development of new energy systems. Breakout sessions and extended discussions among the multidisciplinary groups of participants in the workshop fostered information sharing and possible collaborations on future bioinspired research. Printed and web-based materials that summarize the committee's assessment of what transpired at the workshop were prepared to advance further understanding of fundamental chemical properties of biological systems within and between the disciplines. In addition, webbased materials (including two animated videos) were developed to make the workshop content more accessible to a broad audience of students and researchers working across disciplinary boundaries. Key workshop discussion topics included: Exploring and identifying novel organisms; Identifying patterns and conserved biological structures in nature; Exploring and identifying fundamental properties and mechanisms of known biological systems; Supporting current, and creating new, opportunities for interdisciplinary education, training, and outreach; and Applying knowledge from biology to create new devices and sustainable technology.

  7. Green design "bioinspired disassembly-reassembly strategy" applied for improved tumor-targeted anticancer drug delivery.

    Science.gov (United States)

    Wang, Ruoning; Gu, Xiaochen; Zhou, Jianping; Shen, Lingjia; Yin, Lifang; Hua, Peiying; Ding, Yang

    2016-08-10

    In this study, a simple and green approach 'bioinspired disassembly-reassembly strategy' was employed to reconstitute lipoprotein nanoparticles (RLNs) using whole-components of endogenous ones (contained dehydrated human lipids and native apolipoproteins). These RLNs were engineered to mimic the configuration and properties of natural lipoproteins for efficient drug delivery. In testing therapeutic targeting to microtubules, paclitaxel (PTX) was reassembled into RLNs to achieve improved targeted anti-carcinoma treatment and minimize adverse effects, demonstrating ultimately more applicable than HDL-like particles which are based on exogenous lipid sources. We have characterized that apolipoprotein-decoration of PTX-loaded RLNs (RLNs-PTX) led to favoring uniformly dispersed distribution, increasing PTX-encapsulation with a sustained-release pattern, while enhancing biostability during blood circulation. The innate biological RLNs induced efficient intracellular trafficking of cargos in situ via multi-targeting mechanisms, including scavenger receptor class B type I (SR-BI)-mediated direct transmembrane delivery, as well as other lipoprotein-receptors associated endocytic pathways. The resulting anticancer treatment from RLNs-PTX was demonstrated a half-maximal inhibitory concentration of 0.20μg/mL, cell apoptosis of 18.04% 24h post-incubation mainly arresting G2/M cell cycle in vitro, and tumor weight inhibition of 70.51% in vivo. Collectively, green-step assembly-based RLNs provided an efficient strategy for mediating tumor-targeted accumulation of PTX and enhanced anticancer efficacy. PMID:27238442

  8. A bioinspired autonomous swimming robot as a tool for studying goal-directed locomotion.

    Science.gov (United States)

    Manfredi, L; Assaf, T; Mintchev, S; Marrazza, S; Capantini, L; Orofino, S; Ascari, L; Grillner, S; Wallén, P; Ekeberg, O; Stefanini, C; Dario, P

    2013-10-01

    The bioinspired approach has been key in combining the disciplines of robotics with neuroscience in an effective and promising fashion. Indeed, certain aspects in the field of neuroscience, such as goal-directed locomotion and behaviour selection, can be validated through robotic artefacts. In particular, swimming is a functionally important behaviour where neuromuscular structures, neural control architecture and operation can be replicated artificially following models from biology and neuroscience. In this article, we present a biomimetic system inspired by the lamprey, an early vertebrate that locomotes using anguilliform swimming. The artefact possesses extra- and proprioceptive sensory receptors, muscle-like actuation, distributed embedded control and a vision system. Experiments on optimised swimming and on goal-directed locomotion are reported, as well as the assessment of the performance of the system, which shows high energy efficiency and adaptive behaviour. While the focus is on providing a robotic platform for testing biological models, the reported system can also be of major relevance for the development of engineering system applications.

  9. Issues in Applying Bio-Inspiration, Cognitive Critical Mass and Developmental-Inspired Principles to Advanced Intelligent Systems

    Science.gov (United States)

    Berg-Cross, Gary; Samsonovich, Alexei V.

    This Chapter summarizes ideas presented at the special PerMIS 2008 session on Biological Inspiration for Intelligent Systems. Bio-inspired principles of development and evolution are a special part of the bio-models and principles that can be used to improve intelligent systems and related artifacts. Such principles are not always explicit. They represent an alternative to incremental engineering expansion using new technology to replicate human intelligent capabilities. They are more evident in efforts to replicate and produce a “critical mass” of higher cognitive functions of the human mind or their emergence through cognitive developmental robotics (DR) and self-regulated learning (SRL). DR approaches takes inspiration from natural processes, so that intelligently engineered systems may create solutions to problems in ways similar to what we hypothesize is occurring with biologics in their natural environment. This Chapter discusses how an SRL-based approach to bootstrap a “critical mass” can be assessed by a set of cognitive tests. It also uses a three-level bio-inspired framework to illustrate methodological issues in DR research. The approach stresses the importance of using bio-realistic developmental principles to guide and constrain research. Of particular importance is keeping models and implementation separate to avoid the possible of falling into a Ptolemaic paradigm that may lead to endless tweaking of models. Several of Lungarella's design principles [36] for developmental robotics are discussed as constraints on intelligence as it emerges from an ecologically balanced, three-way interaction between an agents' control systems, physical embodiment, and the external environment. The direction proposed herein is to explore such principles to avoid slavish following of superficial bio-inspiration. Rather we should proceed with a mature and informed developmental approach using developmental principles based on our incremental understanding of how

  10. Engineering bioinspired bacteria-adhesive clay nanoparticles with a membrane-disruptive property for the treatment of Helicobacter pylori infection.

    Science.gov (United States)

    Ping, Yuan; Hu, Xiurong; Yao, Qi; Hu, Qida; Amini, Shahrouz; Miserez, Ali; Tang, Guping

    2016-09-28

    We present a bioinspired design strategy to engineer bacteria-targeting and membrane-disruptive nanoparticles for the effective antibiotic therapy of Helicobacter pylori (H. pylori) infection. Antibacterial nanoparticles were self-assembled from highly exfoliated montmorillonite (eMMT) and cationic linear polyethyleneimine (lPEI) via electrostatic interactions. eMMT functions as a bioinspired 'sticky' building block for anchoring antibacterial nanoparticles onto the bacterial cell surface via bacteria-secreted extracellular polymeric substances (EPS), whereas membrane-disruptive lPEI is able to efficiently lyse the bacterial outer membrane to allow topical transmembrane delivery of antibiotics into the intracellular cytoplasm. As a result, eMMT-lPEI nanoparticles intercalated with the antibiotic metronidazole (MTZ) not only efficiently target bacteria via EPS-mediated adhesion and kill bacteria in vitro, but also can effectively remain in the stomach where H. pylori reside, thereby serving as an efficient drug carrier for the direct on-site release of MTZ into the bacterial cytoplasm. Importantly, MTZ-intercalated eMMT-lPEI nanoparticles were able to efficiently eradicate H. pylori in vivo and to significantly improve H. pylori-associated gastric ulcers and the inflammatory response in a mouse model, and also showed superior therapeutic efficacy as compared to standard triple therapy. Our findings reveal that bacterial adhesion plays a critical role in promoting efficient antimicrobial delivery and also represent an original bioinspired targeting strategy via specific EPS-mediated adsorption. The bacteria-adhesive eMMT-lPEI nanoparticles with membrane-disruptive ability may constitute a promising drug carrier system for the efficacious targeted delivery of antibiotics in the treatment of bacterial infections.

  11. Non-oxidative synthesis of pentose 5-phosphate from hexose 6-phosphate and triose phosphate by the L-type pentose pathway.

    Science.gov (United States)

    Williams, J F; Blackmore, P F

    1983-01-01

    1. Ribose 5-phosphate was non-oxidatively synthesized from glucose 6-phosphate and triose phosphate by an enzyme extract prepared from rat liver (RLEP). Analysis of the intermediates by GLC, ion-exchange chromatography and specific enzymatic analysis, revealed the presence of the following intermediates of the L-type pentose pathway: altro-heptulose 1,7-bisphosphate, arabinose 5-phosphate and D-glycero D-ido octulose 8-phosphate. 2. With either [1-14C] or [2-14C]glucose 6-phosphate as diagnostic substrates, the distribution of 14C in ribose 5-phosphate was determined. At early time intervals (0.5-8 hr), [1-14C]glucose 6-phosphate introduced 14C into C-1, C-3 and C-5 of ribose 5-phosphate, at 17 hr 14C was confined to C-1. With [2-14C]glucose 6-phosphate as substrate, 14C was confined to C-2, C-3 and C-5 of ribose 5-phosphate during early times (0.5-8 hr), while at 17 hr 14C was located in C-2. 3. The transketolase exchange reaction, [14C]ribose 5-phosphate + altro-heptulose 7-phosphate in equilibrium ribose 5-phosphate + [14C]altro-heptulose 7-phosphate, was demonstrated for the first time using purified transketolase, its activity was measured and it is proposed to play a major role in the relocation of 14C into C-3 and C-5 or ribose 5-phosphate during the prediction labelling experiments. 4. The coupled transketolase-transaldolase reactions, 2 fructose 6-phosphate in equilibrium altro-heptulose 7-phosphate + xylulose 5-phosphate and 2 altro-heptulose 7-phosphate in equilibrium fructose 6-phosphate + D-glycero D-altro octulose 8-phosphate were demonstrated with purified enzymes, but are concluded to play a minor role in the non-oxidative synthesis of pentose 5-phosphate and octulose phosphate by (RLEP). 5. The formation of gem diol and dimers of erythrose 4-phosphate is proposed to account in part for the failure to detect monomeric erythrose 4-phosphate in the carbon balance studies. 6. The equilibrium value for the pentose pathway acting by the reverse mode in

  12. [Adsorption of Phosphate by Lanthanum Hydroxide/Natural Zeolite Composites from Low Concentration Phosphate Solution].

    Science.gov (United States)

    Lin, Jian-wei; Wang, Hong; Zhan, Yan-hui; Chen, Dong-mei

    2016-01-15

    A series of composites of lanthanum hydroxide/natural zeolite ( La( OH) 3/NZ composites) were prepared by co-precipitation method, and these composites were used as adsorbents to remove phosphate from aqueous solution. The phosphate adsorption capacities of different composites prepared with different precipitated pH values were compared in batch mode. The adsorption characteristics of phosphate from aqueous solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 was investigated using batch experiments. The results showed that the La(OH)3/NZ composite prepared with the precipitated pH values of 5-7 and 13 had a low adsorption capacity for phosphate in aqueous solution, while the La( OH) 3/NZ composites prepared with the precipitated pH values of 9-12 exhibited much higher phosphate adsorption capacity. The phosphate adsorption capacity of the La (OH)3/NZ composite increased with the increase of the precipitated pH value from 9 to 11, but remained basically unchanged with the increase of the precipitated pH value from 11 to 12. The equilibrium adsorption data of phosphate from aqueous solution on the La ( OH ) 3/NZ composite prepared with the precipitated pH value of 11 could be described by the Langmuir isotherm model with the predicted maximum phosphate adsorption of 44 mg x g(-1) (phosphate solution pH 7 and 30 degrees C). The kinetic data of phosphate adsorption from low concentration phosphate solution on the La(OH)3/NZ composite prepared with the precipitated pH value of 11 well followed a pseudo-second-order model. The presence of Cl- and SO4(2-) in low concentration phosphate solution had no negative effect on phosphate adsorption onto the La(OH)3/NZ composite prepared with the precipitated pH value of 11, while the presence of HCO3- slightly inhibited the adsorption of phosphate. Coexisting humic acid had a negative effect on the adsorption of phosphate at low concentration on the La(OH)3/NZ composite prepared with the

  13. Kinetics of Phosphate Release from Three Phosphate-Treated Soils

    Institute of Scientific and Technical Information of China (English)

    LI Shou-Tian; ZHOU Jian-Min; WANG Huo-Yan; DU Chang-Wen; CHEN Xiao-Qin

    2005-01-01

    Phosphate release from three selected soils after treatments of 1.6 and 2.4 mmol L-1 P was investigated using sequential extractions and fitted using six kinetic models, including zero order (Z), first order (F), second order (S),parabolic diffusion (PD), two constant rate (TC), and Elovich type (ET) equations. The results showed that the rate of P release was initially rapid and then gradually declined with time. Also, P release increased with added P. Total P release followed the order: paddy soil with 2.4 mmol L-1 P > red soil with 2.4 mmol L-1 P > paddy soil with 1.6 mmol L-1 P > fluvo-aquic soil with 2.4 mmol L-1 P > fluvo-aquic with 1.6 mmol L-1 P > red soil with 1.6 mmol L-1 P. For the two P treatments P release from the paddy soils in the first extraction was 44.3% and 45.6% of total released P, respectively,which were higher than those from red and fluvo-aquic soils. The ratio of P release at the end of release time was 14.0%and 13.1% in the paddy soil treated with 1.6 and 2.4 mmol L-1 P, respectively, but only 5.1% and 9.2% in the red soil and 7.0% and 5.2% in the fluvo-aquic soil, respectively. Comparison of the coefficients of determination (R2) indicated that ET, TC, and PD equations could describe the P release data better than Z, F, and S equations.

  14. Bioinspired Synthesis of All-in-One Organic-Inorganic Hybrid Nanoflowers Combined with a Handheld pH Meter for On-Site Detection of Food Pathogen.

    Science.gov (United States)

    Ye, Ranfeng; Zhu, Chengzhou; Song, Yang; Lu, Qian; Ge, Xiaoxiao; Yang, Xu; Zhu, Mei-Jun; Du, Dan; Li, He; Lin, Yuehe

    2016-06-01

    With a mild elaborately bioinspired one-pot process, Con A-GOx-CaHPO4 nanoflowers are prepared. Employing the as-prepared all-in-one hybrid nanoflowers as signal tags, a simple but potentially powerful amplification biosensing technology for the detection of food pathogen with excellent simplicity, portability, sensitivity, and adaptability is achieved.

  15. Biological Removal of Phosphate Using Phosphate Solubilizing Bacterial Consortium from Synthetic Wastewater: A Laboratory Scale

    OpenAIRE

    Dipak Paul; Sankar Narayan Sinha

    2015-01-01

    Biological phosphate removal is an important process having gained worldwide attention and widely used for removing phosphorus from wastewater. The present investigation was aimed to screen the efficient phosphate solubilizing bacterial isolates and used to remove phosphate from synthetic wastewater under shaking flasks conditions. Pseudomonas sp. JPSB12, Enterobacter sp. TPSB20, Flavobacterium sp. TPSB23 and mixed bacterial consortium (Pseudomonas sp. JPSB12+Enterobacter sp. TPSB20+Flavobact...

  16. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    OpenAIRE

    Lílian Estrela Borges Baldotto; Marihus Altoé Baldotto; Fábio Lopes Olivares; Adriane Nunes de Souza

    2014-01-01

    Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i) to select and characterize diazotrophs abl...

  17. Airborne radioactivity surveys for phosphate in Florida

    Science.gov (United States)

    Moxham, Robert M.

    1954-01-01

    Airborne radioactivity surveys totaling 5, 600 traverse miles were made in 10 areas in Florida, which were thought to be geologically favorable for deposits of uraniferous phosphate. Abnormal radioactivity was recorded in 8 of the 10 areas surveyed. The anomalies are located in Bradford, Clay, Columbia, DeSoto, Dixie, Lake, Marion, Orange, Sumter, Taylor, and Union Counties. Two of the anomalies were investigated briefly on the ground. One resulted from a deposit of river-pebble phosphate in the Peace River valley; the river-pebble samples contain an average of 0.013 percent equivalent uranium. The other anomaly resulted from outcrops of leached phosphatic rock containing as much as 0. 016 percent equivalent uranium. Several anomalies in other areas were recorded at or near localities where phosphate deposits have been reported.

  18. Uranium recovery from phosphate rocks concentrated

    International Nuclear Information System (INIS)

    The reserves, geological data, chemical data and technical flowsheet from COPEBRAS and Goiasfertil ores are described, including the process of mining ore concentration. Samples of Goiasfertil ores are analysed by gravimetric analysis, for phosphate, and spectrofluorimetry for uranium. (author)

  19. Enzyme activity in dialkyl phosphate ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  20. Synthesis of Caged Bicyclic Phosphate Derivatives

    Institute of Scientific and Technical Information of China (English)

    FANG Xiao-min; OU Yu-xiang; LUO Rui-bin; WANG Yong; LIAN Dan-jun; LI Xin

    2008-01-01

    Seven caged bicyclic phosphate compounds were synthesized by using 1-oxo-4-hydroxymethy1-2,6,7-trioxa-1-pho-sphabicyclo[2.2.2] octane (PEPA) as starting material. Within them were three PEPA derivatives containing single caged bicyclic phosphate structure(1a,2a,3a), another three PEPA deviratives containing two caged bicyclic phosphate structures(1b,2b,3b) and one devirative(1c) containing three caged bicyclic phosphate structures. Structures of the products were characterized by FTIR, 1H NMR, elemental analysis and TG analysis. The reaction conditions were also discussed. Thermal analysis showed they had high thermal stability and excellent char-forming ability. Besides, these compounds had pentaerythritol bone and flame retardant elements of phosphorus, bromine or nitrogen simultaneously in their molecules, endowed them with good fire retardancy, and made them can be used as intumescent flame retardant.

  1. Pyridoxal Phosphate vs Pyridoxine for Intractable Seizures

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2005-05-01

    Full Text Available The efficacy of pyridoxal phosphate (PLP compared to pyridoxine (PN in the control of idiopathic intractable epilepsy was studied in 94 children, aged 8 months to 15 years, at the National Taiwan University Hospital, Taipei, Taiwan.

  2. Phosphate coating on stainless steel 304 sensitized

    International Nuclear Information System (INIS)

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  3. Novel phosphate glasses for bone regeneration applications

    OpenAIRE

    Burling, Luke Donald

    2006-01-01

    Phosphate glass with additions of sodium, magnesium and/or calcium were investigated for their potential to be used as the reinforcing phase in a completely degradable long fibre composite. Glasses were prepared from phosphate salts as opposed to oxides and melted under air in platinum/gold crucibles. The effect of cation addition on the material properties and biocompatibility was investigated. Glasses were characterised using a number of complimentary techniques, including: XRD, XPS, DSC...

