WorldWideScience

Sample records for biohydrogenating ruminal bacterium

  1. Ruminal microbe of biohydrogenation of trans-vaccenic acid to stearic acid in vitro

    Directory of Open Access Journals (Sweden)

    Li Dan

    2012-02-01

    Full Text Available Abstract Background Optimization of the unsaturated fatty acid composition of ruminant milk and meat is desirable. Alteration of the milk and fatty acid profile was previously attempted by the management of ruminal microbial biohydrogenation. The aim of this study was to identify the group of ruminal trans-vaccenic acid (trans-11 C18:1, t-VA hydrogenating bacteria by combining enrichment studies in vitro. Methods The enrichment culture growing on t-VA was obtained by successive transfers in medium containing t-VA. Fatty acids were detected by gas chromatograph and changes in the microbial composition during enrichment were analyzed by denaturing gradient gel electrophoresis (DGGE. Prominent DGGE bands of the enrichment cultures were identified by 16S rRNA gene sequencing. Results The growth of ruminal t-VA hydrogenating bacteria was monitored through the process of culture transfer according to the accumulation of stearic acid (C18:0, SA and ratio of the substrate (t-VA transformed to the product (SA. A significant part of the retrieved 16S rRNA gene sequences was most similar to those of uncultured bacteria. Bacteria corresponding to predominant DGGE bands in t-VA enrichment cultures clustered with t-VA biohydrogenated bacteria within Group B. Conclusions This study provides more insight into the pathway of biohydrogenation. It also may be important to control the production of t-VA, which has metabolic and physiological benefits, through management of ruminal biohydrogenation bacterium.

  2. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A [ORNL; Wall, Judy D. [University of Missouri; Mormile, Dr. Melanie R. [Missouri University of Science and Technology; Begemann, Matthew B [University of Wisconsin, Madison

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  3. Ruminal biohydrogenation as affected by tannins in vitro.

    Science.gov (United States)

    Vasta, Valentina; Makkar, Harinder P S; Mele, Marcello; Priolo, Alessandro

    2009-07-01

    The aim of the present work was to study the effects of tannins from carob (CT; Ceratonia siliqua), acacia leaves (AT; Acacia cyanophylla) and quebracho (QT; Schinopsis lorentzii) on ruminal biohydrogenation in vitro. The tannins extracted from CT, AT and QT were incubated for 12 h in glass syringes in cow buffered ruminal fluid (BRF) with hay or hay plus concentrate as a substrate. Within each feed, three concentrations of tannins were used (0.0, 0.6 and 1.0 mg/ml BRF). The branched-chain volatile fatty acids, the branched-chain fatty acids and the microbial protein concentration were reduced (P < 0.05) by tannins. In the tannin-containing fermenters, vaccenic acid was accumulated (+23 %, P < 0.01) while stearic acid was reduced ( - 16 %, P < 0.0005). The concentration of total conjugated linoleic acid (CLA) isomers in the BRF was not affected by tannins. The assay on linoleic acid isomerase (LA-I) showed that the enzyme activity (nmol CLA produced/min per mg protein) was unaffected by the inclusion of tannins in the fermenters. However, the CLA produced by LA-I (nmol/ml per min) was lower in the presence of tannins. These results suggest that tannins reduce ruminal biohydrogenation through the inhibition of the activity of ruminal micro-organisms.

  4. Immunogenic inhibition of prominent ruminal bacteria as a means to reduce lipolysis and biohydrogenation activity in vitro

    Science.gov (United States)

    Through the microbial processes of lipolysis and biohydrogenation, ruminal animals promote the accumulation of saturated fatty acids in their meat and milk. Anaerovibrio lipolyticus, Butyrivibrio fibrisolvens, and Propionibacterium avidum and acnes have been identified as contributors to ruminal li...

  5. Ruminal microbe of biohydrogenation of trans-vaccenic acid to stearic acid in vitro

    OpenAIRE

    Li Dan; Wang Jia; Bu Deng

    2012-01-01

    Abstract Background Optimization of the unsaturated fatty acid composition of ruminant milk and meat is desirable. Alteration of the milk and fatty acid profile was previously attempted by the management of ruminal microbial biohydrogenation. The aim of this study was to identify the group of ruminal trans-vaccenic acid (trans-11 C18:1, t-VA) hydrogenating bacteria by combining enrichment studies in vitro. Methods The enrichment culture growing on t-VA was obtained by successive transfers in ...

  6. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium.

    Science.gov (United States)

    Begemann, Matthew B; Mormile, Melanie R; Sitton, Oliver C; Wall, Judy D; Elias, Dwayne A

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobiumhydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6-carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate, and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  7. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium

    Directory of Open Access Journals (Sweden)

    Matthew eBegemann

    2012-03-01

    Full Text Available Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium hydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  8. Effects of a tannin-rich legume (Onobrychis viciifolia on in vitro ruminal biohydrogenation and fermentation

    Directory of Open Access Journals (Sweden)

    Gonzalo Hervás

    2016-03-01

    Full Text Available There is still controversy surrounding the ability of tannins to modulate the ruminal biohydrogenation (BH of fatty acids (FA and improve the lipid profile of milk or meat without conferring a negative response in the digestive utilization of the diet. Based on this, an in vitro trial using batch cultures of rumen microorganisms was performed to compare the effects of two legume hays with similar chemical composition but different tannin content, alfalfa and sainfoin (Onobrychis viciifolia, on the BH of dietary unsaturated FA and on the ruminal fermentation. The first incubation substrate, alfalfa, was practically free of tannins, while the second, sainfoin, contained 3.5% (expressed as tannic acid equivalents. Both hays were enriched with sunflower oil as a source of unsaturated FA. Most results of the lipid composition analysis (e.g., greater concentrations of 18:2n-6, cis-9 18:1 or total polyunsaturated FA in sainfoin incubations showed the ability of this tannin-containing legume to inhibit the BH process. However, no significant differences were detected in the accumulation of cis-9 trans-11 conjugated linoleic acid, and variations in trans-11 18:1 and trans-11 cis-15 18:2 did not follow a regular pattern. Regarding the rumen fermentation, gas production, ammonia concentration and volatile FA production were lower in the incubations with sainfoin (-17, -23 and -11%, respectively. Thus, although this legume was able to modify the ruminal BH, which might result in improvements in the meat or milk lipid profile, the present results were not as promising as expected or as obtained before with other nutritional strategies.

  9. Effect of silage botanical composition on ruminal biohydrogenation and transfer of fatty acids to milk in dairy cows

    DEFF Research Database (Denmark)

    Adler, S A; Jensen, Søren Krogh; Thuen, E;

    2013-01-01

    Ruminal biohydrogenation and transfer of fatty acids (FA) to milk were determined for 4 silages with different botanical compositions using 4 multiparous Norwegian Red dairy cows [(mean ± SD) 118 ± 40.9 d in milk, 22.5 ± 2.72 kg of milk/d, 631 ± 3.3 kg of body weight, 3.3 ± 0.40 points on body...... for CON-TI than for the other silages. Silage type had no effect on dry matter intake, but milk yield was lower for CON-TI than for the other silages. Apparent biohydrogenation of C18:3n-3 was lower for ORG-SG (932 g/kg) than for ORG-LG (956 g/kg), CON-PR (959 g/kg), and CON-TI (958 g/kg). Compared....../kg), and milk fat proportion of C18:3n-3 was higher for ORG-SG than for CON-TI. Milk fat proportions of C16:0 were lower for ORG-SG and ORG-LG compared with those for CON-PR and CON-TI. It was concluded that high proportions of red clover and other dicotyledons in the silages affected ruminal biohydrogenation...

  10. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives.

    Science.gov (United States)

    Bielen, Abraham A M; Verhaart, Marcel R A; van der Oost, John; Kengen, Servé W M

    2013-01-17

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus.

  11. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    Directory of Open Access Journals (Sweden)

    Servé W. M. Kengen

    2013-01-01

    Full Text Available Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus.

  12. Polyphenol Oxidase Containing Sidestreams as Emulsifiers of Rumen Bypass Linseed Oil Emulsions: Interfacial Characterization and Efficacy of Protection against in Vitro Ruminal Biohydrogenation.

    Science.gov (United States)

    Gadeyne, Frederik; De Neve, Nympha; Vlaeminck, Bruno; Claeys, Erik; Van der Meeren, Paul; Fievez, Veerle

    2016-05-18

    The low transfer in ruminants of dietary polyunsaturated fatty acids to the milk or peripheral tissues is largely due to ruminal biohydrogenation. Lipids emulsified by a polyphenol oxidase (PPO) rich protein extract of red clover were shown before to be protected against this breakdown after cross-linking with 4-methylcatechol. Protein extracts of 13 other vegetal resources were tested. Surprisingly, the effectiveness to protect emulsified lipids against in vitro ruminal biohydrogenation largely depended on the origin of the extract and its protein concentration but was not related to PPO activity. Moreover, PPO isoforms in vegetal sources, effectively protecting emulsified lipids, were diverse and their presence at the emulsion interface did not seem essential. Potato tuber peels were identified as an interesting biological source of emulsifying proteins and PPO, particularly since protein extracts of industrial potato sidestreams proved to be suitable for the current application. PMID:27111580

  13. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis.

    Science.gov (United States)

    Karnati, S K R; Sylvester, J T; Ribeiro, C V D M; Gilligan, L E; Firkins, J L

    2009-08-01

    Methane is an end product of ruminal fermentation that is energetically wasteful and contributes to global climate change. Bromoethanesulfonate, animal-vegetable fat, and monensin were compared with a control treatment to suppress different functional groups of ruminal prokaryotes in the presence or absence of protozoa to evaluate changes in fermentation, digestibility, and microbial N outflow. Four dual-flow continuous culture fermenter systems were used in 4 periods in a 4 x 4 Latin square design split into 2 subperiods. In subperiod 1, a multistage filter system (50-microm smallest pore size) retained most protozoa. At the start of subperiod 2, conventional filters (300-microm pore size) were substituted to efflux protozoa via filtrate pumps over 3 d; after a further 7 d of adaptation, the fermenters were sampled for 3 d. Treatments were retained during both subperiods. Flow of total N and digestibilities of NDF and OM were 18, 16, and 9% higher, respectively, for the defaunated subperiod but were not different among treatments. Ammonia concentration was 33% higher in the faunated fermenters but was not affected by treatment. Defaunation increased the flow of nonammonia N and bacterial N from the fermenters. Protozoal counts were not different among treatments, but bromoethanesulfonate increased the generation time from 43.2 to 55.6 h. Methanogenesis was unaffected by defaunation but tended to be increased by unsaturated fat. Defaunation did not affect total volatile fatty acid production but decreased the acetate:propionate ratio; monensin increased production of isovalerate and valerate. Biohydrogenation of unsaturated fatty acids was impaired in the defaunated fermenters because effluent flows of oleic, linoleic, and linolenic acids were 60, 77, and 69% higher, and the ratio of vaccenic acid:unsaturated FA ratio was decreased by 34% in the effluent. This ratio was increased in both subperiods with the added fat diet, indicating an accumulation of

  14. Isolation and characterization of an anaerobic ruminal bacterium capable of degrading hydrolyzable tannins.

    OpenAIRE

    Nelson, K E; A. N. Pell; Schofield, P; Zinder, S

    1995-01-01

    An anaerobic diplococcoid bacterium able to degrade hydrolyzable tannins was isolated from the ruminal fluid of a goat fed desmodium (Desmodium ovalifolium), a tropical legume which contains levels as high as 17% condensed tannins. This strain grew under anaerobic conditions in the presence of up to 30 g of tannic acid per liter and tolerated a range of phenolic monomers, including gallic, ferulic, and p-coumaric acids. The predominant fermentation product from tannic acid breakdown was pyrog...

  15. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    NARCIS (Netherlands)

    Bielen, A.A.M.; Verhaart, M.R.A.; Oost, van der J.; Kengen, S.W.M.

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit fo

  16. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    OpenAIRE

    Kengen, Servé W. M.; Verhaart, Marcel R. A.; John van der Oost; Abraham A. M. Bielen

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the resear...

  17. Draft Genome Sequence of Clostridium sp. Strain Ade.TY, a New Biohydrogen- and Biochemical-Producing Bacterium Isolated from Landfill Leachate Sludge.

    Science.gov (United States)

    Wong, Y M; Juan, J C; Ting, Adeline; Wu, T Y; Gan, H M; Austin, C M

    2014-03-06

    Clostridium sp. strain Ade.TY is potentially a new biohydrogen-producing species isolated from landfill leachate sludge. Here we present the assembly and annotation of its genome, which may provide further insights into its gene interactions for efficient biohydrogen production.

  18. Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminal biohydrogenation of linoleic and linolenic acids.

    Science.gov (United States)

    Zened, A; Troegeler-Meynadier, A; Nicot, M C; Combes, S; Cauquil, L; Farizon, Y; Enjalbert, F

    2011-11-01

    Trans isomers of fatty acids exhibit different health properties. Among them, trans-10,cis-12 conjugated linoleic acid has negative effects on milk fat production and can affect human health. A shift from the trans-11 to the trans-10 pathway of biohydrogenation (BH) can occur in the rumen of dairy cows receiving high-concentrate diets, especially when the diet is supplemented with highly unsaturated fat sources. The differences of BH patterns between linoleic acid (LeA) and linolenic acid (LnA) in such ruminal conditions remain unknown; thus, the aim of this work was to investigate in vitro the effects of starch and sunflower oil in the diet of the donor cows and starch level in the incubates on the BH patterns and efficiencies of LeA and LnA. The design was a 4 × 4 Latin square design with 4 cows, 4 periods, and 4 diets with combinations of 21 or 34% starch and 0 or 5% sunflower oil. The rumen content of each cow during each period was incubated with 4 substrates, combining 2 starch levels and either LeA or LnA addition. Capillary electrophoresis single-strand conformation polymorphism of incubates showed that dietary starch decreased the diversity of the bacterial community and the high-starch plus oil diet modified its structure. High-starch diets poorly affected isomerization and first reduction of LeA and LnA, but decreased the efficiencies of trans-11,cis-15-C18:2 and trans C18:1 reduction. Dietary sunflower oil increased the efficiency of LeA isomerization but decreased the efficiency of trans C18:1 reduction. An interaction between dietary starch and dietary oil resulted in the highest trans-10 isomers production in incubates when the donor cow received the high-starch plus oil diet. The partition between trans-10 and trans-11 isomers was also affected by an interaction between starch level and the fatty acid added to the incubates, showing that the trans-10 shift only occurred with LeA, whereas LnA was mainly hydrogenated via the more usual trans-11

  19. Assessment of reductive acetogenesis with indigenous ruminal bacterium populations and Acetitomaculum ruminis.

    Science.gov (United States)

    Le Van, T D; Robinson, J A; Ralph, J; Greening, R C; Smolenski, W J; Leedle, J A; Schaefer, D M

    1998-09-01

    The objective of this study was to evaluate the role of reductive acetogenesis as an alternative H2 disposal mechanism in the rumen. H2/CO2-supported acetogenic ruminal bacteria were enumerated by using a selective inhibitor of methanogenesis, 2-bromoethanesulfonic acid (BES). Acetogenic bacteria ranged in density from 2.5 x 10(5) cells/ml in beef cows fed a high-forage diet to 75 cells/ml in finishing steers fed a high-grain diet. Negligible endogenous acetogenic activity was demonstrated in incubations containing ruminal contents, NaH13CO3, and 100% H2 gas phase since [U-13C]acetate, as measured by mass spectroscopy, did not accumulate. Enhancement of acetogenesis was observed in these incubations when methanogenesis was inhibited by BES and/or by the addition of an axenic culture of the rumen acetogen Acetitomaculum ruminis 190A4 (10(7) CFU/ml). To assess the relative importance of population density and/or H2 concentration for reductive acetogenesis in ruminal contents, incubations as described above were performed under a 100% N2 gas phase. Both selective inhibition of methanogenesis and A. ruminis 190A4 fortification (>10(5) CFU/ml) were necessary for the detection of reductive acetogenesis under H2-limiting conditions. Under these conditions, H2 accumulated to 4, 800 ppm. In contrast, H2 accumulated to 400 ppm in incubations with active methanogenesis (without BES). These H2 concentrations correlated well with the pure culture H2 threshold concentrations determined for A. ruminis 190A4 (3,830 ppm) and the ruminal methanogen 10-16B (126 ppm). The data demonstrate that ruminal methanogenic bacteria limited reductive acetogenesis by lowering the H2 partial pressure below the level necessary for H2 utilization by A. ruminis 190A4. PMID:9726893

  20. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum.

    Science.gov (United States)

    Younesi, Habibollah; Najafpour, Ghasem; Ku Ismail, Ku Syahidah; Mohamed, Abdul Rahman; Kamaruddin, Azlina Harun

    2008-05-01

    Hydrogen may be considered a potential fuel for the future since it is carbon-free and oxidized to water as a combustion product. Bioconversion of synthesis gas (syngas) to hydrogen was demonstrated in continuous stirred tank bioreactor (CSTBR) utilizing acetate as a carbon source. An anaerobic photosynthetic bacterium, Rhodospirillum rubrum catalyzed water-gas shift reaction which was applied for the bioconversion of syngas to hydrogen. The continuous fermentation of syngas in the bioreactor was continuously operated at various gas flow rates and agitation speeds, for the period of two months. The gas flow rates were varied from 5 to 14 ml/min. The agitation speeds were increasingly altered in the range of 150-500 rpm. The pH and temperature of the bioreactor was set at 6.5 and 30 degrees C. The liquid flow rate was kept constant at 0.65 ml/min for the duration of 60 days. The inlet acetate concentration was fed at 4 g/l into the bioreactor. The hydrogen production rate and yield were 16+/-1.1 mmol g(-1)cell h(-1) and 87+/-2.4% at fixed agitation speed of 500 rpm and syngas flow rate of 14 ml/min, respectively. The mass transfer coefficient (KLa) at this condition was approximately 72.8h(-1). This new approach, using a biocatalyst was considered as an alternative method of conventional Fischer-Tropsch synthetic reactions, which were able to convert syngas into hydrogen.

  1. Glycerol inhibition of ruminal lipolysis in vitro

    Science.gov (United States)

    Supplemental glycerol inhibits rumen lipolysis, a prerequisite for rumen biohydrogenation, which is responsible for the saturation of dietary fatty acids consumed by ruminant animals. Feeding excess glycerol, however, adversely affects dry matter digestibility. To more clearly define the effect of...

  2. Biohydrogen Production from Glycerol using Thermotoga spp

    NARCIS (Netherlands)

    Maru, B.T.; Bielen, A.A.M.; Kengen, S.W.M.; Constantini, M.; Medina, F.

    2012-01-01

    Given the highly reduced state of carbon in glycerol and its availability as a substantial byproduct of biodiesel production, glycerol is of special interest for sustainable biofuel production. Glycerol was used as a substrate for biohydrogen production using the hyperthermophilic bacterium, Thermot

  3. Antimicrobial Effects of Red Clover (Trifolium pratense) Phenolic Extract on the Ruminal Hyper Ammonia-producing Bacterium, Clostridium sticklandii SR

    Science.gov (United States)

    Ruminal proteolysis and subsequent amino acid degradation represent considerable economic loss in ruminant production. The hyper ammonia-producing bacteria (HAB) are responsible for amino acid deamination in the rumen. HAB can be controlled with ionophores, but they are also susceptible to plant-sy...

  4. Treatment of flaxseed to reduce biohydrogenation of a-linolenic acid by ruminal microbes in sheep and cattle and increase n-3 fatty acid concentrations in red meat

    Science.gov (United States)

    Our study determined if flaxseed treated with a formaldehyde-free process increased n-3 fatty acid (FA) levels in ruminant muscle. Twenty-four lambs (initial BW 43.8 ± 4.4 kg) were randomly divided into 4 groups for a 90-d trial. One treatment group (FLX) was fed 136 g/d of non-treated ground flaxse...

  5. Microorganisms and dietary factors affecting biohydrogenation and conjugated linoleic acid production in the rumen ecosystem

    OpenAIRE

    Maia, Margarida Rosa Garcez

    2010-01-01

    Tese de Doutoramento em Ciências Veterinárias, especialidade de Produção Animal Consumption of animal fat has been associated with an increased incidence of chronic diseases, as cardiovascular disease, obesity and diabetes. Ruminant products, milk and meat, have high saturated fatty acids (FA) content as a result of biohydrogenation by microbial metabolic activity in the rumen. Biohydrogenation also originates FA with health promoting or disease preventing properties, including...

  6. Effects of antibodies and glycerol as potential inhibitors of ruminal lipase activity

    Science.gov (United States)

    Ruminant-derived foods contain high proportions of saturated fats, a result of ruminal biohydrogenation, which rapidly saturates and thus limits the availability of free unsaturated fatty acids for assimilation. Strategies to enrich ruminant-derived foods with unsaturated fatty acids are desired as...

  7. Evaluation of feeding glycerol on free-fatty acid production and fermentation kinetics of mixed ruminal microbes in vitro

    Science.gov (United States)

    Strategies to enrich ruminant-derived foods with unsaturated fatty acids are desired as these are considered beneficial for good human health. Ruminant-derived foods contain high proportions of saturated fats, a result of ruminal biohydrogenation, which rapidly saturates and thus limits the availab...

  8. Thermophilic Biohydrogen Production

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    Dark fermentative hydrogen production at thermophilic conditions is attractive process for biofuel production. From thermodynamic point of view, higher temperatures favor biohydrogen production. Highest hydrogen yields are always associated with acetate, or with mixed acetate- butyrate type...... fermentation. On the contrary the hydrogen yield decreases, with increasing concentrations of lactate, ethanol or propionate. Major factors affecting dark fermentative biohydrogen production are organic loading rate (OLR), pH, hydraulic retention time (HRT), dissolved hydrogen and dissolved carbon dioxide...... concentrations, and soluble metabolic profile (SMP). A number of thermophilic and extreme thermophilic cultures (pure and mixed) have been studied for biohydrogen production from different feedstocks - pure substrates and waste/wastewaters. Variety of process technologies (operational conditions...

  9. Biohydrogen from Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Dubini, Alexandra; Gonzalez-Ballester, David

    2016-03-01

    This chapter provides an overview of the current state of knowledge of the mechanisms involved in biohydrogen production from microalgae. The known limitations linked to photohydrogen productivity are addressed. Particular attention is given to physiological and molecular strategies to sustain and improve hydrogen production. The impact of different nutrient stresses and the effect of carbon supply on hydrogen production are discussed. The genetic and metabolic engineering approaches for increasing hydrogen production are outlined.

  10. Econometric models for biohydrogen development.

    Science.gov (United States)

    Lee, Duu-Hwa; Lee, Duu-Jong; Veziroglu, Ayfer

    2011-09-01

    Biohydrogen is considered as an attractive clean energy source due to its high energy content and environmental-friendly conversion. Analyzing various economic scenarios can help decision makers to optimize development strategies for the biohydrogen sector. This study surveys econometric models of biohydrogen development, including input-out models, life-cycle assessment approach, computable general equilibrium models, linear programming models and impact pathway approach. Fundamentals of each model were briefly reviewed to highlight their advantages and disadvantages. The input-output model and the simplified economic input-output life-cycle assessment model proved most suitable for economic analysis of biohydrogen energy development. A sample analysis using input-output model for forecasting biohydrogen development in the United States is given.

  11. Linseed: a valuable feedstuff for ruminants

    OpenAIRE

    Doreau Michel; Ferlay Anne

    2015-01-01

    Linseeds are used in ruminant feeding for a long time, but this feedstuff knows now increasing interest. Linseeds are rich in alpha-linolenic acid, a fatty acid from the omega-3 series. Despite an extensive biohydrogenation of dietary alpha-linolenic acid in the rumen, its concentration in milk and beef meat increases with linseed incorporation in diets; this increase is accompanied by that of other fatty acids produced during b...

  12. Sequence length variation of internal genic space of 16S rDNA-23S rDNA in biohydrogen-bacterium%产氢菌的16S -23S rDNA间隔区的长度变异性分析

    Institute of Scientific and Technical Information of China (English)

    李永峰; 郑国香; 张文启; 李建政; 胡立杰

    2005-01-01

    生物制氢细菌Rennanqilyf3的16S rRNA gene (rDNA)-23S rDNA间隔区碱基序列被测定.利用PCR扩增间隔区DNA,间隔区碱基序列存在长度多态现象.用这一长度多态现象进行产氢发酵细菌的辨认和识别.产氢发酵细菌Rennanqilyf3的16S rRNA gene (rDNA)-23S rDNA间隔区的PCR产品从1 270 到398 bp,共有5个序列.碱基数目分别为1 270、398、638、437 和 436 bp.%A method based on PCR amplification of the 16S rRNA gene (rDNA)-23S rDNA intergenic regions was developed for the identification of species for fermentative biohydrogen-producing bacterium. The sizes of the PCR products varied from 1 270 to 398 bp. Strain of Rennanqilyf3 were characterized as having products of 1 270,398,638, 437 and 436bp.

  13. Biohydrogen production from lignocellulosic feedstock.

    Science.gov (United States)

    Cheng, Chieh-Lun; Lo, Yung-Chung; Lee, Kuo-Shing; Lee, Duu-Jong; Lin, Chiu-Yue; Chang, Jo-Shu

    2011-09-01

    Due to the recent energy crisis and rising concern over climate change, the development of clean alternative energy sources is of significant interest. Biohydrogen produced from cellulosic feedstock, such as second generation feedstock (lignocellulosic biomass) and third generation feedstock (carbohydrate-rich microalgae), is a promising candidate as a clean, CO2-neutral, non-polluting and high efficiency energy carrier to meet the future needs. This article reviews state-of-the-art technology on lignocellulosic biohydrogen production in terms of feedstock pretreatment, saccharification strategy, and fermentation technology. Future developments of integrated biohydrogen processes leading to efficient waste reduction, low CO2 emission and high overall hydrogen yield is discussed.

  14. Linseed: a valuable feedstuff for ruminants

    Directory of Open Access Journals (Sweden)

    Doreau Michel

    2015-11-01

    Full Text Available Linseeds are used in ruminant feeding for a long time, but this feedstuff knows now increasing interest. Linseeds are rich in alpha-linolenic acid, a fatty acid from the omega-3 series. Despite an extensive biohydrogenation of dietary alpha-linolenic acid in the rumen, its concentration in milk and beef meat increases with linseed incorporation in diets; this increase is accompanied by that of other fatty acids produced during biohydrogenation, especially conjugated linoleic acids and trans 18:1 fatty acids. The increase in cow fertility due to omega-3 fatty acids has not been demonstrated. Furthermore, linseed incorporation in ruminant diets is one of the most efficient ways to decrease enteric methane emissions. In addition to a global mitigating effect of all lipid sources on methane, linseeds have a specific effect due to changes in rumen microbial ecosystem. The practical use of linseeds in ruminant feeding at a large scale requires the absence of negative effect at any step of the ruminant production system. An excessive supply of lipids from linseeds can have deleterious effects on digestive efficiency, milk fat and protein content, beef susceptibility to oxidation, milk and beef fatty acid composition, but when linseed incorporation in the diet does not exceed ca. 3% of additional fat, only positive effects are remaining. A challenge is the increase in linseed cropping to meet increased needs for animal feeding.

  15. Rumination disorder

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/001539.htm Rumination disorder To use the sharing features on this page, please enable JavaScript. Rumination disorder is a condition in which a person ...

  16. Biohydrogen production from CO-rich syngas via a locally isolated Rhodopseudomonas palustris PT.

    Science.gov (United States)

    Pakpour, Fatemeh; Najafpour, Ghasem; Tabatabaei, Meisam; Tohidfar, Masoud; Younesi, Habiboallah

    2014-05-01

    Biohydrogen production through water–gas shift (WGS) reaction by a biocatalyst was conducted in batch fermentation. The isolated photosynthetic bacterium Rhodopseudomonas palustris PT was able to utilize carbon monoxide and simultaneously produce hydrogen. Light exposure was provided as an indispensable requirement for the first stage of bacterial growth, but throughout the hydrogen production stage, the energy requirement was met through the WGS reaction. At ambient pressure and temperature, the effect of various sodium acetate concentrations in presence of CO-rich syngas on cell growth, carbon monoxide consumption, and biohydrogen production was also investigated. Maximal efficiency of hydrogen production in response to carbon monoxide consumption was recorded at 86 % and the highest concentration of hydrogen at 33.5 mmol/l was achieved with sodium acetate concentration of 1.5 g/l. The obtained results proved that the local isolate; R. palustris PT, was able to utilize CO-rich syngas and generate biohydrogen via WGS reaction.

  17. Feasibility of biohydrogen production from tofu wastewater with glutamine auxotrophic mutant of Rhodobacter sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, G.H.; Wang, L.; Kang, Z.H. [School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping road, Shanghai 200092 (China)

    2010-12-15

    NH{sub 4}{sup +}, which is normally the integrant in organic wastewater, such as Tofu wastewater, is an inhibitor to hydrogen production by anoxygenic phototrophic bacterium. In order to release inhibition of NH{sub 4}{sup +} to biohydrogen generation by Rhodobacter sphaeroides, a glutamine auxotrophic mutant R. sphaeroides TJ-0803 was obtained by mutagenizing with ethyl methane sulfonate. The mutant could generate biohydrogen efficiently in the medium with high NH{sub 4}{sup +} concentration, because the inhibition of NH{sub 4}{sup +} to nitrogenase was released. Under suitable conditions, TJ-0803 could effectively produce biohydrogen from tofu wastewater, which commonly containing 50-60 mg L{sup -1} NH{sub 4}{sup +}, and the generation rate was increased by more than 100% compared with that from wild-type R. sphaeroides. (author)

  18. Effect of in vitro docosahexaenoic acid supplementation to marine algae-adapted and unadapted rumen inoculum on the biohydrogenation of unsaturated fatty acids infreeze-dried grass

    NARCIS (Netherlands)

    Vlaeminck, B.; Mengistu, G.; Fievez, V.; Jonge, de L.H.; Dijkstra, J.

    2008-01-01

    The objective of this study was to examine the ruminal biohydrogenation of linoleic (18:2n-6) and linolenic (18:3n-3) acid during in vitro incubations with rumen inoculum from dairy cattle adapted or not to marine algae and with or without additional in vitro docosahexaenoic acid (DHA, 22:6n-3) supp

  19. Interactions between oil substrates and glucose on pure cultures of ruminal lipase-producing bacteria

    Science.gov (United States)

    The hydrolysis of free fatty acids from lipids is a prerequisite for biohydrogenation, a process that effectively saturates free fatty acids. Anaerovibrio lipolyticus and Butyrivibrio fibrisolvens have long been thought to be the major contributors to ruminal lipolysis; however, Propionibacterium a...

  20. Photoinduced Biohydrogen Production from Biomass

    Directory of Open Access Journals (Sweden)

    Yutaka Amao

    2008-07-01

    Full Text Available Photoinduced biohydrogen production systems, coupling saccharaides biomass such as sucrose, maltose, cellobiose, cellulose, or saccharides mixture hydrolysis by enzymes and glucose dehydrogenase (GDH, and hydrogen production with platinum colloid as a catalyst using the visible light-induced photosensitization of Mg chlorophyll-a (Mg Chl-a from higher green plant or artificial chlorophyll analog, zinc porphyrin, are introduced.

  1. Bioreactor and process design for biohydrogen production.

    Science.gov (United States)

    Show, Kuan-Yeow; Lee, Duu-Jong; Chang, Jo-Shu

    2011-09-01

    Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. It has the potential for renewable biofuel to replace current hydrogen production which rely heavily on fossil fuels. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential. This work presents a review of advances in bioreactor and bioprocess design for biohydrogen production. The state-of-the art of biohydrogen production is discussed emphasizing on production pathways, factors affecting biohydrogen production, as well as bioreactor configuration and operation. Challenges and prospects of biohydrogen production are also outlined.

  2. Dark fermentation on biohydrogen production: Pure culture.

    Science.gov (United States)

    Lee, Duu-Jong; Show, Kuan-Yeow; Su, Ay

    2011-09-01

    Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential. This work presents a review of literature reports on the pure hydrogen-producers under anaerobic environment. Challenges and perspective of biohydrogen production with pure cultures are also outlined.

  3. Isolation, Identification and Optimization of Biohydrogen-producing Bacterium from Sludge of Sugar Mills%糖厂污泥中高效产氢菌的分离鉴定及产氢优化

    Institute of Scientific and Technical Information of China (English)

    伍琪; 邓超冰; 才金玲; 冼萍; 郭辰; 王广策

    2012-01-01

    A strain of anaerobic and Gram-positive bacteria which was isolated and purified from sludge of sugar mills was identified as Clostridium sp. 60E with registration number as JF708079 by 16S rDNA sequence analysis. Growth and hydrogen production curves showed that it produced H2 during log phase and stable phase of bacteria. Changes of pH value, temperature and carbon sources during hydrogen fermentation were monitored. It was found that Clostridium sp. 60E was an aciduric bacterium. At the optimal pH 5.0,35 ℃ with glucose as carbon source, the maximum hydrogen production was(208± 8.01 )mL H2/100 mL, which enhanced 142% in comparison to the original. The hydrogen concentration in the gas phase was up to 55.32%, while the maximum hydrogen production rate was(l88±8.72) mL H2/(L-h) or 15.99 mmol(H2)g/(dry cell-h). The study indicated that Clostridium sp. 60E separated from sludge is a superior strain of anaerobic bacteria in hydrogen production, which could be applied to treating wastewater as an effective method.%从甘蔗糖厂污泥样品中,分离纯化得到一株革兰氏阳性厌氧产氢菌.经16S rDNA分子生物学鉴定,该菌株为Clostridium sp.60E(注册号:JF708079).对该菌株生长及产氢特性的研究发现,其产氢主要发生在细胞生长对数期的中后期和稳定期.温度及pH值单因素实验显示,Clostridium sp.60E为一株中温产氢菌,有较好的耐酸能力.采用正交实验研究方法优化产氢条件,发现起始pH值为5,培养温度为35℃,碳源选择葡萄糖时,其总产氢量最高可达到(208±8.01) mL HJ100 mL培养基,比优化前提高了142%,产氢纯度最高达到55.32%,最高产氢速率为(188±8.72) mL H2/(L·h)、15.99 mmol(H2)g(dry cell·h).以上研究表明,从糖厂污泥中筛选的Clostridium sp.60E是一株良好的厌氧发酵产氢菌,将其应用于废水处理,可以实现有机废水的高效制氢,是实现废水和有机废物资源化的一条有效途径.

  4. Use of tannins to improve fatty acids profile of meat and milk quality in ruminants: A review

    OpenAIRE

    Rodrigo Morales; Ungerfeld, Emilio M.

    2015-01-01

    This paper reviews how tannins, through their effects on rumen lipid metabolism, can affect the composition of ruminants' meat and milk fat. Tannins are a heterogeneous group of plant secondary compounds known for both beneficial and detrimental effects on animals' digestive physiology. Tannins supplementation of ruminants' diets alters both in vivo and in vitro unsaturated fatty acids biohydrogenation and hence the profile of fatty acids outflowing the rumen, which can influence milk and mea...

  5. Comparison of ruminal lipid metabolism in dairy cows and goats fed diets supplemented with starch, plant oil, or fish oil

    OpenAIRE

    Gutierrez Toral, Pablo; Bernard, Laurence; Belenguer, A.; Rouel, Jacques; Hervás, G.; Chilliard, Yves; Frutos, P.

    2016-01-01

    Direct comparison of cow and goat performance and milk fatty acid responses to diets known to induce milk fat depression (MFD) in the bovine reveals relevant species-by-diet interactions in ruminal lipid metabolism. Thus, this study was conducted to infer potential mechanisms responsible for differences in the rumen microbial biohydrogenation (BH) due to diet and ruminant species. To meet this objective, 12 cows and 15 goats were fed a basal diet (control), a similar diet supplemented with 2....

  6. Effects of ruminant trans fatty acids on cardiovascular disease and cancer: a comprehensive review of epidemiological, clinical, and mechanistic studies

    Science.gov (United States)

    There are two predominant sources of dietary trans fatty acids in the food supply, those formed during the industrial partial hydrogenation of vegetable oils (iTFA) and those formed by biohydrogenation in ruminants (rTFA), including vaccenic acid and (VA) and rumenic acid [RA, a conjugated linoleic ...

  7. Glycerol inhibition of ruminal lipolysis in vitro.

    Science.gov (United States)

    Edwards, H D; Anderson, R C; Miller, R K; Taylor, T M; Hardin, M D; Smith, S B; Krueger, N A; Nisbet, D J

    2012-09-01

    Supplemental glycerol inhibits rumen lipolysis, a prerequisite for rumen biohydrogenation, which is responsible for the saturation of dietary fatty acids consumed by ruminant animals. Feeding excess glycerol, however, adversely affects dry matter digestibility. To more clearly define the effect of supplemental glycerol on rumen lipolysis, mixed populations of ruminal bacteria were incubated with 6 or 20% glycerol (vol/vol). After 48-h anaerobic incubation of mixed culture rumen fluid, rates of free fatty acid production (nmol/mL per h) for the 6 and 20% glycerol-supplemented samples were decreased by 80 and 86%, respectively, compared with rates from nonsupplemented control cultures (12.4±1.0; mean ± SE). Conversely, assay of the prominent ruminal lipase-producing bacteria Anaerovibrio lipolyticus 5S, Butyrivibrio fibrisolvens 49, and Propionibacterium species avidum and acnes revealed no effect of 2 or 10% (vol/vol) added glycerol on lipolytic activity by these organisms. Supplementing glycerol at 6% on a vol/vol basis, equivalent to supplementing glycerol at approximately 8 to 15% of diet dry matter, effectively reduced lipolysis. However, the mechanism of glycerol inhibition of ruminal lipolysis remains to be demonstrated. PMID:22916923

  8. Biohydrogen production and bioprocess enhancement: a review.

    Science.gov (United States)

    Mudhoo, Ackmez; Forster-Carneiro, Tânia; Sánchez, Antoni

    2011-09-01

    This paper provides an overview of the recent advances and trends in research in the biological production of hydrogen (biohydrogen). Hydrogen from both fossil and renewable biomass resources is a sustainable source of energy that is not limited and of different applications. The most commonly used techniques of biohydrogen production, including direct biophotolysis, indirect biophotolysis, photo-fermentation and dark-fermentation, conventional or "modern" techniques are examined in this review. The main limitations inherent to biochemical reactions for hydrogen production and design are the constraints in reactor configuration which influence biohydrogen production, and these have been identified. Thereafter, physical pretreatments, modifications in the design of reactors, and biochemical and genetic manipulation techniques that are being developed to enhance the overall rates and yields of biohydrogen generation are revisited. PMID:21073399

  9. Biohydrogen production and bioprocess enhancement: a review.

    Science.gov (United States)

    Mudhoo, Ackmez; Forster-Carneiro, Tânia; Sánchez, Antoni

    2011-09-01

    This paper provides an overview of the recent advances and trends in research in the biological production of hydrogen (biohydrogen). Hydrogen from both fossil and renewable biomass resources is a sustainable source of energy that is not limited and of different applications. The most commonly used techniques of biohydrogen production, including direct biophotolysis, indirect biophotolysis, photo-fermentation and dark-fermentation, conventional or "modern" techniques are examined in this review. The main limitations inherent to biochemical reactions for hydrogen production and design are the constraints in reactor configuration which influence biohydrogen production, and these have been identified. Thereafter, physical pretreatments, modifications in the design of reactors, and biochemical and genetic manipulation techniques that are being developed to enhance the overall rates and yields of biohydrogen generation are revisited.

  10. Thermophilic biohydrogen production: how far are we?

    Science.gov (United States)

    Pawar, Sudhanshu S; van Niel, Ed W J

    2013-09-01

    Apart from being applied as an energy carrier, hydrogen is in increasing demand as a commodity. Currently, the majority of hydrogen (H2) is produced from fossil fuels, but from an environmental perspective, sustainable H2 production should be considered. One of the possible ways of hydrogen production is through fermentation, in particular, at elevated temperature, i.e. thermophilic biohydrogen production. This short review recapitulates the current status in thermophilic biohydrogen production through fermentation of commercially viable substrates produced from readily available renewable resources, such as agricultural residues. The route to commercially viable biohydrogen production is a multidisciplinary enterprise. Microbiological studies have pointed out certain desirable physiological characteristics in H2-producing microorganisms. More process-oriented research has identified best applicable reactor types and cultivation conditions. Techno-economic and life cycle analyses have identified key process bottlenecks with respect to economic feasibility and its environmental impact. The review has further identified current limitations and gaps in the knowledge, and also deliberates directions for future research and development of thermophilic biohydrogen production. PMID:23948723

  11. Thermophilic biohydrogen production: how far are we?

    Science.gov (United States)

    Pawar, Sudhanshu S; van Niel, Ed W J

    2013-09-01

    Apart from being applied as an energy carrier, hydrogen is in increasing demand as a commodity. Currently, the majority of hydrogen (H2) is produced from fossil fuels, but from an environmental perspective, sustainable H2 production should be considered. One of the possible ways of hydrogen production is through fermentation, in particular, at elevated temperature, i.e. thermophilic biohydrogen production. This short review recapitulates the current status in thermophilic biohydrogen production through fermentation of commercially viable substrates produced from readily available renewable resources, such as agricultural residues. The route to commercially viable biohydrogen production is a multidisciplinary enterprise. Microbiological studies have pointed out certain desirable physiological characteristics in H2-producing microorganisms. More process-oriented research has identified best applicable reactor types and cultivation conditions. Techno-economic and life cycle analyses have identified key process bottlenecks with respect to economic feasibility and its environmental impact. The review has further identified current limitations and gaps in the knowledge, and also deliberates directions for future research and development of thermophilic biohydrogen production.

  12. Optimization of Biohydrogen Production with Biomechatronics

    Directory of Open Access Journals (Sweden)

    Shao-Yi Hsia

    2014-01-01

    Full Text Available Massive utilization of petroleum and natural gas caused fossil fuel shortages. Consequently, a large amount of carbon dioxide and other pollutants are produced and induced environmental impact. Hydrogen is considered a clean and alternative energy source. It contains relatively high amount of energy compared with other fuels and by-product is water. In this study, the combination of ultrasonic mechanical and biological effects is utilized to increase biohydrogen production from dark fermentation bacteria. The hydrogen production is affected by many process conditions. For obtaining the optimal result, experimental design is planned using the Taguchi Method. Four controlling factors, the ultrasonic frequency, energy, exposure time, and starch concentration, are considered to calculate the highest hydrogen production by the Taguchi Method. Under the best operating conditions, the biohydrogen production efficiency of dark fermentation increases by 19.11%. Results have shown that the combination of ultrasound and biological reactors for dark fermentation hydrogen production outperforms the traditional biohydrogen production method. The ultrasonic mechanical effects in this research always own different significances on biohydrogen production.

  13. Influence of iron on sulfide inhibition in dark biohydrogen fermentation.

    Science.gov (United States)

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Nakhla, George

    2012-12-01

    Sulfide impact on biohydrogen production using dark fermentation of glucose at 37 °C was investigated. Dissolved sulfide (S(2-)) at a low concentration (25mg/L) increased biohydrogen production by 54% relative to the control (without iron addition). Whereas on initial dissolved S(2-) concentration of 500 mg/L significantly inhibited the biohydrogen production with total cumulative biohydrogen decreasing by 90% compared to the control (without iron addition). At sulfide concentrations of 500 mg S(2-)/L, addition of Fe(2+) at 3-4 times the theoretical requirement to precipitate 100% of the dissolved S(2-) entirely eliminated the inhibitory effect of sulfide.

  14. Use of tannins to improve fatty acids profile of meat and milk quality in ruminants: A review

    Directory of Open Access Journals (Sweden)

    Rodrigo Morales

    2015-06-01

    Full Text Available This paper reviews how tannins, through their effects on rumen lipid metabolism, can affect the composition of ruminants' meat and milk fat. Tannins are a heterogeneous group of plant secondary compounds known for both beneficial and detrimental effects on animals' digestive physiology. Tannins supplementation of ruminants' diets alters both in vivo and in vitro unsaturated fatty acids biohydrogenation and hence the profile of fatty acids outflowing the rumen, which can influence milk and meat content of beneficial fatty acids such as linolenic acid (c9,c12,c15-18:3, vaccenic acid (ti 1-18:1 and rumenic acid (c9,t11-18:2, among others. Published information indicates that tannins could inhibit biohydrogenation though affecting ruminal microorganisms. Some studies found increments in linolenic, rumenic and/or vaccenic acids in meat and milk fat using different sources of tannins; however, the effects of tannins supplementation on milk and meat fatty acid profile are not consistent, and there are contradictory results published in the literature. Effects of tannin supplementation on fatty acids biohydrogenation are affected by the chemical type of tannins, the complexity of their interactions with dietary components, and the potential microbial adaptation to tannins. In addition, the duration of the tannins-feeding period may also affect milk and meat fatty acid profile. Characterizing the effects of each specific tannic compound on different biohydrogenation steps and on the microbial species conducting them, as well as the interaction between specific tannin compounds and other dietary components can help to take greater advantage of tannins potential to contribute to improve human health through promoting beneficial fatty acids in ruminants products.

  15. Establishment of rumen-mimic bacterial consortia: A functional union for bio-hydrogen production from cellulosic bioresource

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jui-Jen [Genomics Research Center, Academia Sinica, Nankang, Taipei 115 (China); Lin, Jia-Jen; Ho, Cheng-Yu.; Chin, Wei-Chih; Huang, Chieh-Chen [Department of Life Sciences, National Chung Hsing University,Taichung (China)

    2010-12-15

    The study aimed to establish stable rumen-mimic bacterial consortia as a functional union for simultaneous saccharification and fermentation from cellulosic bioresource. The consortia was constructed by repeated-batch culture with ruminal microflora and napiergrass at 38 C. The major bacterial composition of batch culture was monitored by 16S rRNA gene-targeted denaturing gradient gel electrophoresis (DGGE). The result showed that a stable consortia constituted by ruminal microflora was formed, and the consortia includes bacterial strains such as Clostridium xylanolyticum, Clostridium papyrosolvens, Clostridium beijerinckii, Ruminococcus sp., Ethanoligenens harbinense, and Desulfovibrio desulfuricans. The Clostridium genus was showed as the dominant population in the system and contributed to the biohydrogen production. During each eight days incubation period, the functional consortia could degrade an average of 27% hemicellulose and 2% cellulose from napiergrass biomass. While the increasing of the reducing sugars and their converting to biohydrogen gas productivity were also observed. The time course profile for cellulytic enzymes showed that the hydrolysis of complex lignocellulosic material may occur through the ordered actions of xylenase and cellulase activities. (author)

  16. Coxiella burnetii Seroprevalence in Small Ruminants in The Gambia

    NARCIS (Netherlands)

    Klaassen, M.; Roest, Hendrik-Jan; Hoek, van der W.; Goossens, B.; Secka, A.; Stegeman, A.

    2014-01-01

    Q fever is a zoonosis caused by Coxiella burnetii, a Gram negative bacterium present worldwide. Small ruminants are considered the main reservoirs for infection of humans. This study aimed to estimate the extent of C. burnetii infection among sheep and goats in part of The Gambia.

  17. Hydrolysates of lignocellulosic materials for biohydrogen production.

    Science.gov (United States)

    Chen, Rong; Wang, Yong-Zhong; Liao, Qiang; Zhu, Xun; Xu, Teng-Fei

    2013-05-01

    Lignocellulosic materials are commonly used in bio-H2 production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-H2 production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to H2 by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-H2 production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized. PMID:23710634

  18. Recent advances in fermentative biohydrogen production

    Institute of Scientific and Technical Information of China (English)

    Xuemei Liu; Nanqi Ren; Funan Song; Chuanping Yang; Aijie Wang

    2008-01-01

    Hydrogen energy, as a kind of clean energy with great potential, has been a hotspot for study worldwide. Based on the recent research on biohydrogen production, this paper gives a brief review on the following aspects: fermentative hydrogen production process and the engineering control statagy, key factors affecting the efficiency of hydrogen production, such as substrates, cysteine, metal ions, anaerobic fermentation terminal products, and formic acid and ammonia. Moreover, anaerobic fermentative hydrogen-producing strain and regulation and control of enzyme gene in fermentative hydrogen production are also discussed. Finally, the prospect of anaerobic fermentative biohydrogen production is proposed in three study areas, namely developing new techniques for breeding hydrogen-producing bacteria, exploitations of more strains and gene resources, and intensifying the application of microbial molecular breeding in hydrogen production.

  19. Hydrolysates of lignocellulosic materials for biohydrogen production.

    Science.gov (United States)

    Chen, Rong; Wang, Yong-Zhong; Liao, Qiang; Zhu, Xun; Xu, Teng-Fei

    2013-05-01

    Lignocellulosic materials are commonly used in bio-H2 production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-H2 production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to H2 by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-H2 production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized.

  20. Evaluation of Biohydrogen Production Potential of Wastes

    Directory of Open Access Journals (Sweden)

    Nevim Genç

    2011-02-01

    Full Text Available In this article, types of potential biomass that could be the source for biohydrogen generation such as energy crops, lignocellulosic residues, waste and wastewaters are discussed. The major criteria that have to be met for the selection of substrates suitable for fermentative biohydrogen production are availability, cost, carbohydrate content (high proportion of readily fermentable compounds such as sugars and carbohydrates and biodegradability (a high concentration of degradable organic compounds and low concentration of inhibitory to microbiological activity compounds. Although starchy and sugar based biomass and wastes are readily fermentable by microorganisms for hydrogen generation, lignocellulosic biomass needs to be pretreated. Pretreatment is carry out for altering the structural features of biomass which are classified as psysical or chemical. In general, pretreatment methods of lignocellulosic biomass can be divided into three main types, according to the means used for altering its structural features: mechanical, physicochemical and biological.

  1. Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake.

    Science.gov (United States)

    Arumugam, A; Sandhya, M; Ponnusami, V

    2014-07-01

    The feasibility of coupled biohydrogen and polyhydroxyalkanoate production by Enterobacter aerogenes and Rhodobacter sphaeroides using Calophyllum inophyllum oil cake was studied under dark and photo fermentation conditions. The utilization of a non-edible acidic oil cake (C. inophyllum), and exploitation of a modified minimal salt media led to reduction in the cost of media. Cost of fermentation is reduced by implementation of alternate dark-photo fermentative periods and through the use of a co-culture consisting of a dark fermentative (E. aerogenes) and a photo fermentative (R. sphaeroides) bacterium. The biohydrogen and polyhydroxyalkanoate produced were 7.95 L H2/L media and 10.73 g/L media, respectively, under alternate dark and photo fermentation and were 3.23 L H2/L media and 5.6g/L media, respectively under complete dark fermentation. The characteristics of the oil cake and alternate dark (16 h) and photo (8h) fermentative conditions were found to be supportive in producing high biohydrogen and polyhydroxyalkanoate (PHA) yield. PMID:24859207

  2. Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake.

    Science.gov (United States)

    Arumugam, A; Sandhya, M; Ponnusami, V

    2014-07-01

    The feasibility of coupled biohydrogen and polyhydroxyalkanoate production by Enterobacter aerogenes and Rhodobacter sphaeroides using Calophyllum inophyllum oil cake was studied under dark and photo fermentation conditions. The utilization of a non-edible acidic oil cake (C. inophyllum), and exploitation of a modified minimal salt media led to reduction in the cost of media. Cost of fermentation is reduced by implementation of alternate dark-photo fermentative periods and through the use of a co-culture consisting of a dark fermentative (E. aerogenes) and a photo fermentative (R. sphaeroides) bacterium. The biohydrogen and polyhydroxyalkanoate produced were 7.95 L H2/L media and 10.73 g/L media, respectively, under alternate dark and photo fermentation and were 3.23 L H2/L media and 5.6g/L media, respectively under complete dark fermentation. The characteristics of the oil cake and alternate dark (16 h) and photo (8h) fermentative conditions were found to be supportive in producing high biohydrogen and polyhydroxyalkanoate (PHA) yield.

  3. Optimization of Biohydrogen Production with Biomechatronics

    OpenAIRE

    Shao-Yi Hsia; Yu-Tuan Chou

    2014-01-01

    Massive utilization of petroleum and natural gas caused fossil fuel shortages. Consequently, a large amount of carbon dioxide and other pollutants are produced and induced environmental impact. Hydrogen is considered a clean and alternative energy source. It contains relatively high amount of energy compared with other fuels and by-product is water. In this study, the combination of ultrasonic mechanical and biological effects is utilized to increase biohydrogen production from dark fermentat...

  4. Biohydrogen facilitated denitrification at biocathode in bioelectrochemical system (BES).

    Science.gov (United States)

    Liu, Hao; Yan, Qun; Shen, Wei

    2014-11-01

    Reductive removal of nitrate in bioelectrochemical system (BES) at abiotic cathode, biocathode and biohydrogen facilitated biocathode were investigated. It was found that nitrate removal efficiency reached 95% and 59% at the biohydrogen facilitated biocathode and biocathode respectively, while which was only 13% at the abiotic cathode. Meanwhile, activity of nitrate reductase reached 0.701 g-N/Lh for the biohydrogen facilitated group, which was about 9.3 times of the biocathode group. Moreover, electrochemical performances as power density, ohmic resistance, and polarization resistance of the biohydrogen facilitated group reached 76.96 mW/m(3), 8.63 ohm and 383 ohm, respectively, which were better than two other groups. Finally, an obvious shift of bacterial community responsible for the enhanced nitrate reduction between the two biocathode groups was observed. Therefore, nitrate reduction in BES could be enhanced at the biocathode than that of the abiotic cathode, and then be further boosted with the combination of biohydrogen.

  5. DECENTRALIZED THERMOPHILIC BIOHYDROGEN: A MORE EFFICIENT AND COST EFFECTIVE PROCESS

    Directory of Open Access Journals (Sweden)

    Rajesh K. Sani

    2011-11-01

    Full Text Available Nonfood lignocellulosic biomass is an ideal substrate for biohydrogen production. By avoiding pretreatment steps (acid, alkali, or enzymatic, there is potential to make the process economical. Utilization of regional untreated lignocellulosic biomass by cellulolytic and fermentative thermophiles in a consolidated mode using a single reactor is one of the ways to achieve economical and sustainable biohydrogen production. Employing these potential microorganisms along with decentralized biohydrogen energy production will lead us towards regional and national independence having a positive influence on the bioenergy sector.

  6. Bioelectrochemical Systems for Indirect Biohydrogen Production

    KAUST Repository

    Regan, John M.

    2014-01-01

    Bioelectrochemical systems involve the use of exoelectrogenic (i.e., anode-reducing) microbes to produce current in conjunction with the oxidation of reduced compounds. This current can be used directly for power in a microbial fuel cell, but there are alternate uses of this current. One such alternative is the production of hydrogen in a microbial electrolysis cell (MEC), which accomplishes cathodic proton reduction with a slight applied potential by exploiting the low redox potential produced by exoelectrogens at the anode. As an indirect approach to biohydrogen production, these systems are not subject to the hydrogen yield constraints of fermentative processes and have been proven to work with virtually any biodegradable organic substrate. With continued advancements in reactor design to reduce the system internal resistance, increase the specific surface area for anode biofilm development, and decrease the material costs, MECs may emerge as a viable alternative technology for biohydrogen production. Moreover, these systems can also incorporate other value-added functionalities for applications in waste treatment, desalination, and bioremediation.

  7. Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability

    OpenAIRE

    Anoop Singh; Surajbhan Sevda; Ibrahim M. Abu Reesh; Karolien Vanbroekhoven; Dheeraj Rathore; Deepak Pant

    2015-01-01

    Among the various renewable energy sources, biohydrogen is gaining a lot of traction as it has very high efficiency of conversion to usable power with less pollutant generation. The various technologies available for the production of biohydrogen from lignocellulosic biomass such as direct biophotolysis, indirect biophotolysis, photo, and dark fermentations have some drawbacks (e.g., low yield and slower production rate, etc.), which limits their practical application. Among these, metabolic ...

  8. Bio-hydrogen Production Potential from Market Waste

    OpenAIRE

    Lanna Jaitalee; Orathai Chavalparit

    2010-01-01

    This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR) were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS) of ...

  9. Histopathological and molecular characterization of encephalitic listeriosis in small ruminants from northern Paraná, Brazil

    OpenAIRE

    Selwyn Arlington Headley; Lívia Bodnar; Fritzen, Juliana T.T.; Dalton Evert Bronkhorst; Alice Fernandes Alfieri; Werner Okano; Amauri Alcindo Alfieri

    2013-01-01

    Listeriosis is a disease primarily of ruminants caused by the Gram-positive bacterium Listeria monocytogenes. Ruminants either demonstrate manifestations of the encephalitic, septicemic, or reproductive form of listeriosis. The pathological and molecular findings with encephalitic listeriosis in a 5.5-month-old, male, mixed-breed goat and a 3-year-old Texel-crossed sheep from northern Paraná, Brazil are described. Clinically, the kid demonstrated circling, lateral protrusion of the tongue, he...

  10. Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability

    Directory of Open Access Journals (Sweden)

    Anoop Singh

    2015-11-01

    Full Text Available Among the various renewable energy sources, biohydrogen is gaining a lot of traction as it has very high efficiency of conversion to usable power with less pollutant generation. The various technologies available for the production of biohydrogen from lignocellulosic biomass such as direct biophotolysis, indirect biophotolysis, photo, and dark fermentations have some drawbacks (e.g., low yield and slower production rate, etc., which limits their practical application. Among these, metabolic engineering is presently the most promising for the production of biohydrogen as it overcomes most of the limitations in other technologies. Microbial electrolysis is another recent technology that is progressing very rapidly. However, it is the dark fermentation approach, followed by photo fermentation, which seem closer to commercialization. Biohydrogen production from lignocellulosic biomass is particularly suitable for relatively small and decentralized systems and it can be considered as an important sustainable and renewable energy source. The comprehensive life cycle assessment (LCA of biohydrogen production from lignocellulosic biomass and its comparison with other biofuels can be a tool for policy decisions. In this paper, we discuss the various possible approaches for producing biohydrogen from lignocellulosic biomass which is an globally available abundant resource. The main technological challenges are discussed in detail, followed by potential solutions.

  11. Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: A comprehensive review

    OpenAIRE

    Sambusiti, Cécilia; Bellucci, Micol; Zabaniotou, Anastasia; Beneduce, Luciano; Monlau, Florian

    2015-01-01

    Interest is growing in the production of biohydrogen from algae through dark fermentation, as alternative to fossil fuels. However, one of the limiting steps of biohydrogen production is the conversion of polymeric carbohydrates into monomeric sugars. Thus, physical, chemical and biological pretreatments are usually employed in order to facilitate carbohydrates de-polymerization and enhancing biohydrogen production from algae. Considering the overall process, biohydrogen production through da...

  12. Ruminating on rumination: Are rumination on anger and sadness differentially related to aggression and depressed mood?

    OpenAIRE

    Peled, M.; Moretti, M. M.

    2010-01-01

    Rumination is a risk factor for aggression and depression, yet few studies have incorporated both aggression and depression in a unitary model that reflects how rumination predicts these distinct conditions. The current study examined rumination on anger and sadness to assess their unique relations with aggression and depressed mood, respectively. Analogous anger rumination and sadness rumination questionnaires were used to minimize measurement variance, and were completed by 226 undergraduat...

  13. Ruminations on rumination: anger and sadness rumination in a normative and clinical sample

    OpenAIRE

    Peled, Maya

    2006-01-01

    Anger rumination and sadness rumination were examined concurrently in a normative sample of adults (Study 1) and a clinical adolescent sample (Study 2). The purpose of this research was to assess if rumination on anger and sadness have distinct emotional and behavioural associations, and whether it is warranted to conceptualize them as separate constructs. In both studies, factor analysis indicated that items from analogous anger rumination and sadness rumination measures loaded onto two fact...

  14. Effects of the dicarboxylic acids malate and fumarate on E. coli 0157:H7 and Salmonella enterica Typhimurium populations in pure culture and in mixed ruminal microorganism fermentations

    Science.gov (United States)

    The dicarboxylic organic acids malate and fumarate increase ruminal pH, reduce methane production, increase propionate and total VFA production, and reduce lactic acid accumulation in a manner similar to ionophores. These acids stimulate the ruminal bacterium Selenomonas ruminantium to ferment lact...

  15. Rumination: Relationships with Physical Health

    OpenAIRE

    Sansone, Randy A.; Sansone, Lori A.

    2012-01-01

    Rumination is a form of perserverative cognition that focuses on negative content, generally past and present, and results in emotional distress. Initial studies of rumination emerged in the psychological literature, particularly with regard to studies examining specific facets of rumination (e.g., positive vs. negative rumination, brooding vs. self-reflection, relationships with catastrophic thinking, role of impaired disengagement, state vs. trait features) as well as the presence of rumina...

  16. Effects of the heating process of soybean oil and seeds on fatty acid biohydrogenation in vitro.

    Science.gov (United States)

    Troegeler-Meynadier, A; Puaut, S; Farizon, Y; Enjalbert, F

    2014-09-01

    Heating fat is an efficient way to alter ruminal biohydrogenation (BH) and milk fat quality. Nevertheless, results are variable among studies and this could be due to various heating conditions differently affecting BH. The objectives of this study were to determine the effect of type and duration of heating of soybean oil or seeds on BH in vitro. Ruminal content cultures were incubated to first investigate the effects of roasting duration (no heating, and 0.5- and 6-h roasting) at 125°C and its interaction with fat source (soybean seeds vs. soybean oil), focusing on linoleic acid BH and its intermediates: conjugated linoleic acid (CLA) and trans-C18:1. Additionally, we compared the effects of seed extrusion with the 6 combinations of unheated and roasted oils and seeds. None of the treatments was efficient to protect linoleic acid from BH. Soybean oil resulted in higher trans-11 isomer production than seeds: 5.7 and 1.2 times higher for cis-9,trans-11 CLA and trans-11 C18:1, respectively. A 125°C, 0.5-h roasting increased trans-11 isomer production by 11% compared with no heating and 6-h roasted fat. Extrusion of seeds was more efficient to increase trans-11 C18:1 production than seed roasting, leading to values similar to oils. For other fatty acids, including cis-9,trans-11 CLA, extrusion resulted in similar balances to seeds (mainly 0.5-h-roasted seeds). Extruded oilseeds would be more efficient than roasted seeds to produce trans-11 C18:1; nevertheless, effects of conditions of extrusion need to be explored. PMID:24996268

  17. [PESTIVIRUSES IN RUMINANTS].

    Science.gov (United States)

    Glotov, A G; Glotova, T I; Shulyak, A F

    2016-01-01

    The genus Pestivirus includes four species: bovine viral diarrhea virus 1, bovine viral diarrhea virus 2, classical swine fever disease virus, and ovine border disease virus. Pestiviruses infect many species of domestic and wild animals. Bovine viral diarrhea virus is a prototypical representative of the pestiviruses of ruminant animals. Recently, new candidates appeared for including in this genus: two viruses of the wild ruminant animals that have not been officially classified and one HoBi-like virus discovered for the first time in the bovine fetal serum. The circulation of the ruminant animal pestiviruses within population of domestic and wild animals, the presence of these viruses in bioproducts stimulates studies of the infection reservoirs and their influence on the effect of the bovine viral diarrhea control programs. PMID:27451496

  18. Biohydrogen production as a potential energy fuel in South Africa

    Directory of Open Access Journals (Sweden)

    P.T. Sekoai

    2015-06-01

    Full Text Available Biohydrogen production has captured increasing global attention due to it social, economic and environmental benefits. Over the past few years, energy demands have been growing significantly in South Africa due to rapid economic and population growth. The South African parastatal power supplier i.e. Electricity Supply Commission (ESKOM has been unable to meet the country’s escalating energy needs. As a result, there have been widespread and persistent power cuts throughout the country. This prompts an urgent need for exploration and implementation of clean and sustainable energy fuels like biohydrogen production in order to address this crisis. Therefore, this paper discusses the current global energy challenges in relation to South Africa’s problems. It then examines the feasibility of using biohydrogen production as a potential energy fuel in South Africa. Finally, it reviews the hydrogen-infrastructure development plans in the country.

  19. Electro-extractive fermentation for efficient biohydrogen production.

    Science.gov (United States)

    Redwood, Mark D; Orozco, Rafael L; Majewski, Artur J; Macaskie, Lynne E

    2012-03-01

    Electrodialysis, an electrochemical membrane technique, was found to prolong and enhance the production of biohydrogen and purified organic acids via the anaerobic fermentation of glucose by Escherichia coli. Through the design of a model electrodialysis medium using cationic buffer, pH was precisely controlled electrokinetically, i.e. by the regulated extraction of acidic products with coulombic efficiencies of organic acid recovery in the range 50-70% maintained over continuous 30-day experiments. Contrary to previous reports, E. coli produced H(2) after aerobic growth in minimal medium without inducers and with a mixture of organic acids dominated by butyrate. The selective separation of organic acids from fermentation provides a potential nitrogen-free carbon source for further biohydrogen production in a parallel photofermentation. A parallel study incorporated this fermentation system into an integrated biohydrogen refinery (IBR) for the conversion of organic waste to hydrogen and energy.

  20. Potential for biohydrogen and methane production from olive pulp

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær;

    2005-01-01

    The present study investigates the potential for thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp, b) anaerobic bio-production of hydrogen...... and hydrogen-effluent was as high as 19 mmole CH4 per g TS. This suggests that olive pulp is an ideal substrate for methane production and it shows that biohydrogen production can be very efficiently coupled with a subsequent step for methane production....

  1. Isolation and characterization of a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production.

    Science.gov (United States)

    Yu, Lei; Li, Wen-Wei; Lam, Michael Hon-Wah; Yu, Han-Qing; Wu, Chao

    2012-07-01

    A facultative anaerobic bacteria strain GS-4-08, isolated from an anaerobic sequence batch reactor for synthetic dye wastewater treatment, was investigated for azo-dye decolorization. This bacterium was identified as a member of Klebsiella oxytoca based on Gram staining, morphology characterization and 16S rRNA gene analysis. It exhibited a good capacity of simultaneous decolorization and hydrogen production in the presence of electron donor. The hydrogen production was less affected even at a high Methyl Orange (MO) concentration of 0.5 mM, indicating a superior tolerability of this strain to MO. This efficient bio-hydrogen production from electron donor can not only avoid bacterial inhibition due to accumulation of volatile fatty acids during MO decolorization, but also can recover considerable energy from dye wastewater.

  2. Sago Biomass as a Sustainable Source for Biohydrogen Production by Clostridium butyricum A1

    Directory of Open Access Journals (Sweden)

    Mohamad Faizal Ibrahim

    2013-12-01

    Full Text Available Biohydrogen production from biomass is attracting many researchers in developing a renewable, clean and environmental friendly biofuel. The biohydrogen producer, Clostridium butyricum A1, was successfully isolated from landfill soil. This strain produced a biohydrogen yield of 1.90 mol H2/mol glucose with productivity of 170 mL/L/h using pure glucose as substrate. The highest cumulative biohydrogen collected after 24 h of fermentation was 2468 mL/L-medium. Biohydrogen fermentation using sago hampas hydrolysate produced higher biohydrogen yield (2.65 mol H2/mol glucose than sago pith residue (SPR hydrolysate that produced 2.23 mol H2/mol glucose. A higher biohydrogen productivity of 1757 mL/L/h was obtained when using sago hampas hydrolysate compared to when using pure glucose that has the productivity of 170 mL/L/h. A comparable biohydrogen production was also obtained by C. butyricum A1 when compared to C. butyricum EB6 that produced a biohydrogen yield of 2.50 mol H2/mol glucose using sago hampas hydrolysate as substrate. This study shows that the new isolate C. butyricum A1 together with the use of sago biomass as substrate is a promising technology for future biohydrogen production.

  3. Application of fluorescent in situ hybridisation for demonstration of Coxiella burnetti in placentas from ruminant abortions

    DEFF Research Database (Denmark)

    Jensen, Tim Kåre; Montgomery, Donald L.; Jaeger, Paula T.;

    2007-01-01

    A fluorescent in situ hybridisation (FISH) assay targeting 16S ribosomal RNA was developed for detection of the zoonotic bacterium Coxiella burnetii in formalin-fixed, paraffin-embedded tissue, and applied on placentas from ruminant abortions. The applicability of the FISH assay was compared...... to immunohistochemistry (IHC) using human positive control serum in 12 cases of C burnetii-associated placentitis as well as 7 negative control tissue samples. In all 12 cases the bacterium was detected within trophoblasts as well as free in the placental debris by both FISH and IHC. Extensive and significant infection...... by C. burnetii was revealed in 10 of the cases, whereas a slighter and focal distribution of the bacterium was observed in two cases. 90 aborted placentas from Danish ruminants were investigated by FISH. C burnetii was detected in one bovine case only, representing the first confirmation of C burnetii...

  4. Improvement of biohydrogen production using a reduced pressure fermentation.

    Science.gov (United States)

    Kisielewska, M; Dębowski, M; Zieliński, M

    2015-10-01

    This study investigated the effect of reduced pressure on biohydrogen production in an upflow anaerobic sludge blanket (UASB) reactor from whey permeate. The results showed that the reduced pressure fermentation was more effective in enhancing biohydrogen production than dark fermentative hydrogen production at atmospheric pressure. Mesophilic fermentative biohydrogen production was investigated at a constant hydraulic retention time (HRT) of 24 h and increasing organic loading rates (OLRs) of 20, 25, 30, 35 kg COD/m(3) day. The reduced pressure fermentation was successfully operated at all OLRs tested. The maximum proportion of hydrogen in biogas of 47.7 %, volumetric hydrogen production rate (VHPR) of 7.10 L H2/day and hydrogen yield of 4.55 mol H2/kg COD removed occurred at the highest OLR. Increase in OLR affected the hydrogen production in UASB reactor exploited at atmospheric pressure. The reduced pressure process was able to remarkably improve the biohydrogen performance at high OLRs. PMID:26111633

  5. Biohydrogen production from beet molasses by sequential dark and photofermentation

    NARCIS (Netherlands)

    Özgür, E.; Mars, A.E.; Peksel, B.; Louwerse, A.; Yücel, M.; Gündüz, U.; Claassen, P.A.M.; Eroglu, I.

    2010-01-01

    Biological hydrogen production using renewable resources is a promising possibility to generate hydrogen in a sustainable way. In this study, a sequential dark and photofermentation has been employed for biohydrogen production using sugar beet molasses as a feedstock. An extreme thermophile Caldicel

  6. Improvement of biohydrogen production using a reduced pressure fermentation.

    Science.gov (United States)

    Kisielewska, M; Dębowski, M; Zieliński, M

    2015-10-01

    This study investigated the effect of reduced pressure on biohydrogen production in an upflow anaerobic sludge blanket (UASB) reactor from whey permeate. The results showed that the reduced pressure fermentation was more effective in enhancing biohydrogen production than dark fermentative hydrogen production at atmospheric pressure. Mesophilic fermentative biohydrogen production was investigated at a constant hydraulic retention time (HRT) of 24 h and increasing organic loading rates (OLRs) of 20, 25, 30, 35 kg COD/m(3) day. The reduced pressure fermentation was successfully operated at all OLRs tested. The maximum proportion of hydrogen in biogas of 47.7 %, volumetric hydrogen production rate (VHPR) of 7.10 L H2/day and hydrogen yield of 4.55 mol H2/kg COD removed occurred at the highest OLR. Increase in OLR affected the hydrogen production in UASB reactor exploited at atmospheric pressure. The reduced pressure process was able to remarkably improve the biohydrogen performance at high OLRs.

  7. The molecular biological characterization of a strain of biohydrogen-producing anaerobe in Clostridium Genus

    Institute of Scientific and Technical Information of China (English)

    LI Yong-feng; REN Nan-qi; ZHENG Guo-xiang; LIU Min; HU Li-jie; CHEN Ying; WANG Xiang-jing

    2005-01-01

    The anaerobic process of biohydrogen production was developed recently. The isolation and identification of biohydrogen producing anaerobic bacteria with high evolution rate and yield is an important foundation of the fermented biohydrogen production process through which anaerobic bacteria digest organic wastewater. By considering physiological and biochemical traits, morphological characteristics and a 16S rDNA sequence, the isolated Rennanqilyf33 is shown to be a new species.

  8. Steady-state and dynamic modeling of biohydrogen production in an integrated biohydrogen reactor clarifier system

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, Hisham; Naggar, M. Hesham El. [Department of Civil Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Nakhla, George [Department of Civil Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2010-07-15

    Steady-state operational data from the integrated biohydrogen reactor clarifier system (IBRCS) during anaerobic treatment of glucose-based synthetic wastewater at HRT of 8 h and SRT ranging from 26 to 50 h and organic loading rates of 6.5-206 gCOD/L-d were used to calibrate and verify a process model of the system developed using BioWin. The model accurately predicted biomass concentrations in both the bioreactor and the clarifier supernatant with average percentage errors (APEs) of 4.6% and 10%, respectively. Hydrogen production rates and hydrogen yields predicted by the model were in close agreement with the observed experimental results as reflected by an APE of less than 4%, while the hydrogen content was well correlated with an APE of 10%. The successful modeling culminated in the accurate prediction of soluble metabolites, i.e. volatile fatty acids in the reactor with an APE of 14%. The calibrated model confirmed the advantages of decoupling of the solids retention time (SRT) from the hydraulic retention time (HRT) in biohydrogen production, with the average hydrogen yield decreasing from 3.0 mol H{sub 2}/mol glucose to 0.8 mol H{sub 2}/mol glucose upon elimination of the clarifier. Dynamic modeling showed that the system responds favorably to short-term hydraulic and organic surges, recovering back to the original condition. Furthermore, the dynamic simulation revealed that with a prolonged startup periods of 10 and 30 days, the IBRCS can be operated at an HRT of 4 h and OLR as high as 206 gCOD/L-d without inhibition and/or marked performance deterioration. (author)

  9. Draft Genome Sequence of Clostridium bifermentans Strain WYM, a Promising Biohydrogen Producer Isolated from Landfill Leachate Sludge.

    Science.gov (United States)

    Wong, Y M; Juan, J C; Gan, H M; Austin, C M

    2014-03-06

    Clostridium bifermentans strain WYM is an effective biohydrogen producer isolated from landfill leachate sludge. Here, we present the assembly and annotation of its genome, which may provide further insights into the metabolic pathways involved in efficient biohydrogen production.

  10. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation

    DEFF Research Database (Denmark)

    Kongjan, Prawit; Min, Booki; Angelidaki, Irini

    2009-01-01

    Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) was investigated in batch and continuous-mode operation. Biohydrogen was successfully produced from xylose by repeated batch cultivations with mixed culture received from a biohydrogen reactor treating household...... high hydrogen partial pressure (>0.14 atm) was present in the headspace of the batch reactors. Biohydrogen could be successfully produced in continuously stirred reactor (CSTR) operated at 72-h hydraulic retention time (HRT) with 1 g/L of xylose as substrate at 70 degrees C. The hydrogen production...

  11. Biochemical Analyses of Multiple Endoxylanases from the Rumen Bacterium Ruminococcus albus 8 and Their Synergistic Activities with Accessory Hemicellulose-Degrading Enzymes ▿ †

    OpenAIRE

    Moon, Young Hwan; Iakiviak, Michael; Bauer, Stefan; Roderick I. Mackie; Cann, Isaac K. O.

    2011-01-01

    Ruminococcus albus 8 is a ruminal bacterium capable of metabolizing hemicellulose and cellulose, the major components of the plant cell wall. The enzymes that allow this bacterium to capture energy from the two polysaccharides, therefore, have potential application in plant cell wall depolymerization, a process critical to biofuel production. For this purpose, a partial genome sequence of R. albus 8 was generated. The genomic data depicted a bacterium endowed with multiple forms of plant cell...

  12. Probiotic in Ruminant Feed

    OpenAIRE

    Dicky Pamungkas; Yenny Nur Anggraeni

    2006-01-01

    The technology development of ruminant feed is related to the effort of fulfilling the nutrient requirement for maintenance and production of rumen microbes and optimizing the protein synthesis of rumen microbes, hence improving the animal production . Probiotic is widely used in feed to avoid the negative effect of antibiotic after therapeutic treatment and to be used as growth promoter . This paper describes the concept of probiotic, selection of microbes for probiotic, the benefit, the eff...

  13. Peste des petits ruminants.

    Science.gov (United States)

    Parida, S; Muniraju, M; Mahapatra, M; Muthuchelvan, D; Buczkowski, H; Banyard, A C

    2015-12-14

    Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants. PMID:26443889

  14. Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19

    Energy Technology Data Exchange (ETDEWEB)

    Youkwan Oh; Sunghoon Park [Changjeon Univ., Pusan (Korea). Dept. of Chemical Engineering; Pusan National Univ. (Korea). Inst. for Environmental Technology and Industry; Eunhee Seol [Changjeon Univ., Pusan (Korea). Dept. of Chemical Engineering; Jung Rae Kim [Pusan National Univ. (Korea). Inst. for Environmental Technology and Industry

    2003-12-01

    A newly isolated Citrobacter sp. Y19 for CO-dependent H{sub 2} production was studied for its capability of fermentative H{sub 2} production in batch cultivation. When glucose was used as carbon source, the pH of the culture medium significantly decreased as fermentation proceeded and H{sub 2} production was seriously inhibited. The use of fortified phosphate at 60-180 mM alleviated this inhibition. By increasing culture temperatures (25-36{sup o}C), faster cell growth and higher initial H{sub 2} production rates were observed but final H{sub 2} production and yield were almost constant irrespective of temperature. Optimal specific H{sub 2} production activity was observed at 36{sup o}C and pH 6-7. The increase of glucose concentration (1-20 g/l) in the culture medium resulted in higher H{sub 2} production, but the yield of H{sub 2} production (mol H{sub 2}/mol glucose) gradually decreased with increasing glucose concentration. Carbon mass balance showed that, in addition to cell mass, ethanol, acetate and CO{sub 2} were the major fermentation products and comprised more than 70% of the carbon consumed. The maximal H{sub 2} yield and H{sub 2} production rate were estimated to be 2.49 mol H{sub 2}/mol glucose and 32.3 mmol H{sub 2}/gcellh, respectively. The overall performance of Y19 in fermentative H{sub 2} production is quite similar to that of most H{sub 2}-producing bacteria previously studied, especially to that of Rhodopseudomonas palustris P4, and this indicates that the attempt to find an outstanding bacterial strain for fermentative H{sub 2} production might be very difficult if not impossible. (author)

  15. Digestive strategies in ruminants and non-ruminants.

    NARCIS (Netherlands)

    Wieren, van S.E.

    1996-01-01

    Of the 176 species of ungulates in the world the great majority (146 species) are ruminants. The more recent ruminants probably have displaced the older nonruminants because of their superior digestive system in combination with the ruminantion mechanism leading to significant advantageous differenc

  16. Effects of Ruminant trans Fatty Acids on Cardiovascular Disease and Cancer: A Comprehensive Review of Epidemiological, Clinical, and Mechanistic Studies123

    OpenAIRE

    Gebauer, Sarah K; Chardigny, Jean-Michel; Jakobsen, Marianne Uhre; Lamarche, Benoît; Lock, Adam L.; Proctor, Spencer D.; Baer, David J

    2011-01-01

    There are 2 predominant sources of dietary trans fatty acids (TFA) in the food supply, those formed during the industrial partial hydrogenation of vegetable oils (iTFA) and those formed by biohydrogenation in ruminants (rTFA), including vaccenic acid (VA) and the naturally occurring isomer of conjugated linoleic acid, cis-9, trans-11 CLA (c9,t11-CLA). The objective of this review is to evaluate the evidence base from epidemiological and clinical studies to determine whether intake of rTFA iso...

  17. Utilization of keratin-containing biowaste to produce biohydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Balint, B.; Rakhely, G.; Kovacs, K.L. [Szeged Univ. (Hungary). Dept. of Biotechnology; Hungarian Academy of Sciences, Szeged (Hungary). Inst. of Biophysics; Bagi, Z.; Perei, K. [Szeged Univ. (Hungary). Dept. of Biotechnology; Toth, A. [Hungarian Academy of Sciences, Szeged (Hungary). Inst. of Biophysics

    2005-12-01

    A two-stage fermentation system was constructed to test and demonstrate the feasibility of biohydrogen generation from keratin-rich biowaste. We isolated a novel aerobic Bacillus strain (Bacillus licheniformis KK1) that displays outstanding keratinolytic activity. The isolated strain was employed to convert keratin-containing biowaste into a fermentation product that is rich in amino acids and peptides. The process was optimized for the second fermentation step, in which the product of keratin fermentation-supplemented with essential minerals-was metabolized by Thermococcus litoralis, an anaerobic hyperthermophilic archaeon. T. litoralis grew on the keratin hydrolysate and produced hydrogen gas as a physiological fermentation byproduct. Hyperthermophilic cells utilized the keratin hydrolysate in a similar way as their standard nutrient, i.e., bacto-peptone. The generalization of the findings to protein-rich waste treatment and production of biohydrogen is discussed and possible means of further improvements are listed. (orig.)

  18. Biohydrogen and carboxylic acids production from wheat straw hydrolysate.

    Science.gov (United States)

    Chandolias, Konstantinos; Pardaev, Sindor; Taherzadeh, Mohammad J

    2016-09-01

    Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42g COD/L.d, whilst the highest lactic acid production occurred at an OLR of 9.33g COD/L.d. Furthermore, the bioreactor with both free and membrane-encased cells produced 60% more lactic acid compared to the conventional, free-cell bioreactor. In addition, an increase of 121% and 100% in the production of acetic and isobutyric acid, respectively, was achieved in the 2nd-stage bioreactor compared to the 1st-stage bioreactor.

  19. Biohydrogen production from forest and agricultural residues for upgrading of bitumen from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Susanjib; Kumar, Amit [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta (Canada)

    2010-02-15

    In this study, forest residues (limbs, tops, and branches) and straw (from wheat and barley) are considered for producing biohydrogen in Western Canada for upgrading of bitumen from oil sands. Two types of gasifiers, namely, the Battelle Columbus Laboratory (BCL) gasifier and the Gas Technology Institute (GTI) gasifier are considered for biohydrogen production. Production costs of biohydrogen from forest and agricultural residues from a BCL gasification plant with a capacity of 2000 dry tonnes/day are 1.17 and 1.29/kg of H{sub 2}, respectively. For large-scale biohydrogen plant, GTI gasification is the optimum technology. The delivered-biohydrogen costs are 2.19 and 2.31/kg of H{sub 2} at a plant capacity of 2000 dry tonnes/day from forest and agricultural residues, respectively. Optimum capacity for biohydrogen plant is 3000 dry tonnes/day for both residues in a BCL gasifier. In a GTI gasifier, although the theoretical optimum sizes are higher than 3000 dry tonnes/day for both feedstocks, the cost of production of biohydrogen is flat above a plant size of 3000 dry tonnes/day. Hence, a plant at the size of 3000 dry tonnes/day could be built to minimize risk. Carbon credits of 119 and 124/tonne of CO{sub 2} equivalent are required for biohydrogen from forest and agricultural residues, respectively. (author)

  20. Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen

    NARCIS (Netherlands)

    Bélafi-Bakó, K.; Búcsú, D.; Pientka, Z.; Bálint, B.; Herbel, Z.; Kovács, K.I.; Wessling, M.

    2006-01-01

    An integrated system for biohydrogen production and separation was designed, constructed and operated where biohydrogen was fermented by Thermococcus litoralis, a heterotrophic archaebacterium, and a two-step gas separation process was coupled to recover and concentrate hydrogen. A special liquid se

  1. Measuring State-Specific Rumination: Development of the Rumination about an Interpersonal Offense Scale

    Science.gov (United States)

    Wade, Nathaniel G.; Vogel, David L.; Liao, Kelly Yu-Hsin; Goldman, Daniel B.

    2008-01-01

    The tendency to ruminate has been consistently linked to psychological disturbances, such as increased stress, anger, and fear in response to provocations. However, existing measures of rumination focus on the disposition to ruminate rather than on rumination about a specific situation. This limits the ability to explore rumination about a…

  2. Brief Report: Adolescents' Co-Rumination with Mothers, Co-Rumination with Friends, and Internalizing Symptoms

    Science.gov (United States)

    Waller, Erika M.; Rose, Amanda J.

    2013-01-01

    The current research examined co-rumination (extensively discussing, rehashing, and speculating about problems) with mothers and friends. Of interest was exploring whether adolescents who co-ruminate with mothers were especially likely to co-ruminate with friends as well as the interplay among co-rumination with mothers, co-rumination with…

  3. A comprehensive and quantitative review of dark fermentative biohydrogen production

    OpenAIRE

    Rittmann Simon; Herwig Christoph

    2012-01-01

    Abstract Biohydrogen production (BHP) can be achieved by direct or indirect biophotolysis, photo-fermentation and dark fermentation, whereof only the latter does not require the input of light energy. Our motivation to compile this review was to quantify and comprehensively report strains and process performance of dark fermentative BHP. This review summarizes the work done on pure and defined co-culture dark fermentative BHP since the year 1901. Qualitative growth characteristics and quantit...

  4. Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production

    OpenAIRE

    Redwood, MD; Mikheenko, IP; Sargent, F.; Macaskie, LE

    2008-01-01

    Escherichia coli can perform at least two modes of anaerobic hydrogen metabolism and expresses at least two types of hydrogenase activity. Respiratory hydrogen oxidation is catalysed by two ‘uptake’ hydrogenase isoenzymes, hydrogenase -1 and -2 (Hyd-1 and -2), and fermentative hydrogen production is catalysed by Hyd-3. Harnessing and enhancing the metabolic capability of E. coli to perform anaerobic mixed-acid fermentation is therefore an attractive approach for bio-hydrogen production ...

  5. Large-scale biohydrogen production from bio-oil.

    Science.gov (United States)

    Sarkar, Susanjib; Kumar, Amit

    2010-10-01

    Large amount of hydrogen is consumed during the upgrading of bitumen into synthetic crude oil (SCO), and this hydrogen is exclusively produced from natural gas in Western Canada. Because of large amount of emission from natural gas, alternative sources for hydrogen fuel especially renewable feedstocks could significantly reduce CO(2) emissions. In this study, biomass is converted to bio-oil by fast pyrolysis. This bio-oil is steam reformed near bitumen upgrading plant for producing hydrogen fuel. A techno-economic model is developed to estimate the cost of hydrogen from biomass through the pathway of fast pyrolysis. Three different feedstocks including whole-tree biomass, forest residues (i.e. limbs, branches, and tops of tree produced during logging operations), and straw (mostly from wheat and barley crops) are considered for biohydrogen production. Delivered cost of biohydrogen from whole-tree-based biomass ($2.40/kg of H(2)) is lower than that of forest residues ($3.00/kg of H(2)) and agricultural residues ($4.55/kg of H(2)) at a plant capacity of 2000 dry tonnes/day. In this study, bio-oil is produced in the field/forest and transported to a distance of 500 km from the centralized remote bio-oil production plant to bitumen upgrading plant. Feedstock delivery cost and capital cost are the largest cost contributors to the bio-oil production cost, while more than 50% of the cost of biohydrogen production is contributed by bio-oil production and transportation. Carbon credits of $133, $214, and $356/tonne of CO(2) equivalent could make whole-tree, forest residues, and straw-based biohydrogen production competitive with natural gas-based H(2) for a natural gas price of $5/GJ, respectively.

  6. Production of biohydrogen from hydrolyzed bagasse with thermally preheated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Chairattanamanokorn, Prapaipid [Environmental Technology Unit, Department of Environmental Science, Kasetsart University, Bangkok (Thailand); Research Group for Development of Microbial Hydrogen Production Process from Biomass (Thailand); Penthamkeerati, Patthra [Environmental Technology Unit, Department of Environmental Science, Kasetsart University, Bangkok (Thailand); Reungsang, Alissara [Research Group for Development of Microbial Hydrogen Production Process from Biomass (Thailand); Department of Biotechnology, Khon Kaen University, Khon Kaen, Bangkok (Thailand); Lo, Yung-Chung [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Lu, Wei-Bin [Department of Cosmetic Science, Chung Hwa University of Medical Technology, Tainan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China)

    2009-09-15

    Production of biohydrogen from dark fermentation is an interesting alternative to producing renewable fuels because of its low cost and various usable substrates. Cellulosic content in plentiful bagasse residue is an economically feasible feedstock for biohydrogen production. A statistical experimental design was applied to identify the optimal condition for biohydrogen production from enzymatically hydrolyzed bagasse with 60-min preheated seed sludge. The bagasse substrate was first heated at 100 C for 2 h and was then hydrolyzed with cellulase. Culture of the pretreated bagasse at 55 C provided a higher H{sub 2} production performance than that obtained from cultures at 45 C, 65 C, 35 C and 25 C. On the other hand, the culture at pH 5 resulted in higher H{sub 2} production than the cultures at pH 6, pH 4 and pH 7. The optimal culture condition for the hydrogen production rate was around 56.5 C and pH 5.2, which was identified using response surface methodology. Moreover, the pretreatment of bagasse under alkaline conditions gave a thirteen-fold increase in H{sub 2} production yield when compared with that from preheatment under neutral condition. (author)

  7. Kinetic study of biohydrogen production in mixed cultures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.-H.; Khanal, S.K.; Sung, S. [Iowa State Univ., Ames, IA (United States). Dept. of Civil Construction and Environmental Engineering

    2004-07-01

    Hydrogen is considered to be a clean energy source and a promising alternative to fossil fuels. The production of biohydrogen from renewable feedstocks such as sugars and organic wastes has gained renewed interest in response to energy insecurity and environmental concerns. The main challenge of producing biohydrogen is the low hydrogen conversion efficiency in the dark fermentation process. A better reactor design could solve the problem. A good index for process design is the microbial growth rate during a growth phase, as this has a strong impact on culture productivity. Microbial growth rate is also a good index for maximizing biohydrogen production. Kinetic studies generally identify the significant operating parameters such as maximum specific growth rate and half-saturation constant. However, this traditional approach cannot be used for hydrogen producing systems. This study established an alternative method to determine growth kinetics for hydrogen producing bacteria. Sucrose and nonfat dairy milk were the substrates used to identify the growth kinetics in a series of batch experiments. The parameters can be used to design a continuous reactor system for an enriched culture of hydrogen producing bacteria. 1 fig.

  8. Continuous biohydrogen production from waste bread by anaerobic sludge.

    Science.gov (United States)

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge.

  9. Bio-hydrogen Production Potential from Market Waste

    Directory of Open Access Journals (Sweden)

    Lanna Jaitalee

    2010-07-01

    Full Text Available This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS of organic waste were varied from 2%, 3% and 5% respectively. The pH was controlled at 5.5 for all batches in the experiment. The results showed that bio-hydrogen production depended on feed-substrate concentration. At initial TVS content of 3%, the highest hydrogen production was achieved at a level of 0.59 L-H2/L at pH 5.5. The maximum hydrogen yield was 15.3 ml H2/g TVS or 8.5 ml H2/g COD. The composition of H2 in the biogas ranged from 28.1-30.9% and no CH4 was detected in all batch tests.

  10. Production of Biohydrogen from Wastewater by Klebsiella oxytoca ATCC 13182.

    Science.gov (United States)

    Thakur, Veena; Tiwari, K L; Jadhav, S K

    2015-08-01

    Production of biohydrogen from distillery effluent was carried out by using Klebsiella oxytoca ATCC 13182. The work focuses on optimization of pH, temperature, and state of bacteria, which are the various affecting factors for fermentative biohydrogen production. Results indicates that at 35 °C for suspended cultures, the production was at its maximum (i.e., 91.33 ± 0.88 mL) when compared with other temperatures. At 35 °C and at pH 5 and 6, maximum productions of 117.67 ± 1.45 and 111.67 ± 2.72 mL were observed with no significant difference. When immobilized, Klebsiella oxytoca ATCC 13182 was used for biohydrogen production at optimized conditions, production was 186.33 ± 3.17 mL. Hence, immobilized cells were found to be more advantageous for biological hydrogen production over suspended form. Physicochemical analysis of the effluent was conducted before and after fermentation and the values suggested that the fermentative process is an efficient method for biological treatment of wastewater.

  11. Food waste and food processing waste for biohydrogen production: a review.

    Science.gov (United States)

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed.

  12. The autonomic phenotype of rumination.

    Science.gov (United States)

    Ottaviani, Cristina; Shapiro, David; Davydov, Dmitry M; Goldstein, Iris B; Mills, Paul J

    2009-06-01

    Recent studies suggest that ruminative thoughts may be mediators of the prolonged physiological effects of stress. We hypothesized that autonomic dysregulation plays a role in the relation between rumination and health. Rumination was induced by an anger-recall task in 45 healthy subjects. Heart rate variability (HRV), baroreflex sensitivity (BRS), and baroreflex effectiveness index (BEI) change scores were evaluated to obtain the autonomic phenotype of rumination. Personality traits and endothelial activation were examined for their relation to autonomic responses during rumination. Degree of endothelial activation was assessed by circulating soluble intercellular adhesion molecule-1 (sICAM-1). Vagal withdrawal during rumination was greater for women than men. Larger decreases in the high frequency component of HRV were associated with higher levels of anger-in, depression, and sICAM-1 levels. BRS reactivity was negatively related to trait anxiety. BEI reactivity was positively related to anger-in, hostility, anxiety, and depression. Lower BEI and BRS recovery were associated with lower social desirability and higher anger-out, anxiety, and depression. Findings suggest that the autonomic dysregulation that characterizes rumination plays a role in the relationships between personality and cardiovascular health. PMID:19272312

  13. Effects of changes in chemical and structural characteristic of ammonia fibre expansion (AFEX) pretreated oil palm empty fruit bunch fibre on enzymatic saccharification and fermentability for biohydrogen.

    Science.gov (United States)

    Abdul, Peer Mohamed; Jahim, Jamaliah Md; Harun, Shuhaida; Markom, Masturah; Lutpi, Nabilah Aminah; Hassan, Osman; Balan, Venkatesh; Dale, Bruce E; Mohd Nor, Mohd Tusirin

    2016-07-01

    Oil palm empty fruit bunch (OPEFB) fibre is widely available in Southeast Asian countries and found to have 60% (w/w) sugar components. OPEFB was pretreated using the ammonia fibre expansion (AFEX) method and characterised physically by the Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that there were significant structural changes in OPEFB after the pretreatment step, and the sugar yield after enzymatic hydrolysis using a cocktail of Cellic Ctec2® and Cellic Htec2® increased from 0.15gg(-1) of OPEFB in the raw untreated OPEFB sample to 0.53gg(-1) of OPEFB in AFEX-pretreated OPEFB (i.e. almost a fourfold increase in sugar conversion), which enhances the economic value of OPEFB. A biohydrogen fermentability test of this hydrolysate was carried out using a locally isolated bacterium, Enterobacter sp. KBH6958. The biohydrogen yield after 72h of fermentation was 1.68mol H2 per mol sugar. Butyrate, ethanol, and acetate were the major metabolites. PMID:27017130

  14. Effects of changes in chemical and structural characteristic of ammonia fibre expansion (AFEX) pretreated oil palm empty fruit bunch fibre on enzymatic saccharification and fermentability for biohydrogen.

    Science.gov (United States)

    Abdul, Peer Mohamed; Jahim, Jamaliah Md; Harun, Shuhaida; Markom, Masturah; Lutpi, Nabilah Aminah; Hassan, Osman; Balan, Venkatesh; Dale, Bruce E; Mohd Nor, Mohd Tusirin

    2016-07-01

    Oil palm empty fruit bunch (OPEFB) fibre is widely available in Southeast Asian countries and found to have 60% (w/w) sugar components. OPEFB was pretreated using the ammonia fibre expansion (AFEX) method and characterised physically by the Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that there were significant structural changes in OPEFB after the pretreatment step, and the sugar yield after enzymatic hydrolysis using a cocktail of Cellic Ctec2® and Cellic Htec2® increased from 0.15gg(-1) of OPEFB in the raw untreated OPEFB sample to 0.53gg(-1) of OPEFB in AFEX-pretreated OPEFB (i.e. almost a fourfold increase in sugar conversion), which enhances the economic value of OPEFB. A biohydrogen fermentability test of this hydrolysate was carried out using a locally isolated bacterium, Enterobacter sp. KBH6958. The biohydrogen yield after 72h of fermentation was 1.68mol H2 per mol sugar. Butyrate, ethanol, and acetate were the major metabolites.

  15. Optimisation and enhancement of biohydrogen production using nickel nanoparticles - a novel approach.

    Science.gov (United States)

    Mullai, P; Yogeswari, M K; Sridevi, K

    2013-08-01

    The effect of initial glucose concentration, initial pH and nickel nanoparticles concentration on biohydrogen production was experimented at mesophilic temperature (30-35 °C) using anaerobic microflora in batch tests. It revealed that yield of biohydrogen using nickel nanoparticles with an average size of 13.64 nm was higher than the corresponding control tests. The optimisation of biohydrogen production was carried out by employing response surface methodology (RSM) with a central composite design (CCD). Results showed that the maximum cumulative biohydrogen production of 4400 mL and biohydrogen yield of 2.54 mol of hydrogen/mol of glucose was achieved at optimum conditions, initial glucose concentration of 14.01 g/L at initial pH of 5.61 and nickel nanoparticles concentration of 5.67 mg/L. The results demonstrated that linear and interactive effect of initial substrate concentration and nickel nanoparticles concentration was significant in optimisation of biohydrogen production. Nickel nanoparticles enhanced the biohydrogen production by 22.71%.

  16. Manipulation of Rumen Microbial Fermentation by Polyphenol Rich Solvent Fractions from Papaya Leaf to Reduce Green-House Gas Methane and Biohydrogenation of C18 PUFA.

    Science.gov (United States)

    Jafari, Saeid; Meng, Goh Yong; Rajion, Mohamed Ali; Jahromi, Mohammad Faseleh; Ebrahimi, Mahdi

    2016-06-01

    Different solvents (hexane, chloroform, ethyl acetate, butanol, and water) were used to identify the effect of papaya leaf (PL) fractions (PLFs) on ruminal biohydrogenation (BH) and ruminal methanogenesis in an in vitro study. PLFs at a concentration of 0 (control, CON) and 15 mg/250 mg dry matter (DM) were mixed with 30 mL of buffered rumen fluid and were incubated for 24 h. Methane (CH4) production (mL/250 mg DM) was the highest (P < 0.05) for CON (7.65) and lowest for the chloroform fraction (5.41) compared to those of other PLFs at 24 h of incubation. Acetate to propionate ratio was the lowest for PLFs compared to that of CON. Supplementation of the diet with PLFs significantly (P < 0.05) decreased the rate of BH of C18:1n-9 (oleic acid; OA), C18:2n-6 (linoleic acid; LA), and C18:3n-3 (α-linolenic acid; LNA) compared to that of CON after 24 h of incubation. Real time PCR indicated that total protozoa and total methanogen population in PLFs decreased (P < 0.05) compared to those of CON.

  17. Manipulation of Rumen Microbial Fermentation by Polyphenol Rich Solvent Fractions from Papaya Leaf to Reduce Green-House Gas Methane and Biohydrogenation of C18 PUFA.

    Science.gov (United States)

    Jafari, Saeid; Meng, Goh Yong; Rajion, Mohamed Ali; Jahromi, Mohammad Faseleh; Ebrahimi, Mahdi

    2016-06-01

    Different solvents (hexane, chloroform, ethyl acetate, butanol, and water) were used to identify the effect of papaya leaf (PL) fractions (PLFs) on ruminal biohydrogenation (BH) and ruminal methanogenesis in an in vitro study. PLFs at a concentration of 0 (control, CON) and 15 mg/250 mg dry matter (DM) were mixed with 30 mL of buffered rumen fluid and were incubated for 24 h. Methane (CH4) production (mL/250 mg DM) was the highest (P < 0.05) for CON (7.65) and lowest for the chloroform fraction (5.41) compared to those of other PLFs at 24 h of incubation. Acetate to propionate ratio was the lowest for PLFs compared to that of CON. Supplementation of the diet with PLFs significantly (P < 0.05) decreased the rate of BH of C18:1n-9 (oleic acid; OA), C18:2n-6 (linoleic acid; LA), and C18:3n-3 (α-linolenic acid; LNA) compared to that of CON after 24 h of incubation. Real time PCR indicated that total protozoa and total methanogen population in PLFs decreased (P < 0.05) compared to those of CON. PMID:27192629

  18. Biohydrogen production by anaerobic fermentation of waste. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Karakashev, D.; Angelidaki, I.

    2009-01-15

    The objective of this project was to investigate and increase dark fermentative hydrogen production from organic wastes by optimizing important process parameters (reactor type, pH, temperature, organic loading, retention time, inoculation strategy, microbial composition). Labscale experiments were carried out at the Department of Environmental Engineering, Technical University of Denmark. A two steps process for hydrogen production in the first step and methane production in the second step in serial connected fully mixed reactors was developed and could successfully convert organic matter to approx. 20-25 % hydrogen and 15-80 % to methane. Sparging with methane produced in the second stage could significantly increase the hydrogen production. Additionally it was shown that upflow anaerobic sludge blanket (UASB) reactor system was very promising for high effective biohydrogen production from glucose at 70 deg C. Glucose-fed biofilm reactors filled with plastic carriers demonstrated high efficient extreme thermophilic biohydrogen production with mixed cultures. Repeated batch cultivations via exposure of the cultures to increased concentrations of household solid waste was found to be most useful method to enhance hydrogen production rate and reduce lag phase of extreme thermophilic fermentation process. Low level of pH (5.5) at 3-day HRT was enough to inhibit completely the methanogenesis and resulted in stable extreme thermophilic hydrogen production. Homoacetogenisis was proven to be an alternative competitor to biohydrogen production from organic acids under thermophilic (55 deg. C) conditions. With respect to microbiology, 16S rRNA targeted oligonucleotide probes were designed to monitor the spatial distribution of hydrogen producing bacteria in sludge and granules from anaerobic reactors. An extreme thermophilic (70 deg. C), strict anaerobic, mixed microbial culture with high hydrogen producing potential was enriched from digested household waste. Culture

  19. Starch plus sunflower oil addition to the diet of dry dairy cows results in a trans-11 to trans-10 shift of biohydrogenation.

    Science.gov (United States)

    Zened, A; Enjalbert, F; Nicot, M C; Troegeler-Meynadier, A

    2013-01-01

    Trans fatty acids (FA), exhibit different biological properties. Among them, cis-9,trans-11 conjugated linoleic acid has some interesting putative health properties, whereas trans-10,cis-12 conjugated linoleic acid has negative effects on cow milk fat production and would negatively affect human health. In high-yielding dairy cows, a shift from trans-11 to trans-10 pathway of biohydrogenation (BH) can occur in the rumen of cows receiving high-concentrate diets, especially when the diet is supplemented with unsaturated fat sources. To study this shift, 4 rumen-fistulated nonlactating Holstein cows were assigned to a 4×4 Latin square design with 4 different diets during 4 periods. Cows received 12 kg of dry matter per day of 4 diets based on corn silage during 4 successive periods: a control diet (22% starch, sunflower oil diet supplemented with 5% of sunflower oil (20% starch, 7.6% crude fat), and a high-starch plus sunflower oil diet (33% starch, 7.3% crude fat). Five hours after feeding, proportions of trans-11 BH isomers greatly increased in the rumen content with the addition of sunflower oil, without change in ruminal pH compared with the control diet. Addition of starch to the control diet had no effect on BH pathways but decreased ruminal pH. The addition of a large amount of starch in association with sunflower oil increased trans-10 FA at the expense of trans-11 FA in the rumen content, revealing a trans-11 to trans-10 shift. Interestingly, with this latter diet, ruminal pH did not change compared with a single addition of starch. This trans-11 to trans-10 shift occurred progressively, after a decrease in the proportion of trans-11 FA in the rumen, suggesting that this shift could result from a dysbiosis in the rumen in favor of trans-10-producing bacteria at the expense of those producing trans-11 or a modification of bacterial activities.

  20. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production.

    Science.gov (United States)

    Ding, Jie; Wang, Xu; Zhou, Xue-Fei; Ren, Nan-Qi; Guo, Wan-Qian

    2010-09-01

    There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas-liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70 rev/min is most suited for economical biohydrogen production.

  1. Acid tolerance response (ATR) of microbial communities during the enhanced biohydrogen process via cascade acid stress.

    Science.gov (United States)

    Lin, Xiaoqin; Xia, Yan; Yan, Qun; Shen, Wei; Zhao, Mingxing

    2014-03-01

    Enhanced biohydrogen production via cascade acid stress on microbial communities, structure patterns of the microbial communities revealed by PLFAs, and the succession of biohydrogen related species against cascade acid stress were all investigated. It was found that hydrogen production could be improved from 48.7 to 79.4mL/gVS after cascade acid stress. In addition, the Gram negative (G(-)) bacteria were found to be more tolerant to organic acids than those of the Gram positive (G(+)) bacteria, regardless of the dominance of G(+) bacteria within the microbial communities. Moreover, Clostridium butyricum, Clostridium aciditolerans and Azospira oryzae, were proved to be enriched, and then might play indispensable roles for the enhanced biohydrogen production after cascade acid stress, as which were responsible for the biohydrogen accumulation, acid tolerance and nitrogen removal, respectively.

  2. Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda.

    Science.gov (United States)

    Brentner, Laura B; Peccia, Jordan; Zimmerman, Julie B

    2010-04-01

    The U.S. Department of Energy's Hydrogen Program aims to develop hydrogen as an energy carrier to decrease emissions of greenhouse gases and other air pollutants and reduce the use of fossil fuels. However, current hydrogen production technologies are not sustainable as they rely heavily on fossil fuels, either directly or indirectly through electricity generation. Production of hydrogen by microorganisms, biohydrogen, has potential as a renewable alternative to current technologies. The state-of-the-art for four different biohydrogen production mechanisms is reviewed, including biophotolysis, indirect biophotolysis, photofermentation, and dark fermentation. Future research challenges are outlined for bioreactor design, optimization of bioreactor conditions, and metabolic engineering. Development of biohydrogen technologies is still in the early stages, although some fermentation systems have demonstrated efficiencies reasonable for implementation. To enhance the likelihood of biohydrogen as a feasible system to meet future hydrogen demands sustainably, directed investment in a strategic research agenda will be necessary.

  3. Functional and Dysfunctional rumination in alcohol dependence

    OpenAIRE

    Grynberg, Delphine; Briane, Yasmine; de Timary, Philippe; Maurage, Pierre; 16th International Society of Addiction Medicine Annual Meeting

    2014-01-01

    Previous findings have shown that rumination predicts alcohol abuse independently of depression. However, the literature does not inform about the relationships between alcohol dependence and functional and dysfunctional rumination. It has indeed been suggested that there exist a functional form of rumination(concrete thinking) and a dysfunctional form of rumination (abstract thinking). In this study, our aim is to evaluate if alcohol dependence is similarly associated with functional/constru...

  4. Distinguishing Rumination from Worry in Clinical Insomnia

    OpenAIRE

    Carney, Colleen E.; Harris, Andrea L.; Moss, Taryn G; Edinger, Jack D.

    2010-01-01

    Research has found that repetitive thought processes, such as worry and rumination, play an important role in several disorders; however, these cognitive processes have not yet been examined in insomnia. This study explores rumination and worry in insomnia by examining: 1) whether those high and low on rumination and worry differ on subjective sleep measures, and 2) whether rumination and worry are distinct processes in insomnia. Participants (N = 242) were diagnosed with an insomnia disorder...

  5. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively. PMID:26342346

  6. Bio-hydrogen production from hyacinth by anaerobic fermentation

    International Nuclear Information System (INIS)

    The bio-hydrogen production from hyacinth by anaerobic fermentation of digested sludge is studied in this paper. The compositions of bio-gases and volatile fatty acids in fermentation liquids are determined on TRACE 2000 gas chromatography. It is found that the H2 concentration in the biogas is 10%-20% and no CH4 is detected. The bio-hydrogen production from hyacinth with the initial pH value of 5.5 is higher than that with the initial pH value of 4.5. The fermentation temperature of 55 C is better than that of 35 C, while the weight ratio of hyacinth to microorganism of 1:1 is better than that of 3:7. The highest hydrogen production of 122.3 mL/g is obtained when the initial pH value of fermentation solution is 5.5, the fermentation temperature is 55 C and the weight ratio of hyacinth to microorganism is 1:1. (authors)

  7. Critical parameters for optimal biomass refineries: the case of biohydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Koukios, Emmanuel; Koullas, Dimitrios; Koukios, Irene Daouti; Avgerinos, Emmanouil [National Technical University of Athens, Bioresource Technology Unit, School of Chemical Engineering, Athens (Greece)

    2010-04-15

    The object of this paper is to identify and assess the elements taken from agro-industries and fossil hydrocarbon refineries, especially with respect to biomass logistics, fractionation kinetics, and process energetics. Such critical information will be of immediate use by policy and decision makers, especially in the early phase of planning and designing the first generation of biorefineries. Concerning feedstock logistics, biorefineries have a lot to learn from food and wood supply chains. This learning could lead to the deployment of complex, decentralised, stage-wise biorefining systems, consisting of local agro-refineries, regional biorefineries, where the primary plant fractions are processed and upgraded to useful intermediates, and central bioconversion units for the generation of market-grade biofuels, such as biohydrogen and other high value-added vectors. The kinetic aspects of biorefineries are related to the physico-chemical nature of the macromolecules. Finally, to solve the problem of the non-optimal energy transformations a tailored-up bioenergy plan is proposed for each biorefinery. The example of a wheat bran-based biorefinery, aiming at the production of biohydrogen will be used to illustrate the way ahead. (orig.)

  8. Potential for biohydrogen and methane production from olive pulp

    Energy Technology Data Exchange (ETDEWEB)

    Gavala, H.N.; Skiadas, I.V. [Patras Univ., Patras (Greece). Dept. of Chemical Engineering, Laboratory of Biochemical Engineering and Environmental Technology]|[Denmark Technical Univ., Lyngby (Denmark). Environmental Microbiology and Biotechnology Group; Ahring, B.K. [Denmark Technical Univ., Lyngby (Denmark). Environmental Microbiology and Biotechnology Group; Lyberatos, G. [Patras Univ., Patras (Greece). Dept. of Chemical Engineering, Laboratory of Biochemical Engineering and Environmental Technology

    2004-07-01

    Biomass rich in carbohydrates is a potential source of hydrogen. Fermentative hydrogen production includes the transformation of sugars into volatile fatty acids (VFA) without a major effect on the organic content. This study examined the potential for thermophilic biohydrogen and methane production from olive pulp, the semi-solid residue resulting from the two-phase processing of olives. Formation of VFA during acidogenesis of organic matter precedes methanogenesis. Therefore, anaerobic digestion can potentially be coupled with a preliminary step for hydrogen production. This study focused on production of methane from the raw olive pulp; anaerobic bio-production of hydrogen from the olive pulp; and, subsequent anaerobic treatment of the hydrogen-effluent with production of methane. Continuous and batch experiments were performed. The methane potential of the raw olive pulp and hydrogen effluent was up to 19 mmole of methane per gram of total solids. It was concluded that olive pulp is a suitable substrate for methane production and that biohydrogen can be coupled with a subsequent step for methane production. 12 refs., 7 tabs., 2 figs.

  9. Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles.

    Science.gov (United States)

    Seelert, Trevor; Ghosh, Dipankar; Yargeau, Viviane

    2015-05-01

    In order to supplement the need for alternative energy resources within the near future, enhancing the production of biohydrogen with immobilized Clostridium beijerinckii NCIMB8052 was investigated. Magnetite nanoparticles were functionalized, with chitosan and alginic acid polyelectrolytes using a layer-by-layer method, to promote bacterial attachment. Cultivating C. beijerinckii with these nanoparticles resulted in a shorter lag growth phase and increased total biohydrogen production within 100-ml, 250-ml and 3.6-L reactors compared with freely suspended organisms. The greatest hydrogen yield was obtained in the 250-ml reactor with a value of 2.1 ± 0.7 mol H2/mol glucose, corresponding to substrate conversion and energy conversion efficiencies of 52 ± 18 and 10 ± 3 %, respectively. The hydrogen yields obtained using the immobilized bacteria are comparable to values found in literature. However, to make this process viable, further improvements are required to increase the substrate and energy conversion efficiencies.

  10. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively.

  11. Revealing the factors influencing a fermentative biohydrogen production process using industrial wastewater as fermentation substrate

    OpenAIRE

    Boboescu, Iulian Zoltan; Ilie, Mariana; Vasile Daniel GHERMAN; Mirel, Ion; Pap, Bernadett; Negrea, Adina; Kondorosi, Éva; Bíró, Tibor; Maróti, Gergely

    2014-01-01

    Background Biohydrogen production through dark fermentation using organic waste as a substrate has gained increasing attention in recent years, mostly because of the economic advantages of coupling renewable, clean energy production with biological waste treatment. An ideal approach is the use of selected microbial inocula that are able to degrade complex organic substrates with simultaneous biohydrogen generation. Unfortunately, even with a specifically designed starting inoculum, there is s...

  12. Two-Stage Conversion of Land and Marine Biomass for Biogas and Biohydrogen Production

    OpenAIRE

    Nkemka, Valentine

    2012-01-01

    The replacement of fossil fuels by renewable fuels such as biogas and biohydrogen will require efficient and economically competitive process technologies together with new kinds of biomass. A two-stage system for biogas production has several advantages over the widely used one-stage continuous stirred tank reactor (CSTR). However, it has not yet been widely implemented on a large scale. Biohydrogen can be produced in the anaerobic two-stage system. It is considered to be a useful fuel for t...

  13. Improvement of anaerobic bio-hydrogen gas production from organic sludge waste

    International Nuclear Information System (INIS)

    Microbial hydrogen gas production from organic matters stands out as one of the most promising alternatives for sustainable green energy production. Based on the literature review, investigation of anaerobic bio-hydrogen gas production from organic sludge waste using a mixed culture has been very limited. The objective of this study was to assess the anaerobic bio-hydrogen gas production from organic sludge waste under various conditions. (Author)

  14. Fatty acid profile in the ruminal fluid and in the m. longissimus dorsi of lambs fed herbage or concentrate with or without tannins

    Directory of Open Access Journals (Sweden)

    Alessandro Priolo

    2010-01-01

    Full Text Available Twenty-eight male lambs were divided into two groups at age 45 d. Fourteen lambs were given fresh herbage (vetch; the remaining lambs were fed a concentrate-based diet. Within each treatment, seven lambs received a supplementation of quebracho tannins. At slaughter (age 105 d the ruminal content and the muscle longissimus dorsi (LD were collected. Ruminal fluid and LD fatty acid composition was determined by gas chromatography. Among the concentrates-fed lambs, tannins supplementation reduced (P < 0.05 the concentration of C18:0 (- 49 % and increased vaccenic acid (VA; + 69 % in the ruminal fluid. When tannins were included into the concentrate, the LD contained double levels of rumenic acid (RA as compared to the LD of the lambs fed the tannins-free concentrate (0.96 vs. 0.46 % of total extracted fatty acids, respectively; P < 0.05. The concentration of PUFA was higher (P < 0.05 and SFA (P < 0.01 lower in the LD from lambs fed the tannin diets as compared to the animals receiving the tannin-free diets. In conclusion, tannins reduce the biohydrogenation of the PUFA in the rumen. This implies that tannins supplementation could be a strategy to increase the RA and PUFA content and to reduce the SFA into ruminant meats.

  15. Rumination and Performance in Dynamic, Team Sport

    Directory of Open Access Journals (Sweden)

    Michael eRoy

    2016-01-01

    Full Text Available People high in rumination are good at tasks that require persistence whereas people low in rumination are good at tasks that require flexibility. Here we examine real world implications of these differences in dynamic, team sport. In two studies, we found that professional male football (soccer players from Germany and female field hockey players on the US national team were lower in rumination than were non-athletes. Further, low levels of rumination were associated with a longer career at a higher level in football players. Results indicate that athletes in dynamic, team sport might benefit from the flexibility associated with being low in rumination.

  16. Rumination in adults: two case histories.

    Science.gov (United States)

    Tamburrino, M B; Campbell, N B; Franco, K N; Evans, C L

    1995-01-01

    Rumination has been reported to be a relatively rare disorder of eating during infancy. Over the past decade, there appears to be a renewed interest in and recognition of adult rumination. Although some authors believe adult rumination is benign, others have begun to link it with both eating disorders and depressive symptoms. This paper presents two adult cases whose rumination was associated with anorexia and bulimia nervosa. More identification and study of adult rumination is needed to clarify its course and medical significance. PMID:7894448

  17. Rumination and Performance in Dynamic, Team Sport.

    Science.gov (United States)

    Roy, Michael M; Memmert, Daniel; Frees, Anastasia; Radzevick, Joseph; Pretz, Jean; Noël, Benjamin

    2015-01-01

    People high in rumination are good at tasks that require persistence whereas people low in rumination is good at tasks that require flexibility. Here we examine real world implications of these differences in dynamic, team sport. In two studies, we found that professional male football (soccer) players from Germany and female field hockey players on the US national team were lower in rumination than were non-athletes. Further, low levels of rumination were associated with a longer career at a higher level in football players. Results indicate that athletes in dynamic, team sport might benefit from the flexibility associated with being low in rumination. PMID:26779110

  18. Pathophysiological evaluation of subacute ruminal acidosis (SARA) by continuous ruminal pH monitoring

    Science.gov (United States)

    2016-01-01

    Abstract Evaluation of the radio‐transmission pH‐measurement system for monitoring the ruminal pH and subacute ruminal acidosis (SARA) in cattle is described. This is done in order to reveal the possible application of this system for detection and pathophysiological research of SARA by continuous ruminal pH measurement. The possibility of using this system for assessment of the ruminal pH in SARA cattle, and the presence of negative correlation between the ruminal pH and ruminal temperature in heathy and SARA cattle were determined. In addition, the 16S rRNA gene pyrosequencing analysis showed that the ruminal microbial community was simpler in SARA cattle, and the bacterial numbers in SARA cattle were lower than those in healthy hay‐fed cattle. Concentrate feeding might have reduced the diversity of the ruminal microbial community. Changes in the ruminal microbial community of SARA cattle might be related to the changes in ruminal pH followed by the decrease in the number of some bacteria. Continuous monitoring of the ruminal pH using the radio‐transmission pH‐measurement system would be applied for detection and prevention of SARA in the field and pathophysiological research of SARA, including ruminal zymology and bacteriology, which have been determined previously by sampling of the ruminal fluid and measuring of ruminal pH. PMID:26279060

  19. Modeling European ruminant production systems

    NARCIS (Netherlands)

    Kipling, Richard P.; Bannink, André; Bellocchi, Gianni; Dalgaard, Tommy; Fox, Naomi J.; Hutchings, Nicholas J.; Kjeldsen, Chris; Lacetera, Nicola; Sinabell, Franz; Topp, Cairistiona F.E.; Oijen, van Marcel; Virkajärvi, Perttu; Scollan, Nigel D.

    2016-01-01

    Ruminant production systems are important producers of food, support rural communities and culture, and help to maintain a range of ecosystem services including the sequestering of carbon in grassland soils. However, these systems also contribute significantly to climate change through greenhouse

  20. Effect of adsorbants on in vitro biohydrogenation of 22:6n-3 by mixed cultures of rumen microorganisms.

    Science.gov (United States)

    Escobar, M; Vlaeminck, B; Jeyanathan, J; Thanh, L P; Shingfield, K J; Wallace, R J; Fievez, V

    2016-09-01

    Studies on microbial biohydrogenation of fatty acids in the rumen are of importance as this process lowers the availability of nutritionally beneficial unsaturated fatty acids for incorporation into meat and milk but also might result in the accumulation of biologically active intermediates. The impact was studied of adsorption of 22:6n-3 (DHA) to particulate material on its disappearance during 24 h in vitro batch incubations with rumen inoculum. Four adsorbants were used in two doses (1 and 5 mg/ml of mucin, gum arabic, bentonite or silicic acid). In addition, the distribution of 22:6n-3 in the pellet and supernatant of diluted rumen fluid was measured. Bentonite and silicic acid did not alter the distribution of 22:6n-3 between pellet and supernatant nor increased the disappearance of 22:6n-3 during the incubation. Both mucin and gum arabic increased the recovery of 22:6n-3 in the supernatant, indicating that these compounds lowered the adsorption of the fatty acid to ruminal particles. This was associated with an increased disappearance of 22:6n-3, when initial 22:6n-3 was 0.06 or 0.10 mg/ml, and an increased formation of 22:0, when initial 22:6n-3 was 0.02 mg/ml, during the 24 h batch culture experiment. Addition of gum arabic to pure cultures of Butyrivibrio fibrisolvens or Butyrivibrio proteoclasticus did not negate the inhibitory effect of 22:6n-3 on growth. As both mucin and gum arabic provide fermentable substrate for ruminal bacteria, an additional experiment was performed in which mucin and gum arabic were replaced by equal amounts of starch, cellulose or xylan. No differences in disappearance of 22:6n-3 were observed, suggesting that the stimulatory effect of mucin and gum arabic on disappearance of 22:6n-3 most probably is not due to provision of an alternative site of adsorption but related to stimulation of bacterial growth. A relatively high proportion of 22:6n-3 can be reduced to 22:0 provided the initial concentration is low. PMID:26965186

  1. Bio-hydrogen production by dark fermentation from organic wastes and residues

    DEFF Research Database (Denmark)

    Liu, Dawei

    Der er stigende opmærksomhed omkring biohydrogen. Ved hydrogen fermentering kan kun en lille del af det organiske materiale eller COD i affald omdannes til hydrogen. Der findes endnu ingen full-skala bio-hydrogen anlæg, eftersom effektive rentable teknologier ikke er udviklet endnu. En to......-trins proces der kombinerer bio-hydrogen og bio-metan produktionen er en attraktiv mulighed til at øge det totale energi-udbytte af fermentering af organisk materiale. I en to-trins proces, med bio-hydrogen som første trin og bio-methan som andet trin, kunne der opnås 43mL-H2/gVSadded ved 37°C fra...... bio-hydrogen produktionen med 88 % i en to-trins proces i forhold til et-trins proces. Hydrogen produktionen kunne forøges ved at skifte temperaturen fra mesofil til ekstrem-termofil. Hydrogen produktion ved ekstrem-termofile temperaturer med blandede kulturer blev demonstreret for første gang. Der...