  4. Bioinspired engineering study of Plantae vascules for self-healing composite structures.

    Science.gov (United States)

    Trask, R S; Bond, I P

    2010-06-01

    This paper presents the first conceptual study into creating a Plantae-inspired vascular network within a fibre-reinforced polymer composite laminate, which provides an ongoing self-healing functionality without incurring a mass penalty. Through the application of a 'lost-wax' technique, orthogonal hollow vascules, inspired by the 'ray cell' structures found in ring porous hardwoods, were successfully introduced within a carbon fibre-reinforced epoxy polymer composite laminate. The influence on fibre architecture and mechanical behaviour of single vascules (located on the laminate centreline) when aligned parallel and transverse to the local host ply was characterized experimentally using a compression-after-impact test methodology. Ultrasonic C-scanning and high-resolution micro-CT X-ray was undertaken to identify the influence of and interaction between the internal vasculature and impact damage. The results clearly show that damage morphology is influenced by vascule orientation and that a 10 J low-velocity impact damage event is sufficient to breach the vasculature; a prerequisite for any subsequent self-healing function. The residual compressive strength after a 10 J impact was found to be dependent upon vascule orientation. In general, residual compressive strength decreased to 70 per cent of undamaged strength when vasculature was aligned parallel to the local host ply and a value of 63 per cent when aligned transverse. This bioinspired engineering study has illustrated the potential that a vasculature concept has to offer in terms of providing a self-healing function with minimum mass penalty, without initiating premature failure within a composite structure. PMID:19955122

  5. Supramolecular Engineering of Hierarchically Self-Assembled, Bioinspired, Cholesteric Nanocomposites Formed by Cellulose Nanocrystals and Polymers.

    Science.gov (United States)

    Zhu, Baolei; Merindol, Remi; Benitez, Alejandro J; Wang, Baochun; Walther, Andreas

    2016-05-01

    Natural composites are hierarchically structured by combination of ordered colloidal and molecular length scales. They inspire future, biomimetic, and lightweight nanocomposites, in which extraordinary mechanical properties are in reach by understanding and mastering hierarchical structure formation as tools to engineer multiscale deformation mechanisms. Here we describe a hierarchically self-assembled, cholesteric nanocomposite with well-defined colloid-based helical structure and supramolecular hydrogen bonds engineered on the molecular level in the polymer matrix. We use reversible addition-fragmentation transfer polymerization to synthesize well-defined hydrophilic, nonionic polymers with a varying functionalization density of 4-fold hydrogen-bonding ureidopyrimidinone (UPy) motifs. We show that these copolymers can be coassembled with cellulose nanocrystals (CNC), a sustainable, stiff, rod-like reinforcement, to give ordered cholesteric phases with characteristic photonic stop bands. The dimensions of the helical pitch are controlled by the ratio of polymer/CNC, confirming a smooth integration into the colloidal structure. With respect to the effect of the supramolecular motifs, we demonstrate that those regulate the swelling when exposing the biomimetic hybrids to water, and they allow engineering the photonic response. Moreover, the amount of hydrogen bonds and the polymer fraction are decisive in defining the mechanical properties. An Ashby plot comparing previous ordered CNC-based nanocomposites with our new hierarchical ones reveals that molecular engineering allows us to span an unprecedented mechanical property range from highest inelastic deformation (strain up to ∼13%) to highest stiffness (E ∼ 15 GPa) and combinations of both. We envisage that further rational design of the molecular interactions will provide efficient tools for enhancing the multifunctional property profiles of such bioinspired nanocomposites. PMID:27067311

  6. Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platforms.

    Science.gov (United States)

    Siddall, R; Kovač, M

    2014-09-01

    Current Micro Aerial Vehicles (MAVs) are greatly limited by being able to operate in air only. Designing multimodal MAVs that can fly effectively, dive into the water and retake flight would enable applications of distributed water quality monitoring, search and rescue operations and underwater exploration. While some can land on water, no technologies are available that allow them to both dive and fly, due to dramatic design trade-offs that have to be solved for movement in both air and water and due to the absence of high-power propulsion systems that would allow a transition from underwater to air. In nature, several animals have evolved design solutions that enable them to successfully transition between water and air, and move in both media. Examples include flying fish, flying squid, diving birds and diving insects. In this paper, we review the biological literature on these multimodal animals and abstract their underlying design principles in the perspective of building a robotic equivalent, the Aquatic Micro Air Vehicle (AquaMAV). Building on the inspire-abstract-implement bioinspired design paradigm, we identify key adaptations from nature and designs from robotics. Based on this evaluation we propose key design principles for the design of successful aerial-aquatic robots, i.e. using a plunge diving strategy for water entry, folding wings for diving efficiency, water jet propulsion for water takeoff and hydrophobic surfaces for water shedding and dry flight. Further, we demonstrate the feasibility of the water jet propulsion by building a proof-of-concept water jet propulsion mechanism with a mass of 2.6 g that can propel itself up to 4.8 m high, corresponding to 72 times its size. This propulsion mechanism can be used for AquaMAV but also for other robotic applications where high-power density is of use, such as for jumping and swimming robots. PMID:24615533

  7. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    Science.gov (United States)

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-01

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package. PMID:27257144

  8. Bioinspired engineering of exploration systems for NASA and DoD.

    Science.gov (United States)

    Thakoor, Sarita; Chahl, Javaan; Srinivasan, M V; Young, L; Werblin, Frank; Hine, Butler; Zornetzer, Steven

    2002-01-01

    A new approach called bioinspired engineering of exploration systems (BEES) and its value for solving pressing NASA and DoD needs are described. Insects (for example honeybees and dragonflies) cope remarkably well with their world, despite possessing a brain containing less than 0.01% as many neurons as the human brain. Although most insects have immobile eyes with fixed focus optics and lack stereo vision, they use a number of ingenious, computationally simple strategies for perceiving their world in three dimensions and navigating successfully within it. We are distilling selected insect-inspired strategies to obtain novel solutions for navigation, hazard avoidance, altitude hold, stable flight, terrain following, and gentle deployment of payload. Such functionality provides potential solutions for future autonomous robotic space and planetary explorers. A BEES approach to developing lightweight low-power autonomous flight systems should be useful for flight control of such biomorphic flyers for both NASA and DoD needs. Recent biological studies of mammalian retinas confirm that representations of multiple features of the visual world are systematically parsed and processed in parallel. Features are mapped to a stack of cellular strata within the retina. Each of these representations can be efficiently modeled in semiconductor cellular nonlinear network (CNN) chips. We describe recent breakthroughs in exploring the feasibility of the unique blending of insect strategies of navigation with mammalian visual search, pattern recognition, and image understanding into hybrid biomorphic flyers for future planetary and terrestrial applications. We describe a few future mission scenarios for Mars exploration, uniquely enabled by these newly developed biomorphic flyers. PMID:12650645

  9. Bioinspired polydopamine particles-assisted construction of superhydrophobic surfaces for oil/water separation.

    Science.gov (United States)

    Shang, Bin; Wang, Yanbing; Peng, Bo; Deng, Ziwei

    2016-11-15

    Frequent oil spillages and industrial discharge of oils/organic solvents have induced severe environmental pollution and ecological damage, and a great cost in energy and finance has been consumed to solve the problems raised. Therefore, it is urgent to develop a surface hydrophobic modification that can be applied to materials with desired properties of high separation efficiency, excellent selectivity and stable performance in extreme conditions during the oil/water separation. Herein, with combined bioinspirations from mussel adhesive protein (polydopamine) and superhydrophobic lotus leaf (hierarchical structures), we develop a general way to superhydrophobically modify various commercial materials, aiming for the selective removal of oils/organic solvents from water. In this procedure, immersing commercial materials (e.g. melamine sponge, stainless steel mesh, nylon netting and cotton cloth) into water/ethanol/ammonia mixtures at a low concentration of dopamine (DA, 2mg/mL) allows a polydopamine (PDA) coating with a tunable roughness appearing on the substrate in one step. This is because DA can self-polymerize and form PDA particles with a catalyst of ammonia, attaching to any surfaces due to abundant catechol and amine groups in PDA, and ultimately, resulting in hierarchical structures. The subsequent decoration with 1H, 1H, 2H, 2H-perfluorodecanethiol features the surface superhydrophobic and superoleophilic. This approach is straightforward and economic, and carried out under a mild, environmental-benign circumstance, with nonspecific substrate demands. In addition, the as-prepared superhydrophobic materials exhibit excellent separation performances including high absorption/separation capacity, excellent selectivity, and extraordinary recyclability for collecting various oils/organic solvents from water. These superhydrophobic materials have also verified to be highly chemical resistant, environment stable and mechanically durable. Therefore, this

  10. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures

    Science.gov (United States)

    Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang; Zhang, Yihui

    2016-05-01

    Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for

  11. A bio-inspired real-time capable artificial lateral line system for freestream flow measurements.

    Science.gov (United States)

    Abels, C; Qualtieri, A; De Vittorio, M; Megill, W M; Rizzi, F

    2016-06-03

    To enhance today's artificial flow sensing capabilities in aerial and underwater robotics, future robots could be equipped with a large number of miniaturized sensors distributed over the surface to provide high resolution measurement of the surrounding fluid flow. In this work we show a linear array of closely separated bio-inspired micro-electro-mechanical flow sensors whose sensing mechanism is based on a piezoresistive strain-gauge along a stress-driven cantilever beam, mimicking the biological superficial neuromasts found in the lateral line organ of fishes. Aiming to improve state-of-the-art flow sensing capability in autonomously flying and swimming robots, our artificial lateral line system was designed and developed to feature multi-parameter freestream flow measurements which provide information about (1) local flow velocities as measured by the signal amplitudes from the individual cantilevers as well as (2) propagation velocity, (3) linear forward/backward direction along the cantilever beam orientation and (4) periodicity of pulses or pulse trains determined by cross-correlating sensor signals. A real-time capable cross-correlation procedure was developed which makes it possible to extract freestream flow direction and velocity information from flow fluctuations. The computed flow velocities deviate from a commercial system by 0.09 m s(-1) at 0.5 m s(-1) and 0.15 m s(-1) at 1.0 m s(-1) flow velocity for a sampling rate of 240 Hz and a sensor distance of 38 mm. Although experiments were performed in air, the presented flow sensing system can be applied to underwater vehicles as well, once the sensors are embedded in a waterproof micro-electro-mechanical systems package.

  12. Transportation network with fluctuating input/output designed by the bio-inspired Physarum algorithm.

    Science.gov (United States)

    Watanabe, Shin; Takamatsu, Atsuko

    2014-01-01

    In this paper, we propose designing transportation network topology and traffic distribution under fluctuating conditions using a bio-inspired algorithm. The algorithm is inspired by the adaptive behavior observed in an amoeba-like organism, plasmodial slime mold, more formally known as plasmodium of Physarum plycephalum. This organism forms a transportation network to distribute its protoplasm, the fluidic contents of its cell, throughout its large cell body. In this process, the diameter of the transportation tubes adapts to the flux of the protoplasm. The Physarum algorithm, which mimics this adaptive behavior, has been widely applied to complex problems, such as maze solving and designing the topology of railroad grids, under static conditions. However, in most situations, environmental conditions fluctuate; for example, in power grids, the consumption of electric power shows daily, weekly, and annual periodicity depending on the lifestyles or the business needs of the individual consumers. This paper studies the design of network topology and traffic distribution with oscillatory input and output traffic flows. The network topology proposed by the Physarum algorithm is controlled by a parameter of the adaptation process of the tubes. We observe various rich topologies such as complete mesh, partial mesh, Y-shaped, and V-shaped networks depending on this adaptation parameter and evaluate them on the basis of three performance functions: loss, cost, and vulnerability. Our results indicate that consideration of the oscillatory conditions and the phase-lags in the multiple outputs of the network is important: The building and/or maintenance cost of the network can be reduced by introducing the oscillating condition, and when the phase-lag among the outputs is large, the transportation loss can also be reduced. We use stability analysis to reveal how the system exhibits various topologies depending on the parameter. PMID:24586616

  13. Launching the AquaMAV: bioinspired design for aerial–aquatic robotic platforms

    International Nuclear Information System (INIS)

    Current Micro Aerial Vehicles (MAVs) are greatly limited by being able to operate in air only. Designing multimodal MAVs that can fly effectively, dive into the water and retake flight would enable applications of distributed water quality monitoring, search and rescue operations and underwater exploration. While some can land on water, no technologies are available that allow them to both dive and fly, due to dramatic design trade-offs that have to be solved for movement in both air and water and due to the absence of high-power propulsion systems that would allow a transition from underwater to air. In nature, several animals have evolved design solutions that enable them to successfully transition between water and air, and move in both media. Examples include flying fish, flying squid, diving birds and diving insects. In this paper, we review the biological literature on these multimodal animals and abstract their underlying design principles in the perspective of building a robotic equivalent, the Aquatic Micro Air Vehicle (AquaMAV). Building on the inspire–abstract–implement bioinspired design paradigm, we identify key adaptations from nature and designs from robotics. Based on this evaluation we propose key design principles for the design of successful aerial–aquatic robots, i.e. using a plunge diving strategy for water entry, folding wings for diving efficiency, water jet propulsion for water takeoff and hydrophobic surfaces for water shedding and dry flight. Further, we demonstrate the feasibility of the water jet propulsion by building a proof-of-concept water jet propulsion mechanism with a mass of 2.6 g that can propel itself up to 4.8 m high, corresponding to 72 times its size. This propulsion mechanism can be used for AquaMAV but also for other robotic applications where high-power density is of use, such as for jumping and swimming robots. (topical review)

  14. Transportation network with fluctuating input/output designed by the bio-inspired Physarum algorithm.

    Directory of Open Access Journals (Sweden)

    Shin Watanabe

    Full Text Available In this paper, we propose designing transportation network topology and traffic distribution under fluctuating conditions using a bio-inspired algorithm. The algorithm is inspired by the adaptive behavior observed in an amoeba-like organism, plasmodial slime mold, more formally known as plasmodium of Physarum plycephalum. This organism forms a transportation network to distribute its protoplasm, the fluidic contents of its cell, throughout its large cell body. In this process, the diameter of the transportation tubes adapts to the flux of the protoplasm. The Physarum algorithm, which mimics this adaptive behavior, has been widely applied to complex problems, such as maze solving and designing the topology of railroad grids, under static conditions. However, in most situations, environmental conditions fluctuate; for example, in power grids, the consumption of electric power shows daily, weekly, and annual periodicity depending on the lifestyles or the business needs of the individual consumers. This paper studies the design of network topology and traffic distribution with oscillatory input and output traffic flows. The network topology proposed by the Physarum algorithm is controlled by a parameter of the adaptation process of the tubes. We observe various rich topologies such as complete mesh, partial mesh, Y-shaped, and V-shaped networks depending on this adaptation parameter and evaluate them on the basis of three performance functions: loss, cost, and vulnerability. Our results indicate that consideration of the oscillatory conditions and the phase-lags in the multiple outputs of the network is important: The building and/or maintenance cost of the network can be reduced by introducing the oscillating condition, and when the phase-lag among the outputs is large, the transportation loss can also be reduced. We use stability analysis to reveal how the system exhibits various topologies depending on the parameter.

  15. Bioinspired engineering of exploration systems for NASA and DoD

    Science.gov (United States)

    Thakoor, Sarita; Chahl, Javaan; Srinivasan, M. V.; Young, L.; Werblin, Frank; Hine, Butler; Zornetzer, Steven

    2002-01-01

    A new approach called bioinspired engineering of exploration systems (BEES) and its value for solving pressing NASA and DoD needs are described. Insects (for example honeybees and dragonflies) cope remarkably well with their world, despite possessing a brain containing less than 0.01% as many neurons as the human brain. Although most insects have immobile eyes with fixed focus optics and lack stereo vision, they use a number of ingenious, computationally simple strategies for perceiving their world in three dimensions and navigating successfully within it. We are distilling selected insect-inspired strategies to obtain novel solutions for navigation, hazard avoidance, altitude hold, stable flight, terrain following, and gentle deployment of payload. Such functionality provides potential solutions for future autonomous robotic space and planetary explorers. A BEES approach to developing lightweight low-power autonomous flight systems should be useful for flight control of such biomorphic flyers for both NASA and DoD needs. Recent biological studies of mammalian retinas confirm that representations of multiple features of the visual world are systematically parsed and processed in parallel. Features are mapped to a stack of cellular strata within the retina. Each of these representations can be efficiently modeled in semiconductor cellular nonlinear network (CNN) chips. We describe recent breakthroughs in exploring the feasibility of the unique blending of insect strategies of navigation with mammalian visual search, pattern recognition, and image understanding into hybrid biomorphic flyers for future planetary and terrestrial applications. We describe a few future mission scenarios for Mars exploration, uniquely enabled by these newly developed biomorphic flyers.

  16. A bio-inspired asynchronous skin system for crack detection applications

    International Nuclear Information System (INIS)

    In many applications of structural health monitoring (SHM) it is imperative or advantageous to have large sensor arrays in order to properly sense the state of health of the structure. Typically these sensor networks are implemented by placing a large number of sensors over a structure and running individual cables from each sensor back to a central measurement station. Data is then collected from each sensor on the network at a constant sampling rate regardless of the current timescales at which events are acting on the structure. These conventional SHM sensor networks have a number of shortfalls. They tend to have a large number of cables that can represent a single point of failure for each sensor as well as add significant weight and installation costs. The constant sampling rate associated with each sensor very quickly leads to large amounts of data that must be analyzed, stored, and possibly transmitted to a remote user. This leads to increased demands on power consumption, bandwidth, and size. It also taxes our current techniques for managing large amounts of data. For the last decade the goal of the SHM community has been to endow structures with the functionality of a biological nervous system. Despite this goal the community has predominantly ignored the biological nervous system as inspiration for building structural nervous systems, choosing instead to focus on experimental mechanics and simulation techniques. In this work we explore the use of a novel, bio-inspired, SHM skin. This skin makes use of distributed computing and asynchronous communication techniques to alleviate the scale of the data management challenge as well as reduce power. The system also periodically sends a ‘heat beat’ signal to provide state-of-health updates. This conductive skin was implemented using conductive ink resistors as well as with graphene-oxide capacitors. (paper)

  17. Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platforms.

    Science.gov (United States)

    Siddall, R; Kovač, M

    2014-09-01

    Current Micro Aerial Vehicles (MAVs) are greatly limited by being able to operate in air only. Designing multimodal MAVs that can fly effectively, dive into the water and retake flight would enable applications of distributed water quality monitoring, search and rescue operations and underwater exploration. While some can land on water, no technologies are available that allow them to both dive and fly, due to dramatic design trade-offs that have to be solved for movement in both air and water and due to the absence of high-power propulsion systems that would allow a transition from underwater to air. In nature, several animals have evolved design solutions that enable them to successfully transition between water and air, and move in both media. Examples include flying fish, flying squid, diving birds and diving insects. In this paper, we review the biological literature on these multimodal animals and abstract their underlying design principles in the perspective of building a robotic equivalent, the Aquatic Micro Air Vehicle (AquaMAV). Building on the inspire-abstract-implement bioinspired design paradigm, we identify key adaptations from nature and designs from robotics. Based on this evaluation we propose key design principles for the design of successful aerial-aquatic robots, i.e. using a plunge diving strategy for water entry, folding wings for diving efficiency, water jet propulsion for water takeoff and hydrophobic surfaces for water shedding and dry flight. Further, we demonstrate the feasibility of the water jet propulsion by building a proof-of-concept water jet propulsion mechanism with a mass of 2.6 g that can propel itself up to 4.8 m high, corresponding to 72 times its size. This propulsion mechanism can be used for AquaMAV but also for other robotic applications where high-power density is of use, such as for jumping and swimming robots.