  2. Review on Ruminant Nutrition Research

    Directory of Open Access Journals (Sweden)

    Budi Haryanto

    2012-12-01

    Full Text Available Research works in ruminant nutrition have been widely published, especially those related to the energy and protein utilization. The energy and protein requirements for maintenance and production in tropical regions may be different from those in the subtropical areas. Responses of different species of ruminants to energy and protein supplements were also observed. The synchronization of energy and protein availability has been considered as an important strategy in affecting the microbial fermentative process in the rumen and in affecting the animal performance. The inclusion of long-chained unsaturated fatty acids in the diets has been successfully affecting milk production with higher concentration of unsaturated fatty acids. Feedstuffs characteristics in terms of their degradability and fermentation by rumen microbial enzymes have been intensively studied; however, further experimentations are still needed to elucidate the specific fate of its nutritive components in the rumen and tissue levels.

  3. Neural substrates of trait ruminations in depression

    OpenAIRE

    Mandell, Darcy; Siegle, Greg; Shutt, Luann; Feldmiller, Josh; Thase, Michael E.

    2014-01-01

    Rumination in depression is a risk factor for longer, more intense, and harder-to-treat depressions. But there appear to be multiple types of depressive rumination – whether they all share these vulnerability mechanisms, and thus would benefit from the same types of clinical attention is unclear. In the current study, we examined neural correlates of empirically-derived dimensions of trait rumination in 35 depressed participants. These individuals and 29 never-depressed controls completed 17 ...

  4. Toxicology of sulfur in ruminants: review

    Energy Technology Data Exchange (ETDEWEB)

    Kandylis, K.

    1984-10-01

    This review deals with the toxicology of sulfur in ruminants including toxicity, neurotoxic effects, and mechanism of toxic action of hydrogen sulfide, clinical signs, and treatment. It will report effects of excessive intake of sulfur by ruminants on feed intake, animal performance, ruminal digestion and motility, rumination, and other physiological functions. Poisoning of animals with sulfur from industrial emissions (sulfur dioxide) also is discussed. Excessive quantities of dietary sulfur (above .3 to .4%) as sulfate or elemental sulfur may cause toxic effects and in extreme cases can be fatal. The means is discussed whereby consumption of excessive amounts of sulfur leads to toxic effects. 53 references, 1 table.

  5. A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse.

    Science.gov (United States)

    Cheng, Jingrong; Zhu, Mingjun

    2013-09-01

    A novel co-culture of Clostridium thermocellum and Thermoanaerobacterium aotearoense with pretreated sugarcane bagasse (SCB) under mild alkali conditions for bio-hydrogen production was established, exhibiting a cost-effective and synergetic advantage in bio-hydrogen production over monoculture of C. thermocellum or T. aotearoense with untreated SCB. The optimized pretreatment conditions were established to be 3% NaOH, and a liquid to solid ratio of 25:1 at 80°C for 3h. A final hydrogen production of 50.05±1.51 mmol/L was achieved with 40 g/L pretreated SCB at 55°C. The established co-culture system provides a novel consolidated bio-processing strategy for bioconversion of SCB to bio-hydrogen.

  6. Harvesting biohydrogen from cellobiose from sulfide or nitrite-containing wastewaters using Clostridium sp. R1.

    Science.gov (United States)

    Ho, Kuo-Ling; Lee, Duu-Jong

    2011-09-01

    Harvesting biohydrogen from inhibiting wastewaters is of practical interest since the toxicity of compounds in a wastewater stream commonly prevents the bioenergy content being recovered. The isolated Clostridium sp. R1 is utilized to degrade cellobiose in sulfide or nitrite-containing medium for biohydrogen production. The strain can effectively degrade cellobiose free of severe inhibitory effects at up to 200 mgl(-1) sulfide or to 5 mgl(-1) nitrite, yielding hydrogen at >2.0 mol H2 mol(-1) cellobiose. Principal metabolites of cellobiose fermentation are acetate and butyrate, with the concentration of the former increases with increasing sulfide and nitrite concentrations. The isolated strain can yield hydrogen from cellobiose in sulfide-laden wastewaters. However, the present of nitrite significantly limit the efficiency of the biohydrogen harvesting process.

  7. Integrated treatment of municipal sewage sludge by deep dewatering and anaerobic fermentation for biohydrogen production.

    Science.gov (United States)

    Yu, Li; Yu, Yang; Jiang, Wentian; Wei, Huangzhao; Sun, Chenglin

    2015-02-01

    The increasing sludge generated in wastewater treatment plants poses a threat to the environment. Based on the traditional processes, sludge dewatered by usual methods was further dewatered by hydraulic compression and the filtrate released was treated by anaerobic fermentation. The difficulties in sludge dewatering were associated with the existence of sludge flocs or colloidal materials. A suitable CaO dosage of 125 mg/g dry sludge (DS) could further decrease the moisture content of sludge from 82.4 to 50.9 %. The filtrate from the dewatering procedure was a potential substrate for biohydrogen production. Adding zero-valent iron (ZVI) into the anaerobic system improved the biohydrogen yield by 20 %, and the COD removal rate was lifted by 10 % as well. Meanwhile, the sludge morphology and microbial community were altered. The novel method could greatly reduce the sludge volume and successfully treated filtrate along with the conversion of organics into biohydrogen.

  8. Effects of treatment of whole fat soybeans or soy flour with formaldehyde to protect the polyunsaturated fatty acids from biohydrogenation in the rumen.

    Science.gov (United States)

    Ackerson, B A; Johnson, R R; Hendrickson, R L

    1976-10-01

    Full-fat, ground soy flour (GSF) was treated with 37% formaldehyde (HCHO) and evaluated by in vitro and in vivo criteria to determine the protection afforded linoleic acid against ruminal biohydrogenation when the materials described above were fed as a protein supplement to rations for growing lambs. The supplements compared were soybean meal (SBM), uked for 2 hours. Organoleptic evaluations were conducted to determine if any flavor differences in meat from lambs fed these supplements could be detected. Excellent protection of linoleic acid, the major polyunsaturated fatty acid in soybeans, was noted both in vitro and in vivo. Rump, shoulder, kidney knob and omental fat depots of lambs fed the HCHO treated GSF ration had significantly more linoleic acid than lambs fed untreated GSF while lambs fed untreated GSF had significantly, more linoleic acid in their fat depots than lambs fed SBM. Linoleic acid content of intramuscular (loin) fat from lambs fed HCHO treated GSF was not significantly different from lambs fed untreated GSF, but lambs fed untreated GSF had significantly more loin linoleic acid than lambs fed SBM. No significant differences were noted in daily feed intake, feed efficiency or average daily gain for lambs fed growing-finishing rations containing any of the products tested as the protein supplement. A taste panel could not detect any differences in flavor of ground loin among any of the treatments. PMID:987164

  9. Beef Fat Enriched with Polyunsaturated Fatty Acid Biohydrogenation Products Improves Insulin Sensitivity Without Altering Dyslipidemia in Insulin Resistant JCR:LA-cp Rats.

    Science.gov (United States)

    Diane, Abdoulaye; Borthwick, Faye; Mapiye, Cletos; Vahmani, Payam; David, Rolland C; Vine, Donna F; Dugan, Michael E R; Proctor, Spencer D

    2016-07-01

    The main dietary sources of trans fatty acids are partially hydrogenated vegetable oils (PHVO), and products derived from polyunsaturated fatty acid biohydrogenation (PUFA-BHP) in ruminants. Trans fatty acid intake has historically been associated with negative effects on health, generating an anti-trans fat campaign to reduce their consumption. The profiles and effects on health of PHVO and PUFA-BHP can, however, be quite different. Dairy products naturally enriched with vaccenic and rumenic acids have many purported health benefits, but the putative benefits of beef fat naturally enriched with PUFA-BHP have not been investigated. The objective of the present experiment was to determine the effects of beef peri-renal fat (PRF) with differing enrichments of PUFA-BHP on lipid and insulin metabolism in a rodent model of dyslipidemia and insulin resistance (JCR:LA-cp rat). The results showed that 6 weeks of diet supplementation with beef PRF naturally enriched due to flaxseed (FS-PRF) or sunflower-seed (SS-PRF) feeding to cattle significantly improved plasma fasting insulin levels and insulin sensitivity, postprandial insulin levels (only in the FS-PRF) without altering dyslipidemia. Moreover, FS-PRF but not SS-PRF attenuated adipose tissue accumulation. Therefore, enhancing levels of PUFA-BHP in beef PRF with FS feeding may be a useful approach to maximize the health-conferring value of beef-derived fats.

  10. Can a fermentation gas mainly produced by rumen Isotrichidae ciliates be a potential source of biohydrogen and a fuel for a chemical fuel cell?

    Science.gov (United States)

    Piela, Piotr; Michałowski, Tadeusz; Miltko, Renata; Szewczyk, Krzysztof; Sikora, Radosław; Grzesiuk, Elzbieta; Sikora, Anna

    2010-07-01

    Bacteria, fungi and protozoa inhabiting the rumen, the largest chamber of the ruminants' stomach, release large quantities of hydrogen during the fermentation of carbohydrates. The hydrogen is used by coexisting methanogens to produce methane in energy-yielding processes. This work shows, for the first time, a fundamental possibility of using a hydrogen-rich fermentation gas produced by selected rumen ciliates to feed a low-temperature hydrogen fuel cell. A biohydrogen fuel cell (BHFC) was constructed consisting of (i) a bioreactor, in which a hydrogen-rich gas was produced from glucose by rumen ciliates, mainly of the Isotrichidae family, deprived of intra- and extracellular bacteria, methanogens, and fungi, and (ii) a chemical fuel cell of the polymer-electrolyte type (PEFC). The fuel cell was used as a tester of the technical applicability of the fermentation gas produced by the rumen ciliates for power generation. The average estimated hydrogen yield was ca. 1.15 mol H2 per mol of fermented glucose. The BHFC performance was equal to the performance of the PEFC running on pure hydrogen. No fuel cell poisoning effects were detected. A maximum power density of 1.66 kW/m2 (PEFC geometric area) was obtained at room temperature. The maximum volumetric power density was 128 W/m3 but the coulombic efficiency was only ca. 3.8%. The configuration of the bioreactor limited the continuous operation time of this BHFC to ca. 14 hours. PMID:20668402

  11. Beef Fat Enriched with Polyunsaturated Fatty Acid Biohydrogenation Products Improves Insulin Sensitivity Without Altering Dyslipidemia in Insulin Resistant JCR:LA-cp Rats.

    Science.gov (United States)

    Diane, Abdoulaye; Borthwick, Faye; Mapiye, Cletos; Vahmani, Payam; David, Rolland C; Vine, Donna F; Dugan, Michael E R; Proctor, Spencer D

    2016-07-01

    The main dietary sources of trans fatty acids are partially hydrogenated vegetable oils (PHVO), and products derived from polyunsaturated fatty acid biohydrogenation (PUFA-BHP) in ruminants. Trans fatty acid intake has historically been associated with negative effects on health, generating an anti-trans fat campaign to reduce their consumption. The profiles and effects on health of PHVO and PUFA-BHP can, however, be quite different. Dairy products naturally enriched with vaccenic and rumenic acids have many purported health benefits, but the putative benefits of beef fat naturally enriched with PUFA-BHP have not been investigated. The objective of the present experiment was to determine the effects of beef peri-renal fat (PRF) with differing enrichments of PUFA-BHP on lipid and insulin metabolism in a rodent model of dyslipidemia and insulin resistance (JCR:LA-cp rat). The results showed that 6 weeks of diet supplementation with beef PRF naturally enriched due to flaxseed (FS-PRF) or sunflower-seed (SS-PRF) feeding to cattle significantly improved plasma fasting insulin levels and insulin sensitivity, postprandial insulin levels (only in the FS-PRF) without altering dyslipidemia. Moreover, FS-PRF but not SS-PRF attenuated adipose tissue accumulation. Therefore, enhancing levels of PUFA-BHP in beef PRF with FS feeding may be a useful approach to maximize the health-conferring value of beef-derived fats. PMID:27072368

  12. Biohydrogen production with the light-harvesting function of grana from spirulina and colloidal platinum

    Energy Technology Data Exchange (ETDEWEB)

    Amao, Yutaka; Nakamura, Naoki [Department of Applied Chemistry, Oita University Dannoharu 700, Oita 870-1192 (Japan)

    2006-01-15

    Biohydrogen production with the light-harvesting function of grana from spirulina by use of three-component system consisting of NADH, methylviologen (MV{sup 2+}) and colloidal platinum was investigated. The decay rate of chlorophyll included in grana was suppressed by addition of NADH and little degradation was observed in 120min irradiation. The biohydrogen production system was developed using the light-harvesting function of grana and platinum colloid in the presence of NADH and MV{sup 2+} and the amount of hydrogen produced was estimated to be 0.14{mu}mol after 4h irradiation. (author)

  13. Neural substrates of trait ruminations in depression.

    Science.gov (United States)

    Mandell, Darcy; Siegle, Greg J; Shutt, Luann; Feldmiller, Josh; Thase, Michael E

    2014-02-01

    Rumination in depression is a risk factor for longer, more intense, and harder-to-treat depressions. But there appear to be multiple types of depressive rumination-whether they all share these vulnerability mechanisms, and thus would benefit from the same types of clinical attention is unclear. In the current study, we examined neural correlates of empirically derived dimensions of trait rumination in 35 depressed participants. These individuals and 29 never-depressed controls completed 17 self-report measures of rumination and an alternating emotion-processing/executive-control task during functional MRI (fMRI) assessment. We examined associations of regions of interest--the amygdala and other cortical regions subserving a potential role in deficient cognitive control and elaborative emotion-processing--with trait rumination. Rumination of all types was generally associated with increased sustained amygdala reactivity. When controlling for amygdala reactivity, distinct activity patterns in hippocampus were also associated with specific dimensions of rumination. We discuss the possibly utility of targeting more basic biological substrates of emotional reactivity in depressed patients who frequently ruminate. PMID:24661157

  14. Effects of Peanut Butter on Ruminating.

    Science.gov (United States)

    Greene, Katherine S.; And Others

    1991-01-01

    Effects of supplementary peanut butter on rumination behavior among five institutionalized mentally retarded adults were studied, by independently manipulating caloric density versus consistency of the peanut butter. Results showed an inverse relationship between rates of rumination and amount of peanut butter consumed, an effect primarily…

  15. CO厌氧发酵制氢过程中的微生物特性及其影响因素%Microbial Characteristics and Influence Factors During Anaerobic Fermentation for Biohydrogen Production from CO

    Institute of Scientific and Technical Information of China (English)

    赵亚; 刘志军; 刘凤霞; GUIOT Serge R

    2012-01-01

    以发酵液中溶解的一氧化碳(CO)为底物,研究高温嗜热菌(Carboxydothermus hydrogenoformans)厌氧发酵制氢的工艺过程,通过C.hydrogenoformans菌的生长规律、絮凝能力和反应特性等实验研究,建立菌株的生长规律模型,得出微生物衰减系数和最大比生长速率.结果表明,C hydrogenooformans菌产氧率高,絮凝效果好,用于连续CO生物发酵制氢工艺是可行的.对发酵制氢过程的影响因素进行考察,得出最佳食微比及CO对发酵制氢过程的抑制浓度等过程参数,为有效开发CO厌氧生物发酵制氢的工艺路线提供了参考依据.%The biohydrogen production from anaerobic fermentation was studied with thermophilic bacterium Carboxydothermus hydrogenoformans using carbon monoxide (CO) dissolved in fermentation broth as the substrate. Bacterium growth model, decay efficient and the maximum specific growth rate were observed based on the experimental study of biomass growing, flocculation and microbial characteristics. The results indicated the feasibility of continuous anaerobic fermentation for hydrogen production from CO with C. hydrogenoformans due to its good hydrogen yield and flocculation ability. Furthermore, by investigating the effect of procedure parameters during CO fermentation, the optimal feed/microorganism was proposed and the maximum CO concentration was observed to avoid CO inhibition which was the key factor to consider in the study of continuous biohydrogen production from CO fermentation. Fig 4, Tab 2, Ref 17

  16. Bio-hydrogen production from renewable organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  17. Biohydrogen production from tequila vinasses using a fixed bed reactor.

    Science.gov (United States)

    Buitrón, Germán; Prato-Garcia, Dorian; Zhang, Axue

    2014-01-01

    In Mexico, the industrial production of tequila leads to the discharge of more than 31.2 million of m(3) of vinasse, which causes serious environmental issues because of its acidity, high organic load and the presence of recalcitrant compounds. The aim of this research was to study the feasibility of a fixed bed reactor for the production of biohydrogen by using tequila vinasse as substrate. The experiments were carried out in a continuous mode under mesophilic and acidic conditions. The maximum hydrogen yield and hydrogen production rate were 1.3 mol H2 mol/mol glucose and 72 ± 9 mL H2/(Lreactor h), respectively. Biogas consisted of carbon dioxide (36%) and hydrogen (64%); moreover methane was not observed. The electron-equivalent mass balance fitted satisfactorily (sink of electrons from 0.8 to 7.6%). For vinasses, hydrogen production accounted for 10.9% of the total available electron-equivalents. In the liquid phase, the principal metabolites identified were acetic, butyric and iso-butyric acids, which indicated a butyrate-acetate type fermentation. Tequila vinasses did not result in potential inhibition of the fermentative process. Considering the process as a water treatment system, only 20% of the original carbon was removed (as carbon dioxide and biomass) when the tequila vinasses are used.

  18. A comprehensive and quantitative review of dark fermentative biohydrogen production

    Directory of Open Access Journals (Sweden)

    Rittmann Simon

    2012-08-01

    Full Text Available Abstract Biohydrogen production (BHP can be achieved by direct or indirect biophotolysis, photo-fermentation and dark fermentation, whereof only the latter does not require the input of light energy. Our motivation to compile this review was to quantify and comprehensively report strains and process performance of dark fermentative BHP. This review summarizes the work done on pure and defined co-culture dark fermentative BHP since the year 1901. Qualitative growth characteristics and quantitative normalized results of H2 production for more than 2000 conditions are presented in a normalized and therefore comparable format to the scientific community. Statistically based evidence shows that thermophilic strains comprise high substrate conversion efficiency, but mesophilic strains achieve high volumetric productivity. Moreover, microbes of Thermoanaerobacterales (Family III have to be preferred when aiming to achieve high substrate conversion efficiency in comparison to the families Clostridiaceae and Enterobacteriaceae. The limited number of results available on dark fermentative BHP from fed-batch cultivations indicates the yet underestimated potential of this bioprocessing application. A Design of Experiments strategy should be preferred for efficient bioprocess development and optimization of BHP aiming at improving medium, cultivation conditions and revealing inhibitory effects. This will enable comparing and optimizing strains and processes independent of initial conditions and scale.

  19. Performance of mesophilic biohydrogen-producing cultures at thermophilic conditions.

    Science.gov (United States)

    Gupta, Medhavi; Gomez-Flores, Maritza; Nasr, Noha; Elbeshbishy, Elsayed; Hafez, Hisham; Hesham El Naggar, M; Nakhla, George

    2015-09-01

    In this study, batch tests were conducted to investigate the performance of mesophilic anaerobic digester sludge (ADS) at thermophilic conditions and estimate kinetic parameters for co-substrate fermentation. Starch and cellulose were used as mono-substrate and in combination as co-substrates (1:1 mass ratio) to conduct a comparative assessment between mesophilic (37 °C) and thermophilic (60 °C) biohydrogen production. Unacclimatized mesophilic ADS responded well to the temperature change. The highest hydrogen yield of 1.13 mol H2/mol hexose was observed in starch-only batches at thermophilic conditions. The thermophilic cellulose-only yield (0.42 mol H2/mol hexose) was three times the mesophilic yield (0.13 mol H2/mol hexose). Interestingly, co-fermentation of starch-cellulose at mesophilic conditions enhanced the hydrogen yield by 26% with respect to estimated mono-substrate yields, while under thermophilic conditions no enhancement in the overall yield was observed. Interestingly, the estimated overall Monod kinetic parameters showed higher rates at mesophilic than thermophilic conditions.

  20. Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes

    Directory of Open Access Journals (Sweden)

    Kuppam Chandrasekhar

    2015-04-01

    Full Text Available The current fossil fuel-based generation of energy has led to large-scale industrial development. However, the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly, enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2, a clean energy carrier with high-energy yields; upon the combustion of H2, H2O is the only major by-product. In recent decades, the attractive and renewable characteristics of H2 led us to develop a variety of biological routes for the production of H2. Based on the mode of H2 generation, the biological routes for H2 production are categorized into four groups: photobiological fermentation, anaerobic fermentation, enzymatic and microbial electrolysis, and a combination of these processes. Thus, this review primarily focuses on the evaluation of the biological routes for the production of H2. In particular, we assess the efficiency and feasibility of these bioprocesses with respect to the factors that affect operations, and we delineate the limitations. Additionally, alternative options such as bioaugmentation, multiple process integration, and microbial electrolysis to improve process efficiency are discussed to address industrial-level applications.

  1. Monitoring of microbial community structure and succession in the biohydrogen production reactor by denaturing gradient gel electrophoresis (DGGE)

    Institute of Scientific and Technical Information of China (English)

    XING; Defeng; REN; Nanqi; GONG; Manli; LI; Jianzheng; LI; Q

    2005-01-01

    To study the structure of microbial communities in the biological hydrogen production reactor and determine the ecological function of hydrogen producing bacteria, anaerobic sludge was obtained from the continuous stirred tank reactor (CSTR) in different periods of time, and the diversity and dynamics of microbial communities were investigated by denaturing gradient gel electrophoresis (DGGE). The results of DGGE demonstrated that an obvious shift of microbial population happened from the beginning of star-up to the 28th day, and the ethanol type fermentation was established. After 28 days the structure of microbial community became stable, and the climax community was formed. Comparative analysis of 16S rDNA sequences from reamplifying and sequencing the prominent bands indicated that the dominant population belonged to low G+C Gram-positive bacteria (Clostridium sp. And Ethanologenbacterium sp.), β- proteobacteria (Acidovorax sp.), γ-proteobacteria (Kluyvera sp.), Bacteroides (uncultured bacterium SJA-168), and Spirochaetes (uncultured eubacterium E1-K13), respectively. The hydrogen production rate increased obviously with the increase of Ethanologenbacterium sp., Clostridium sp. And uncultured Spirochaetes after 21 days, meanwhile the succession of ethanol type fermentation was formed. Throughout the succession the microbial diversity increased however it decreased after 21 days. Some types of Clostridium sp. Acidovorax sp., Kluyvera sp., and Bacteroides were dominant populations during all periods of time. These special populations were essential for the construction of climax community. Hydrogen production efficiency was dependent on both hydrogen producing bacteria and other populations. It implied that the co-metabolism of microbial community played a great role of biohydrogen production in the reactors.

  2. Monitoring of microbial community structure and succession in the biohydrogen production reactor by denaturing gradient gel electrophoresis (DGGE).

    Science.gov (United States)

    Xing, Defeng; Ren, Nanqi; Gong, Manli; Li, Jianzheng; Li, Qiubo

    2005-04-01

    To study the structure of microbial communities in the biological hydrogen production reactor and determine the ecological function of hydrogen producing bacteria, anaerobic sludge was obtained from the continuous stirred tank reactor (CSTR) in different periods of time, and the diversity and dynamics of microbial communities were investigated by denaturing gradient gel electrophoresis (DGGE). The results of DGGE demonstrated that an obvious shift of microbial population happened from the beginning of star-up to the 28th day, and the ethanol type fermentation was established. After 28 days the structure of microbial community became stable, and the climax community was formed. Comparative analysis of 16S rDNA sequences from reamplifying and sequencing the prominent bands indicated that the dominant population belonged to low G+C Gram-positive bacteria (Clostridium sp. and Ethanologenbacterium sp.), beta-proteobacteria (Acidovorax sp.), gamma-proteobacteria (Kluyvera sp.), Bacteroides (uncultured bacterium SJA-168), and Spirochaetes (uncultured eubacterium E1-K13), respectively. The hydrogen production rate increased obviously with the increase of Ethanologenbacterium sp., Clostridium sp. and uncultured Spirochaetes after 21 days, meanwhile the succession of ethanol type fermentation was formed. Throughout the succession the microbial diversity increased however it decreased after 21 days. Some types of Clostridium sp. Acidovorax sp., Kluyvera sp., and Bacteroides were dominant populations during all periods of time. These special populations were essential for the construction of climax community. Hydrogen production efficiency was dependent on both hydrogen producing bacteria and other populations. It implied that the co-metabolism of microbial community played a great role of biohydrogen production in the reactors.

  3. [Rumination in a young woman].

    Science.gov (United States)

    Muurinen, Tiina; Walamies, Markku

    2015-01-01

    Rumination refers to bringing up undigested or partially digested food mass from the stomach into the mouth to be rechewed and ingested. This manner of digestion is characteristic of e.g. cattle, but exceptional and likely to cause symptoms for humans. This rare malfunction can be traced on the basis of accurate patient history and confirmed at a test meal by manometry and impedance measurement. Regurgitation may in some patients be triggered by gastroesophageal reflux or air suction into the esophagus caused by an unconscious movement of the pancreas. After the condition has been recognized, behavioral therapy should be primarily considered. PMID:26245059

  4. Characterization and phylogenetics of a new species of genus Lactobacillus from the activated sludge in biohydrogen production

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Anaerobic process of biohydrogen production was developed. There is a great deal of Lactobacillus bacteria in the activated sludge of biohydrogen reactor. The isolation and identification of different anaerobic bacteria in the reactor is important for fermented biohydrogen production process by anaerobic digesting organic wastewater. Considering with the physiological and biochemical traits, morphological characteristics and 16SrDNA sequence, the isolated Rennanqilyfl3 is a new species in Lactobacillus genus. And the temporary nomenclature of the species is Lactobacillus Strain Rennanqilyfl3 sp. nov.

  5. Interactions between oil substrates and glucose on pure cultures of ruminal lipase-producing bacteria.

    Science.gov (United States)

    Edwards, H D; Anderson, R C; Taylor, T M; Miller, R K; Hardin, M D; Nisbet, D J; Krueger, N A; Smith, S B

    2013-07-01

    The hydrolysis of free fatty acids from lipids is a prerequisite for biohydrogenation, a process that effectively saturates free fatty acids. Anaerovibrio lipolyticus 5s and Butyrivibrio fibrisolvens have long been thought to be the major contributors to ruminal lipolysis; however, Propionibacterium avidum and acnes recently have been identified as contributing lipase activity in the rumen. In order to further characterize the lipase activity of these bacterial populations, each was grown with three different lipid substrates, olive oil, corn oil, and flaxseed oil (3 %). Because different finishing rations contain varying levels of glycogen (a source of free glucose) this study also documented the effects of glucose on lipolysis. P. avidum and A. lipolyticus 5s demonstrated the most rapid rates (P < 0.05) of lipolysis for cultures grown with olive oil and flaxseed oil, respectively. A. lipolyticus, B. fibrisolvens, and P. avidum more effectively hydrolyzed flaxseed oil than olive oil or corn oil, especially in the presence of 0.02 % glucose. Conversely, P. acnes hydrolyzed corn oil more readily than olive oil or flaxseed oil and glucose had no effect on lipolytic rate. Thus, these bacterial species demonstrated different specificities for oil substrates and different sensitivities to glucose. PMID:23609414

  6. Dynamics of small ruminant development in Central Java-Indonesia

    NARCIS (Netherlands)

    Gede Suparta Budisatria, I.

    2006-01-01

    Small ruminants are an important but neglected resource in developing countries. Small ruminant production systems are complex. The multiple goals related to small ruminants, combined with the complexity of their management, and the resources and social arrangements involved, make small ruminants ke

  7. CFD simulation of an expanded granular sludge bed (EGSB) reactor for biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Ding, Jie; Ren, Nan-Qi; Liu, Bing-Feng; Guo, Wan-Qian [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 202 Haihe Road, Nangang District, Harbin, Heilongjiang 150090 (China)

    2009-12-15

    Understanding how a bioreactor functions is a necessary precursor for successful reactor design and operation. This paper describes a two-dimensional computational fluid dynamics simulation of three-phase gas-liquid-solid flow in an expanded granular sludge bed (EGSB) reactor used for biohydrogen production. An Eulerian-Eulerian model was formulated to simulate reaction zone hydrodynamics in an EGSB reactor with various hydraulic retention times (HRT). The three-phase system displayed a very heterogeneous flow pattern especially at long HRTs. The core-annulus structure developed may lead to back-mixing and internal circulation behavior, which in turn gives poor velocity distribution. The force balance between the solid and gas phases is a particular illustration of the importance of the interphase rules in determining the efficiency of biohydrogen production. The nature of gas bubble formation influences velocity distribution and hence sludge particle movement. The model demonstrates a qualitative relationship between hydrodynamics and biohydrogen production, implying that controlling hydraulic retention time is a critical factor in biohydrogen-production. (author)

  8. Critical assessment of anaerobic processes for continuous biohydrogen production from organic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Show, Kuan-Yeow [Faculty of Engineering and Green Technology, University Tunku Abdul Rahman, Jalan University, Bandar Barat, 31900 Kampar, Perak (Malaysia); Zhang, Zhen-Peng [Beijing Enterprises Water Group Limited, BLK 25, No. 3 Minzhuang Road, Beijing 100195 (China); Tay, Joo-Hwa [School of Civil and Environmental Engineering, Nanyang Technological University, Nanyang Avenue (Singapore); Liang, David Tee [Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei (China); Ren, Nanqi; Wang, Aijie [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2010-12-15

    Production of biohydrogen using dark fermentation has received much attention owing to the fact that hydrogen can be generated from renewable organics including waste materials. The key to successful application of anaerobic fermentation is to uncouple the liquid retention time and the biomass retention time in the reactor system. Various reactor designs based on biomass retention within the reactor system have been developed. This paper presents our research work on bioreactor designs and operation for biohydrogen production. Comparisons between immobilized-cell systems and suspended-cell systems based on biomass growth in the forms of granule, biofilm and flocs were made. Reactor configurations including column- and tank-based reactors were also assessed. Experimental results indicated that formation of granules or biofilms substantially enhanced biomass retention which was found to be proportional to the hydrogen production rate. Rapid hydrogen-producing culture growth and high organic loading rate might limit the application of biofilm biohydrogen production, since excessive growth of fermentative biomass would result in washout of support carrier. It follows that column-based granular sludge process is a preferred choice of process for continuous biohydrogen production from organic wastewater, indicating maximum hydrogen yield of 1.7 mol-H{sub 2}/mol-glucose and hydrogen production rate of 6.8 L-H{sub 2}/L-reactor h. (author)

  9. Biohydrogenation of Fatty Acids Is Dependent on Plant Species and Feeding Regimen of Dairy Cows

    DEFF Research Database (Denmark)

    Petersen, Majbritt Bonefeld; Jensen, Søren Krogh

    2014-01-01

    Rumen biohydrogenation (BH) of C18:3n-3 (ALA) and C18:2n-6 (LA) has been shown to be reduced in cows fed species-rich herbage, but plant species offering the best protection against BH are yet to be elucidated. The aim of the present study was to investigate differences in rumen in vitro BH of ALA...

  10. Two-stage alkaline-enzymatic pretreatments to enhance biohydrogen production from sunflower stalks.

    Science.gov (United States)

    Monlau, Florian; Trably, Eric; Barakat, Abdellatif; Hamelin, Jérôme; Steyer, Jean-Philippe; Carrere, Hélène

    2013-01-01

    Because of their rich composition in carbohydrates, lignocellulosic residues represent an interesting source of biomass to produce biohydrogen by dark fermentation. Nevertheless, pretreatments should be applied to enhance the solubilization of holocelluloses and increase their further conversion into biohydrogen. The aim of this study was to investigate the effect of thermo-alkaline pretreatment alone and combined with enzymatic hydrolysis to enhance biohydrogen production from sunflower stalks. A low increase of hydrogen potentials from 2.3 ± 0.9 to 4.4 ± 2.6 and 20.6 ± 5.6 mL of H2 g(-1) of volatile solids (VS) was observed with raw sunflower stalks and after thermo-alkaline pretreatment at 55 °C, 24 h, and 4% NaOH and 170 °C, 1 h, and 4% NaOH, respectively. Enzymatic pretreatment alone showed an enhancement of the biohydrogen yields to 30.4 mL of H2 g(-1) of initial VS, whereas it led to 49 and 59.5 mL of H2 g(-1) of initial VS when combined with alkaline pretreatment at 55 and 170 °C, respectively. Interestingly, a diauxic effect was observed with sequential consumption of sugars by the mixed cultures during dark fermentation. Glucose was first consumed, and once glucose was completely exhausted, xylose was used by the microorganisms, mainly related to Clostridium species.

  11. Biohydrogen production from sugar rich substrates using the dark fermentation process

    DEFF Research Database (Denmark)

    Kongjan, Prawit

    . Produktion af bioethanol fra dette biprodukt er hverken økonomisk eller effektivt. Derimod kan biohydrogen produceres med gode resultater. Ved brug af en blandet mikrobiel kultur beriget med hydrogenproducerende mikroorganismer opnås produktion af hydrogen fra organisk materiale i hydrolysat. I dette projekt...

  12. Development of net energy ratio and emission factor for biohydrogen production pathways.

    Science.gov (United States)

    Kabir, Md Ruhul; Kumar, Amit

    2011-10-01

    This study investigates the energy and environmental aspects of producing biohydrogen for bitumen upgrading from a life cycle perspective. Three technologies are studied for biohydrogen production; these include the Battelle Columbus Laboratory (BCL) gasifier, the Gas Technology Institute (GTI) gasifier, and fast pyrolysis. Three different biomass feedstocks are considered including forest residue (FR), whole forest (WF), and agricultural residue (AR). The fast pyrolysis pathway includes two cases: truck transport of bio-oil and pipeline transport of bio-oil. The net energy ratios (NERs) for nine biohydrogen pathways lie in the range of 1.3-9.3. The maximum NER (9.3) is for the FR-based pathway using GTI technology. The GHG emissions lie in the range of 1.20-8.1 kg CO₂ eq/kg H₂. The lowest limit corresponds to the FR-based biohydrogen production pathway using GTI technology. This study also analyzes the intensities for acid rain precursor and ground level ozone precursor.

  13. Effects of Neutral Detergent Soluble Fiber and Sucrose Supplementation on Ruminal Fermentation, Microbial Synthesis, and Populations of Ruminal Cellulolytic Bacteria Using the Rumen Simulation Technique (RUSITEC)

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiang-hui; LIU Chan-juan; LI Chao-yun; YAO Jun-hu

    2013-01-01

    We evaluated the effects of neutral detergent soluble fiber (NDSF) and sucrose supplementation on ruminal fermentation, microbial synthesis, and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC). The experiment had a 2×2 factorial design with two dosages of sucrose, low (ca. 0.26 g d-1, low-sucrose) and high (ca. 1.01 g d-1, high-sucrose), and two dosages of supplied NDSF, low (1.95 g d-1, low-NDSF) and high (2.70 g d-1, high-NDSF). Interactions between NDSF and sucrose were detected for xylanase activity from solid fraction and apparent disappearance of neutral detergent fiber (NDF) and hemicellulose, with the lowest values observed for high-NDSF and high-sucrose treatment. Supplemental NDSF appeared to increase the molar proportion of acetate and reduce that of butyrate;however, the effects of supplemental sucrose on VFA profiles depended upon NDSF amount. There was a NDSF×sucrose interaction for the production of methane. High-NDSF fermenters had lower ammonia-N production, greater daily N flow of solid-associated microbial pellets and total microorganisms, and greater microbial synthesis efficiency compared with low-NDSF fermenters. Supplementation with NDSF resulted in an increase in 16S rDNA copies of Ruminococcus flavefaciens and a reduction in copies of Ruminococcus albus. Supplementation with sucrose tended to increase the 16S rDNA copies of R. albus from liquid fraction, but did not affect daily total microbial N flow and cellulolytic bacterium populations from solid fraction. These data indicate that the effects of the interaction between NDSF and sugars on ruminal fermentation and fiber digestion should be taken into account in diet formulation. Ruminal fermentation and metabolism of sugars warrant further investigation.

  14. Rumination in bipolar disorder: a systematic review

    Directory of Open Access Journals (Sweden)

    Érico de M. Silveira Jr.

    2015-09-01

    Full Text Available Objective:To conduct a systematic review of the literature about the symptom of rumination in bipolar disorder (BD.Methods:We searched the MEDLINE (PubMed, ISI Web of Knowledge, PsycINFO, and SciELO databases using the descriptors “rumination” and “bipolar disorder” and no time limits. This strategy yielded 105 references, of which 74 were selected. Inclusion criteria were studies involving patients with BD and the use of at least one validated scale for the assessment of rumination. Review articles were excluded. Seventeen articles were ultimately analyzed and included in the review.Results:Rumination is present in all BD phases, is a stable interepisodic symptom, is associated with symptoms of depression, anxiety, and hypomania, and may occur in response to both positive and negative affect. There is no research on rumination and neurobiological findings in patients with BD.Conclusions:Rumination seems to be independent of mood state, but shows close relationship with it. It is possible that rumination has a negative impact on cognitive and executive functions, particularly inhibitory control. Finally, rumination is an important symptom in both phases of BD, and, therefore, may be a useful target for further exploration as a dimensional domain and a transdiagnostic phenomenon in Research Domain Criteria (RDoC projects.

  15. Comparison of ruminal lipid metabolism in dairy cows and goats fed diets supplemented with starch, plant oil, or fish oil.

    Science.gov (United States)

    Toral, P G; Bernard, L; Belenguer, A; Rouel, J; Hervás, G; Chilliard, Y; Frutos, P

    2016-01-01

    Direct comparison of cow and goat performance and milk fatty acid responses to diets known to induce milk fat depression (MFD) in the bovine reveals relevant species-by-diet interactions in ruminal lipid metabolism. Thus, this study was conducted to infer potential mechanisms responsible for differences in the rumen microbial biohydrogenation (BH) due to diet and ruminant species. To meet this objective, 12 cows and 15 goats were fed a basal diet (control), a similar diet supplemented with 2.2% fish oil (FO), or a diet containing 5.3% sunflower oil and additional starch (+38%; SOS) according to a 3 × 3 Latin square design with 25-d experimental periods. On the last day of each period, fatty acid composition (by gas chromatography) and bacterial community (by terminal-RFLP), as well as fermentation characteristics, were measured in rumen fluid samples. Results showed significant differences in the response of cows and goats to dietary treatments, although variations in some fermentation parameters (e.g., decreases in the acetate-to-propionate ratio due to FO or SOS) were similar in both species. Main alterations in ruminal BH pathways potentially responsible for MFD on the SOS diet (i.e., the shift from trans-11 to trans-10 18:1 and related increases in trans-10,cis-12 18:2) tended to be more pronounced in cows, which is consistent with an associated MFD only in this species. However, changes linked to FO-induced MFD (e.g., decreases in 18:0 and increases in total trans-18:1) were stronger in caprine rumen fluid, which may explain their unexpected susceptibility (although less marked than in bovine) to the negative effect of FO on milk fat content. Altogether, these results suggest that distinct ruminal mechanisms lead to each type of diet-induced MFD and confirm a pronounced interaction with species. With regard to microbiota, differences between cows and goats in the composition of the rumen bacterial community might be behind the disparity in the microorganisms

  16. Comparison of ruminal lipid metabolism in dairy cows and goats fed diets supplemented with starch, plant oil, or fish oil.

    Science.gov (United States)

    Toral, P G; Bernard, L; Belenguer, A; Rouel, J; Hervás, G; Chilliard, Y; Frutos, P

    2016-01-01

    Direct comparison of cow and goat performance and milk fatty acid responses to diets known to induce milk fat depression (MFD) in the bovine reveals relevant species-by-diet interactions in ruminal lipid metabolism. Thus, this study was conducted to infer potential mechanisms responsible for differences in the rumen microbial biohydrogenation (BH) due to diet and ruminant species. To meet this objective, 12 cows and 15 goats were fed a basal diet (control), a similar diet supplemented with 2.2% fish oil (FO), or a diet containing 5.3% sunflower oil and additional starch (+38%; SOS) according to a 3 × 3 Latin square design with 25-d experimental periods. On the last day of each period, fatty acid composition (by gas chromatography) and bacterial community (by terminal-RFLP), as well as fermentation characteristics, were measured in rumen fluid samples. Results showed significant differences in the response of cows and goats to dietary treatments, although variations in some fermentation parameters (e.g., decreases in the acetate-to-propionate ratio due to FO or SOS) were similar in both species. Main alterations in ruminal BH pathways potentially responsible for MFD on the SOS diet (i.e., the shift from trans-11 to trans-10 18:1 and related increases in trans-10,cis-12 18:2) tended to be more pronounced in cows, which is consistent with an associated MFD only in this species. However, changes linked to FO-induced MFD (e.g., decreases in 18:0 and increases in total trans-18:1) were stronger in caprine rumen fluid, which may explain their unexpected susceptibility (although less marked than in bovine) to the negative effect of FO on milk fat content. Altogether, these results suggest that distinct ruminal mechanisms lead to each type of diet-induced MFD and confirm a pronounced interaction with species. With regard to microbiota, differences between cows and goats in the composition of the rumen bacterial community might be behind the disparity in the microorganisms

  17. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70(degree)C)

    DEFF Research Database (Denmark)

    Zheng, H.; Zeng, Raymond Jianxiong; Angelidaki, Irini

    2008-01-01

    with household solid waste. Kinetic analysis of the biohydrogen enrichment cultures show that substrate (glucose) likely inhibited hydrogen production when its concentration was higher than 1 g/L. Different start up strategies were applied for biohydrogen production in biofilm reactors operated at 70°C, and fed......Biohydrogen could efficiently be produced in glucose-fed biofilm reactors filled with plastic carriers and operated at 70°C. Batch experiments were, in addition, conducted to enrich and cultivate glucose-fed extremethermophilic hydrogen producing microorganisms from a biohydrogen CSTR reactor fed...... with synthetic medium with glucose as the only carbon and energy source. A biofilm reactor, started up with plastic carriers, that were previously inoculated with the enrichment cultures, resulted in higher hydrogen yield (2.21 mol H2/mol glucose consumed) but required longer start up time (1 month), while...

  18. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    OpenAIRE

    A. Sattar; C. Arslan; Ji, C.; Sattar, S.; K. Yousaf; S. Hashim

    2015-01-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen productio...

  19. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.

    Science.gov (United States)

    Poggi-Varaldo, Héctor M; Munoz-Paez, Karla M; Escamilla-Alvarado, Carlos; Robledo-Narváez, Paula N; Ponce-Noyola, M Teresa; Calva-Calva, Graciano; Ríos-Leal, Elvira; Galíndez-Mayer, Juvencio; Estrada-Vázquez, Carlos; Ortega-Clemente, Alfredo; Rinderknecht-Seijas, Noemí F

    2014-05-01

    Biohydrogen is a sustainable form of energy as it can be produced from organic waste through fermentation processes involving dark fermentation and photofermentation. Very often biohydrogen is included as a part of biorefinery approaches, which reclaim organic wastes that are abundant sources of renewable and low cost substrate that can be efficiently fermented by microorganisms. The aim of this work was to critically assess selected bioenergy alternatives from organic solid waste, such as biohydrogen and bioelectricity, to evaluate their relative advantages and disadvantages in the context of biorefineries, and finally to indicate the trends for future research and development. Biorefining is the sustainable processing of biomass into a spectrum of marketable products, which means: energy, materials, chemicals, food and feed. Dark fermentation of organic wastes could be the beach-head of complete biorefineries that generate biohydrogen as a first step and could significantly influence the future of solid waste management. Series systems show a better efficiency than one-stage process regarding substrate conversion to hydrogen and bioenergy. The dark fermentation also produces fermented by-products (fatty acids and solvents), so there is an opportunity for further combining with other processes that yield more bioenergy. Photoheterotrophic fermentation is one of them: photosynthetic heterotrophs, such as non-sulfur purple bacteria, can thrive on the simple organic substances produced in dark fermentation and light, to give more H2. Effluents from photoheterotrophic fermentation and digestates can be processed in microbial fuel cells for bioelectricity production and methanogenic digestion for methane generation, thus integrating a diverse block of bioenergies. Several digestates from bioenergies could be used for bioproducts generation, such as cellulolytic enzymes and saccharification processes, leading to ethanol fermentation (another bioenergy), thus completing

  20. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.

    Science.gov (United States)

    Poggi-Varaldo, Héctor M; Munoz-Paez, Karla M; Escamilla-Alvarado, Carlos; Robledo-Narváez, Paula N; Ponce-Noyola, M Teresa; Calva-Calva, Graciano; Ríos-Leal, Elvira; Galíndez-Mayer, Juvencio; Estrada-Vázquez, Carlos; Ortega-Clemente, Alfredo; Rinderknecht-Seijas, Noemí F

    2014-05-01

    Biohydrogen is a sustainable form of energy as it can be produced from organic waste through fermentation processes involving dark fermentation and photofermentation. Very often biohydrogen is included as a part of biorefinery approaches, which reclaim organic wastes that are abundant sources of renewable and low cost substrate that can be efficiently fermented by microorganisms. The aim of this work was to critically assess selected bioenergy alternatives from organic solid waste, such as biohydrogen and bioelectricity, to evaluate their relative advantages and disadvantages in the context of biorefineries, and finally to indicate the trends for future research and development. Biorefining is the sustainable processing of biomass into a spectrum of marketable products, which means: energy, materials, chemicals, food and feed. Dark fermentation of organic wastes could be the beach-head of complete biorefineries that generate biohydrogen as a first step and could significantly influence the future of solid waste management. Series systems show a better efficiency than one-stage process regarding substrate conversion to hydrogen and bioenergy. The dark fermentation also produces fermented by-products (fatty acids and solvents), so there is an opportunity for further combining with other processes that yield more bioenergy. Photoheterotrophic fermentation is one of them: photosynthetic heterotrophs, such as non-sulfur purple bacteria, can thrive on the simple organic substances produced in dark fermentation and light, to give more H2. Effluents from photoheterotrophic fermentation and digestates can be processed in microbial fuel cells for bioelectricity production and methanogenic digestion for methane generation, thus integrating a diverse block of bioenergies. Several digestates from bioenergies could be used for bioproducts generation, such as cellulolytic enzymes and saccharification processes, leading to ethanol fermentation (another bioenergy), thus completing

  1. Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Chyi-How; Lin, Chiu-Yue [Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724 (China); Wu, Jou-Hsien; Hsiao, Chin-Lang [Department of Water Resource Engineering, Feng Chia University (China); Chang, Jui-Jen [Department of Life Sciences, National Chung Hsing University (China); Chen, Chin-Chao [Environmental Resources Laboratory, Department of Landscape Architecture, Chungchou Institute of Technology (China)

    2010-12-15

    Using anaerobic micro-organisms to convert organic waste to produce hydrogen gas gives the benefits of energy recovery and environmental protection. The objective of this study was to develop a biohydrogen production technology from food wastewater focusing on hydrogen production efficiency and micro-flora community at different hydraulic retention times. Soluble condensed molasses fermentation (CMS) was used as the substrate because it is sacchariferous and ideal for hydrogen production. CMS contains nutrient components that are necessary for bacterial growth: microbial protein, amino acids, organic acids, vitamins and coenzymes. The seed sludge was obtained from the waste activated sludge from a municipal sewage treatment plant in Central Taiwan. This seed sludge was rich in Clostridium sp. A CSTR (continuously stirred tank reactor) lab-scale hydrogen fermentor (working volume, 4.0 L) was operated at a hydraulic retention time (HRT) of 3-24 h with an influent CMS concentration of 40 g COD/L. The results showed that the peak hydrogen production rate of 390 mmol H{sub 2}/L-d occurred at an organic loading rate (OLR) of 320 g COD/L-d at a HRT of 3 h. The peak hydrogen yield was obtained at an OLR of 80 g COD/L-d at a HRT of 12 h. At HRT 8 h, all hydrogenase mRNA detected were from Clostridium acetobutylicum-like and Clostridium pasteurianum-like hydrogen-producing bacteria by RT-PCR analysis. RNA based hydrogenase gene and 16S rRNA gene analysis suggests that Clostridium exists in the fermentative hydrogen-producing system and might be the dominant hydrogen-producing bacteria at tested HRTs (except 3 h). The hydrogen production feedstock from CMS is lower than that of sucrose and starch because CMS is a waste and has zero cost, requiring no added nutrients. Therefore, producing hydrogen from food wastewater is a more commercially feasible bioprocess. (author)

  2. Biohydrogen production from beet molasses by sequential dark and photofermentation

    Energy Technology Data Exchange (ETDEWEB)

    Oezguer, Ebru; Eroglu, Inci [Middle East Technical University, Department of Chemical Engineering, 06531, Ankara (Turkey); Mars, Astrid E.; Louwerse, Annemarie; Claassen, Pieternel A.M. [Wageningen UR, Agrotechnology and Food Sciences Group, Wageningen UR, P.O. Box 17, 6700 AA Wageningen (Netherlands); Peksel, Beguem; Yuecel, Meral; Guenduez, Ufuk [Middle East Technical University, Department of Biology, 06531, Ankara (Turkey)

    2010-01-15

    Biological hydrogen production using renewable resources is a promising possibility to generate hydrogen in a sustainable way. In this study, a sequential dark and photofermentation has been employed for biohydrogen production using sugar beet molasses as a feedstock. An extreme thermophile Caldicellulosiruptor saccharolyticus was used for the dark fermentation, and several photosynthetic bacteria (Rhodobacter capsulatus wild type, R. capsulatus hup{sup -} mutant, and Rhodopseudomonas palustris) were used for the photofermentation. C. saccharolyticus was grown in a pH-controlled bioreactor, in batch mode, on molasses with an initial sucrose concentration of 15 g/L. The influence of additions of NH{sub 4}{sup +} and yeast extract on sucrose consumption and hydrogen production was determined. The highest hydrogen yield (4.2 mol of H{sub 2}/mol sucrose) and maximum volumetric productivity (7.1 mmol H{sub 2}/L{sub c}.h) were obtained in the absence of NH{sub 4}{sup +}. The effluent of the dark fermentation containing no NH{sub 4}{sup +} was fed to a photobioreactor, and hydrogen production was monitored under continuous illumination, in batch mode. Productivity and yield were improved by dilution of the dark fermentor effluent (DFE) and the additions of buffer, iron-citrate and sodium molybdate. The highest hydrogen yield (58% of the theoretical hydrogen yield of the consumed organic acids) and productivity (1.37 mmol H{sub 2}/L{sub c}.h) were attained using the hup{sup -} mutant of R. capsulatus. The overall hydrogen yield from sucrose increased from the maximum of 4.2 mol H{sub 2}/mol sucrose in dark fermentation to 13.7 mol H{sub 2}/mol sucrose (corresponding to 57% of the theoretical yield of 24 mol of H{sub 2}/mole of sucrose) by sequential dark and photofermentation. (author)

  3. Effects of various pretreatments on biohydrogen production from sewage sludge

    Institute of Scientific and Technical Information of China (English)

    XIAO BenYi; LIU JunXin

    2009-01-01

    The sewage sludge of wastewater treatment plant is a kind of biomass which contains many organics,mainly carbohydrates and proteins. Four pretreatments, acid pretreatment, alkaline pretreatment,thermal pretreatment and ultrasonic pretreatment, were used to enhance biohydrogen production from sewage sludge. The experimental results showed that the four pretreatments could all increase the soluble chemical oxygen demand (SCOD) of sludge and decrease the dry solid (DS) and volatile solid(VS) because the pretreatments could disrupt the floc structure and even the microbial cells of sludge.The results of batch anaerobic fermentation experiments demonstrated that all of the four pretreat-ments could select hydrogen-producing microorganisms from the microflora of sludge and enhance the hydrogen production. The hydrogen yield of the alkaline pretreated sludge at initial pH of 11.5 was the maximal (11.68 mL H2/g VS) and that of the thermal pretreated sludge was the next (8.62 mL H2/g VS).The result showed that the hydrogen yield of pretreated sludge was correlative with its SCOD. The hydrogen yields of acid pretreated sludge and alkaline pretreated sludge were also influenced by their initial pH. No methane could be detected in the anaerobic fermentation of alkaline pretreated sludge and thermal pretreated sludge, which suggested that these pretreatments could fully inhibit the activity of methanogens. The volatile fatty acids (VFA) production in anaerobic fermentation of alkaline pretreated sludge was the maximum and the next is that of thermal pretreated sludge.

  4. Application of pretreatments to enhance biohydrogen and/or methane from lignocellulosic residues: linking performances to compositional and structural features

    OpenAIRE

    Monlau, Florian

    2012-01-01

    In the future, various forms of renewable energy, such as second generation biofuels from lignocellulosic residues, will be required to replace fossil fuels. Among these, biohydrogen and methane produced through fermentative processes appear as interesting candidates. However, biohydrogen and/or methane production of lignocellulosic residues is often limited by the recalcitrant structure and a pretreatment step prior to fermentative processes is often required. Up to date, informations on lig...

  5. Simultaneous glucose sensing and biohydrogen evolution from direct photoelectrocatalytic glucose oxidation on robust Cu₂O-TiO₂ electrodes.

    Science.gov (United States)

    Devadoss, Anitha; Sudhagar, P; Ravidhas, C; Hishinuma, Ryota; Terashima, Chiaki; Nakata, Kazuya; Kondo, Takeshi; Shitanda, Isao; Yuasa, Makoto; Fujishima, Akira

    2014-10-21

    We report simultaneous photoelectrocatalytic (PEC) glucose sensing and biohydrogen generation for the first time from the direct PEC oxidation of glucose at multifunctional and robust Cu2O-TiO2 photocatalysts. Striking improvement of 30% in overall H2 gas evolution (∼122 μmol h(-1) cm(-2)) by photoholes assisted glucose oxidation opens a new platform in solar-driven PEC biohydrogen generation.

  6. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    In contrast to higher eukaryotes, bacteria are haploid, i.e. they store their genetic information in a single chromosome, which is then duplicated during the cell cycle. If the growth rate is sufficiently low, the bacterium is born with only a single copy of the chromosome, which gets duplicated...... before the bacterium divides. Fast-growing bacteria have overlapping rounds of replication, and can contain DNA corresponding to more than four genome equivalents. However, the terminus region of the chromosome is still present in just one copy after division, and is not duplicated until right before...... the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...

  7. Single Bacterium Detection Using Sers

    Science.gov (United States)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  8. Immunization against Small Ruminant Lentiviruses

    Directory of Open Access Journals (Sweden)

    Beatriz Amorena

    2013-08-01

    Full Text Available Multisystemic disease caused by Small Ruminant Lentiviruses (SRLV in sheep and goats leads to production losses, to the detriment of animal health and welfare. This, together with the lack of treatments, has triggered interest in exploring different strategies of immunization to control the widely spread SRLV infection and, also, to provide a useful model for HIV vaccines. These strategies involve inactivated whole virus, subunit vaccines, DNA encoding viral proteins in the presence or absence of plasmids encoding immunological adjuvants and naturally or artificially attenuated viruses. In this review, we revisit, comprehensively, the immunization strategies against SRLV and analyze this double edged tool individually, as it may contribute to either controlling or enhancing virus replication and/or disease.

  9. Peste des Petits Ruminants Virus.

    Science.gov (United States)

    Baron, M D; Diallo, A; Lancelot, R; Libeau, G

    2016-01-01

    Peste des petits ruminants virus (PPRV) causes a severe contagious disease of sheep and goats and has spread extensively through the developing world. Because of its disproportionately large impact on the livelihoods of low-income livestock keepers, and the availability of effective vaccines and good diagnostics, the virus is being targeted for global control and eventual eradication. In this review we examine the origin of the virus and its current distribution, and the factors that have led international organizations to conclude that it is eradicable. We also review recent progress in the molecular and cellular biology of the virus and consider areas where further research is required to support the efforts being made by national, regional, and international bodies to tackle this growing threat. PMID:27112279

  10. Strategies for optimizing nitrogen use by ruminants

    DEFF Research Database (Denmark)

    Calsamiglia, S; Ferret, A; Reynolds, C K;

    2010-01-01

    to improving the efficiency of N utilization in ruminants, and while major improvements in our understanding of N requirements and metabolism have been achieved, the overall efficiency remains low. In general, maximal efficiency of N utilization will only occur at the expense of some losses in production....... A better understanding of these key processes should allow the development of strategies to improve the efficiency of N utilization in ruminants...

  11. Suppurative intracranial processes in 15 domestic ruminants

    OpenAIRE

    2014-01-01

    In addition to listeriosis which is relatively common in ruminants, there are three other uncommon suppurative intracranial processes (SIP) identifiable in adult ungulates as brain abscess, basilar empyema and suppurative meningitis. The present paper reports the epidemiological, clinical, laboratorial, pathological and microbiological findings of 15 domestic ruminants with SIP. A total of 15 animals were selected (eight sheep, four cattle and three goats); with the definitive diagnoses of ba...

  12. Organic Zinc as Feed Additive for Ruminants

    OpenAIRE

    Suprijati

    2013-01-01

    Zinc is an essential micro mineral required by ruminants and is a component of over 300 enzymes which play important role in the metabolisms of carbohydrates, proteins and fats. Recently, the chemical and biotechnology processes have been developed for synthesizing organic Zn. Organic Zn is the product of a chelating process of dissolved Zn anorganic salts with amino acids or hydrolyzed protein. The utilization of organic Zn as feed additive in ruminants diets tends to increase, due to the ab...

  13. Rumination in bipolar disorder: evidence for an unquiet mind

    Directory of Open Access Journals (Sweden)

    Ghaznavi Sharmin

    2012-01-01

    Full Text Available Abstract Depression in bipolar disorder has long been thought to be a state characterized by mental inactivity. However, recent research demonstrates that patients with bipolar disorder engage in rumination, a form of self-focused repetitive cognitive activity, in depressed as well as in manic states. While rumination has long been associated with depressed states in major depressive disorder, the finding that patients with bipolar disorder ruminate in manic states is unique to bipolar disorder and challenges explanations put forward for why people ruminate. We review the research on rumination in bipolar disorder and propose that rumination in bipolar disorder, in both manic and depressed states, reflects executive dysfunction. We also review the neurobiology of bipolar disorder and recent neuroimaging studies of rumination, which is consistent with our hypothesis that the tendency to ruminate reflects executive dysfunction in bipolar disorder. Finally, we relate the neurobiology of rumination to the neurobiology of emotion regulation, which is disrupted in bipolar disorder.

  14. Characterization of 18:1 and 18:2 isomers produced during microbial biohydrogenation of unsaturated fatty acids from canola and soya bean oil in the rumen of lactating cows.

    Science.gov (United States)

    Loor, J J; Bandara, A B P A; Herbein, J H

    2002-12-01

    Ruminal production of biohydrogenation intermediates in response to unsaturated oils was assessed using 24 Jersey cows fed a control diet or the control diet supplemented at 35 g/kg dry matter (DM) with canola, soya bean, or a mixture of equal amounts of canola plus soya bean oil for 4-weeks. Total fatty acid content averaged 63 or 35 g/kg DM for oil-supplemented diets or control. Oleic acid accounted for 6, 29, 21 or 12 g/kg DM in the control, canola, mixture, or soya bean oil diet, respectively. Linoleic acid averaged 17, 19, 26, or 33 g/kg DM and linolenic acid 5, 5, 6 or 8 g/kg DM for control, canola, mixture, or soya bean oil. Concentrations of cis12-, trans11-, trans13+14, and trans15-18:1 were 0.81, 2.99, 2.24, and 0.73 mg/g rumen fluid, respectively, in response to soya bean oil and were 126, 90, 45, and 38% greater compared with other diets. Trans11cis15-, cis9trans11- and cis9 cis11-18:2 also were greater when soya bean oil (0.30, 0.34 and 0.01 mg/g, respectively) was fed compared with other treatments (0.12, 0.21 and 0.004 mg/g, respectively). Feeding canola oil resulted in greater concentrations of trans4-, trans5-, trans6+7+8-, trans9- and trans10-18:1 (0.20, 0.25, 0.87, 0.39 and 0.70 mg/g, respectively) compared with other diets (0.09, 0.15, 0.36, 0.20 and 0.46 mg/g, respectively). Trans10cis12-18:2 concentration did not differ as a result of diet and averaged 0.002 mg/g rumen contents. The pattern of 18:1 and 18:2 isomers formed during ruminal biohydrogenation depends greatly on dietary profile of unsaturated fatty acids.