  18. Bioinspired polydopamine particles-assisted construction of superhydrophobic surfaces for oil/water separation.

    Science.gov (United States)

    Shang, Bin; Wang, Yanbing; Peng, Bo; Deng, Ziwei

    2016-11-15

    Frequent oil spillages and industrial discharge of oils/organic solvents have induced severe environmental pollution and ecological damage, and a great cost in energy and finance has been consumed to solve the problems raised. Therefore, it is urgent to develop a surface hydrophobic modification that can be applied to materials with desired properties of high separation efficiency, excellent selectivity and stable performance in extreme conditions during the oil/water separation. Herein, with combined bioinspirations from mussel adhesive protein (polydopamine) and superhydrophobic lotus leaf (hierarchical structures), we develop a general way to superhydrophobically modify various commercial materials, aiming for the selective removal of oils/organic solvents from water. In this procedure, immersing commercial materials (e.g. melamine sponge, stainless steel mesh, nylon netting and cotton cloth) into water/ethanol/ammonia mixtures at a low concentration of dopamine (DA, 2mg/mL) allows a polydopamine (PDA) coating with a tunable roughness appearing on the substrate in one step. This is because DA can self-polymerize and form PDA particles with a catalyst of ammonia, attaching to any surfaces due to abundant catechol and amine groups in PDA, and ultimately, resulting in hierarchical structures. The subsequent decoration with 1H, 1H, 2H, 2H-perfluorodecanethiol features the surface superhydrophobic and superoleophilic. This approach is straightforward and economic, and carried out under a mild, environmental-benign circumstance, with nonspecific substrate demands. In addition, the as-prepared superhydrophobic materials exhibit excellent separation performances including high absorption/separation capacity, excellent selectivity, and extraordinary recyclability for collecting various oils/organic solvents from water. These superhydrophobic materials have also verified to be highly chemical resistant, environment stable and mechanically durable. Therefore, this

  19. Bioinspired engineering of exploration systems for NASA and DoD.

    Science.gov (United States)

    Thakoor, Sarita; Chahl, Javaan; Srinivasan, M V; Young, L; Werblin, Frank; Hine, Butler; Zornetzer, Steven

    2002-01-01

    A new approach called bioinspired engineering of exploration systems (BEES) and its value for solving pressing NASA and DoD needs are described. Insects (for example honeybees and dragonflies) cope remarkably well with their world, despite possessing a brain containing less than 0.01% as many neurons as the human brain. Although most insects have immobile eyes with fixed focus optics and lack stereo vision, they use a number of ingenious, computationally simple strategies for perceiving their world in three dimensions and navigating successfully within it. We are distilling selected insect-inspired strategies to obtain novel solutions for navigation, hazard avoidance, altitude hold, stable flight, terrain following, and gentle deployment of payload. Such functionality provides potential solutions for future autonomous robotic space and planetary explorers. A BEES approach to developing lightweight low-power autonomous flight systems should be useful for flight control of such biomorphic flyers for both NASA and DoD needs. Recent biological studies of mammalian retinas confirm that representations of multiple features of the visual world are systematically parsed and processed in parallel. Features are mapped to a stack of cellular strata within the retina. Each of these representations can be efficiently modeled in semiconductor cellular nonlinear network (CNN) chips. We describe recent breakthroughs in exploring the feasibility of the unique blending of insect strategies of navigation with mammalian visual search, pattern recognition, and image understanding into hybrid biomorphic flyers for future planetary and terrestrial applications. We describe a few future mission scenarios for Mars exploration, uniquely enabled by these newly developed biomorphic flyers.

  20. Synthesis of Nano-sized Boehmites for Optimum Phosphate Sorption

    DEFF Research Database (Denmark)

    Watanabe, Yujiro; Kasama, Takeshi; Fukushi, Keisuke;

    2011-01-01

    the highest amount of phosphate sorption (1.73 mmol g-1 at pH 3.3) compared with Al-bearing materials. The reaction mechanism during phosphate sorption was described by the anion exchange reaction between phosphate ions in sodium phosphate solution and hydroxide ions on boehmite surfaces. Therefore...

  1. Mannose 6-, fructose 1-, and fructose 6-phosphates inhibit human natural cell-mediated cytotoxicity.

    OpenAIRE

    Forbes, J T; Bretthauer, R. K.; Oeltmann, T N

    1981-01-01

    In vitro human natural cell-mediated cytotoxicity (NCMC) to K-562, Molt-4, and F-265 cells is inhibited in a dose-dependent manner by mannose 6-phosphate, fructose 1-phosphate and fructose 6-phosphate. This inhibition is not observed with mannose, glucose, fucose, glucose 6-phosphate, mannose 1-phosphate, galactose 1-phosphate, or galactose 6-phosphate. Preincubation of the effector cells, obtained from fresh whole blood, with mannose-6-phosphate, fructose-1-phosphate, or fructose-6-phosphate...

  2. Phosphate rock costs, prices and resources interaction.

    Science.gov (United States)

    Mew, M C

    2016-01-15

    This article gives the author's views and opinions as someone who has spent his working life analyzing the international phosphate sector as an independent consultant. His career spanned two price hike events in the mid-1970's and in 2008, both of which sparked considerable popular and academic interest concerning adequacy of phosphate rock resources, the impact of rising mining costs and the ability of mankind to feed future populations. An analysis of phosphate rock production costs derived from two major industry studies performed in 1983 and 2013 shows that in nominal terms, global average cash production costs increased by 27% to $38 per tonne fob mine in the 30 year period. In real terms, the global average cost of production has fallen. Despite the lack of upward pressure from increasing costs, phosphate rock market prices have shown two major spikes in the 30 years to 2013, with periods of less volatility in between. These price spike events can be seen to be related to the escalating investment cost required by new mine capacity, and as such can be expected to be repeated in future. As such, phosphate rock price volatility is likely to have more impact on food prices than rising phosphate rock production costs. However, as mining costs rise, recycling of P will also become increasingly driven by economics rather than legislation. PMID:26412420

  3. The evolution of the marine phosphate reservoir.

    Science.gov (United States)

    Planavsky, Noah J; Rouxel, Olivier J; Bekker, Andrey; Lalonde, Stefan V; Konhauser, Kurt O; Reinhard, Christopher T; Lyons, Timothy W

    2010-10-28

    Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from ∼750 to ∼635 Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life.

  4. Capturing phosphates with iron enhanced sand filtration.

    Science.gov (United States)

    Erickson, Andrew J; Gulliver, John S; Weiss, Peter T

    2012-06-01

    Most treatment practices for urban runoff capture pollutants such as phosphorus by either settling or filtration while dissolved phosphorus, typically as phosphates, is untreated. Dissolved phosphorus, however, represents an average 45% of total phosphorus in stormwater runoff and can be more than 95%. In this study, a new stormwater treatment technology to capture phosphate, called the Minnesota Filter, is introduced. The filter comprises iron filings mixed with sand and is tested for phosphate removal from synthetic stormwater. Results indicate that sand mixed with 5% iron filings captures an average of 88% phosphate for at least 200 m of treated depth, which is significantly greater than a sand filter without iron filings. Neither incorporation of iron filings into a sand filter nor capture of phosphates onto iron filings in column experiments had a significant effect on the hydraulic conductivity of the filter at mixtures of 5% or less iron by weight. Field applications with up to 10.7% iron were operated over 1 year without detrimental effects upon hydraulic conductivity. A model is applied and fit to column studies to predict the field performance of iron-enhanced sand filters. The model predictions are verified through the predicted performance of the filters in removing phosphates in field applications. Practical applications of the technology, both existing and proposed, are presented so stormwater managers can begin implementation.

  5. Operant conditioning: a minimal components requirement in artificial spiking neurons designed for bio-inspired robot's controller.

    Science.gov (United States)

    Cyr, André; Boukadoum, Mounir; Thériault, Frédéric

    2014-01-01

    In this paper, we investigate the operant conditioning (OC) learning process within a bio-inspired paradigm, using artificial spiking neural networks (ASNN) to act as robot brain controllers. In biological agents, OC results in behavioral changes learned from the consequences of previous actions, based on progressive prediction adjustment from rewarding or punishing signals. In a neurorobotics context, virtual and physical autonomous robots may benefit from a similar learning skill when facing unknown and unsupervised environments. In this work, we demonstrate that a simple invariant micro-circuit can sustain OC in multiple learning scenarios. The motivation for this new OC implementation model stems from the relatively complex alternatives that have been described in the computational literature and recent advances in neurobiology. Our elementary kernel includes only a few crucial neurons, synaptic links and originally from the integration of habituation and spike-timing dependent plasticity as learning rules. Using several tasks of incremental complexity, our results show that a minimal neural component set is sufficient to realize many OC procedures. Hence, with the proposed OC module, designing learning tasks with an ASNN and a bio-inspired robot context leads to simpler neural architectures for achieving complex behaviors. PMID:25120464

  6. Operant Conditioning: A Minimal Components Requirement in Artificial Spiking Neurons Designed for Bio-Inspired Robot’s Controller

    Directory of Open Access Journals (Sweden)

    André eCyr

    2014-07-01

    Full Text Available We demonstrate the operant conditioning (OC learning process within a basic bio-inspired robot controller paradigm, using an artificial spiking neural network (ASNN with minimal component count as artificial brain. In biological agents, OC results in behavioral changes that are learned from the consequences of previous actions, using progressive prediction adjustment triggered by reinforcers. In a robotics context, virtual and physical robots may benefit from a similar learning skill when facing unknown environments with no supervision. In this work, we demonstrate that a simple ASNN can efficiently realise many OC scenarios. The elementary learning kernel that we describe relies on a few critical neurons, synaptic links and the integration of habituation and spike-timing dependent plasticity (STDP as learning rules. Using four tasks of incremental complexity, our experimental results show that such minimal neural component set may be sufficient to implement many OC procedures. Hence, with the described bio-inspired module, OC can be implemented in a wide range of robot controllers, including those with limited computational resources.

  7. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    Science.gov (United States)

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  8. Simultaneous size control and surface functionalization of titania nanoparticles through bioadhesion-assisted bio-inspired mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Shi Jiafu; Yang Dong; Jiang Zhongyi, E-mail: zhyjiang@tju.edu.cn [Tianjin University, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology (China); Jiang Yanjun [Hebei University of Technology, Department of Bioengineering, School of Chemical Engineering (China); Liang Yanpeng; Zhu Yuanyuan; Wang Xiaoli; Wang Huihui [Tianjin University, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology (China)

    2012-09-15

    Simultaneous size control and surface functionalization of inorganic nanoparticles (NPs) are often desired for their efficient applications in (bio)catalysis, drug and/or DNA delivery, and photonics, etc. In this study, a novel strategy 'bioadhesion-assisted bio-inspired mineralization (BABM)' was put forward to prepare titania nanoparticles (TiNPs) with tunable particle size and multiple surface functionality. Specifically, the initial formation and subsequent growth of TiNPs were enabled by arginine via bio-inspired mineralization, while the mineralization process was terminated through the addition of the pre-polymerized dopa (oligodopa). By adjusting the addition time of oligodopa, the size of TiNPs could be facilely tailored from ca. 30-350 nm; meanwhile, the surface of TiNPs could be functionalized by oligodopa through metal-catechol coordination interaction (a typical bioadhesion phenomenon). In other words, oligodopa coating could not only exquisitely control the size of TiNPs, but also render TiNPs surface multifunctional groups for secondary treatment such as conjugating proteins through amine-catechol adduct formation. Hopefully, this BABM approach will construct a versatile platform for green and facile synthesis of inorganic NPs, in particular transition metal oxide NPs.

  9. A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints

    Directory of Open Access Journals (Sweden)

    Evangelos I. Avgoulas

    2016-07-01

    Full Text Available There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints.

  10. Phosphate diabetes in patients with chronic fatigue syndrome.

    OpenAIRE

    Lorenzo, F.; Hargreaves, J.; Kakkar, V V

    1998-01-01

    Phosphate depletion is associated with neuromuscular dysfunction due to changes in mitochondrial respiration that result in a defect of intracellular oxidative metabolism. Phosphate diabetes causes phosphate depletion due to abnormal renal re-absorption of phosphate be the proximal renal tubule. Most of the symptoms presented by patients with phosphate diabetes such as myalgia, fatigue and mild depression, are also common in patients with chronic fatigue syndrome, but this differential diagno...

  11. Can features of phosphate toxicity appear in normophosphatemia?

    OpenAIRE

    Osuka, Satoko; Razzaque, Mohammed S.

    2012-01-01

    Phosphate is an indispensable nutrient for the formation of nucleic acids and the cell membrane. Adequate phosphate balance is a prerequisite for basic cellular functions ranging from energy metabolism to cell signaling. More than 85% of body phosphate is present in the bones and teeth. The remaining phosphate is distributed in various soft tissues, including skeletal muscle. A tiny amount, around 1% of total body phosphate, is distributed both in the extracellular fluids and within the cells...

  12. Conformation of lanthanides complexes of L-serine phosphate and ethanolamine phosphate in aqueous phase

    International Nuclear Information System (INIS)

    NMR paramagnetic shifts induced by rare earth cations lead to conformations of complexes in aqueous solution. A computer treatment is developped for complexes of L-serine phosphate and ethanolamine phosphate with lanthanides in acidic solution (pH=1 to 1.8). Angle and distance values are discussed with a hindered rotation about P-O1 bond

  13. An autosomal glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) polymorphism in human saliva.

    Science.gov (United States)

    Tan, S G; Ashton, G C

    1976-01-01

    Glucose-6-phosphate dehydrogenase (hexose-6-phosphate dehydrogenase) from human saliva has been demonstrated by the zymogram technique. Three phenotypes were found. Family and population studies suggested that these phenotypes are the products of an autosomal locus with two alleles Sgd-1 and Sgd-2. PMID:950237

  14. Biological Removal of Phosphate Using Phosphate Solubilizing Bacterial Consortium from Synthetic Wastewater: A Laboratory Scale

    Directory of Open Access Journals (Sweden)

    Dipak Paul

    2015-01-01

    Full Text Available Biological phosphate removal is an important process having gained worldwide attention and widely used for removing phosphorus from wastewater. The present investigation was aimed to screen the efficient phosphate solubilizing bacterial isolates and used to remove phosphate from synthetic wastewater under shaking flasks conditions. Pseudomonas sp. JPSB12, Enterobacter sp. TPSB20, Flavobacterium sp. TPSB23 and mixed bacterial consortium (Pseudomonas sp. JPSB12+Enterobacter sp. TPSB20+Flavobacterium sp. TPSB23 were used for the removal of phosphate. Among the individual strains, Enterobacter sp. TPSB20 was removed maximum phosphate (61.75% from synthetic wastewater in presence of glucose as a carbon source. The consortium was effectively removed phosphate (74.15-82.50% in the synthetic wastewater when compared to individual strains. The pH changes in culture medium with time and extracellular phosphatase activity (acid and alkaline were also investigated. The efficient removal of phosphate by the consortium may be due to the synergistic activity among the individual strains and phosphatase enzyme activity. The use of bacterial consortium in the remediation of phosphate contaminated aquatic environments has been discussed.

  15. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli

    NARCIS (Netherlands)

    van Veen, H.W; Abee, T.; Kortstee, G.J J; Konings, W.N; Zehnder, A.J B

    1994-01-01

    P-i transport via the phosphate inorganic transport system (Pit) of Escherichia coil was studied in natural and artificial membranes. P-i uptake via Pit is dependent on the presence of divalent cations, like Mg2+, Ca2+, Co2+, or Mn2+, which form a soluble, neutral metal phosphate (MeHPO(4)) complex.

  16. Relationship between Nitrite Reduction and Active Phosphate Uptake in the Phosphate-Accumulating Denitrifier Pseudomonas sp. Strain JR 12

    OpenAIRE

    Barak, Yoram; van Rijn, Jaap

    2000-01-01

    Phosphate uptake by the phosphate-accumulating denitrifier Pseudomonas sp. JR12 was examined with different combinations of electron and carbon donors and electron acceptors. Phosphate uptake in acetate-supplemented cells took place with either oxygen or nitrate but did not take place when nitrite served as the final electron acceptor. Furthermore, nitrite reduction rates by this denitrifier were shown to be significantly reduced in the presence of phosphate. Phosphate uptake assays in the pr...

  17. Cloning and characterization of a glucose 6-phosphate/phosphate translocator from Oryza sativa

    Institute of Scientific and Technical Information of China (English)

    姜华武; 佃蔚敏; 刘非燕; 吴平

    2003-01-01

    Plastids of nongreen tissues import carbon as a source of biosynthetic pathways and energy, and glucose 6-phosphate is the preferred hexose phosphate taken up by nongreen plastids. A cDNA clone encoding glucose 6-phosphate/phosphate translocator (GPT) was isolated from a cDNA library of immature seeds of rice and named as OsGPT. The cDNA has one uninterrupted open reading frame encoding a 42 kDa polypeptide possessing transit peptide consisting of 70 amino acid residues. The OsGPT gene maps on chromosome 8 of rice and is linked to the quantitative trait locus for 1000-grain weight. The expression of OsGPT is mainly restricted to heterotrophic tissues. These results suggest that glucose 6-phosphate imported via GPT can be used for starch biosynthesis in rice nongreen plastids.