  15. Ruminal fermentation of Anti-methanogenic Nitrate- and Nitro-Containing Forages In Vitro

    Directory of Open Access Journals (Sweden)

    Robin C. Anderson

    2016-08-01

    Full Text Available Nitrate, 3-nitro-1-propionic acid (NPA and 3-nitro-1-propanol (NPOH can accumulate in forages and be poisonous to animals if consumed in high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied little in this regard. Presently, we found that nitrate-, NPA- or NPOH-containing forages effectively decreased methane production, by 35 to 87%, during in vitro fermentation by mixed cultures of ruminal microbes compared to fermentation by cultures incubated similarly with alfalfa. Methane production was further decreased during incubation of mixed cultures also inoculated with Denitrobacterium detoxificans, a ruminal bacterium known to metabolize nitrate, NPA and NPOH. Inhibition of methanogens within the mixed cultures was greatest with the NPA- and NPOH-containing forages. Hydrogen accumulated in all the mixed cultures incubated with forages containing nitrate, NPA or NPOH but was dramatically higher, exceeding 40 µmol hydrogen/mL, in mixed cultures incubated with NPA-containing forage but not inoculated with D. detoxificans. This possibly reflects the inhibition of hydrogenase-catalyzed uptake of hydrogen produced via conversion of 50 µmol added formate per mL to hydrogen. Accumulations of volatile fatty acids revealed compensatory changes in fermentation in mixed cultures incubated with the nitrate-, NPA- and NPOH-containing forages as evidenced by lower accumulations of acetate, and in some cases higher accumulations of butyrate and lower accumulations of ammonia, iso-buytrate and iso-valerate compared to cultures incubated with alfalfa. Results reveal that nitrate, NPA and NPOH that accumulate naturally in forages can be made available within ruminal incubations to inhibit methanogenesis. Further research is warranted to determine if diets can be formulated with nitrate-, NPA- and NPOH-containing forages to achieve efficacious mitigation in

  16. Ruminal Fermentation of Anti-Methanogenic Nitrate- and Nitro-Containing Forages In Vitro

    Science.gov (United States)

    Anderson, Robin C.; Ripley, Laura H.; Bowman, Jan G. P.; Callaway, Todd R.; Genovese, Kenneth J.; Beier, Ross C.; Harvey, Roger B.; Nisbet, David J.

    2016-01-01

    Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if consumed in high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied little in this regard. Presently, we found that nitrate-, NPA-, or NPOH-containing forages effectively decreased methane production, by 35–87%, during in vitro fermentation by mixed cultures of ruminal microbes compared to fermentation by cultures incubated similarly with alfalfa. Methane production was further decreased during the incubation of mixed cultures also inoculated with Denitrobacterium detoxificans, a ruminal bacterium known to metabolize nitrate, NPA, and NPOH. Inhibition of methanogens within the mixed cultures was greatest with the NPA- and NPOH-containing forages. Hydrogen accumulated in all the mixed cultures incubated with forages containing nitrate, NPA or NPOH and was dramatically higher, exceeding 40 μmol hydrogen/mL, in mixed cultures incubated with NPA-containing forage but not inoculated with D. detoxificans. This possibly reflects the inhibition of hydrogenase-catalyzed uptake of hydrogen produced via conversion of 50 μmol added formate per milliliter to hydrogen. Accumulations of volatile fatty acids revealed compensatory changes in fermentation in mixed cultures incubated with the nitrate-, NPA-, and NPOH-containing forages as evidenced by lower accumulations of acetate, and in some cases, higher accumulations of butyrate and lower accumulations of ammonia, iso-buytrate, and iso-valerate compared to cultures incubated with alfalfa. Results reveal that nitrate, NPA, and NPOH that accumulate naturally in forages can be made available within ruminal incubations to inhibit methanogenesis. Further research is warranted to determine if diets can be formulated with nitrate-, NPA-, and NPOH-containing forages to achieve efficacious mitigation

  17. Ruminal Fermentation of Anti-Methanogenic Nitrate- and Nitro-Containing Forages In Vitro.

    Science.gov (United States)

    Anderson, Robin C; Ripley, Laura H; Bowman, Jan G P; Callaway, Todd R; Genovese, Kenneth J; Beier, Ross C; Harvey, Roger B; Nisbet, David J

    2016-01-01

    Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if consumed in high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied little in this regard. Presently, we found that nitrate-, NPA-, or NPOH-containing forages effectively decreased methane production, by 35-87%, during in vitro fermentation by mixed cultures of ruminal microbes compared to fermentation by cultures incubated similarly with alfalfa. Methane production was further decreased during the incubation of mixed cultures also inoculated with Denitrobacterium detoxificans, a ruminal bacterium known to metabolize nitrate, NPA, and NPOH. Inhibition of methanogens within the mixed cultures was greatest with the NPA- and NPOH-containing forages. Hydrogen accumulated in all the mixed cultures incubated with forages containing nitrate, NPA or NPOH and was dramatically higher, exceeding 40 μmol hydrogen/mL, in mixed cultures incubated with NPA-containing forage but not inoculated with D. detoxificans. This possibly reflects the inhibition of hydrogenase-catalyzed uptake of hydrogen produced via conversion of 50 μmol added formate per milliliter to hydrogen. Accumulations of volatile fatty acids revealed compensatory changes in fermentation in mixed cultures incubated with the nitrate-, NPA-, and NPOH-containing forages as evidenced by lower accumulations of acetate, and in some cases, higher accumulations of butyrate and lower accumulations of ammonia, iso-buytrate, and iso-valerate compared to cultures incubated with alfalfa. Results reveal that nitrate, NPA, and NPOH that accumulate naturally in forages can be made available within ruminal incubations to inhibit methanogenesis. Further research is warranted to determine if diets can be formulated with nitrate-, NPA-, and NPOH-containing forages to achieve efficacious mitigation in

  18. Histopathological and molecular characterization of encephalitic listeriosis in small ruminants from northern Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Selwyn Arlington Headley

    2013-09-01

    Full Text Available Listeriosis is a disease primarily of ruminants caused by the Gram-positive bacterium Listeria monocytogenes. Ruminants either demonstrate manifestations of the encephalitic, septicemic, or reproductive form of listeriosis. The pathological and molecular findings with encephalitic listeriosis in a 5.5-month-old, male, mixed-breed goat and a 3-year-old Texel-crossed sheep from northern Paraná, Brazil are described. Clinically, the kid demonstrated circling, lateral protrusion of the tongue, head tilt, and convulsions; the ewe presented ataxia, motor incoordination, and lateral decumbency. Brainstem dysfunctions were diagnosed clinically and listeriosis was suspected. Necropsy performed on both animals did not reveal remarkable gross lesions; significant histopathological alterations were restricted to the brainstem (medulla oblongata; rhombencephalitis and were characterized as meningoencephalitis that consisted of extensive mononuclear perivascular cuffings, neutrophilic and macrophagic microabscesses, and neuroparenchymal necrosis. PCR assay and direct sequencing, using genomic bacterial DNA derived from the brainstem of both animals, amplified the desired 174 base pairs length amplicon of the listeriolysin O gene of L. monocytogenes. Phylogenetic analyses demonstrated that the strains associated with rhombencephalitis during this study clustered with known strains of L. monocytogenes lineage I from diverse geographical locations and from cattle of the state of Paraná with encephalitic listeriosis. Consequently, these strains should be classified as L. monocytogenes lineage I. These results confirm the active participation of lineage I strains of L. monocytogenes in the etiopathogenesis of the brainstem dysfunctions observed during this study, probably represent the first characterization of small ruminant listeriosis by molecular techniques in Latin America, and suggest that ruminants within the state of Paraná were infected by the strains

  19. Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming

    International Nuclear Information System (INIS)

    This paper evaluates the economic feasibility of biohydrogen production via two bio-oil processing pathways: bio-oil gasification and bio-oil reforming. Both pathways employ fast pyrolysis to produce bio-oil from biomass stock. The two pathways are modeled using Aspen Plus® for a 2000 t d−1 facility. Equipment sizing and cost calculations are based on Aspen Economic Evaluation® software. Biohydrogen production capacity at the facility is 147 t d−1 for the bio-oil gasification pathway and 160 t d−1 for the bio-oil reforming pathway. The biomass-to-fuel energy efficiencies are 47% and 84% for the bio-oil gasification and bio-oil reforming pathways, respectively. Total capital investment (TCI) is 435 million dollars for the bio-oil gasification pathway and is 333 million dollars for the bio-oil reforming pathway. Internal rates of return (IRR) are 8.4% and 18.6% for facilities employing the bio-oil gasification and bio-oil reforming pathways, respectively. Sensitivity analysis demonstrates that biohydrogen price, biohydrogen yield, fixed capital investment (FCI), bio-oil yield, and biomass cost have the greatest impacts on facility IRR. Monte-Carlo analysis shows that bio-oil reforming is more economically attractive than bio-oil gasification for biohydrogen production. -- Highlights: ► Biohydrogen production via bio-oil reforming has higher energy efficiency compared to gasification. ► Hydrogen price, fixed capital cost, and feedstock cost most strongly affect IRR. ► Lower risk investment is biohydrogen production via bio-oil reforming

  20. Optimization of biohydrogen yield produced by bacterial consortia using residual glycerin from biodiesel production.

    Science.gov (United States)

    Faber, Mariana de Oliveira; Ferreira-Leitão, Viridiana Santana

    2016-11-01

    The aims of this study were to simplify the fermentation medium and to optimize the conditions of dark fermentation of residual glycerin to produce biohydrogen. It was possible to remove all micronutrients of fermentation medium and improve biohydrogen production by applying residual glycerin as feedstock. After statistical analysis of the following parameters pH, glycerin concentration and volatile suspended solids, the values of 5.5; 0.5g.L(-1) and 8.7g.L(-1), respectively, were defined as optimum condition for this process. It generated 2.44molH2/molglycerin, an expressive result when compared to previous results reported in literature and considering that theoretical yield of H2 from glycerol in dark fermentation process is 3molH2/molglycerol. This study allowed the improvement of yield and productivity by 68% and 67%, respectively. PMID:27501033

  1. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  2. Small proton exchange membrane fuel cell power station by using bio-hydrogen

    Institute of Scientific and Technical Information of China (English)

    刘志祥; 毛宗强; 王诚; 任南琪

    2006-01-01

    In fermentative organic waste water treatment process, there was hydrogen as a by-product. After some purification,there was about 50% ~ 70% hydrogen in the bio-gas, which could be utilized for electricity generation with fuel cell. Half a year ago, joint experiments between biological hydrogen production in Harbin Institute of Technology (HIT) and proton exchange membrane fuel cell (PEMFC) power station in Tsinghua University were conducted for electricity generation with bio-hydrogen from the pilot plant in HIT. The results proved the feasibility of the bio-hydrogen as a by-product utilization with PEMFC power station and revealed some problems of fuel cell power station for this application.

  3. Insights into the global regulation of anaerobic metabolism for improved biohydrogen production.

    Science.gov (United States)

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Xing, Xin-Hui

    2016-01-01

    To improve the biohydrogen yield in bacterial dark fermentation, a new approach of global anaerobic regulation was introduced. Two cellular global regulators FNR and NarP were overexpressed in two model organisms: facultatively anaerobic Enterobacter aerogenes (Ea) and strictly anaerobic Clostridium paraputrificum (Cp). The overexpression of FNR and NarP greatly altered anaerobic metabolism and increased the hydrogen yield by 40%. Metabolic analysis showed that the global regulation caused more reducing environment inside the cell. To get a thorough understanding of the global metabolic regulation, more genes (fdhF, fhlA, ppk, Cb-fdh1, and Sc-fdh1) were overexpressed in different Ea and Cp mutants. For the first time, it demonstrated that there were approximately linear relationships between the relative change of hydrogen yield and the relative change of NADH yield or ATP yield. It implied that cellular reducing power and energy level played vital roles in the biohydrogen production. PMID:26476162

  4. Effect of fermentation conditions on biohydrogen production from cassava starch by anaerobic mixed cultures

    Science.gov (United States)

    Tien, Hai M.; Le, Kien A.; Tran, An T.; Le, Phung K.

    2016-06-01

    In this work, a series of batch tests were conducted to investigate the effect of pH, temperature, fermentation time, and inoculums ratio to hydrogen production using cassava starch as a substrate. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. It was fouund that the suitable fermentation conditions of biohydrogen production should be at temperature 40 ° C; pH 6.5, inoculums to medium ratio 10 % and COD operation at 4800 g/mL. The maximum value of hydrogen volume produced was 76.22 mL. These affected has been evaluated and the result can be used as an reference for the pilot or industrial biohydrogen production.

  5. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion.

    Science.gov (United States)

    Khan, M A; Ngo, H H; Guo, W S; Liu, Y; Nghiem, L D; Hai, F I; Deng, L J; Wang, J; Wu, Y

    2016-11-01

    The anaerobic digestion process has been primarily utilized for methane containing biogas production over the past few years. However, the digestion process could also be optimized for producing volatile fatty acids (VFAs) and biohydrogen. This is the first review article that combines the optimization approaches for all three possible products from the anaerobic digestion. In this review study, the types and configurations of the bioreactor are discussed for each type of product. This is followed by a review on optimization of common process parameters (e.g. temperature, pH, retention time and organic loading rate) separately for the production of VFA, biohydrogen and methane. This review also includes additional parameters, treatment methods or special additives that wield a significant and positive effect on production rate and these products' yield.

  6. Optimization of biohydrogen yield produced by bacterial consortia using residual glycerin from biodiesel production.

    Science.gov (United States)

    Faber, Mariana de Oliveira; Ferreira-Leitão, Viridiana Santana

    2016-11-01

    The aims of this study were to simplify the fermentation medium and to optimize the conditions of dark fermentation of residual glycerin to produce biohydrogen. It was possible to remove all micronutrients of fermentation medium and improve biohydrogen production by applying residual glycerin as feedstock. After statistical analysis of the following parameters pH, glycerin concentration and volatile suspended solids, the values of 5.5; 0.5g.L(-1) and 8.7g.L(-1), respectively, were defined as optimum condition for this process. It generated 2.44molH2/molglycerin, an expressive result when compared to previous results reported in literature and considering that theoretical yield of H2 from glycerol in dark fermentation process is 3molH2/molglycerol. This study allowed the improvement of yield and productivity by 68% and 67%, respectively.

  7. Insights into the global regulation of anaerobic metabolism for improved biohydrogen production.

    Science.gov (United States)

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Xing, Xin-Hui

    2016-01-01

    To improve the biohydrogen yield in bacterial dark fermentation, a new approach of global anaerobic regulation was introduced. Two cellular global regulators FNR and NarP were overexpressed in two model organisms: facultatively anaerobic Enterobacter aerogenes (Ea) and strictly anaerobic Clostridium paraputrificum (Cp). The overexpression of FNR and NarP greatly altered anaerobic metabolism and increased the hydrogen yield by 40%. Metabolic analysis showed that the global regulation caused more reducing environment inside the cell. To get a thorough understanding of the global metabolic regulation, more genes (fdhF, fhlA, ppk, Cb-fdh1, and Sc-fdh1) were overexpressed in different Ea and Cp mutants. For the first time, it demonstrated that there were approximately linear relationships between the relative change of hydrogen yield and the relative change of NADH yield or ATP yield. It implied that cellular reducing power and energy level played vital roles in the biohydrogen production.

  8. Mycotoxicoses of ruminants and horses.

    Science.gov (United States)

    Riet-Correa, Franklin; Rivero, Rodolfo; Odriozola, Ernesto; Adrien, Maria de Lourdes; Medeiros, Rosane M T; Schild, Ana Lucia

    2013-11-01

    In the current study, mycotoxicoses of ruminants and horses are reviewed, with an emphasis on the occurrence of these diseases in South America. The main mycotoxicoses observed in grazing cattle include intoxications by indole-diterpenoid mycotoxins (Paspalum spp. contaminated by Claviceps paspali, Lolium perenne infected by Neotyphodium lolii, Cynodon dactylon infected by Claviceps cynodontis, and Poa huecu), gangrenous ergotism and dysthermic syndrome (hyperthermia) caused by Festuca arundinacea (syn. Festuca elatior) infected by Neotyphodium coenophialum (syn. Acremonium coenophialum), and photosensitization in pastures contaminated by toxigenic Pithomyces chartarum. Other mycotoxicoses in grazing cattle include slaframine toxicity in clover pastures infected by Rhizoctonia leguminicola and diplodiosis in cattle grazing in corn stubbles. The mycotoxicoses caused by contaminated concentrated food or byproducts in cattle include poisoning by toxins of Aspergillus clavatus, which contaminate barley or sugar beetroot by-products, gangrenous ergotism or dysthermic syndrome caused by wheat bran or wheat screenings contaminated with Claviceps purpurea, and acute respiratory distress caused by damaged sweet potatoes (Ipomoea batatas). The main mycotoxicosis of horses is leukoencephalomalacia caused by the fumonisins B1 and B2 produced by Fusarium spp. Poisoning by C. purpurea and F. elatior infected by N. coenophialum has also been reported as a cause of agalactia and neonatal mortality in mares. Slaframine toxicosis caused by the ingestion of alfalfa hay contaminated by R. leguminicola has also been reported in horses. PMID:24091682

  9. Recent Advances in Ruminant Nutrition

    Directory of Open Access Journals (Sweden)

    Hasan Rüştü Kutlu

    2014-01-01

    Full Text Available One of the most industrialized animal production branches of ruminant production successfully requires a blending of theoretical knowledge of nutritional principles with practical stockmanship, maintaining health and dealing with numbers. It is well known that high yielding, dairy cows, require balanced diet with adequate nutrients for yielding. This is not provided with only a few feedstuffs. Milk production in dairy cows is related to the improvements in genetic merit of farm animals and also developments in feed science, feed technology and animal nutrition. In particular, feeds and feed technology studies associated with sustainability, economical perspectives and product quality in the last decade have been in advance. In the present work, recent advances in feed sources and feed technology, minerals (macro and trace minerals , vitamins and amino acids, feed additives (antibiotics alternative growth stimulants, rumen modulator, organic acids, antioxidants, enzymes, plant extracts, nutrition-products (meat-milk-progeny quality and functional food production (milk, meat nutrition-reproduction, nutrition-animal health, nutrition-environmental temperature, nutrition-global warming were evaluated.

  10. Biohydrogen production by dark fermentation : Current trends and main scientific challenges

    OpenAIRE

    Trably, Eric

    2013-01-01

    The degradation of our natural environment and energy crisis are two vital issues for sustainable development worldwide. In this context, the production of bioenergy from lignocellulosic biomass or urban residues is receiving ever-increasing interest. Among the different processes, biohydrogen production by dark fermentation presents considerable advantages since bioH2 is renewable, carbon free and environmental friendly. An overview of the literature shows a worldwide interest of the scienti...

  11. Biohydrogen production from sugar rich substrates using the dark fermentation process

    OpenAIRE

    Kongjan, Prawit; Angelidaki, Irini; Min, Booki

    2010-01-01

    Hydrogen og metan produceret ved mikrobiel omdannelse af organisk affald/restprodukter er et miljøvenligt og bæredygtigt alternativ til fossile brændstoffer. Hydrolysat rigt på xylose er et flydende biprodukt, der dannes under hydrotermisk forbehandling af plantematerialet lignocellulose. Produktion af bioethanol fra dette biprodukt er hverken økonomisk eller effektivt. Derimod kan biohydrogen produceres med gode resultater. Ved brug af en blandet mikrobiel kultur beriget med hydrogenproducer...

  12. Biohydrogen production and metabolic pathways in dark fermentation related to the composition of organic solid waste

    OpenAIRE

    Guo, Xinmei

    2012-01-01

    This study aims to investigate the effect of solid substrates composition on hydrogen production performances, metabolic pathways and microbial community changes in batch reactor and their dynamics in continuous reactors (CSTR). Hydrogen is an ideal energy carrier which has gained scientific interest over the past decade. Biological H2, so-called biohydrogen, can especially be produced by dark fermentation processes concomitantly with value-added molecules (i.e. metabolic end-products), while...

  13. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review.

    Science.gov (United States)

    Bundhoo, M A Zumar; Mohee, Romeela; Hassan, M Ali

    2015-07-01

    Biohydrogen production from dark fermentation of lignocellulosic materials represents a huge potential in terms of renewable energy exploitation. However, the low hydrogen yield is currently hindering its development on industrial scale. This study reviewed various technologies that have been investigated for enhancing dark fermentative biohydrogen production. The pre-treatment technologies can be classified based on their applications as inoculum or substrates pre-treatment or they can be categorised into physical, chemical, physicochemical and biological based on the techniques used. From the different technologies reviewed, heat and acid pre-treatments are the most commonly studied technologies for both substrates and inoculum pre-treatment. Nevertheless, these two technologies need not necessarily be the most suitable since across different studies, a wide array of other emerging techniques as well as combined technologies have yielded positive findings. To date, there exists no perfect technology for either inoculum or substrate pre-treatment. Although the aim of inoculum pre-treatment is to suppress H2-consumers and enrich H2-producers, many sporulating H2-consumers survive the pre-treatment while some non-spore H2-producers are inhibited. Besides, several inoculum pre-treatment techniques are not effective in the long run and repeated pre-treatment may be required for continuous suppression of H2-consumers and sustained biohydrogen production. Furthermore, many technologies employed for substrates pre-treatment may yield inhibitory compounds that can eventually decrease biohydrogen production. Consequently, much research needs to be done to find out the best technology for both substrates and inoculum pre-treatment while also taking into consideration the energetic, economic and technical feasibility of implementing such a process on an industrial scale. PMID:25881150

  14. Integrating dark and light biohydrogen production strategies: towards the hydrogen economy

    OpenAIRE

    Redwood, MD; Paterson-Beedle, M; Macaskie, LE

    2009-01-01

    Biological methods of hydrogen production are preferable to chemical methods because of the possibility to use sunlight, CO2 and organic wastes as substrates for environmentally benign conversions, under moderate conditions. By combining different microorganisms with different capabilities, the individual strengths of each may be exploited and their weaknesses overcome. Mechanisms of bio-hydrogen production are described and strategies for their integration are discussed. Dual systems can be ...

  15. Timeline of bio-hydrogen production by anaerobic digestion of biomass

    OpenAIRE

    Bernadette E. TELEKY; Mugur C. BĂLAN; Nikolausz, Marcell

    2015-01-01

    Anaerobic digestion of biomass is a process capable to produce biohydrogen, a clean source of alternative energy. Lignocellulosic biomass from agricultural waste is considered a renewable energy source; therefore its utilization also contributes to the reduction of water, soil and air pollution. The study consists in five consecutive experiments designed to utilize anaerobic bacterial enrichment cultures originating from the Hungarian Lake, Hévíz. Wheat straw was used as com...

  16. Bio-hydrogen production in an EGSB reactor under mesophilic, thermophilic and hyperthermophilic conditions

    OpenAIRE

    Abreu, A. A.; Danko, Anthony S.; Alves, M. M.

    2007-01-01

    Mesophilic, thermophilic and hyperthermophilic bio-hydrogen production with an expanded granular sludge blanket (EGSB) fed with glucose and arabinose, without methane production, was demonstrated. Homoacetogenesis was observed on reactor when operated under mesophilic (37ºC) conditions but not under thermophilic (55ºC) and hyper-thermophilic conditions (70ºC). It was also found that under thermophilic and hyper-thermophilic conditions glucose is preferentially consumed than ara...

  17. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review.

    Science.gov (United States)

    Bundhoo, M A Zumar; Mohee, Romeela; Hassan, M Ali

    2015-07-01

    Biohydrogen production from dark fermentation of lignocellulosic materials represents a huge potential in terms of renewable energy exploitation. However, the low hydrogen yield is currently hindering its development on industrial scale. This study reviewed various technologies that have been investigated for enhancing dark fermentative biohydrogen production. The pre-treatment technologies can be classified based on their applications as inoculum or substrates pre-treatment or they can be categorised into physical, chemical, physicochemical and biological based on the techniques used. From the different technologies reviewed, heat and acid pre-treatments are the most commonly studied technologies for both substrates and inoculum pre-treatment. Nevertheless, these two technologies need not necessarily be the most suitable since across different studies, a wide array of other emerging techniques as well as combined technologies have yielded positive findings. To date, there exists no perfect technology for either inoculum or substrate pre-treatment. Although the aim of inoculum pre-treatment is to suppress H2-consumers and enrich H2-producers, many sporulating H2-consumers survive the pre-treatment while some non-spore H2-producers are inhibited. Besides, several inoculum pre-treatment techniques are not effective in the long run and repeated pre-treatment may be required for continuous suppression of H2-consumers and sustained biohydrogen production. Furthermore, many technologies employed for substrates pre-treatment may yield inhibitory compounds that can eventually decrease biohydrogen production. Consequently, much research needs to be done to find out the best technology for both substrates and inoculum pre-treatment while also taking into consideration the energetic, economic and technical feasibility of implementing such a process on an industrial scale.

  18. A RUMINATE EMBRYO IN BLEPHARIS REPENS (VAHL. ROTH. (ACANTHACEAE

    Directory of Open Access Journals (Sweden)

    Nitin M. LABHANE

    2014-12-01

    Full Text Available The study of morphology of embryo is very significant considering the fact that the embryo represents the important step in the determination of the viability of the seed. Ruminate endosperm has been reported in about 58 families of angiosperms. The rumination caused by the activity of the seed coat or by the endosperm itself is quite recurrent in angiosperm. Ruminate endosperm due to seed coat is reported from the family Acanthaceae in Andrographis paniculata. The rumination of endosperm is also considered as phylogenetically important. Rumination of endosperm is very common, however very little is known about rumination in embryo. The present papers reports the de novo development of ruminate embryo in Blepharis repens. The development of ruminate embryo is seen as an adaptation to ensure proper aeration and optimum germination for survival of the species.

  19. Effects of pistachio by-products in replacement of alfalfa hay on populations of rumen bacteria involved in biohydrogenation and fermentative parameters in the rumen of sheep.

    Science.gov (United States)

    Ghaffari, M H; Tahmasbi, A-M; Khorvash, M; Naserian, A-A; Ghaffari, A H; Valizadeh, H

    2014-06-01

    The objective of this study was to investigate the effect of sundried pistachio by-products (PBP) as a replacement of alfalfa hay (AH) on blood metabolites, rumen fermentation and populations of rumen bacteria involved in biohydrogenation (BH) in Baluchi sheep. Four adult male Baluchi sheep (41 ± 1.3 kg, BW) fitted with ruminal cannulae were randomly assigned to four experimental diets in a 4 × 4 Latin square design. The dietary treatments were as follows: (i) control, (ii) 12% PBP (0.33 of AH in basal diet replaced by PBP), (iii) 24% PBP (0.66 of AH in basal diet replaced by PBP) and (iv) 36% PBP (all of AH in basal diet replaced by PBP). The basal diet was 360 g/kg dry matter (DM) alfalfa hay, 160 g/kg DM wheat straw and 480 g/kg DM concentrate. The trial consisted of four periods, each composed of 16 days adaptation and 4 days data collection including measurement of blood metabolites, rumen fermentation and population of bacteria. No differences were observed in rumen pH among the treatments, while rumen ammonia-N concentrations were decreased (p< 0.05) with increasing PBP by up to 36% DM of the diets. Using of 36% PBP in the diet reduced (p < 0.05) total volatile fatty acids (VFA) concentrations and the molar proportion of acetate, while the concentration of propionate, butyrate and acetate to propionate ratio were similar to all other treatments. The concentration of blood urea nitrogen (BUN) decreased (p < 0.01) with increasing PBP by up to 36% DM in the diets of sheep. However, other blood metabolites were not affected by the experimental diets. It was concluded that PBP in replacement of AH had no effects on the relative abundance of Butyrivibrio fibrisolvens and Butyrivibrio proteoclasticus in relation to the control diet.

  20. [Characteristics and operation of enhanced continuous bio-hydrogen production reactor using support carrier].

    Science.gov (United States)

    Ren, Nan-qi; Tang, Jing; Gong, Man-li

    2006-06-01

    A kind of granular activated carbon, whose granular size is no more than 2mm and specific gravity is 1.54g/cm3, was used as the support carrier to allow retention of activated sludge within a continuous stirred-tank reactor (CSTR) using molasses wastewater as substrate for bio-hydrogen production. Continuous operation characteristics and operational controlling strategy of the enhanced continuous bio-hydrogen production system were investigated. It was indicated that, support carriers could expand the activity scope of hydrogen production bacteria, make the system fairly stable in response to organic load impact and low pH value (pH reactor at low HRT. The reactor with ethanol-type fermentation achieved an optimal hydrogen production rate of 0.37L/(g x d), while the pH value ranged from 3.8 to 4.4, and the hydrogen content was approximately 40% approximately 57% of biogas. It is effective to inhibit the methanogens by reducing the pH value of the bio-hydrogen production system, consequently accelerate the start-up of the reactor.

  1. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    Science.gov (United States)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  2. Process simulation of integrated biohydrogen production: hydrogen recovery by membrane separation

    Directory of Open Access Journals (Sweden)

    László Koók

    2014-10-01

    Full Text Available In this project, the production of biohydrogen, as a renewable and sustainable energy source was studied. Biohydrogen was manufactured by using E. coli strain in a batch dark fermentative process integrated with membrane gas separation. Two different methods were applied: Firstly, the amount of the produced gas and component concentrations were measured, but CO2 and H2 gases were not separated. In the second experiment CO2 was removed from the gas mixture via chemical sorption (reacting with NaOH. Both methods use continuous product removal in order to enhance the biohydrogen formation. In addition, process modeling was carried out with a simulation software (SuperPro Designer, Intelligen Inc. so that experimental and computational results could be compared. CO2 and H2 flow rates and fluxes were calculated on the basis of the membrane permeation data obtained by using pure gases and silicone (PDMS hollow-fiber membrane module (PermSelect – MedArray Inc..

  3. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation.

    Science.gov (United States)

    Choi, Jeongdong; Ahn, Youngho

    2015-05-01

    Microbial fuel cells (MFCs) treating the food waste leachate produced from biohydrogen fermentation were examined to enhance power generation and energy recovery. In batch mode, the maximum voltage production was 0.56 V and the power density reached 1540 mW/m(2). The maximum Coulombic efficiency (CEmax) and energy efficiency (EE) in the batch mode were calculated to be 88.8% and 18.8%, respectively. When the organic loading rate in sequencing batch mode varied from 0.75 to 6.2 g COD/L-d (under CEmax), the maximum power density reached 769.2 mW/m(2) in OLR of 3.1 g COD/L-d, whereas higher energy recovery (CE=52.6%, 0.346 Wh/g CODrem) was achieved at 1.51 g COD/L-d. The results demonstrate that readily biodegradable substrates in biohydrogen fermentation can be effectively used for the enhanced bioelectricity harvesting of MFCs and a MFC coupled with biohydrogen fermentation is of great benefit on higher electricity generation and energy efficiency.

  4. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios.

    Science.gov (United States)

    Ferreira, Ana F; Ortigueira, Joana; Alves, Luís; Gouveia, Luísa; Moura, Patrícia; Silva, Carla

    2013-09-01

    This paper presents a life cycle inventory of biohydrogen production by Clostridium butyricum through the fermentation of the whole Scenedesmus obliquus biomass. The main purpose of this work was to determine the energy consumption and CO2 emissions during the production of hydrogen. This was accomplished through the fermentation of the microalgal biomass cultivated in an outdoor raceway pond and the preparation of the inoculum and culture media. The scale-up scenarios are discussed aiming for a potential application to a fuel cell hybrid taxi fleet. The H2 yield obtained was 7.3 g H2/kg of S. obliquus dried biomass. The results show that the production of biohydrogen required 71-100 MJ/MJ(H2) and emitted about 5-6 kg CO2/MJ(H2). Other studies and production technologies were taken into account to discuss an eventual process scale-up. Increased production rates of microalgal biomass and biohydrogen are necessary for bioH2 to become competitive with conventional production pathways.

  5. Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3.

    Science.gov (United States)

    Patel, Anil Kumar; Debroy, Arundhati; Sharma, Sandeep; Saini, Reetu; Mathur, Anshu; Gupta, Ravi; Tuli, Deepak Kumar

    2015-01-01

    Hydrogen producing bacteria IODB-O3 was isolated from sludge and identified as Clostridium sp. by 16S rDNA gene analysis. In this study, biohydrogen production process was developed using low-cost agro-waste. Maximum H2 was produced at 37°C and pH 8.5. Maximum H2 yield was obtained 2.54±0.2mol-H2/mol-reducing sugar from wheat straw pre-hydrolysate (WSPH) and 2.61±0.1mol-H2/mol-reducing sugar from pre-treated wheat straw enzymatic-hydrolysate (WSEH). The cumulative H2 production (ml/L), 3680±105 and 3270±100, H2 production rate (ml/L/h), 153±5 and 136±5, and specific H2 production (ml/g/h), 511±5 and 681±10 with WSPH and WSEH were obtained, respectively. Biomass pre-treatment via steam-explosion generates ample amount of WSPH which remains unutilized for bioethanol production due to non-availability of efficient C5-fermenting microorganisms. This study shows that Clostridium sp. IODB-O3 is capable of utilizing WSPH efficiently for biohydrogen production. This would lead to reduced economic constrain on the overall cellulosic ethanol process and also establish a sustainable biohydrogen production process.

  6. Enhancement of photoheterotrophic biohydrogen production at elevated temperatures by the expression of a thermophilic clostridial hydrogenase.

    Science.gov (United States)

    Lo, Shou-Chen; Shih, Shau-Hua; Chang, Jui-Jen; Wang, Chun-Ying; Huang, Chieh-Chen

    2012-08-01

    The working temperature of a photobioreactor under sunlight can be elevated above the optimal growth temperature of a microorganism. To improve the biohydrogen productivity of photosynthetic bacteria at higher temperatures, a [FeFe]-hydrogenase gene from the thermophile Clostridium thermocellum was expressed in the mesophile Rhodopseudomonas palustris CGA009 (strain CGA-CThydA) using a log-phase expression promoter P( pckA ) to drive the expression of heterogeneous hydrogenase gene. In contrast, a mesophilic Clostridium acetobutylicum [FeFe]-hydrogenase gene was also constructed and expressed in R. palustris (strain CGA-CAhydA). Both transgenic strains were tested for cell growth, in vivo hydrogen production rate, and in vitro hydrogenase activity at elevated temperatures. Although both CGA-CThydA and CGA-CAhydA strains demonstrated enhanced growth over the vector control at temperatures above 38 °C, CGA-CThydA produced more hydrogen than the other strains. The in vitro hydrogenase activity assay, measured at 40 °C, confirmed that the activity of the CGA-CThydA hydrogenase was higher than the CGA-CAhydA hydrogenase. These results showed that the expression of a thermophilic [FeFe]-hydrogenase in R. palustris increased the growth rate and biohydrogen production at elevated temperatures. This transgenic strategy can be applied to a broad range of purple photosynthetic bacteria used to produce biohydrogen under sunlight.

  7. Trends in biohydrogen production: major challenges and state-of-the-art developments.

    Science.gov (United States)

    Gupta, Sanjay Kumar; Kumari, Sheena; Reddy, Karen; Bux, Faizal

    2013-01-01

    Hydrogen has shown enormous potential to be an alternative fuel of the future. Hydrogen production technology has gained much attention in the last few decades due to advantages such as its high conversion efficiency, recyclability and non-polluting nature. Over the last few decades, biological hydrogen production has shown great promise for generating large scale sustainable energy to meet ever increasing global energy demands. Various microorganisms, namely bacteria, cyanobacteria, and algae which are capable of producing hydrogen from water, solar energy, and a variety of organic substrates, are explored and studied in detail. Current biohydrogen production technologies, however, face two major challenges such as low-yield and high production cost. Advances have been made in recent years in biohydrogen research to improve the hydrogen yield through process modifications, physiological manipulations, through metabolic and genetic engineering. Recently, cell immobilization such as microbes trapping with nanoparticles within the bioreactor has shown an increase in hydrogen production. This review critically evaluated various biological hydrogen production technologies, key challenges, and recent advancements in biohydrogen research and development.

  8. Dietary strategies to reduce methane emissions from ruminants

    OpenAIRE

    Zijderveld, van, F.G.

    2011-01-01

    Ruminant products form an important part of the human diet. The demand for ruminant products is expected to increase due to the increase in the size of the human population and its increasing wealth. The production of ruminant meat and milk is associated with a relatively large environmental impact when compared to other animal products. This is, for a large part, caused by the fact that ruminants produce enteric methane, a greenhouse gas, during the digestion of their feed. Many dietary stra...

  9. Different effects of rumination on depression: key role of hope

    OpenAIRE

    Sun, Haitao; Tan, Qinyi; Fan, Guanhua; Tsui, Qien

    2014-01-01

    Background Both rumination and hope have significant impacts on depression. However, few studies concern their trilateral relationship. This study examined the moderator effect of hope on the relationship between rumination on depression in Chinese university students. Methods 517 college students completed the measures of rumination, hope and depression. Results Hierarchical regression analysis showed that hope moderated the association between rumination and depression. When students report...

  10. Rumination following bereavement : Assessment, working mechanisms and intervention

    OpenAIRE

    Eisma, M.C.

    2015-01-01

    We aimed to gain better understanding of rumination, a risk factor for poor bereavement outcome, so it can be targeted more effectively in therapeutic interventions. We defined grief-related rumination as thinking repetitively and recurrently about the causes and consequences of a loss and loss-related negative emotions. Although many researchers regarded rumination after bereavement as a maladaptive confrontation strategy, others have recently claimed that rumination could serve as cognitive...

  11. The relation of food quantity to rumination behavior.

    OpenAIRE

    Rast, J.; Johnston, J. M.; Drum, C; Conrin, J

    1981-01-01

    Preliminary work suggested that the quantity of food ingested by retarded individuals who usually ruminated following meals was related to the frequency and duration of ruminating responses. This possible relation was experimentally examined by systematically varying food quantity from regular portions to satiation levels for three retarded individuals who exhibited high levels of ruminating. A clear functional relation of food quantity to ruminating emerged, with satiation procedures produci...

  12. Dietary strategies to reduce methane emissions from ruminants

    NARCIS (Netherlands)

    Zijderveld, van S.M.

    2011-01-01

    Ruminant products form an important part of the human diet. The demand for ruminant products is expected to increase due to the increase in the size of the human population and its increasing wealth. The production of ruminant meat and milk is associated with a relatively large environmental impact

  13. Biohydrogen production from rotten orange with immobilized mixed culture: Effect of immobilization media for various composition of substrates

    Science.gov (United States)

    Damayanti, Astrilia; Sarto, Syamsiah, Siti; Sediawan, Wahyudi B.

    2015-12-01

    Enriched-immobilized mixed culture was utilized to produce biohydrogen in mesophilic condition under anaerobic condition using rotten orange as substrate. The process was conducted in batch reactors for 100 hours. Microbial cultures from three different sources were subject to a series of enrichment and immobilized in two different types of media, i.e. calcium alginate (CA, 2%) and mixture of alginate and activated carbon (CAC, 1:1). The performance of immobilized culture in each media was tested for biohydrogen production using four different substrate compositions, namely orange meat (OM), orange meat added with peel (OMP), orange meat added with limonene (OML), and mixture of orange meat and peel added with limonene (OMPL). The results show that, with immobilized culture in CA, the variation of substrate composition gave significant effect on the production of biohydrogen. The highest production of biohydrogen was detected for substrate containing only orange meet, i.e. 2.5%, which was about 3-5 times higher than biohydrogen production from other compositions of substrate. The use of immobilized culture in CAC in general has increased the hydrogen production by 2-7 times depending on the composition of substrate, i.e. 5.4%, 4.8%, 5.1%, and 4.4% for OM, OMP, OML, and OMPL, respectively. The addition of activated carbon has eliminated the effect of inhibitory compounds in the substrate. The major soluble metabolites were acetic acid, propionic acid, and butyric acid.

  14. Biohydrogen production from rotten orange with immobilized mixed culture: Effect of immobilization media for various composition of substrates

    International Nuclear Information System (INIS)

    Enriched–immobilized mixed culture was utilized to produce biohydrogen in mesophilic condition under anaerobic condition using rotten orange as substrate. The process was conducted in batch reactors for 100 hours. Microbial cultures from three different sources were subject to a series of enrichment and immobilized in two different types of media, i.e. calcium alginate (CA, 2%) and mixture of alginate and activated carbon (CAC, 1:1). The performance of immobilized culture in each media was tested for biohydrogen production using four different substrate compositions, namely orange meat (OM), orange meat added with peel (OMP), orange meat added with limonene (OML), and mixture of orange meat and peel added with limonene (OMPL). The results show that, with immobilized culture in CA, the variation of substrate composition gave significant effect on the production of biohydrogen. The highest production of biohydrogen was detected for substrate containing only orange meet, i.e. 2.5%, which was about 3-5 times higher than biohydrogen production from other compositions of substrate. The use of immobilized culture in CAC in general has increased the hydrogen production by 2-7 times depending on the composition of substrate, i.e. 5.4%, 4.8%, 5.1%, and 4.4% for OM, OMP, OML, and OMPL, respectively. The addition of activated carbon has eliminated the effect of inhibitory compounds in the substrate. The major soluble metabolites were acetic acid, propionic acid, and butyric acid

  15. Effects of pH, glucose and iron sulfate concentration on the yield of biohydrogen by Clostridium butyricum EB6

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Mei-Ling; Abdul Rahman, Nor' Aini; Yee, Phang Lai; Aziz, Suraini Abd; Hassan, Mohd Ali [Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Rahim, Raha Abdul [Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Shirai, Yoshihito [Graduate School of Life Sciences and System Engineering, Kyushu Institute of Technology, 808-0196 Hibikino 2-4, Wakamatsu-ku, Kitakyushu-shi, Fukuoka (Japan)

    2009-11-15

    A local bacterial isolate from palm oil mill effluent (POME) sludge, identified as Clostridium butyricum EB6, was used for biohydrogen production. Optimization of biohydrogen production was performed via statistical analysis, namely response surface methodology (RSM), with respect to pH, glucose and iron concentration. The results show that pH, glucose concentration and iron concentration significantly influenced the biohydrogen gas production individually, interactively and quadratically (P < 0.05). The center composite design (CCD) results indicated that pH 5.6, 15.7 g/L glucose and 0.39 g/L FeSO{sub 4} were the optimal conditions for biohydrogen production, yielding 2.2 mol H{sub 2}/mol glucose. In confirmation of the experimental model, t-test results showed that curve fitted to the experimental data had a high confidence level, at 95% with t = 2.225. Based on the results of this study, optimization of the culture conditions for C. butyricum EB6 significantly increased the production of biohydrogen. (author)

  16. Biohydrogen production from rotten orange with immobilized mixed culture: Effect of immobilization media for various composition of substrates

    Energy Technology Data Exchange (ETDEWEB)

    Damayanti, Astrilia, E-mail: liasholehasd@gmail.com [Department of Chemical Engineering, Faculty of Engineering, Semarang State University, E1 Building, 2nd floor, Kampus Sekaran, Gunungpati, Semarang 50229 (Indonesia); Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, Jl. Grafika No. 2, Kampus UGM, Yogyakarta 55281 (Indonesia); Sarto,; Syamsiah, Siti; Sediawan, Wahyudi B. [Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, Jl. Grafika No. 2, Kampus UGM, Yogyakarta 55281 (Indonesia)

    2015-12-29

    Enriched–immobilized mixed culture was utilized to produce biohydrogen in mesophilic condition under anaerobic condition using rotten orange as substrate. The process was conducted in batch reactors for 100 hours. Microbial cultures from three different sources were subject to a series of enrichment and immobilized in two different types of media, i.e. calcium alginate (CA, 2%) and mixture of alginate and activated carbon (CAC, 1:1). The performance of immobilized culture in each media was tested for biohydrogen production using four different substrate compositions, namely orange meat (OM), orange meat added with peel (OMP), orange meat added with limonene (OML), and mixture of orange meat and peel added with limonene (OMPL). The results show that, with immobilized culture in CA, the variation of substrate composition gave significant effect on the production of biohydrogen. The highest production of biohydrogen was detected for substrate containing only orange meet, i.e. 2.5%, which was about 3-5 times higher than biohydrogen production from other compositions of substrate. The use of immobilized culture in CAC in general has increased the hydrogen production by 2-7 times depending on the composition of substrate, i.e. 5.4%, 4.8%, 5.1%, and 4.4% for OM, OMP, OML, and OMPL, respectively. The addition of activated carbon has eliminated the effect of inhibitory compounds in the substrate. The major soluble metabolites were acetic acid, propionic acid, and butyric acid.

  17. Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials.

    Science.gov (United States)

    Monlau, Florian; Sambusiti, Cecilia; Barakat, Abdellatif; Guo, Xin Mei; Latrille, Eric; Trably, Eric; Steyer, Jean-Philippe; Carrere, Hélène

    2012-11-01

    In an integrated biorefinery concept, biological hydrogen and methane production from lignocellulosic substrates appears to be one of the most promising alternatives to produce energy from renewable sources. However, lignocellulosic substrates present compositional and structural features that can limit their conversion into biohydrogen and methane. In this study, biohydrogen and methane potentials of 20 lignocellulosic residues were evaluated. Compositional (lignin, cellulose, hemicelluloses, total uronic acids, proteins, and soluble sugars) as well as structural features (crystallinity) were determined for each substrate. Two predictive partial least square (PLS) models were built to determine which compositional and structural parameters affected biohydrogen or methane production from lignocellulosic substrates, among proteins, total uronic acids, soluble sugars, crystalline cellulose, amorphous holocelluloses, and lignin. Only soluble sugars had a significant positive effect on biohydrogen production. Besides, methane potentials correlated negatively to the lignin contents and, to a lower extent, crystalline cellulose showed also a negative impact, whereas soluble sugars, proteins, and amorphous hemicelluloses showed a positive impact. These findings will help to develop further pretreatment strategies for enhancing both biohydrogen and methane production.

  18. Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity.

    Science.gov (United States)

    Oncel, S; Kose, A

    2014-01-01

    Two different photobioreactor designs; tubular and panel, were investigated for the biohydrogen production utilizing a green microalgae Chlamydomonas reinhardtii strain CC124 following the two stage protocol. Mixing time and light intensity of the systems were adjusted to compare the productivity of both aerobic culture phase and the following anaerobic biohydrogen production phase. The results showed there was an effect on both phases related with the design. During the aerobic phase bigger illumination area serving more energy, tubular photobioreactor reached higher biomass productivity of 31.8±2.1 mg L(-1) h(-1) which was about 11% higher than the panel photobioreactor. On the other hand biohydrogen productivity in the panel photobioreactor reached a value of 1.3±0.05 mL L(-1) h(-1) based on the efficient removal of biohydrogen gas. According to the results it would be a good approach to utilize tubular design for aerobic phase and panel for biohydrogen production phase.

  19. Training working memory to reduce rumination.

    Directory of Open Access Journals (Sweden)

    Thomas Onraedt

    Full Text Available Cognitive symptoms of depression, such as rumination, have shown to be associated with deficits in working memory functioning. More precisely, the capacity to expel irrelevant negative information from working memory seems to be affected. Even though these associations have repeatedly been demonstrated, the nature and causal direction of this association is still unclear. Therefore, within an experimental design, we tried to manipulate working memory functioning of participants with heightened rumination scores in two similar experiments (n = 72 and n = 45 using a six day working memory training compared to active and passive control groups. Subsequently the effects on the processing of non-emotional and emotional information in working memory were monitored. In both experiments, performance during the training task significantly increased, but this performance gain did not transfer to the outcome working memory tasks or rumination and depression measures. Possible explanations for the failure to find transfer effects are discussed.

  20. Scientific Opinion on peste des petits ruminants

    OpenAIRE

    EFSA Panel on Animal Health and Welfare (AHAW)

    2015-01-01

    Peste des petits ruminants (PPR) is a severe viral disease of small ruminants caused by a Morbillivirus closely related to rinderpest virus. It is widespread in Africa and Asia and is currently also found in Turkey and Northern Africa. PPR is transmitted via direct contact, and the disease would mainly be transferred to infection-free areas by transport of infected animals. In the EU, it could only happen through illegal transport of animals. The risk of that depends on the prevalence in the ...

  1. Rumination in bipolar disorder: a systematic review

    OpenAIRE

    Érico de M. Silveira Jr.; Marcia Kauer-Sant'Anna

    2015-01-01

    Objective:To conduct a systematic review of the literature about the symptom of rumination in bipolar disorder (BD).Methods:We searched the MEDLINE (PubMed), ISI Web of Knowledge, PsycINFO, and SciELO databases using the descriptors “rumination” and “bipolar disorder” and no time limits. This strategy yielded 105 references, of which 74 were selected. Inclusion criteria were studies involving patients with BD and the use of at least one validated scale for the assessment of rumination. Review...

  2. Evaluation of a Commercial ELISA for Detection of Ruminant Processed Animal Proteins in Non-Ruminant Processed Animal Proteins

    NARCIS (Netherlands)

    Bremer, M.G.E.G.; Margry, R.J.C.F.; Vaessen, J.C.H.; Doremalen, van A.M.H.; Palen, van der J.G.P.; Kaathoven, van R.G.C.; Kemmers-Voncken, A.E.M.; Raamsdonk, van L.W.D.

    2013-01-01

    Due to a growing aquaculture industry, demand for high-quality proteins for aquatic feeds is increasing. Non-ruminant processed animal proteins (PAPs) have shown great potential for this purpose. Safe reintroduction of non-ruminant PAPs in aqua feed requires methods that can discriminate ruminant an

  3. Rumination on anger and sadness in adolescence: Fueling of fury and deepening of despair

    OpenAIRE

    Peled, M.; Moretti, M. M.

    2007-01-01

    We examined anger rumination and sadness rumination in clinic-referred adolescents (N=121). Factor analysis indicated that items from analogous anger and sadness rumination measures loaded onto 2 factors tapping anger rumination and sadness rumination, respectively. Structural equation modeling confirmed unique relations between each form of rumination and specific emotional or behavioral problems. Anger and anger rumination were independent predictors of aggression, suggesting that both the ...

  4. Assessment of optimum dilution ratio for biohydrogen production by anaerobic co-digestion of press mud with sewage and water.

    Science.gov (United States)

    Radjaram, B; Saravanane, R

    2011-02-01

    Anaerobic co-digestion of press mud with water or sewage at ratios of 1:7.5, 1:10 and 1:12.5 were performed in continuously fed UASB reactors for hydrogen production. At a constant hydraulic retention time of 30 h, the specific hydrogen production rate was 187 mL/g volatile solids (VS) reduced during maximum biohydrogen production of 7960 mL/day at a 1:10 ratio of press mud to sewage. Chemical oxygen demand (COD) and VS reductions of 61% and 59% were noted on peak biohydrogen yield. A pH range of 5-6 was suitable at ambient temperature for entire process; a lower pH was inhibitory. Co-digestion of acidic press mud with sewage controlled pH for fermentation. Hence press mud can be exploited for biohydrogen production.

  5. Peste des Petits Ruminant: Exotic Ruminant Disease That Should Be Anticipated

    Directory of Open Access Journals (Sweden)

    Indrawati Sendow

    2014-03-01

    Full Text Available Peste des Pettits Ruminants (PPR is one of infectious and contagious viral diseases from morbilliviruses group in ruminants especially small ruminants. The disease was characterized by nasal and eye discharge, conjunctivitis, high fever, gastrointestinal disorder and pneumonia. Hence PPR may cause economical impact for the farmers due to the decrease of animal productivity and death. Peste des pettits ruminants is also a disease that has serious attention on the Office International des Epizooties (OIE list. In Indonesia, the disease has not been reported, so the anticipation of entering the disease is needed. The paper will describe the disease in many aspects included transmission, host ranges, epidemiology, clinical disease, diagnosis and the ability to identify the disease in Indonesia.

  6. Strategies for optimizing nitrogen use by ruminants

    NARCIS (Netherlands)

    Calsamiglia, S.; Ferret, A.; Reynolds, C.K.; Kristensen, N.B.; Vuuren, van A.M.

    2010-01-01

    The efficiency of N utilization in ruminants is typically low (around 25%) and highly variable (10% to 40%) compared with the higher efficiency of other production animals. The low efficiency has implications for the production performance and environment. Many efforts have been devoted to improving

  7. Organic Zinc as Feed Additive for Ruminants

    Directory of Open Access Journals (Sweden)

    Suprijati

    2013-09-01

    Full Text Available Zinc is an essential micro mineral required by ruminants and is a component of over 300 enzymes which play important role in the metabolisms of carbohydrates, proteins and fats. Recently, the chemical and biotechnology processes have been developed for synthesizing organic Zn. Organic Zn is the product of a chelating process of dissolved Zn anorganic salts with amino acids or hydrolyzed protein. The utilization of organic Zn as feed additive in ruminants diets tends to increase, due to the absorption of Zn in the organic form is more effective than the inorganic form. This paper reviewes the research from comparative studies of inorganic and organic Zn on the growth, production and reproduction in ruminants. The studies found that the supplementation of organic Zn improved nutrient digestibility, growth, feed efficiency, milk production, Zn retention and absorption, production and reproductive performances of ruminants. However, a little variation response was found due to different degrees of chelating on Zn incorporation of amino acids or hydrolyzed protein.

  8. The Effects of Worry and Rumination on Affect States and Cognitive Activity

    Science.gov (United States)

    McLaughlin, Katie A.; Borkovec, Thomas D.; Sibrava, Nicholas J.

    2007-01-01

    The effects of worry and rumination on affective states and mentation type were examined in an unselected undergraduate sample in Study 1 and in a sample of individuals with high trait worry and rumination, high rumination, and low worry/rumination in Study 2. Participants engaged in worry and rumination inductions, counterbalanced in order across…

  9. Rumination on Anger and Sadness in Adolescence: Fueling of Fury and Deepening of Despair

    Science.gov (United States)

    Peled, Maya; Moretti, Marlene M.

    2007-01-01

    We examined anger rumination and sadness rumination in clinic-referred adolescents (N = 121). Factor analysis indicated that items from analogous anger and sadness rumination measures loaded onto 2 factors tapping anger rumination and sadness rumination, respectively. Structural equation modeling confirmed unique relations between each form of…

  10. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    OpenAIRE

    C. Arslan; A. Sattar; Ji, C; S. Sattar; K. Yousaf; S. Hashim

    2015-01-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste...

  11. Fermentative biohydrogen production by mixed anaerobic consortia: Impact of glucose to xylose ratio

    Energy Technology Data Exchange (ETDEWEB)

    Prakasham, R.S.; Brahmaiah, P.; Sathish, T. [Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Hyderabad 500 607 (India); Sambasiva Rao, K.R.S. [Department of Biotechnology, Acharya Nagarjuna University, Guntur (India)

    2009-12-15

    Glucose and xylose are the dominant monomeric carbohydrates present in agricultural materials which can be used as potential building blocks for various biotechnological products including biofuels production. Hence, the imperative role of glucose to xylose ratio on fermentative biohydrogen production by mixed anaerobic consortia was investigated. Microbial catabolic H{sub 2} and VFA production studies revealed that xylose is a preferred carbon source compared to glucose when used individually. A maximum of 1550 and 1650 ml of cumulative H{sub 2} production was observed with supplementation of glucose and xylose at a concentration of 5.5 and 5.0 g L{sup -1}, respectively. A triphasic pattern of H{sub 2} production was observed only with studied xylose concentration range. pH impact data revealed effective H{sub 2} production at pH 6.0 and 6.5 with xylose and glucose as carbon sources, respectively. Co-substrate related biohydrogen fermentation studies indicated that glucose to xylose ratio influence H{sub 2} and as well as VFA production. An optimum cumulative H{sub 2} production of 1900 ml for 5 g L{sup -1} substrate was noticed with fermentation medium supplemented with glucose to xylose ratio of 2:3 at pH 6. Overall, biohydrogen producing microbial consortia developed from buffalo dung could be more effective for H{sub 2} production from lignocellulosic hydrolysates however; maintenance of glucose to xylose ratio, inoculum concentration and medium pH would be essential requirements. (author)

  12. Effects of ruminal doses of sucrose, lactose, and corn starch on ruminal fermentation and expression of genes in ruminal epithelial cells.

    Science.gov (United States)

    Oba, M; Mewis, J L; Zhining, Z

    2015-01-01

    The objective was to evaluate effects of a ruminal dose of sucrose, lactose, and corn starch on ruminal fermentation and expression of genes in ruminal epithelial cells. Six ruminally cannulated nonlactating nonpregnant Holstein cows (body weight=725±69.6kg) were assigned to treatments in a 3×3 Latin square design with 7-d periods; 1d for data and sample collection followed by a 6-d washout period. Cows were fed a diet containing whole-crop barley silage and dry ground corn, and dietary neutral detergent fiber and crude protein contents were 41.8 and 13.2% [dry matter (DM) basis], respectively. Treatment was a pulse-dose of sucrose, lactose, and corn starch (3.0, 3.0, and 2.85kg of DM, respectively; providing similar amounts of hexose across the treatments) through the ruminal cannulas. All treatments were given with alfalfa silage (1.75kg DM) to prevent acute rumen acidosis. Rumen pH was continuously monitored, and rumen fluid was sampled at 0, 30, 60, 90, 120, 150, and 180min after the dose. In addition, ruminal papillae were sampled from the ventral sac at 180min after the dose. Ruminal dosing with sucrose and lactose, compared with corn starch, increased ruminal total volatile fatty acid concentration and molar proportion of butyrate from 60 to 180min after the dose, and expression of genes for sodium hydrogen exchanger isoforms 1 and 2, and ATPase isoform 1 in ruminal epithelial cells. Ruminal dosing with sucrose, compared with lactose and corn starch, decreased rumen pH from 120 to 180min after the dose and molar proportion of acetate in ruminal fluid from 60 to 150min after the dose, and increased molar proportion of propionate in ruminal fluid from 60 to 150min, and expression of genes involved in butyrate metabolism (3-hydroxy-3-methylglutaryl-coenzyme A synthase isoform 1) and anion exchange across ruminal apical cell membrane (putative anion transporter isoform 1). These results suggest that replacing dietary starch with sugars may affect ruminal

  13. Serological and molecular evidence of Q fever among small ruminant flocks in Algeria.

    Science.gov (United States)

    Khaled, H; Sidi-Boumedine, K; Merdja, S; Dufour, P; Dahmani, A; Thiéry, R; Rousset, E; Bouyoucef, A

    2016-08-01

    Q fever, a commonly reported zoonosis worldwide, is caused by infection with Coxiella burnetii, an obligate intracellular bacterium. The infection is often asymptomatic in ruminants, but it can lead to reproductive disorders with bacterial shedding into the environment. Between 2011 and 2013, a study was undertaken in small ruminant flocks in different regions of Algeria. A total of 35 flocks were visited and 227 sera and 267 genital swabs were collected from females after abortions or the lambing period to investigate Q fever infection. Indirect ELISA was used to detect specific antibodies against C. burnetii and real-time PCR for detecting bacterial DNA. Our survey indicated that 58% (95% CI=40-76%) of flocks had at least one positive animal (17 seropositive flocks) and individual seroprevalence was estimated at 14.1% (95% CI=11.8-16.4%) (32 seropositive animals). Bacterial excretion was observed in 21 flocks (60%), and 57 females showed evidence of C. burnetii shedding (21.3%). These results suggest that C. burnetii distribution is high at the flock level and that seropositive and infected (shedder) animals can be found all over the country. Further studies are needed in other regions and on different animal species to better understand the distribution and incidence of Q fever, as well as human exposure, and to develop an adequate prophylaxis program. PMID:27477503

  14. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.

    Science.gov (United States)

    Kongjan, Prawit; Min, Booki; Angelidaki, Irini

    2009-03-01

    Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) was investigated in batch and continuous-mode operation. Biohydrogen was successfully produced from xylose by repeated batch cultivations with mixed culture received from a biohydrogen reactor treating household solid wastes at 70 degrees C. The highest hydrogen yield of 1.62+/-0.02 mol-H2/mol-xylose(consumed) was obtained at initial xylose concentration of 0.5 g/L with synthetic medium amended with 1g/L of yeast extract. Lower hydrogen yield was achieved at initial xylose concentration higher than 2g/L. Addition of yeast extract in the cultivation medium resulted in significant improvement of hydrogen yield. The main metabolic products during xylose fermentation were acetate, ethanol, and lactate. The specific growth rates were able to fit the experimental points relatively well with Haldane equation assuming substrate inhibition, and the following kinetic parameters were obtained: the maximum specific growth rate (mu(max)) was 0.17 h(-1), the half-saturation constant (K(s)) was 0.75g/L, and inhibition constant (K(i)) was 3.72 g/L of xylose. Intermittent N2 sparging could enhance hydrogen production when high hydrogen partial pressure (> 0.14 atm) was present in the headspace of the batch reactors. Biohydrogen could be successfully produced in continuously stirred reactor (CSTR) operated at 72-h hydraulic retention time (HRT) with 1g/L of xylose as substrate at 70 degrees C. The hydrogen production yield achieved in the CSTR was 1.36+/-0.03 mol-H2/mol-xylose(sonsumed), and the production rate was 62+/-2 ml/d x L(reactor). The hydrogen content in the methane-free mixed gas was approximately 31+/-1%, and the rest was carbon dioxide. The main intermediate by-products from the effluent were acetate, formate, and ethanol at 4.25+/-0.10, 3.01+/-0.11, and 2.59+/-0.16 mM, respectively.

  15. Post-entry blockade of small ruminant lentiviruses by wild ruminants.

    Science.gov (United States)

    Sanjosé, Leticia; Crespo, Helena; Blatti-Cardinaux, Laure; Glaria, Idoia; Martínez-Carrasco, Carlos; Berriatua, Eduardo; Amorena, Beatriz; De Andrés, Damián; Bertoni, Giuseppe; Reina, Ramses

    2016-01-01

    Small ruminant lentivirus (SRLV) infection causes losses in the small ruminant industry due to reduced animal production and increased replacement rates. Infection of wild ruminants in close contact with infected domestic animals has been proposed to play a role in SRLV epidemiology, but studies are limited and mostly involve hybrids between wild and domestic animals. In this study, SRLV seropositive red deer, roe deer and mouflon were detected through modified ELISA tests, but virus was not successfully amplified using a set of different PCRs. Apparent restriction of SRLV infection in cervids was not related to the presence of neutralizing antibodies. In vitro cultured skin fibroblastic cells from red deer and fallow deer were permissive to the SRLV entry and integration, but produced low quantities of virus. SRLV got rapidly adapted in vitro to blood-derived macrophages and skin fibroblastic cells from red deer but not from fallow deer. Thus, although direct detection of virus was not successfully achieved in vivo, these findings show the potential susceptibility of wild ruminants to SRLV infection in the case of red deer and, on the other hand, an in vivo SRLV restriction in fallow deer. Altogether these results may highlight the importance of surveilling and controlling SRLV infection in domestic as well as in wild ruminants sharing pasture areas, and may provide new natural tools to control SRLV spread in sheep and goats. PMID:26738942

  16. SPECIFIC EFFECTS OF ANGER RUMINATION ON PARTICULAR EXECUTIVE FUNCTIONS (.).

    Science.gov (United States)

    Ding, Xinfang; Yang, Yin; Qian, Mingyi; Gordon-Hollingsworth, Arlene

    2015-12-01

    The effects of two types of rumination on different kinds of executive functions were investigated. Fifty-nine participants (M age = 22.8 yr., SD = 2.5) were assigned to one of three conditions and instructed either to: (1) ruminate in a self-distanced way, (2) ruminate in a self-immersed way, or (3) think about the layout of their campus following anger induction. Afterward, the participants were directed to finish tasks designed to assess three kinds of executive functions: shifting, inhibition, and updating. Results showed that self-immersed rumination impaired shifting ability the most, while participants engaged in self-distanced rumination showed the worst performance on the inhibition task. No significant difference was found in the updating task. These results suggest that rumination influenced particular executive functions in different ways. PMID:26595287

  17. Training working memory to reduce rumination

    OpenAIRE

    Thomas Onraedt; Koster, Ernst H. W.

    2014-01-01

    Cognitive symptoms of depression, such as rumination, have shown to be associated with deficits in working memory functioning. More precisely, the capacity to expel irrelevant negative information from working memory seems to be affected. Even though these associations have repeatedly been demonstrated, the nature and causal direction of this association is still unclear. Therefore, within an experimental design, we tried to manipulate working memory functioning of participants with heightene...

  18. Utilization of Probiotic-Fermented Rice Straw as Ruminant Feed

    OpenAIRE

    Amlius Thalib

    2008-01-01

    Agriculture in Indonesia is dominated by a rice-based farming system where ruminants are kept as saving and to provide draft power. The productivity of ruminants under this farming system is relatively low. The low productivity is mainly due to inadequate supply of feed. As the agriculture is a rice-based farming system, rice straws become potential crop residues existing in almost all areas in Indonesia. Many studies on the utilization of rice straw as ruminant feed have been conducted. Rice...

  19. Rumination in bipolar disorder: evidence for an unquiet mind

    OpenAIRE

    Ghaznavi Sharmin; Deckersbach Thilo

    2012-01-01

    Abstract Depression in bipolar disorder has long been thought to be a state characterized by mental inactivity. However, recent research demonstrates that patients with bipolar disorder engage in rumination, a form of self-focused repetitive cognitive activity, in depressed as well as in manic states. While rumination has long been associated with depressed states in major depressive disorder, the finding that patients with bipolar disorder ruminate in manic states is unique to bipolar disord...

  20. Suppurative intracranial processes in 15 domestic ruminants

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Lopes Câmara

    2014-05-01

    Full Text Available In addition to listeriosis which is relatively common in ruminants, there are three other uncommon suppurative intracranial processes (SIP identifiable in adult ungulates as brain abscess, basilar empyema and suppurative meningitis. The present paper reports the epidemiological, clinical, laboratorial, pathological and microbiological findings of 15 domestic ruminants with SIP. A total of 15 animals were selected (eight sheep, four cattle and three goats; with the definitive diagnoses of basilar empyema (n=3, brain abscess (n=1, listeriosis (n=5 and suppurative meningitis (n=6. Hematology revealed leukocytosis with inversion of the lymphocyte/ neutrophil ratio in 4 cases. In the majority of animals, cerebrospinal fluid (CSF presented light yellow coloration and cloudy aspect due to neutrophilic pleocytosis (15 - 997 leukocytes/µL. Microbiological culture of CSF or central nervous system (CNS fragments resulted on isolation of Trueperella (Arcanobacterium pyogenes,Listeria monocytogenes,Escherichia coli and Stenotrophomonas sp. In a goat with thalamic abscess, microbiological assay was not performed, but Gram positive bacilli type bacteria were observed in histology. The diagnosis of these outbreaks was based on the association of epidemiological, clinical, pathological and bacteriological findings; reiterating that the infectious component remains an important cause of CNS disease in domestic ruminants and also shows the need for dissemination of information about the most effective preventive measures for the ranchers.

  1. Phenomenological aspects of the cognitive rumination construct

    Directory of Open Access Journals (Sweden)

    Leonardo Fernandez Meyer

    2015-03-01

    Full Text Available Objective: To evaluate the importance of phenomenological aspects of the cognitive rumination (CR construct in current empirical psychiatric research.Method: We searched SciELO, Scopus, ScienceDirect, MEDLINE, OneFile (GALE, SpringerLink, Cambridge Journals and Web of Science between February and March of 2014 for studies whose title and topic included the following keywords: cognitive rumination; rumination response scale; and self-reflection. The inclusion criteria were: empirical clinical study; CR as the main object of investigation; and study that included a conceptual definition of CR. The studies selected were published in English in biomedical journals in the last 10 years. Our phenomenological analysis was based on Karl Jaspers' General Psychopathology.Results: Most current empirical studies adopt phenomenological cognitive elements in conceptual definitions. However, these elements do not seem to be carefully examined and are indistinctly understood as objective empirical factors that may be measured, which may contribute to misunderstandings about CR, erroneous interpretations of results and problematic theoretical models.Conclusion: Empirical studies fail when evaluating phenomenological aspects of the cognitive elements of the CR construct. Psychopathology and phenomenology may help define the characteristics of CR elements and may contribute to their understanding and hierarchical organization as a construct. A review of the psychopathology principles established by Jasper may clarify some of these issues.

  2. The Effect of Overgeneral Autobiographical Memory Retrieval on Rumination

    Directory of Open Access Journals (Sweden)

    Filip Raes

    2006-03-01

    Full Text Available From distinct research traditions rumination and overgeneral autobiographical memory retrieval (OGM have emerged as two vulnerability markers for depression and depressive relapse (Nolen-Hoeksema, 2004; Williams, 2004. Recent research further suggests a causal relation between rumination and OGM (e.g., Watkins & Teasdale, 2001. The present study investigated the inverse relationship, that is, OGM causally influencing ruminative thinking. A scrambled sentences procedure was used to assess the extent to which 112 student participants were engaged in a mental mode consistent with ruminative thinking following either a specific or overgeneral memory retrieval style manipulation. Trait rumination was also assessed prior to the experimental retrieval manipulation, using a self-report scale. It was found that high ruminators, following an overgeneral (as compared to a specific retrieval style, unscrambled sentences relatively more into sentences with a ruminative meaning. In non or low ruminators this retrieval style manipulation had no such effect. Alongside the findings of Watkins and colleagues (e.g., Watkins & Teasdale, 2001, the present results are consistent with the view of rumination and OGM as two mutually reinforcing vulnerability factors for depression (Williams, 1996, 2004.

  3. Biohydrogen production from specified risk materials co-digested with cattle manure

    Energy Technology Data Exchange (ETDEWEB)

    Gilroyed, Brandon H. [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta T1J 4B1 (Canada); Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Li, Chunli; Hao, Xiying; McAllister, Tim A. [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta T1J 4B1 (Canada); Chu, Angus [Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2010-02-15

    Biohydrogen production from the anaerobic digestion of specified risk materials (SRM) co-digested with cattle manure was assessed in a 3 x 5 factorial design. Total organic loading rates (OLR) of 10, 20, and 40 g L{sup -1} volatile solids (VS) were tested using manure:SRM (wt/wt) mixtures of 100:0 (control), 90:10, 80:20, 60:40, and 50:50 using five 2 L continuously stirred biodigesters operating at 55 C. Gas samples were taken daily to determine hydrogen production, and slurry samples were analyzed daily for volatile fatty acid (VFA) concentration, total ammonia nitrogen (TAN), and VS degradation. Hydrogen production (mL g{sup -1} VS fed) varied quadratically according to OLR (P < 0.01), with maximum production at OLR20, while production decreased linearly (P < 0.0001) as SRM concentration increased. Reduced hydrogen production associated with SRM inclusion at >10% VS may be attributed to a rapid increase in TAN (r = -0.55) or other inhibitors such as long chain fatty acids. Reduced hydrogen production (P < 0.01) at OLR40 versus OLR20 may be related to increased rate of VFA accumulation and final VFA concentration (P < 0.001), as well as inhibition due to hydrogen accumulation (P < 0.001). Biohydrogen production from SRM co-digested with cattle manure may not be feasible on an industrial scale due to reduced hydrogen production with increasing levels of SRM. (author)

  4. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH.

    Science.gov (United States)

    Hwang, Moon H; Jang, Nam J; Hyun, Seung H; Kim, In S

    2004-08-01

    Hydrogen was produced by an ethanol-acetate fermentation at pH of 5.0 +/- 0.2 and HRT of 3 days. The yield of hydrogen was 100-200 ml g Glu(-1) with a hydrogen content of 25-40%. This fluctuation in the hydrogen yield was attributed to the formation of propionate and the activity of hydrogen utilizing methanogens. The change in the operational pH for the inhibition of this methanogenic activity induced a change in the main fermentation pathway. In this study, the main products were butyrate, ethanol and propionate, in the pH ranges 4.0-4.5, 4.5-5.0 and 5.0-6.0, respectively. However, the activity of all the microorganisms was inhibited below pH 4.0. Therefore, pH 4.0 was regarded as the operational limit for the anaerobic bio-hydrogen production process. These results indicate that the pH plays an important role in determining the type of anaerobic fermentation pathway in anaerobic bio-hydrogen processes.

  5. Biohydrogen production and kinetic modeling using sediment microorganisms of Pichavaram mangroves, India.

    Science.gov (United States)

    Mullai, P; Rene, Eldon R; Sridevi, K

    2013-01-01

    Mangrove sediments host rich assemblages of microorganisms, predominantly mixed bacterial cultures, which can be efficiently used for biohydrogen production through anaerobic dark fermentation. The influence of process parameters such as effect of initial glucose concentration, initial medium pH, and trace metal (Fe(2+)) concentration was investigated in this study. A maximum hydrogen yield of 2.34, 2.3, and 2.6 mol H2 mol(-1) glucose, respectively, was obtained under the following set of optimal conditions: initial substrate concentration-10,000 mg L(-1), initial pH-6.0, and ferrous sulphate concentration-100 mg L(-1), respectively. The addition of trace metal to the medium (100 mg L(-1) FeSO4 ·7H2O) enhanced the biohydrogen yield from 2.3 mol H2 mol(-1) glucose to 2.6 mol H2 mol(-1) glucose. Furthermore, the experimental data was subjected to kinetic analysis and the kinetic constants were estimated with the help of well-known kinetic models available in the literature, namely, Monod model, logistic model and Luedeking-Piret model. The model fitting was found to be in good agreement with the experimental observations, for all the models, with regression coefficient values >0.92. PMID:24319679

  6. The organic agricultural waste as a basic source of biohydrogen production

    Science.gov (United States)

    Sriwuryandari, Lies; Priantoro, E. Agung; Sintawardani, Neni; Astuti, J. Tri; Nilawati, Dewi; Putri, A. Mauliva Hada; Mamat, Sentana, Suharwadji; Sembiring, T.

    2016-02-01

    Biohydrogen production research was carried out using raw materials of agricultural organic waste that was obtained from markets around the Bandung city. The organic part, which consisted of agricultural waste material, mainly fruit and vegetable waste, was crushed and milled using blender. The sludge that produced from milling process was then used as a substrate for mixed culture microorganism as a raw material to produce biohydrogen. As much as 1.2 kg.day-1 of sludge (4% of total solid) was fed into bioreactor that had a capacity of 30L. Experiment was done under anaerobic fermentation using bacteria mixture culture that maintained at pH in the range of 5.6-6.5 and temperature of 25-30oC on semi-continuous mode. Parameters of analysis include pH, temperature, total solid (TS), organic total solid (OTS), total gas production, and hydrogen gas production. The results showed that from 4% of substrate resulted 897.86 L of total gas, which contained 660.74 L (73.59%) of hydrogen gas. The rate of hydrogen production in this study was 11,063 mol.L-1.h-1.

  7. Biohydrogen Production and Kinetic Modeling Using Sediment Microorganisms of Pichavaram Mangroves, India

    Directory of Open Access Journals (Sweden)

    P. Mullai

    2013-01-01

    Full Text Available Mangrove sediments host rich assemblages of microorganisms, predominantly mixed bacterial cultures, which can be efficiently used for biohydrogen production through anaerobic dark fermentation. The influence of process parameters such as effect of initial glucose concentration, initial medium pH, and trace metal (Fe2+ concentration was investigated in this study. A maximum hydrogen yield of 2.34, 2.3, and 2.6 mol H2 mol−1 glucose, respectively, was obtained under the following set of optimal conditions: initial substrate concentration—10,000 mg L−1, initial pH—6.0, and ferrous sulphate concentration—100 mg L−1, respectively. The addition of trace metal to the medium (100 mg L−1 FeSO4·7H2O enhanced the biohydrogen yield from 2.3 mol H2 mol−1 glucose to 2.6 mol H2 mol−1 glucose. Furthermore, the experimental data was subjected to kinetic analysis and the kinetic constants were estimated with the help of well-known kinetic models available in the literature, namely, Monod model, logistic model and Luedeking-Piret model. The model fitting was found to be in good agreement with the experimental observations, for all the models, with regression coefficient values >0.92.

  8. Enhanced biohydrogen production from sugarcane bagasse by Clostridium thermocellum supplemented with CaCO3.

    Science.gov (United States)

    Tian, Qing-Qing; Liang, Lei; Zhu, Ming-Jun

    2015-12-01

    Clostridium thermocellum ATCC 27405 was used to degrade sugarcane bagasse (SCB) directly for hydrogen production, which was significantly enhanced by supplementing medium with CaCO3. The effect of CaCO3 concentration on the hydrogen production was investigated. The hydrogen production was significantly enhanced with the CaCO3 concentration increased from 10mM to 20mM. However, with the CaCO3 concentration further increased from 20mM to 100mM, the hydrogen production didn't increase further. Under the optimal CaCO3 concentration of 20mM, the hydrogen production reached 97.83±5.19mmol/L from 2% sodium hydroxide-pretreated SCB, a 116.72% increase over the control (45.14±1.03mmol/L), and the yield of hydrogen production reached 4.89mmol H2/g SCBadded. Additionally, CaCO3 promoted the biodegradation of SCB and the growth of C. thermocellum. The stimulatory effects of CaCO3 on biohydrogen production are mainly attributed to the buffering capacity of carbonate. The study provides a novel strategy to enhance biohydrogen production from lignocellulose.

  9. Biohydrogen production and kinetic modeling using sediment microorganisms of Pichavaram mangroves, India.

    Science.gov (United States)

    Mullai, P; Rene, Eldon R; Sridevi, K

    2013-01-01

    Mangrove sediments host rich assemblages of microorganisms, predominantly mixed bacterial cultures, which can be efficiently used for biohydrogen production through anaerobic dark fermentation. The influence of process parameters such as effect of initial glucose concentration, initial medium pH, and trace metal (Fe(2+)) concentration was investigated in this study. A maximum hydrogen yield of 2.34, 2.3, and 2.6 mol H2 mol(-1) glucose, respectively, was obtained under the following set of optimal conditions: initial substrate concentration-10,000 mg L(-1), initial pH-6.0, and ferrous sulphate concentration-100 mg L(-1), respectively. The addition of trace metal to the medium (100 mg L(-1) FeSO4 ·7H2O) enhanced the biohydrogen yield from 2.3 mol H2 mol(-1) glucose to 2.6 mol H2 mol(-1) glucose. Furthermore, the experimental data was subjected to kinetic analysis and the kinetic constants were estimated with the help of well-known kinetic models available in the literature, namely, Monod model, logistic model and Luedeking-Piret model. The model fitting was found to be in good agreement with the experimental observations, for all the models, with regression coefficient values >0.92.

  10. The genome sequence of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions.

    Directory of Open Access Journals (Sweden)

    Sinead C Leahy

    Full Text Available BACKGROUND: Methane (CH(4 is a potent greenhouse gas (GHG, having a global warming potential 21 times that of carbon dioxide (CO(2. Methane emissions from agriculture represent around 40% of the emissions produced by human-related activities, the single largest source being enteric fermentation, mainly in ruminant livestock. Technologies to reduce these emissions are lacking. Ruminant methane is formed by the action of methanogenic archaea typified by Methanobrevibacter ruminantium, which is present in ruminants fed a wide variety of diets worldwide. To gain more insight into the lifestyle of a rumen methanogen, and to identify genes and proteins that can be targeted to reduce methane production, we have sequenced the 2.93 Mb genome of M. ruminantium M1, the first rumen methanogen genome to be completed. METHODOLOGY/PRINCIPAL FINDINGS: The M1 genome was sequenced, annotated and subjected to comparative genomic and metabolic pathway analyses. Conserved and methanogen-specific gene sets suitable as targets for vaccine development or chemogenomic-based inhibition of rumen methanogens were identified. The feasibility of using a synthetic peptide-directed vaccinology approach to target epitopes of methanogen surface proteins was demonstrated. A prophage genome was described and its lytic enzyme, endoisopeptidase PeiR, was shown to lyse M1 cells in pure culture. A predicted stimulation of M1 growth by alcohols was demonstrated and microarray analyses indicated up-regulation of methanogenesis genes during co-culture with a hydrogen (H(2 producing rumen bacterium. We also report the discovery of non-ribosomal peptide synthetases in M. ruminantium M1, the first reported in archaeal species. CONCLUSIONS/SIGNIFICANCE: The M1 genome sequence provides new insights into the lifestyle and cellular processes of this important rumen methanogen. It also defines vaccine and chemogenomic targets for broad inhibition of rumen methanogens and represents a significant

  11. Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions

    OpenAIRE

    Asma Sattar; Chaudhry Arslan; Changying Ji; Sumiyya Sattar; Irshad Ali Mari; Haroon Rashid; Fariha Ilyas

    2016-01-01

    Three common pretreatments (mechanical, steam explosion and chemical) used to enhance the biodegradability of rice straw were compared on the basis of bio-hydrogen production potential while co-digesting rice straw with sludge under mesophilic (37 °C) and thermophilic (55 °C) temperatures. The results showed that the solid state NaOH pretreatment returned the highest experimental reduction of LCH (lignin, cellulose and hemi-cellulose) content and bio-hydrogen production from rice straw. The i...

  12. Rumination following bereavement : Assessment, working mechanisms and intervention

    NARCIS (Netherlands)

    Eisma, M.C.

    2015-01-01

    We aimed to gain better understanding of rumination, a risk factor for poor bereavement outcome, so it can be targeted more effectively in therapeutic interventions. We defined grief-related rumination as thinking repetitively and recurrently about the causes and consequences of a loss and loss-rela

  13. A Systematic Review of the Relationship between Rumination and Suicidality

    Science.gov (United States)

    Morrison, Rebecca; O'Connor, Rory C.

    2008-01-01

    Rumination has been persistently implicated in the etiology of hopelessness and depression, which are proximal predictors of suicidality. As a result, researchers have started to examine the role of rumination in suicidality. This systematic review provides a concise synopsis of the current progress in examining the relationship between rumination…

  14. An Observational Study of Co-Rumination in Adolescent Friendships

    Science.gov (United States)

    Rose, Amanda J.; Schwartz-Mette, Rebecca A.; Glick, Gary C.; Smith, Rhiannon L.; Luebbe, Aaron M.

    2014-01-01

    Co-rumination is a dyadic process between relationship partners that refers to excessively discussing problems, rehashing problems, speculating about problems, mutual encouragement of problem talk, and dwelling on negative affect. Although studies have addressed youths' "tendency" to co-ruminate, little is known about the nature of…

  15. Troubled Ruminations about Parents: Conceptualization and Validation with Emerging Adults

    Science.gov (United States)

    Schwartz, Seth J.; Finley, Gordon E.

    2010-01-01

    This study was designed to introduce the construct of troubled ruminations about parents and to develop a brief screening instrument. An ethnically diverse sample of 1,376 university students completed the instrument and other measures of psychosocial functioning. Troubled ruminations about mothers and fathers were related to self-esteem, life…

  16. Comparisons of Interventions for Rumination Maintained by Automatic Reinforcement

    Science.gov (United States)

    Sharp, Rebecca A.; Phillips, Katrina J.; Mudford, Oliver C.

    2012-01-01

    The effectiveness of four antecedent treatments for rumination was compared for two individuals with autism, severe intellectual disabilities and long histories (at least 20 years) of rumination. Comparisons of increased meal size, supplemental feedings, fixed-time provision of peanut butter, and liquid rescheduling found liquid rescheduling to be…

  17. Childhood and Adult Sexual Abuse, Rumination on Sadness, and Dysphoria

    Science.gov (United States)

    Conway, Michael; Mendelson, Morris; Giannopoulos, Constantina; Csank, Patricia A. R.; Holm, Susan L.

    2004-01-01

    Objective: The study addressed the hypothesis that adults reporting sexual abuse are more likely to exhibit a general tendency to ruminate on sadness. The relations between reported abuse, rumination on sadness, and dysphoria were also examined. Method: Undergraduate students (101 women and 100 men) reported on childhood and adult sexual abuse and…

  18. More than Talk: Co-Rumination among College Students

    Science.gov (United States)

    Landphair, Juliette; Preddy, Teri

    2012-01-01

    Co-rumination, a social process between two friends, is defined as the frequent and excessive discussion of personal problems. Like body image and alcohol use, it is one of those complicated issues embedded in larger cultural realities, which makes it universally recognizable. On campus, co-rumination has deleterious side effects: it challenges…

  19. Peste des petits ruminants virus in Heilongjiang province, China, 2014.

    Science.gov (United States)

    Wang, Jingfei; Wang, Miao; Wang, Shida; Liu, Zaisi; Shen, Nan; Si, Wei; Sun, Gang; Drewe, Julian A; Cai, Xuehui

    2015-04-01

    During March 25-May 5, 2014, we investigated 11 outbreaks of peste des petits ruminants in Heilongjiang Province, China. We found that the most likely source of the outbreaks was animals from livestock markets in Shandong. Peste des petits ruminants viruses belonging to lineages II and IV were detected in sick animals. PMID:25811935

  20. 9 CFR 93.409 - Articles accompanying ruminants.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Articles accompanying ruminants. 93.409 Section 93.409 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.409 Articles accompanying...

  1. Close Relationship of Ruminant Pestiviruses and Classical Swine Fever Virus

    OpenAIRE

    Postel, Alexander; Schmeiser, Stefanie; Oguzoglu, Tuba Cigdem; Indenbirken, Daniela; Alawi, Malik; Fischer, Nicole; Grundhoff, Adam; Becher, Paul

    2015-01-01

    To determine why serum from small ruminants infected with ruminant pestiviruses reacted positively to classical swine fever virus (CSFV)–specific diagnostic tests, we analyzed 2 pestiviruses from Turkey. They differed genetically and antigenically from known Pestivirus species and were closely related to CSFV. Cross-reactions would interfere with classical swine fever diagnosis in pigs.

  2. Internal switching and backward inhibition in depression and rumination.

    Science.gov (United States)

    Chen, Xiao; Feng, Zhengzhi; Wang, Tao; Su, Hong; Zhang, Lihong

    2016-09-30

    Prior research has suggested that impairments of switching abilities are associated with depression as well as rumination. Backward inhibition (BI) refers to the ability to inhibit the processing of previously relevant information and is demonstrated to be one of the key mechanisms underlying switching abilities. However, the association between BI in internal switching and depression/rumination remains uninvestigated. To examine this association, a modified Internal Shifting Task (IST) was administered to a sample of dysphoric and healthy control undergraduates. Results showed that depressive symptoms were not associated with difficulties in switching among subjects held in working memory, while trait ruminators performed poorly in switching internally. Surprisingly, no association between BI in internal switching and rumination/depressive symptoms was found. These findings indicate that rumination is characterized by poor performance in internal switching, but this deficit is not associated with BI. PMID:27449002

  3. On Rumin's Complex and Adiabatic Limits

    CERN Document Server

    Ge, Z

    1994-01-01

    This paper shows that when the Riemannian metric on a contact manifold is blown up along the direction orthogonal to the contact distribution, the corresponding harmonic forms rescaled and normalized in the $L^2$-norms will converge to Rumin's harmonic forms. This proves a conjecture in Gromov `` Carnot-Caratheodory spaces seen from within '', IHES preprint, 1994. This result can also be reformulated in terms of spectral sequences, after Forman, Mazzeo-Melrose. A key ingredient in the proof is the fact that the curvatures become unbounded in a controlled way.

  4. The Development of Aromas in Ruminant Meat

    Directory of Open Access Journals (Sweden)

    María M. Campo

    2013-06-01

    Full Text Available This review provides an update on our understanding of the chemical reactions (lipid oxidation, Strecker and Maillard reactions, thiamine degradation and a discussion of the principal aroma compounds derived from those reaction or other sources in cooked meat, mainly focused on ruminant species. This knowledge is essential in order to understand, control, and improve the quality of food products. More studies are necessary to fully understand the role of each compound in the overall cooked meat flavour and their possible effect in consumer acceptability.

  5. Mitigating GHG emissions from ruminant livestock systems

    OpenAIRE

    Klumpp, Katja; Doreau, Michel; Faverdin, Philippe; Jeuffroy, Marie-Helene; Bamière, Laure; Pardon, Lenaïc; Soussana, Jean-François; Pellerin, Sylvain

    2015-01-01

    Improving the net GHG budget of ruminant livestock systems without a reduction in productivity and economic sustainability, requires effective mitigation options in terms of abatement potential and costs. Grasslands and grassland management have a large potential to mitigate livestock GHG emissions at a low (or even negative) cost. A synthesis of eddy flux covariance data (i.e. 189 site years) shows on a mean net carbon storage equal to 0.76 ±0.1 MgC m-2yr-1, indicating a significant carbon s...

  6. Hipotiroidismo en rumiantes Hypothyroidism in Ruminants

    Directory of Open Access Journals (Sweden)

    R. MATAMOROS

    2003-01-01

    Full Text Available La glándula tiroides está presente en todos los vertebrados y es única entre las glándulas endocrinas en que almacena sus productos de secreción (hormonas tiroidales extracelularmente. Estas hormonas juegan un papel indispensable en una variedad de reacciones bioquímicas en tejidos periféricos como el músculo esquelético, cardíaco, el hígado y el riñón los que colectivamente controlan la actividad metabólica basal del organismo. A pesar de que muchos procesos fisiológicos en rumiantes requieren una actividad normal de la glándula tiroides, generalmente se ha resaltado su rol principalmente en la fisiología reproductiva. Sin embargo, en la mayoría de la literatura actual, la síntesis y acciones de las hormonas tiroidales en la fisiología de los rumiantes se ha extrapolado del conocimiento extenso que se tiene en la especie canina y felina. Por lo tanto, este trabajo pretende entregar información actualizada sobre la fisiología endocrina de la glándula tiroides en los rumiantes, enfatizando su rol en el bovino y ovino y las causas mas comunes de hipotiroidismo clínico en los rumiantes domésticosThe thyroid gland is present in all vertebrates and it is unique among endocrine glands in that it stores its secretory products (the thyroid hormones extracellularly. These hormones play an indispensable role in a variety of biochemical reactions at the level of peripheral tissues such as the skeletal and heart muscle, the liver and the kidney which collectively control the basal metabolic activity of the organism. Although many physiologic processes in ruminant require a normal activity of the thyroid gland, their role has generally been emphasized in the reproductive physiology. However, in most of the current literature, the synthesis and mechanism of action of the thyroid hormones in the ruminant physiology have been extrapolated of the extensive knowledge that we have in the canine and feline species. This work seeks to give

  7. When Does the Gender Difference in Rumination Begin? Gender and Age Differences in the Use of Rumination by Adolescents

    Science.gov (United States)

    Jose, Paul E.; Brown, Isobel

    2008-01-01

    A cross-sectional non-clinical sample of 1,218 adolescents, aged 10-17 years, completed measures of stress, rumination, and depression to allow tests of the response style theory of S. Nolen-Hoeksema [J Res Adolesc 4:519-534, 1994] in adolescents, in particular whether increasing levels of stress and rumination in early adolescence are predictive…

  8. Immortalized sheep microglia are permissive to a diverse range of ruminant viruses.

    Science.gov (United States)

    Small ruminants are important agricultural species worldwide; however, diagnostics and research of small ruminant infectious diseases typically rely on cattle-based reagents. One example of this is the lack of small ruminant-derived cell lines to diagnose and study small ruminant viruses. Furtherm...

  9. Enhancement of biohydrogen production from brewers' spent grain by calcined-red mud pretreatment.

    Science.gov (United States)

    Zhang, Jishi; Zang, Lihua

    2016-06-01

    This paper investigated the utilization of calcined-red mud (CRM) pretreatment to enhance fermentative hydrogen yields from brewers' spent grain (BSG). The BSG samples were treated with different concentrations (0.0-20g/L) of CRM at 55°C for 48h, before the biohydrogen process with heat-treated anaerobic sludge inoculum. The highest specific hydrogen production of 198.62ml/g-VS was obtained from the BSG treated with 10g/L CRM, with the corresponding lag time of 10.60h. Hydrogen yield increments increased by 67.74%, compared to the control tests without CRM. The results demonstrated that the CRM could hydrolyze more cellulose and further provided adequate broth and suitable pH value for efficient fermentative hydrogen. The model-based analysis showed that the modified Gompertz model presented a better fit for the experimental data than the first-order model. PMID:26950758

  10. Microbial biofilm community in a thermophilic trickling bio filter used for continuous biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.; Park, E.-J. [Korea Advanced Inst. of Science and Technology, Daejeon (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering; Oh, Y.-K. [Pusan National Univ., Pusan (Korea, Republic of). Dept. of Chemical Engineering; Park, S. [Pusan National Univ., Pusan (Korea, Republic of). Dept. of Chemical Engineering]|[Pusan National Univ., Pusan (Korea, Republic of). Inst. for Environmental Technology and Industry

    2004-07-01

    The microbial community in a thermophilic trickling biofilter reactor (TBR) that produces biohydrogen was examined. In particular, nonculture-based molecular methods were used to characterize the microbial community in the biofilm formed on the matrixes that were packed in the reactor. The operation of the bioreactor was described. TBR demonstrated long term stability to produce hydrogen. Biomass volatile suspended solids (VSS) in the TBR decreased gradually as bed height increased from the bottom of the bed. Epifluorescence microscopy of 6-diamidino-2-phenylindole (DAPI)-stained cells and denaturing gradient gel electrophoresis (DGGE) analysis both indicate that microbial composition changes in the TBR according to bed height. The dominant phylogenetic groups in the system were identified along with the comparative analysis of morphology of microbial community and the DGGE profiles of the microbial community in terms of total genomic DNA extracted from biofilm cells. 10 refs., 1 tab., 5 figs.

  11. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors.

    Science.gov (United States)

    Ren, N Q; Chua, H; Chan, S Y; Tsang, Y F; Wang, Y J; Sin, N

    2007-07-01

    In this study, the optimal fermentation type and the operating conditions of anaerobic process in continuous-flow acidogenic reactors was investigated for the maximization of bio-hydrogen production using mixed cultures. Butyric acid type fermentation occurred at pH>6, propionic acid type fermentation occurred at pH about 5.5 with E(h) (redox potential) >-278mV, and ethanol-type fermentation occurred at pHClostridium sp., Propionibacterium sp. and Bacteriodes sp., respectively. Ethanol fermentation was optimal type by comparing the operating stabilities and hydrogen production capacities between the fermentation types, which remained stable when the organic loading rate (OLR) reached the highest OLR at 86.1kgCOD/m(3)d. The maximum hydrogen production reached up to 14.99L/d.

  12. Synergistic collaboration of gut symbionts in Odontotermes formosanus for lignocellulosic degradation and bio-hydrogen production.

    Science.gov (United States)

    Mathew, Gincy Marina; Mathew, Dony Chacko; Lo, Shou-Chen; Alexios, Georgy Mathew; Yang, Jia-Cih; Sashikumar, Jagathala Mahalingam; Shaikh, Tanveer Mahamadali; Huang, Chieh-Chen

    2013-10-01

    In this work, gut microbes from the macrotermitine termite Odontotermes formosanus the cellulolytic Bacillus and fermentative Clostridium were studied in batch experiments using different carbon substrates to bio-mimic the termite gut for hydrogen production. Their fungus comb aging and the in vitro lignocellulosic degradation of the mango tree substrates by the synergistic interaction of Bacillus, Clostridium and Termitomyces were detected by Solid-state NMR. From the results, Bacillus species acted as a mutualist, by initiating an anaerobic environment for the growth of Clostridium, for bio-hydrogen production and the presence of Termitomyces enhanced the lignocellulosic degradation of substrates in vitro and in vivo. Thus, the synergistic collaboration of these three microbes can be used for termite-derived bio-fuel processing technology.

  13. Timeline of bio-hydrogen production by anaerobic digestion of biomass

    Directory of Open Access Journals (Sweden)

    Bernadette E. TELEKY

    2015-12-01

    Full Text Available Anaerobic digestion of biomass is a process capable to produce biohydrogen, a clean source of alternative energy. Lignocellulosic biomass from agricultural waste is considered a renewable energy source; therefore its utilization also contributes to the reduction of water, soil and air pollution. The study consists in five consecutive experiments designed to utilize anaerobic bacterial enrichment cultures originating from the Hungarian Lake, Hévíz. Wheat straw was used as complex substrate to produce hydrogen. The timeline evolution of hydrogen production was analyzed and modelled by two functions: Logistic and Boltzmann. The results proved that hydrogen production is significant, with a maximum of 0.24 mlN/ml and the highest hydrogen production occurs between the days 4-10 of the experiment.

  14. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Serrano, Maria; Thomsen, Anne Belinda;

    2009-01-01

    The production of bioethanol, biohydrogen and biogas from wheat straw was investigated within a biorefinery framework. Initially, wheat straw was hydrothermally liberated to a cellulose rich fiber fraction and a hemicellulose rich liquid fraction (hydrolysate). Enzymatic hydrolysis and subsequent....... Additionally, evaluation of six different wheat straw-to-biofuel production scenaria showed that either use of wheat straw for biogas production or multi-fuel production were the energetically most efficient processes compared to production of mono-fuel such as bioethanol when fermenting C6 sugars alone. Thus......, multiple biofuels production from wheat straw can increase the efficiency for material and energy and can presumably be more economical process for biomass utilization. (C) 2008 Elsevier Ltd. All rights reserved....

  15. Enhancement of biohydrogen production from brewers' spent grain by calcined-red mud pretreatment.

    Science.gov (United States)

    Zhang, Jishi; Zang, Lihua

    2016-06-01

    This paper investigated the utilization of calcined-red mud (CRM) pretreatment to enhance fermentative hydrogen yields from brewers' spent grain (BSG). The BSG samples were treated with different concentrations (0.0-20g/L) of CRM at 55°C for 48h, before the biohydrogen process with heat-treated anaerobic sludge inoculum. The highest specific hydrogen production of 198.62ml/g-VS was obtained from the BSG treated with 10g/L CRM, with the corresponding lag time of 10.60h. Hydrogen yield increments increased by 67.74%, compared to the control tests without CRM. The results demonstrated that the CRM could hydrolyze more cellulose and further provided adequate broth and suitable pH value for efficient fermentative hydrogen. The model-based analysis showed that the modified Gompertz model presented a better fit for the experimental data than the first-order model.

  16. Feeding oil palm (Elaeis guineensis, Jacq. fronds alters rumen protozoal population and ruminal fermentation pattern in goats

    Directory of Open Access Journals (Sweden)

    Mahdi Ebrahimi

    2015-07-01

    Full Text Available Oil palm fronds (OPF, normally available all the year round, may provide a sustainable ruminant feed for livestock industry in tropical regions. A feeding trial was conducted to study the effects of feeding OPF on the rumen protozoal population, rumen fermentation and fatty acid profiles of rumen fluid in goats. Twentyfour five-month-old Kacang crossbred male goats were individually housed and fed for 100 d with concentrate diets supplemented with oil palm (Elaeis guineensis Jacq. frond pellets. The treatments were: CON (100% concentrate, MOPF (75% concentrate + 25% OPF, w/w and HOPF (50% concentrate + 50% OPF, w/w. The diets were adjusted to be isocaloric. The pH of rumen fluid was in the order of HOPF (5.90>MOPF (5.74>CON (5.62. Both HOPF (17.75x104/mL and MOPF (17.13x104/mL had significantly (P<0.05 higher population of Entodinium sp. than CON (14.88x104/mL. Although populations of Holotrichs and total protozoa among the three groups did not show any significant difference (P>0.05, populations were in the numerical order of HOPF>MOPF>CON. The molar proportions of acetate were significantly higher (P<0.05 in HOPF animals compared to MOPF and CON. The altered status in the rumen environment due to supplementation of OPF in the diets resulted in the highest (P<0.05 amount of unsaturated fatty acids (UFA in the rumen of animals receiving HOPF and MOPF diet. These results were suggestive of a decreased biohydrogenation in the rumen, resulting in higher levels of UFA available for hindgut absorption, and hence their increased incorporation in the plasma and edible tissues of the HOPF animals.

  17. Impact of pH Management Interval on Biohydrogen Production from Organic Fraction of Municipal Solid Wastes by Mesophilic Thermophilic Anaerobic Codigestion.

    Science.gov (United States)

    Arslan, Chaudhry; Sattar, Asma; Changying, Ji; Nasir, Abdul; Mari, Irshad Ali; Bakht, Muhammad Zia

    2015-01-01

    The biohydrogen productions from the organic fraction of municipal solid wastes (OFMSW) were studied under pH management intervals of 12 h (PM12) and 24 h (PM24) for temperature of 37 ± 0.1°C and 55 ± 0.1°C. The OFMSW or food waste (FW) along with its two components, noodle waste (NW) and rice waste (RW), was codigested with sludge to estimate the potential of biohydrogen production. The biohydrogen production was higher in all reactors under PM12 as compared to PM24. The drop in pH from 7 to 5.3 was observed to be appropriate for biohydrogen production via mesophilic codigestion of noodle waste with the highest biohydrogen yield of 145.93 mL/g CODremoved under PM12. When the temperature was increased from 37°C to 55°C and pH management interval was reduced from 24 h to 12 h, the biohydrogen yields were also changed from 39.21 mL/g COD removed to 89.67 mL/g COD removed, 91.77 mL/g COD removed to 145.93 mL/g COD removed, and 15.36 mL/g COD removed to 117.62 mL/g COD removed for FW, NW, and RW, respectively. The drop in pH and VFA production was better controlled under PM12 as compared to PM24. Overall, PM12 was found to be an effective mean for biohydrogen production through anaerobic digestion of food waste.

  18. Impact of pH Management Interval on Biohydrogen Production from Organic Fraction of Municipal Solid Wastes by Mesophilic Thermophilic Anaerobic Codigestion

    Directory of Open Access Journals (Sweden)

    Chaudhry Arslan

    2015-01-01

    Full Text Available The biohydrogen productions from the organic fraction of municipal solid wastes (OFMSW were studied under pH management intervals of 12 h (PM12 and 24 h (PM24 for temperature of 37±0.1°C and 55±0.1°C. The OFMSW or food waste (FW along with its two components, noodle waste (NW and rice waste (RW, was codigested with sludge to estimate the potential of biohydrogen production. The biohydrogen production was higher in all reactors under PM12 as compared to PM24. The drop in pH from 7 to 5.3 was observed to be appropriate for biohydrogen production via mesophilic codigestion of noodle waste with the highest biohydrogen yield of 145.93 mL/g CODremoved under PM12. When the temperature was increased from 37°C to 55°C and pH management interval was reduced from 24 h to 12 h, the biohydrogen yields were also changed from 39.21 mL/g CODremoved to 89.67 mL/g CODremoved, 91.77 mL/g CODremoved to 145.93 mL/g CODremoved, and 15.36 mL/g CODremoved to 117.62 mL/g CODremoved for FW, NW, and RW, respectively. The drop in pH and VFA production was better controlled under PM12 as compared to PM24. Overall, PM12 was found to be an effective mean for biohydrogen production through anaerobic digestion of food waste.

  19. Biohydrogen and biomethane production sustained by untreated matrices and alternative application of compost waste.

    Science.gov (United States)

    Arizzi, Mariaconcetta; Morra, Simone; Pugliese, Massimo; Gullino, Maria Lodovica; Gilardi, Gianfranco; Valetti, Francesca

    2016-10-01

    Biohydrogen and biomethane production offers many advantages for environmental protection over the fossil fuels or the existing physical-chemical methods for hydrogen and methane synthesis. The aim of this study is focused on the exploitation of several samples from the composting process: (1) a mixture of waste vegetable materials ("Mix"); (2) an unmatured compost sample (ACV15); and (3) three types of green compost with different properties and soil improver quality (ACV1, ACV2 and ACV3). These samples were tested for biohydrogen and biomethane production, thus obtaining second generation biofuels and resulting in a novel possibility to manage renewable waste biomasses. The ability of these substrates as original feed during dark fermentation was assayed anaerobically in batch, in glass bottles, in order to determine the optimal operating conditions for hydrogen and/or methane production using "Mix" or ACV1, ACV2 or ACV3 green compost and a limited amount of water. Hydrogen could be produced with a fast kinetic in the range 0.02-2.45mLH2g(-1)VS, while methane was produced with a slower kinetic in the range 0.5-8mLCH4g(-1)VS. It was observed that the composition of each sample influenced significantly the gas production. It was also observed that the addition of different water amounts play a crucial role in the development of hydrogen or methane. This parameter can be used to push towards the alternative production of one or another gas. Hydrogen and methane production was detected spontaneously from these matrices, without additional sources of nutrients or any pre-treatment, suggesting that they can be used as an additional inoculum or feed into single or two-stage plants. This might allow the use of compost with low quality as soil improver for alternative and further applications. PMID:27422046

  20. Biohydrogen and biomethane production sustained by untreated matrices and alternative application of compost waste.

    Science.gov (United States)

    Arizzi, Mariaconcetta; Morra, Simone; Pugliese, Massimo; Gullino, Maria Lodovica; Gilardi, Gianfranco; Valetti, Francesca

    2016-10-01

    Biohydrogen and biomethane production offers many advantages for environmental protection over the fossil fuels or the existing physical-chemical methods for hydrogen and methane synthesis. The aim of this study is focused on the exploitation of several samples from the composting process: (1) a mixture of waste vegetable materials ("Mix"); (2) an unmatured compost sample (ACV15); and (3) three types of green compost with different properties and soil improver quality (ACV1, ACV2 and ACV3). These samples were tested for biohydrogen and biomethane production, thus obtaining second generation biofuels and resulting in a novel possibility to manage renewable waste biomasses. The ability of these substrates as original feed during dark fermentation was assayed anaerobically in batch, in glass bottles, in order to determine the optimal operating conditions for hydrogen and/or methane production using "Mix" or ACV1, ACV2 or ACV3 green compost and a limited amount of water. Hydrogen could be produced with a fast kinetic in the range 0.02-2.45mLH2g(-1)VS, while methane was produced with a slower kinetic in the range 0.5-8mLCH4g(-1)VS. It was observed that the composition of each sample influenced significantly the gas production. It was also observed that the addition of different water amounts play a crucial role in the development of hydrogen or methane. This parameter can be used to push towards the alternative production of one or another gas. Hydrogen and methane production was detected spontaneously from these matrices, without additional sources of nutrients or any pre-treatment, suggesting that they can be used as an additional inoculum or feed into single or two-stage plants. This might allow the use of compost with low quality as soil improver for alternative and further applications.

  1. Reducing methane emissions from ruminant animals

    Energy Technology Data Exchange (ETDEWEB)

    Mathison, G.W.; Okine, E.K.; McAllister, T.A.; Dong, Y.; Galbraith, J.; Dmytruk, O.I.N. [University of Alberta, Edmonton, AB (Canada). Dept. of Agriculture, Food and Nutrition Science

    1998-09-01

    In 1992 it was estimated that 30 x 10{sup 12}g more methane was emitted into the atmosphere than was removed, with animals being considered the largest single anthropogenic source. Ruminants produce 97% of the methane generated in enteric fermentation by animals. Estimates for methane emissions from animal wastes vary between 6 and 31% of that produced directly by the animal, with the most likely value being between 5 and 10% globally. Methane inhibitors can reduce methane emissions to zero in the short term but due to microbial adaptation the effects of these compounds are quickly neutralized and feed intake is often depressed. Methane emissions per unit of feed consumed from sheep and cattle fed hay diets appear to be quite similar but differences between other ruminants have been measured. The most practical way of influencing methane emissions per unit product is to increase productivity level since the proportion of feed energy required to just maintain the animal will be reduced, methane production falls with increased intake level, and the animal may go to market sooner. The most promising avenues for future research for reducing methanogenesis are the development of new products for reducing protozoal numbers in the rumen and the use of bacterocins or other compounds which specifically target methanogenic bacteria.

  2. IDENTIFICATION OF THE BACTERIUM TOMATO STEM CANKER

    Directory of Open Access Journals (Sweden)

    Goner A. Shaker

    2014-01-01

    Full Text Available Diseased tomato samples were collected from green house was evaluated for isolation, pathogenicity and biochemical tests. The symptoms of the infected tomato plants were as sudden wilting after curled on leaves and necrotic streak regions developed at the crown and base of the stem and the cavities deepen and expand up and down, brown discoloration and necrosis occurring on xylem and phloem vasculer. All of ages of tomato plant were susceptible to bacteria when the weather condition favorable and immediately, seen collapse symptom on tomato plant at once fail and die. The bacterium was isolated from diseased plant in all regions on nutrient Agar; a yellow bacterium was isolated from infected tomato plant in green houses and fields in Abu-Ghraib, Rashiedia and Qanat Al-Geiaysh nurseries in Baghdad provinces of Iraq. The bacterium was found gram positive, rod-shaped, non-motile and capable an aerobic growth and based on the morphological and biochemical characteristics revealed that this bacterium belongs to: Clavibacter michiganensis subsp. michiganensis. (smith pathogenicity and hypersensitivity of the bacterium Cmm showed the disease index were 18.33, 6.66, 16.66, 5, 0% for tomato seedlings were inoculated treatments as the wounding roots, without wounding roots, crown of the stem, petiole and control respectively.

  3. Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell.

    Science.gov (United States)

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Hafez, Hisham; Lee, Hyung-Sool

    2015-12-01

    An integrated dark fermentation and microbial electrochemical cell (MEC) process was evaluated for hydrogen production from sugar beet juice. Different substrate to inoculum (S/X) ratios were tested for dark fermentation, and the maximum hydrogen yield was 13% of initial COD at the S/X ratio of 2 and 4 for dark fermentation. Hydrogen yield was 12% of initial COD in the MEC using fermentation liquid end products as substrate, and butyrate only accumulated in the MEC. The overall hydrogen production from the integrated biohydrogen process was 25% of initial COD (equivalent to 6 mol H2/mol hexoseadded), and the energy recovery from sugar beet juice was 57% using the combined biohydrogen. PMID:26398665

  4. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems--a review.

    Science.gov (United States)

    Hung, Chun-Hsiung; Chang, Yi-Tang; Chang, Yu-Jie

    2011-09-01

    Anaerobic fermentative biohydrogen production, the conversion of organic substances especially from organic wastes to hydrogen gas, has become a viable and promising means of producing sustainable energy. Successful biological hydrogen production depends on the overall performance (results of interactions) of bacterial communities, i.e., mixed cultures in reactors. Mixed cultures might provide useful combinations of metabolic pathways for the processing of complex waste material ingredients, thereby supporting the more efficient decomposition and hydrogenation of biomass than pure bacteria species would. Therefore, understanding the relationships between variations in microbial composition and hydrogen production efficiency is the first step in constructing more efficient hydrogen-producing consortia, especially when complex and non-sterilized organic wastes are used as feeding substrates. In this review, we describe recent discoveries on bacterial community composition obtained from dark fermentation biohydrogen production systems, with emphasis on the possible roles of microorganisms that co-exist with common hydrogen producers.

  5. Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell.

    Science.gov (United States)

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Hafez, Hisham; Lee, Hyung-Sool

    2015-12-01

    An integrated dark fermentation and microbial electrochemical cell (MEC) process was evaluated for hydrogen production from sugar beet juice. Different substrate to inoculum (S/X) ratios were tested for dark fermentation, and the maximum hydrogen yield was 13% of initial COD at the S/X ratio of 2 and 4 for dark fermentation. Hydrogen yield was 12% of initial COD in the MEC using fermentation liquid end products as substrate, and butyrate only accumulated in the MEC. The overall hydrogen production from the integrated biohydrogen process was 25% of initial COD (equivalent to 6 mol H2/mol hexoseadded), and the energy recovery from sugar beet juice was 57% using the combined biohydrogen.

  6. Dynamic modelling of high biomass density cultivation and biohydrogen production in different scales of flat plate photobioreactors.

    Science.gov (United States)

    Zhang, Dongda; Dechatiwongse, Pongsathorn; Del Rio-Chanona, Ehecatl Antonio; Maitland, Geoffrey C; Hellgardt, Klaus; Vassiliadis, Vassilios S

    2015-12-01

    This paper investigates the scaling-up of cyanobacterial biomass cultivation and biohydrogen production from laboratory to industrial scale. Two main aspects are investigated and presented, which to the best of our knowledge have never been addressed, namely the construction of an accurate dynamic model to simulate cyanobacterial photo-heterotrophic growth and biohydrogen production and the prediction of the maximum biomass and hydrogen production in different scales of photobioreactors. To achieve the current goals, experimental data obtained from a laboratory experimental setup are fitted by a dynamic model. Based on the current model, two key original findings are made in this work. First, it is found that selecting low-chlorophyll mutants is an efficient way to increase both biomass concentration and hydrogen production particularly in a large scale photobioreactor. Second, the current work proposes that the width of industrial scale photobioreactors should not exceed 0.20 m for biomass cultivation and 0.05 m for biohydrogen production, as severe light attenuation can be induced in the reactor beyond this threshold.

  7. Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment.

    Science.gov (United States)

    Venkata Mohan, S; Prathima Devi, M

    2012-11-01

    Acid-rich effluent generated from acidogenic biohydrogen production process was evaluated as substrate for lipid synthesis by integrating with heterotrophic cultivation of mixed microalgae. Experiments were performed both with synthetic volatile fatty acids (SVFA) and fermented fatty acids (FFA) from biohydrogen producing reactor. Fatty acid based platform evidenced significant influence on algal growth as well as lipid accumulation by the formation of triglycerides through fatty acid synthesis. Comparatively FFA documented higher biomass and lipid productivity (1.42mg/ml (wet weight); 26.4%) than SVFAs ((HAc+HBu+HPr), 0.60mg/ml; 23.1%). Lipid profiles varied with substrates and depicted 18 types of saturated and unsaturated fatty acids with wide fuel and food characteristics. The observed higher concentrations of Chl b over Chl a supports the biosynthesis of triacylglycerides. Microalgae diversity visualized the presence of lipid accumulating species viz., Scenedesmus sp. and Chlorella sp. Integration of microalgae cultivation with biohydrogen production showed lipid productivity for biodiesel production along with additional treatment.

  8. Relationship between ruminal ammonia and non-protein nitrogen utilization by ruminants

    International Nuclear Information System (INIS)

    Non-protein nitrogen (NPN) may be utilized as well as plant protein when ruminal ammonia nitrogen concentration is low (3-N at 5 mg/100 ml will provide considerably less metabolizable protein, and the amount of metabolizable protein will be directly proportional to the amount of protein that escapes degradation. A simplified scheme for estimating metabolizable protein is presented. It has the flexibility needed for accommodating different feedstuffs, yet is easy to apply. The proposed scheme is based upon ruminal ammonia concentration, which in turn reflects protein intake, ration fermentability and protein degradation, the major determinants of protein supply to the lower intestine. It has the potential of more accurately describing the nutritional value of dietary crude protein, particularly if both protein and NPN are in the diet. (author)

  9. Crohn's disease and ruminant farming. Got lactase?

    Science.gov (United States)

    Juste, Ramón A

    2010-07-01

    Crohn's disease (CD) is a well known chronic pathological condition whose aetiology has remained unrecognized for nearly a century. Complex immune mechanisms in a specific genetic background causing an abnormal local inflammatory response are thought to be directly responsible for the clinical picture, but no external factor triggering such host responses has been identified. Humans lose the capability of breaking down milk lactose early in life and, afterwards, ingestion of large amounts of lactose causes a transient digestive illness known as lactose intolerance. Some human populations developed mutations for lactase persistence in adulthood that allowed better exploiting a product, milk, from not food-competitive domesticated species. This adaptation to dairy farming could have had as a collateral effect the exposure of human populations to a ruminant parasite with the ability to cause chronic inflammation in the intestine. Humans with a genetic susceptibility might develop a similar inflammatory disease caused by a defect in a highly conserved innate immunity mechanism. Data from different published sources regarding by country CD and type I diabetes incidence, lactose intolerance, livestock population, food production, Gross National Income and human population were submitted to Pearson and Kendall correlation, multiple regression and principal components analyses. Multiple regressions were also applied to a published 20-year time series for CD incidence in Japan. These analyses showed a strong association between country incidence of CD and frequency of lactase persistence as well as other ruminant production and consumption variables that further supports the meaning of those observations. Association of these variables with higher per capita income suggests that IBD incidence would be a side-effect of an otherwise highly successful adaptation. The evolutionarily plausible framework provided by this association with the species suffering a similar

  10. Serosurveillance for antibodies to rinderpest and peste de petits ruminants in bovins and small ruminants in Mali

    International Nuclear Information System (INIS)

    567 sera from 58 herds of small ruminants showed a very low prevalence of rinderpest antibodies (2 sera positive). The prevalence of antibodies to peste des petits ruminants (PPR) was very high and in the region of Segou only 7 herds were negative. The study of bovine sera included 436 sera from 15 herds with a low antibody prevalence to rinderpest. The prevalence of antibodies to rinderpest was very low (8 positive sera). These results would indicate that in Mali PPR infection in small ruminants only very occasionally infects cattle and would have a negligible effect on a rinderpest vaccination programme. (author). 3 refs, 9 tabs

  11. Principles of ration formulation for ruminants

    International Nuclear Information System (INIS)

    Feeding standards as practiced in developed countries could be misleading when non-conventional feed resources are used in formulating rations for ruminant livestock in developing countries. They tend to reject the poor quality feeds that are available in vast quantities. The non-availability of good quality forage throughout the year and the need to optimise the efficiency of utilisation of locally available feed resources have lead to the application of basic nutritional principles when considering ration formulation. The alternative approach to the use of feeding standards would be to ensure that the production system matches the available resources. The development of feed supplementation strategies based on locally available feed resources require the understanding of the relative roles and nutrient needs of the two-compartment system represented by the micro-organisms in the rumen and the host animal. (author)

  12. Scientific Opinion on peste des petits ruminants

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Animal Health and Welfare (AHAW

    2015-01-01

    Full Text Available Peste des petits ruminants (PPR is a severe viral disease of small ruminants caused by a Morbillivirus closely related to rinderpest virus. It is widespread in Africa and Asia and is currently also found in Turkey and Northern Africa. PPR is transmitted via direct contact, and the disease would mainly be transferred to infection-free areas by transport of infected animals. In the EU, it could only happen through illegal transport of animals. The risk of that depends on the prevalence in the country of origin and the number of animals illegally moved. The extent of the spread would depend mainly on the time during which it is undetected, the farm density, the frequency and distance of travel of animals. PPR has a high within-herd transmission rate, therefore contacts between flocks, e.g. through common grazing areas, should be avoided when PPR is present. If PPR enters EU areas with dense sheep population but low goat density, it may spread rapidly undetected, since goats are considered more susceptible than sheep. Effective measures in limiting the spread of PPR in the EU include prompt culling of infected herds, rapid detection, movement restriction, and disinfection. Live attenuated vaccines against PPR are available, safe and effective, and have been successfully used to control PPR epidemics, but no method exists for differentiating between infected and vaccinated animals; therefore, the development of one is recommended. Awareness-raising campaigns for farmers and veterinary staff to promote recognition of the disease should be considered. The cooperation of the EU with neighbouring countries should be encouraged to prevent the spread of PPR and other transboundary diseases.

  13. Microflora of urogenital tract in pregnancy with asymptomatic bacterium

    International Nuclear Information System (INIS)

    The article contains results of research interrelationship from colonization of vagina and urinary tract diseases. E.coli one of the main factors in development asymptomatic bacterium. Presented high effects of penicillin medicaments and nitrofurans in treatment of asymptomatic bacterium

  14. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  15. Schmallenberg virus infection of ruminants: challenges and opportunities for veterinarians

    Directory of Open Access Journals (Sweden)

    Claine F

    2015-06-01

    Full Text Available François Claine, Damien Coupeau, Laetitia Wiggers, Benoît Muylkens, Nathalie Kirschvink Veterinary Department, Faculty of Sciences, Namur Research Institute for Life Sciences (NARILIS, University of Namur (UNamur, Namur, Belgium Abstract: In 2011, European ruminant flocks were infected by Schmallenberg virus (SBV leading to transient disease in adult cattle but abortions and congenital deformities in calves, lambs, and goat kids. SBV belonging to the Simbu serogroup (family Bunyaviridae and genus Orthobunyavirus was first discovered in the same region where bluetongue virus serotype 8 (BTV-8 emerged 5 years before. Both viruses are transmitted by biting midges (Culicoides spp. and share several similarities. This paper describes the current knowledge of temporal and geographical spread, molecular virology, transmission and susceptible species, clinical signs, diagnosis, prevention and control, impact on ruminant health, and productivity of SBV infection in Europe, and compares SBV infection with BTV-8 infection in ruminants. Keywords: Schmallenberg virus, Europe, ruminants, review

  16. Feeding concentrate in early lactation based on rumination time

    DEFF Research Database (Denmark)

    Byskov, M.V.; Weisbjerg, Martin Riis; Markussen, B.;

    2015-01-01

    an experimental group (EXP) or a control group (CON) immediately after calving. In addition, all cows in the EXP and CON were assigned to either a high, medial or low rumination group according to their individual RT. Cows in the EXP assigned to the high (EH), medial (EM) or low (EL) rumination group were stepped......Precision feeding of dairy cows facilitates optimization of milk production. Accordingly, the objective was to study the effect on milk production when stepping up concentrate at 3 rates in early lactation according to individual daily rumination time (RT). Data was collected in 3 commercial dairy...... herds with Holstein cows, where daily RT was recorded by rumination sensors (Qwes HRTM). Cows were fed a partially mixed ration and concentrate at the milking robot. Concentrate was stepped up over the first 28 and 17 days in milk for primiparous and multiparous cows. Cows were assigned to either...