  18. Isolation and screening phosphate solubilizers from composts as biofertilizer

    International Nuclear Information System (INIS)

    Phosphate solubilizers are miroorganisms that able to solubilize insoluble inorganic phosphate compounds or hydrolyze organic phosphate to inorganic P. Therefore make the P to be available for plant and consequently enhance plant growth and yield. Recently, phosphate solubilizing microorganisms has been shown to play an important role in the biofertilizer industry. Fifty-one bacterial were isolated from eleven composts. Most of the phosphate solubilizers were isolated from natural farming composted compost and normal composting compost. This shows that both of these composts are more suitable to use for phosphate solubilizer isolation compare commercial composts. Fourteen of the isolates were found to be phosphate solubilizers. These isolates produced a clear zone on the phosphate agar plates, showing their potential as biofertilizer. AP3 was significantly produced the largest clear zone compared with other isolates. This indicates that isolate AP 3 could be a good phosphate solubilizer. Thus, their effectiveness in the greenhouse and field should be evaluated. (Author)

  19. Bio-Inspired electro-photonic structure for organic and dye sensitized solar cells

    Science.gov (United States)

    Lopez, Rene

    2011-03-01

    A major challenge in solar cell technology dwells in achieving an efficient absorption of photons with an effective carrier extraction. In all cases, light absorption considerations call for thicker modules while carrier transport would benefit from thinner ones. This dichotomy is a fundamental problem limiting the efficiencies of most photovoltaics. One pathway to overcome this problem is to decouple light absorption from carrier collection. We present solutions to this problem applying bio-inspired nanostructures to two different types of systems: organic photovoltaic (OPV) and dye sensitized solar cells (DSSC). For OPV devices based on poly-3-hexylthiophene:[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM), we describe a 2-D photonic crystal geometry that enhances the absorption of polymer-fullerene photonic cells ~ 20 % relative to conventional planar cells. Remarkably, the photonic crystal cell offers the possibility to increase photocurrents by improvements in optical absorption and carrier extraction simultaneously, and particularly through the excitation of photonic resonant modes near the band edge of organic PV materials. We also present an optical method to extract charge transport lengths from device photoactive layers. For DSSCs we introduce a new structural motif for the photoanode in which the traditional random nanoparticle oxide network is replaced by vertically aligned bundles of oxide nanocrystals. We have used a pulsed laser deposition system to ablate titanium oxide targets to obtain the porous and vertically aligned structures for enhanced photoelectrochemical performance. Absorption studies show that in optimized structures for titanium oxide, there is a 1.4 times enhancement of surface area compared to the best sol-gel films, Incident-Photon-Conversion-Efficiency values are better than 3 times thicker sol-gel films, and ~ 92 % Absorbed-Photon-Conversion-Efficiency values have been observed when sensitizing with the N3 dye (Ru(dcbpyH)2

  20. Bioinspired Gold Nanorod Functionalization Strategies for MUC1-Targeted Imaging and Photothermal Therapy

    Science.gov (United States)

    Zelasko-Leon, Daria Cecylia

    The majority of cancers diagnosed in 2016 are epithelial in origin, constituting 85% of all new cases and predicted to account for 78% of all cancer deaths this year. Given these statistics, improving patient outcomes by providing personalized, multimodal, and minimally invasive medical interventions is critically needed. Mucin 1 (MUC1), a transmembrane glycoprotein, extends over 100 nm from cell membranes and is a key marker promoting epithelial carcinogenesis. Due to its antenna-like manifestation, MUC1 is a unique yet underexplored candidate for targeted cancer therapy, with overexpression in >64% of epithelial cancers. To overcome the limitations of existing treatment strategies for epithelial cancer, this dissertation describes a novel platform for nanomedicine, highlighting bioinspired modifications of gold nanorod (AuNR) surfaces for diagnostic cancer imaging and photothermal therapy. An ongoing challenge in the field of nanomedicine is the need for simple and effective strategies for simple surface modification of nanoparticles to facilitate targeting and enhance efficacy. Here, biofunctionalization of AuNRs was achieved with polydopamine (PD) and tannic acid (TA), polyphenolic compounds found in the marine mussel and throughout the plant kingdom that exhibit promiscuous interfacial binding properties. AuNR stabilization was achieved via PD or TA coatings followed by secondary modification with the serum protein, bovine serum albumin (BSA), or glycoprotein-mimetic polymers. The resultant constructs demonstrated good biocompatibility, enabled diagnostic imaging, and facilitated MUC1-specific photothermal treatment of breast and oral cancer cells. The in vivo performance of BSA and PD modified AuNRs was evaluated in two orthotopic animal models of breast cancer. Clinically relevant hyperthermia and high response rates with MUC1-targeted formulations were found, with significant enhancement of progression-free survival and several complete tumor regressions

  1. Investigation of Bio-Inspired Hybrid Materials through Polymer Infiltration of Thermal Spray Formed Ceramic Templates

    Science.gov (United States)

    Flynn, Katherine Claire

    certain degree of porosity (up to approximately 20%). Often, porosity is interconnected and is controlled by varying processing parameters. Through the introduction of an appropriate polymer at the porosity interface, it may be possible to achieve synergistic benefits in terms of both strength and toughness of the sprayed material. This dissertation will focus on the fabrication and evaluation of property enhancements of bio-inspired materials based on ceramic thermally sprayed scaffolds through post deposition polymer impregnation.

  2. Bio-Inspired Molecular Catalysts for Hydrogen Oxidation and Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ming-Hsun; Chen, Shentan; Rousseau, Roger J.; Dupuis, Michel; Bullock, R. Morris; Raugei, Simone

    2013-06-03

    Recent advances in Ni-based bio-inspired catalysts obtained in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center (EFRC) at the Pacific Northwest National Laboratory, demonstrated the possibility of cleaving H2 or generating H2 heterolytically with turnover frequencies comparable or superior to those of hydrogenase enzymes. In these catalysts the transformation between H2 and protons proceeds via an interplay between proton, hydride and electron transfer steps and involves the interaction of a dihydrogen molecule with both a Ni(II) center and with pendant amine bases incorporated in a six-membered ring, which act as proton relays. These catalytic platforms are well designed in that when protons are correctly positioned (endo) toward the Raugei-ACS-Books.docxPrinted 12/18/12 2 metal center, catalysis proceeds at very high rates. We will show that the proton removal (for H2 oxidation) and proton delivery (for H2 production) are often the rate determining steps. Furthermore, the presence of multiple protonation sites gives rise to reaction intermediates with protons not correctly positioned (exo relative to the metal center). These isomers are easily accessible kinetically and are detrimental to catalysis because of the slow isomerization processes necessary to convert them to the catalytically competent endo isomers. In this chapter we will review the major findings of our computational investigation on the role of proton relays for H2 chemistry and provide guidelines for the design of new catalysts. This research was carried out in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a Raugei-Bio-Inspired Molecular-Catalysts-for-Hydrogen- Oxidation

  3. Parameter estimation with bio-inspired meta-heuristic optimization: modeling the dynamics of endocytosis

    Directory of Open Access Journals (Sweden)

    Tashkova Katerina

    2011-10-01

    convergence. These results hold for both real and artificial data, for all observability scenarios considered, and for all amounts of noise added to the artificial data. In sum, the meta-heuristic methods considered are suitable for estimating the parameters in the ODE model of the dynamics of endocytosis under a range of conditions: With the model and conditions being representative of parameter estimation tasks in ODE models of biochemical systems, our results clearly highlight the promise of bio-inspired meta-heuristic methods for parameter estimation in dynamic system models within system biology.

  4. Structural basis for phosphatidylinositol-phosphate biosynthesis

    Science.gov (United States)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  5. Phosphate Phosphors for Solid-State Lighting

    CERN Document Server

    Shinde, Kartik N; Swart, H C; Park, Kyeongsoon

    2012-01-01

    The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  6. Inhibition of microbial arsenate reduction by phosphate.

    Science.gov (United States)

    Slaughter, Deanne C; Macur, Richard E; Inskeep, William P

    2012-03-20

    The ratio of arsenite (As(III)) to arsenate (As(V)) in soils and natural waters is often controlled by the activity of As-transforming microorganisms. Phosphate is a chemical analog to As(V) and, consequently, may competitively inhibit microbial uptake and enzymatic binding of As(V), thus preventing its reduction to the more toxic, mobile, and bioavailable form - As(III). Five As-transforming bacteria isolated either from As-treated soil columns or from As-impacted soils were used to evaluate the effects of phosphate on As(V) reduction and As(III) oxidation. Cultures were initially spiked with various P:As ratios, incubated for approximately 48 h, and analyzed periodically for As(V) and As(III) concentration. Arsenate reduction was inhibited at high P:As ratios and completely suppressed at elevated levels of phosphate (500 and 1,000 μM; P inhibition constant (K(i))∼20-100 μM). While high P:As ratios effectively shut down microbial As(V) reduction, the expression of the arsenate reductase gene (arsC) was not inhibited under these conditions in the As(V)-reducing isolate, Agrobacterium tumefaciens str. 5B. Further, high phosphate ameliorated As(V)-induced cell growth inhibition caused by high (1mM) As pressure. These results indicate that phosphate may inhibit As(V) reduction by impeding As(V) uptake by the cell via phosphate transport systems or by competitively binding to the active site of ArsC. PMID:21741807

  7. Monte Carlo simulations of phosphate polyhedron connectivity in glasses

    Energy Technology Data Exchange (ETDEWEB)

    ALAM,TODD M.

    2000-01-01

    Monte Carlo simulations of phosphate tetrahedron connectivity distributions in alkali and alkaline earth phosphate glasses are reported. By utilizing a discrete bond model, the distribution of next-nearest neighbor connectivities between phosphate polyhedron for random, alternating and clustering bonding scenarios was evaluated as a function of the relative bond energy difference. The simulated distributions are compared to experimentally observed connectivities reported for solid-state two-dimensional exchange and double-quantum NMR experiments of phosphate glasses. These Monte Carlo simulations demonstrate that the polyhedron connectivity is best described by a random distribution in lithium phosphate and calcium phosphate glasses.

  8. Removal of Phosphate from Aqueous Solution with Modified Bentonite

    Institute of Scientific and Technical Information of China (English)

    唐艳葵; 童张法; 魏光涛; 李仲民; 梁达文

    2006-01-01

    Bentonite combined with sawdust and other metallic compounds was used to remove phosphate from aqueous solutions in this study. The adsorption characteristics of phosphate on the modified bentonite were investigated, including the effects of temperature, adsorbent dosage, initial concentration of phosphate and pH on removal of phosphate by conducting a series of batch adsorption experiments. The results showed that 98% of phosphate removal rate was obtained since sawdust and bentonite used in this investigation were abundantly and locally available. It is concluded that modified bentonite is a relatively efficient, low cost and easily available adsorbent for the removal of phosphate from aqueous solutions.

  9. Phosphate starvation regulon of Salmonella typhimurium.

    OpenAIRE

    Foster, J. W.; Spector, M P

    1986-01-01

    Several phosphate-starvation-inducible (psi) genetic loci in Salmonella typhimurium were identified by fusing the lacZ gene to psi promoters by using the Mu d1 and Mu d1-8 bacteriophages. Although several different starvation conditions were examined, the psi loci responded solely to phosphate deprivation. A regulatory locus, psiR, was identified as controlling the psiC locus. The psiR locus did not affect the expression of the Escherichia coli phoA locus or any of the other psi loci described.

  10. [Phosphate nephropathy: how to avoid it?].

    Science.gov (United States)

    Bourquin, Vincent; Ponte, Belén; Zellweger, Michael; Levy, Marc; Hadengue, Antoine; Moll, Solange

    2011-11-16

    Colonoscopy is a commonly used procedure for colon cancer screening. The ideal bowel preparation for a good visualization of the colonic mucosa would be effective and well tolerated. Sodium phosphate (NaP) and polyethylen glycol (PEG) are the two most frequently used solutions in this indication. However, although NaP has been described as more effective and better tolerated, it can cause severe acute electrolytes disturbances and, in rare cases, lead to irreversible renal failure, called phosphate nephropathy. NaP should therefore be prescribed with caution and be formally banned for patients with risk factors. PMID:22400350

  11. Occupational Exposure in Ammonium Phosphate Fertilizer Plants

    International Nuclear Information System (INIS)

    Occupational exposures and activity concentrations have been assessed in two industrial plants producing mono-ammonium phosphate and di-ammonium phosphate fertilizers, located in south-western Spain. The annual effective doses received by the workers are below 1 mSv/a, with the contribution from external exposure being similar to that from internal exposure. The dose contribution from inhalation of dust has been estimated to be about 0.12 mSv/a, while the 222Rn concentrations inside the plants are of no concern. Consequently, no additional radiation protection measures need to be taken to protect the workers in these facilities. (author)

  12. Calcium phosphate ceramics in drug delivery

    Science.gov (United States)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  13. Potentially Prebiotic Syntheses of Condensed Phosphates

    Science.gov (United States)

    Keefe, Anthony D.; Miller, Stanley L.

    1996-01-01

    In view of the importance of a prebiotic source of high energy phosphates, we have investigated a number of potentially prebiotic processes to produce condensed phosphates from orthophosphate and cyclic trimetaphosphate from tripolyphosphate. The reagents investigated include polymerizing nitriles, acid anhydrides, lactones, hexamethylene tetramine and carbon suboxide. A number of these processes give substantial yields of pyrophosphate from orthophosphate and trimetaphosphate from tripolyphosphate. Although these reactions may have been applicable in local areas, they are not sufficiently robust to have been of importance in the prebiotic open ocean.

  14. Performance of pineapple slips inoculated with diazotrophic phosphate-solubilizing bacteria and rock phosphate

    Directory of Open Access Journals (Sweden)

    Lílian Estrela Borges Baldotto

    2014-06-01

    Full Text Available Besides fixing N2, some diazotrophic bacteria or diazotrophs, also synthesize organic acids and are able to solubilize rock phosphates, increasing the availability of P for plants. The application of these bacteria to pineapple leaf axils in combination with rock phosphate could increase N and P availability for the crop, due to the bacterial activity of biological nitrogen fixation and phosphate solubilization. The objectives of this study were: (i to select and characterize diazotrophs able to solubilize phosphates in vitro and (ii evaluate the initial performance of the pineapple cultivars Imperial and Pérola in response to inoculation with selected bacteria in combination with rock phosphate. The experiments were conducted at Universidade Estadual do Norte Fluminense Darcy Ribeiro, in 2009. In the treatments with bacteria the leaf contents of N, P and K were higher than those of the controls, followed by an increase in plant growth. These results indicate that the combined application of diazotrophic phosphate-solubilizing bacteria Burkholderia together with Araxá rock phosphate can be used to improve the initial performance of pineapple slips.

  15. Evaluation of intestinal phosphate binding to improve the safety profile of oral sodium phosphate bowel cleansing.

    Directory of Open Access Journals (Sweden)

    Stef Robijn

    Full Text Available Prior to colonoscopy, bowel cleansing is performed for which frequently oral sodium phosphate (OSP is used. OSP results in significant hyperphosphatemia and cases of acute kidney injury (AKI referred to as acute phosphate nephropathy (APN; characterized by nephrocalcinosis are reported after OSP use, which led to a US-FDA warning. To improve the safety profile of OSP, it was evaluated whether the side-effects of OSP could be prevented with intestinal phosphate binders. Hereto a Wistar rat model of APN was developed. OSP administration (2 times 1.2 g phosphate by gavage with a 12h time interval induced bowel cleansing (severe diarrhea and significant hyperphosphatemia (21.79 ± 5.07 mg/dl 6h after the second OSP dose versus 8.44 ± 0.97 mg/dl at baseline. Concomitantly, serum PTH levels increased fivefold and FGF-23 levels showed a threefold increase, while serum calcium levels significantly decreased from 11.29 ± 0.53 mg/dl at baseline to 8.68 ± 0.79 mg/dl after OSP. OSP administration induced weaker NaPi-2a staining along the apical proximal tubular membrane. APN was induced: serum creatinine increased (1.5 times baseline and nephrocalcinosis developed (increased renal calcium and phosphate content and calcium phosphate deposits on Von Kossa stained kidney sections. Intestinal phosphate binding (lanthanum carbonate or aluminum hydroxide was not able to attenuate the OSP induced side-effects. In conclusion, a clinically relevant rat model of APN was developed. Animals showed increased serum phosphate levels similar to those reported in humans and developed APN. No evidence was found for an improved safety profile of OSP by using intestinal phosphate binders.

  16. Extensive Investigations on Bio-Inspired Trust and Reputation Model over Hops Coefficient Factor in Distributed Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Vinod Kumar Verma

    2014-08-01

    Full Text Available Resource utilization requires a substantial consideration for a trust and reputation model to be deployed within a wireless sensor network (WSN. In the evaluation, our attention is focused on the effect of hops coefficient factor estimation on WSN with bio-inspired trust and reputation model (BTRM. We present the state-of-the-art system level evaluation of accuracy and path length of sensor node operations for their current and average scenarios. Additionally, we emphasized over the energy consumption evaluation for static, dynamic and oscillatory modes of BTRM-WSN model. The performance of the hops coefficient factor for our proposed framework is evaluated via analytic bounds and numerical simulations.

  17. Characterization of arabinoxylan/cellulose nanocrystals gels to investigate fluorescent probes mobility in bioinspired models of plant secondary cell wall.

    Science.gov (United States)

    Paës, Gabriel; Chabbert, Brigitte

    2012-01-01

    Biomass from lignocellulose (LC) is a highly complex network of cellulose, hemicellulose, and lignin, which is considered to be a sustainable source of fuels, chemicals and materials. To achieve an environmental friendly and efficient LC upgrading, a better understanding of the LC architecture is necessary. We have devised some LC bioinspired model systems, based on arabinoxylan gels, in which mobility of dextrans and BSA grafted with FITC has been studied by FRAP. Our results indicate that the probes diffusion is more influenced by their hydrodynamic radius than by the gel mesh size. The addition of some cellulose nanocrystals (CNCs) decreases polymer chain mobility and has low effect on the probes diffusion, suggesting that the gels are better organized in the presence of CNCs, as shown by rheological measurements and scanning electronic microscopy observations. This demonstrates that the FRAP analysis can be a powerful tool to screen the architecture of LC model systems.

  18. Flexible readout and integration sensor (FRIS): a bio-inspired, system-on-chip, event-based readout architecture

    Science.gov (United States)

    Lin, Joseph H.; Pouliquen, Philippe O.; Andreou, Andreas G.; Goldberg, Arnold C.; Rizk, Charbel G.

    2012-06-01

    We present a bio-inspired system-on-chip focal plane readout architecture which at the system level, relies on an event based sampling scheme where only pixels within a programmable range of photon flux rates are output. At the pixel level, a one bit oversampled analog-to-digital converter together with a decimator allows for the quantization of signals up to 26 bits. Furthermore, digital non-uniformity correction of both gain and offset errors is applied at the pixel level prior to readout. We report test results for a prototype array fabricated in a standard 90nm CMOS process. Tests performed at room and cryogenic temperatures demonstrate the capability to operate at a temporal noise ratio as low as 1.5, an electron well capacity over 100Ge-, and an ADC LSB down to 1e-.

  19. A two-dimensional iterative panel method and boundary layer model for bio-inspired multi-body wings

    Science.gov (United States)

    Blower, Christopher J.; Dhruv, Akash; Wickenheiser, Adam M.

    2014-03-01

    The increased use of Unmanned Aerial Vehicles (UAVs) has created a continuous demand for improved flight capabilities and range of use. During the last decade, engineers have turned to bio-inspiration for new and innovative flow control methods for gust alleviation, maneuverability, and stability improvement using morphing aircraft wings. The bio-inspired wing design considered in this study mimics the flow manipulation techniques performed by birds to extend the operating envelope of UAVs through the installation of an array of feather-like panels across the airfoil's upper and lower surfaces while replacing the trailing edge flap. Each flap has the ability to deflect into both the airfoil and the inbound airflow using hinge points with a single degree-of-freedom, situated at 20%, 40%, 60% and 80% of the chord. The installation of the surface flaps offers configurations that enable advantageous maneuvers while alleviating gust disturbances. Due to the number of possible permutations available for the flap configurations, an iterative constant-strength doublet/source panel method has been developed with an integrated boundary layer model to calculate the pressure distribution and viscous drag over the wing's surface. As a result, the lift, drag and moment coefficients for each airfoil configuration can be calculated. The flight coefficients of this numerical method are validated using experimental data from a low speed suction wind tunnel operating at a Reynolds Number 300,000. This method enables the aerodynamic assessment of a morphing wing profile to be performed accurately and efficiently in comparison to Computational Fluid Dynamics methods and experiments as discussed herein.