  17. Prospective Associations of Co-Rumination with Friendship and Emotional Adjustment: Considering the Socioemotional Trade-Offs of Co-Rumination

    Science.gov (United States)

    Rose, Amanda J.; Carlson, Wendy; Waller, Erika M.

    2007-01-01

    Co-ruminating, or excessively discussing problems, with friends is proposed to have adjustment tradeoffs. Co-rumination is hypothesized to contribute both to positive friendship adjustment and to problematic emotional adjustment. Previous single-assessment research was consistent with this hypothesis, but whether co-rumination is an antecedent…

  18. Parasitic infections in wild ruminants and wild boar

    OpenAIRE

    Ilić Tamara; Stojanov Igor; Dimitrijević Sanda

    2011-01-01

    Wild ruminants and wild boar belong to the order Artiodactyla, the suborders Ruminantia and Nonruminantia and are classified as wild animals for big game hunting, whose breeding presents a very important branch of the hunting economy. Diseases caused by protozoa are rarely found in wild ruminants in nature. Causes of coccidiosis, cryptosporidiosis, toxoplasmosis, sarcocystiosis, giardiasis, babesiosis, and theileriosis have been diagnosed in deer. The most ...

  19. Ruminant meat as a raw material for fermented meat products

    OpenAIRE

    VOTAVA, Pavel

    2013-01-01

    The aim of this thesis was to obtain information on availability of ruminant meat, especially game, for the production of fermented meat products. The thesis provides an overview of different types of ruminants, whose meat is used in human nutrition. It summarizes the chemical composition of many species of domesticated meats or wildlife animals. The properties of these meats are discussed with regard to their use in the manufacture of fermented meat products, technology and factors affect...

  20. Rumination, experiential avoidance, and dysfunctional thinking in eating disorders

    OpenAIRE

    Rawal, A.; Park, R J; Williams, J.M.G.

    2010-01-01

    The majority of research in eating disorders (ED) has investigated the content of disorder-specific thoughts, while few studies have addressed underlying cognitive-affective processes. A better understanding of processes underpinning ED may have important implications for treatment development. Two studies were conducted that investigated levels of rumination, beliefs about rumination, experiential avoidance, and aspects of schematic thinking in individuals with eating pathology. The latter w...

  1. Metabolizable protein systems in ruminant nutrition: A review

    OpenAIRE

    Lalatendu Keshary Das; S. S. Kundu; Dinesh Kumar; Chander Datt

    2014-01-01

    Protein available to ruminants is supplied by both microbial and dietary sources. Metabolizable protein (MP) is the true protein which is absorbed by the intestine and supplied by both microbial protein and protein which escapes degradation in the rumen; the protein which is available to the animal for maintenance, growth, fetal growth during gestation, and milk production. Thus, the concept of balancing ruminant rations basing on only dietary crude protein (CP) content seems erroneous. In In...

  2. The Nutritive and Feeding Value of Olive Cake for Ruminants

    OpenAIRE

    Gürhan Keleş

    2015-01-01

    The factor affecting nutritive and feeding value of olive cake (OC) was evaluated and, some suggestion was made regarding using olive cake in ruminant nutrition. It is evaluated that the nutritive value of OC can be able to support maintenance requirement of ruminant, although its nutritive value is affected by different factors. However, when taking into consideration of expense needed for preservation of OC, it is wise to use OC in nutrition after de-stoning. The crude protein, ether extrac...

  3. Ruminative Response Styles and Metacognitions in Internet Addicts

    OpenAIRE

    Senormanci, Omer; Konkan, Ramazan; Guclu, Oya; Guliz SENORMANCI

    2013-01-01

    Objective: Although cognitive behavioral model of Internet addiction has been well described, studies on metacognitions and ruminative response styles related with Internet addiction are very limited. The aim of the present study was to compare metacognitions and ruminative response style in Internet addicts with a healthy control group. Method: The study included 30 males who presented to our Internet Addiction Outpatient clinic, and diagnosed with Internet addiction, and a c...

  4. Delving into sensible measures to enhance the environmental performance of biohydrogen: A quantitative approach based on process simulation, life cycle assessment and data envelopment analysis.

    Science.gov (United States)

    Martín-Gamboa, Mario; Iribarren, Diego; Susmozas, Ana; Dufour, Javier

    2016-08-01

    A novel approach is developed to evaluate quantitatively the influence of operational inefficiency in biomass production on the life-cycle performance of hydrogen from biomass gasification. Vine-growers and process simulation are used as key sources of inventory data. The life cycle assessment of biohydrogen according to current agricultural practices for biomass production is performed, as well as that of target biohydrogen according to agricultural practices optimised through data envelopment analysis. Only 20% of the vineyards assessed operate efficiently, and the benchmarked reduction percentages of operational inputs range from 45% to 73% in the average vineyard. The fulfilment of operational benchmarks avoiding irregular agricultural practices is concluded to improve significantly the environmental profile of biohydrogen (e.g., impact reductions above 40% for eco-toxicity and global warming). Finally, it is shown that this type of bioenergy system can be an excellent replacement for conventional hydrogen in terms of global warming and non-renewable energy demand. PMID:27155266

  5. Analysis of energy consumption and CO{sub 2} emissions of the life cycle of bio-hydrogen applied to the Portuguese road transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ana Filipa; Baptista, Patricia; Silva, Carla [IDMEC (Portugal). Dept. of Mechanical Engineering

    2010-07-01

    In this work the main objective is to analyze energy consumption and CO{sub 2} emissions of biohydrogen for use in the transportation sector in Portugal. A life cycle assessment will be performed in order to evaluate bio-hydrogen pathways, having biodiesel and conventional fossil diesel as reference. The pathways were production of feedstock, pre-treatment, treatment, compression, distribution and applications. For the well-to-tank analysis the SimaPro 7.1 software and excel tools are used. This study includes not only a well-to-tank analysis but also a tank-to-wheel analysis (using ADVISOR software) estimating hydrogen consumption and electricity consumption of a fuel cell hybrid and a plug-in hybrid. Several bio-hydrogen feedstocks to produce hydrogen through fermentation processes will be considered: potato peels. (orig.)

  6. Delving into sensible measures to enhance the environmental performance of biohydrogen: A quantitative approach based on process simulation, life cycle assessment and data envelopment analysis.

    Science.gov (United States)

    Martín-Gamboa, Mario; Iribarren, Diego; Susmozas, Ana; Dufour, Javier

    2016-08-01

    A novel approach is developed to evaluate quantitatively the influence of operational inefficiency in biomass production on the life-cycle performance of hydrogen from biomass gasification. Vine-growers and process simulation are used as key sources of inventory data. The life cycle assessment of biohydrogen according to current agricultural practices for biomass production is performed, as well as that of target biohydrogen according to agricultural practices optimised through data envelopment analysis. Only 20% of the vineyards assessed operate efficiently, and the benchmarked reduction percentages of operational inputs range from 45% to 73% in the average vineyard. The fulfilment of operational benchmarks avoiding irregular agricultural practices is concluded to improve significantly the environmental profile of biohydrogen (e.g., impact reductions above 40% for eco-toxicity and global warming). Finally, it is shown that this type of bioenergy system can be an excellent replacement for conventional hydrogen in terms of global warming and non-renewable energy demand.

  7. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico.

    Science.gov (United States)

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A; Setién, Alvaro Aguilar

    2015-12-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc.

  8. Ruminative Response Styles and Metacognitions in Internet Addicts

    Directory of Open Access Journals (Sweden)

    Omer SENORMANCI

    2013-11-01

    Full Text Available Objective: Although cognitive behavioral model of Internet addiction has been well described, studies on metacognitions and ruminative response styles related with Internet addiction are very limited. The aim of the present study was to compare metacognitions and ruminative response style in Internet addicts with a healthy control group. Method: The study included 30 males who presented to our Internet Addiction Outpatient clinic, and diagnosed with Internet addiction, and a control group of 30 healthy males with similar sociodemographic characteristics. A sociodemographic data form, Internet Addiction Test (IAT, Metacognitions Questionnaire (MCQ-30, Ruminative Response Scale-short version (RRS-SV, and Beck Depression Inventory (BDI were used for data collection. Results: The MCQ-30 total, MCQ-30 uncontrollability and danger score, MCQ-30 need to control thoughts score and RRS-SV scores statistically significantly higher in study group compared the control group. After correcting for BDI by ANCOVA, the difference between MCQ-30 total score and RRS-SV disappeared. Conclusion: Internet addicts show ruminative responses instead of having an effective problem-solving attitude and defining problems; and this self-focused rumination leads an individual to recall more reinforced memories about the Internet so that the problem of Internet addiction becomes deeper. As a result of this study, although Internet addiction is accompanied by depression primarily or secondarily, manifestation of Internet addiction is exacerbated by depression through ruminative responses and metacognitions

  9. Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants.

    Science.gov (United States)

    Roh, Sang-Gun; Suzuki, Yutaka; Gotoh, Takafumi; Tatsumi, Ryuichi; Katoh, Kazuo

    2016-01-01

    Since the discovery of leptin secreted from adipocytes, specialized tissues and cells have been found that secrete the several peptides (or cytokines) that are characterized to negatively and positively regulate the metabolic process. Different types of adipokines, hepatokines, and myokines, which act as cytokines, are secreted from adipose, liver, and muscle tissue, respectively, and have been identified and examined for their physiological roles in humans and disease in animal models. Recently, various studies of these cytokines have been conducted in ruminants, including dairy cattle, beef cattle, sheep, and goat. Interestingly, a few cytokines from these tissues in ruminants play an important role in the post-parturition, lactation, and fattening (marbling) periods. Thus, understanding these hormones is important for improving nutritional management in dairy cows and beef cattle. However, to our knowledge, there have been no reviews of the characteristics of these cytokines in beef and dairy products in ruminants. In particular, lipid and glucose metabolism in adipose tissue, liver tissue, and muscle tissue are very important for energy storage, production, and synthesis, which are regulated by these cytokines in ruminant production. In this review, we summarize the physiological roles of adipokines, hepatokines, and myokines in ruminants. This discussion provides a foundation for understanding the role of cytokines in animal production of ruminants. PMID:26732322

  10. Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions

    Directory of Open Access Journals (Sweden)

    Asma Sattar

    2016-03-01

    Full Text Available Three common pretreatments (mechanical, steam explosion and chemical used to enhance the biodegradability of rice straw were compared on the basis of bio-hydrogen production potential while co-digesting rice straw with sludge under mesophilic (37 °C and thermophilic (55 °C temperatures. The results showed that the solid state NaOH pretreatment returned the highest experimental reduction of LCH (lignin, cellulose and hemi-cellulose content and bio-hydrogen production from rice straw. The increase in incubation temperature from 37 °C to 55 °C increased the bio-hydrogen yield, and the highest experimental yield of 60.6 mL/g VSremoved was obtained under chemical pretreatment at 55 °C. The time required for maximum bio-hydrogen production was found on the basis of kinetic parameters as 36 h–47 h of incubation, which can be used as a hydraulic retention time for continuous bio-hydrogen production from rice straw. The optimum pH range of bio-hydrogen production was observed to be 6.7 ± 0.1–5.8 ± 0.1 and 7.1 ± 0.1–5.8 ± 0.1 under mesophilic and thermophilic conditions, respectively. The increase in temperature was found useful for controlling the volatile fatty acids (VFA under mechanical and steam explosion pretreatments. The comparison of pretreatment methods under the same set of experimental conditions in the present study provided a baseline for future research in order to select an appropriate pretreatment method.

  11. Degradabilidade ruminal do feno de alguns alimentos volumosos para ruminantes Ruminal degradability of some roughage hays for ruminants feeding

    Directory of Open Access Journals (Sweden)

    G.G.P. Carvalho

    2006-08-01

    Full Text Available Avaliou-se a degradabilidade ruminal da matéria seca (MS, proteína bruta (PB, fibra em detergente neutro (FDN, da fibra em detergente ácido (FDA e hemicelulose dos fenos de capim-elefante (Pennisetum purpureum, palma (Opuntia ficus, guandu (Cajanus cajan e parte aérea da mandioca (Manihot esculenta utilizando três bovinos mestiços machos, castrados, canulados no rúmen e mantidos em regime de pasto. Amostras de 4g de cada alimento foram incubadas em duplicata no rúmen dos animais, nos períodos de 0, 6, 12, 24, 36, 48 e 72 horas. A degradabilidade potencial da PB dos fenos de capim-elefante e guandu foi semelhante, 83,9 e 81,2%, respectivamente. Os maiores valores foram observados para os fenos de palma (94,2% e parte aérea da mandioca (91,7%. A degradabilidade efetiva (DE foi obtida considerando as taxas de passagem de 2, 5 e 8%/hora. A maior DE observada para MS (60,5%, PB (81,1%, FDN (21,6%, FDA (27,9% e HEM (58,0%, na taxa de passagem de 5%/h, ocorreu com o feno de palma.The ruminal degradability of dry matter (DM, crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF and hemicellulose (HEM of elephantgrass (Pennisetum purpureum, forage cactus (Opuntia ficus, pigeon pea (Cajanus cajan and cassava foliage (Manihot esculenta hays was evaluated using three cannulated crossbred steers, kept on pasture. Samples of four grams of each hay were incubated in the rumen for 0, 6, 12, 24, 36, 48 and 72 hours. The CP potential degradability (PD for elephantgrass and pigeon pea hays was similar, 83.9 and 81.2%, respectively. Higher values were observed either for forage cactus (94.2% or cassava foliage (91.7% hays. The effective degradability (ED was obtained considering the passage rates of 2, 5 and 8%/hour. The forage cactus hay, at a passage rate of 5%/h, showed the highest ED for DM (60.5%, CP (81.1%, NDF (21.6%, ADF (27.9% and HEM (58.0%.

  12. Effect of Milk Allowance on Concentrate Intake, Ruminal Environment, and Ruminal Development in Milk-Fed Holstein Calves

    DEFF Research Database (Denmark)

    Kristensen, Niels Bastian; Sehested, Jakob; Jensen, Søren Krogh;

    2007-01-01

    The aim of the present experiment was to test the hypothesis that a barley-based concentrate would induce an acidic ruminal environment in young calves and that increased milk allowance would alleviate this condition.......The aim of the present experiment was to test the hypothesis that a barley-based concentrate would induce an acidic ruminal environment in young calves and that increased milk allowance would alleviate this condition....

  13. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Shireen Meher Kotay; Debabrata Das [Fermentation Technology Lab., Department of Biotechnology, Indian Institute of Technology Kharagpur, W.B., INDIA-721302 (India)

    2006-07-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H{sub 2} production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H{sub 2}/ g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H{sub 2}/ g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5% w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H{sub 2}/ g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H{sub 2}/ g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H{sub 2} / g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H{sub 2}/ g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from

  14. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Shireen Meher Kotay; Debabrata Das [Fermentation Technology Lab., Department of Biotechnology, Indian Institute of Technology Kharagpur, W.B., INDIA-721302 (India)

    2006-07-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H{sub 2} production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H{sub 2}/ g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H{sub 2}/g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5%w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H{sub 2}/ g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H{sub 2} g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H{sub 2}/g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H{sub 2}/g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from sludge

  15. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    International Nuclear Information System (INIS)

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H2 production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H2/ g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H2/g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5%w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H2/ g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H2 g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H2/g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H2/g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from sludge. (authors)

  16. Biomethane production in an AnSBBR treating wastewater from biohydrogen process.

    Science.gov (United States)

    Lullio, T G; Souza, L P; Ratusznei, S M; Rodrigues, J A D; Zaiat, M

    2014-11-01

    An anaerobic sequencing batch reactor containing immobilized biomass (AnSBBR) was used to produce biomethane by treating the effluent from another AnSBBR used to produce biohydrogen from glucose- (AR-EPHG) and sucrose-based (AR-EPHS) wastewater. In addition, biomethane was also produced from sucrose-based synthetic wastewater (AR-S) in a single AnSBBR to compare the performance of biomethane production in two steps (acidogenic and methanogenic) in relation to a one-step operation. The system was operated at 30 °C and at a fixed stirring rate of 300 rpm. For AR-EPHS treatment, concentrations were 1,000, 2,000, 3,000, and 4,000 mg chemical oxygen demand (COD) L(-1) and cycle lengths were 6 and 8 h. The applied volumetric organic loads were 2.15, 4.74, 5.44, and 8.22 g COD L(-1) day(-1). For AR-EPHG treatment, concentration of 4,000 mg COD L(-1) and 4-h cycle length (7.21 g COD L(-1) day(-1)) were used. For AR-S treatment, concentration was 4,000 mg COD L(-1) day(-1) and cycle lengths were 8 (7.04 g COD L(-1) day(-1)) and 12 h (4.76 g COD L(-1) day(-1)). The condition of 8.22 g COD L(-1) day(-1) (AR-EPHS) showed the best performance with respect to the following parameters: applied volumetric organic load of 7.56 g COD L(-1) day(-1), yield between produced methane and removed organic material of 0.016 mol CH4 g COD(-1), CH4 content in the produced biogas of 85 %, and molar methane productivity of 127.9 mol CH4 m(-3) day(-1). In addition, a kinetic study of the process confirmed the trend that, depending on the biodegradability characteristics of the wastewaters used, the two-step treatment (acidogenic for biohydrogen production and methanogenic for biomethane production) has potential advantages over the single-step process. PMID:25149460

  17. Thermophilic biohydrogen production using pre-treated algal biomass as substrate

    International Nuclear Information System (INIS)

    Algal biomass is rich in carbohydrates which can be utilized as a promising source of substrate for dark fermentation. It becomes more significant when biomass is produced by capturing atmospheric greenhouse gas, CO2. In the present study, clean energy was generated in the form of biohydrogen utilizing algal biomass. Biohydrogen production was carried out by thermophilic dark fermentation using mixed culture. The culture of Chlorella sorokiniana was cultivated in helical airlift photobioreactor at 30 °C under continuous light intensity of 120 μmol m−2 s−1 provided by white fluorescent lamps. Biomass reached to stationary phase on 9th day giving maximum dry cell weight of 2.9 kg m−3. Maximum carbohydrate and protein content observed was 145 g kg−1 and 140 g kg−1, respectively. Maximum volumetric productivity of 334 g dm−3 d−1 was observed. Algal biomass was subjected to various physical and chemical pre-treatments processes for the improvement of hydrogen production. It was observed that the pretreatment with 200 dm3 m−3 HCl-heat was most suitable pretreatment method producing cumulative hydrogen of 1.93 m3 m−3 and hydrogen yield of 958 dm3 kg−1 volatile suspended solid or 2.68 mol mol−1 of hexose. Growth kinetics parameters such as μmax and Ks were estimated to be 0.44 h−1 and 120 g m−3, respectively. The relationship between biomass and hydrogen production was simulated by the Luedeking–Piret model showing that H2 production is growth associated. The study thus showed the potential of algal biomass as substrate for biological hydrogen production. - Highlights: • Biomass production using customized helical airlift photobioreactor. • Study on different pre-treatment methods on saccharification of algal biomass. • Utilization of pre-treated algal biomass as substrate for H2 production. • Modelling and simulation of biomass and hydrogen production profile

  18. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kim Jaoon YH

    2010-07-01

    Full Text Available Abstract Background Hydrogenases catalyze reversible reaction between hydrogen (H2 and proton. Inactivation of hydrogenase by exposure to oxygen is a critical limitation in biohydrogen production since strict anaerobic conditions are required. While [FeFe]-hydrogenases are irreversibly inactivated by oxygen, it was known that [NiFe]-hydrogenases are generally more tolerant to oxygen. The physiological function of [NiFe]-hydrogenase 1 is still ambiguous. We herein investigated the H2 production potential of [NiFe]-hydrogenase 1 of Escherichia coli in vivo and in vitro. The hyaA and hyaB genes corresponding to the small and large subunits of [NiFe]-hydrogenase 1 core enzyme, respectively, were expressed in BL21, an E. coli strain without H2 producing ability. Results Recombinant BL21 expressing [NiFe]-hydrogenase 1 actively produced H2 (12.5 mL H2/(h·L in 400 mL glucose minimal medium under micro-aerobic condition, whereas the wild type BL21 did not produce H2 even when formate was added as substrate for formate hydrogenlyase (FHL pathway. The majority of recombinant protein was produced as an insoluble form, with translocation of a small fraction to the membrane. However, the membrane fraction displayed high activity (~65% of total cell fraction, based on unit protein mass. Supplement of nickel and iron to media showed these metals contribute essentially to the function of [NiFe]-hydrogenase 1 as components of catalytic site. In addition, purified E. coli [NiFe]-hydrogenase 1 using his6-tag displayed oxygen-tolerant activity of ~12 nmol H2/(min·mg protein under a normal aeration environment, compared to [FeFe]-hydrogenase, which remains inactive under this condition. Conclusions This is the first report on physiological function of E. coli [NiFe]-hydrogenase 1 for H2 production. We found that [NiFe]-hydrogenase 1 has H2 production ability even under the existence of oxygen. This oxygen-tolerant property is a significant advantage because it is

  19. Biomethane production in an AnSBBR treating wastewater from biohydrogen process.

    Science.gov (United States)

    Lullio, T G; Souza, L P; Ratusznei, S M; Rodrigues, J A D; Zaiat, M

    2014-11-01

    An anaerobic sequencing batch reactor containing immobilized biomass (AnSBBR) was used to produce biomethane by treating the effluent from another AnSBBR used to produce biohydrogen from glucose- (AR-EPHG) and sucrose-based (AR-EPHS) wastewater. In addition, biomethane was also produced from sucrose-based synthetic wastewater (AR-S) in a single AnSBBR to compare the performance of biomethane production in two steps (acidogenic and methanogenic) in relation to a one-step operation. The system was operated at 30 °C and at a fixed stirring rate of 300 rpm. For AR-EPHS treatment, concentrations were 1,000, 2,000, 3,000, and 4,000 mg chemical oxygen demand (COD) L(-1) and cycle lengths were 6 and 8 h. The applied volumetric organic loads were 2.15, 4.74, 5.44, and 8.22 g COD L(-1) day(-1). For AR-EPHG treatment, concentration of 4,000 mg COD L(-1) and 4-h cycle length (7.21 g COD L(-1) day(-1)) were used. For AR-S treatment, concentration was 4,000 mg COD L(-1) day(-1) and cycle lengths were 8 (7.04 g COD L(-1) day(-1)) and 12 h (4.76 g COD L(-1) day(-1)). The condition of 8.22 g COD L(-1) day(-1) (AR-EPHS) showed the best performance with respect to the following parameters: applied volumetric organic load of 7.56 g COD L(-1) day(-1), yield between produced methane and removed organic material of 0.016 mol CH4 g COD(-1), CH4 content in the produced biogas of 85 %, and molar methane productivity of 127.9 mol CH4 m(-3) day(-1). In addition, a kinetic study of the process confirmed the trend that, depending on the biodegradability characteristics of the wastewaters used, the two-step treatment (acidogenic for biohydrogen production and methanogenic for biomethane production) has potential advantages over the single-step process.

  20. Serosurvey of peste des petits ruminants virus in small ruminants from different agro-ecological zones of Nigeria.

    Science.gov (United States)

    Woma, Timothy Y; Ekong, Pius S; Bwala, Dauda G; Ibu, John O; Ta'ama, Louisa; Dyek, Dyek Y; Saleh, Ladi; Shamaki, David; Kalla, Demo J U; Bailey, Dalan; Kazeem, Haruna M; Quan, Melvyn

    2016-01-01

    Peste des petits ruminants, caused by the peste des petits ruminants virus (PPRV), is a highly contagious and economically important transboundary viral disease of domestic and wild small ruminants and a major hindrance to small-ruminant production in Nigeria. The seroprevalence and distribution of PPRV antibodies in small ruminants in rural households, farms, live animal markets and slaughter slabs across the six different agro-ecological zones of Nigeria were determined. A total of 4548 serum samples from 3489 goats and 1059 sheep were collected in 12 states. A PPRV competitive enzyme-linked immunosorbent assay was used to test the samples and the data analysed with R statistical software version 3.0.1. The study animals included all ages and both sexes. The overall prevalence estimate of sera positive for PPRV antibodies was 23.16% (n = 1018 positive samples per 4548 total samples, 95% confidence interval: 21.79% - 24.57%). There were significant differences in the seroprevalence between the states (p = 0.001). Taraba State had the highest seroprevalence of 29.51%, whilst the lowest seroprevalence of 14.52% was observed in Cross River State. There were no significant differences in the PPRV seroprevalence between male and female animals (p = 0.571), age (p = 0.323) and between species (p = 0.639). These data indicate the current seroprevalence to PPRV in the small-ruminant population in Nigeria. PMID:26974177

  1. Cassava based diets for sustainable ruminant production

    International Nuclear Information System (INIS)

    Cassava (Manihot esculenta, Crantz) is an annual crop grown widely in the tropical regions of Africa, Asia and Latin America. It thrives in sandy-loam soils with low organic matter and in climate with low rainfall and high temperature. Cassava could also response more with manure fertilization. Cassava tubers contain high levels of energy and minimal levels of crude protein, have been used as readily fermentable energy in ruminant rations, and have been used extensively as a feed for livestock. Recent attempts have been made to develop new products using cassava chips as an energy source with urea as non-protein nitrogen (NPN). Two new cassava based products have been developed: cassarea and cassaya. Cassarea was formulated to contain the following ingredients: 57.1% Cassava chips + 9.9% urea and 3% tallow (Cassarea I, 30% CP); 83.6% Cassava chips + 13.4% urea and 3% tallow (Cassarea II, 40% CP); 80.2% Cassava chips + 16.8% urea and 3% tallow (Cassarea III, 50% CP). Cassarea was tested for rumen degradability using the nylon bag technique and was found to have a 46.2 to 56.7% effective DM degradability. Further investigations with Cassarea II (40% CP) showed that it could be used to replace SBM in the rations of lactating cows, but supplementation with a rumen by-pass protein such as cottonseed meal would be recommended. Cassaya (30% CP) is a product formulated using chopped whole cassava crop hay (85%) + soybean meal (5%) + cassava chips (5%) + urea (2%) + tallow (2%) + sulphur (1%), mixing with water, pressed through a pelleting machine and sun-dried to at least 85% DM. The use of Cassaya in lactating dairy cows as a protein source proved to be efficient in promoting rumen fermentation, improved milk yield and composition and providing an increased economical return. Moreover, cassava hay (CH) has been applied in ruminant nutrition as a high-quality protein supplement for dairy cattle, beef and buffalo production. CH consists of whole crop of cassava harvested at

  2. Estimation of economic losses due to Peste de Petits Ruminants in small ruminants in India

    Directory of Open Access Journals (Sweden)

    B. Singh

    2014-04-01

    Full Text Available Aim: To develop a simple mathematical model to assess the losses due to peste des petits ruminants (PPR in small ruminants in India. Materials and Methods: The study was based on cases and deaths in goats and sheep due to PPR from the average combined data on ovine/caprine as published by Government of India for the last 5 years (2008-2012. All possible direct and indirect losses due to the disease, viz. mortality losses, losses due to direct reduction in milk/wool yield, losses due to reproduction failure, body weight losses, treatment costs and opportunity costs, were considered to provide estimate of annual economic losses due to PPR in sheep and goats in India. Based on cases and deaths as reported in sample survey studies, the annual economic loss was also estimated. Results: On the basis of data reported by Government of India, the study has shown average annual economic loss of Rs. 167.83 lacs, of which Rs. 125.67 lacs and Rs. 42.16 lacs respectively are due to the incidence of the disease in goats and sheep. Morbidity losses constituted the greater share of the total loss in both goats and sheep (56.99% and 61.34%, respectively. Among different components of morbidity loss, direct body weight loss was the most significant in both goats and sheep. Based on cases and deaths as reported in sample survey studies, the estimated annual economic loss due to PPR in goats and sheep is Rs. 8895.12 crores, of which Rs. 5477.48 and Rs. 3417.64 crores respectively are due to the disease in goats and sheep. Conclusion: The low economic losses as reported based on Government of India data points towards underreporting of cases and deaths due to the disease. The study thus revealed a significant loss due to PPR in small ruminants on a large scale.

  3. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep.

    Science.gov (United States)

    Rira, M; Morgavi, D P; Archimède, H; Marie-Magdeleine, C; Popova, M; Bousseboua, H; Doreau, M

    2015-01-01

    The objective of this work was to study nutritional strategies for decreasing methane production by ruminants fed tropical diets, combining in vitro and in vivo methods. The in vitro approach was used to evaluate the dose effect of condensed tannins (CT) contained in leaves of Gliricidia sepium, Leucaena leucocephala, and Manihot esculenta (39, 75, and 92 g CT/kg DM, respectively) on methane production and ruminal fermentation characteristics. Tannin-rich plants (TRP) were incubated for 24 h alone or mixed with a natural grassland hay based on Dichanthium spp. (control plant), so that proportions of TRP were 0, 0.25, 0.5, 0.75, and 1.0. Methane production, VFA concentration, and fermented OM decreased with increased proportions of TRP. Numerical differences on methane production and VFA concentration among TRP sources may be due to differences in their CT content, with greater effects for L. leucocephala and M. esculenta than for G. sepium. Independently of TRP, the response to increasing doses of CT was linear for methane production but quadratic for VFA concentration. As a result, at moderate tannin dose, methane decreased more than VFA. The in vivo trial was conducted to investigate the effect of TRP on different ruminal microbial populations. To this end, 8 rumen-cannulated sheep from 2 breeds (Texel and Blackbelly) were used in two 4 × 4 Latin square designs. Diets were fed ad libitum and were composed of the same feeds used for the in vitro trial: control plant alone or combined with pellets made from TRP leaves at 44% of the diet DM. Compared to TRP, concentration of Ruminococcus flavefaciens was greater for the control diet and concentration of Ruminococcus albus was least for the control diet. The methanogen population was greater for Texel than for Blackbelly. By contrast, TRP-containing diets did not affect protozoa or Fibrobacter succinogenes numbers. Hence, TRP showed potential for mitigating methane production by ruminants. These findings suggest

  4. Effect of extracellular pH on growth and proton motive force of Bacteroides succinogenes, a cellulolytic ruminal bacterium.

    OpenAIRE

    Russell, J B

    1987-01-01

    The utilization of cellulose or cellobiose by Bacteroides succinogenes S85 was severely inhibited at pH values of less than 5.7. Since low pH inhibited the utilization of both cellobiose and cellulose, changes in cellulase activity could not explain the effect. At an extracellular pH of 6.9, the pH gradient (delta pH) across the cell membrane was only 0.07 U. As extracellular pH declined from 6.9 to 5.7, intracellular pH decreased to a smaller extent than extracellular pH and delta pH increas...

  5. Sodium-Dependent Transport of Neutral Amino Acids by Whole Cells and Membrane Vesicles of Streptococcus bovis, a Ruminal Bacterium

    NARCIS (Netherlands)

    Russell, James B.; Strobel, Herbert J.; Driessen, Arnold J.M.; Konings, Wilhelmus

    1988-01-01

    Streptococcus bovis JB1 cells were able to transport serine, threonine, or alanine, but only when they were incubated in sodium buffers. If glucose-energized cells were washed in potassium phosphate and suspended in potassium phosphate buffer, there was no detectable uptake. Cells deenergized with 2

  6. First molecular isolation of Mycoplasma ovis from small ruminants in North Africa

    Directory of Open Access Journals (Sweden)

    Mohamed R. Rjeibi

    2015-02-01

    Full Text Available Eperythrozoonosis is a small ruminant disease caused by the bacterium Mycoplasma ovis (formerly known as Eperythrozoon ovis. Whilst acute infection in sheep may result in an anaemia and ill thrift syndrome, most animals do not develop clinical signs. Molecular methods were used to compare and evaluate the prevalence of infection with M. ovis in sheep and goats in Tunisia. A total of 739 whole blood samples from 573 sheep and 166 goats were tested for the M. ovis 16S rRNA gene using PCR. The overall prevalence was 6.28% ± 0.019 (36/573. Only sheep were infected with M. ovis (p < 0.001, and the prevalence was significantly higher in central Tunisia (29.2% compared with other regions (p < 0.05. The prevalence revealed significant differences according to breed and bioclimatic zones (p < 0.001. Furthermore, the prevalence in young sheep (35/330; 10.6% was higher than in adults (1/243; 0.41% (p < 0.001. Only sheep of the Barbarine breed were infected, with a prevalence of 11.8% (p < 0.001. This is the first molecular study and genetic characterisation of M. ovis in North African sheep breeds.

  7. Impact of ruminal pH on enteric methane emissions.

    Science.gov (United States)

    Hünerberg, M; McGinn, S M; Beauchemin, K A; Entz, T; Okine, E K; Harstad, O M; McAllister, T A

    2015-04-01

    The objective of this study was to determine the impact of ruminal pH on methane (CH4) emission from beef cattle. Ruminal pH and CH4 data were generated in 2 experiments using 16 beef heifers offered high-forage (55% barley silage) or high-grain (92% concentrate; DM basis) diets. Both experiments were designed as a replicated 4 × 4 Latin square with 4 periods and 4 dietary treatments. Methane was measured over 4 consecutive days using open-circuit respiratory chambers with each chamber housing 2 heifers. The ruminal pH of individual heifers was measured using indwelling pH loggers. The mean ruminal pH and CH4 emission (g/h) of 2 heifers in every chamber were summarized in 30-min blocks. Even though rumen methanogens have been described to be inhibited by a pH 0.05). Daily mean CH4 emission (g/d) and ruminal pH were only mildly correlated (r2 = 0.27; P < 0.05), suggesting that additional factors, such as increased propionate formation or passage rate, account for the lower CH4 emissions from cattle fed high-grain as compared to high-forage diets. Lowering ruminal pH alone is, therefore, not an effective CH4-mitigation strategy. Mechanisms permitting methanogens to survive episodes of low-ruminal pH might include changes in community structure toward more pH-tolerant strains or sequestration into microenvironments within biofilms or protozoa where methanogens are protected from low pH. PMID:26020197

  8. Continuous biohydrogen production from fruit wastewater at low pH conditions.

    Science.gov (United States)

    Diamantis, Vasileios; Khan, Abid; Ntougias, Spyridon; Stamatelatou, Katerina; Kapagiannidis, Anastasios G; Aivasidis, Alexander

    2013-07-01

    Biohydrogen production from a simulated fruit wastewater (soluble COD = 3.17 ± 0.10 g L⁻¹) was carried out in a continuous stirred tank reactor (CSTR) of 2 L operational volume without biomass inoculation, heat pre-treatment or pH adjustment, resulting in a low operational pH (3.75 ± 0.09). The hydraulic retention time (HRT) varied from 15 to 5 h. A strong negative correlation (p biogas production rate and the HRT was observed. Biogas production rates were higher at 30 °C than at 25 °C (p biogas hydrogen content was estimated as high as 55.8 ± 2.3 % and 55.4 ± 2.5 % at 25 and 30 °C, respectively. The main fermentation end products were acetic and butyric acids, followed by ethanol. Significant differences (p Simulation of the acidogenesis process in the CSTR (based on COD and carbon balances) indicated the possible metabolic compounds produced at 25 and 30 °C reactions and provided an adequate fit of the experimental data.

  9. Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter Sp.

    Science.gov (United States)

    Maru, Biniam T; Constanti, Magda; Stchigel, Alberto M; Medina, Francesc; Sueiras, Jesus E

    2013-01-01

    Glycerol is an attractive substrate for biohydrogen production because, in theory, it can produce 3 mol of hydrogen per mol of glycerol. Moreover, glycerol is produced in substantial amounts as a byproduct of producing biodiesel, the demand for which has increased in recent years. Therefore, hydrogen production from glycerol was studied by dark fermentation using three strains of bacteria: namely, Enterobacter spH1, Enterobacter spH2, and Citrobacter freundii H3 and a mixture thereof (1:1:1). It was found that, when an initial concentration of 20 g/L of glycerol was used, all three strains and their mixture produced substantial amounts of hydrogen ranging from 2400 to 3500 mL/L, being highest for C. freundii H3 (3547 mL/L) and Enterobacter spH1 (3506 mL/L). The main nongaseous fermentation products were ethanol and acetate, albeit in different ratios. For Enterobacter spH1, Enterobacter spH2, C. freundii H3, and the mixture (1:1:1), the ethanol yields (in mol EtOH/mol glycerol consumed) were 0.96, 0.67, 0.31, and 0.66, respectively. Compared to the individual strains, the mixture (1:1:1) did not show a significantly higher hydrogen level, indicating that there was no synergistic effect. Enterobacter spH1 was selected for further investigation because of its higher yield of hydrogen and ethanol.

  10. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Li, Feifei; Tang, Junhong

    2016-10-01

    Waste pastry was hydrolyzed by glucoamylase and protease which were obtained from solid state fermentation of Aspergillus awamori and Aspergillus oryzae to produce waste pastry hydrolysate. Then, the effects of hydraulic retention times (HRTs) (4-12h) on hydrogen production rate (HPR) in the suspended microbial growth system (continuous stirred tank reactor, CSTR) and attached microbial growth system (continuous mixed immobilized sludge reactor, CMISR) from waste pastry hydrolysate were investigated. The maximum HPRs of CSTR (201.8mL/(h·L)) and CMISR (255.3mL/(h·L)) were obtained at HRT of 6h and 4h, respectively. The first-order reaction could be used to describe the enzymatic hydrolysis of waste pastry. The carbon content of the waste pastry remained 22.8% in the undigested waste pastry and consumed 77.2% for carbon dioxide and soluble microbial products. To our knowledge, this is the first study which reports biohydrogen production from waste pastry. PMID:27416509

  11. Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate.

    Science.gov (United States)

    Ghimire, Anish; Frunzo, Luigi; Pontoni, Ludovico; d'Antonio, Giuseppe; Lens, Piet N L; Esposito, Giovanni; Pirozzi, Francesco

    2015-04-01

    The Biohydrogen Potential (BHP) of six different types of waste biomass typical for the Campania Region (Italy) was investigated. Anaerobic sludge pre-treated with the specific methanogenic inhibitor sodium 2-bromoethanesulfonic acid (BESA) was used as seed inoculum. The BESA pre-treatment yielded the highest BHP in BHP tests carried out with pre-treated anaerobic sludge using potato and pumpkin waste as the substrates, in comparison with aeration or heat shock pre-treatment. The BHP tests carried out with different complex waste biomass showed average BHP values in a decreasing order from potato and pumpkin wastes (171.1 ± 7.3 ml H2/g VS) to buffalo manure (135.6 ± 4.1 ml H2/g VS), dried blood (slaughter house waste, 87.6 ± 4.1 ml H2/g VS), fennel waste (58.1 ± 29.8 ml H2/g VS), olive pomace (54.9 ± 5.4 ml H2/g VS) and olive mill wastewater (46.0 ± 15.6 ml H2/g VS). The digestate was analyzed for major soluble metabolites to elucidate the different biochemical pathways in the BHP tests. These showed the H2 was produced via mixed type fermentation pathways. PMID:25617867

  12. Enhanced biohydrogen and subsequent biomethane production from sugarcane bagasse using nano-titanium dioxide pretreatment.

    Science.gov (United States)

    Jafari, Omid; Zilouei, Hamid

    2016-08-01

    Nano-titanium dioxide (nanoTiO2) under ultraviolet irradiation (UV) followed by dilute sulfuric acid hydrolysis of sugarcane bagasse was used to enhance the production of biohydrogen and biomethane in a consecutive dark fermentation and anaerobic digestion. Different concentrations of 0.001, 0.01, 0.1 and 1g nanoTiO2/L under different UV times of 30, 60, 90 and 120min were used. Sulfuric acid (2%v/v) at 121°C was used for 15, 30 and 60min to hydrolyze the pretreated bagasse. For acidic hydrolysis times of 15, 30 and 60min, the highest total free sugar values were enhanced by 260%, 107%, and 189%, respectively, compared to samples without nanoTiO2 pretreatment. The highest hydrogen production samples for the same acidic hydrolysis times showed 88%, 127%, and 25% enhancement. The maximum hydrogen production of 101.5ml/g VS (volatile solids) was obtained at 1g nanoTiO2/L and 120min UV irradiation followed by 30min acid hydrolysis. PMID:27208737

  13. One-carbon substrate-based biohydrogen production: microbes, mechanism, and productivity.

    Science.gov (United States)

    Rittmann, Simon K-M R; Lee, Hyun Sook; Lim, Jae Kyu; Kim, Tae Wan; Lee, Jung-Hyun; Kang, Sung Gyun

    2015-01-01

    Among four basic mechanisms for biological hydrogen (H2) production, dark fermentation has been considered to show the highest hydrogen evolution rate (HER). H2 production from one-carbon (C1) compounds such as formate and carbon monoxide (CO) is promising because formate is an efficient H2 carrier, and the utilization of CO-containing syngas or industrial waste gas may render the industrial biohydrogen production process cost-effective. A variety of microbes with the formate hydrogen lyase (FHL) system have been identified from phylogenetically diverse groups of archaea and bacteria, and numerous efforts have been undertaken to improve the HER for formate through strain optimization and bioprocess development. CO-dependent H2 production has been investigated to enhance the H2 productivity of various carboxydotrophs via an increase in CO gas-liquid mass transfer rates and the construction of genetically modified strains. Hydrogenogenic CO-conversion has been applied to syngas and by-product gas of the steel-mill process, and this low-cost feedstock has shown to be promising in the production of biomass and H2. Here, we focus on recent advances in the isolation of novel phylogenetic groups utilizing formate or CO, the remarkable genetic engineering that enhances H2 productivity, and the practical implementation of H2 production from C1 substrates. PMID:25461503

  14. Combining urban wastewater treatment with biohydrogen production--an integrated microalgae-based approach.

    Science.gov (United States)

    Batista, Ana Paula; Ambrosano, Lucas; Graça, Sofia; Sousa, Catarina; Marques, Paula A S S; Ribeiro, Belina; Botrel, Elberis P; Castro Neto, Pedro; Gouveia, Luisa

    2015-05-01

    The aim of the present work was the simultaneous treatment of urban wastewater using microalgae and the energetic valorization of the obtained biomass. Chlorella vulgaris (Cv), Scenedesmus obliquus (Sc) and a naturally occurring algal Consortium C (ConsC) were grown in an urban wastewater. The nutrient removals were quite high and the treated water fits the legislation (PT Dec-Lei 236/98) in what concerns the parameters analysed (N, P, COD). After nutrient depletion the microalgae remained two more weeks in the photobioreactor (PBR) under nutritional stress conditions, to induce sugar accumulation (22-43%). The stressed biomass was converted into biohydrogen (bioH2), a clean energy carrier, through dark fermentation by a strain of the bacteria Enterobacter aerogenes. The fermentation kinetics were monitored and fitted to a modified Gompertz model. The highest bioH2 production yield was obtained for S. obliquus (56.8 mL H2/gVS) which was very similar when using the same algae grown in synthetic media. PMID:25453433

  15. The start-up of biohydrogen-producing process by bioaugmentation in the EGSB reactor

    Institute of Scientific and Technical Information of China (English)

    Wang Xiangjing; Ren Nanqi; Xiang Wensheng; Guo Wanqian

    2006-01-01

    Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0~24d) seeded with activated sludge, the butyric acid type-fermentation formed when the initial expanding rate, organic loading rate (OLR), the initial redox potential (ORP) and hydraulic retention time (HRT) were 10%, 10.0 kg COD/(m3·d), - 215 mV and 6.7 h, respectively. At the beginning of the second stage on day 25, the novel hydrogen-producing fermentative bacterial strain B49 (AF481148 in EMBL) were inoculated into the reactor under the condition of OLR 16. 0 kg COD/(m3·d), ORP and HRT about - 139 mV and 6.7 h, respectively, and then the reaction system transformed to ethanol-type fermentation gradually with the increase in OLR. When OLR, ORP and HRT were about 94.3 kg COD/(m3·d), -250 mV and 1.7 h, respectively, the system achieved the maximum hydrogen-producing rate of 282.6 mL H2/L reactor· h and hydrogen percentage of 51%~53% in the biogas.

  16. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2012-01-01

    A self-powered submersible microbial electrolysis cell (SMEC), in which a specially designed anode chamber and external electricity supply were not needed, was developed for in situ biohydrogen production from anaerobic reactors. In batch experiments, the hydrogen production rate reached 17.8 m......L/L/d at the initial acetate concentration of 410 mg/L (5 mM), while the cathodic hydrogen recovery (RH2) and overall systemic coulombic efficiency (CEos) were 93% and 28%, respectively, and the systemic hydrogen yield (YH2) peaked at 1.27 mol-H2/mol-acetate. The hydrogen production increased along with acetate...... and buffer concentration. The highest hydrogen production rate of 32.2 mL/L/d and YH2 of 1.43 mol-H2/mol-acetate were achieved at 1640 mg/L (20 mM) acetate and 100 mM phosphate buffer. Further evaluation of the reactor under single electricity-generating or hydrogen-producing mode indicated that further...

  17. Modeling dark fermentation for biohydrogen production: ADM1-based model vs. Gompertz model

    Energy Technology Data Exchange (ETDEWEB)

    Gadhamshetty, Venkataramana [Air Force Research Laboratory, Tyndall AFB, 139 Barnes Drive, Panama City, FL 32403 (United States); Arudchelvam, Yalini; Nirmalakhandan, Nagamany [Civil Engineering Department, New Mexico State University, Las Cruces, NM 88003 (United States); Johnson, David C. [Institute for Energy and Environment, New Mexico State University, Las Cruces, NM 88003 (United States)

    2010-01-15

    Biohydrogen production by dark fermentation in batch reactors was modeled using the Gompertz equation and a model based on Anaerobic Digestion Model (ADM1). The ADM1 framework, which has been well accepted for modeling methane production by anaerobic digestion, was modified in this study for modeling hydrogen production. Experimental hydrogen production data from eight reactor configurations varying in pressure conditions, temperature, type and concentration of substrate, inocula source, and stirring conditions were used to evaluate the predictive abilities of the two modeling approaches. Although the quality of fit between the measured and fitted hydrogen evolution by the Gompertz equation was high in all the eight reactor configurations with r{sup 2} {proportional_to}0.98, each configuration required a different set of model parameters, negating its utility as a general approach to predict hydrogen evolution. On the other hand, the ADM1-based model (ADM1BM) with predefined parameters was able to predict COD, cumulative hydrogen production, as well as volatile fatty acids production, albeit at a slightly lower quality of fit. Agreement between the experimental temporal hydrogen evolution data and the ADM1BM predictions was statistically significant with r{sup 2} > 0.91 and p-value <1E-04. Sensitivity analysis of the validated model revealed that hydrogen production was sensitive to only six parameters in the ADM1BM. (author)

  18. Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Maojin; Yuan, Zhuliang; Zhi, Xiaohua; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2009-10-15

    Beer lees are the main by-product of the brewing industry. Biohydrogen production from beer lees using anaerobic mixed bacteria was investigated in this study, and the effects of acidic pretreatment, initial pH value and ferrous iron concentration on hydrogen production were studied at 35 C in batch experiments. The hydrogen yield was significantly enhanced by optimizing environmental factors such as hydrochloric acid (HCl) pretreatment of substrate, initial pH value and ferrous iron concentration. The optimal environmental factors of substrate pretreated with 2% HCl, pH = 7.0 and 113.67 mg/l Fe{sup 2+} were observed. A maximum cumulative hydrogen yield of 53.03 ml/g-dry beer lees was achieved, which was approximately 17-fold greater than that in raw beer lees. In addition, the degradation efficiency of the total reducing sugar, and the contents of hemicellulose, cellulose, lignin and metabolites are presented, which showed a strong dependence on the environmental factors. (author)

  19. Combining urban wastewater treatment with biohydrogen production--an integrated microalgae-based approach.

    Science.gov (United States)

    Batista, Ana Paula; Ambrosano, Lucas; Graça, Sofia; Sousa, Catarina; Marques, Paula A S S; Ribeiro, Belina; Botrel, Elberis P; Castro Neto, Pedro; Gouveia, Luisa

    2015-05-01

    The aim of the present work was the simultaneous treatment of urban wastewater using microalgae and the energetic valorization of the obtained biomass. Chlorella vulgaris (Cv), Scenedesmus obliquus (Sc) and a naturally occurring algal Consortium C (ConsC) were grown in an urban wastewater. The nutrient removals were quite high and the treated water fits the legislation (PT Dec-Lei 236/98) in what concerns the parameters analysed (N, P, COD). After nutrient depletion the microalgae remained two more weeks in the photobioreactor (PBR) under nutritional stress conditions, to induce sugar accumulation (22-43%). The stressed biomass was converted into biohydrogen (bioH2), a clean energy carrier, through dark fermentation by a strain of the bacteria Enterobacter aerogenes. The fermentation kinetics were monitored and fitted to a modified Gompertz model. The highest bioH2 production yield was obtained for S. obliquus (56.8 mL H2/gVS) which was very similar when using the same algae grown in synthetic media.

  20. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Li, Feifei; Tang, Junhong

    2016-10-01

    Waste pastry was hydrolyzed by glucoamylase and protease which were obtained from solid state fermentation of Aspergillus awamori and Aspergillus oryzae to produce waste pastry hydrolysate. Then, the effects of hydraulic retention times (HRTs) (4-12h) on hydrogen production rate (HPR) in the suspended microbial growth system (continuous stirred tank reactor, CSTR) and attached microbial growth system (continuous mixed immobilized sludge reactor, CMISR) from waste pastry hydrolysate were investigated. The maximum HPRs of CSTR (201.8mL/(h·L)) and CMISR (255.3mL/(h·L)) were obtained at HRT of 6h and 4h, respectively. The first-order reaction could be used to describe the enzymatic hydrolysis of waste pastry. The carbon content of the waste pastry remained 22.8% in the undigested waste pastry and consumed 77.2% for carbon dioxide and soluble microbial products. To our knowledge, this is the first study which reports biohydrogen production from waste pastry.

  1. Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate.

    Science.gov (United States)

    Ghimire, Anish; Frunzo, Luigi; Pontoni, Ludovico; d'Antonio, Giuseppe; Lens, Piet N L; Esposito, Giovanni; Pirozzi, Francesco

    2015-04-01

    The Biohydrogen Potential (BHP) of six different types of waste biomass typical for the Campania Region (Italy) was investigated. Anaerobic sludge pre-treated with the specific methanogenic inhibitor sodium 2-bromoethanesulfonic acid (BESA) was used as seed inoculum. The BESA pre-treatment yielded the highest BHP in BHP tests carried out with pre-treated anaerobic sludge using potato and pumpkin waste as the substrates, in comparison with aeration or heat shock pre-treatment. The BHP tests carried out with different complex waste biomass showed average BHP values in a decreasing order from potato and pumpkin wastes (171.1 ± 7.3 ml H2/g VS) to buffalo manure (135.6 ± 4.1 ml H2/g VS), dried blood (slaughter house waste, 87.6 ± 4.1 ml H2/g VS), fennel waste (58.1 ± 29.8 ml H2/g VS), olive pomace (54.9 ± 5.4 ml H2/g VS) and olive mill wastewater (46.0 ± 15.6 ml H2/g VS). The digestate was analyzed for major soluble metabolites to elucidate the different biochemical pathways in the BHP tests. These showed the H2 was produced via mixed type fermentation pathways.

  2. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen.

    Science.gov (United States)

    Dahiya, Shikha; Sarkar, Omprakash; Swamy, Y V; Mohan, S Venkata

    2015-04-01

    Fermentation experiments were designed to elucidate the functional role of the redox microenvironment on volatile fatty acid (VFA, short chain carboxylic acid) production and co-generation of biohydrogen (H2). Higher VFA productivity was observed at pH 10 operation (6.3g/l) followed by pH 9, pH 6, pH 5, pH 7, pH 8 and pH 11 (3.5 g/l). High degree of acidification, good system buffering capacity along with co-generation of higher H2 production from food waste was also noticed at alkaline condition. Experiments illustrated the role of initial pH on carboxylic acids synthesis. Alkaline redox conditions assist solubilization of carbohydrates, protein and fats and also suppress the growth of methanogens. Among the carboxylic acids, acetate fraction was higher at alkaline condition than corresponding neutral or acidic operations. Integrated process of VFA production from waste with co-generation of H2 can be considered as a green and sustainable platform for value-addition.

  3. Production of biohydrogen from crude glycerol in an upflow column bioreactor.

    Science.gov (United States)

    Dounavis, Athanasios S; Ntaikou, Ioanna; Lyberatos, Gerasimos

    2015-12-01

    A continuous attached growth process for the production of biohydrogen from crude glycerol was developed. The process consisted of an anaerobic up-flow column bioreactor (UFCB), packed with cylindrical ceramic beads, which constituted the support matrix for the attachment of bacterial cells. The effect of crude glycerol concentration, pH and hydraulic retention time on glycerol conversion, hydrogen yield and metabolite distribution was investigated. It was shown that the most critical parameter for the efficient bioconversion was the pH of the influent, whereas the hydrogen yield increased with an increase in feed glycerol concentration and a decrease in the hydraulic retention time. The main soluble metabolite detected was 1,3-propanediol in all cases, followed by butyric and hexanoic acids. The latter is reported to be produced from glycerol for the first time. Acidification of the waste reached 38.5%, and the maximum H2 productivity was 107.3 ± 0.7 L/kg waste glycerol at optimal conditions.

  4. Enhanced biohydrogen and subsequent biomethane production from sugarcane bagasse using nano-titanium dioxide pretreatment.

    Science.gov (United States)

    Jafari, Omid; Zilouei, Hamid

    2016-08-01

    Nano-titanium dioxide (nanoTiO2) under ultraviolet irradiation (UV) followed by dilute sulfuric acid hydrolysis of sugarcane bagasse was used to enhance the production of biohydrogen and biomethane in a consecutive dark fermentation and anaerobic digestion. Different concentrations of 0.001, 0.01, 0.1 and 1g nanoTiO2/L under different UV times of 30, 60, 90 and 120min were used. Sulfuric acid (2%v/v) at 121°C was used for 15, 30 and 60min to hydrolyze the pretreated bagasse. For acidic hydrolysis times of 15, 30 and 60min, the highest total free sugar values were enhanced by 260%, 107%, and 189%, respectively, compared to samples without nanoTiO2 pretreatment. The highest hydrogen production samples for the same acidic hydrolysis times showed 88%, 127%, and 25% enhancement. The maximum hydrogen production of 101.5ml/g VS (volatile solids) was obtained at 1g nanoTiO2/L and 120min UV irradiation followed by 30min acid hydrolysis.

  5. Optimization performance of an AnSBBR applied to biohydrogen production treating whey.

    Science.gov (United States)

    Lima, D M F; Lazaro, C Z; Rodrigues, J A D; Ratusznei, S M; Zaiat, M

    2016-03-15

    The present study investigated the influence of the influent concentration of substrate, feeding time and temperature on the production of biohydrogen from cheese whey in an AnSBBR with liquid phase recirculation. The highest hydrogen yield (0.80 molH2.molLactose(-1)) and productivity (660 mLH2 L(-1) d(-1)) were achieved for influent concentrations of 5400 mgDQO L(-1). No significant difference was noted in the biological hydrogen production for the feeding time conditions analyzed. The lowest temperature tested (15 °C) promoted the highest hydrogen yield and productivity (1.12 molH2 molLactose(-1) and 1080 mLH2 L(-1) d(-1)), and for the highest temperature (45 °C), hydrogen production did not occur. The indicator values for the hydrogen production obtained with this configuration were higher than those obtained in other studies using traditional configurations such as UASBr and CSTR. A phylogenetic analysis showed that the majority of the analyzed clones were similar to Clostridium. In addition, clones phylogenetically similar to the Lactobacilaceae family, notably Lactobacillus rhamnosus, and clones with similar sequences to Acetobacter indonesiensis were observed in small proportion in the reactor.

  6. Biohydrogen Fermentation from Sucrose and Piggery Waste with High Levels of Bicarbonate Alkalinity

    Directory of Open Access Journals (Sweden)

    Jeongdong Choi

    2015-03-01

    Full Text Available This study examined the influence of biohydrogen fermentation under the high bicarbonate alkalinity (BA and pH to optimize these critical parameters. When sucrose was used as a substrate, hydrogen was produced over a wide range of pH values (5–9 under no BA supplementation; however, BA affected hydrogen yield significantly under different initial pHs (5–10. The actual effect of high BA using raw piggery waste (pH 8.7 and BA 8.9 g CaCO3/L showed no biogas production or propionate/acetate accumulation. The maximum hydrogen production rate (0.32 L H2/g volatile suspended solids (VSS-d was observed at pH 8.95 and 3.18 g CaCO3/L. BA greater than 4 g CaCO3/L also triggered lactate-type fermentation, leading to propionate accumulation, butyrate reduction and homoacetogenesis, potentially halting the hydrogen production rate. These results highlight that the substrate with high BA need to amend adequately to maximize hydrogen production.

  7. Immobilized Biofilm in Thermophilic Biohydrogen Production using Synthetic versus Biological Materials

    Directory of Open Access Journals (Sweden)

    Jaruwan Wongthanate

    2015-02-01

    Full Text Available Biohydrogen production was studied from the vermicelli processing wastewater using synthetic and biological materials as immobilizing substrate employing a mixed culture in a batch reactor operated at the initial pH 6.0 and thermophilic condition (55 ± 1ºC. Maximum cumulative hydrogen production (1,210 mL H2/L wastewater was observed at 5% (v/v addition of ring-shaped synthetic material, which was the ring-shaped hydrophobic acrylic. Regarding 5% (v/v addition of synthetic and biological materials, the maximum cumulative hydrogen production using immobilizing synthetic material of ball-shaped hydrophobic polyethylene (HBPE (1,256.5 mL H2/L wastewater was a two-fold increase of cumulative hydrogen production when compared to its production using immobilizing biological material of rope-shaped hydrophilic ramie (609.8 mL H2/L wastewater. SEM observation of immobilized biofilm on a ball-shaped HBPE or a rope-shaped hydrophilic ramie was the rod shape and gathered into group.

  8. Investigation of the links between heterocyst and biohydrogen production by diazotrophic cyanobacterium A. variabilis ATCC 29413.

    Science.gov (United States)

    Salleh, Siti Fatihah; Kamaruddin, Azlina; Uzir, Mohamad Hekarl; Karim, Khairiah Abd; Mohamed, Abdul Rahman

    2016-03-01

    This work investigates the effect of heterocyst toward biohydrogen production by A. variabilis. The heterocyst frequency was artificially promoted by adding an amino acid analog, in this case DL-7-azatryptophan into the growth medium. The frequency of heterocyst differentiation was found to be proportional to the concentration of azatryptophan (0-25 µM) in the medium. Conversely, the growth and nitrogenase activity were gradually suppressed. In addition, there was also a distinct shortening of the cells filaments and detachment of heterocyst from the vegetative cells. Analysis on the hydrogen production performance revealed that both the frequency and distribution of heterocyst in the filaments affected the rate of hydrogen production. The highest hydrogen production rate and yield (41 µmol H2 mg chl a(-1) h(-1) and 97 mL H2 mg chl a(-1), respectively) were achieved by cells previously grown in 15 µM of azatryptophan with 14.5 % of heterocyst frequency. The existence of more isolated heterocyst has been shown to cause a relative loss in nitrogenase activity thus lowering the hydrogen production rate.

  9. Nutritional Value of Seaweed to Ruminants

    Directory of Open Access Journals (Sweden)

    Roger D. Applegate

    1995-12-01

    Full Text Available We compared the nutritional quality (apparent digestible dry matter (ADDM, crude protein, total phenolics, gross energy, of 3 seaweed species (Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosis to that of 3 woody browse species{Acer rubrum, Thuja occidentalis, Abies balsamea, lichen (Usnea spp., and winter rye (Secale cereals for ruminants. The ADDM's of the 3 seaweeds (63-80% DM were 11-167% DM higher and crude protein contents (12.1-14.6% DM were 68-186% DM higher than the 3 browse species. Seaweeds had lower total phenolics (5.5-10.3% DM and gross energy (12-15 KJ/g DM, and moderate digestible energy (DE contents (9-10 KJ/g DM compared to the browse species. The 3 browse species had ADDM's of 30-57% DM, crude protein contents of 5.1-7.2% DM, total phenolic concentrations of 11.6-16.4% DM, and DE contents of 6-12 KJ/g DM. Winter rye and lichen had the lowest total phenolic concentrations (1.3 and 1.9% DM of forages examined, and had lower ADDM's (35 and 40% DM, DE contents (6-7 KJ/g DM, and crude protein (7.8 and 5.7% DM than seaweeds. The relatively high DE and protein contents of seaweed may explain high deer densities of Maine coastal islands where browse availability and use appears to be low.