  20. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    The results are described of a study of the thermochemical stability of anhydrous uranyl phosphates and arsenates. A number of aspects of chemical technological importance are indicated in detail. The synthesized anhydrous uranyl phosphates and arsenates were very hygroscopic, so that experiments on these compounds had to be carried out under moisture-free conditions. Further characterisation of these compounds are given, including a study of their thermal stabilities and phase relations. The uranyl phosphates reduced reversibly at temperatures of the order of 1100 to 16000C. This makes it possible to express their relative stabilities quantitatively, in terms of the oxygen pressures of the reduction reactions. The thermal decomposition of uranyl arsenates did not occur by reduction, as for the phosphates, but by giving off arsenic oxide vapour. The results of measurements of enthalpies of solution led to the determination of the enthalpies of formation, heat capacity and the standard entropies of the uranyl arsenates. The thermochemical functions at high-temperatures could consequently be calculated. Attention is paid to the possible formation of uranium arsenates, whose uranium has a valency lower than six, hitherto not reported in literature. It was not possible to prepare arsenates of tetravalent uranium. However, three new compounds were observed, one of these, UAsO5, was studied in some detail. (Auth.)

  1. Durability of phosphate-selective CHEMFETs

    NARCIS (Netherlands)

    Wroblewski, Wojciech; Wojciechowski, Kamil; Dybko, Artur; Brzozka, Zbigniew; Egberink, Richard J.M.; Snellink-Ruel, Bianca H.M.; Reinhoudt, David N.

    2001-01-01

    Lipophilic uranyl salophenes derivatives I and II were used as ionophores in membranes of phosphate-selective CHEMFETs. High selectivity for H2PO4− over other anions was obtained for these sensors. The influence of the ionophore structure on the sensor durability was investigated. CHEMFETs based on

  2. Three-dimensionally Perforated Calcium Phosphate Ceramics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Porous calcium phosphate ceramics were produced by compression molding using a special mold followed by sintering. The porous calcium phosphate ceramics have three-dimensional and penetrated open pores380-400μm in diameter spaced at intervals of 200μm. The layers of the linear penetration pores alternately lay perpendicular to pore direction. The porosity was 59%-65% . The Ca/P molar ratios of the porous calcium phosphate ceramics range from 1.5 to 1.85. A binder containing methyl cellulose was most effective for preparing the powder compact among vinyl acetate, polyvinyl alcohol, starch, stearic acid, methyl cellulose and their mixtures. Stainless steel, polystyrene, nylon and bamboo were used as the long columnar male dies for the penetrated open pores. When polystyrene, nylon and bamboo were used as the long columnar male dies, the dies were burned out during the sintering process. Using stainless steel as the male dies with the removal of the dies before heat treatment resulted in a higher level of densification of the calcium phosphate ceramic.

  3. TUCS/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  4. Thermochemical investigations on uranyl phosphates and arsenates

    International Nuclear Information System (INIS)

    Results are described of a study of the thermochemical stability of anhydrous phosphates and arsenates. The results of phase studies deal with compound formation and characterization, coexisting phases and limiting physical or chemical properties. The uranyl phosphates evolve oxygen at higher temperatures and the arsenates lose arsenic oxide vapour. These phenomena give the possibility to describe their thermodynamic stabilities. Thus oxygen pressures of uranyl phosphates have been measured using a static, non-isothermal method. Having made available the pure anhydrous compounds in the course of this investigation, molar thermodynamic quantities have been measured as well. These include standard enthalpies of formation from solution calorimetry and high-temperature heat-capacity functions derived from enthalpy increments measured. Some attention is given to compounds with uranium in valencies lower than six which have been met during the investigation. An evaluation is made of the thermodynamics of the compounds studied, to result in tabulized high-temperature thermodynamic functions. Relative stabilities within the systems are discussed and comparisons of the uranyl phosphates and the arsenates are made. (Auth.)

  5. Effect of aluminium phosphate as admixture on oxychloride cement

    Indian Academy of Sciences (India)

    M P S Chandrawat; R N Yadav

    2000-02-01

    The effect of admixing of aluminium phosphate on oxychloride cement in the matrix has been investigated. It is shown that aluminium phosphate retards the setting process of the cement and improves water-tightness.

  6. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    Science.gov (United States)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T. R.; Govindaraj, R.; Govindan Kutty, K. V.; Vasudeva Rao, P. R.

    2014-09-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe3+/Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300-700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass.

  7. Removing and Recovering Phosphate from Poultry Wastewater Using Amorphous Ceramics

    OpenAIRE

    Youhui Xie; Qin Li; Xianzhi Zhao; Yi Luo; Yangming Wang; Xiangwei Peng; Qigui Wang; Jian Su; Yin Lu

    2014-01-01

    A novel and effective technique for phosphate from poultry wastewater was developed using amorphous ceramics. Amorphous ceramics, which showed high performance for phosphate removal and recovery from poultry wastewater, were synthesized using unlimitedly available, inexpensive materials such as silica fume and lime. Dissolved phosphate in poultry wastewater can be deposited as a solid on the surface of amorphous ceramics. Phosphate content on the surface of amorphous ceramics could reach 14.2...

  8. The stability mechanisms of an injectable calcium phosphate ceramic suspension.

    OpenAIRE

    Fatimi, Ahmed; Tassin, Jean-François; Axelos, Monique,; Weiss, Pierre

    2010-01-01

    International audience Calcium phosphate ceramics are widely used as bone substitutes in dentistry and orthopedic applications. For minimally invasive surgery an injectable calcium phosphate ceramic suspension (ICPCS) was developed. It consists in a biopolymer (hydroxypropylmethylcellulose: HPMC) as matrix and bioactive calcium phosphate ceramics (biphasic calcium phosphate: BCP) as fillers. The stability of the suspension is essential to this generation of "ready to use" injectable biomat...

  9. Akt2/PKBbeta-sensitive regulation of renal phosphate transport

    OpenAIRE

    Kempe, D S; Ackermann, T F; Boini, K M; Klaus, F; Umbach, A T; Dërmaku-Sopjani, M; Judenhofer, M S; Pichler, B J; Capuano, P.; Stange, G.; Wagner, C. A.; Birnbaum, M J; Pearce, D.; Föller, M; Lang, F.

    2010-01-01

    AIM: The protein kinase B (PKB)/Akt is known to stimulate the cellular uptake of glucose and amino acids. The kinase is expressed in proximal renal tubules. The present study explored the influence of Akt/PKB on renal tubular phosphate transport. METHODS: The renal phosphate transporter NaPi-IIa was expressed in Xenopus oocytes with or without PKB/Akt and Na(+) phosphate cotransport determined using dual electrode voltage clamp. Renal phosphate excretion was determined in Akt2/PKBbeta knockou...

  10. Biological Effects of Phosphate on Fibroblast-Like Synoviocytes

    OpenAIRE

    Yubo Sun; Mauerhan, David R.; Deepthi Chaturvedi; Hanley, Edward N; Gruber, Helen E.

    2012-01-01

    This study sought to examine the expression of genes implicated in phosphate transport and pathological calcification in osteoarthritis (OA) and rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) and investigate the biological effects of phosphate. Results revealed that several genes, which were implicated in phosphate transport and pathological calcification, were differentially expressed in OA FLS and RA FLS. Phosphate stimulated the expression of matrix metalloproteinse-1, matrix...

  11. Synthesis, characterization and DFT studies of 1, 1′-Bis(diphenylphosphino)ferrocene substituted diiron complexes: Bioinspired [FeFe] hydrogenase model complexes

    Indian Academy of Sciences (India)

    Sandeep Kaur-Ghumaan; A Sreenithya; Raghavan B Sunoj

    2015-03-01

    The reaction of [Fe2(CO)6(-toluene-3, 4-benzenedithiolate)] 1 and bidentate diphosphine, 1, 1′-bis(diphenylphosphino)ferrocene (dppf) has been studied. New complexes obtained have been characterized by various spectroscopic techniques as bioinspired models of the iron hydrogenase active site. The crystal structure of [Fe2(CO)5(1-dppfO)(-toluene-3, 4-benzenedithiolate)] 4 is reported.

  12. Seamless Metallic Coating and Surface Adhesion of Self-Assembled Bioinspired Nanostructures Based on Di-(3,4-dihydroxy-l-phenylalanine) Peptide Motif

    OpenAIRE

    Fichman, Galit; Adler-Abramovich, Lihi; Manohar, Suresh; Mironi-Harpaz, Iris; Guterman, Tom; Seliktar, Dror; Messersmith, Phillip B.; Gazit, Ehud

    2014-01-01

    The noncoded aromatic 3,4-dihydroxy-l-phenylalanine (DOPA) amino acid has a pivotal role in the remarkable adhesive properties displayed by marine mussels. These properties have inspired the design of adhesive chemical entities through various synthetic approaches. DOPA-containing bioinspired polymers have a broad functional appeal beyond adhesion due to the diverse chemical interactions presented by the catechol moieties. Here, we harnessed the molecular self-assembly abilities of very short...

  13. Sodium-dependent phosphate transporters in osteoclast differentiation and function

    OpenAIRE

    Giuseppe Albano; Matthias Moor; Silvia Dolder; Mark Siegrist; Wagner, Carsten A.; Jürg Biber; Nati Hernando; Willy Hofstetter; Olivier Bonny; Fuster, Daniel G

    2015-01-01

    Osteoclasts are multinucleated bone degrading cells. Phosphate is an important constituent of mineralized bone and released in significant quantities during bone resorption. Molecular contributors to phosphate transport during the resorptive activity of osteoclasts have been controversially discussed. This study aimed at deciphering the role of sodium-dependent phosphate transporters during osteoclast differentiation and bone resorption. Our studies reveal RANKL-induced differential expressio...

  14. Dominant oceanic bacteria secure phosphate using a large extracellular buffer.

    Science.gov (United States)

    Zubkov, Mikhail V; Martin, Adrian P; Hartmann, Manuela; Grob, Carolina; Scanlan, David J

    2015-01-01

    The ubiquitous SAR11 and Prochlorococcus bacteria manage to maintain a sufficient supply of phosphate in phosphate-poor surface waters of the North Atlantic subtropical gyre. Furthermore, it seems that their phosphate uptake may counter-intuitively be lower in more productive tropical waters, as if their cellular demand for phosphate decreases there. By flow sorting (33)P-phosphate-pulsed (32)P-phosphate-chased cells, we demonstrate that both Prochlorococcus and SAR11 cells exploit an extracellular buffer of labile phosphate up to 5-40 times larger than the amount of phosphate required to replicate their chromosomes. Mathematical modelling is shown to support this conclusion. The fuller the buffer the slower the cellular uptake of phosphate, to the point that in phosphate-replete tropical waters, cells can saturate their buffer and their phosphate uptake becomes marginal. Hence, buffer stocking is a generic, growth-securing adaptation for SAR11 and Prochlorococcus bacteria, which lack internal reserves to reduce their dependency on bioavailable ambient phosphate.

  15. 21 CFR 582.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminum phosphate. 582.1781 Section 582.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Additives § 582.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate. (b) Conditions...

  16. 21 CFR 182.6085 - Sodium acid phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium acid phosphate. 182.6085 Section 182.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  17. 21 CFR 182.6215 - Monobasic calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Monobasic calcium phosphate. 182.6215 Section 182.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use....

  18. 21 CFR 582.6215 - Monobasic calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Monobasic calcium phosphate. 582.6215 Section 582.6215 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6215 Monobasic calcium phosphate. (a) Product. Monobasic calcium phosphate. (b) Conditions of use....

  19. 21 CFR 582.6085 - Sodium acid phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium acid phosphate. 582.6085 Section 582.6085 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium acid phosphate. (a) Product. Sodium acid phosphate. (b) Conditions of use. This substance...

  20. 21 CFR 582.5697 - Riboflavin-5-phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Riboflavin-5-phosphate. 582.5697 Section 582.5697 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5697 Riboflavin-5-phosphate. (a) Product. Riboflavin-5-phosphate. (b) Conditions of...

  1. 21 CFR 522.1883 - Prednisolone sodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Prednisolone sodium phosphate. 522.1883 Section... § 522.1883 Prednisolone sodium phosphate. (a) Specifications. Each milliliter of solution contains 20 milligrams (mg) prednisolone sodium phosphate (equivalent to 14.88 mg of prednisolone). (b) Sponsor. See...

  2. 21 CFR 182.1781 - Sodium aluminum phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminum phosphate. 182.1781 Section 182.1781 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Food Substances § 182.1781 Sodium aluminum phosphate. (a) Product. Sodium aluminum phosphate....

  3. Phosphate Rock Fertilizer in Acid Soil:Comparing Phosphate Extraction Methods for Measuring Dissolution

    Institute of Scientific and Technical Information of China (English)

    T.S.ANSUMANA-KAWA; WANGGUANGHUO

    1998-01-01

    Three phosphate extraction methods were used to investigate the dissolution,availability and transfo-mation of Kunyang phosphate rock(KPR) in two surface acid soils.Dissolution was determined by measuring the increase in the amounts of soluble and adsorbed inorganic phosphate fractions,and did not differ signifi-cantly among the three methods.Significant correlations were obtained among P fractions got by the three extraction methods.Dissolution continued until the end of the 90-day incubation period.At the end of the period,much of the applied phosphate recovered in both soils were in the Al- and Fe-P or in the hydroxide-and bicarbonate-extractable inorganic P fractions.The dissolution of KPR in the two soils was also similar: increased addition of phosphate rock resulted in decreased dissolution.The similarity in the order and extent of dissolution in the two soils was probably due to the similarity in each soil of several factors that are known to influence phosphate rock dissolution,namely low CEC,pH,P level,and base status;and high clay and free iron and aluminum oxide contents.The results suggested that KPR could be an aternative P source in the soils are not limiting.

  4. Chlorophyll J-aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics.

    Science.gov (United States)

    Sengupta, Sanchita; Würthner, Frank

    2013-11-19

    Among the natural light-harvesting (LH) systems, those of green sulfur and nonsulfur photosynthetic bacteria are exceptional because they lack the support of a protein matrix. Instead, these so-called chlorosomes are based solely on "pigments". These are self-assembled bacteriochlorophyll c, d, and e derivatives, which consist of a chlorophyll skeleton bearing a 3(1)-hydroxy functional group. Chemists consider the latter as an essential structural unit to direct the formation of light-harvesting self-assembled dye aggregates with J-type excitonic coupling. The intriguing properties of chlorosomal J-type aggregates, particularly narrow red-shifted absorption bands, compared with monomers and their ability to delocalize and migrate excitons, have inspired intense research activities toward synthetic analogues in this field. The ultimate goal of this research field is the development of (opto-)electronic devices based on the architectural principle of chlorosomal LH systems. In this regard, the challenge is to develop small, functional building blocks with appropriate substituents that are preprogrammed to self-assemble across different length scales and to emulate functions of natural LH systems or to realize entirely new functions beyond those found in nature. In this Account, we highlight our achievements in the past decade with semisynthetic zinc chlorins (ZnChls) as model compounds of bacteriochlorophylls obtained from the naturally most abundant chlorin precursor: chlorophyll a. To begin, we explore how supramolecular strategies involving π-stacking, hydrogen bonding, and metal-oxygen coordination can be used to design ZnChl-based molecular stack, tube, and liquid crystalline assemblies conducive to charge and energy transport. Our design principle is based on the bioinspired functionalization of the 3(1)-position of ZnChl with a hydroxy or methoxy group; the former gives rise to tubular assemblies, whereas the latter induces stack assemblies. Functionalization

  5. Phosphate and Vascular Calcification: Emerging Role of the Sodium-Dependent Phosphate Cotransporter PiT-1

    OpenAIRE

    Lau, Wei Ling; Festing, Maria H; Giachelli, Cecilia M.

    2010-01-01

    Elevated serum phosphate is a risk factor for vascular calcification and cardiovascular events in kidney disease as well as in the general population. Elevated phosphate levels drive vascular calcification, in part, by regulating vascular smooth muscle cell (VSMC) gene expression, function, and fate. The type III sodium-dependent phosphate cotransporter, PiT-1, is necessary for phosphate-induced VSMC osteochondrogenic phenotype change and calcification, and has recently been shown to have une...

  6. Ribose-5-Phosphate Biosynthesis in Methanocaldococcus jannaschii Occurs in the Absence of a Pentose-Phosphate Pathway

    OpenAIRE

    Grochowski, Laura L.; Xu, Huimin; White, Robert H.

    2005-01-01

    Recent work has raised a question as to the involvement of erythrose-4-phosphate, a product of the pentose phosphate pathway, in the metabolism of the methanogenic archaea (R. H. White, Biochemistry 43:7618-7627, 2004). To address the possible absence of erythrose-4-phosphate in Methanocaldococcus jannaschii, we have assayed cell extracts of this methanogen for the presence of this and other intermediates in the pentose phosphate pathway and have determined and compared the labeling patterns ...

  7. Purification and characterization of ribitol-5-phosphate and xylitol-5-phosphate dehydrogenases from strains of Lactobacillus casei.

    OpenAIRE

    Hausman, S Z; London, J

    1987-01-01

    A simple three-step procedure is described which yields electrophoretically homogeneous preparations of ribitol-5-phosphate dehydrogenase and xylitol-5-phosphate dehydrogenase. The former enzyme is a 115,000-molecular-weight protein composed of two subunits of identical size and is specific for its substrate, ribitol. The xylitol-5-phosphate dehydrogenase exists as a tetrameric protein with a molecular weight of 180,000; this enzyme oxidizes the phosphate esters of both xylitol and D-arabitol...

  8. Proton/Phosphate Stoichiometry in Uptake of Inorganic Phosphate by Cultured Cells of Catharanthus roseus (L.) G. Don

    Science.gov (United States)

    Sakano, Katsuhiro

    1990-01-01

    Upon absorption of phosphate, cultured cells of Catharanthus roseus (L.) G. Don caused a rapid alkalinization of the medium in which they were suspended. The alkalinization continued until the added phosphate was completely exhausted from the medium, at which time the pH of the medium started to drop sharply toward the original pH value. Phosphate exposure caused the pH of the medium to increase from pH 3.5 to values as high as 5.8, while the rate of phosphate uptake was constant throughout (10-17 micromoles per hour per gram fresh weight). This indicates that no apparent pH optimum exists for the phosphate uptake by the cultured cells. The amount of protons cotransported with phosphate was calculated from the observed pH change up to the maximum alkalinization and the titration curve of the cell suspension. Proton/phosphate transport stoichiometry ranged from less than unity to 4 according to the amount of phosphate applied. At low phosphate doses, the stoichiometries were close to 4, while at high phosphate doses, smaller stoichiometries were observed. This suggests that, at high phosphate doses, activation of the proton pump is induced by the longer lasting proton influx acidifying the cytoplasm. The increased H+ efflux due to the proton pump could partially compensate protons taken up via the proton-phosphate cotransport system. Thus, the H+/H2PO4− stoichiometry of the cotransport is most likely to be 4. PMID:16667491

  9. The utilization of rock phosphate (natural defluorinated calcium phosphate or NDCP in laying hens diet to replace dicalcium phosphate

    Directory of Open Access Journals (Sweden)

    A.P Sinurat

    1996-06-01

    Full Text Available An experimentwas conducted to study the utilization of local rock phosphate or natural defluorinated calcium phosphate (NDCP as phosphorus source for layer chickens by using the imported dicalcium phosphate (DCP as a reference. Eight experimental diets consisted of 2 source of phosphorus (DCP and NDCP and 4 dietary total P levels (0.4, 0.5, 0.6 and 0.7% were formulated. Each diet was fed to 24 pullets (6 replicates with 4 birds each from 20 weeks of age to 14 weeks of egg production. Observations were made on feed consumption, egg production, egg weight, mortality, egg quality, Ca and P retention and ash content of tibial bones . Results showed no significant effect of different source and level of phosphorus tested on egg production (% HD, feed consumption, egg weight and mortality rates . Egg shell thickness was depressed in NDCP diet as compared with DCP, however this only occurred at firstmonth of production. It is concluded that the NDCP can be used in layers diet to replace DCP as phosphorus source. The relative biological value of phosphorus inNDCP is 96% for layers.