  10. Effect of milk allowance on concentrate intake, ruminal environment, and ruminal development in milk-fed Holstein calves.

    Science.gov (United States)

    Kristensen, N B; Sehested, J; Jensen, S K; Vestergaard, M

    2007-09-01

    The aim of the present experiment was to test the hypothesis that a barley-based concentrate would induce an acidic ruminal environment in young calves and that increased milk allowance would alleviate this condition. Eight Holstein calves ruminally cannulated at d 7 +/- 1 of age were used to study the effect of variation in barley-based starter concentrate intake induced by 4 different milk allowances (3.10, 4.84, 6.60, and 8.34 kg of milk replacer/d; 123 g of dry matter/kg of milk) on the ruminal environment, blood variables, and fore-stomach development from wk 2 to 5 of age. Twelve ruminal fluid samples were collected during a weekly 24-h sampling in 4 consecutive weeks. Blood samples were collected by venipuncture between 1200 and 1300 h on ruminal sampling days. Rumen papillae development and visceral organ mass were recorded at slaughter. A linear treatment x week effect was observed for concentrate intake, with the calves fed the lowest milk allowance having the fastest increase in concentrate intake whereby these calves reached the same ME intake in wk 5 compared with calves with the highest milk allowance. Effects on ruminal variables were dominated by week of sampling, with minor differences among treatments. Ruminal pH was below 5.5 for 5 to 13 h/d and all calves with concentrate intake above 20 g of dry matter/d were observed to have a daily ruminal pH minimum at pH 5.5 or lower. The ruminal concentration of total volatile fatty acids (VFA) increased from 71 to 133 +/- 9 mmol/L in wk 2 to 5 and was characterized by a relatively high molar proportion of propionate, increasing from 34 to 40 mol/100 mol of VFA in wk 2 to 5. In addition, the presence of ethanol and propanol as well as numerous VFA esters points to a ruminal environment with a relatively high hydrogen pressure. Plasma glucose and insulin responded to the highest milk allowance in wk 2 to 4. Plasma VFA and ketone bodies increased with the lowest milk allowance in wk 4 to 5. At slaughter

  11. Evaluation of procedures for estimating ruminal particle turnover and diet digestibility in ruminant animals

    International Nuclear Information System (INIS)

    Procedures used in estimating ruminal particle turnover and diet digestibility were evaluated in a series of independent experiments. Experiment 1 and 2 evaluated the influence of sampling site, mathematical model and intraruminal mixing on estimates of ruminal particle turnover in beef steers grazing crested wheatgrass or offered ad libitum levels of prairie hay once daily, respectively. Particle turnover rate constants were estimated by intraruminal administration (via rumen cannula) of ytterbium (Yb)-labeled forage, followed by serial collection of rumen digesta or fecal samples. Rumen Yb concentrations were transformed to natural logarithms and regressed on time. Influence of sampling site (rectum versus rumen) on turnover estimates was modified by the model used to fit fecal marker excretion curves in the grazing study. In contrast, estimated turnover rate constants from rumen sampling were smaller (P < 0.05) than rectally derived rate constants, regardless of fecal model used, when steers were fed once daily. In Experiment 3, in vitro residues subjected to acid or neutral detergent fiber extraction (IVADF and IVNDF), acid detergent fiber incubated in cellulase (ADFIC) and acid detergent lignin (ADL) were evaluated as internal markers for predicting diet digestibility. Both IVADF and IVNDF displayed variable accuracy for prediction of in vivo digestibility whereas ADL and ADFIC inaccurately predicted digestibility of all diets

  12. Effect of forage quality in faeces from different ruminant species fed high and low quality forage

    DEFF Research Database (Denmark)

    Jalali, A R; Nørgaard, P; Nielsen, M O;

    2010-01-01

    Effect of forage quality in faeces from different ruminant species fed high and low quality forage......Effect of forage quality in faeces from different ruminant species fed high and low quality forage...

  13. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    OpenAIRE

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-01-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bondin...

  14. Addition of tannins to ruminant feed: Investigation of the effects on ruminal microbiota by DGGE

    International Nuclear Information System (INIS)

    Tannins are polymeric phenolic substances that show antimicrobial properties against filamentous fungi, yeasts and bacteria. They form complexes with proteins and polysaccharides. Protein complexation is supposed to reduce the availability of feed protein to ruminal microorganisms, and in turn increase the supply of aminoacids to the ruminant. In in vitro trials tannins were shown to bind cell walls of ruminal bacteria preventing growth and protease activity. In pure cultures they inhibited growth of predominant rumen bacteria, such as Fibrobacter succinogenes, Butyrivibrio fibrisolvens, Ruminoccus amylophilus, Streptoccus bovis. This study presents the effects of tannin addition to ruminant feed on the microbial community in the rumen in vivo. Two non-lactating fistulated Holstein cows were adapted for two weeks to a total mixed ration-concentrate diet fed in two equal meals per day. After the adaptation period samples were collected as control one hour before, and one, three, five and seven hours after morning feeding four and one day before tannin addition. The diet was then supplemented with 7.2 g/kg tannins from chestnut (Aesculus hippocastanum) and fed for another two weeks. During this period samples were collected at day one, two and four, five hours after morning feeding. On day eight and ten, five consecutive samples were collected as described for the control. Rumen fluid was collected from the liquid phase by a pump and from the feed mat by hand squeezing. Parameters investigated were ammonia and short chain fatty acid (SCFA) concentration, enzyme activities, and concentration of 16S (bacteria and archaea) and 18S rRNA (protozoa and fungi). The daily pattern of parameters investigated for two animals were similar and highly reproducible although the absolute concentration of some parameters (SCFA, isovalerate, 16S rRNA) differed between animals. The concentration of ammonia, enzyme activities and rRNA content, different between the liquid and meat

  15. Ruminal Acidosis in Feedlot: From Aetiology to Prevention

    Directory of Open Access Journals (Sweden)

    Joaquín Hernández

    2014-01-01

    Full Text Available Acute ruminal acidosis is a metabolic status defined by decreased blood pH and bicarbonate, caused by overproduction of ruminal D-lactate. It will appear when animals ingest excessive amount of nonstructural carbohydrates with low neutral detergent fiber. Animals will show ruminal hypotony/atony with hydrorumen and a typical parakeratosis-rumenitis liver abscess complex, associated with a plethora of systemic manifestations such as diarrhea and dehydration, liver abscesses, infections of the lung, the heart, and/or the kidney, and laminitis, as well as neurologic symptoms due to both cerebrocortical necrosis and the direct effect of D-lactate on neurons. In feedlots, warning signs include decrease in chewing activity, weight, and dry matter intake and increase in laminitis and diarrhea prevalence. The prognosis is quite variable. Treatment will be based on the control of systemic acidosis and dehydration. Prevention is the most important tool and will require normalization of ruminal pH and microbiota. Appropriate feeding strategies are essential and involve changing the dietary composition to increase neutral detergent fiber content and greater particle size and length. Appropriate grain processing can control the fermentation rate while additives such as prebiotics or probiotics can help to stabilize the ruminal environment. Immunization against producers of D-lactate is being explored.

  16. Ruminal acidosis in feedlot: from aetiology to prevention.

    Science.gov (United States)

    Hernández, Joaquín; Benedito, José Luis; Abuelo, Angel; Castillo, Cristina

    2014-01-01

    Acute ruminal acidosis is a metabolic status defined by decreased blood pH and bicarbonate, caused by overproduction of ruminal D-lactate. It will appear when animals ingest excessive amount of nonstructural carbohydrates with low neutral detergent fiber. Animals will show ruminal hypotony/atony with hydrorumen and a typical parakeratosis-rumenitis liver abscess complex, associated with a plethora of systemic manifestations such as diarrhea and dehydration, liver abscesses, infections of the lung, the heart, and/or the kidney, and laminitis, as well as neurologic symptoms due to both cerebrocortical necrosis and the direct effect of D-lactate on neurons. In feedlots, warning signs include decrease in chewing activity, weight, and dry matter intake and increase in laminitis and diarrhea prevalence. The prognosis is quite variable. Treatment will be based on the control of systemic acidosis and dehydration. Prevention is the most important tool and will require normalization of ruminal pH and microbiota. Appropriate feeding strategies are essential and involve changing the dietary composition to increase neutral detergent fiber content and greater particle size and length. Appropriate grain processing can control the fermentation rate while additives such as prebiotics or probiotics can help to stabilize the ruminal environment. Immunization against producers of D-lactate is being explored.

  17. Ruminant production systems in developing countries: Resource utilization

    International Nuclear Information System (INIS)

    Ruminant production systems are discussed with specific reference to the resource utilization required to support them. Particular focus is placed on the main production resources (animals and feeds) and their underutilization. The ruminant animals include buffaloes, cattle, goats, sheep and camels. With the exception of cattle and sheep, their numbers in developing countries account for between 94 and 100% of total world population. Their biological attributes, including inherent characteristics, feeding behaviour and metabolism, are summarized. The extent and availability of feed resources are considered; resources include permanent pastures, crop residues, agroindustrial by-products and non-conventional feeds. The prevailing ruminant production systems are classified into three main categories: extensive systems, systems incorporating arable cropping (roadside, communal and arable grazing systems; tethering and cut-and-carry feeding), and systems integrated with tree cropping. Their genesis and endurance with patterns of crop production and farming systems are discussed. Integrated systems, involving animals and tree crops, are potentially important. Prevailing ruminant production systems are unlikely to change in the foreseeable future, unless there are major shifts in resource use and the proposed new systems are demonstrably superior. Factors likely to influence future ruminant production systems are market requirements, available feed resources and growth in human populations. Two associated strategies for improvement are proposed: increased priority to buffaloes, goats, sheep and camels, consistent with their potential contribution to meat, milk and fibre supplies and draught power; and more complete utilization of the available feed ingredients and increased feed supplies

  18. THE RUMINANT EFFECT OF VEGETAL LECITHIN AT SHEEP AND GOATS

    Directory of Open Access Journals (Sweden)

    H. SĂRĂNDAN

    2013-07-01

    Full Text Available In the extraction process of the vegetable soy oils and sun-flower oils results in large quantities a waste that contains approximately 45% fat from which 58% is lecithin. This waste called “dreg” creates problems of environment pollution because we didn’t find a use for it. We tested this waste in the food of small ruminants, at sheep and goat, watching the ruminant effect and the apparent digestibility of the nutritive substances in the food. The tested doses of “dregs” were of 100 g and 200 g per day. The food supplementation in sheep and goats with dregs up to 7% fat in the dry substance of the ration has favourable and proportional effects with the dose of fat on the digestibility of the nutritive substances from the food. The growth of ruminant bacteria is favoured at the 100 g dose of dregs but is depressed at the 200 g dose of dregs. On the ruminant protozoa the supplementation with fat from dregs leads to the reducing of the number of protozoa and even at defaunation. It is possible that the fat from the dregs to be a source of YATP and to protect the alimentary proteins of the degrading with proteolytic enzymes and therefore to make the protein ruminant by-pass.

  19. Pesti Des Petits ruminants virus infection in animals

    Directory of Open Access Journals (Sweden)

    Chauhan H.C.

    2009-08-01

    Full Text Available For centuries morbillivirus infections have had a huge impact on both human beings and animals. Morbilliviruses are highly contagious pathogens that cause some of the most devastating viral diseases of humans and animals world wide. They include measles virus (MV, canine distemper virus (CDV, rinderpest virus (RPV and peste des petits ruminants (PPRV virus. Furthermore, new emerging infectious diseases of morbilliviruses with significant ecological consequences of marine mammals have been discovered in the past decades. Phocid distemper virus (PDV in seals and the cetacean morbillivirus (CMV have been found in dolphins, whales and porpoises. Peste des petits ruminants (PPR is a highly contagious ,infectious , an acute or sub acute viral disease of domestic and wild small ruminants characterized by fever, oculonasal discharges, stomatitis, conjunctivitis, gastroenteritis and pneumonia. Goats are more severely affected than sheep. It is also known as pseudorinderpest of small ruminants, pest of small ruminants, pest of sheep and goats, kata, stomatitis- pneumoentritis syndrome, contagious pustular stomatitis and pneumoentritis complex. It is one of the major notifiable diseases of the World Organization for Animal Health (OIE. [Vet. World 2009; 2(4.000: 150-155

  20. Evaluation of whey fermented by Enterococcus faecium in consortium with Veilonella parvula in ruminant feeding

    OpenAIRE

    Juliana Silva de Oliveira; Augusto César de Queiroz; Hilário Cuquetto Mantovani; Geraldo Fábio Viana Bayão; Edenio Detmann; Edson Mauro Santos; Thiago Carvalho da Silva

    2012-01-01

    The objective of this study was to evaluate the whey fermented by Enterococcus faecium in consortium with Veilonella parvula on the in vitro growth of ruminal bacteria and as a supplement in the cattle diet. In the in vitro experiment, a randomized design, with the following combinations was used: ruminal bacteria; ruminal bacteria and inactive whey; ruminal bacteria and active whey; and active whey. In the in vivo experiment, five fistulated Zebu Holstein-Zebu crossbred heifers were distribu...

  1. Self-focus and procedural fairness: the role of self-rumination and self-reflection

    OpenAIRE

    Brebels, Lieven; De Cremer, David; Sedikides, Constantine; Van Hiel, Alain

    2013-01-01

    This article examined the differential role of self-rumination and self-reflection on the psychological influence of procedural fairness. Study 1 induced self-rumination and self-reflection relative to an outward-focused control. Self-rumination increased the perceived importance of procedural fairness, whereas self-reflection decreased it. Study 2, assessing individual differences in self-rumination and self-reflection, showed that a standard procedural fairness manipulation (voice vs. no vo...

  2. Biohydrogen production from household solid waste (HSW) at extreme-thermophilic temperature (70 degrees C) - Influence of pH and acetate concentration

    DEFF Research Database (Denmark)

    Liu, Dawei; Min, Booki; Angelidaki, Irini

    2008-01-01

    Hydrogen production from household solid waste (HSW) was performed via dark fermentation by using an extreme-thermophilic mixed culture, and the effect of pH and acetate on the biohydrogen production was investigated. The highest hydrogen production yield was 257 +/- 25 mL/gVS(added) at the optimum...

  3. Subtypes of Rumination in Adolescence: Associations between Brooding, Reflection, Depressive Symptoms, and Coping

    Science.gov (United States)

    Burwell, Rebecca A.; Shirk, Stephen R.

    2007-01-01

    Prior research has indicated that rumination contributes to the maintenance or intensification of depressive symptoms among adults. This study examined associations between rumination and depressive symptoms in early adolescence. Using a short-term longitudinal design, we evaluated relations between subtypes of rumination and both depressive…

  4. Impedance measurements and high-resolution manometry help to better define rumination episodes

    NARCIS (Netherlands)

    B.F. Kessing; F. Govaert; A.A.M. Masclee; J.M. Conchillo

    2011-01-01

    Background. Rumination syndrome is a disorder of unknown etiology characterized by regurgitation of recently ingested food. We aimed to improve the diagnosis of rumination syndrome by classification of separate rumination symptoms using (1) an ambulatory manometry/impedance (AMIM) measurement and (2

  5. Getting Out of Rumination: Comparison of Three Brief Interventions in a Sample of Youth

    Science.gov (United States)

    Hilt, Lori M.; Pollak, Seth D.

    2012-01-01

    Rumination, passively and repetitively dwelling on and questioning negative feelings in response to distress, is a risk factor for the development of psychopathology, especially depression. The ruminative process is difficult to stop once it has begun. The present studies focused on strategies that may help youth disengage from ruminative states.…

  6. Rumination and Depression in Adolescence: Investigating Symptom Specificity in a Multiwave Prospective Study

    Science.gov (United States)

    Hankin, Benjamin L.

    2008-01-01

    A ruminative response style has been shown to predict depressive symptoms among youth and adults, but it is unclear whether rumination is associated specifically with depression compared with co-occurring symptoms of anxiety and externalizing behaviors. This prospective, multiwave study investigated whether baseline rumination predicted…

  7. Air and water qualities around small ruminant houses in Central Java - Indonesia

    NARCIS (Netherlands)

    Budisatria, I.G.S.; Udo, H.M.J.; Zijpp, van der A.J.; Murti, T.W.; Baliarti, E.

    2007-01-01

    There is a general concern that livestock can have a profound effect on the environment, also in smallholder production systems. This paper presented the impact of small ruminants on the quality of air and water in and around small ruminant houses. In total, 27 small ruminant houses from the three a

  8. Interpersonal Stress Generation as a Mechanism Linking Rumination to Internalizing Symptoms in Early Adolescents

    Science.gov (United States)

    McLaughlin, Katie A.; Nolen-Hoeksema, Susan

    2012-01-01

    Rumination is a risk factor for depressive and anxiety symptoms in adolescents. Previous investigations of the mechanisms linking rumination to internalizing problems have focused primarily on cognitive factors. We investigated whether interpersonal stress generation plays a role in the longitudinal relationship between rumination and…

  9. Trophoblast cells of ruminant placentas - A mini review

    International Nuclear Information System (INIS)

    Understanding of ruminant placental structure and function is essential for veterinarians and researchers. The ruminant placenta is classified as cotyledonary and synepitheliochorial on the bases of its gross anatomical features and histological characteristics respectively. The richly vascularized embryonic chorioallantois is lined on its outer surface by cells of the trophectodermal epithelium. These cells which assume specialized functions are referred to as trophoblast cells. Two morphologically and functionally distinct cell types have been recognized in the trophectoderm of the placenta of ruminant animals. These are the mononucleate trophoblast cells and the binucleate trophoblast cells. The occurrence, morphological characteristics, and specialized functions of these trophoblast cells, in relation to conceptus nutrition and survival in utero are discussed in this review. (author)

  10. Factors Affecting Mitigation of Methane Emission from Ruminants: Management Strategies

    Directory of Open Access Journals (Sweden)

    Afshar Mirzaei-Aghsaghali

    2015-06-01

    Full Text Available Nowadays, greenhouse gas emission which results in elevating global temperature is an important subject of worldwide ecological and environmental concern. Among greenhouse gases, methane is considered a potent greenhouse gas with 21 times more global warming potential than carbon dioxide. Worldwide, ruminant livestock produce about 80 million metric tons of methane each year, accounting for about 28% of global emissions from human related activities. Therefore it is impelling animal scientists to finding solutions to mitigate methane emission from ruminants. It seems that solutions can be discussed in four topics including: nutrition (feeding, biotechnology, microbiology and management strategies. We have already published the first review article on feeding strategies. In the current review, management strategies such as emphasizing on animals - type and individual variability, reducing livestock numbers, improving animal productivity and longevity as well as pasture management; that can be leads to decreasing methane production from ruminant animal production are discussed.

  11. Use of Moringa Oleifera in Poultry and Ruminant Nutrition

    Directory of Open Access Journals (Sweden)

    Tugay Ayasan

    2015-03-01

    Full Text Available The poultry industry in the developing countries is facing some challenges, one of which is an increase in the cost of feed because of high prices of protein and energy sources. Moringa oleifera is a rich source of protein and crude fiber content. The crude protein (CP content of Moringa ranges from 7.12 to 39.17%. Negligible content of tannins and other anti-nutritive compounds and offers an alternative source of protein to ruminants and non-ruminants. Although rich in nutrients such as protein and minerals, Moringa oleifera is one of those plants that have not been studied for many years. In addition, they are also faced with the problem of the development of antibiotic resistant pathogens due to unwise and excessive use of antibiotics. In this paper, feeding studies made on the Moringa oleifera used in nutrition of poultry and ruminant species have been reviewed.

  12. Ruminant diets and the Miocene extinction of European great apes

    Science.gov (United States)

    Merceron, Gildas; Kaiser, Thomas M.; Kostopoulos, Dimitris S.; Schulz, Ellen

    2010-01-01

    The successful evolutionary radiations of European hominoids and pliopithecoids came to an end during the Late Miocene. Using ruminant diets as environmental proxies, it becomes possible to detect variations in vegetation over time with the potential to explain fluctuations in primate diversity along a NW–SE European transect. Analysis shows that ruminants had diverse diets when primate diversity reached its peak, with more grazers in eastern Europe and more browsers farther west. After the drop in primate diversity, grazers accounted for a greater part of western and central European communities. Eastwards, the converse trend was evident with more browsing ruminants. These opposite trends indicate habitat loss and an increase in environmental uniformity that may have severely favoured the decline of primate diversity. PMID:20519220

  13. Fungiculture or Termite Husbandry? The Ruminant Hypothesis

    Directory of Open Access Journals (Sweden)

    Tânia Nobre

    2012-03-01

    Full Text Available We present a new perspective for the role of Termitomyces fungi in the mutualism with fungus-growing termites. According to the predominant view, this mutualism is as an example of agriculture with termites as farmers of a domesticated fungus crop, which is used for degradation of plant-material and production of fungal biomass. However, a detailed study of the literature indicates that the termites might as well be envisioned as domesticates of the fungus. According to the “ruminant hypothesis” proposed here, termite workers, by consuming asexual fruiting bodies not only harvest asexual spores, but also lignocellulolytic enzymes, which they mix with foraged plant material and enzymes of termite and possibly bacterial origin. This mixture is the building material of the fungus garden and facilitates efficient degradation of plant material. The fungus garden thus functions as an external rumen for termites and primarily the fungi themselves benefit from their own, and gut-derived, lignocellulolytic enzymes, using the termites to efficiently mix these with their growth substrate. Only secondarily the termites benefit, when they consume the degraded, nitrogen-enriched plant-fungus mixture a second time. We propose that the details of substrate use, and the degree of complementarity and redundancy among enzymes in food processing, determine selection of horizontally transmitted fungal symbionts at the start of a colony: by testing spores on a specific, mechanically and enzymatically pre-treated growth substrate, the termite host has the opportunity to select specific fungal symbionts. Potentially, the gut-microbiota thus influence host-fungus specificity, and the selection of specific fungal strains at the start of a new colony. We argue that we need to expand the current bipartite insect-biased view of the mutualism of fungus-growing termites and include the possible role of bacteria and the benefit for the fungi to fully understand the

  14. Forage Polyphenol Oxidase and Ruminant Livestock Nutrition

    Directory of Open Access Journals (Sweden)

    Michael Richard F. Lee

    2014-12-01

    Full Text Available Polyphenol oxidase (PPO is associated with the detrimental effect of browning fruit and vegetables, however interest within PPO containing forage crops has grown since the brownng reaction was associated with reduced nitrogen (N losses in silo and the rumen. The reduction in protein breakdown in silo of red clover (high PPO forage increased the quality of protein, improving N-use efficiency (NUE when fed to ruminants. A further benefit of red clover silage feeding is a significant reduction in lipolysis in silo and an increase in the deposition of beneficial C18 polyunsaturated fatty acid (PUFA in animal products, which has also been linked to PPO activity. PPOs protection of plant protein and glycerol based-PUFA in silo is related to the deactivation of plant proteases and lipases. This deactivation occurs through PPO catalysing the conversion of diphenols to quinones which bind with cellular nucleophiles such as protein reforming a protein-bound phenol (PBP. If the protein is an enzyme the complexing denatures the enzyme. However, PPO is inactive in the anaerobic rumen and therefore any subsequent protection of plant protein and glycerol based-PUFA in the rumen must be as a result of events that occurred to the forage pre-ingestion. Reduced activity of plant proteases and lipases would have little effect on NUE and glycerol based-PUFA in the rumen due to the greater concentration of rumen microbial proteases and lipases. The mechanism for PPOs protection of plant protein in the rumen is a consequence of complexing plant protein, rather than protease deactivation per se. These complexed proteins reduce protein digestibility in the rumen and subsequently increase un-degraded dietary protein flow to the small intestine. The mechanism for protecting glycerol-based PUFA has yet to be fully elucidated but may be associated with entrapment within PBP reducing access to microbial lipases or differences in rumen digestion kinetics of red clover.

  15. Amino Acid and Peptide Utilization Profiles of the Fluoroacetate-Degrading Bacterium Synergistetes Strain MFA1 Under Varying Conditions.

    Science.gov (United States)

    Leong, Lex E X; Denman, Stuart E; Hugenholtz, Philip; McSweeney, Christopher S

    2016-02-01

    Synergistetes strain MFA1 is an asaccharolytic ruminal bacterium isolated based on its ability to degrade fluoroacetate, a plant toxin. The amino acid and peptide requirements of the bacterium were investigated under different culturing conditions. The growth of strain MFA1 and its fluoroacetate degradation rate were enhanced by peptide-rich protein hydrolysates (tryptone and yeast extract) compared to casamino acid, an amino acid-rich protein hydrolysate. Complete utilization and preference for arginine, asparagine, glutamate, glycine, and histidine as free amino acids from yeast extract were observed, while the utilization of serine, threonine, and lysine in free form and peptide-bound glutamate was stimulated during growth on fluoroacetate. A predominant peptide in yeast extract preferentially utilized by strain MFA1 was partially characterized by high-liquid performance chromatography-mass spectrometry as a hepta-glutamate oligopeptide. Similar utilization profiles of amino acids were observed between the co-culture of strain MFA1 with Methanobrevibacter smithii without fluoroacetate and pure strain MFA1 culture with fluoroacetate. This suggests that growth of strain MFA1 could be enhanced by a reduction of hydrogen partial pressure as a result of hydrogen removal by a methanogen or reduction of fluoroacetate.

  16. Functional and modular analyses of diverse endoglucanases from Ruminococcus albus 8, a specialist plant cell wall degrading bacterium.

    Science.gov (United States)

    Iakiviak, Michael; Devendran, Saravanan; Skorupski, Anna; Moon, Young Hwan; Mackie, Roderick I; Cann, Isaac

    2016-01-01

    Ruminococcus albus 8 is a specialist plant cell wall degrading ruminal bacterium capable of utilizing hemicellulose and cellulose. Cellulose degradation requires a suite of enzymes including endoglucanases, exoglucanases, and β-glucosidases. The enzymes employed by R. albus 8 in degrading cellulose are yet to be completely elucidated. Through bioinformatic analysis of a draft genome sequence of R. albus 8, seventeen putatively cellulolytic genes were identified. The genes were heterologously expressed in E. coli, and purified to near homogeneity. On biochemical analysis with cellulosic substrates, seven of the gene products (Ra0185, Ra0259, Ra0325, Ra0903, Ra1831, Ra2461, and Ra2535) were identified as endoglucanases, releasing predominantly cellobiose and cellotriose. Each of the R. albus 8 endoglucanases, except for Ra0259 and Ra0325, bound to the model crystalline cellulose Avicel, confirming functional carbohydrate binding modules (CBMs). The polypeptides for Ra1831 and Ra2535 were found to contain distantly related homologs of CBM65. Mutational analysis of residues within the CBM65 of Ra1831 identified key residues required for binding. Phylogenetic analysis of the endoglucanases revealed three distinct subfamilies of glycoside hydrolase family 5 (GH5). Our results demonstrate that this fibrolytic bacterium uses diverse GH5 catalytic domains appended with different CBMs, including novel forms of CBM65, to degrade cellulose. PMID:27439730

  17. Fast evolution of growth hormone receptor in primates and ruminants

    Institute of Scientific and Technical Information of China (English)

    HOU Zhenfang; LI Ying; ZHANG Yaping

    2005-01-01

    Pituitary growth hormone (GH) evolves very slowly in most of mammals, but the evolutionary rates appear to have increased markedly on two occasions during the evolution of primates and ruminants. To investigate the evolutionary pattern of growth hormone receptor (GHR), we sequenced the extracellular domain of GHR genes from four primate species. Our results suggested that GHR in mammal also shows an episodic evolutionary pattern, which is consistent with that observed in pituitary growth hormone. Further analysis suggested that this pattern of rapid evolution observed in primates and ruminants is likely the result of coevolution between pituitary growth hormone and its receptor.

  18. Lowering ruminally degradable protein in lacatating dairy cow diets

    OpenAIRE

    Cyriac, Joby

    2009-01-01

    Lactating dairy cows convert 25 to 35% of intake N to milk N, and a part of the remaining N ends up in the environment, causing pollution. Dairy cows absorb amino acids available in the small intestine supplied mainly by digestion of microbial protein and ruminally undegraded feed protein (RUP). Ruminally degradable feed protein (RDP) is the major supplier of N for microbial protein synthesis. Most of the excess RDP will be degraded to ammonia and eliminated as urea in urine. Thus, avoiding e...

  19. Ruminant and industrially produced trans fatty acids: health aspects

    OpenAIRE

    Stender, Steen; Astrup, Arne; Dyerberg, Jørn

    2008-01-01

    Fatty acids of trans configuration in our food come from two different sources - industrially produced partially hydrogenated fat (IP-TFA) used in frying oils, margarines, spreads, and in bakery products, and from ruminant fat in dairy and meat products (RP-TFA). The first source may contain up to 60 % of the fatty acids in trans form, compared to the content in ruminant fat which generally not exceed 6%. In Western Europe, including Scandinavia, the average daily intake of IP-TFA has decreas...

  20. Use of Copra Meal in Poultry and Ruminant Nutrition

    Directory of Open Access Journals (Sweden)

    Tugay Ayasan

    2016-02-01

    Full Text Available Copra meal (CM is an important feed ingredient and the by-product of the oil extraction from dried coconut kernels. This product, although copra meal has a moderate protein content (15-25%; because of a high cellulose content (11.63-16.00% and some limiting amino acids (particularly lysine and methionine, limits its use as a basic source of protein in poultry due to insufficient. Copra meals are more suitable common supplements as both an energy and protein source for ruminants. In this paper, nutritional researches performed with the copra meal usage on poultry and ruminant species have been reviewed.

  1. Potential of wet blue leather waste for ruminant feeding

    OpenAIRE

    Rodrigo Carvalho Silva; João Chrysostomo de Resende Júnior; Ronaldo Francisco de Lima; Raimundo Vicente de Sousa; Luiz Carlos Alves de Oliveira; João Luiz Pratti Daniel; Anselmo de Oliveira Moreira

    2012-01-01

    The objective of this study was to find an alternative to minimize environmental contamination by leather waste using it as ruminant feed. The wet blue leather wastes (WB) without chrome extraction were compared with the leather wastes in which the chrome was extracted (CE). Both materials had 99.7% of dry matter (DM), but the crude protein level was higher (90.4%) in CE than in WB (74.3%). In situ effective ruminal degradability of DM was 59.7% and it was 63.1% for CP in CE. The WB did not s...

  2. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    Science.gov (United States)

    Arslan, C.; Sattar, A.; Ji, C.; Sattar, S.; Yousaf, K.; Hashim, S.

    2015-11-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste. The maximum cumulative bio-hydrogen production of 650 mL was obtained from noodle waste under thermophilic temperature condition. Most of the production was observed during the first 48 h of incubation, which continued until 72 h of incubation. The decline in pH during this interval was 4.3 and 4.4 from a starting value of 7 under mesophilic and thermophilic conditions, respectively. Most of the glucose consumption was also observed during 72 h of incubation and the maximum consumption was observed during the first 24 h, which was the same duration where the maximum pH drop occurred. The maximum hydrogen yields of 82.47 mL VS-1, 131.38 mL COD-1, and 44.90 mL glucose-1 were obtained from thermophilic food waste, thermophilic noodle waste and mesophilic rice waste, respectively. The production of volatile fatty acids increased with an increase in time and temperature in food waste and noodle waste reactors whereas they decreased with temperature in rice waste reactors. The statistical modelling returned good results with high values of coefficient of determination (R2) for each waste type and 3-D response surface plots developed by using models developed. These plots developed a better understanding regarding the impact of temperature and incubation time on bio-hydrogen production trend, glucose consumption during incubation and volatile fatty acids production.

  3. Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process.

    Science.gov (United States)

    Yoshida, Akihito; Nishimura, Taku; Kawaguchi, Hideo; Inui, Masayuki; Yukawa, Hideaki

    2007-03-01

    A three-step biohydrogen production process characterized by efficient anaerobic induction of the formate hydrogen lyase (FHL) of aerobically grown Escherichia coli was established. Using E. coli strain SR13 (fhlA (++), DeltahycA) at a cell density of 8.2 g/l medium in this process, a specific hydrogen productivity (28.0 +/- 5.0 mmol h(-1) g(-1) dry cell) of one order of magnitude lower than we previously reported was realized after 8 h of anaerobic incubation. The reduced productivity was attributed partly to the inhibitory effects of accumulated metabolites on FHL induction. To avoid this inhibition, strain SR14 (SR13 DeltaldhA DeltafrdBC) was constructed and used to the effect that specific hydrogen productivity increased 1.3-fold to 37.4 +/- 6.9 mmol h(-1) g(-1). Furthermore, a maximum hydrogen production rate of 144.2 mmol h(-1) g(-1) was realized when a metabolite excretion system that achieved a dilution rate of 2.0 h(-1) was implemented. These results demonstrate that by avoiding anaerobic cultivation altogether, more economical harvesting of hydrogen-producing cells for use in our biohydrogen process was made possible.

  4. Impact of organic loading rate on biohydrogen production in an up-flow anaerobic packed bed reactor (UAnPBR).

    Science.gov (United States)

    Ferraz, Antônio Djalma Nunes; Zaiat, Marcelo; Gupta, Medhavi; Elbeshbishy, Elsayed; Hafez, Hisham; Nakhla, George

    2014-07-01

    This study assesses the impact of organic loading rate on biohydrogen production from glucose in an up-flow anaerobic packed bed reactor (UAnPBR). Two mesophilic UAPBRs (UAnPBR1 and 2) were tested at organic loading rates (OLRs) ranging from 6.5 to 51.4 g COD L(-1)d(-1). To overcome biomass washout, design modifications were made in the UAnPBR2 to include a settling zone to capture the detached biomass. The design modifications in UAnPBR2 increased the average hydrogen yield from 0.98 to 2.0 mol-H2 mol(-1)-glucose at an OLR of 25.7 g COD L(-1)d(-1). Although, a maximum hydrogen production rate of 23.4 ± 0.9 L H2 L(-1)d(-1) was achieved in the UAnPBR2 at an OLR of 51.4 g COD L(-1)d(-1), the hydrogen yield dropped by 50% to around 1 mol-H2 mol(-1)-glucose. The microbiological analysis (PCR/DGGE) showed that the biohydrogen production was due to the presence of the hydrogen and volatile acid producers such as Clostridium beijerinckii, Clostridium butyricum, Megasphaera elsdenii and Propionispira arboris.

  5. A biorefinery from Nannochloropsis sp. microalga--extraction of oils and pigments. Production of biohydrogen from the leftover biomass.

    Science.gov (United States)

    Nobre, B P; Villalobos, F; Barragán, B E; Oliveira, A C; Batista, A P; Marques, P A S S; Mendes, R L; Sovová, H; Palavra, A F; Gouveia, L

    2013-05-01

    The microalga Nannochloropsis sp. was used in this study, in a biorefinery context, as biomass feedstock for the production of fatty acids for biodiesel, biohydrogen and high added-value compounds. The microalgal biomass, which has a high lipid and pigment content (mainly carotenoids), was submitted to supercritical CO2 extraction. The temperature, pressure and solvent flow-rate were evaluated to check their effect on the extraction yield. The best operational conditions to extract 33 g lipids/100 g dry biomass were found to be at 40 °C, 300 bar and a CO2 flow-rate of 0.62 g/min. The effect of adding a co-solvent (ethanol) was also studied. When supercritical CO2 doped with 20% (w/w) ethanol was used, it was possible to extract 45 g lipids/100 g dry biomass of lipids and recover 70% of the pigments. Furthermore, the remaining biomass after extraction was effectively used as feedstock to produce biohydrogen through dark fermentation by Enterobacter aerogenes resulting in a hydrogen production yield of 60.6 mL/g dry biomass.

  6. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor.

    Science.gov (United States)

    Jitrwung, Rujira; Yargeau, Viviane

    2015-05-11

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  7. A novel anaerobic two-phase system for biohydrogen production and in situ extraction of organic acid byproducts.

    Science.gov (United States)

    Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Le Bihan, Yann; Buelna, Gerardo

    2015-06-01

    Owing to CO2-free emission, hydrogen is considered as a potential green alternative of fossil fuels. Water is the major emission of hydrogen combustion process and gravimetric energy density of hydrogen is nearly three times more than that of gasoline and diesel fuel. Biological hydrogen production, therefore, has commercial significance; especially, when it is produced from low-cost industrial waste-based feedstock. Light independent anaerobic fermentation is simple and mostly studied method of biohydrogen production. During hydrogen production by this method, a range of organic acid byproducts are produced. Accumulation of these byproducts is inhibitory for hydrogen production as it may result in process termination due to sharp decrease in medium pH or by possible metabolic shift. For the first time, therefore, a two-phase anaerobic bioreactor system has been reported for biohydrogen production which involves in situ extraction of different organic acids. Among different solvents, based on biocompatibility oleyl alcohol has been chosen as the organic phase of the two-phase system. An organic:aqueous phase ratio of 1:50 has been found to be optimum for hydrogen production. The strategy was capable of increasing the hydrogen production from 1.48 to 11.65 mmol/L-medium.

  8. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    Directory of Open Access Journals (Sweden)

    Rujira Jitrwung

    2015-05-01

    Full Text Available Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR. Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  9. Effects of dilution ratio and Fe° dosing on biohydrogen production from dewatered sludge by hydrothermal pretreatment.

    Science.gov (United States)

    Yu, Li; Jiang, Wentian; Yu, Yang; Sun, Chenglin

    2014-01-01

    Biohydrogen fermentation of dewatered sludge (DS) with sewage at ratios from 4:1 to 1:20 was investigated. Hydrothermal pretreatment of the sludge solution was performed to accelerate the organic release from the solid phase. The maximum hydrogen yield of 26.3 ± 0.5 mL H₂/g volatile solid (VS) was obtained at a 1:10 ratio. Although addition of zero valent iron (ZVI) to anaerobic system was not new, the study of dosing it to enhance the biohydrogen yield might be the first attempt. While Fe° plate slightly affected the hydrogen yield, Fe° powder improved the amount of hydrogen by 16% and shortened the lag time by 36%. The state of bacteria in the reactor added with ZVI powder was changed and the key enzyme activity was improved as well. Correspondingly, the mechanism of ZVI in accelerating the biofermentation process was also proposed. Our research provides a solution for the centralized treatment of DS in a city.

  10. Isolation of a Bacterium Strain Degraded Agar

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    One in 58 strains of bacteria isolated from the compost showed clear colonies after a few days of growth on the plates containing medium made of only agar and water.Water suspension contained only agar (2 and 8g·L -1 ) with two controls (normal saline,LB medium) was inoculated with the bacterium BR5-1 to see whether there was an increasement of the alive bacteria concentration after 48 h of the growth.The results showed that there was a significant rising of the alive bacteria concentration in the agar susp...

  11. Swimming Efficiency of Bacterium Escherichia Coli

    CERN Document Server

    Chattopadhyay, S; Wu, X L; Yeung, C; Chattopadhyay, Suddhashil; Moldovan, Radu; Yeung, Chuck

    2005-01-01

    We use in vivo measurements of swimming bacteria in an optical trap to determine fundamental properties of bacterial propulsion. In particular, we determine the propulsion matrix, which relates the angular velocity of the flagellum to the torques and forces propelling the bacterium. From the propulsion matrix dynamical properties such as forces, torques, swimming speed and power can be obtained from measurements of the angular velocity of the motor. We find significant heterogeneities among different individuals even though all bacteria started from a single colony. The propulsive efficiency, defined as the ratio of the propulsive power output to the rotary power input provided by the motors, is found to be 0.2%.

  12. Dual uses of microalgal biomass: An integrative approach for biohydrogen and biodiesel production

    International Nuclear Information System (INIS)

    Highlights: • Chlorella sp. NBRI029 and Scenedesmus sp. NBRI012 shows high biomass productivity. • Scenedesmus sp. NBRI012 shows maximum H2 evolution in 6th day of fermentation. • Residual biomass after H2 production contains high lipid content. • Lipid extracted from the residual biomass fulfills various biodiesel properties. - Abstract: Dual application of biomass for biohydrogen and biodiesel production could be considered a feasible option for economic and sustainable energy production from microalgae. In this study, after a large screening of fresh water microalgal isolates, Scenedesmus sp. NBRI012 and Chlorella sp. NBRI029 have exhibited high biomass (1.31 ± 0.11 and 2.62 ± 0.13 g/L respectively) and lipid (244.44 ± 12.3 and 587.38 ± 20.2 mg/L respectively) yield with an organic carbon (acetate) source. Scenedesmus sp. NBRI012 has shown the highest H2 (maximum evolution of 17.72% v/v H2 of total gases) production; it produced H2 continuously for seven days in sulfur-deprived TAP media. Sulfur deprivation during the H2 production was found to increase the lipid content (410.03 ± 18.5 mg/L) of the residual biomass. Fatty acid profile of the lipid extracted from the residual biomass of Scenedesmus sp. NBRI012 has showed abundance of fatty acids with a carbon chain length of C16 and C18. Cetane number, iodine value, and saponification value of biodiesel were found suitable according to the range given by the Indian standard (IS 15607), Brazilian National Petroleum Agency (ANP255) and the European biodiesel standard EN14214

  13. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum

    Science.gov (United States)

    Dan Jiang; Fang, Zhen; Chin, Siew-Xian; Tian, Xiao-Fei; Su, Tong-Chao

    2016-06-01

    Biohydrogen production has received widespread attention from researchers in industry and academic fields. Response surface methodology (RSM) was applied to evaluate the effects of several key variables in anaerobic fermentation of glucose with Clostridium butyrium, and achieved the highest production rate and yield of hydrogen. Highest H2 yield of 2.02 mol H2/mol-glucose was achieved from 24 h bottle fermentation of glucose at 35 °C, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O, which was very different from that for cell growth. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hull hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7–64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen.

  14. Integration of acidogenic and methanogenic processes for simultaneous production of biohydrogen and methane from wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Mohan, S.; Mohanakrishna, G.; Sarma, P.N. [Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Hyderabad 500 007 (India)

    2008-05-15

    Feasibility of integrating acidogenic and methanogenic processes for simultaneous production of biohydrogen (H{sub 2}) and methane (CH{sub 4}) was studied in two separate biofilm reactors from wastewater treatment. Acidogenic bioreactor (acidogenic sequencing batch biofilm reactor, AcSBBR) was operated with designed synthetic wastewater [organic loading rate (OLR) 4.75 kg COD/m{sup 3}-day] under acidophilic conditions (pH 6.0) using selectively enriched acidogenic mixed consortia. The resultant outlet from AcSBBR composed of fermentative soluble intermediates (with residual carbon source), was used as feed for subsequent methanogenic bioreactor (methanogenic/anaerobic sequencing batch biofilm reactor, AnSBBR, pH 7.0) to generate additional biogas (CH{sub 4}) utilizing residual organic composition employing anaerobic mixed consortia. During the stabilized phase of operation (after 60 days) AcSBBR showed H{sub 2} production of 16.91 mmol/day in association with COD removal efficiency of 36.56% (SDR{sub A} - 1.736 kg COD/m{sup 3}-day). AnSBBR showed additional COD removal efficiency of 54.44% (SDR{sub M} - 1.071 kg COD/m{sup 3}-day) along with CH{sub 4} generation. Integration of the acidogenic and methanogenic processes enhanced substrate degradation efficiency (SDR{sub T} - 4.01 kg COD/m{sup 3}-day) along with generation of both H{sub 2} and CH{sub 4} indicating sustainability of the process. (author)

  15. Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Kyu-Jung; Choi, Mi-Jin; Kim, Kyoung-Yeol; Ajayi, F.F.; Chang, In-Seop; Kim, In S. [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2010-12-15

    The microbial electrolysis cell (MEC) is a promising technology for producing biohydrogen at greater yield than with conventional technology. However, during a run of an acetate-fed MEC at an applied voltage of 0.5 V, substantial amounts of substrate are consumed in undesirable methanogenesis. Therefore, in order to suppress the methanogens specifically without adversely affecting exoelectrogens, this study examined the effects of sudden changes in pH, temperature and air-exposure, as well as chemical inhibitors, such as 2-bromoethanesulfonate (BES) and lumazine on methanogenesis. An abrupt decrease in temperature and pH from 30 to 20 C and 7 to 4.9, respectively, had no effect on methanogenesis. Exposing the anode biofilm to air was also ineffective in inhibiting specific methanogens because both methanogens and exoelectrogens were damaged by oxygen. However, an injection of BES (286 {mu}M) reduced the methanogenic electron losses substantially from 36.4 {+-} 4.4 (= 145.8 {+-} 17.4 {mu}mol-CH{sub 4}) to 2.5 {+-} 0.3% (= 10.2 {+-} 1.2 {mu}mol-CH{sub 4}), which in turn improved the overall hydrogen efficiency (acetate to H{sub 2}) from 56.1 {+-} 5.7 to 80.1 {+-} 6.5% (= 3.2 mol-H{sub 2}/mol-acetate). Once after inhibited, the inhibitory influence was retained even after 10 batch cycles in the absence of further BES addition. In contrast to BES, methanogenesis was unaffected by lumazine, even at much higher concentrations. The installation of a Nafion membrane resulted in the production of high purity hydrogen at the cathode but hindered proton migration, which caused a serious pH imbalance between the anode and cathode compartments. (author)

  16. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum.

    Science.gov (United States)

    Dan Jiang; Fang, Zhen; Chin, Siew-Xian; Tian, Xiao-Fei; Su, Tong-Chao

    2016-06-02

    Biohydrogen production has received widespread attention from researchers in industry and academic fields. Response surface methodology (RSM) was applied to evaluate the effects of several key variables in anaerobic fermentation of glucose with Clostridium butyrium, and achieved the highest production rate and yield of hydrogen. Highest H2 yield of 2.02 mol H2/mol-glucose was achieved from 24 h bottle fermentation of glucose at 35 °C, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O, which was very different from that for cell growth. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hull hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7-64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen.

  17. BIOHYDROGEN FROM CHEESE WHEY TREATMENT IN AN AnSBBR: ACHIEVING PROCESS STABILITY

    Directory of Open Access Journals (Sweden)

    D. M. F. Lima

    2015-06-01

    Full Text Available AbstractAn AnSBBR (anaerobic sequencing batch reactor containing biomass immobilized on an inert support with liquid phase recirculation, containing a 3.5 L working volume, treated 1.5 L of cheese whey wastewater in 3 and 4 h cycles at 30 ºC to produce biohydrogen. From startup the bioreactor presented process instability. To overcome this problem the following measures were taken, however without success: adaptation of the biomass with uncontaminated easily degradable substrates, pH control at very low levels, and a different form of inoculation (natural fermentation of the feed medium. The problem was solved by cooling the feed medium to 4 ºC to prevent acidification in the storage container, by eliminating nutrient supplementation to prevent possible formation of H2S by sulfate-reducing bacteria and by periodic washing of the support material to improve the food/microorganism ratio. Hence, stable hydrogen production could be achieved with minimal presence of methane (36% H2; 62% CO2; 2% CH4 and the AnSBBR fed with cheese whey (influent concentration of 4070 mgCOD.L-1 and 3240 mgCarbohydrate.L-1 and applied volumetric organic loading of 14.6 gCOD.L-1.d-1 presented improved productivity and yield indicators compared to pure lactose and other reactor configurations, reaching values of 420 NmLH2.L-1.d-1 and 0.60 molH2.molCarbohydrate-1 in the steady-state phase (conversions of carbohydrates and COD were 98% and 30%, respectively.

  18. The Role of Rumination in the Coexistence of Distress and Posttraumatic Growth among Bereaved Japanese University Students

    Science.gov (United States)

    Taku, Kanako; Calhoun, Lawrence G.; Cann, Arnie; Tedeschi, Richard G.

    2008-01-01

    This study examined the relationships between rumination, distress and posttraumatic growth (PTG). Seventy-one bereaved Japanese university students completed the PTG Inventory, the Impact of Event Scale-Revised, and a rumination scale. Three models, with variables including intrusive rumination, deliberate rumination, distress, and PTG, were…

  19. Biodegradation of heavy oils by halophilic bacterium

    Institute of Scientific and Technical Information of China (English)

    Ruixia Hao; Anhuai Lu

    2009-01-01

    A halophilic bacterial strain TM-1 was isolated from the reservoir of the Shengli oil field in East China. Strain TM-1, which was found to be able to degrade crude oils, is a gram-positive non-motile bacterium with a coccus shape that can grow at temperatures of up to 58 ℃ and in 18% NaCl solution. Depending on the culture conditions, the organism may occur in tetrads. In addition, strain TM-1 pro-duced acid from glucose without gas formation and was catalase-negative. Furthermore, strain TM-I was found to be a facultative aer-obe capable of growth under anaerobic conditions. Moreover, it produced butylated hydroxytoluene, 1,2-benzenedicarboxylic acid-bis ester and dibutyl phthalate and could use different organic substrates. Laboratory studies indicated that strain TM-1 affected different heavy oils by degrading various components and by changing the chemical properties of the oils. In addition, growth of the bacterium in heavy oils resulted in the loss of aromatic hydrocarbons, resins and asphaltenes, and enrichment with light hydrocarbons and an overall redistribution of these hydrocarbons.

  20. Worry and rumination : underlying processes and transdiagnostic characteristics

    NARCIS (Netherlands)

    Drost, Jolijn

    2014-01-01

    Worry and rumination are cognitive processes that have been proposed to constitute a driving force across many psychological disorders, emotional disorders in particular. The two concepts are often referred to by the overarching term repetitive negative thinking (RNT), however whether they are indee

  1. Depressed mood mediates the relationship between rumination and intrusions

    NARCIS (Netherlands)

    Smets, Jorien; Luyckx, Koen; Wessel, Ineke; Raes, Filip

    2012-01-01

    Research suggests that rumination is a causal factor for intrusive memories. These are disturbing autobiographical memories that pop into one's mind involuntarily, spontaneously, and repetitively. A three-wave longitudinal study was conducted to replicate this finding and to test whether one route v

  2. Perfectionism, Rumination, Worry, and Depressive Symptoms in Early Adolescents

    Science.gov (United States)

    Flett, Gordon L.; Coulter, Lisa-Marie; Hewitt, Paul L.; Nepon, Taryn

    2011-01-01

    The present study examined trait perfectionism, automatic perfectionistic thoughts, rumination, worry, and depressive symptoms in early adolescents. A group of 81 elementary school students in Grades 7 and 8 completed 5 questionnaires: the Child-Adolescent Perfectionism Scale, the Perfectionism Cognitions Inventory, the Children's Response Styles…

  3. Integrating banana and ruminant production in the French West Indies.

    Science.gov (United States)

    Archimède, Harry; Gourdine, Jean Luc; Fanchone, Audrey; Tournebize, Regis; Bassien-Capsa, Mylène; González-García, Eliel

    2012-08-01

    Using a mechanistic model, we compared five alternative farming systems with the purpose of transforming monoculture (MON) banana farms into mixed farming systems (MFS) with ruminants feeding banana by-products (leaves, pseudostems and nonmarketable fruits) and forage from the fallow land. The paper presents the main structure of the model (land surface changes, available biomass for animals, stocking rates, productive or reproductive indicators), and impact assessment (change in farm productivity) is discussed. Five MFS with typical local ruminant production systems were used to compare MON to the strategies using forage from fallow and/or integrating Creole cattle (CC), Creole goats (CG) or Martinik sheep (MS) into banana farming. One hectare MON shifted into an MFS allows a stocking rate of 1,184, 285, and 418 kg of live weight per hectare for CC, CG and MS, respectively. Banana by-products seem to be better valorized by the CC scenario. However, parameters such as length of the cycle, local prices for cattle, goat and sheep meat, work time and farmer's skills in ruminant management may have been taken into account by the farmer when choosing the ruminant species to rear.

  4. Recent advances in modeling nutrient utilization in ruminants1

    NARCIS (Netherlands)

    Kebreab, E.; Dijkstra, J.; Bannink, A.; France, J.

    2009-01-01

    Mathematical modeling techniques have been applied to study various aspects of the ruminant, such as rumen function, post-absorptive metabolism and product composition. This review focuses on advances made in modeling rumen fermentation and its associated rumen disorders, and energy and nutrient uti

  5. Productivity, digestion, and health responses to hindgut acidosis in ruminants

    Science.gov (United States)

    The role of large intestinal or hindgut fermentation in ruminant nutrition has received little research attention in recent decades. Though the contribution of the hindgut to total tract nutrient digestion is substantially less than the contribution from the rumen, hindgut fermentation impacts anima...

  6. Estimation of indigestible NDF in feedstuffs for ruminants

    DEFF Research Database (Denmark)

    Krämer, Monika; Weisbjerg, Martin Riis; Lund, Peter

    2010-01-01

    to be a suitable parameter in prediction models of energy and protein values in feedstuffs for ruminants, as the NorFor system. Therefore, there is a need to develop laboratory methods, applicable in practice, that determine the INDF content in feedstuffs. The present paper aims at presenting correlations...

  7. Prevalence of BVD infection in ruminants in Serbia

    Directory of Open Access Journals (Sweden)

    Vladimir Kurćubić

    2015-03-01

    Full Text Available The aim of this article is to provide a historical summary of worldwide Bovine Viral Diarrhoea Virus (BVDV prevalence data through a number of studies, review the current knowledge and published data on the presence and prevalence of BVDV infection among ruminants in Serbia, and consequently open questions as to the possibilities for the implementation of the control programme in Serbia.

  8. Molecular evolution of genes encoding ribonucleases in ruminant species

    NARCIS (Netherlands)

    Confalone, E; Beintema, JJ; Sasso, MP; Carsana, A; Palmieri, M; Vento, MT; Furia, A

    1995-01-01

    Phylogenetic analysis, based on the primary structures of mammalian pancreatic-type ribonucleases, indicated that gene duplication events, which occurred during the evolution of ancestral ruminants, gave rise to the three paralogous enzymes present in the bovine species. Herein we report data that d

  9. Technical note: Ruminal cannulation technique in young Holstein calves:

    DEFF Research Database (Denmark)

    Kristensen, Niels Bastian; Engbæk, Marie; Vestergaard, Mogens;

    2010-01-01

    grass silage and sodium hydroxide-treated wheat. Ruminal fluid was collected from cannulated calves once weekly for 3 consecutive weeks. All calves were euthanized at 43 ± 3 d of age. No apparent adverse effects of cannulation were observed. Feed intake, BW gain, and gross anatomy...

  10. 9 CFR 93.429 - Ruminants for immediate slaughter.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Ruminants for immediate slaughter. 93.429 Section 93.429 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EXPORTATION AND IMPORTATION OF ANIMALS (INCLUDING POULTRY) AND ANIMAL...

  11. Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria.

    OpenAIRE

    Shi, Y; Weimer, P.J.

    1996-01-01

    Growth of the ruminal bacteria Fibrobacter succinogenes S85, Ruminococcus flavefaciens FD-1, and R. albus 7 followed Monod kinetics with respect to concentrations of individual pure cellodextrins (cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose). Under the conditions tested, R. flavefaciens FD-1 possesses the greatest capacity to compete for low concentrations of these cellodextrins.

  12. Parasitic infections in wild ruminants and wild boar

    Directory of Open Access Journals (Sweden)

    Ilić Tamara

    2011-01-01

    Full Text Available Wild ruminants and wild boar belong to the order Artiodactyla, the suborders Ruminantia and Nonruminantia and are classified as wild animals for big game hunting, whose breeding presents a very important branch of the hunting economy. Diseases caused by protozoa are rarely found in wild ruminants in nature. Causes of coccidiosis, cryptosporidiosis, toxoplasmosis, sarcocystiosis, giardiasis, babesiosis, and theileriosis have been diagnosed in deer. The most significant helminthoses in wild ruminants are fasciosis, dicrocoeliasis, paramphistomosis, fascioloidosis, cysticercosis, anoplocephalidosis, coenurosis, echinococcosis, pulmonary strongyloidiasis, parasitic gastroenteritis, strongyloidiasis and trichuriasis, with certain differences in the extent of prevalence of infection with certain species. The most frequent ectoparasitoses in wild deer and doe are diseases caused by ticks, mites, scabies mites, and hypoderma. The most represented endoparasitoses in wild boar throughout the world are coccidiosis, balantidiasis, metastrongyloidiasis, verminous gastritis, ascariasis, macracanthorhynchosis, trichinelosis, trichuriasis, cystecercosis, echinococcosis, and less frequently, there are also fasciolosis and dicrocoeliasis. The predominant ectoparasitoses in wild boar are ticks and scabies mites. Knowledge of the etiology and epizootiology of parasitic infections in wild ruminants and wild boar is of extreme importance for the process of promoting the health protection system for animals and humans, in particular when taking into account the biological and ecological hazard posed by zoonotic infections.

  13. Toward a new theory of feed intake regulation in ruminants.

    NARCIS (Netherlands)

    Ketelaars, J.J.M.J.; Tolkamp, B.J.

    1991-01-01

    Part I of this thesis contains a critical appraisal of the commonly accepted theory with regard to feed intake regulation in ruminants and the presentation of a new theory. This new theory assumes that feed consumption creates both benefits to the animal (in a non-reproducing animal the intake of ne

  14. Secretory ribonucleases in the primitive ruminant chevrotain (Tragulus javanicus)

    NARCIS (Netherlands)

    Breukelman, HJ; Jekel, PA; Dubois, JYF; Mulder, PPMFA; Warmels, HW; Beintema, JJ

    2001-01-01

    Phylogenetic analyses of secretory ribonucleases or RNases 1 have shown that gene duplication events, giving rise to three paralogous genes (pancreatic, seminal and brain RNase), occurred during the evolution of ancestral ruminants. A higher number of paralogous sequences are present in chevrotain (

  15. Is rumination after bereavement linked with loss avoidance? Evidence from eye-tracking.

    Directory of Open Access Journals (Sweden)

    Maarten C Eisma

    Full Text Available Rumination is a risk factor in adjustment to bereavement. It is associated with and predicts psychopathology after loss. Yet, the function of rumination in bereavement remains unclear. In the past, researchers often assumed rumination to be a maladaptive confrontation process. However, based on cognitive avoidance theories of worry in generalised anxiety disorder (GAD and rumination after post-traumatic stress disorder (PTSD, others have suggested that rumination may serve to avoid painful aspects of the loss, thereby contributing to complicated grief. To examine if rumination is linked with loss avoidance, an eye-tracking study was conducted with 54 bereaved individuals (27 high and 27 low ruminators. On 24 trials, participants looked for 10 seconds at a picture of the deceased and a picture of a stranger, randomly combined with negative, neutral or loss-related words. High ruminators were expected to show initial vigilance followed by subsequent disengagement for loss stimuli (i.e., picture deceased with a loss word in the first 1500 ms. Additionally, we expected high ruminators to avoid these loss stimuli and to show attentional preference for non-loss-related negative stimuli (i.e., picture stranger with a negative word on longer exposure durations (1500-10000 ms. Contrary to expectations, we found no evidence for an effect of rumination on vigilance and disengagement of loss stimuli in the first 1500 ms. However, in the 1500-10000 ms interval, high ruminators showed shorter gaze times for loss stimuli and longer gaze times for negative (and neutral non-loss-related stimuli, even when controlling for depression and complicated grief symptom levels. Effects of rumination on average fixation times mirrored these findings. This suggests that rumination and loss avoidance are closely associated. A potential clinical implication is that rumination and grief complications after bereavement may be reduced through the use of exposure and acceptance

  16. Blood Parameters Modification at Different Ruminal Acidosis Conditions

    Directory of Open Access Journals (Sweden)

    Roberta De Nardi

    2013-09-01

    Full Text Available This study evaluated the reliability of various blood parameters to assess the ruminal acidosis in cattle. Six whole heifers were fed three experimental rations in a 3 x 3 Latin square design. The diets had different starch levels: high (HS, medium (MS or low (CT. Ruminal pH values were continuously measured using wireless sensors. To evaluate the severity of ruminal acidosis, the amount of time per day that the pH was below 5.8, 5.5 and 5.0 was recorded. Blood samples were analyzed for complete blood count, venous blood gas and biochemical profile at 8:00 and 12:00 h. The data were analyzed according to a mixed model. Feeding on CT, MS and HS led to significant differences in DMI (7.7 vs. 6.9 vs. 5.1 kg/d; P < 0.01 which modified the amount of time per day that the pH was below 5.0 (0 vs. 12 vs. 92 min; P < 0.10. Feeding MS and HS diets led to inflammation as indicated by the significant increment of white blood cells when compared to the CT ones and to blood concentration due to the osmotic pressure at ruminal level. Furthermore a significant decrease of bicarbonate level, CO2 partial pressure and oxyhemoglobin was observed as consequence of the activation of metabolic processes aimed to prevent metabolic acidosis. No differences were observed on blood sampling time, suggesting that one daily blood sample was enough to evaluate the metabolic variations related to ruminal acidosis.