  10. Prevention of radioactive contamination in the manufacture of phosphate fertilizers

    International Nuclear Information System (INIS)

    In this work was studied the separation of uranium from the phosphate rock to decrease the level of radioactivity in the phosphate fertilizers, this prevents the redistribution of uranium in the environment. The uranium leaching conditions from phosphate rock were estimated using alkaline solutions. The changes in the natural phosphate rock after leaching were studied. The amenability to separate the uranium from phosphate rock with ammonium carbonate / bicarbonate solution was determined. The uranium extraction was approximately 40%. The leaching conditions showed high selectivity for uranium without changes in the ore structure. The bulk ore was not dissolved. (Author)

  11. Seed selections for crystallization of calcium phosphate for phosphorus recovery

    Institute of Scientific and Technical Information of China (English)

    SONG Yong-hui; Dietfried DONNERT; Ute BERG; Peter G. WEIDLER; Rolf NUEESCH

    2007-01-01

    Seed induces and promotes the crystallization of calcium phosphate, and acts as carrier of the recovered phosphorus (P). In order to select suitable seed for P recovery from wastewater, three seeds including Apatite (AP), Juraperle (JP) and phosphate-modified Juraperle (M-JP) were tested and compared. Batch and fixed-bed column experiments of seeded crystallization of calcium phosphate were undertaken by using synthetic wastewater with 10 mg/L P phosphate. It shows that AP has bad enduring property in the crystallization process, while JP has better performance for multiple uses, and M-JP is a hopeful seed for P recovery by crystallization of calcium phosphate.

  12. Zinc phosphating of 6061-Al alloy using REN as additive

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shenglin; ZHANG Xiaolin; ZHANG Mingming

    2008-01-01

    Zinc phosphate coating formed on 6061-Al alloy was studied with the help of electrochemical measurements, Fourier Transform Infrared (FTIR), and Scanning Electron Microscopy (SEM), after dipping it in phosphating solutions containing different concentrations of Rare Earth Nitrate (REN). REN, which acted as an accelerator in the phosphating solution, could catalyze the surface reaction and accelerate the phosphating process. REN mainly enabled the P in the phosphate coating to exist in the form of PO43- and promoted the hydrolysis of phosphatic acid in a liquid layer at the cathodes. This resulted in the evolution of H2 at the cathodes, which increased the local pH value and in turn drove the precipitation of the phosphate coating. Additionally, REN was adsorbed on the surface of the aluminum substrates to form a gel during the phosphating process. These gel particles were good crystal seeds, which helped to form phosphate crystal nuclei and possess the function of a nucleation agent that could decrease the phosphate crystal size. The corrosion resistance of the formed zinc phosphate coatings was improved.

  13. Agronomic Effectiveness of Partially Acidulated Phosphate Rock

    Institute of Scientific and Technical Information of China (English)

    HENIAN-ZU; SUNQI-WEI

    1994-01-01

    Laboratorial incubation and field experiments were conducted on soils ranging in texture from sandy loam to clay and in pH from 3.6 to 9.0 to determine the agronomic effectiveness of single superphosphate (SSP).fused magnesium phosphate(FMP) and partially acidulated phosphate rock(PAPR) on 8 field crops.The results showed that the pattern of available P released from SSP was fixing-releasing-fixing-steady state,while that of PAPR was shortly fixing-slowly releasing-fixing steady state.And the PAPR,SSP and FMP were equally effective as judged by yield Puptake by phants and extractable P in soils after crop harvesting,The PAPR used as basal fertilizer was more effective than that as top dressing,and its residual effect was also obvious.

  14. Radiophotoluminescence from silver-doped phosphate glass

    International Nuclear Information System (INIS)

    Glass dosimeter utilizing radiophotoluminescence (RPL) is one of accumulation type solid state dosimeters, which is based on luminescence phenomenon of silver (Ag+ ions)-doped phosphate glass exposed to ionizing radiation. In this study, to clarify the emission mechanism of yellow and blue RPL peaks, optical properties of Ag+-doped glass, such as optical absorption spectrum, RPL excitation spectrum before and after X-ray irradiation as well as the lifetime of both RPL peaks are measured. From the results, we discuss the emission mechanism of yellow (peaked at 2.21 eV) and blue (peaked at 2.70 eV) RPL using a proposed energy band diagram for RPL emission and excitation in Ag+-doped phosphate glass. It is found that the radiative lifetime of blue RPL is three orders of magnitude faster than that of yellow RPL.

  15. Aluminum phosphate ceramics for waste storage

    Science.gov (United States)

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  16. Calcium phosphate cements properties with polymers addition

    International Nuclear Information System (INIS)

    Calcium phosphate cements (CPC) have attracted great interest to use in orthopedics and dentistry as replacements for damaged parts of the skeletal system, showing good biocompatibility and osseointegration, allowing its use as bone graft. Several studies have shown that the addition of polymer additives have a strong influence on the cement properties. The low mechanical strength is the main obstacle to greater use of CPC as an implant material. The objective of this study was to evaluate properties of a cement based on α-tricalcium phosphate (α-TCP), added polymers. PVA (10%, 8%, 6%), sodium alginate (2%) and polyacrylate ammonia (3%), all in weight, were added to the synthesized α-TCP powder. The samples were molded and evaluated for density, porosity in vitro test (Simulated Body Fluid), crystalline phases and mechanical strength. The results show increased the mechanical properties of the cement when added these polymers

  17. Biomedical monitoring of phosphate removal by hemodialysis.

    Science.gov (United States)

    Michalec, Michał; Fiedoruk-Pogrebniak, Marta; Matuszkiewicz-Rowińska, Joanna; Tymecki, Łukasz; Koncki, Robert

    2016-07-15

    A compact flow analysis system for non-invasive, dialysate-side monitoring of phosphate removal in the course of clinical hemodialysis treatment is presented. The monitor is based on solenoid operated micro-pumps and extremely cheap optoelectronic flow-through detector allowing photometric determination of phosphate in spent dialysate using a molybdenum blue method. The monitor can operate in both, discrete and continuous modes of measurement. The analytical utility of monitor has been tested with samples of spent dialysate produced by artificial kidney in the course of real hemodialysis sessions. The results of monitoring are comparable with those obtained using reference off-line method recommended for clinical analysis. Additionally, the possibility of two-side (dialysate and blood) monitoring of hemodialysis treatments with optoelectronic flow-through detectors has been announced. PMID:27136282

  18. Controlling reaction specificity in pyridoxal phosphate enzymes

    OpenAIRE

    Michael D Toney

    2011-01-01

    Pyridoxal 5'-phosphate enzymes are ubiquitous in the nitrogen metabolism of all organisms. They catalyze a wide variety of reactions including racemization, transamination, decarboxylation, elimination, retro-aldol cleavage, Claisen condensation, and others on substrates containing an amino group, most commonly α-amino acids. The wide variety of reactions catalyzed by PLP enzymes is enabled by the ability of the covalent aldimine intermediate formed between substrate and PLP to stabilize carb...

  19. Structural basis for phosphatidylinositol-phosphate biosynthesis

    OpenAIRE

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-01-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinosito...

  20. Phosphate adsorption on lanthanum loaded biochar.

    Science.gov (United States)

    Wang, Zhanghong; Shen, Dekui; Shen, Fei; Li, Tianyu

    2016-05-01

    To attain a low-cost and high-efficient phosphate adsorbent, lanthanum (La) loaded biochar (La-BC) prepared by a chemical precipitation method was developed. La-BC and its pristine biochar (CK-BC) were comparatively characterized using zeta potential, BET surface area, scanning electron microscopy/energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The adsorption ability and the mechanisms during adsorption process for the La-BC samples were also investigated. La loaded on the surface of biochar can be termed as La-composites (such as LaOOH, LaONO3 and La(OH)3), leading to the decrease of negative charge and surface area of biochar. La-BC exhibited the high adsorption capacity to phosphate compared to CK-BC. Adsorption isotherm and adsorption kinetic studies showed that the Langmuir isotherm and second order model could well describe the adsorption process of La-BC, indicating that the adsorption was dominated by a homogeneous and chemical process. The calculated maximum adsorption capacity was as high as 46.37 mg g(-1) (computed in P). Thermodynamic analysis revealed that the adsorption was spontaneous and endothermic. SEM, XRD, XPS and FT-IR analysis suggested that the multi-adsorption mechanisms including precipitation, ligand exchange and complexation interactions can be evidenced during the phosphate adsorption process by La-composites in La-BC. PMID:26871732

  1. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement.

    Science.gov (United States)

    Horiuchi, Shinya; Hiasa, Masahiro; Yasue, Akihiro; Sekine, Kazumitsu; Hamada, Kenichi; Asaoka, Kenzo; Tanaka, Eiji

    2014-01-01

    Recently, zinc-releasing bioceramics have been the focus of much attention owing to their bone-forming ability. Thus, some types of zinc-containing calcium phosphate (e.g., zinc-doped tricalcium phosphate and zinc-substituted hydroxyapatite) are examined and their osteoblastic cell responses determined. In this investigation, we studied the effects of zinc calcium phosphate (ZCP) derived from zinc phosphate incorporated into calcium phosphate cement (CPC) in terms of its setting reaction and MC3T3-E1 osteoblast-like cell responses. Compositional analysis by powder X-ray diffraction analysis revealed that HAP crystals were precipitated in the CPC containing 10 or 30wt% ZCP after successfully hardening. However, the crystal growth observed by scanning electron microscopy was delayed in the presence of additional ZCP. These findings indicate that the additional zinc inhibits crystal growth and the conversion of CPC to the HAP crystals. The proliferation of the cells and alkaline phosphatase (ALP) activity were enhanced when 10wt% ZCP was added to CPC. Taken together, ZCP added CPC at an appropriate fraction has a potent promotional effect on bone substitute biomaterials. PMID:24090874

  2. New Synthesis Route of Hydrogel through A Bioinspired Supramolecular Approach: Gelation, Binding Interaction, and in Vitro Dressing.

    Science.gov (United States)

    Cheng, Chieh; Tang, Meng-Che; Wu, Chung-Shu; Simon, Turibius; Ko, Fu-Hsiang

    2015-09-01

    Peptide-based supramolecular hydrogels have been comprehensively investigated in biomaterial applications because of their unique bioactivity, biofunctionality, and biocompatible features. However, the presence of organic building blocks in peptide-based hydrogels often results in low mechanical stability. To expand their practical use and range of applications, it is necessary to develop the tool kit available to prepare bioinspired, peptide-based supramolecular hydrogels with improved mechanical stability. In this paper, we present an innovative electrostatic and cross-linking approach in which naphthyl-Phe-Phe-Cys (NapFFC) oligopeptides are combined with gold nanoparticles (AuNPs) and calcium ions (Ca(2+)) to produce peptide-based supramolecular hydrogels. We further investigate the interactions among NapFFC, AuNPs and Ca(2+) by microscopy. The morphology of the nanofibrous network constructions and the binding forces exhibited from the hydrogel demonstrated that the combination of two mechanisms successfully enhanced the mechanical stability through the formation of a densely entangled fibrous network of peptide multimers that is attributed to the AuNP linkage and Ca(2+)-induced agglomeration. UV-vis spectrophotometry and fluorescence analysis were also used to demonstrate the enhanced stability of the hydrogel under various conditions such as thermal, solvent erosion, pH value and sonication. All results indicate that the presence of AuNPs and Ca(2+) can strengthen the prepared hydrogel by more than doubling the diameter of NapFFC nanofibers, enabling the formation of stronger frameworks and slowing the release of components. Further experiments confirmed that HeLa cells can grow on the bioinspired NapFFC-AuNP hydrogel and exhibit high cell viability and that these cells were killed on contact with a hydrogel containing a drug. Our peptide-based supramolecular hydrogels prepared from the observed electrostatic and cross-linking mechanisn exhibited a

  3. A safer disposal of hazardous phosphate coating sludge by formation of an amorphous calcium phosphate matrix.

    Science.gov (United States)

    Navarro-Blasco, I; Duran, A; Pérez-Nicolás, M; Fernández, J M; Sirera, R; Alvarez, J I

    2015-08-15

    Phosphate coating hazardous wastes originated from the automotive industry were efficiently encapsulated by an acid-base reaction between phosphates present in the sludge and calcium aluminate cement, yielding very inert and stable monolithic blocks of amorphous calcium phosphate (ACP). Two different compositions of industrial sludge were characterized and loaded in ratios ranging from 10 to 50 wt.%. Setting times and compressive strengths were recorded to establish the feasibility of this method to achieve a good handling and a safe landfilling of these samples. Short solidification periods were found and leaching tests showed an excellent retention for toxic metals (Zn, Ni, Cu, Cr and Mn) and for organic matter. Retentions over 99.9% for Zn and Mn were observed even for loadings as high as 50 wt.% of the wastes. The formation of ACP phase of low porosity and high stability accounted for the effective immobilization of the hazardous components of the wastes. PMID:26024992

  4. Proton transport properties of tin phosphate, chromotropic acid anchored onto tin phosphate and tin phenyl phosphonate

    Indian Academy of Sciences (India)

    Chithra Sumej; P P Sharmila; Nisha J Tharayil; S Suma

    2013-02-01

    Tin (IV) phosphates of the class of tetravalent metal acid (TMA) salts have been synthesized by sol–gel method. The functionalized materials of tin (IV) phosphate (SnP) like chromotropic acid anchored tin phosphate (SnPCA) and tin phenyl phosphonate (SnPP) were also synthesized. These materials have been characterized for elemental analysis (ICP–AES), thermal analysis, X-ray analysis and FTIR spectroscopy. Chemical resistivity of these materials has been accessed in acidic, basic and organic solvent media. The proton present in the structural hydroxyl groups indicates good potential for TMA salts to exhibit solid-state proton conduction. The transport properties of these materials have been explored by measuring specific proton conductance at different temperatures. Based on the specific conduction data and Arrhenius plots, a suitable mechanism has been proposed.

  5. Production of bioinspired and rationally designed polymer hydrogels for controlled delivery of therapeutic proteins

    Science.gov (United States)

    Kim, Sung Hye

    Hydrogel systems for controlled delivery therapeutic growth factors have been developed in a wide spectrum of strategies: these systems aim for the release of growth factors via a passive diffusion, electrostatic interaction, degradation of hydrogels, and responsiveness to external stimuli. Heparin, a highly sulfated glycosaminoglycan (GAG), was employed for a targeted delivery system of vascular endothelial growth factor (VEGF) to endothelial cells overexpressing a relevant receptor VEGFR-2. Addition of dimeric VEGF to 4-arm star-shaped poly(ethylene glycol) (PEG) immobilized with low-molecular weight heparin (LMWH) afforded a non-covalently assembled hydrogel via interaction between heparin and VEGF, with storage modulus 10 Pa. The release of VEGF and hydrogel erosion reached maximum 100 % at day 4 in the presence of VEGFR-2 overexpressing pocine aortic endothelial cell (PAE/KDR), while those of 80% were achieved via passive release at day 5 in the presence of PAE cell lacking VEGFR-2 or in the absence of cell, indicating that the release of VEGF was in targeted manner toward cell receptor. The proliferation of PAE/KDR in the presence of [PEG-LMWH/VEGF] hydrogel was greater by ca. 30% at day 4 compared to that of PAE, confirming that the release of VEGF was in response to the cellular demand. The phosphorylation fraction of VEGFR-2 on PAE/KDR was greater in the presence of [PEG-LMWH/VEGF] hydrogel, increasing from 0.568 at day 1 to 0.790 at day 4, whereas it was maintained at 0.230 at day 4 in the presence of [PEG-LMWH] hydrogel. This study has proven that this hydrogel, assembled via bio-inspired non-covalent interaction, liberating VEGFon celluar demand to target cell, eroding upon VEGF release, and triggering endothelial cell proliferation, could be used in multiple applications including targeted delivery and angiogenesis. Heparin has been widely exploited in growth factor delivery systems owing to its ability to bind many growth factors through the flexible

  6. Research and engineering assessment of biological solubilization of phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R.D.; McIlwain, M.E.; Losinski, S.J.; Taylor, D.D.

    1993-03-01

    This research and engineering assessment examined a microbial phosphate solubilization process as a method of recovering phosphate from phosphorus containing ore compared to the existing wet acid and electric arc methods. A total of 860 microbial isolates, collected from a range of natural environments were tested for their ability to solubilize phosphate from rock phosphate. A bacterium (Pseudomonas cepacia) was selected for extensive characterization and evaluation of the mechanism of phosphate solubilization and of process engineering parameters necessary to recover phosphate from rock phosphate. These studies found that concentration of hydrogen ion and production of organic acids arising from oxidation of the carbon source facilitated microbial solubilization of both pure chemical insoluble phosphate compounds and phosphate rock. Genetic studies found that phosphate solubilization was linked to an enzyme system (glucose dehydrogenase). Process-related studies found that a critical solids density of 1% by weight (ore to liquid) was necessary for optimal solubilization. An engineering analysis evaluated the cost and energy requirements for a 2 million ton per year sized plant, whose size was selected to be comparable to existing wet acid plants.

  7. Effectiveness of a rock phosphate solubilizing fungus to increase soil solution phosphate impaired by the soil phosphate sorption capacity

    Directory of Open Access Journals (Sweden)

    Nelson Walter Osorio Vega

    2015-06-01

    Full Text Available Available phosphate (P deficiency in tropical soils has been recognized as a major factor that limits soil quality and plant performance. To overcome this, it is necessary to add high amounts of soluble P-fertilizers; however, this is inefficient and costly. Alternatively, rock phosphates (RP can be used, but their low reactivity limits their use. Phosphate solubilizing microorganisms (PSM can enhance RP dissolution and, thus, improve the RP agronomic effectiveness as fertilizer. Nonetheless, their effectiveness may be impaired by the soil P fixation capacity. An experiment was carried out to assess the in vitro effectiveness of the fungus Mortierella sp. to dissolve RP in an axenic culture medium and, thus, enhance the solution P concentration in the presence of aliquots of soils with contrasting P fixation capacity. The results showed that the fungus was capable of lowering the medium pH from 7.7 to 3.0 and, thus, dissolving the RP. The presence of soil aliquots in the medium controlled the effectiveness of the fungus to increase the concentration of the soluble P. In the presence of soils with a low or medium P sorption capacity, the concentration of the soluble P was high (63.8-146.6 mg L-1 in comparison with the inoculated (soilless treatment (50.0 mg L-1 and the uninoculated control (0.7 mg L-1. By contrast, with very-high P fixing soil aliquots, the concentration of the soluble P was very low (3.6-33.1 mg L-1; in addition, in these soils, the fungus immobilized more P into its mycelia than in soils with a low or medium P fixation capacity. The capacity of a soil to fix P seems to be a good predictor for the effectiveness of this fungus to increase the soluble P concentration via RP dissolution.

  8. Using oxygen isotopes of phosphate to investigate phosphate release from sediments and phosphate input from waste water treatment plants into Lake Erie

    Science.gov (United States)

    Roberts, K.; Klass, T.; Watson, S.; Mah, B.; Paytan, A.

    2010-12-01

    Phosphorus is often a limiting nutrient in freshwater systems; however increased inputs have been promoting eutrophication in many of these systems. Phosphate is one of the more bio-available forms of phosphate and it has been suggested by Elsbury et al., (2009) that in addition to riverin input some other yet unidentified phosphate source contributes to the phosphorous loading in Lake Erie. We are using the oxygen isotope of phosphate to identify two potential sources of phosphorus into Lake Erie. Specifically we determine the isotopic composition of oxygen in phosphate which is associated with various sedimentary phases at two sites in Lake Erie. The distinct sedimentary phases have different phosphate mobility and thus release potential to the lake. In addition we determine the isotopic signature of phosphate that is released into the lake from treated waste water effluent throughout the year. Results will be compared to the isotopic signature of phosphate in Lake water to evaluate the potential contribution form each of these sources.

  9. Meal phosphate variability does not support fixed dose phosphate binder schedules for patients treated with peritoneal dialysis: a prospective cohort study

    OpenAIRE

    Leung, Simon; McCormick, Brendan; Wagner, Jessica; Biyani, Mohan; Lavoie, Susan; Imtiaz, Rameez; Zimmerman, Deborah

    2015-01-01

    Background Removal of phosphate by peritoneal dialysis is insufficient to maintain normal serum phosphate levels such that most patients must take phosphate binders with their meals. However, phosphate ‘counting’ is complicated and many patients are simply prescribed a specific dose of phosphate binders with each meal. Therefore, our primary objective was to assess the variability in meal phosphate content to determine the appropriateness of this approach. Methods In this prospective cohort s...

  10. Integrated assessment of the phosphate industry. [Radiological impact of uranium extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.T.; Cotter, S.J.

    1980-05-01

    The phosphate industry in the United States includes three major activities, namely, mining and milling of phosphate rock, phosphate product manufacture, and phosphate product use. Phosphatic materials contain uranium, thorium, and their decay products in greater than background amounts. This assessment of the radiological impacts associated with the redistribution of radioactive components of phosphate materials may provide insight into the effects of uranium extraction from phosphate materials for use in the nuclear fuel cycle.

  11. Magnetic catechol-chitosan with bioinspired adhesive surface: preparation and immobilization of ω-transaminase.

    Directory of Open Access Journals (Sweden)

    Kefeng Ni

    Full Text Available The magnetic chitosan nanocomposites have been studied intensively and been used practically in various biomedical and biological applications including enzyme immobilization. However, the loading capacity and the remained activity of immobilized enzyme based on existing approaches are not satisfied. Simpler and more effective immobilization strategies are needed. Here we report a simple catechol modified protocol for preparing a novel catechol-chitosan (CCS-iron oxide nanoparticles (IONPs composites carrying adhesive moieties with strong surface affinity. The ω-transaminase (ω-TA was immobilized onto this magnetic composite via nucleophilic reactions between catechol and ω-TA. Under optimal conditions, 87.5% of the available ω-TA was immobilized on the composite, yielding an enzyme loading capacity as high as 681.7 mg/g. Furthermore, the valuation of enzyme activity showed that ω-TA immobilized on CCS-IONPs displayed enhanced pH and thermal stability compared to free enzyme. Importantly, the immobilized ω-TA retained more than 50% of its initial activity after 15 repeated reaction cycles using magnetic separation and 61.5% of its initial activity after storage at 4°C in phosphate buffered saline (PBS for 15 days. The results suggested that such adhesive magnetic composites may provide an improved platform technology for bio-macromolecules immobilized.

  12. Bio-inspired citrate functionalized apatite coating on rapid prototyped titanium scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Peng [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China); Lu, Fang [School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Zhu, Wenjun [Department of Prosthodontics, Guanghua School of Stomatology, Guang Dong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Wang, Di [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China); Zhu, Xiaojing [Department of Prosthodontics, Guanghua School of Stomatology, Guang Dong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Tan, Guoxin, E-mail: tanguoxin@126.com [Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Wang, Xiaolan [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China); Zhang, Yu; Li, Lihua [General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China)

    2014-09-15

    Highlights: • Designed and reproducible porous titanium scaffolds were produced. • Hydrophilic nanoporous film was built on scaffold. • Apatite coating was deposited on scaffold under the modulation of citrate ions. • Citrate ions could affect CO{sub 3}{sup 2−} incorporation in apatite coatings. - Abstract: Scaffold functionalized with appropriate osteogenic coatings can significantly improve implant-bone response. In this study, with designed model and optimized manufacture parameters, reproducible and precise titanium scaffolds were produced. Reconstructed three-dimensional image and sectional structure of the scaffold were examined by micro-computed tomography and relative software. Alkali treatment was carried out on these manufactured porous scaffolds to produce nanoporous hydrophilic film. After 6 days deposition in simulated body fluid (SBF) containing sodium citrate (SC-SBF), plate-like amorphous calcium phosphate (ACP) coating was deposited on scaffold surface. Ultrasonication tests qualitatively indicated an enhanced adhesion force of apatite coatings deposited in SC-SBF compared to that deposited in SBF. And the effect of citrate ions on the CO{sub 3}{sup 2−} incorporation rate in apatite coating was quantitatively examined by bending vibration of CO{sub 3}{sup 2−} at ∼874 cm{sup −1}. Results indicated the highest carbonate content was obtained at the citrate ion concentration of 6 × 10{sup −5} mol/L in SC-SBF. These three-dimensional porous titanium-apatite hybrid scaffolds are expected to find application in bone tissue regeneration.

  13. Carbon Mineralization Using Phosphate and Silicate Ions

    Science.gov (United States)

    Gokturk, H.

    2013-12-01

    Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected

  14. Plant tissue hybrid electrode for determination of phosphate and fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.; Renneberg, R.; Scheller, F.W.; Kirstein, L.

    1984-08-01

    A biosensor for inorganic phosphate and fluoride has been developed by coupling a potato (Solanum tuberosum) tissue slice and immobilized glucose oxidase with a Clark oxygen electrode. Measurement is based on the inhibition by either ion of potato acid phosphates catalyzed glucose 6-phosphate hydrolysis. The precision is 1.7% and 6.5% and the lower detection limit 2.5 X 10/sup -5/ M and 1 X 10/sup -4/ M for phosphate and fluoride, respectively. For phosphate determination the hybrid sensor is stable for 28 days or 300 assays. With a higher limit of detection the sensor can be applied in a commercial enzyme electrode based device. Its application for phosphate determination in fertilizer and urine samples is described.

  15. A Bio-Inspired Model-Based Approach for Context-Aware Post-WIMP Tele-Rehabilitation

    Directory of Open Access Journals (Sweden)

    Víctor López-Jaquero

    2016-10-01

    Full Text Available Tele-rehabilitation is one of the main domains where Information and Communication Technologies (ICT have been proven useful to move healthcare from care centers to patients’ home. Moreover, patients, especially those carrying out a physical therapy, cannot use a traditional Window, Icon, Menu, Pointer (WIMP system, but they need to interact in a natural way, that is, there is a need to move from WIMP systems to Post-WIMP ones. Moreover, tele-rehabilitation systems should be developed following the context-aware approach, so that they are able to adapt to the patients’ context to provide them with usable and effective therapies. In this work a model-based approach is presented to assist stakeholders in the development of context-aware Post-WIMP tele-rehabilitation systems. It entails three different models: (i a task model for designing the rehabilitation tasks; (ii a context model to facilitate the adaptation of these tasks to the context; and (iii a bio-inspired presentation model to specify thoroughly how such tasks should be performed by the patients. Our proposal overcomes one of the limitations of the model-based approach for the development of context-aware systems supporting the specification of non-functional requirements. Finally, a case study is used to illustrate how this proposal can be put into practice to design a real world rehabilitation task.

  16. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil.

    Science.gov (United States)

    Brown, Philip S; Bhushan, Bharat

    2016-08-01

    Access to a safe supply of water is a human right. However, with growing populations, global warming and contamination due to human activity, it is one that is increasingly under threat. It is hoped that nature can inspire the creation of materials to aid in the supply and management of water, from water collection and purification to water source clean-up and rehabilitation from oil contamination. Many species thrive in even the driest places, with some surviving on water harvested from fog. By studying these species, new materials can be developed to provide a source of fresh water from fog for communities across the globe. The vast majority of water on the Earth is in the oceans. However, current desalination processes are energy-intensive. Systems in our own bodies have evolved to transport water efficiently while blocking other molecules and ions. Inspiration can be taken from such to improve the efficiency of desalination and help purify water containing other contaminants. Finally, oil contamination of water from spills or the fracking technique can be a devastating environmental disaster. By studying how natural surfaces interact with liquids, new techniques can be developed to clean up oil spills and further protect our most precious resource.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.

  17. A Comparative Numerical Study on the Performances and Vortical Patterns of Two Bioinspired Oscillatory Mechanisms: Undulating and Pure Heaving.

    Science.gov (United States)

    Ebrahimi, Mohsen; Abbaspour, Madjid

    2015-01-01

    The hydrodynamics and energetics of bioinspired oscillating mechanisms have received significant attentions by engineers and biologists to develop the underwater and air vehicles. Undulating and pure heaving (or plunging) motions are two significant mechanisms which are utilized in nature to provide propulsive, maneuvering, and stabilization forces. This study aims to elucidate and compare the propulsive vortical signature and performance of these two important natural mechanisms through a systematic numerical study. Navier-Stokes equations are solved, by a pressure-based finite volume method solver, in an arbitrary Lagrangian-Eulerian (ALE) framework domain containing a 2D NACA0012 foil moving with prescribed kinematics. Some of the important findings are (1) the thrust production of the heaving foil begins at lower St and has a greater growing slope with respect to the St; (2) the undulating mechanism has some limitations to produce high thrust forces; (3) the undulating foil shows a lower power consumption and higher efficiency; (4) changing the Reynolds number (Re) in a constant St affects the performance of the oscillations; and (5) there is a distinguishable appearance of leading edge vortices in the wake of the heaving foil without observable ones in the wake of the undulating foil, especially at higher St. PMID:27057133

  18. Coaxial electrospinning of WO3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance.

    Science.gov (United States)

    Choi, Seon-Jin; Chattopadhyay, Saptarshi; Kim, Jae Jin; Kim, Sang-Joon; Tuller, Harry L; Rutledge, Gregory C; Kim, Il-Doo

    2016-04-28

    Macroporous WO3 nanotubes (NTs) functionalized with nanoscale catalysts were fabricated using coaxial electrospinning combined with sacrificial templating and protein-encapsulated catalysts. The macroporous thin-walled nanotubular structures were obtained by introducing colloidal polystyrene (PS) particles to a shell solution of W precursor and poly(vinylpyrrolidone). After coaxial electrospinning with a core liquid of mineral oil and subsequent calcination, open pores with an average diameter of 173 nm were formed on the surface of WO3 NTs due to decomposition of the PS colloids. In addition, catalytic Pd nanoparticles (NPs) were synthesized using bio-inspired protein cages, i.e., apoferritin, and uniformly dispersed within the shell solution and subsequently on the WO3 NTs. The resulting Pd functionalized macroporous WO3 NTs were demonstrated to be high performance hydrogen (H2) sensors. In particular, Pd-functionalized macroporous WO3 NTs exhibited a very high H2 response (Rair/Rgas) of 17.6 at 500 ppm with a short response time. Furthermore, the NTs were shown to be highly selective for H2 compared to other gases such as carbon monoxide (CO), ammonia (NH3), and methane (CH4). The results demonstrate a new synthetic method to prepare highly porous nanotubular structures with well-dispersed nanoscale catalysts, which can provide improved microstructures for chemical sensing. PMID:26691720

  19. Stochastic global identification of a bio-inspired self-sensing composite UAV wing via wind tunnel experiments

    Science.gov (United States)

    Kopsaftopoulos, Fotios; Nardari, Raphael; Li, Yu-Hung; Wang, Pengchuan; Chang, Fu-Kuo

    2016-04-01

    In this work, the system design, integration, and wind tunnel experimental evaluation are presented for a bioinspired self-sensing intelligent composite unmanned aerial vehicle (UAV) wing. A total of 148 micro-sensors, including piezoelectric, strain, and temperature sensors, in the form of stretchable sensor networks are embedded in the layup of a composite wing in order to enable its self-sensing capabilities. Novel stochastic system identification techniques based on time series models and statistical parameter estimation are employed in order to accurately interpret the sensing data and extract real-time information on the coupled air flow-structural dynamics. Special emphasis is given to the wind tunnel experimental assessment under various flight conditions defined by multiple airspeeds and angles of attack. A novel modeling approach based on the recently introduced Vector-dependent Functionally Pooled (VFP) model structure is employed for the stochastic identification of the "global" coupled airflow-structural dynamics of the wing and their correlation with dynamic utter and stall. The obtained results demonstrate the successful system-level integration and effectiveness of the stochastic identification approach, thus opening new perspectives for the state sensing and awareness capabilities of the next generation of "fly-by-fee" UAVs.

  20. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil.

    Science.gov (United States)

    Brown, Philip S; Bhushan, Bharat

    2016-08-01

    Access to a safe supply of water is a human right. However, with growing populations, global warming and contamination due to human activity, it is one that is increasingly under threat. It is hoped that nature can inspire the creation of materials to aid in the supply and management of water, from water collection and purification to water source clean-up and rehabilitation from oil contamination. Many species thrive in even the driest places, with some surviving on water harvested from fog. By studying these species, new materials can be developed to provide a source of fresh water from fog for communities across the globe. The vast majority of water on the Earth is in the oceans. However, current desalination processes are energy-intensive. Systems in our own bodies have evolved to transport water efficiently while blocking other molecules and ions. Inspiration can be taken from such to improve the efficiency of desalination and help purify water containing other contaminants. Finally, oil contamination of water from spills or the fracking technique can be a devastating environmental disaster. By studying how natural surfaces interact with liquids, new techniques can be developed to clean up oil spills and further protect our most precious resource.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. PMID:27354732

  1. Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity

    Science.gov (United States)

    Prasad, Ch.; Gangadhara, S.; Venkateswarlu, P.

    2016-08-01

    Novel and bio-inspired magnetic nanoparticles were synthesized using watermelon rinds (WR) which are nontoxic and biodegradable. Watermelon rind extract was used as a solvent and capping and reducing agent in the synthesis. The Fe3o4 MNPs were characterized by using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer techniques (VSM). XRD studies revealed a high degree of crystalline and monophasic Fe nanoparticles of face-centered cubic stricture. FTIR analysis proved that particles are reduced and stabilized in solution by the capping agent that is likely to be proteins secreted by the biomass. The present process in an excellent candidate for the synthesis of iron nanoparticles that is simple, easy to execute, pollutant free and inexpensive. A practical and convenient method for the synthesis of highly stable and small-sized iron nanoparticles with a narrow distribution from 2 to 20 nm is reported. Also, the MNPs present in higher saturation magnetization (Ms) of 14.2 emu/g demonstrate tremendous magnetic response behavior. However, the synthesized iron nanoparticles were used as a catalyst for the preparation of biologically interesting 2-oxo-1,2,3,4-tetrahydropyrimidine derivatives in high yields. These results exhibited that the synthesized Fe3O4 MNPs could be used as a catalyst in organic synthesis.

  2. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis.

    Science.gov (United States)

    Yan, Runyu; Chen, Min; Zhou, Han; Liu, Tian; Tang, Xingwei; Zhang, Ke; Zhu, Hanxing; Ye, Jinhua; Zhang, Di; Fan, Tongxiang

    2016-01-28

    Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the first demonstration of a new strategy, based on adopting nature's far red-to-NIR responsive architectures for an efficient bio-inspired photocatalytic system. The system is constructed by controlled assembly of light-harvesting plasmonic nanoantennas onto a typical photocatalytic unit with butterfly wings' 3D micro/nanoarchitectures. Experiments and finite-difference time-domain (FDTD) simulations demonstrate the structural effects on obvious far red-to-NIR photocatalysis enhancement, which originates from (1) Enhancing far red-to-NIR (700~1200 nm) harvesting, up to 25%. (2) Enhancing electric-field amplitude of localized surface plasmon (LSPs) to more than 3.5 times than that of the non-structured one, which promotes the rate of electron-hole pair formation, thus substantially reinforcing photocatalysis. This proof-of-concept study provides a new methodology for NIR photocatalysis and would potentially guide future conceptually new NIR responsive system designs.

  3. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    International Nuclear Information System (INIS)

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human–robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as αf + ξf and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, αf + ξf has a non-linear dependence on temperature and varies from 6.0 × 10−6 °C−1 (20 °C) to 10.6 × 10−6 °C−1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C. (paper)

  4. Controlled RAFT Polymerization of 2-Vinyl-4,4-Dimethylazlactone (VDMA): A Facile Route to Bio-Inspired Polymer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lokitz, Bradley S [ORNL; Messman, Jamie M [ORNL; Hinestrosa Salazar, Juan Pablo [Clemson University; Alonzo Calderon, Jose E [ORNL; Verduzco, Rafael [ORNL; Brown, Rebecca H [ORNL; Osa, Masashi [ORNL; Ankner, John Francis [ORNL; Kilbey, II, S Michael [ORNL

    2009-01-01

    We report the controlled radical polymerization of 2-vinyl-4,4-dimethyl azlactone (VDMA), a 2-alkenyl-2-oxazolin-5-one monomer that contains a polymerizable vinyl moiety as well as a highly reactive, pendant azlactone as well as solution characterizations and surface attachment and functionaliztion. Reversible addition fragmentation chain transfer (RAFT) was used to polymerize of VDMA in benzene at 65 C using either 2-(2-cyanopropyl) dithiobenzoate (CPDB) or 2-dodecylsulfanylthiocarbonyl-sulfanyl-2-methylpropionic acid (DMP) as RAFT chain transfer agents (CTAs). The pseudo first order kinetics and resultant well-defined polymers of low polydispersity indicate that both CTAs afford control over the RAFT polymerization of VDMA. Dynamic and static light scattering and small angle neutron scattering were performed to determine the dn/dc, weight-average molecular weight, radius of gyration, and second virial coefficient of VDMA homopolymers in THF. Additionally, well-defined polymers of VDMA containing carboxyl end groups were covalently attached to epoxy modified silicon wafers via esterification to produce polymeric scaffolds that could be subsequently functionalized for various bio-inspired applications.

  5. Righting and turning in mid-air using appendage inertia: reptile tails, analytical models and bio-inspired robots

    International Nuclear Information System (INIS)

    Unlike the falling cat, lizards can right themselves in mid-air by a swing of their large tails in one direction causing the body to rotate in the other. Here, we developed a new three-dimensional analytical model to investigate the effectiveness of tails as inertial appendages that change body orientation. We anchored our model using the morphological parameters of the flat-tailed house gecko Hemidactylus platyurus. The degree of roll in air righting and the amount of yaw in mid-air turning directly measured in house geckos matched the model's results. Our model predicted an increase in body roll and turning as tails increase in length relative to the body. Tails that swung from a near orthogonal plane relative to the body (i.e. 0-300 from vertical) were the most effective at generating body roll, whereas tails operating at steeper angles (i.e. 45-600) produced only half the rotation. To further test our analytical model's predictions, we built a bio-inspired robot prototype. The robot reinforced how effective attitude control can be attained with simple movements of an inertial appendage.

  6. Stasis domains and slip surfaces in the locomotion of a bio-inspired two-segment crawler

    CERN Document Server

    Gidoni, Paolo

    2016-01-01

    We formulate and solve the locomotion problem for a bio-inspired crawler consisting of two active elastic segments (i.e., capable of changing their rest lengths), resting on three supports providing directional frictional interactions. The problem consists in finding the motion produced by a given, slow actuation history. By focusing on the tensions in the elastic segments, we show that the evolution laws for the system are entirely analogous to the flow rules of elasto-plasticity. In particular, sliding of the supports and hence motion cannot occur when the tensions are in the interior of certain convex regions (stasis domains), while support sliding (and hence motion) can only take place when the tensions are on the boundary of such regions (slip surfaces). We solve the locomotion problem explicitly in a few interesting examples. In particular, we show that, for a suitable range of the friction parameters, specific choices of the actuation strategy can lead to net displacements also in the direction of high...

  7. Lightweight mechanical amplifiers for rolled dielectric elastomer actuators and their integration with bio-inspired wing flappers

    Science.gov (United States)

    Lau, Gih-Keong; Lim, Hoong-Ta; Teo, Jing-Ying; Chin, Yao-Wei

    2014-02-01

    Dielectric elastomer actuators (DEAs) are attractive for use in bio-inspired flapping-wing robots because they have high work density (specific energy) and can produce a large actuation strain. Although the active membrane of a dielectric elastomer is lightweight, the support structure that pre-tensions the elastomeric membrane is massive and it lowers the overall work density. If the DEA is to be used successfully to drive flapping-wing robots, its support structure must be as lightweight as possible. In this work, we designed, analysed, and developed a lightweight shell using a cross-ply laminate of carbon fibre reinforced polymer (CFRP) to pre-strain a rolled DEA. The CFRP shell was shown to weigh 24.3% of the total mass for the whole DEA assembly, while providing up to 35.0% axial pre-strain to a rolled DEA (BJB-5005 silicone rubber). This DEA assembly using the CFRP shell achieved 30.9% of the theoretical work density for a BJB-TC5005 membrane at 33.5 MV m-1. In comparison, spring rolls with a massive spring core were reported with overall work density merely 10-20% of the maximum value. Furthermore, this CFRP shell can amplify an axial DEA stroke into a larger transverse shell deformation. With these deformation characteristics, this CFRP shell and a rolled DEA were successfully integrated with an insect-inspired thoracic mechanism and they were shown to be feasible to drive it for a flapping wing.

  8. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate

    Science.gov (United States)

    Liu, Yan; Li, Shuyi; Niu, Shichao; Cao, Xiaowen; Han, Zhiwu; Ren, Luquan

    2016-08-01

    Inspired by the unique creatures in the nature, the femtosecond laser technology has been usually used to fabricate the periodic microstructures due to its advantages of rapidness, simplicity, ease of large-area fabrication, and simultaneously offering dual micro/nano-scale structures simply via one-step process for a wide variety of materials. By changing the experimental conditions, multi-functional surfaces which possess superhydrophobicity and structural colors could be achieved on copper substrate. In addition, the apparent contact angle can reach 144.3° without any further modification, which also exhibits the anisotropic wettability. Moreover, it can be inferred that higher laser fluence can lead to a larger CA within a certain range. At the same time, due to the change of laser processing parameters, the obtained surfaces present different structural colors. This study may expand the applications of bio-inspired functional materials because multiple colors and hydrophobicity are both important features in the real life and industrial applications, such as display, decoration, and anti-counterfeiting technology etc.

  9. Fabricating bio-inspired micro/nano-particles by polydopamine coating and surface interactions with blood platelets

    International Nuclear Information System (INIS)

    Graphical abstract: The particles or particle aggregations activate the blood platelets and provide the physical adhesive sites for platelets adhesion. - Highlights: • Particles with varied sizes and surface properties were fabricated by facile polydopamine (PDA) coating on polystyrene microsphere. • The direct interaction between PDA particles and blood platelets was qualitatively investigated. • The knowledge on platelet–particle interactions provided the basic principle to select biocompatible micro/nano-particles in biomedical field. - Abstract: Although bio-inspired polydopamine (PDA) micro/nano-particles show great promise for biomedical applications, the knowledge on the interactions between micro/nano-particles and platelets is still lacking. Here, we fabricate PDA-coated micro/nano-particles and investigate the platelet–particle surface interactions. Our strategy takes the advantage of facile PDA coating on polystyrene (PS) microsphere to fabricate particles with varied sizes and surface properties, and the chemical reactivity of PDA layers to immobilize fibrinogen and bovine serum albumin to manipulate platelet activation and adhesion. We demonstrate that PS particles activate the platelets in the size-dependent manner, but PDA nanoparticles have slight effect on platelet activation; PS particles promote platelet adhesion while PDA particles reduce platelet adhesion on the patterned surface; Particles interact with platelets through activating the glycoprotein integrin receptor of platelets and providing physical sites for initial platelet adhesion. Our work sheds new light on the interaction between platelets and particles, which provides the basic principle to select biocompatible micro/nano-particles in biomedical field

  10. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis.

    Science.gov (United States)

    Yan, Runyu; Chen, Min; Zhou, Han; Liu, Tian; Tang, Xingwei; Zhang, Ke; Zhu, Hanxing; Ye, Jinhua; Zhang, Di; Fan, Tongxiang

    2016-01-01

    Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the first demonstration of a new strategy, based on adopting nature's far red-to-NIR responsive architectures for an efficient bio-inspired photocatalytic system. The system is constructed by controlled assembly of light-harvesting plasmonic nanoantennas onto a typical photocatalytic unit with butterfly wings' 3D micro/nanoarchitectures. Experiments and finite-difference time-domain (FDTD) simulations demonstrate the structural effects on obvious far red-to-NIR photocatalysis enhancement, which originates from (1) Enhancing far red-to-NIR (700~1200 nm) harvesting, up to 25%. (2) Enhancing electric-field amplitude of localized surface plasmon (LSPs) to more than 3.5 times than that of the non-structured one, which promotes the rate of electron-hole pair formation, thus substantially reinforcing photocatalysis. This proof-of-concept study provides a new methodology for NIR photocatalysis and would potentially guide future conceptually new NIR responsive system designs. PMID:26818680

  11. Fabricating bio-inspired micro/nano-particles by polydopamine coating and surface interactions with blood platelets

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Wei [Jiangsu Provincial Key Lab for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Shi, Qiang, E-mail: shiqiang@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Hou, Jianwen; Gao, Jian; Li, Chunming; Jin, Jing; Shi, Hengchong [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin, Jinghua, E-mail: yinjh@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2015-10-01

    Graphical abstract: The particles or particle aggregations activate the blood platelets and provide the physical adhesive sites for platelets adhesion. - Highlights: • Particles with varied sizes and surface properties were fabricated by facile polydopamine (PDA) coating on polystyrene microsphere. • The direct interaction between PDA particles and blood platelets was qualitatively investigated. • The knowledge on platelet–particle interactions provided the basic principle to select biocompatible micro/nano-particles in biomedical field. - Abstract: Although bio-inspired polydopamine (PDA) micro/nano-particles show great promise for biomedical applications, the knowledge on the interactions between micro/nano-particles and platelets is still lacking. Here, we fabricate PDA-coated micro/nano-particles and investigate the platelet–particle surface interactions. Our strategy takes the advantage of facile PDA coating on polystyrene (PS) microsphere to fabricate particles with varied sizes and surface properties, and the chemical reactivity of PDA layers to immobilize fibrinogen and bovine serum albumin to manipulate platelet activation and adhesion. We demonstrate that PS particles activate the platelets in the size-dependent manner, but PDA nanoparticles have slight effect on platelet activation; PS particles promote platelet adhesion while PDA particles reduce platelet adhesion on the patterned surface; Particles interact with platelets through activating the glycoprotein integrin receptor of platelets and providing physical sites for initial platelet adhesion. Our work sheds new light on the interaction between platelets and particles, which provides the basic principle to select biocompatible micro/nano-particles in biomedical field.

  12. Electrochemical properties of large-sized pouch-type lithium ion batteries with bio-inspired organic cathode materials

    Science.gov (United States)

    Yeo, Jae-Seong; Yoo, Eun-Ji; Ha, Sang-Hyeon; Cheong, Dong-Ik; Cho, Sung-Baek

    2016-05-01

    To investigate the feasibility of scaling up bio-inspired organic materials as cathode materials in lithium ion batteries, large-sized pouch cells are successfully prepared via tape casting using lumichrome with an alloxazine structure and aqueous styrene butadiene rubber-carboxymethyl cellulose (SBR-CMC) binders. A battery module with a two-in-series, six-in-parallel (2S6P) configuration is also successfully fabricated and is able to power blue LEDs (850 mW). Lumichrome shows no structural changes during the fabrication processes used to produce the positive electrode. The large-sized pouch cells show two sets of cathodic and anodic peaks with average potentials of 2.58 V and 2.26 V vs. Li/Li+, respectively. The initial discharge capacities are 142 mAh g-1 and 148 mAh g-1 for ethylene carbonate-dimethyl carbonate (EC-DMC) and tetraethylene glycol dimethyl ether (TEGDME) electrolytes, respectively, similar to that of a coin cell (149 mAh g-1). The EC-DMC-injected pouch cells exhibit higher rate performance and cyclability than the TEGDME-injected ones. The TEGDME electrolyte is not suitable for lithium metal anodes because of electrolyte decomposition and subsequent cell swelling.

  13. Bio-inspired Plasmonic Nanoarchitectured Hybrid System Towards Enhanced Far Red-to-Near Infrared Solar Photocatalysis

    Science.gov (United States)

    Yan, Runyu; Chen, Min; Zhou, Han; Liu, Tian; Tang, Xingwei; Zhang, Ke; Zhu, Hanxing; Ye, Jinhua; Zhang, Di; Fan, Tongxiang

    2016-01-01

    Solar conversion to fuels or to electricity in semiconductors using far red-to-near infrared (NIR) light, which accounts for about 40% of solar energy, is highly significant. One main challenge is the development of novel strategies for activity promotion and new basic mechanisms for NIR response. Mother Nature has evolved to smartly capture far red-to-NIR light via their intelligent systems due to unique micro/nanoarchitectures, thus motivating us for biomimetic design. Here we report the first demonstration of a new strategy, based on adopting nature’s far red-to-NIR responsive architectures for an efficient bio-inspired photocatalytic system. The system is constructed by controlled assembly of light-harvesting plasmonic nanoantennas onto a typical photocatalytic unit with butterfly wings’ 3D micro/nanoarchitectures. Experiments and finite-difference time-domain (FDTD) simulations demonstrate the structural effects on obvious far red-to-NIR photocatalysis enhancement, which originates from (1) Enhancing far red-to-NIR (700~1200 nm) harvesting, up to 25%. (2) Enhancing electric-field amplitude of localized surface plasmon (LSPs) to more than 3.5 times than that of the non-structured one, which promotes the rate of electron-hole pair formation, thus substantially reinforcing photocatalysis. This proof-of-concept study provides a new methodology for NIR photocatalysis and would potentially guide future conceptually new NIR responsive system designs.

  14. A Comparative Numerical Study on the Performances and Vortical Patterns of Two Bioinspired Oscillatory Mechanisms: Undulating and Pure Heaving.

    Science.gov (United States)

    Ebrahimi, Mohsen; Abbaspour, Madjid

    2015-01-01

    The hydrodynamics and energetics of bioinspired oscillating mechanisms have received significant attentions by engineers and biologists to develop the underwater and air vehicles. Undulating and pure heaving (or plunging) motions are two significant mechanisms which are utilized in nature to provide propulsive, maneuvering, and stabilization forces. This study aims to elucidate and compare the propulsive vortical signature and performance of these two important natural mechanisms through a systematic numerical study. Navier-Stokes equations are solved, by a pressure-based finite volume method solver, in an arbitrary Lagrangian-Eulerian (ALE) framework domain containing a 2D NACA0012 foil moving with prescribed kinematics. Some of the important findings are (1) the thrust production of the heaving foil begins at lower St and has a greater growing slope with respect to the St; (2) the undulating mechanism has some limitations to produce high thrust forces; (3) the undulating foil shows a lower power consumption and higher efficiency; (4) changing the Reynolds number (Re) in a constant St affects the performance of the oscillations; and (5) there is a distinguishable appearance of leading edge vortices in the wake of the heaving foil without observable ones in the wake of the undulating foil, especially at higher St.

  15. Toward a three-dimensional viscous vortex particle method for numerical investigations of bio-inspired locomotion

    Science.gov (United States)

    Eldredge, Jeff

    2008-11-01

    Biological mechanics of aerial and aquatic locomotion are characterized by the reaction force generated by the fluid against highly deforming structures and the resultant vortical wake produced by this interaction. These two features should be central to a high-fidelity computational tool devoted to exploration of bio-inspired mechanics. Motivated by such problems, we present the development of a viscous vortex particle method with coupled body dynamics. The previously developed and validated tool for two-dimensional problems is briefly reviewed. The interaction between vorticity generation, reaction force, and body dynamics, which constitutes the fluid-structure coupling in the method, is discussed, and the capabilities of the method are demonstrated on the passive propulsion of a fish-like system in the wake of an obstacle. The method is extended to three-dimensional problems, and the various components of the solver are highlighted. The core routines of the three-dimensional tool make use of the Parallel Particle-Mesh library, developed by Koumoutsakos and co-workers (J. Comput. Phys., 215, 2006). The new method is demonstrated with preliminary results of a simple model for a dolphin tail with flexible flukes.

  16. Obstacle traversal and self-righting of bio-inspired robots reveal the physics of multi-modal locomotion

    Science.gov (United States)

    Li, Chen; Fearing, Ronald; Full, Robert

    Most animals move in nature in a variety of locomotor modes. For example, to traverse obstacles like dense vegetation, cockroaches can climb over, push across, reorient their bodies to maneuver through slits, or even transition among these modes forming diverse locomotor pathways; if flipped over, they can also self-right using wings or legs to generate body pitch or roll. By contrast, most locomotion studies have focused on a single mode such as running, walking, or jumping, and robots are still far from capable of life-like, robust, multi-modal locomotion in the real world. Here, we present two recent studies using bio-inspired robots, together with new locomotion energy landscapes derived from locomotor-environment interaction physics, to begin to understand the physics of multi-modal locomotion. (1) Our experiment of a cockroach-inspired legged robot traversing grass-like beam obstacles reveals that, with a terradynamically ``streamlined'' rounded body like that of the insect, robot traversal becomes more probable by accessing locomotor pathways that overcome lower potential energy barriers. (2) Our experiment of a cockroach-inspired self-righting robot further suggests that body vibrations are crucial for exploring locomotion energy landscapes and reaching lower barrier pathways. Finally, we posit that our new framework of locomotion energy landscapes holds promise to better understand and predict multi-modal biological and robotic movement.

  17. A Bio-Inspired, Heavy-Metal-Free, Dual-Electrolyte Liquid Battery towards Sustainable Energy Storage.

    Science.gov (United States)

    Ding, Yu; Yu, Guihua

    2016-04-01

    Wide-scale exploitation of renewable energy requires low-cost efficient energy storage devices. The use of metal-free, inexpensive redox-active organic materials represents a promising direction for environmental-friendly, cost-effective sustainable energy storage. To this end, a liquid battery is designed using hydroquinone (H2BQ) aqueous solution as catholyte and graphite in aprotic electrolyte as anode. The working potential can reach 3.4 V, with specific capacity of 395 mA h g(-1) and stable capacity retention about 99.7% per cycle. Such high potential and capacity is achieved using only C, H and O atoms as building blocks for redox species, and the replacement of Li metal with graphite anode can circumvent potential safety issues. As H2BQ can be extracted from biomass directly and its redox reaction mimics the bio-electrochemical process of quinones in nature, using such a bio-inspired organic compound in batteries enables access to greener and more sustainable energy-storage technology.

  18. Bio-inspired nano-photodiode for Low Light, High Resolution and crosstalk-free CMOS image sensing

    KAUST Repository

    Saffih, Faycal

    2011-05-01

    Previous attempts have been devoted to mimic biological vision intelligence at the architectural system level. In this paper, a novel imitation of biological visual system intelligence is suggested, at the device level with the introduction of novel photodiode morphology. The proposed bio-inspired nanorod photodiode puts the depletion region length on the path of the incident photon instead of on its width, as the case is with the planar photodiodes. The depletion region has a revolving volume to increase the photodiode responsivity, and thus its photosensitivity. In addition, it can virtually boost the pixel fill factor (FF) above the 100% classical limit due to decoupling of its vertical sensing area from its limited planar circuitry area. Furthermore, the suggested nanorod photodiode photosensitivity is analytically proven to be higher than that of the planar photodiode. We also show semi-empirically that the responsivity of the suggested device varies linearly with its height; this important feature has been confirmed using Sentaurus simulation. The proposed nano-photorod is believed to meet the increasingly stringent High-Resolution-Low-Light (HRLL) detection requirements of the camera-phone and biomedical imaging markets. © 2011 IEEE.

  19. The pentose phosphate pathway and cancer.

    Science.gov (United States)

    Patra, Krushna C; Hay, Nissim

    2014-08-01

    The pentose phosphate pathway (PPP), which branches from glycolysis at the first committed step of glucose metabolism, is required for the synthesis of ribonucleotides and is a major source of NADPH. NADPH is required for and consumed during fatty acid synthesis and the scavenging of reactive oxygen species (ROS). Therefore, the PPP plays a pivotal role in helping glycolytic cancer cells to meet their anabolic demands and combat oxidative stress. Recently, several neoplastic lesions were shown to have evolved to facilitate the flux of glucose into the PPP. This review summarizes the fundamental functions of the PPP, its regulation in cancer cells, and its importance in cancer cell metabolism and survival.

  20. Crystal structure of L-alanine phosphate

    International Nuclear Information System (INIS)

    The crystal structure of L-alanine phosphate (C3O2NH7 · H3PO4) is determined by the single-crystal diffraction technique; a 11.918(1) A, b = 9.117(1) A, c = 7.285(1) A, γ = 104.7(1) deg., space group P21, and Z = 4. The amino group of the alanine is protonated by the hydrogen atom of the phosphoric acid. Pairs of H2PO-4 hydrogen-bonded ions are packed into layers alternating with layers of alanine molecules in the crystal. No hydrogen bonds are formed immediately between the alanine molecules