  17. Spillover of Peste des Petits Ruminants Virus from Domestic to Wild Ruminants in the Serengeti Ecosystem, Tanzania.

    Science.gov (United States)

    Mahapatra, Mana; Sayalel, Kuya; Muniraju, Murali; Eblate, Ernest; Fyumagwa, Robert; Shilinde, Ligge; Mdaki, Maulid; Keyyu, Julius; Parida, Satya; Kock, Richard

    2015-12-01

    We tested wildlife inhabiting areas near domestic livestock, pastures, and water sources in the Ngorongoro district in the Serengeti ecosystem of northern Tanzania and found 63% seropositivity for peste des petits ruminants virus. Sequencing of the viral genome from sick sheep in the area confirmed lineage II virus circulation. PMID:26583961

  18. Cinética ruminal do feno de Stylosanthes guianensis Ruminal kinetics of Stylosanthes guianensis hay

    Directory of Open Access Journals (Sweden)

    M.M. Ladeira

    2001-04-01

    Full Text Available Sete carneiros fistulados no rúmen e no duodeno foram alojados em gaiolas metabólicas e alimentados com feno de Stylosanthes guianensis à vontade. Foi empregada a técnica de sacos de náilon para determinação da degradabilidade in situ do feno, utilizando-se os tempos de 3, 6, 12, 24, 48 e 72 horas para as retiradas dos sacos do rúmen. A taxa de passagem dos sólidos foi determinada utilizando-se cromo mordante como indicador. Os valores de pH no líquido ruminal foram medidos nos tempos de 0, 2, 4, 6 e 8 horas após a alimentação e a concentração de amônia nos tempos de 0, 1, 3, 5, 7, 9 e 11 horas após a alimentação. A taxa de degradação da matéria seca (MS foi de 8,5%/h, a degradabilidade potencial 38,1% e a degradabilidade efetiva 30,3%. A taxa de degradação da proteína bruta (PB foi de 9,7%/h, a degradabilidade potencial 56,0% e a degradabilidade efetiva 47,5%. A celulose apresentou maior degradabilidade efetiva que a hemicelulose, com valores de 22,5 e 8,9%, respectivamente. A taxa de passagem dos sólidos foi 2,7%/h. O pH diminuiu linearmente à medida que os tempos de coleta aumentaram. Para o tempo de 5,13 horas após a alimentação, foi estimada a concentração máxima de amônia de 12,18mg/100ml. O feno de S. guianensis apresentou alta taxa de degradação e baixa degradabilidade ruminal da MS e PB.Seven rumen and duodenal cannulated lambs, were allocated in metabolic cages and were fed ad libitum with Stylosanthes guianensis hay. The in situ technique was used for determination of the degradability of the hay, at 3, 6, 12, 24, 48 and 72 hours of incubation. The passage rate of solids was determined using chromium mordant as external marker. The pH of the rumen liquid was measured at 0, 2, 4, 6 and 8 hours after feeding and the ammonia concentration at 0, 1, 3, 5, 7, 9 and 11 hours after feeding. The degradation rate, the potential degradability, and the effective degradability of dry matter (DM were 8.5%/h, 38

  19. Diffusion of magnetotactic bacterium in rotating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Cebers, A., E-mail: aceb@tesla.sal.l [Department of Physics, University of Latvia, Zellu 8, Ri-bar ga, LV-1002 (Latvia)

    2011-02-15

    Swimming trajectory of a magnetotactic bacterium in a rotating magnetic field is a circle. Random reversals of the direction of the bacterium motion induces a random walk of the curvature center of the trajectory. In assumption of the distribution of the switching events according to the Poisson process the diffusion coefficient is calculated in dependence on the frequency of the rotating field and the characteristic time between the switching events. It is confirmed by the numerical simulation of the random walk of the bacterium in the rotating magnetic field. - Research highlights: Random switching of the flagella leads to diffusion of a bacterium in the field. Mean square displacement of the curvature center is proportional to time. Diffusion coefficient depends on the period of a rotating field. At zero frequency diffusion coefficient is the same as for a tumbling bacterium.

  20. Fluctuation-Enhanced Sensing of Bacterium Odors

    CERN Document Server

    Chang, Hung-Chih; King, Maria D; Kwan, Chiman

    2009-01-01

    The goal of this paper is to explore the possibility to detect and identify bacteria by sensing their odor via fluctuation-enhanced sensing with commercial Taguchi sensors. The fluctuations of the electrical resistance during exposure to different bacterial odors, Escherichia coli and anthrax-surrogate Bacillus subtilis, have been measured and analyzed. In the present study, the simplest method, the measurement and analysis of power density spectra was used. The sensors were run in the normal heated and the sampling-and-hold working modes, respectively. The results indicate that Taguchi sensors used in these fluctuation-enhanced modes are effective tools of bacterium detection and identification even when they are utilizing only the power density spectrum of the stochastic sensor signal.

  1. Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate

    Energy Technology Data Exchange (ETDEWEB)

    Davila-Vazquez, Gustavo; Cota-Navarro, Ciria Berenice; Razo-Flores, Elias [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico); Rosales-Colunga, Luis Manuel; de Leon-Rodriguez, Antonio [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico)

    2009-05-15

    Due to the renewed interest in finding sustainable fuels or energy carriers, biohydrogen (Bio-H{sub 2}) from biomass is a promising alternative. Fermentative Bio-H{sub 2} production was studied in a continuous stirred tank reactor (CSTR) operated during 65.6 d with cheese whey (CW) as substrate. Three hydraulic retention times (HRTs) were tested (10, 6 and 4 h) and the highest volumetric hydrogen production rate (VHPR) was attained with HRT of 6 h. Therefore, four organic loading rates (OLRs) at a fixed HRT of 6 h were tested thereafter, being: 92.4, 115.5, 138.6 and 184.4 g lactose/L/d. The highest VHPR (46.61 mmol H{sub 2}/L/h) and hydrogen molar yield (HMY) of 2.8 mol H{sub 2}/mol lactose were found at an OLR of 138.6 g lactose/L/d; a sharp fall in VHPR occurred at an OLR of 184.4 g lactose/L/d. Butyric, propionic and acetic acids were the main soluble metabolites found, with butyric-to-acetic ratios ranging from 1.0 to 2.4. Bacterial community was identified by partial sequence analysis of the 16S rRNA and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that at HRT of 10 h and 6 h were dominated by the Clostridium genus. The VHPR attained in this study is the highest reported value for a CSTR system using CW as substrate with anaerobic sludge as inoculum and represents a 33-fold increase compared to a previous study. Thus, it was demonstrated that continuous fermentative Bio-H{sub 2} production from CW can be significantly enhanced by an appropriate selection of parameters such as HRT and OLR. Enhancements in VHPR are significant because it is a critical parameter to determine the full-scale practical application of fermentation technologies that will be used for sustainable and clean energy generation. (author)

  2. Nitrate and inhibition of ruminal methanogenesis: microbial ecology, obstacles and opportunities for lowering methane emissions from ruminant livestock

    Directory of Open Access Journals (Sweden)

    Chengjian eYang

    2016-02-01

    Full Text Available Ruminal methane production is among the main targets for greenhouse gas (GHG mitigation for the animal agriculture industry. Many compounds have been evaluated for their efficacy to suppress enteric methane production by ruminal microorganisms. Of these, nitrate as an alternative hydrogen sink has been among the most promising, but it suffers from variability in efficacy for reasons that are not understood. The accumulation of nitrite, which is poisonous when absorbed into the animal’s circulation, is also variable and poorly understood. This review identifies large gaps in our knowledge of rumen microbial ecology that handicap the further development and safety of nitrate as a dietary additive. Three main bacterial species have been associated historically with ruminal nitrate reduction, namely Wolinella succinogenes, Veillonella parvula and Selenomonas ruminantium, but others almost certainly exist in the largely uncultivated ruminal microbiota. Indications are strong that ciliate protozoa can reduce nitrate, but the significance of their role relative to bacteria is not known. The metabolic fate of the reduced nitrate has not been studied in detail. It is important to be sure that nitrate metabolism and efforts to enhance rates of nitrite reduction do not lead to the evolution of the much more potent GHG, nitrous oxide. The relative importance of direct inhibition of archaeal methanogenic enzymes by nitrite or the efficiency of capture of hydrogen by nitrate reduction in lowering methane production is also not known, nor are nitrite effects on other members of the microbiota. How effective would combining mitigation methods be, based on our understanding of the effects of nitrate and nitrite on the microbiome? Answering these fundamental microbiological questions is essential in assessing the potential of dietary nitrate to limit methane emissions from ruminant livestock.

  3. Nitrate and Inhibition of Ruminal Methanogenesis: Microbial Ecology, Obstacles, and Opportunities for Lowering Methane Emissions from Ruminant Livestock.

    Science.gov (United States)

    Yang, Chengjian; Rooke, John A; Cabeza, Irene; Wallace, Robert J

    2016-01-01

    Ruminal methane production is among the main targets for greenhouse gas (GHG) mitigation for the animal agriculture industry. Many compounds have been evaluated for their efficacy to suppress enteric methane production by ruminal microorganisms. Of these, nitrate as an alternative hydrogen sink has been among the most promising, but it suffers from variability in efficacy for reasons that are not understood. The accumulation of nitrite, which is poisonous when absorbed into the animal's circulation, is also variable and poorly understood. This review identifies large gaps in our knowledge of rumen microbial ecology that handicap the further development and safety of nitrate as a dietary additive. Three main bacterial species have been associated historically with ruminal nitrate reduction, namely Wolinella succinogenes, Veillonella parvula, and Selenomonas ruminantium, but others almost certainly exist in the largely uncultivated ruminal microbiota. Indications are strong that ciliate protozoa can reduce nitrate, but the significance of their role relative to bacteria is not known. The metabolic fate of the reduced nitrate has not been studied in detail. It is important to be sure that nitrate metabolism and efforts to enhance rates of nitrite reduction do not lead to the evolution of the much more potent GHG, nitrous oxide. The relative importance of direct inhibition of archaeal methanogenic enzymes by nitrite or the efficiency of capture of hydrogen by nitrate reduction in lowering methane production is also not known, nor are nitrite effects on other members of the microbiota. How effective would combining mitigation methods be, based on our understanding of the effects of nitrate and nitrite on the microbiome? Answering these fundamental microbiological questions is essential in assessing the potential of dietary nitrate to limit methane emissions from ruminant livestock. PMID:26904008

  4. The chemical formula of a magnetotactic bacterium.

    Science.gov (United States)

    Naresh, Mohit; Das, Sayoni; Mishra, Prashant; Mittal, Aditya

    2012-05-01

    Elucidation of the chemical logic of life is one of the grand challenges in biology, and essential to the progress of the upcoming field of synthetic biology. Treatment of microbial cells explicitly as a "chemical" species in controlled reaction (growth) environments has allowed fascinating discoveries of elemental formulae of a few species that have guided the modern views on compositions of a living cell. Application of mass and energy balances on living cells has proved to be useful in modeling of bioengineering systems, particularly in deriving optimized media compositions for growing microorganisms to maximize yields of desired bio-derived products by regulating intra-cellular metabolic networks. In this work, application of elemental mass balance during growth of Magnetospirillum gryphiswaldense in bioreactors has resulted in the discovery of the chemical formula of the magnetotactic bacterium. By developing a stoichiometric equation characterizing the formation of a magnetotactic bacterial cell, coupled with rigorous experimental measurements and robust calculations, we report the elemental formula of M. gryphiswaldense cell as CH(2.06)O(0.13)N(0.28)Fe(1.74×10(-3)). Remarkably, we find that iron metabolism during growth of this magnetotactic bacterium is much more correlated individually with carbon and nitrogen, compared to carbon and nitrogen with each other, indicating that iron serves more as a nutrient during bacterial growth rather than just a mineral. Magnetotactic bacteria have not only invoked some interest in the field of astrobiology for the last two decades, but are also prokaryotes having the unique ability of synthesizing membrane bound intracellular organelles. Our findings on these unique prokaryotes are a strong addition to the limited repertoire, of elemental compositions of living cells, aimed at exploring the chemical logic of life.

  5. Development and Validation of a Measure of Self-Critical Rumination.

    Science.gov (United States)

    Smart, Laura M; Peters, Jessica R; Baer, Ruth A

    2016-06-01

    Self-criticism is a form of negative self-evaluation that has strong associations with many forms of psychopathology. Rumination is a maladaptive form of repetitive thinking that is associated with many psychological disorders. Although measures of several different types of rumination (e.g., general rumination, depressive rumination, anger rumination) have been developed, none focuses specifically on self-critical rumination. An initial pool of items addressing self-critical rumination was developed by adapting items from existing rumination measures and through a writing task administered to both student and clinical samples. Following an evaluation of content validity, 24 items were administered to a large sample of undergraduates along with measures of related constructs. The final 10-item version of the Self-Critical Rumination Scale showed excellent internal consistency, a clear single-factor structure, convergent relationships with related constructs, and incremental validity over other measures of self-criticism and rumination in predicting both general distress and features of borderline personality disorder. PMID:25712674

  6. Do people ruminate because they haven't digested their goals? The relations of rumination and reflection to goal internalization and ambivalence

    DEFF Research Database (Denmark)

    Thomsen, Dorthe Kirkegaard; Tønnesvang, Jan; Schnieber, Anette;

    2011-01-01

    In three studies it was investigated whether rumination was related to less internalized self-regulation and goals and whether reflection was related to more internalized self-regulation and goals. In all studies students completed questionnaires measuring rumination, reflection, and internalizat...

  7. Acidosis ruminal en bovinos lecheros: implicaciones sobre la producción y la salud animal - Ruminal acidosis in dairy cattle: implications for animal health and production

    Directory of Open Access Journals (Sweden)

    Granja Salcedo, Yury Tatiana

    2012-04-01

    Full Text Available ResumenLa acidosis ruminal es un importante problema en la producción de bovinos alimentados con dietas ricas en concentrados, especialmente en vacas de alta producción lechera.AbstractRuminal acidosis is a major problem in the production of cattle fed diets rich in concentrates, especially in cows of high milk production.

  8. Effect of time duration of ruminal urea infusions on ruminal ammonia concentrations and portal-drained visceral extraction of arterial urea-N in lactating Holstein cows

    DEFF Research Database (Denmark)

    Røjen, Betina Amdisen; Kristensen, Niels Bastian

    2012-01-01

    investigated. Three Danish Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in major splanchnic blood vessels were randomly allocated to a 3 × 3 Latin square design with 21-d periods. Treatments were ventral ruminal infusion of water for 24h (water INF), 24-h infusion of 15g...

  9. Peste Des Petits Ruminants Virus Infection of Small Ruminants: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Naveen Kumar

    2014-06-01

    Full Text Available Peste des petits ruminants (PPR is caused by a Morbillivirus that belongs to the family Paramyxoviridae. PPR is an acute, highly contagious and fatal disease primarily affecting goats and sheep, whereas cattle undergo sub-clinical infection. With morbidity and mortality rates that can be as high as 90%, PPR is classified as an OIE (Office International des Epizooties-listed disease. Considering the importance of sheep and goats in the livelihood of the poor and marginal farmers in Africa and South Asia, PPR is an important concern for food security and poverty alleviation. PPR virus (PPRV and rinderpest virus (RPV are closely related Morbilliviruses. Rinderpest has been globally eradicated by mass vaccination. Though a live attenuated vaccine is available against PPR for immunoprophylaxis, due to its instability in subtropical climate (thermo-sensitivity, unavailability of required doses and insufficient coverage (herd immunity, the disease control program has not been a great success. Further, emerging evidence of poor cross neutralization between vaccine strain and PPRV strains currently circulating in the field has raised concerns about the protective efficacy of the existing PPR vaccines. This review summarizes the recent advancement in PPRV replication, its pathogenesis, immune response to vaccine and disease control. Attempts have also been made to highlight the current trends in understanding the host susceptibility and resistance to PPR.

  10. Effects of Chrysanthemum coronarium Extract on Fermentation Characteristics and Biohydrogenation of Polyunsaturated Fatty Acids in vitro Batch Culture

    Institute of Scientific and Technical Information of China (English)

    WANG Li-fang; MA Yan-fen; GAO Min; LU De-xun

    2011-01-01

    IntroductionCis-9,trans-11 CLA has been shown to be potentially healthpromoting CLA in many animal models.The C18∶1 trans-11 fatty acid (VA) is also desirable as a product flowing from the rumen,because the flow from the rumen of VA play a more important role than CLA in determining CLA concentration in animal tissues.The factors which affect CLA content in milk have been studied mainly in dairy cows and most factors are basically dietary factors,especially fat source(e.g.,plant oils,fish oil,et al.).Recently some researches showed that some plants or plant extracts could increase cis-9,trans-11 -CLA content in milk.The purpose of this experiment was to evaluate the effects of Chrysanthemum coronarium extract on in vitro Biohydrogenation of polyunsaturated fatty acids and fermentation characteristics of mixed rumen microorganisms.

  11. Development of a submerged anaerobic membrane bioreactor for concurrent extraction of volatile fatty acids and biohydrogen production.

    Science.gov (United States)

    Trad, Zaineb; Akimbomi, Julius; Vial, Christophe; Larroche, Christian; Taherzadeh, Mohammad J; Fontaine, Jean-Pierre

    2015-11-01

    The aim of this work was to study an externally-submerged membrane bioreactor for the cyclic extraction of volatile fatty acids (VFAs) during anaerobic fermentation, combining the advantages of submerged and external technologies for enhancing biohydrogen (BioH2) production from agrowaste. Mixing and transmembrane pressure (TMP) across a hollow fiber membrane placed in a recirculation loop coupled to a stirred tank were investigated, so that the loop did not significantly modify the hydrodynamic properties in the tank. The fouling mechanism, due to cake layer formation, was reversible. A cleaning procedure based on gas scouring and backwashing with the substrate was defined. Low TMP, 10(4)Pa, was required to achieve a 3Lh(-1)m(-2) critical flux. During fermentation, BioH2 production was shown to restart after removing VFAs with the permeate, so as to enhance simultaneously BioH2 production and the recovery of VFAs as platform molecules.

  12. Potential improvement to a citric wastewater treatment plant using bio-hydrogen and a hybrid energy system

    Science.gov (United States)

    Zhi, Xiaohua; Yang, Haijun; Berthold, Sascha; Doetsch, Christian; Shen, Jianquan

    Treatment of highly concentrated organic wastewater is characterized as cost-consuming. The conventional technology uses the anaerobic-anoxic-oxic process (A 2/O), which does not produce hydrogen. There is potential for energy saving using hydrogen utilization associated with wastewater treatment because hydrogen can be produced from organic wastewater using anaerobic fermentation. A 50 m 3 pilot bio-reactor for hydrogen production was constructed in Shandong Province, China in 2006 but to date the hydrogen produced has not been utilized. In this work, a technical-economic model based on hydrogen utilization is presented and analyzed to estimate the potential improvement to a citric wastewater plant. The model assesses the size, capital cost, annual cost, system efficiency and electricity cost under different configurations. In a stand-alone situation, the power production from hydrogen is not sufficient for the required load, thus a photovoltaic array (PV) is employed as the power supply. The simulated results show that the combination of solar and bio-hydrogen has a much higher cost compared with the A 2/O process. When the grid is connected, the system cost achieved is 0.238 US t -1 wastewater, which is lower than 0.257 US t -1 by the A 2/O process. The results reveal that a simulated improvement by using bio-hydrogen and a FC system is effective and feasible for the citric wastewater plant, even when compared to the current cost of the A 2/O process. In addition, lead acid and vanadium flow batteries were compared for energy storage service. The results show that a vanadium battery has lower cost and higher efficiency due to its long lifespan and energy efficiency. Additionally, the cost distribution of components shows that the PV dominates the cost in the stand-alone situation, while the bio-reactor is the main cost component in the parallel grid.

  13. Rumination-focused cognitive behaviour therapy vs. cognitive behaviour therapy for depression

    DEFF Research Database (Denmark)

    Hvenegaard, Morten; Watkins, Ed R; Poulsen, Stig;

    2015-01-01

    Scale for Depression) at completion of treatment. Secondary outcomes will be level of rumination, worry, anxiety, quality of life, behavioural activation, experimental measures of cognitive flexibility, and emotional attentional bias. A 6-month follow-up is planned and will include the primary outcome......BACKGROUND: Cognitive behavioural therapy is an effective treatment for depression. However, one third of the patients do not respond satisfactorily, and relapse rates of around 30 % within the first post-treatment year were reported in a recent meta-analysis. In total, 30-50 % of remitted patients...... of future depression. Rumination-focused cognitive behavioural therapy is a psychotherapeutic treatment targeting rumination. Because rumination plays a major role in the initiation and maintenance of depression, targeting rumination with rumination-focused cognitive behavioural therapy may be more...

  14. Ruminant self-medication against gastrointestinal nematodes: evidence, mechanism, and origins☆

    Directory of Open Access Journals (Sweden)

    Villalba Juan J.

    2014-01-01

    Full Text Available Gastrointestinal helminths challenge ruminants in ways that reduce their fitness. In turn, ruminants have evolved physiological and behavioral adaptations that counteract this challenge. Ruminants display anorexia and avoidance behaviors, which tend to reduce the incidence of parasitism. In addition, ruminants appear to learn to self-medicate against gastrointestinal parasites by increasing consumption of plant secondary compounds with antiparasitic actions. This selective feeding improves health and fitness. Here, we review the evidence for self-medication in ruminants, propose a hypothesis to explain self-medicative behaviors (based on post-ingestive consequences, and discuss mechanisms (e.g., enhanced neophilia, social transmission that may underlie the ontogeny and spread of self-medicative behaviors in social groups. A better understanding of the mechanisms that underlie and trigger self-medication in parasitized animals will help scientists devise innovative and more sustainable management strategies for improving ruminant health and well-being.

  15. Early family context and development of adolescent ruminative style: moderation by temperament.

    Science.gov (United States)

    Hilt, Lori M; Armstrong, Jeffrey M; Essex, Marilyn J

    2012-01-01

    We know very little about the development of rumination, the tendency to passively brood about negative feelings. Because rumination is a risk factor for many forms of psychopathology, especially depression, such knowledge could prove important for preventing negative mental health outcomes in youth. This study examined developmental origins of rumination in a longitudinal sample (N=337; 51% girls) studied in preschool (ages 3½ and 4½ years) and early adolescence (ages 13 and 15 years). Results indicated that family context and child temperament, assessed during the preschool period, were risk factors for a ruminative style in adolescence. Specifically, early family contexts characterised by over-controlling parenting and a family style of negative-submissive expressivity predicted higher levels of later rumination. These associations were moderated by children's temperamental characteristics of negative affect and effortful control. Further, the interaction of these temperament factors exerted an additional influence on later rumination. Implications for prevention and intervention efforts are discussed.

  16. Single-Stage Operation of Hybrid Dark-Photo Fermentation to Enhance Biohydrogen Production through Regulation of System Redox Condition: Evaluation with Real-Field Wastewater

    OpenAIRE

    Rashmi Chandra; G. N. Nikhil; S. Venkata Mohan

    2015-01-01

    Harnessing hydrogen competently through wastewater treatment using a particular class of biocatalyst is indeed a challenging issue. Therefore, biohydrogen potential of real-field wastewater was evaluated by hybrid fermentative process in a single-stage process. The cumulative hydrogen production (CHP) was observed to be higher with distillery wastewater (271 mL) than with dairy wastewater (248 mL). Besides H2 production, the hybrid process was found to be effective in wastewater treatment. T...

  17. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    Directory of Open Access Journals (Sweden)

    A. Sattar

    2015-08-01

    Full Text Available The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C to thermophilic (55 °C was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste. The maximum cumulative bio-hydrogen production of 650 mL was obtained from noodle waste under mesophilic temperature condition. Most of the production was observed during 48 h of incubation that continued till 72 h of incubation, and a decline in pH during this interval was 4.3 and 4.4 from a starting value of 7 under mesophilic and thermophilic conditions, respectively. Most of glucose consumption was also observed during 72 h of incubation and the maximum consumption was observed during the first 24 h, which was the same duration where the maximum pH drop occurred. The maximum hydrogen yields of 82.47 mL VS−1, 131.38 mL COD−1, and 44.90 mL glucose−1 were obtained from mesophilic food waste, thermophilic noodle waste and mesophilic rice waste respectively. The production of volatile fatty acids increased with an increase in time and temperature from food waste and noodle waste reactors whereas it decreased with temperature in rice waste reactors. The statistical modelling returned good results with high values of coefficient of determination (R2 for each waste type when it was opted for the study of cumulative hydrogen production, glucose consumption and volatile fatty acid production. The 3-D response surface plots developed by the statistical models helped a lot in developing better understanding of the impact of temperature and incubation time.

  18. Molecular evolution of peste des petits ruminants virus.

    Science.gov (United States)

    Muniraju, Murali; Munir, Muhammad; Parthiban, AravindhBabu R; Banyard, Ashley C; Bao, Jingyue; Wang, Zhiliang; Ayebazibwe, Chrisostom; Ayelet, Gelagay; El Harrak, Mehdi; Mahapatra, Mana; Libeau, Geneviève; Batten, Carrie; Parida, Satya

    2014-12-01

    Despite safe and efficacious vaccines against peste des petits ruminants virus (PPRV), this virus has emerged as the cause of a highly contagious disease with serious economic consequences for small ruminant agriculture across Asia, the Middle East, and Africa. We used complete and partial genome sequences of all 4 lineages of the virus to investigate evolutionary and epidemiologic dynamics of PPRV. A Bayesian phylogenetic analysis of all PPRV lineages mapped the time to most recent common ancestor and initial divergence of PPRV to a lineage III isolate at the beginning of 20th century. A phylogeographic approach estimated the probability for root location of an ancestral PPRV and individual lineages as being Nigeria for PPRV, Senegal for lineage I, Nigeria/Ghana for lineage II, Sudan for lineage III, and India for lineage IV. Substitution rates are critical parameters for understanding virus evolution because restrictions in genetic variation can lead to lower adaptability and pathogenicity. PMID:25418782

  19. Peste des petits ruminants outbreaks in White Nile State, Sudan.

    Science.gov (United States)

    Ishag, Osama M; Saeed, Intisar K; Ali, Yahia H

    2015-01-01

    Eight outbreaks of peste des petits ruminants in sheep and goats were reported in White Nile State, Sudan, between 2008 and 2009. A mortality rate of 4.2% was reported across the different outbreaks. Clinically the disease was characterised by high fever, ocular and nasal discharge, pneumonia, ulceration of the mucous membranes, diarrhoea and death. The postmortem findings included necrotic lesions in the mouth and gastrointestinal tract, and swollen, oedematous lymph nodes associated with the lungs and intestine. Of the 209 serum samples tested by competitive enzyme-linked immunosorbent assay, 113 (54%) were found positive. Peste des petits ruminants virus was confirmed in tissues, nasal swabs and blood samples by immunocapture enzyme-linked immunosorbent assay, reverse-transcription polymerase chain reaction and isolation of the virus in culture of lamb testicle cells. PMID:26304168

  20. Peste des petits ruminants outbreaks in White Nile State, Sudan

    Directory of Open Access Journals (Sweden)

    Osama M. Ishag

    2015-02-01

    Full Text Available Eight outbreaks of peste des petits ruminants in sheep and goats were reported in White Nile State, Sudan, between 2008 and 2009. A mortality rate of 4.2% was reported across the different outbreaks. Clinically the disease was characterised by high fever, ocular and nasal discharge, pneumonia, ulceration of the mucous membranes, diarrhoea and death. The postmortem findings included necrotic lesions in the mouth and gastrointestinal tract, and swollen, oedematous lymph nodes associated with the lungs and intestine. Of the 209 serum samples tested by competitive enzyme-linked immunosorbent assay, 113 (54% were found positive. Peste des petits ruminants virus was confirmed in tissues, nasal swabs and blood samples by immunocapture enzyme-linked immunosorbent assay, reverse-transcription polymerase chain reaction and isolation of the virus in culture of lamb testicle cells.

  1. Technical note: Bayesian calibration of dynamic ruminant nutrition models.

    Science.gov (United States)

    Reed, K F; Arhonditsis, G B; France, J; Kebreab, E

    2016-08-01

    Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling.

  2. Digestive morphophysiology of the giraffe and other wild ruminants

    DEFF Research Database (Denmark)

    Sauer, Cathrine

    Our current understanding of the complex digestive system of ruminants is mainly based on a few, but intensively studied livestock species. In comparison, information about the anatomy and function of the gastrointestinal tract of wild ruminants is limited. The aim of this thesis was to provide...... quantitative data on the digestive morphophysiology of the giraffe (Giraffa camelopardalis), the blackbuck (Antilope cervicapra) and the Arabian sand gazelle (Gazella subgutturosa marica). Digestive tract anatomy was characterized by dimensions and weights of the different gastrointestinal tract sections......, and digesta samples were collected to describe the digestive function, as indirectly evidenced by the physical characteristics of the digesta. Of particular interest was to determine the presence/absence of rumen content stratification. The findings in each species were then evaluated against available data...

  3. Emphysematous Eosinophilic Lymphangitis in the Ruminal Submucosa of Cattle.

    Science.gov (United States)

    Ohfuji, S

    2015-11-01

    Twenty cattle (14 Holstein-Friesian, 3 Japanese Black, 3 Aberdeen Angus) ranging in age from 3 months to 8 years exhibited, at slaughter, emphysematous thickening of the ruminal submucosa owing to the appearance of numerous, contiguous, small gas bubbles. Microscopic changes in the ruminal submucosa consisted of (1) multiple cystic (emphysematous) lymphangiectasis that was frequently lined or occluded by granulomatous inflammatory infiltrates including macrophages, multinucleate giant cells, and eosinophils; (2) intralymphatic phagocytosis by macrophages and giant cells of eosinophils that showed positive labeling with the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling assay; and (3) an inflammatory infiltrate extending from the area of lymphangitis into surrounding tissue, as well as edema, hemorrhage, fibrin exudation, fibroplasia, or capillary proliferation throughout the lesional submucosa. In addition, 15 (75%) of the cattle had globular leukocyte infiltrates in the mucosal epithelia of the rumen.

  4. The Roles of Syncytin-Like Proteins in Ruminant Placentation

    Directory of Open Access Journals (Sweden)

    Yuki Nakaya

    2015-06-01

    Full Text Available Recent developments in genome sequencing techniques have led to the identification of huge numbers of endogenous retroviruses (ERV in various mammals. ERVs, which occupy 8%–13% of mammalian genomes, are believed to affect mammalian evolution and biological diversity. Although the functional significance of most ERVs remains to be elucidated, several ERVs are thought to have pivotal roles in host physiology. We and other groups recently identified ERV envelope proteins (e.g., Fematrin-1, Syncytin-Rum1, endogenous Jaagsiekte sheep retrovirus Env that may determine the morphogenesis of the unique fused trophoblast cells, termed trinucleate cells and syncytial plaques, found in ruminant placentas; however, there are still a number of outstanding issues with regard to the role of ERVs that remain to be resolved. Here, we review what is known about how these ERVs have contributed to the development of ruminant-specific trophoblast cells.

  5. Solubilization of lignin by the ruminal anaerobic fungus Neocallimastix patriciarum.

    OpenAIRE

    McSweeney, C S; Dulieu, A; Katayama, Y; Lowry, J B

    1994-01-01

    The ability of the ruminal anaerobic phycomycete Neocallimastix patriciarum to digest model lignin compounds and lignified structures in plant material was studied in batch culture. The fungus did not degrade or transform model lignin compounds that were representative of the predominant intermonomer linkages in lignin, nor did it solubilize acid detergent lignin that had been isolated from spear grass. In a stem fraction of sorghum, 33.6% of lignin was apparently solubilized by the fungus. S...

  6. Surveillance of Ruminant Diseases in the Nordic Countries

    Directory of Open Access Journals (Sweden)

    Nyberg O

    2001-03-01

    Full Text Available All the Nordic countries have a basis for their surveillance and disease control in ruminants in national legislation and regulations listing notifiable diseases of concern to the countries. The Nordic countries are a disease-free zone comparing to other parts of the world and the aim of the surveillance is to keep that status and be able to document it. Following is a short summary from each country.

  7. Surveillance of Ruminant Diseases in the Nordic Countries

    OpenAIRE

    Nyberg O; Nielsen T Krogh; Alenius S; Valsson Olafur; Salmela P

    2001-01-01

    All the Nordic countries have a basis for their surveillance and disease control in ruminants in national legislation and regulations listing notifiable diseases of concern to the countries. The Nordic countries are a disease-free zone comparing to other parts of the world and the aim of the surveillance is to keep that status and be able to document it. Following is a short summary from each country.

  8. Coordination of small ruminants research for development in Africa

    OpenAIRE

    Hardouin, J.

    1988-01-01

    There is a need for much more effective coordination and doser linkages between institutions in volved in SR research and production as well as a need to strengthen the exchange of information between countries and institutions engaged in the development of SR production. Consequently a workshop on the coordination of small ruminants research for development in Africa was organised in October 1986 in Montpellier, France. The participants exchanged views in working groups based on all the ecol...

  9. Models for estimating feed intake in small ruminants

    OpenAIRE

    Giuseppe Pulina; Marcella Avondo; Giovanni Molle; Ana Helena Dias Francesconi; Alberto Stanislao Atzori; Antonello Cannas

    2013-01-01

    This review deals with the most relevant limits and developments of the modeling of intake of sheep and goats reared intensively and extensively. Because small ruminants are normally fed ad libitum, voluntary feed intake is crucial in feeding tactics and strategies aimed at optimal animal production. The effects of genetic, neuroendocrine, hormonal, feed and environmental factors on voluntary feed intake were discussed. Then, several mathematical models to estimate dry matter intake (DMI) wer...

  10. Metabolizable protein systems in ruminant nutrition: A review

    Directory of Open Access Journals (Sweden)

    Lalatendu Keshary Das

    2014-08-01

    Full Text Available Protein available to ruminants is supplied by both microbial and dietary sources. Metabolizable protein (MP is the true protein which is absorbed by the intestine and supplied by both microbial protein and protein which escapes degradation in the rumen; the protein which is available to the animal for maintenance, growth, fetal growth during gestation, and milk production. Thus, the concept of balancing ruminant rations basing on only dietary crude protein (CP content seems erroneous. In India, ruminant rations are still balanced for digestible CP and total digestible nutrients for protein and energy requirements, respectively. Traditional feed analysis methods such as proximate analysis and detergent analysis consider feed protein as a single unit and do not take into account of the degradation processes that occur in rumen and passage rates of feed fractions from rumen to intestine. Therefore, the protein requirement of ruminants should include not only the dietary protein source, but also the microbial CP from rumen. The MP systems consider both the factors, thus predict the protein availability more accurately and precisely. This system is aptly designed to represent the extent of protein degradation in the rumen and the synthesis of microbial protein as variable functions. Feed protein fractions, i.e., rumen degradable protein and rumen undegradable protein play vital roles in meeting protein requirements of rumen microbes and host animal, respectively. With the advent of sophisticated nutrition models such as Cornell net carbohydrate and protein system, National Research Council, Agricultural Research Council, Cornell Penn Miner Dairy and Amino Cow; ration formulation has moved from balancing diets from CP to MP, a concept that describes the protein requirements of ruminantsat intestinal level, and which is available to animals for useful purposes.

  11. Control and eradication of viral diseases of ruminants

    OpenAIRE

    Nuotio, Lasse

    2006-01-01

    The monitoring and control of infectious animal diseases, limiting or prevention of their spread and efforts towards their eradication are central tasks of the veterinary civil service. In addition to the cost-effectiveness of prophylaxis over disease and treatment, the animal welfare aspect is also involved. The purpose of this work is to review, describe and assess the available control measures against selected viral infections or diseases of domestic ruminants. The selected infection...

  12. Digestion and absorption of fatty acids in the ruminant

    OpenAIRE

    Cuvelier, Christine; Cabaraux, Jean-François; Dufrasne, Isabelle; Istasse, Louis; Hornick, Jean-Luc

    2005-01-01

    From a biochemical point of view, in ruminants, there are two major groups of fatty acids. They are firstly the volatile fatty acids from the rumen metabolism of dietary carbohydrates, and secondly the fatty acids from the rumen metabolism of lipids. This second group is made of the fatty acids synthesized by the microorganisms of the rumen and the fatty acids originating from the hydrolysis of dietary triacylglycerols, which are mostly hydrogenated by microorganisms in the rumen before intes...

  13. The Nutritive and Feeding Value of Olive Cake for Ruminants

    Directory of Open Access Journals (Sweden)

    Gürhan Keleş

    2015-10-01

    Full Text Available The factor affecting nutritive and feeding value of olive cake (OC was evaluated and, some suggestion was made regarding using olive cake in ruminant nutrition. It is evaluated that the nutritive value of OC can be able to support maintenance requirement of ruminant, although its nutritive value is affected by different factors. However, when taking into consideration of expense needed for preservation of OC, it is wise to use OC in nutrition after de-stoning. The crude protein, ether extract, NDF, lignin and non-fiber carbohydrates content of partly de-stoned OC (POC was determined as 75 (56-93, 126 (68-184, 571 (443-700, 222 (174-269 and 141 (55-227 g/kg dry matter (DM. These values show that POC is a valuable source of ruminant feed. Besides, high and quality ether extract content of OC separates it from other feed and made it a special feed. Treatment with alkali increases the degradability and in vivo digestibility parameters of OC. Therefore, ensiling allowing the treatment with additives is best option to preservation of OC. Even, additional extraction of oil from POC decreases its nutritive value; studies showed that POC after additional oil extraction has still favorable nutritive value. Studies showed no adverse effect when POC substitute 20% of ration of feedlot lamb. For dairy animal, it is evaluated using POC to provide 15-20 g/kg DM oil when it substitute of 10-20% of total ration allow to produce more milk with increased fat and quality. In conclusion, de-stoning process turns OC to a valuable feed source, allows reduce feed cost, and increase animal performance and product quality. However, because nutritive value of OC affecting from very different factors, it can be propose analyze its nutritive value before using it in ruminant nutrition.

  14. Methods for Measuring and Estimating Methane Emission from Ruminants

    OpenAIRE

    Jørgen Madsen; Storm, Ida M. L. D.; Nielsen, Nicolaj I.; Anne Louise F. Hellwing

    2012-01-01

    Simple Summary Knowledge about methods used in quantification of greenhouse gasses is currently needed due to international commitments to reduce the emissions. In the agricultural sector one important task is to reduce enteric methane emissions from ruminants. Different methods for quantifying these emissions are presently being used and others are under development, all with different conditions for application. For scientist and other persons working with the topic it is very important to ...

  15. Does rumination mediate the relationship between emotion regulation ability and posttraumatic stress disorder?

    OpenAIRE

    Ehring, Thomas; Ehlers, Anke

    2014-01-01

    Background and objectives: Trauma-related rumination has been suggested to be involved in the maintenance of posttraumatic stress disorder (PTSD). This view has empirically been supported by extensive evidence using cross-sectional, prospective, and experimental designs. However, it is unclear why trauma survivors engage in rumination despite its negative consequences. The current study aimed to explore the hypothesis that low emotion regulation ability underlies trauma-related rumination.Met...

  16. Limits to Dihydrogen Incorporation into Electron Sinks Alternative to Methanogenesis in Ruminal Fermentation

    OpenAIRE

    Ungerfeld, Emilio M.

    2015-01-01

    Research is being conducted with the objective of decreasing methane (CH4) production in the rumen, as methane emissions from ruminants are environmentally damaging and a loss of digestible energy to ruminants. Inhibiting ruminal methanogenesis generally results in accumulation of dihydrogen (H2), which is energetically inefficient and can inhibit fermentation. It would be nutritionally beneficial to incorporate accumulated H2 into propionate or butyrate production, or reductive acetogenesis....

  17. Effects of tannin-containing diets on small ruminant meat quality

    OpenAIRE

    Vasta, V; Priolo, A.

    2010-01-01

    Tannins are phenolic compounds present in several forages, tree leaves and by-products used for small ruminant feeding in the Mediterranean area. Although the effects of dietary tannins on small ruminant growth performances have been largely studied, only in the last ten years researchers have started to study the effects of tannins on meat quality. Meat from small ruminants given tanniniferous diets is lighter in colour compared to meat from animals given the same diets but in which the effe...

  18. Effects of an oral hygiene punishment procedure on chronic rumination and collateral behaviors in monozygous twins.

    OpenAIRE

    Singh, N.N.; Manning, P J; Angell, M J

    1982-01-01

    This study investigated the suppressive effects of an oral hygiene punishment procedure on the ruminative behavior of profoundly retarded monozygous twins. Rumination, fingers in mouth/tongue out, appropriate behavior, and stereotyped behavior were measured before and during treatment with oral hygiene. Treatment was introduced for each meal in succession across the twins in a multiple-baseline design. Results showed that the rate of rumination of both twins was dramatically reduced to very l...

  19. Rumen microbial (meta)genomics and its application to ruminant production

    OpenAIRE

    Morgavi, Diego; Kelly, William; Janssen, Peter; Attwood, Graeme

    2013-01-01

    Meat and milk produced by ruminants are important agricultural products and are major sources of protein for humans. Ruminant production is of considerable economic value and underpins food security in many regions of the world. However, the sector faces major challenges because of diminishing natural resources and ensuing increases in production costs, and also because of the increased awareness of the environmental impact of farming ruminants. The digestion of feed and the production of ent...

  20. Old world ruminant morphophysiology, life history, and fossil record: exploring key innovations of a diversification sequence

    OpenAIRE

    M Clauss; Rössner, G. E.

    2014-01-01

    The omasum of pecoran ruminants (which is absent in tragulids) and shorter gestation periods in non-giraffid crown pecorans (as opposed to giraffids) could represent cases of key innovations that caused disparity in species diversity in extant ruminants. Literature suggests that the different ruminant groups inhabited similar niche spectra at different times, supporting the ‘increased fitness’ interpretation where a key innovation does not mainly open new niches, but allows more efficient use...

  1. FUNCTIONAL ANALYSIS AND TREATMENT OF RUMINATION USING FIXED-TIME DELIVERY OF A FLAVOR SPRAY

    OpenAIRE

    Wilder, David A; Register, Martisa; Register, Stanley; Bajagic, Vedrana; Neidert, Pamela L

    2009-01-01

    A functional analysis suggested that rumination exhibited by an adult with autism was maintained by automatic reinforcement. Next, a preference assessment with three flavor sprays (i.e., flavored sprays used by dieters) showed that apple pie spray was most preferred. Finally, the effects of fixed-time delivery of the apple pie spray on levels of rumination were evaluated. The spray reduced rumination, and the participant was taught to self-administer the spray.

  2. A parametric analysis of the relationship between food quantity and rumination

    OpenAIRE

    Rast, Jim; Johnston, James M.; Drum, Cheryl

    1984-01-01

    Rumination is the chronic regurgitation, chewing, and reswallowing of previously ingested food. The study reported here, using a parametric design, examined the control of rumination by the quantity of food eaten at meals. The subjects were three profoundly retarded individuals who chronically emitted this behavior. The quantity of food by weight ingested daily was varied in 10-oz steps in both ascending and descending series (data were collected only after breakfasts and lunches). Ruminating...

  3. Scrapie incidence and PRNP polymorphisms: rare small ruminant breeds of Sicily with TSE protecting genetic reservoirs

    OpenAIRE

    Vitale, Maria; Migliore, Sergio; La Giglia, Maria; Alberti, Placido; Di Marco Lo Presti, Vincenzo; Langeveld, Jan P. M.

    2016-01-01

    Background Transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative diseases of several mammalian species, including humans. In Italy, the active surveillance through rapid tests on brain stem from small ruminants started in 2002 on randomly selected samples of healthy slaughtered animals. Sampling number was proportionally related to the regional small ruminant population. Of the twenty Italian regions, Sicily has the second largest population of small ruminants which is m...

  4. Rumination, goal linking, daily hassles and life events in major depression

    OpenAIRE

    McIntosh, Emily; Gillanders, David; Rodgers, Sheelagh

    2009-01-01

    Background: Rumination in response to stressful events and depressed mood leads to harmful outcomes. In addition to intrapsychic processes, depression is also associated with daily hassles and major life events. Self-regulatory beliefs such as goal linking could mediate the link between life events, daily hassles, rumination and major depression. Method: The relationships between depressed mood, rumination, goal linking, life events and daily hassles were investigated in a between-groups desi...

  5. The cognitive vulnerability to depressive rumination in people diagnosed with major depressive disorder

    OpenAIRE

    Chan, C. S. J.

    2011-01-01

    This research project focuses on the cognitive process of rumination and its association to depression. Part one of the project is a literature review, which aimed to provide a comprehensive summary of the current state of research on the relations between rumination and the major cognitive processes in people with depression. A systematic search identified 25 studies in the existing literature which fulfilled the basic requirements of studying rumination and at least one other cognitive proc...

  6. Rumination Predicts Heightened Responding to Stressful Life Events in Major Depressive Disorder and Generalized Anxiety Disorder

    OpenAIRE

    Ruscio, Ayelet Meron; Gentes, Emily L.; Jones, Jason D.; Hallion, Lauren S.; Coleman, Elizabeth S.; Swendsen, Joel

    2015-01-01

    Although studies have documented heightened stress sensitivity in major depressive disorder (MDD) and generalized anxiety disorder (GAD), the mechanisms involved are poorly understood. One possible mechanism is the tendency to ruminate in response to stress. We used ecological momentary assessment to study ruminative thoughts following stressful events in 145 adults with MDD, GAD, comorbid MDD-GAD, or no psychopathology. Diagnosed individuals reported more event-related rumination than contro...

  7. The application of an innovative continuous multiple tube reactor as a strategy to control the specific organic loading rate for biohydrogen production by dark fermentation.

    Science.gov (United States)

    Gomes, Simone D; Fuess, Lucas T; Penteado, Eduardo D; Lucas, Shaiane D M; Gotardo, Jackeline T; Zaiat, Marcelo

    2015-12-01

    Biohydrogen production in fixed-bed reactors often leads to unstable and decreasing patterns because the excessive accumulation of biomass in the bed negatively affects the specific organic loading rate (SOLR) applied to the reactor. In this context, an innovative reactor configuration, i.e., the continuous multiple tube reactor (CMTR), was assessed in an attempt to better control the SOLR for biohydrogen production. The CMTR provides a continuous discharge of biomass, preventing the accumulation of solids in the long-term. Sucrose was used as the carbon source and mesophilic temperature conditions (25°C) were applied in three continuous assays. The reactor showed better performance when support material was placed in the outlet chamber to enhance biomass retention within the reactor. Although the SOLR could not be effectively controlled, reaching values usually higher than 10gsucroseg(-1)VSSd(-1), the volumetric hydrogen production and molar hydrogen production rates peaked, respectively, at 1470mLH2L(-1)d(-1) and 45mmolH2d(-1), indicating that the CMTR was a suitable configuration for biohydrogen production. PMID:26340028

  8. Survey on the possibility of international cooperation on production technology of biohydrogen; Bio suiso seizo gijutsu ni kakawaru kokusai kyoryoku kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    R and D on the production technology of hydrogen by biotechnology is one of the effective projects for worldwide energy supply technology and global environment protection technology in the 21st century. The research trend of various institutions promoting R and D on production technology of biohydrogen in the U.S.A. and other countries was surveyed together with the possibility of international cooperation. The production technology of biohydrogen is being watched over the world. Various researches are in promotion corresponding to environmental conditions as follows: search of not only photosynthetic bacteria but also such bacteria with hydrogen productivity as algae and anaerobic bacteria, and the gene engineering study for improving the hydrogen productivity of target microorganisms. All the institutions visited for this survey have great expectations in wide cooperative study in the future. On the possibility of international cooperation on the production technology of biohydrogen, the further precise survey should be promoted for developing more effective technologies based on the previous survey results. 156 refs., 10 tabs.

  9. The application of an innovative continuous multiple tube reactor as a strategy to control the specific organic loading rate for biohydrogen production by dark fermentation.

    Science.gov (United States)

    Gomes, Simone D; Fuess, Lucas T; Penteado, Eduardo D; Lucas, Shaiane D M; Gotardo, Jackeline T; Zaiat, Marcelo

    2015-12-01

    Biohydrogen production in fixed-bed reactors often leads to unstable and decreasing patterns because the excessive accumulation of biomass in the bed negatively affects the specific organic loading rate (SOLR) applied to the reactor. In this context, an innovative reactor configuration, i.e., the continuous multiple tube reactor (CMTR), was assessed in an attempt to better control the SOLR for biohydrogen production. The CMTR provides a continuous discharge of biomass, preventing the accumulation of solids in the long-term. Sucrose was used as the carbon source and mesophilic temperature conditions (25°C) were applied in three continuous assays. The reactor showed better performance when support material was placed in the outlet chamber to enhance biomass retention within the reactor. Although the SOLR could not be effectively controlled, reaching values usually higher than 10gsucroseg(-1)VSSd(-1), the volumetric hydrogen production and molar hydrogen production rates peaked, respectively, at 1470mLH2L(-1)d(-1) and 45mmolH2d(-1), indicating that the CMTR was a suitable configuration for biohydrogen production.

  10. Theileria infection in domestic ruminants in northern Ethiopia.

    Science.gov (United States)

    Gebrekidan, Hagos; Hailu, Asrat; Kassahun, Aysheshm; Rohoušová, Iva; Maia, Carla; Talmi-Frank, Dalit; Warburg, Alon; Baneth, Gad

    2014-02-24

    Piroplasmosis caused by different tick-borne hemoprotozoan parasites of the genera Theileria and Babesia is among the most economically important infections of domestic ruminants in sub-Saharan Africa. A survey for piroplasm infection was conducted in three locations in Northern Ethiopia. Of 525 domestic ruminants surveyed, 80% of the cattle, 94% of the sheep and 2% of the goats were positive for different Theileria spp. based on PCR of blood followed by DNA sequencing. Sheep had a significantly higher rate of infection compared with cattle (PTheileria were detected in cattle: T. velifera, T. mutans, T. orientalis complex and T. annulata with infection rates of 66, 8, 4, and 2%, respectively. This is the first report of T. annulata, the cause of Tropical Theileriosis in Ethiopia. Of the two Theileria spp. detected in small ruminants, T. ovis was highly prevalent (92%) in sheep and rare in goats (1.5%) whereas T. seperata was infrequent in sheep (2%) and rare in goats (0.4%). None of the animals were positive for Babesia spp.; however, Sarcocystis capracanis and S. tenella were detected in one goat and a sheep, respectively. The widespread distribution of Theileria spp. among cattle in northern Ethiopia including the virulent T. annulata and more mildly pathogenic T. mutans and T. orientalis, and the high infection rate in sheep with the usually sub-clinical T. ovis indicate extensive exposure to ticks and transmission of piroplasms with an important economic impact.

  11. Potential and existing mechanisms of enteric methane production in ruminants

    Directory of Open Access Journals (Sweden)

    Junyi Qiao

    2014-10-01

    Full Text Available Enteric methane (CH4 emissions in ruminants have attracted considerable attention due to their impact on greenhouse gases and the contribution of agricultural practices to global warming. Over the last two decades, a number of approaches have been adopted to mitigate CH4 emissions. However, the mechanisms of methanogenesis have still not been fully defined. According to the genome sequences of M. ruminantium in the rumen and of M. AbM4 in the abomasum, the pathways of carbon dioxide (CO2 reduction and formate oxidation to CH4 have now been authenticated in ruminants. Furthermore, in the light of species or genera description of methanogens, the precursors of methanogenesis discovered in the rumen and research advances in related subjects, pathways of acetate dissimilation via Methanosarcina and Methanosaeta as well as metabolism of methanol to CH4 might be present in the rumen, although neither process has yet been experimentally demonstrated in the rumen. Herein the research advances in methanogenesic mechanisms including existing and potential mechanisms are reviewed in detail. In addition, further research efforts to understand the methanogenesis mechanism should focus on isolation and identification of more specific methanogens, and their genome sequences. Such increased knowledge will provide benefits in terms of improved dietary energy utilization and a reduced contribution of enteric CH4 emissions to total global greenhouse gas emissions from the ruminant production system.

  12. Tube cystostomy for management of obstructive urolithiasis in ruminants

    Directory of Open Access Journals (Sweden)

    P. Tamilmahan

    2014-04-01

    Full Text Available Aim: The aim of this study was to evaluate the simple tube cystostomy procedure for management of urethral obstruction cases in ruminants. Materials and Methods: Tube cystostomy was used to treat a total of 58 ruminants, which included 35 buffalo calves and 23 goats. Diagnosis of the disease was made with the history of anuria, clinical signs, and physical examinations. Physical parameters like heart rate, respiratory rate, rectal temperature dehydration status of animals by skin tenting test, and intraoperative findings were compared. Results: Young ruminants were most commonly affected and the mean age was 4-5 months in both species. Only male were considered for the study in which buffalo calves were not castrated but in goat's 73.91% animal were castrated and 34.7% not castrated. Rupture of bladder was more common in buffalo calves as compared to goats. The confirmed cases of obstructive urolithiasis were selected for tube cystostomy with Foley's catheter. Postoperatively all cases were administered with broad spectrum antibiotic, anti-inflammatory agent, and caliculolytic agents like ammonium chloride. Postoperative complications recorded only in 10 animals and remaining 48 animals had an uneventful recovery. Conclusion: Tube cystostomy is a simple and effective procedure particularly in intact urinary bladder, which can be adopted at field level.

  13. The rumination syndrome in adults: A review of the pathophysiology, diagnosis and treatment

    Directory of Open Access Journals (Sweden)

    Papadopoulos V

    2007-01-01

    Full Text Available Rumination in adults is considered to be the effortless regurgitation of recently ingested food into the mouth, followed by either rechewing and reswallowing or expulsion of the regurgitate. On the basis of the definition of rumination as a unique category of functional gastroduodenal disorders, according to the newly established Rome III classification, a review of the pathophysiology, diagnosis and treatment of the rumination syndrome in adults is presented after systematic and critical approach of all articles that could be retrieved through PubMed using the term "rumination".

  14. [The role of intrusive and deliberate ruminations for meaning making in stressful events].

    Science.gov (United States)

    Kamijo, Namiko; Yukawa, Shintaro

    2016-02-01

    This study examined the relationship between meaning making and rumination regarding stressful events. We focused on two facets of rumination: intrusive and deliberate. Participants (N = 121) completed a questionnaire about a stressful event in their life that assessed the possibility of preventing the event, probability of the event occurring, perceived threat of the event, and meaning making. They also completed scales that assessed intrusive and deliberate ruminations about the event, posttraumatic growth after the event, as well as dispositions of self-rumination and self-reflection, and executive function. The results revealed that disposition of self-reflection was positively correlated with deliberate rumination about the event. Furthermore, deliberate rumination at the time of the experience was positively correlated with current positive meaning making, which was associated with current posttraumatic growth. Additionally, current intrusive rumination promoted current negative meaning making, but intrusive rumination at the time of the experience did not. Thus, this study suggests the important role of both intrusive and deliberate ruminations in the process of meaning making and several issues for future research. PMID:26964366

  15. The combined effects of noncontingent reinforcement and punishment on the reduction of rumination.

    Science.gov (United States)

    DeRosa, Nicole M; Roane, Henry S; Bishop, Jamie R; Silkowski, Erica L

    2016-09-01

    The current study extends the literature on the assessment and treatment of rumination through the evaluation of a combined reinforcement- and punishment-based intervention. The study included a single participant with a history of rumination maintained by automatic reinforcement, as identified via a functional analysis. Both noncontingent reinforcement (NCR) with preferred edible items and punishment, in the form of a facial screen, were implemented separately to evaluate their independent effects on the occurrence of rumination. The final treatment package included both NCR and punishment procedures. Implementation of the combined treatment resulted in a 96.5% reduction in rumination relative to baseline. Procedural modifications and integrity errors also were evaluated. PMID:26996890

  16. Writing about life goals: effects on rumination, mood and the cortisol awakening response.

    Science.gov (United States)

    Teismann, Tobias; Het, Serkan; Grillenberger, Matthias; Willutzki, Ulrike; Wolf, Oliver T

    2014-11-01

    Rumination is a vulnerability factor for the onset and maintenance of emotional distress. This study examined whether writing about life goals is associated with a decrease in ruminative thinking and a reduced cortisol awakening response. 68 healthy participants either wrote about their personal life goals or a control topic. Writing about life goals was associated with a modest decrease in ruminative thinking and a reduced cortisol awakening response at the post-intervention assessment. Results provide initial evidence that writing about life goals can be a helpful aid in decreasing rumination and physiological stress reactivity.

  17. The combined effects of noncontingent reinforcement and punishment on the reduction of rumination.

    Science.gov (United States)

    DeRosa, Nicole M; Roane, Henry S; Bishop, Jamie R; Silkowski, Erica L

    2016-09-01

    The current study extends the literature on the assessment and treatment of rumination through the evaluation of a combined reinforcement- and punishment-based intervention. The study included a single participant with a history of rumination maintained by automatic reinforcement, as identified via a functional analysis. Both noncontingent reinforcement (NCR) with preferred edible items and punishment, in the form of a facial screen, were implemented separately to evaluate their independent effects on the occurrence of rumination. The final treatment package included both NCR and punishment procedures. Implementation of the combined treatment resulted in a 96.5% reduction in rumination relative to baseline. Procedural modifications and integrity errors also were evaluated.

  18. Experimental evolution of aging in a bacterium

    Directory of Open Access Journals (Sweden)

    Stearns Stephen C

    2007-07-01

    Full Text Available Abstract Background Aging refers to a decline in reproduction and survival with increasing age. According to evolutionary theory, aging evolves because selection late in life is weak and mutations exist whose deleterious effects manifest only late in life. Whether the assumptions behind this theory are fulfilled in all organisms, and whether all organisms age, has not been clear. We tested the generality of this theory by experimental evolution with Caulobacter crescentus, a bacterium whose asymmetric division allows mother and daughter to be distinguished. Results We evolved three populations for 2000 generations in the laboratory under conditions where selection was strong early in life, but very weak later in life. All populations evolved faster growth rates, mostly by decreasing the age at first division. Evolutionary changes in aging were inconsistent. The predominant response was the unexpected evolution of slower aging, revealing the limits of theoretical predictions if mutations have unanticipated phenotypic effects. However, we also observed the spread of a mutation causing earlier aging of mothers whose negative effect was reset in the daughters. Conclusion Our results confirm that late-acting deleterious mutations do occur in bacteria and that they can invade populations when selection late in life is weak. They suggest that very few organisms – perhaps none- can avoid the accumulation of such mutations over evolutionary time, and thus that aging is probably a fundamental property of all cellular organisms.

  19. An assessment of GHG emissions from small ruminants in comparison with GHG emissions from large ruminants and monogastric livestock

    Science.gov (United States)

    Zervas, G.; Tsiplakou, E.

    2012-03-01

    Greenhouse gas (GHG) emissions are expected to cause global warming which results in extreme weather changes that could affect crop yields and productivity, food supplies and food prices. It is also expected that climate change will have an impact on animal metabolism and health, reproduction and productivity. On the other hand, the expected increased demand of animal origin products in the coming years will increase the reared animal numbers and consequently GHG emissions. This paper outlines the main GHGs emitted from livestock which are CO2, CH4 and N2O, coming from respiration, enteric fermentation and manure management respectively, with CH4 and N2O having the highest global warming potential. Ruminant livestock has the highest contribution to these GHG emissions with small ruminants share being 12.25% of the total GHG emissions from livestock's enteric and manure CH4, and manure N2O in CO2 equivalent, producing 9.45 kg CO2 equivalent per kg body weight with the respective values for cattle, pigs and poultry being 5.45, 3.97 and 3.25. Since the production systems significantly affect the GHG emissions, the grazing, livestock crop complex, and intensive ones account for 30.5%, 67.29% and 5.51% for total CH4 emission (from enteric fermentation and manure management) and 24.32%, 68.11% and 7.57% for N2O respectively. Taking into account the positive and negative impacts of small ruminant livestock production systems to the environmental aspects in general, it is recommended that a number of potentially effective measures should be taken and the appropriate mitigation technologies should be applied in order to reduce effectively and essentially the GHG emissions to the atmosphere, with no adverse effects on intensification and increased productivity of small ruminants production systems.

  20. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711

    OpenAIRE

    Shoemaker, William R.; Muscarella, Mario E.; Lennon, Jay T

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments.