WorldWideScience

Sample records for biohydrogen bio suiso

  1. Survey on the possibility of international cooperation on production technology of biohydrogen; Bio suiso seizo gijutsu ni kakawaru kokusai kyoryoku kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    R and D on the production technology of hydrogen by biotechnology is one of the effective projects for worldwide energy supply technology and global environment protection technology in the 21st century. The research trend of various institutions promoting R and D on production technology of biohydrogen in the U.S.A. and other countries was surveyed together with the possibility of international cooperation. The production technology of biohydrogen is being watched over the world. Various researches are in promotion corresponding to environmental conditions as follows: search of not only photosynthetic bacteria but also such bacteria with hydrogen productivity as algae and anaerobic bacteria, and the gene engineering study for improving the hydrogen productivity of target microorganisms. All the institutions visited for this survey have great expectations in wide cooperative study in the future. On the possibility of international cooperation on the production technology of biohydrogen, the further precise survey should be promoted for developing more effective technologies based on the previous survey results. 156 refs., 10 tabs.

  2. Fiscal 1997 survey report on a feasibility of international collaboration on bio-hydrogen R and D; 1997 nendo chosa hokokusho (bio suiso seizo gijutsu ni kakawaru kokusai kyoryoku kanosei chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    R and D of the production technology of biohydrogen is an option effective for the world energy supply technology and the world environmental preservation technology in the 21st century. At present, a project named `R and D of the environment harmony type hydrogen production technology` tackles the R and D of the hydrogen production technology using photosynthetic microorganisms, and promotes the R and D in this field from both aspects of a basis and application as seen in a workshop held including interchanges with researchers and research institutes overseas. With the recently increasing interest in bio-hydrogen production technology also overseas, search and bleeding/improvement of microorganisms related to the hydrogen production and utilization technology of biomass have been advancing. For development in this field, it is necessary to construct a widespread research network and promote the comprehensive research and development. In this survey, most of the research institutes visited recognized an importance of international cooperation in this field and agreed to make future research interchanges in a wide range. Based on the survey, a feasibility of concrete international collaboration is searched. 146 refs., 2 figs., 11 tabs.

  3. Large-scale biohydrogen production from bio-oil.

    Science.gov (United States)

    Sarkar, Susanjib; Kumar, Amit

    2010-10-01

    Large amount of hydrogen is consumed during the upgrading of bitumen into synthetic crude oil (SCO), and this hydrogen is exclusively produced from natural gas in Western Canada. Because of large amount of emission from natural gas, alternative sources for hydrogen fuel especially renewable feedstocks could significantly reduce CO(2) emissions. In this study, biomass is converted to bio-oil by fast pyrolysis. This bio-oil is steam reformed near bitumen upgrading plant for producing hydrogen fuel. A techno-economic model is developed to estimate the cost of hydrogen from biomass through the pathway of fast pyrolysis. Three different feedstocks including whole-tree biomass, forest residues (i.e. limbs, branches, and tops of tree produced during logging operations), and straw (mostly from wheat and barley crops) are considered for biohydrogen production. Delivered cost of biohydrogen from whole-tree-based biomass ($2.40/kg of H(2)) is lower than that of forest residues ($3.00/kg of H(2)) and agricultural residues ($4.55/kg of H(2)) at a plant capacity of 2000 dry tonnes/day. In this study, bio-oil is produced in the field/forest and transported to a distance of 500 km from the centralized remote bio-oil production plant to bitumen upgrading plant. Feedstock delivery cost and capital cost are the largest cost contributors to the bio-oil production cost, while more than 50% of the cost of biohydrogen production is contributed by bio-oil production and transportation. Carbon credits of $133, $214, and $356/tonne of CO(2) equivalent could make whole-tree, forest residues, and straw-based biohydrogen production competitive with natural gas-based H(2) for a natural gas price of $5/GJ, respectively.

  4. Bio-hydrogen production by dark fermentation from organic wastes and residues

    OpenAIRE

    Liu, Dawei; Angelidaki, Irini; Zeng, Raymond Jianxiong; Min, Booki

    2008-01-01

    Der er stigende opmærksomhed omkring biohydrogen. Ved hydrogen fermentering kan kun en lille del af det organiske materiale eller COD i affald omdannes til hydrogen. Der findes endnu ingen full-skala bio-hydrogen anlæg, eftersom effektive rentable teknologier ikke er udviklet endnu. En to-trins proces der kombinerer bio-hydrogen og bio-metan produktionen er en attraktiv mulighed til at øge det totale energi-udbytte af fermentering af organisk materiale. I en to-trins proces, med bio-hydrogen ...

  5. Bio-hydrogen Production Potential from Market Waste

    Directory of Open Access Journals (Sweden)

    Lanna Jaitalee

    2010-07-01

    Full Text Available This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS of organic waste were varied from 2%, 3% and 5% respectively. The pH was controlled at 5.5 for all batches in the experiment. The results showed that bio-hydrogen production depended on feed-substrate concentration. At initial TVS content of 3%, the highest hydrogen production was achieved at a level of 0.59 L-H2/L at pH 5.5. The maximum hydrogen yield was 15.3 ml H2/g TVS or 8.5 ml H2/g COD. The composition of H2 in the biogas ranged from 28.1-30.9% and no CH4 was detected in all batch tests.

  6. Bio-hydrogen production from hyacinth by anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Jun; Zhou Junhu; Qi Feng; Xie Binfei; Cen Kefa [State Key Laboratory of Clean Energy Utilization, Zhejiang University No.38 Zheda Road, Hangzhou 310027, (China)

    2006-07-01

    The bio-hydrogen production from hyacinth by anaerobic fermentation of digested sludge is studied in this paper. The compositions of bio-gases and volatile fatty acids in fermentation liquids are determined on TRACE 2000 gas chromatography. It is found that the H{sub 2} concentration in the biogas is 10%-20% and no CH{sub 4} is detected. The bio-hydrogen production from hyacinth with the initial pH value of 5.5 is higher than that with the initial pH value of 4.5. The fermentation temperature of 55 C is better than that of 35 C, while the weight ratio of hyacinth to microorganism of 1:1 is better than that of 3:7. The highest hydrogen production of 122.3 mL/g is obtained when the initial pH value of fermentation solution is 5.5, the fermentation temperature is 55 C and the weight ratio of hyacinth to microorganism is 1:1. (authors)

  7. Bio-hydrogen production by dark fermentation from organic wastes and residues

    DEFF Research Database (Denmark)

    Liu, Dawei

    Der er stigende opmærksomhed omkring biohydrogen. Ved hydrogen fermentering kan kun en lille del af det organiske materiale eller COD i affald omdannes til hydrogen. Der findes endnu ingen full-skala bio-hydrogen anlæg, eftersom effektive rentable teknologier ikke er udviklet endnu. En to......-trins proces der kombinerer bio-hydrogen og bio-metan produktionen er en attraktiv mulighed til at øge det totale energi-udbytte af fermentering af organisk materiale. I en to-trins proces, med bio-hydrogen som første trin og bio-methan som andet trin, kunne der opnås 43mL-H2/gVSadded ved 37°C fra...

  8. A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse.

    Science.gov (United States)

    Cheng, Jingrong; Zhu, Mingjun

    2013-09-01

    A novel co-culture of Clostridium thermocellum and Thermoanaerobacterium aotearoense with pretreated sugarcane bagasse (SCB) under mild alkali conditions for bio-hydrogen production was established, exhibiting a cost-effective and synergetic advantage in bio-hydrogen production over monoculture of C. thermocellum or T. aotearoense with untreated SCB. The optimized pretreatment conditions were established to be 3% NaOH, and a liquid to solid ratio of 25:1 at 80°C for 3h. A final hydrogen production of 50.05±1.51 mmol/L was achieved with 40 g/L pretreated SCB at 55°C. The established co-culture system provides a novel consolidated bio-processing strategy for bioconversion of SCB to bio-hydrogen.

  9. Small proton exchange membrane fuel cell power station by using bio-hydrogen

    Institute of Scientific and Technical Information of China (English)

    刘志祥; 毛宗强; 王诚; 任南琪

    2006-01-01

    In fermentative organic waste water treatment process, there was hydrogen as a by-product. After some purification,there was about 50% ~ 70% hydrogen in the bio-gas, which could be utilized for electricity generation with fuel cell. Half a year ago, joint experiments between biological hydrogen production in Harbin Institute of Technology (HIT) and proton exchange membrane fuel cell (PEMFC) power station in Tsinghua University were conducted for electricity generation with bio-hydrogen from the pilot plant in HIT. The results proved the feasibility of the bio-hydrogen as a by-product utilization with PEMFC power station and revealed some problems of fuel cell power station for this application.

  10. Bio-hydrogen production from tempeh and tofu processing wastes via fermentation process using microbial consortium: A mini-review

    Science.gov (United States)

    Rengga, Wara Dyah Pita; Wati, Diyah Saras; Siregar, Riska Yuliana; Wulandari, Ajeng Riswanti; Lestari, Adela Ayu; Chafidz, Achmad

    2017-03-01

    One of alternative energies that can replace fossil fuels is hydrogen. Hydrogen can be used to generate electricity and to power combustion engines for transportation. Bio-hydrogen produced from tempeh and tofu processing waste can be considered as a renewable energy. Bio-hydrogen produced from tempeh and tofu processing waste is beneficial because the waste of soybean straw and tofu processing waste is plentiful, cheap, renewable and biodegradable. Specification of tempeh and tofu processing waste were soybean straw and sludge of tofu processing. They contain carbohydrates (cellulose, hemicellulose, and lignin) and methane. This paper reviews the optimal condition to produce bio-hydrogen from tempeh and tofu processing waste. The production of bio-hydrogen used microbial consortium which were enriched from cracked cereals and mainly dominated by Clostridium butyricum and Clostridium roseum. The production process of bio-hydrogen from tempeh and tofu processing waste used acid pre-treatment with acid catalyzed hydrolysis to cleave the bond of hemicellulose and cellulose chains contained in biomass. The optimal production of bio-hydrogen has a yield of 6-6.8 mL/g at 35-60 °C, pH 5.5-7 in hydraulic retention time (HRT) less than 16 h. The production used a continuous system in an anaerobic digester. This condition can be used as a reference for the future research.

  11. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    OpenAIRE

    A. Sattar; C. Arslan; Ji, C.; Sattar, S.; K. Yousaf; S. Hashim

    2015-01-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen productio...

  12. Bio-hydrogen production from molasses by anaerobic fermentation in continuous stirred tank reactor

    Science.gov (United States)

    Han, Wei; Li, Yong-feng; Chen, Hong; Deng, Jie-xuan; Yang, Chuan-ping

    2010-11-01

    A study of bio-hydrogen production was performed in a continuous flow anaerobic fermentation reactor (with an available volume of 5.4 L). The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32 kg COD/m3 reactor/d (COD: chemical oxygen demand) with molasses as the substrate. The maximum hydrogen production yield of 8.19 L/d was obtained in the reactor with the OLR increased from 8 kg COD/m3 reactor/d to 24 kg COD/m3 d. However, the hydrogen production and volatile fatty acids (VFAs) drastically decreased at an OLR of 32 kg COD/m3 reactor/d. Ethanoi, acetic, butyric and propionic were the main liquid fermentation products with the percentages of 31%, 24%, 20% and 18%, which formed the mixed-type fermentation.

  13. [Characteristics and operation of enhanced continuous bio-hydrogen production reactor using support carrier].

    Science.gov (United States)

    Ren, Nan-qi; Tang, Jing; Gong, Man-li

    2006-06-01

    A kind of granular activated carbon, whose granular size is no more than 2mm and specific gravity is 1.54g/cm3, was used as the support carrier to allow retention of activated sludge within a continuous stirred-tank reactor (CSTR) using molasses wastewater as substrate for bio-hydrogen production. Continuous operation characteristics and operational controlling strategy of the enhanced continuous bio-hydrogen production system were investigated. It was indicated that, support carriers could expand the activity scope of hydrogen production bacteria, make the system fairly stable in response to organic load impact and low pH value (pH reactor at low HRT. The reactor with ethanol-type fermentation achieved an optimal hydrogen production rate of 0.37L/(g x d), while the pH value ranged from 3.8 to 4.4, and the hydrogen content was approximately 40% approximately 57% of biogas. It is effective to inhibit the methanogens by reducing the pH value of the bio-hydrogen production system, consequently accelerate the start-up of the reactor.

  14. Bio-hydrogen production from renewable organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  15. Synergistic collaboration of gut symbionts in Odontotermes formosanus for lignocellulosic degradation and bio-hydrogen production.

    Science.gov (United States)

    Mathew, Gincy Marina; Mathew, Dony Chacko; Lo, Shou-Chen; Alexios, Georgy Mathew; Yang, Jia-Cih; Sashikumar, Jagathala Mahalingam; Shaikh, Tanveer Mahamadali; Huang, Chieh-Chen

    2013-10-01

    In this work, gut microbes from the macrotermitine termite Odontotermes formosanus the cellulolytic Bacillus and fermentative Clostridium were studied in batch experiments using different carbon substrates to bio-mimic the termite gut for hydrogen production. Their fungus comb aging and the in vitro lignocellulosic degradation of the mango tree substrates by the synergistic interaction of Bacillus, Clostridium and Termitomyces were detected by Solid-state NMR. From the results, Bacillus species acted as a mutualist, by initiating an anaerobic environment for the growth of Clostridium, for bio-hydrogen production and the presence of Termitomyces enhanced the lignocellulosic degradation of substrates in vitro and in vivo. Thus, the synergistic collaboration of these three microbes can be used for termite-derived bio-fuel processing technology.

  16. Bio-hydrogen production from glycerol by a strain of Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Marques, P.A.S.S; Bartolomeu, M.L.; Tome, M.M.; Rosa, M.F. [INETI, Unit of Biomass/Renewable Energy Department, Estrada do Paco do Lumiar, 22, 1649-038 Lisboa (Portugal)

    2008-07-01

    The goal of this work was to evaluate the H2 production from glycerol-containing byproducts obtained from biodiesel industrial production, using Enterobacter aerogenes ATCC 13048 Sputum. H2 production using as substrate pure glycerol and glycerol-containing biodiesel byproducts was compared. The effect of parameters such as initial substrate concentration and sodium chloride addition on the bio-hydrogen production efficiency was also investigated. The results showed that using 10 g/L of pure glycerol or biodiesel residues, containing the same concentration of glycerol as substrate, lead to similar bio-hydrogen productions (3.46 LH2/L and 3.28 LH2/L fermentation medium, respectively). This indicates that the performance of the E. aerogenes strain used was not influenced by the presence of other components than glycerol in biodiesel residues, at least for the tested waste concentration range. When sodium chloride was added to the fermentation medium with pure 10 g/L glycerol, H2 production was not affected (3.34 LH2/L fermentation medium), showing that metabolism of the E. aerogenes strain was not inhibited by this biodiesel waste component up to 4 g/L chloride concentration. Biodiesel residues used without sterilization provided a higher H2 production (1.03 L) than the ones submitted to previous sterilization in autoclave (0.89 L).

  17. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH.

    Science.gov (United States)

    Hwang, Moon H; Jang, Nam J; Hyun, Seung H; Kim, In S

    2004-08-01

    Hydrogen was produced by an ethanol-acetate fermentation at pH of 5.0 +/- 0.2 and HRT of 3 days. The yield of hydrogen was 100-200 ml g Glu(-1) with a hydrogen content of 25-40%. This fluctuation in the hydrogen yield was attributed to the formation of propionate and the activity of hydrogen utilizing methanogens. The change in the operational pH for the inhibition of this methanogenic activity induced a change in the main fermentation pathway. In this study, the main products were butyrate, ethanol and propionate, in the pH ranges 4.0-4.5, 4.5-5.0 and 5.0-6.0, respectively. However, the activity of all the microorganisms was inhibited below pH 4.0. Therefore, pH 4.0 was regarded as the operational limit for the anaerobic bio-hydrogen production process. These results indicate that the pH plays an important role in determining the type of anaerobic fermentation pathway in anaerobic bio-hydrogen processes.

  18. Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jui-Jen; Ho, Cheng-Yu.; Chen, Wei-En; Huang, Chieh-Chen [Department of Life Sciences, National Chung Hsing University, Taichung (China); Chou, Chia-Hung; Lay, Jiunn-Jyi [Department of Science and Technology, National Kaohsiung First University, Kaohsiung (China)

    2008-10-15

    By using brewery yeast waste and microflora from rice straw compost, an anaerobic semi-solid bio-hydrogen-producing system has been established. For the purpose of industrialization, the major players of both aerobic and anaerobic bacterial strains in the system were isolated and their combination for an effective production of bio-hydrogen and other bio-fuels was examined in this study. The phylogenetic analysis found that four anaerobic isolates (Clostridium beijerinckii L9, Clostridium diolis Z2, Clostridium roseum Z5-1, and C. roseum W8) were highly related with each other and belongs to the cluster I clostridia family, the family that many of solvent-producing strains included. On the other hand, one of the aerobic isolates, the Bacillus thermoamylovorans strain I, shown multiple extracellular enzyme activities including lipase, protease, {alpha}-amylase, pectinase and cellulase, was suggested as a good partner for creating an anaerobic environment and pre-saccharification of substrate for those co-cultured solventogenic clostridial strain. Among these clostridial strains, though C. beijerinckii L9 do not show as many extracellular enzyme activities as Bacillus, but it performs the highest hydrogen-producing ability. The original microflora can be updated to a syntrophic bacterial co-culture system contended only with B. thermoamylovorans I and C. beijerinckii L9. The combination of aerobic Bacillus and anaerobic Clostridium may play the key role for developing the industrialized bio-fuels and bio-hydrogen-producing system from biomass. (author)

  19. Bio-hydrogen Production Using the Visible Light-harvesting Function of Chlorophyll-a

    Energy Technology Data Exchange (ETDEWEB)

    Yutaka Amao; Noriko Himeshima [Department of Applied Chemistry, Oita University, Dannoharu 700, Oita 870-1192, (Japan)

    2006-07-01

    A Bio-hydrogen production system, coupling D-maltose hydrolysis by gluco-amylase and glucose dehydrogenase (GDH) and hydrogen production with platinum nano-particle colloid catalyst using the photo-sensitization based on the visible light harvesting of Mg chlorophyll-a (Mg Chl-a), was developed. Hydrogen gas was continuously produced when the reaction mixture containing D-maltose, gluco-amylase, GDH, nicotinamide adenine dinucleotide (NAD+), Mg Chl-a, methyl-viologen (MV2+) and platinum nano-particle colloid was irradiated by visible light. The amount of hydrogen production was estimated to be 5.0 {mu}mol after 4 h irradiation and the yield of conversion of D-maltose to hydrogen gas was about 1.8%. The quantum yield was 3.1%. (authors)

  20. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors.

    Science.gov (United States)

    Ren, N Q; Chua, H; Chan, S Y; Tsang, Y F; Wang, Y J; Sin, N

    2007-07-01

    In this study, the optimal fermentation type and the operating conditions of anaerobic process in continuous-flow acidogenic reactors was investigated for the maximization of bio-hydrogen production using mixed cultures. Butyric acid type fermentation occurred at pH>6, propionic acid type fermentation occurred at pH about 5.5 with E(h) (redox potential) >-278mV, and ethanol-type fermentation occurred at pHhydrogen production capacities between the fermentation types, which remained stable when the organic loading rate (OLR) reached the highest OLR at 86.1kgCOD/m(3)d. The maximum hydrogen production reached up to 14.99L/d.

  1. Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms.

    Science.gov (United States)

    Kalathil, Shafeer; Khan, Mohammad Mansoob; Lee, Jintae; Cho, Moo Hwan

    2013-11-01

    Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial electrolysis cells, where they act as living bioanode or biocathode catalysts. Recently, it was reported that EABs can be used to synthesize metal nanoparticles and metal nanocomposites. The EAB-mediated synthesis of metal and metal-semiconductor nanocomposites is expected to provide a new avenue for the greener synthesis of nanomaterials with high efficiency and speed than other synthetic methods. This review covers the general introduction of EABs, as well as the applications of EABs in BESs, and the production of bio-hydrogen, high value chemicals and bio-inspired nanomaterials.

  2. Bio-methane & Bio-hydrogen. Status and perspectives of biological methane and hydrogen production

    NARCIS (Netherlands)

    Wijffels, R.H.; Janssen, M.G.J.

    2003-01-01

    Eerst wordt het kader geschetst voor de potentiële rol van bio-methaan en bio-waterstof in de energiehuishouding en de invloeden daarop van de ontwikkeling van eindgebruikstechnologie en infrastructuur, en het energiebeleid. Daarna wordt uitvoerig ingegaan op de technieken voor bio-methaan en

  3. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Shireen Meher Kotay; Debabrata Das [Fermentation Technology Lab., Department of Biotechnology, Indian Institute of Technology Kharagpur, W.B., INDIA-721302 (India)

    2006-07-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H{sub 2} production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H{sub 2}/ g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H{sub 2}/ g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5% w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H{sub 2}/ g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H{sub 2}/ g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H{sub 2} / g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H{sub 2}/ g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from

  4. Feasibility of bio-hydrogen production from sewage sludge using defined microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Shireen Meher Kotay; Debabrata Das [Fermentation Technology Lab., Department of Biotechnology, Indian Institute of Technology Kharagpur, W.B., INDIA-721302 (India)

    2006-07-01

    Biological hydrogen production potential of a defined microbial consortium consisting of three facultative anaerobes, Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1 was studied. In this investigation their individual and combinatorial H{sub 2} production capabilities have been studied on defined media and pretreated sewage sludge. Defined medium, MYG (1% w/v Malt extract, 0.4% w/v yeast extract and 1% w/v glucose) with glucose as limiting substrate has been found to be most suitable for hydrogen production. Individually E. cloacae clearly gave higher yield (276 ml H{sub 2}/ g COD reduced) using defined medium than the other two strains. There was no considerable difference in maximal yield of hydrogen from individual and combinatorial (1:1:1 consortium) modes suggesting that E. cloacae dominated in the consortia on defined medium. Contradictorily, B. coagulans gave better bio-hydrogen yield (37.16 ml H{sub 2}/g COD consumed) than the other two strains when activated sewage sludge was used as substrate. The pretreatment of sludge included sterilization, (15% v/v) dilution and supplementation with 0.5%w/v glucose which was found to be essential to screen out the hydrogen consuming bacteria and ameliorate the hydrogenation. Considering (1:1:1) consortium as inoculum, interestingly yield of hydrogen was recorded to increase to 41.23 ml H{sub 2}/ g COD reduced inferring that in consortium, the substrate utilization was significantly higher. The hydrogen yield from pretreated sludge obtained in this study (35.54 ml H{sub 2} g sludge) has been found to be distinctively higher than the earlier reports (8.1 - 16.9 ml H{sub 2}/g sludge). However it was lower compared to the yield obtained from co-digestion of (83:17) food waste and sewage sludge (122 ml H{sub 2}/g carbohydrate COD). Employing formulated microbial consortia for bio-hydrogen production from sewage sludge was an attempt to augment the hydrogen yield from sludge

  5. Comparing the Bio-Hydrogen Production Potential of Pretreated Rice Straw Co-Digested with Seeded Sludge Using an Anaerobic Bioreactor under Mesophilic Thermophilic Conditions

    Directory of Open Access Journals (Sweden)

    Asma Sattar

    2016-03-01

    Full Text Available Three common pretreatments (mechanical, steam explosion and chemical used to enhance the biodegradability of rice straw were compared on the basis of bio-hydrogen production potential while co-digesting rice straw with sludge under mesophilic (37 °C and thermophilic (55 °C temperatures. The results showed that the solid state NaOH pretreatment returned the highest experimental reduction of LCH (lignin, cellulose and hemi-cellulose content and bio-hydrogen production from rice straw. The increase in incubation temperature from 37 °C to 55 °C increased the bio-hydrogen yield, and the highest experimental yield of 60.6 mL/g VSremoved was obtained under chemical pretreatment at 55 °C. The time required for maximum bio-hydrogen production was found on the basis of kinetic parameters as 36 h–47 h of incubation, which can be used as a hydraulic retention time for continuous bio-hydrogen production from rice straw. The optimum pH range of bio-hydrogen production was observed to be 6.7 ± 0.1–5.8 ± 0.1 and 7.1 ± 0.1–5.8 ± 0.1 under mesophilic and thermophilic conditions, respectively. The increase in temperature was found useful for controlling the volatile fatty acids (VFA under mechanical and steam explosion pretreatments. The comparison of pretreatment methods under the same set of experimental conditions in the present study provided a baseline for future research in order to select an appropriate pretreatment method.

  6. Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch operation

    Energy Technology Data Exchange (ETDEWEB)

    Kargi, Fikret; Pamukoglu, M. Yunus [Department of Environmental Engineering, Dokuz Eylul University, 35160 Buca, Izmir (Turkey)

    2009-04-15

    Ground wheat solution was used for bio-hydrogen production by dark fermentation using heat-treated anaerobic sludge in a completely mixed fermenter operating in fed-batch mode. The feed wheat powder (WP) solution was fed to the anaerobic fermenter with a constant flow rate of 8.33 mL h{sup -1} (200 mL d{sup -1}). Cumulative hydrogen production, starch utilization and hydrogen yields were determined at three different WP loading rates corresponding to the feed WP concentrations of 10, 20 and 30 g L{sup -1}. The residual starch (substrate) concentration in the fermenter decreased with operation time while starch consumption was increasing. The highest cumulative hydrogen production (3600 mL), hydrogen yield (465 mL H{sub 2} g{sup -1} starch or 3.1 mol H{sub 2} mol{sup -1} glucose) and hydrogen production rate (864 mL H{sub 2} d{sup -1}) were obtained after 4 days of fed-batch operation with the 20 g L{sup -1} feed WP concentration corresponding to a WP loading rate of 4 g WP d{sup -1}. Low feed WP concentrations (10 g L{sup -1}) resulted in low hydrogen yields and rates due to substrate limitations. High feed WP concentrations (30 g L{sup -1}) resulted in the formation of volatile fatty acids (VFAs) in high concentrations causing inhibition on the rate and yield of hydrogen production. (author)

  7. Bio-hydrogen production by biodiesel-derived crude glycerol bioconversion: a techno-economic evaluation.

    Science.gov (United States)

    Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Le Bihan, Yann; Buelna, Gerardo

    2013-01-01

    Global biodiesel production is continuously increasing and it is proportionally accompanied by a huge amount of crude glycerol (CG) as by-product. Due to its crude nature, CG has very less commercial interest; although its pure counterpart has different industrial applications. Alternatively, CG is a very good carbon source and can be used as a feedstock for fermentative hydrogen production. Further, a move of this kind has dual benefits, namely it offers a sustainable method for disposal of biodiesel manufacturing waste as well as produces biofuels and contributes in greenhouse gas (GHG) reduction. Two-stage fermentation, comprising dark and photo-fermentation is one of the most promising options available for bio-hydrogen production. In the present study, techno-economic feasibility of such a two-stage process has been evaluated. The analysis has been made based on the recent advances in fermentative hydrogen production using CG as a feedstock. The study has been carried out with special reference to North American biodiesel market; and more specifically, data available for Canadian province, Québec City have been used. Based on our techno-economic analysis, higher production cost was found to be the major bottleneck in commercial production of fermentative hydrogen. However, certain achievable alternative options for reduction of process cost have been identified. Further, the process was found to be capable in reducing GHG emissions. Bioconversion of 1 kg of crude glycerol (70 % w/v) was found to reduce 7.66 kg CO(2) eq (equivalent) GHG emission, and the process also offers additional environmental benefits.

  8. Analysis of energy consumption and CO{sub 2} emissions of the life cycle of bio-hydrogen applied to the Portuguese road transportation sector

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ana Filipa; Baptista, Patricia; Silva, Carla [IDMEC (Portugal). Dept. of Mechanical Engineering

    2010-07-01

    In this work the main objective is to analyze energy consumption and CO{sub 2} emissions of biohydrogen for use in the transportation sector in Portugal. A life cycle assessment will be performed in order to evaluate bio-hydrogen pathways, having biodiesel and conventional fossil diesel as reference. The pathways were production of feedstock, pre-treatment, treatment, compression, distribution and applications. For the well-to-tank analysis the SimaPro 7.1 software and excel tools are used. This study includes not only a well-to-tank analysis but also a tank-to-wheel analysis (using ADVISOR software) estimating hydrogen consumption and electricity consumption of a fuel cell hybrid and a plug-in hybrid. Several bio-hydrogen feedstocks to produce hydrogen through fermentation processes will be considered: potato peels. (orig.)

  9. Potential improvement to a citric wastewater treatment plant using bio-hydrogen and a hybrid energy system

    Science.gov (United States)

    Zhi, Xiaohua; Yang, Haijun; Berthold, Sascha; Doetsch, Christian; Shen, Jianquan

    Treatment of highly concentrated organic wastewater is characterized as cost-consuming. The conventional technology uses the anaerobic-anoxic-oxic process (A 2/O), which does not produce hydrogen. There is potential for energy saving using hydrogen utilization associated with wastewater treatment because hydrogen can be produced from organic wastewater using anaerobic fermentation. A 50 m 3 pilot bio-reactor for hydrogen production was constructed in Shandong Province, China in 2006 but to date the hydrogen produced has not been utilized. In this work, a technical-economic model based on hydrogen utilization is presented and analyzed to estimate the potential improvement to a citric wastewater plant. The model assesses the size, capital cost, annual cost, system efficiency and electricity cost under different configurations. In a stand-alone situation, the power production from hydrogen is not sufficient for the required load, thus a photovoltaic array (PV) is employed as the power supply. The simulated results show that the combination of solar and bio-hydrogen has a much higher cost compared with the A 2/O process. When the grid is connected, the system cost achieved is 0.238 US t -1 wastewater, which is lower than 0.257 US t -1 by the A 2/O process. The results reveal that a simulated improvement by using bio-hydrogen and a FC system is effective and feasible for the citric wastewater plant, even when compared to the current cost of the A 2/O process. In addition, lead acid and vanadium flow batteries were compared for energy storage service. The results show that a vanadium battery has lower cost and higher efficiency due to its long lifespan and energy efficiency. Additionally, the cost distribution of components shows that the PV dominates the cost in the stand-alone situation, while the bio-reactor is the main cost component in the parallel grid.

  10. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    Science.gov (United States)

    Arslan, C.; Sattar, A.; Ji, C.; Sattar, S.; Yousaf, K.; Hashim, S.

    2015-11-01

    The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C) to thermophilic (55 °C) was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste. The maximum cumulative bio-hydrogen production of 650 mL was obtained from noodle waste under thermophilic temperature condition. Most of the production was observed during the first 48 h of incubation, which continued until 72 h of incubation. The decline in pH during this interval was 4.3 and 4.4 from a starting value of 7 under mesophilic and thermophilic conditions, respectively. Most of the glucose consumption was also observed during 72 h of incubation and the maximum consumption was observed during the first 24 h, which was the same duration where the maximum pH drop occurred. The maximum hydrogen yields of 82.47 mL VS-1, 131.38 mL COD-1, and 44.90 mL glucose-1 were obtained from thermophilic food waste, thermophilic noodle waste and mesophilic rice waste, respectively. The production of volatile fatty acids increased with an increase in time and temperature in food waste and noodle waste reactors whereas they decreased with temperature in rice waste reactors. The statistical modelling returned good results with high values of coefficient of determination (R2) for each waste type and 3-D response surface plots developed by using models developed. These plots developed a better understanding regarding the impact of temperature and incubation time on bio-hydrogen production trend, glucose consumption during incubation and volatile fatty acids production.

  11. Two-phase anaerobic digestion of mixed waste streams to separate generation of bio-hydrogen and bio-methane

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Z.; Horam, N.J. [Leeds Univ. (United Kingdom). School of Civil Engineering

    2010-07-01

    two phase and sub optimal conditions improves the energy potential to 8.27 MW/tonne VS{sub fed} with VS(removal) efficiency as 80.7% in total 15 days of HRT. The net energy balance results indicated the co-digestion of IFW with waste products of SS treatment plant viz. primary sludge (PS) and waste activated sludge (WAS) are amenable substrates for the two-stage anaerobic bio-hydrogen and biomethane digestion process. (orig.)

  12. Isolation and characterization of a Klebsiella oxytoca strain for simultaneous azo-dye anaerobic reduction and bio-hydrogen production.

    Science.gov (United States)

    Yu, Lei; Li, Wen-Wei; Lam, Michael Hon-Wah; Yu, Han-Qing; Wu, Chao

    2012-07-01

    A facultative anaerobic bacteria strain GS-4-08, isolated from an anaerobic sequence batch reactor for synthetic dye wastewater treatment, was investigated for azo-dye decolorization. This bacterium was identified as a member of Klebsiella oxytoca based on Gram staining, morphology characterization and 16S rRNA gene analysis. It exhibited a good capacity of simultaneous decolorization and hydrogen production in the presence of electron donor. The hydrogen production was less affected even at a high Methyl Orange (MO) concentration of 0.5 mM, indicating a superior tolerability of this strain to MO. This efficient bio-hydrogen production from electron donor can not only avoid bacterial inhibition due to accumulation of volatile fatty acids during MO decolorization, but also can recover considerable energy from dye wastewater.

  13. Timeline of bio-hydrogen production by anaerobic digestion of biomass

    OpenAIRE

    Bernadette E. TELEKY; Mugur C. BĂLAN; Nikolausz, Marcell

    2015-01-01

    Anaerobic digestion of biomass is a process capable to produce biohydrogen, a clean source of alternative energy. Lignocellulosic biomass from agricultural waste is considered a renewable energy source; therefore its utilization also contributes to the reduction of water, soil and air pollution. The study consists in five consecutive experiments designed to utilize anaerobic bacterial enrichment cultures originating from the Hungarian Lake, Hévíz. Wheat straw was used as com...

  14. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling

    Directory of Open Access Journals (Sweden)

    A. Sattar

    2015-08-01

    Full Text Available The effect of temperature on bio-hydrogen production by co-digestion of sewerage sludge with food waste and its two derivatives, i.e. noodle waste and rice waste, was investigated by statistical modelling. Experimental results showed that increasing temperature from mesophilic (37 °C to thermophilic (55 °C was an effective mean for increasing bio-hydrogen production from food waste and noodle waste, but it caused a negative impact on bio-hydrogen production from rice waste. The maximum cumulative bio-hydrogen production of 650 mL was obtained from noodle waste under mesophilic temperature condition. Most of the production was observed during 48 h of incubation that continued till 72 h of incubation, and a decline in pH during this interval was 4.3 and 4.4 from a starting value of 7 under mesophilic and thermophilic conditions, respectively. Most of glucose consumption was also observed during 72 h of incubation and the maximum consumption was observed during the first 24 h, which was the same duration where the maximum pH drop occurred. The maximum hydrogen yields of 82.47 mL VS−1, 131.38 mL COD−1, and 44.90 mL glucose−1 were obtained from mesophilic food waste, thermophilic noodle waste and mesophilic rice waste respectively. The production of volatile fatty acids increased with an increase in time and temperature from food waste and noodle waste reactors whereas it decreased with temperature in rice waste reactors. The statistical modelling returned good results with high values of coefficient of determination (R2 for each waste type when it was opted for the study of cumulative hydrogen production, glucose consumption and volatile fatty acid production. The 3-D response surface plots developed by the statistical models helped a lot in developing better understanding of the impact of temperature and incubation time.

  15. Effects of starch loading rate on performance of combined fed-batch fermentation of ground wheat for bio-hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Ozmihci, Serpil; Kargi, Fikret [Department of Environmental Engineering, Dokuz Eylul University, 35160 Buca, Izmir (Turkey)

    2010-02-15

    Ground wheat powder solution (10 g L{sup -1}) was subjected to combined dark and light fermentations for bio-hydrogen production by fed-batch operation. A mixture of heat treated anaerobic sludge (AN) and Rhodobacter sphaeroides-NRRL (RS-NRRL) were used as the mixed culture of dark and light fermentation bacteria with an initial dark/light biomass ratio of 1/2. Effects of wheat starch loading rate on the rate and yield of bio-hydrogen formation were investigated. The highest cumulative hydrogen formation (CHF = 3460 ml), hydrogen yield (201 ml H{sub 2} g{sup -1} starch) and formation rate (18.1 ml h{sup -1}) were obtained with a starch loading rate of 80.4 mg S h{sup -1}. Complete starch hydrolysis and glucose fermentation were achieved within 96 h of fed-batch operation producing volatile fatty acids (VFA) and H{sub 2}. Fermentation of VFAs by photo-fermentation for bio-hydrogen production was most effective at starch loading rate of 80.4 mg S h{sup -1}. Hydrogen formation by combined fermentation took place by a fast dark fermentation followed by a rather slow light fermentation after a lag period. (author)

  16. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    Science.gov (United States)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-01-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control. PMID:24495932

  17. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    Science.gov (United States)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  18. Timeline of bio-hydrogen production by anaerobic digestion of biomass

    Directory of Open Access Journals (Sweden)

    Bernadette E. TELEKY

    2015-12-01

    Full Text Available Anaerobic digestion of biomass is a process capable to produce biohydrogen, a clean source of alternative energy. Lignocellulosic biomass from agricultural waste is considered a renewable energy source; therefore its utilization also contributes to the reduction of water, soil and air pollution. The study consists in five consecutive experiments designed to utilize anaerobic bacterial enrichment cultures originating from the Hungarian Lake, Hévíz. Wheat straw was used as complex substrate to produce hydrogen. The timeline evolution of hydrogen production was analyzed and modelled by two functions: Logistic and Boltzmann. The results proved that hydrogen production is significant, with a maximum of 0.24 mlN/ml and the highest hydrogen production occurs between the days 4-10 of the experiment.

  19. Microbial biofilm community in a thermophilic trickling bio filter used for continuous biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.; Park, E.-J. [Korea Advanced Inst. of Science and Technology, Daejeon (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering; Oh, Y.-K. [Pusan National Univ., Pusan (Korea, Republic of). Dept. of Chemical Engineering; Park, S. [Pusan National Univ., Pusan (Korea, Republic of). Dept. of Chemical Engineering]|[Pusan National Univ., Pusan (Korea, Republic of). Inst. for Environmental Technology and Industry

    2004-07-01

    The microbial community in a thermophilic trickling biofilter reactor (TBR) that produces biohydrogen was examined. In particular, nonculture-based molecular methods were used to characterize the microbial community in the biofilm formed on the matrixes that were packed in the reactor. The operation of the bioreactor was described. TBR demonstrated long term stability to produce hydrogen. Biomass volatile suspended solids (VSS) in the TBR decreased gradually as bed height increased from the bottom of the bed. Epifluorescence microscopy of 6-diamidino-2-phenylindole (DAPI)-stained cells and denaturing gradient gel electrophoresis (DGGE) analysis both indicate that microbial composition changes in the TBR according to bed height. The dominant phylogenetic groups in the system were identified along with the comparative analysis of morphology of microbial community and the DGGE profiles of the microbial community in terms of total genomic DNA extracted from biofilm cells. 10 refs., 1 tab., 5 figs.

  20. [Start-up and continuous operation of bio-hydrogen production reactor at pH 5].

    Science.gov (United States)

    Gong, Man-li; Ren, Nan-qi; Tang, Jing

    2005-03-01

    A continuous stirred-tank reactor(CSTR)for bio-hydrogen production using molasses wastewater as substrate was investigated. Emphasis was placed on assessing the start-up and continuous operation characteristics when keeping pH value constant. It was found that at pH of 5, biomass of 6g/L, organic loading rate (OLR) of 7.0kg/(m3 x d) and a hydraulic retention time (HRT) of 6h, an equilibrial hydrogen-producing microbial community could be established within 30 days. Following that, oxidation redox potential (ORP) were kept within the ranges - 460mV - -480mV. Typical mixed acid type fermentation was exhibited in the reactor. Little difference was observed in the distribution of liquid end products. The liquid end products proportion of the total amount was 36% of acetic acid, 33% of ethanol, 18% of butyric acid, 13% of propionic acid and valeric acid, respectively. Hydrogen content in the biogas was about 30% - 35% . Maximal hydrogen production rate was 1.3m3/(m3 x d). The acid-producing fermentative bacteria were in the same preponderant status when the reactor showed mixed acid type fermentation. They are mostly cocci and bacilli.

  1. Direct degradation of cellulosic biomass to bio-hydrogen from a newly isolated strain Clostridium sartagoforme FZ11.

    Science.gov (United States)

    Zhang, Jing-Nan; Li, Yan-Hong; Zheng, Hui-Qin; Fan, Yao-Ting; Hou, Hong-Wei

    2015-09-01

    A mesophilic hydrogen-producing strain, Clostridium sartagoforme FZ11, had been newly isolated from cow dung compost acclimated using microcrystalline cellulose (MCC) for at least 30 rounds in an anaerobic bioreactor, and identified by the 16S rDNA gene sequencing, which could directly utilized various carbon sources, especially cellulosic biomass, to produce hydrogen. The maximum hydrogen yields from MCC (10 g/l) and carboxymethyl cellulose (CMC, 10 g/l) were 77.2 and 64.6 ml/g, separately. Furthermore, some key parameters of affecting hydrogen production from raw corn stalk were also optimized. The maximal hydrogen yield and substrate degradation rate from raw corn stalk were 87.2 ml/g and 41.2% under the optimized conditions with substrate concentration of 15 g/l, phosphate buffer of 0.15 M, urea of 6 g/l and initial pH of 6.47 at 35 °C. The result showed that the strain FZ11 would be an ideal candidate to directly convert cellulosic biomass into bio-hydrogen without substrate pretreatment.

  2. Optimization studies of bio-hydrogen production in a coupled microbial electrolysis-dye sensitized solar cell system.

    Science.gov (United States)

    Ajayi, Folusho Francis; Kim, Kyoung-Yeol; Chae, Kyu-Jung; Choi, Mi-Jin; Chang, In Seop; Kim, In S

    2010-03-01

    Bio-hydrogen production in light-assisted microbial electrolysis cell (MEC) with a dye sensitized solar cell (DSSC) was optimized by connecting multiple MECs to a single dye (N719) sensitized solar cell (V(OC) approx. 0.7 V). Hydrogen production occurred simultaneously in all the connected MECs when the solar cell was irradiated with light. The amount of hydrogen produced in each MEC depends on the activity of the microbial catalyst on their anode. Substrate (acetate) to hydrogen conversion efficiencies ranging from 42% to 65% were obtained from the reactors during the experiment. A moderate light intensity of 430 W m(-2) was sufficient for hydrogen production in the coupled MEC-DSSC. A higher light intensity of 915 W m(-2), as well as an increase in substrate concentration, did not show any improvement in the current density due to limitation caused by the rate of microbial oxidation on the anode. A significant reduction in the surface area of the connected DSSC only showed a slight effect on current density in the coupled MEC-DSSC system when irradiated with light.

  3. Production of bio-hydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor.

    Science.gov (United States)

    Cheong, Dae-Yeol; Hansen, Conly L; Stevens, David K

    2007-02-15

    The pH and hydraulic retention time (HRT) of an anaerobic sequencing batch reactor (ASBR) were varied to optimize the conversion of carbohydrate-rich synthetic wastewater into bio-hydrogen. A full factorial design using evolutionary operation (EVOP) was used to determine the effect of the factors and to find the optimum condition of each factor required for high hydrogen production rate. Experimental results from 20 runs indicate that a maximum hydrogen production rate of 4,460-5,540 mL/L/day under the volumetric organic loading rate (VOLR) of 75 g-COD/L/day obtained at an observed design point of HRT = 8 h and pH = 5.7. The hydrogen production rate was strongly dependent on the HRT, and the effect was statistically significant (P 0.05) was found for the pH on the hydrogen production rate. When the ASBR conditions were set for a maximum hydrogen production rate, the hydrogen production yield and specific hydrogen production rate were 60-74 mL/g-COD and 330-360 mL/g-VSS/day, respectively. The hydrogen composition was 43-51%, and no methanogenesis was observed. Acetate, propionate, butyrate, valerate, caproate, and ethanol were major liquid intermediate metabolites during runs of this ASBR. The dominant fermentative types were butyrate-acetate or ethanol-acetate, representing the typical anaerobic pathway of Clostridium species. This hydrogen-producing ASBR had a higher hydrogen production rate, compared with that produced using continuous-flow stirred tank reactors (CSTRs). This study suggests that the hydrogen-producing ASBR is a promising bio-system for prolonged and stable hydrogen production.

  4. Sequencing batch reactor enhances bacterial hydrolysis of starch promoting continuous bio-hydrogen production from starch feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shing-Der [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu (China); Lo, Yung-Chung; Huang, Tian-I. [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Lee, Kuo-Shing [Department of Safety Health and Environmental Engineering, Central Taiwan University of Science and Technology, Taichung (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China)

    2009-10-15

    Bio-hydrogen production from starch was carried out using a two-stage process combining thermophillic starch hydrolysis and dark H{sub 2} fermentation. In the first stage, starch was hydrolyzed by Caldimonas taiwanensis On1 using sequencing batch reactor (SBR). In the second stage, Clostridium butyricum CGS2 was used to produce H{sub 2} from hydrolyzed starch via continuous dark hydrogen fermentation. Starch hydrolysis with C. taiwanensis On1 was operated in SBR under pH 7.0 and 55 C. With a 90% discharge volume, the reducing sugar (RS) production from SBR reactor reached 13.94 g RS/L, while the reducing sugar production rate and starch hydrolysis rate was 0.92 g RS/h/L and 1.86 g starch/h/L, respectively, which are higher than using other discharge volumes. For continuous H{sub 2} production with the starch hydrolysate, the highest H{sub 2} production rate and yield was 0.52 L/h/L and 13.2 mmol H{sub 2}/g total sugar, respectively, under a hydraulic retention time (HRT) of 12 h. The best feeding nitrogen source (NH{sub 4}HCO{sub 3}) concentration was 2.62 g/L, attaining a good H{sub 2} production efficiency along with a low residual ammonia concentration (0.14 g/L), which would be favorable to follow-up photo H{sub 2} fermentation while using dark fermentation effluents as the substrate. (author)

  5. Development of a combined bio-hydrogen- and methane-production unit using dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Brunstermann, R.; Widmann, R. [Duisburg-Essen Univ. (Germany). Dept. of Urban Water and Waste Management

    2010-07-01

    Hydrogen is regarded as a source of energy of the future. Currently, hydrogen is produced, predominantly, by electrolysis of water by using electricity or by stream reforming of natural gas. So both methods are based on fossil fuels. If the used electricity is recovered from renewable recourses, hydrogen produced by water electrolysis may be a clean solution. At present, the production of hydrogen by biological processes finds more and more attention world far. The biology provides a wide range of approaches to produce hydrogen, including bio-photolysis as well as photo-fermentation and dark-fermentation. Currently these biological technologies are not suitable for solving every day energy problems [1]. But the dark-fermentation is a promising approach to produce hydrogen in a sustainable way and was already examined in some projects. At mesophilic conditions this process provides a high yield of hydrogen by less energy demand, [2]. Short hydraulic retention times (HRT) and high metabolic rates are advantages of the process. The incomplete transformation of the organic components into various organic acids is a disadvantage. Thus a second process step is required. Therefore the well known biogas-technique is used to degrade the organic acids predominantly acetic and butyric acid from the hydrogen-production unit into CH{sub 4} and CO{sub 2}. This paper deals with the development of a combined hydrogen and methane production unit using dark fermentation at mesophilic conditions. The continuous operation of the combined hydrogen and methane production out of DOC loaded sewages and carbohydrate rich biowaste is necessary for the examination of the technical and economical implementation. The hydrogen step shows as first results hydrogen concentration in the biogas between 40 % and 60 %.The operating efficiency of the combined production of hydrogen and methane shall be checked as a complete system. (orig.)

  6. Establishment of rumen-mimic bacterial consortia: A functional union for bio-hydrogen production from cellulosic bioresource

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jui-Jen [Genomics Research Center, Academia Sinica, Nankang, Taipei 115 (China); Lin, Jia-Jen; Ho, Cheng-Yu.; Chin, Wei-Chih; Huang, Chieh-Chen [Department of Life Sciences, National Chung Hsing University,Taichung (China)

    2010-12-15

    The study aimed to establish stable rumen-mimic bacterial consortia as a functional union for simultaneous saccharification and fermentation from cellulosic bioresource. The consortia was constructed by repeated-batch culture with ruminal microflora and napiergrass at 38 C. The major bacterial composition of batch culture was monitored by 16S rRNA gene-targeted denaturing gradient gel electrophoresis (DGGE). The result showed that a stable consortia constituted by ruminal microflora was formed, and the consortia includes bacterial strains such as Clostridium xylanolyticum, Clostridium papyrosolvens, Clostridium beijerinckii, Ruminococcus sp., Ethanoligenens harbinense, and Desulfovibrio desulfuricans. The Clostridium genus was showed as the dominant population in the system and contributed to the biohydrogen production. During each eight days incubation period, the functional consortia could degrade an average of 27% hemicellulose and 2% cellulose from napiergrass biomass. While the increasing of the reducing sugars and their converting to biohydrogen gas productivity were also observed. The time course profile for cellulytic enzymes showed that the hydrolysis of complex lignocellulosic material may occur through the ordered actions of xylenase and cellulase activities. (author)

  7. Production of Bio-Hydrogenated Diesel by Hydrotreatment of High-Acid-Value Waste Cooking Oil over Ruthenium Catalyst Supported on Al-Polyoxocation-Pillared Montmorillonite

    Directory of Open Access Journals (Sweden)

    Kinya Sakanishi

    2012-02-01

    Full Text Available Waste cooking oil with a high-acid-value (28.7 mg-KOH/g-oil was converted to bio-hydrogenated diesel by a hydrotreatment process over supported Ru catalysts. The standard reaction temperature, H2 pressure, liquid hourly space velocity (LHSV, and H2/oil ratio were 350 °C, 2 MPa, 15.2 h–1, and 400 mL/mL, respectively. Both the free fatty acids and the triglycerides in the waste cooking oil were deoxygenated at the same time to form hydrocarbons in the hydrotreatment process. The predominant liquid hydrocarbon products (98.9 wt% were n-C18H38, n-C17H36, n-C16H34, and n-C15H32 when a Ru/SiO2 catalyst was used. These long chain normal hydrocarbons had high melting points and gave the liquid hydrocarbon product over Ru/SiO2 a high pour point of 20 °C. Ru/H-Y was not suitable for producing diesel from waste cooking oil because it formed a large amount of C5–C10 gasoline-ranged paraffins on the strong acid sites of HY. When Al-polyoxocation-pillared montmorillonite (Al13-Mont was used as a support for the Ru catalyst, the pour point of the liquid hydrocarbon product decreased to −15 °C with the conversion of a significant amount of C15–C18 n-paraffins to iso-paraffins and light paraffins on the weak acid sites of Al13-Mont. The liquid product over Ru/Al13-Mont can be expected to give a green diesel for current diesel engines because its chemical composition and physical properties are similar to those of commercial petro-diesel. A relatively large amount of H2 was consumed in the hydrogenation of unsaturated C=C bonds and the deoxygenation of C=O bonds in the hydrotreatment process. A sulfided Ni-Mo/Al13-Mont catalyst also produced bio-hydrogenated diesel by the hydrotreatment process but it showed slow deactivation during the reaction due to loss of sulfur. In contrast, Ru/Al13-Mont did not show catalyst deactivation in the hydrotreatment of waste cooking oil after 72 h on-stream because the waste cooking oil was not found to contain sulfur

  8. Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with food waste (FW): Enhancement of bio-hydrogen production.

    Science.gov (United States)

    Angeriz-Campoy, Rubén; Álvarez-Gallego, Carlos J; Romero-García, Luis I

    2015-10-01

    Bio-hydrogen production from dry thermophilic anaerobic co-digestion (55°C and 20% total solids) of organic fraction of municipal solid waste (OFMSW) and food waste (FW) was studied. OFMSW coming from mechanical-biological treatment plants (MBT plants) presents a low organic matter concentration. However, FW has a high organic matter content but several problems by accumulation of volatile fatty acids (VFAs) and system acidification. Tests were conducted using a mixture ratio of 80:20 (OFSMW:FW), to avoid the aforementioned problems. Different solid retention times (SRTs) - 6.6, 4.4, 2.4 and 1.9 days - were tested. It was noted that addition of food waste enhances the hydrogen production in all the SRTs tested. Best results were obtained at 1.9-day SRT. It was observed an increase from 0.64 to 2.51 L H2/L(reactor) day in hydrogen productivity when SRTs decrease from 6.6 to 1.9 days. However, the hydrogen yield increases slightly from 33.7 to 38 mL H2/gVS(added).

  9. Effect of pH on the anaerobic acidogenesis of agroindustrial wastewaters for maximization of bio-hydrogen production: a lab-scale evaluation using batch tests.

    Science.gov (United States)

    Dareioti, Margarita Andreas; Vavouraki, Aikaterini Ioannis; Kornaros, Michael

    2014-06-01

    The aim of this study was to investigate the impact of pH on the production of bio-hydrogen and end-products from a mixture of olive mill wastewater, cheese whey and liquid cow manure (with a ratio of 55:40:5, v/v/v). Batch experiments were performed under mesophilic conditions (37°C) at a range of pH from 4.5 to 7.5. The main end-products identified were acetic, propionic, butyric, lactic acid and ethanol. The highest hydrogen production yield was observed at pH 6.0 (0.642 mol H2/mol equivalent glucose consumed), whereas the maximum VFAs concentration (i.e. 13.43 g/L) was measured at pH 6.5. The composition of acidified effluent in acetic and butyric acid was similar at pH 6.0 and 6.5, albeit an increase of propionic acid was observed in higher pH. Lactic acid was identified as a major metabolite which presented an intense accumulation (up to 11 g/L) before its further bioconversion to butyric acid and hydrogen.

  10. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst.

    Science.gov (United States)

    Srifa, Atthapon; Faungnawakij, Kajornsak; Itthibenchapong, Vorranutch; Viriya-Empikul, Nawin; Charinpanitkul, Tawatchai; Assabumrungrat, Suttichai

    2014-04-01

    Catalytic hydrotreating of palm oil (refined palm olein type) to produce bio-hydrogenated diesel (BHD) was carried out in a continuous-flow fixed-bed reactor over NiMoS2/γ-Al2O3 catalyst. Effects of dominant hydrotreating parameters: temperature: 270-420°C; H2 pressure: 15-80 bar; LHSV: 0.25-5.0 h(-1); and H2/oil ratio: 250-2000 N(cm(3)/cm(3)) on the conversion, product yield, and a contribution of hydrodeoxygenation (HDO) and decarbonylation/decarboxylation (DCO/DCO2) were investigated to find the optimal hydrotreating conditions. All calculations including product yield and the contribution of HDO and DCO/DCO2 were extremely estimated based on mole balance corresponding to the fatty acid composition in feed to fully understand deoxygenation behaviors at different conditions. These analyses demonstrated that HDO, DCO, and DCO2 reactions competitively occurred at each condition, and had different optimal and limiting conditions. The differences in the hydrotreating reactions, liquid product compositions, and gas product composition were also discussed.

  11. Applications of the Box-Wilson design model for bio-hydrogen production using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564).

    Science.gov (United States)

    Alalayah, W M; Kalil, M S; Kadhum, A A H; Jahim, J; Zaharim, A; Alauj, N M; El-Shafie, A

    2010-07-15

    Box-Wilson design (BWD) model was applied to determine the optimum values of influencing parameters in anaerobic fermentation to produce hydrogen using Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). The main focus of the study was to find the optimal relationship between the hydrogen yield and three variables including initial substrate concentration, initial medium pH and reaction temperature. Microbial growth kinetic parameters for hydrogen production under anaerobic conditions were determined using the Monod model with incorporation of a substrate inhibition term. The values of micro(max) (maximum specific growth rate) and K, (saturation constant) were 0.398 h(-1) and 5.509 g L(-1), respectively, using glucose as the substrate. The experimental substrate and biomass-concentration profiles were in good agreement with those obtained by the kinetic-model predictions. By varying the conditions of the initial substrate concentration (1-40 g L(-1)), reaction temperature (25-40 degrees C) and initial medium pH (4-8), the model predicted a maximum hydrogen yield of 3.24 mol H2 (mol glucose)(-1). The experimental data collected utilising this design was successfully fitted to a second-order polynomial model. An optimum operating condition of 10 g L(-1) initial substrate concentration, 37 degrees C reaction temperature and 6.0 +/- 0.2 initial medium pH gave 80% of the predicted maximum yield of hydrogen where as the experimental yield obtained in this study was 77.75% exhibiting a close accuracy between estimated and experimental values. This is the first report to predict bio-hydrogen yield by applying Box-Wilson Design in anaerobic fermentation while optimizing the effects of environmental factors prevailing there by investigating the effects of environmental factors.

  12. Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation.

    Science.gov (United States)

    Nualsri, Chatchawin; Kongjan, Prawit; Reungsang, Alissara; Imai, Tsuyoshi

    2017-01-01

    This study aimed to enhance hydrogen production from sugarcane syrup by biogas sparging. Two-stage continuous stirred tank reactor (CSTR) and upflow anaerobic sludge blanket (UASB) reactor were used to produce hydrogen and methane, respectively. Biogas produced from the UASB was used to sparge into the CSTR. Results indicated that sparging with biogas increased the hydrogen production rate (HPR) by 35% (from 17.1 to 23.1 L/L.d) resulted from a reduction in the hydrogen partial pressure. A fluctuation of HPR was observed during a long term monitoring because CO2 in the sparging gas and carbon source in the feedstock were consumed by Enterobacter sp. to produce succinic acid without hydrogen production. Mixed gas released from the CSTR after the sparging can be considered as bio-hythane (H2+CH4). In addition, a continuous sparging biogas into CSTR release a partial pressure in the headspace of the methane reactor. In consequent, the methane production rate is increased.

  13. Effect of biogas sparging on the performance of bio-hydrogen reactor over a long-term operation

    Science.gov (United States)

    Nualsri, Chatchawin; Kongjan, Prawit; Imai, Tsuyoshi

    2017-01-01

    This study aimed to enhance hydrogen production from sugarcane syrup by biogas sparging. Two-stage continuous stirred tank reactor (CSTR) and upflow anaerobic sludge blanket (UASB) reactor were used to produce hydrogen and methane, respectively. Biogas produced from the UASB was used to sparge into the CSTR. Results indicated that sparging with biogas increased the hydrogen production rate (HPR) by 35% (from 17.1 to 23.1 L/L.d) resulted from a reduction in the hydrogen partial pressure. A fluctuation of HPR was observed during a long term monitoring because CO2 in the sparging gas and carbon source in the feedstock were consumed by Enterobacter sp. to produce succinic acid without hydrogen production. Mixed gas released from the CSTR after the sparging can be considered as bio-hythane (H2+CH4). In addition, a continuous sparging biogas into CSTR release a partial pressure in the headspace of the methane reactor. In consequent, the methane production rate is increased. PMID:28207755

  14. Hydrolysates of lignocellulosic materials for biohydrogen production.

    Science.gov (United States)

    Chen, Rong; Wang, Yong-Zhong; Liao, Qiang; Zhu, Xun; Xu, Teng-Fei

    2013-05-01

    Lignocellulosic materials are commonly used in bio-H2 production for the sustainable energy resource development as they are abundant, cheap, renewable and highly biodegradable. In the process of the bio-H2 production, the pretreated lignocellulosic materials are firstly converted to monosaccharides by enzymolysis and then to H2 by fermentation. Since the structures of lignocellulosic materials are rather complex, the hydrolysates vary with the used materials. Even using the same lignocellulosic materials, the hydrolysates also change with different pretreatment methods. It has been shown that the appropriate hydrolysate compositions can dramatically improve the biological activities and bio-H2 production performances. Over the past decades, hydrolysis with respect to different lignocellulosic materials and pretreatments has been widely investigated. Besides, effects of the hydrolysates on the biohydrogen yields have also been examined. In this review, recent studies on hydrolysis as well as their effects on the biohydrogen production performance are summarized.

  15. Trends of bio-hydrogen research and development in Europe. Report for the Research Institute of Innovative Technology for the Earth (RITE), Tokyo, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Huesing, B.

    1997-03-01

    Research into applied aspects of biological hydrogen production is carried out on a much lower level in Europe than basic hydrogenase research. However, the screening for good H{sub 2} producers, their cultivation, and the development of optimised culture and bioreactor systems has never been a strength in Europe. Although there are a few good groups in Europe major contributions in this field traditionally come from countries outside Europe. However, in the nineties a special application-oriented research subfield has begun to evolve in Europe: the use of genetic enginering to rationally optimise H{sub 2} producing organisms. The most important players who focus on green algae, cyanobacteria, and purple bacteria can be found in Germany, France, and Sweden. In European biohydrogen research, a large and diverse variety of organisms is investigated. Among the organisms most thoroughly studied are Alcaligenes eutrophus, Escherichia coli, Rhodobacter capsulatus, sulfate-reducing bacteria, and methanogenic bacteria. Moreover, a leading position has been obtained with respect to molecular genetics of green algae and cyanobacteria, albeit on a low level. The fact that such a broad range of diverse organisms is studied has advantages and disadvantages. A positive aspect is that the multitude of different approaches had led to several unexpected results which had otherwise been overlooked. On the other hand, an obvious link to biohydrogen production is often lacking. Moreover, there are many 'me-too' approaches and results in which previous findings are only reproduced for another organism as well. (orig.)

  16. Flow-FISH analysis and isolation of clostridial strains in an anaerobic semi-solid bio-hydrogen producing system by hydrogenase gene target.

    Science.gov (United States)

    Jen, Chang Jui; Chou, Chia-Hung; Hsu, Ping-Chi; Yu, Sian-Jhong; Chen, Wei-En; Lay, Jiunn-Jyi; Huang, Chieh-Chen; Wen, Fu-Shyan

    2007-04-01

    By using hydrogenase gene-targeted polymerase chain reaction (PCR) and reverse transcriptase PCR (RT-PCR), the predominant clostridial hydrogenase that may have contributed to biohydrogen production in an anaerobic semi-solid fermentation system has been monitored. The results revealed that a Clostridium pasteurianum-like hydrogenase gene sequence can be detected by both PCR and RT-PCR and suggested that the bacterial strain possessing this specific hydrogenase gene was dominant in hydrogenase activity and population. Whereas another Clostridium saccharobutylicum-like hydrogenase gene can be detected only by RT-PCR and suggest that the bacterial strain possessing this specific hydrogenase gene may be less dominant in population. In this study, hydrogenase gene-targeted fluorescence in situ hybridization (FISH) and flow cytometry analysis confirmed that only 6.6% of the total eubacterial cells in a hydrogen-producing culture were detected to express the C. saccharobutylicum-like hydrogenase, whereas the eubacteria that expressed the C. pasteurianum-like hydrogenase was 25.6%. A clostridial strain M1 possessing the identical nucleotide sequences of the C. saccharobutylicum-like hydrogenase gene was then isolated and identified as Clostridium butyricum based on 16S rRNA sequence. Comparing to the original inoculum with mixed microflora, either using C. butyricum M1 as the only inoculum or co-culturing with a Bacillus thermoamylovorans isolate will guarantee an effective and even better production of hydrogen from brewery yeast waste.

  17. Thermophilic Biohydrogen Production

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    Dark fermentative hydrogen production at thermophilic conditions is attractive process for biofuel production. From thermodynamic point of view, higher temperatures favor biohydrogen production. Highest hydrogen yields are always associated with acetate, or with mixed acetate- butyrate type...... fermentation. On the contrary the hydrogen yield decreases, with increasing concentrations of lactate, ethanol or propionate. Major factors affecting dark fermentative biohydrogen production are organic loading rate (OLR), pH, hydraulic retention time (HRT), dissolved hydrogen and dissolved carbon dioxide...... concentrations, and soluble metabolic profile (SMP). A number of thermophilic and extreme thermophilic cultures (pure and mixed) have been studied for biohydrogen production from different feedstocks - pure substrates and waste/wastewaters. Variety of process technologies (operational conditions...

  18. Thermophilic Biohydrogen Production

    DEFF Research Database (Denmark)

    Karakashev, Dimitar Borisov; Angelidaki, Irini

    2011-01-01

    Dark fermentative hydrogen production at thermophilic conditions is attractive process for biofuel production. From thermodynamic point of view, higher temperatures favor biohydrogen production. Highest hydrogen yields are always associated with acetate, or with mixed acetate- butyrate type...... fermentation. On the contrary the hydrogen yield decreases, with increasing concentrations of lactate, ethanol or propionate. Major factors affecting dark fermentative biohydrogen production are organic loading rate (OLR), pH, hydraulic retention time (HRT), dissolved hydrogen and dissolved carbon dioxide...... concentrations, and soluble metabolic profile (SMP). A number of thermophilic and extreme thermophilic cultures (pure and mixed) have been studied for biohydrogen production from different feedstocks - pure substrates and waste/wastewaters. Variety of process technologies (operational conditions...

  19. Potential for biohydrogen and methane production from olive pulp

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær;

    2005-01-01

    The present study investigates the potential for thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp, b) anaerobic bio-production of hydrogen...... and hydrogen-effluent was as high as 19 mmole CH4 per g TS. This suggests that olive pulp is an ideal substrate for methane production and it shows that biohydrogen production can be very efficiently coupled with a subsequent step for methane production....

  20. Biohydrogen from Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Dubini, Alexandra; Gonzalez-Ballester, David

    2016-03-01

    This chapter provides an overview of the current state of knowledge of the mechanisms involved in biohydrogen production from microalgae. The known limitations linked to photohydrogen productivity are addressed. Particular attention is given to physiological and molecular strategies to sustain and improve hydrogen production. The impact of different nutrient stresses and the effect of carbon supply on hydrogen production are discussed. The genetic and metabolic engineering approaches for increasing hydrogen production are outlined.

  1. Econometric models for biohydrogen development.

    Science.gov (United States)

    Lee, Duu-Hwa; Lee, Duu-Jong; Veziroglu, Ayfer

    2011-09-01

    Biohydrogen is considered as an attractive clean energy source due to its high energy content and environmental-friendly conversion. Analyzing various economic scenarios can help decision makers to optimize development strategies for the biohydrogen sector. This study surveys econometric models of biohydrogen development, including input-out models, life-cycle assessment approach, computable general equilibrium models, linear programming models and impact pathway approach. Fundamentals of each model were briefly reviewed to highlight their advantages and disadvantages. The input-output model and the simplified economic input-output life-cycle assessment model proved most suitable for economic analysis of biohydrogen energy development. A sample analysis using input-output model for forecasting biohydrogen development in the United States is given.

  2. Design of temperature automatic control system based on solar energy compensation in photosynthetic bio-hydrogen reactor%基于太阳能温度补偿的光合生物制氢反应器自控系统的设计

    Institute of Scientific and Technical Information of China (English)

    杜金宇; 王毅; 周雪花; 张全国

    2012-01-01

    In order to fufill the requirements of photosynthtic bio-hydrogen operation process by solar energy, the solar heating temperature compensation automatic control system was designed, STK12C5A0882 single chip microcomputer was chosen as controller, and Pt100 temperature sensors as temperature collector to realize the real-time temperature regulation curve online display. Photosynthetic bio-hydrogen reactor cooling and heating switched by relay control, and software design adopted PID algorithm progrem. The experiment result showed that the system adjusted accurately, controled stably and could fufill the data online monitoring, The corresponse time of detector was less than 10 ms.the response time of regulation was less than 30s, and the temperature fluctuation was less than ±2 ℃ , which indicates that the design can adjust the temperature of bio-reacter during (30 ± 2)℃ to meet the solar photosynthetic bio-hydrogen reactor temperature control requirements.%针对太阳能光合生物连续制氢运行工艺的要求,设计了太阳能加热温度补偿自控系统,以STK12C5A0882单片机作为控制器,选用Pt100型温度传感器采集温度,实现实时温度调节曲线的在线显示.光合生物制氢反应器制冷和制热的切换由继电器控制,软件设计采用了PID算法.试验结果表明,该系统具有调节精密,控制稳定,数据在线记录及监测等优点,系统检测响应是时间小于10 ms,调控响应时间小于30 s,可将温度控制在(30±2)℃,温度波动小于±2℃,能够有效提高太阳能光合生物制氢反应器的温度控制精度.

  3. Relationship of proton motive force and the F(0)F (1)-ATPase with bio-hydrogen production activity of Rhodobacter sphaeroides: effects of diphenylene iodonium, hydrogenase inhibitor, and its solvent dimethylsulphoxide.

    Science.gov (United States)

    Hakobyan, Lilit; Gabrielyan, Lilit; Trchounian, Armen

    2012-08-01

    Rhodobacter sphaeroides MDC 6521 was able to produce bio-hydrogen (H(2)) in anaerobic conditions under illumination. In this study the effects of the hydrogenase inhibitor-diphenylene iodonium (Ph(2)I) and its solvent dimethylsulphoxide (DMSO) on growth characteristics and H(2) production by R. sphaeroides were investigated. The results point out the concentration dependent DMSO effect: in the presence of 10 mM DMSO H(2) yield was ~6 fold lower than that of the control. The bacterium was unable to produce H(2) in the presence of Ph(2)I. In order to examine the mediatory role of proton motive force (∆p) or the F(0)F(1)-ATPase in H(2) production by R. sphaeroides, the effects of Ph(2)I and DMSO on ∆p and its components (membrane potential (∆ψ) and transmembrane pH gradient), and ATPase activity were determined. In these conditions ∆ψ was of -98 mV and the reversed ∆pH was +30 mV, resulting in ∆p of -68 mV. Ph(2)I decreased ∆ψ in concentrations of 20 μM and higher; lower concentrations of Ph(2)I as DMSO had no valuable effect on ∆ψ. The R. sphaeroides membrane vesicles demonstrated significant ATPase activity sensitive to N,N'-dicyclohexylcarbodiimide. The 10-20 μM Ph(2)I did not affect the ATPase activity, whereas 40 μM Ph(2)I caused a marked inhibition (~2 fold) in ATPase activity. The obtained results provide novel evidence on the involvement of hydrogenase and the F(0)F(1)-ATPase in H(2) production by R. sphaeroides. Moreover, these data indicate the role of hydrogenase and the F(0)F(1)-ATPase in ∆p generation. In addition, DMSO might increase an interaction of nitrogenase with CO(2), decreasing nitrogenase activity and affecting H(2) production.

  4. Biohydrogen production from lignocellulosic feedstock.

    Science.gov (United States)

    Cheng, Chieh-Lun; Lo, Yung-Chung; Lee, Kuo-Shing; Lee, Duu-Jong; Lin, Chiu-Yue; Chang, Jo-Shu

    2011-09-01

    Due to the recent energy crisis and rising concern over climate change, the development of clean alternative energy sources is of significant interest. Biohydrogen produced from cellulosic feedstock, such as second generation feedstock (lignocellulosic biomass) and third generation feedstock (carbohydrate-rich microalgae), is a promising candidate as a clean, CO2-neutral, non-polluting and high efficiency energy carrier to meet the future needs. This article reviews state-of-the-art technology on lignocellulosic biohydrogen production in terms of feedstock pretreatment, saccharification strategy, and fermentation technology. Future developments of integrated biohydrogen processes leading to efficient waste reduction, low CO2 emission and high overall hydrogen yield is discussed.

  5. Photoinduced Biohydrogen Production from Biomass

    Directory of Open Access Journals (Sweden)

    Yutaka Amao

    2008-07-01

    Full Text Available Photoinduced biohydrogen production systems, coupling saccharaides biomass such as sucrose, maltose, cellobiose, cellulose, or saccharides mixture hydrolysis by enzymes and glucose dehydrogenase (GDH, and hydrogen production with platinum colloid as a catalyst using the visible light-induced photosensitization of Mg chlorophyll-a (Mg Chl-a from higher green plant or artificial chlorophyll analog, zinc porphyrin, are introduced.

  6. Bioreactor and process design for biohydrogen production.

    Science.gov (United States)

    Show, Kuan-Yeow; Lee, Duu-Jong; Chang, Jo-Shu

    2011-09-01

    Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. It has the potential for renewable biofuel to replace current hydrogen production which rely heavily on fossil fuels. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential. This work presents a review of advances in bioreactor and bioprocess design for biohydrogen production. The state-of-the art of biohydrogen production is discussed emphasizing on production pathways, factors affecting biohydrogen production, as well as bioreactor configuration and operation. Challenges and prospects of biohydrogen production are also outlined.

  7. Dark fermentation on biohydrogen production: Pure culture.

    Science.gov (United States)

    Lee, Duu-Jong; Show, Kuan-Yeow; Su, Ay

    2011-09-01

    Biohydrogen is regarded as an attractive future clean energy carrier due to its high energy content and environmental-friendly conversion. While biohydrogen production is still in the early stage of development, there have been a variety of laboratory- and pilot-scale systems developed with promising potential. This work presents a review of literature reports on the pure hydrogen-producers under anaerobic environment. Challenges and perspective of biohydrogen production with pure cultures are also outlined.

  8. Development of net energy ratio and emission factor for biohydrogen production pathways.

    Science.gov (United States)

    Kabir, Md Ruhul; Kumar, Amit

    2011-10-01

    This study investigates the energy and environmental aspects of producing biohydrogen for bitumen upgrading from a life cycle perspective. Three technologies are studied for biohydrogen production; these include the Battelle Columbus Laboratory (BCL) gasifier, the Gas Technology Institute (GTI) gasifier, and fast pyrolysis. Three different biomass feedstocks are considered including forest residue (FR), whole forest (WF), and agricultural residue (AR). The fast pyrolysis pathway includes two cases: truck transport of bio-oil and pipeline transport of bio-oil. The net energy ratios (NERs) for nine biohydrogen pathways lie in the range of 1.3-9.3. The maximum NER (9.3) is for the FR-based pathway using GTI technology. The GHG emissions lie in the range of 1.20-8.1 kg CO₂ eq/kg H₂. The lowest limit corresponds to the FR-based biohydrogen production pathway using GTI technology. This study also analyzes the intensities for acid rain precursor and ground level ozone precursor.

  9. Steady-state and dynamic modeling of biohydrogen production in an integrated biohydrogen reactor clarifier system

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, Hisham; Naggar, M. Hesham El. [Department of Civil Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Nakhla, George [Department of Civil Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada); Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2010-07-15

    Steady-state operational data from the integrated biohydrogen reactor clarifier system (IBRCS) during anaerobic treatment of glucose-based synthetic wastewater at HRT of 8 h and SRT ranging from 26 to 50 h and organic loading rates of 6.5-206 gCOD/L-d were used to calibrate and verify a process model of the system developed using BioWin. The model accurately predicted biomass concentrations in both the bioreactor and the clarifier supernatant with average percentage errors (APEs) of 4.6% and 10%, respectively. Hydrogen production rates and hydrogen yields predicted by the model were in close agreement with the observed experimental results as reflected by an APE of less than 4%, while the hydrogen content was well correlated with an APE of 10%. The successful modeling culminated in the accurate prediction of soluble metabolites, i.e. volatile fatty acids in the reactor with an APE of 14%. The calibrated model confirmed the advantages of decoupling of the solids retention time (SRT) from the hydraulic retention time (HRT) in biohydrogen production, with the average hydrogen yield decreasing from 3.0 mol H{sub 2}/mol glucose to 0.8 mol H{sub 2}/mol glucose upon elimination of the clarifier. Dynamic modeling showed that the system responds favorably to short-term hydraulic and organic surges, recovering back to the original condition. Furthermore, the dynamic simulation revealed that with a prolonged startup periods of 10 and 30 days, the IBRCS can be operated at an HRT of 4 h and OLR as high as 206 gCOD/L-d without inhibition and/or marked performance deterioration. (author)

  10. Potential for biohydrogen and methane production from olive pulp

    Energy Technology Data Exchange (ETDEWEB)

    Gavala, H.N.; Skiadas, I.V. [Patras Univ., Patras (Greece). Dept. of Chemical Engineering, Laboratory of Biochemical Engineering and Environmental Technology]|[Denmark Technical Univ., Lyngby (Denmark). Environmental Microbiology and Biotechnology Group; Ahring, B.K. [Denmark Technical Univ., Lyngby (Denmark). Environmental Microbiology and Biotechnology Group; Lyberatos, G. [Patras Univ., Patras (Greece). Dept. of Chemical Engineering, Laboratory of Biochemical Engineering and Environmental Technology

    2004-07-01

    Biomass rich in carbohydrates is a potential source of hydrogen. Fermentative hydrogen production includes the transformation of sugars into volatile fatty acids (VFA) without a major effect on the organic content. This study examined the potential for thermophilic biohydrogen and methane production from olive pulp, the semi-solid residue resulting from the two-phase processing of olives. Formation of VFA during acidogenesis of organic matter precedes methanogenesis. Therefore, anaerobic digestion can potentially be coupled with a preliminary step for hydrogen production. This study focused on production of methane from the raw olive pulp; anaerobic bio-production of hydrogen from the olive pulp; and, subsequent anaerobic treatment of the hydrogen-effluent with production of methane. Continuous and batch experiments were performed. The methane potential of the raw olive pulp and hydrogen effluent was up to 19 mmole of methane per gram of total solids. It was concluded that olive pulp is a suitable substrate for methane production and that biohydrogen can be coupled with a subsequent step for methane production. 12 refs., 7 tabs., 2 figs.

  11. Biohydrogen production and bioprocess enhancement: a review.

    Science.gov (United States)

    Mudhoo, Ackmez; Forster-Carneiro, Tânia; Sánchez, Antoni

    2011-09-01

    This paper provides an overview of the recent advances and trends in research in the biological production of hydrogen (biohydrogen). Hydrogen from both fossil and renewable biomass resources is a sustainable source of energy that is not limited and of different applications. The most commonly used techniques of biohydrogen production, including direct biophotolysis, indirect biophotolysis, photo-fermentation and dark-fermentation, conventional or "modern" techniques are examined in this review. The main limitations inherent to biochemical reactions for hydrogen production and design are the constraints in reactor configuration which influence biohydrogen production, and these have been identified. Thereafter, physical pretreatments, modifications in the design of reactors, and biochemical and genetic manipulation techniques that are being developed to enhance the overall rates and yields of biohydrogen generation are revisited.

  12. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios.

    Science.gov (United States)

    Ferreira, Ana F; Ortigueira, Joana; Alves, Luís; Gouveia, Luísa; Moura, Patrícia; Silva, Carla

    2013-09-01

    This paper presents a life cycle inventory of biohydrogen production by Clostridium butyricum through the fermentation of the whole Scenedesmus obliquus biomass. The main purpose of this work was to determine the energy consumption and CO2 emissions during the production of hydrogen. This was accomplished through the fermentation of the microalgal biomass cultivated in an outdoor raceway pond and the preparation of the inoculum and culture media. The scale-up scenarios are discussed aiming for a potential application to a fuel cell hybrid taxi fleet. The H2 yield obtained was 7.3 g H2/kg of S. obliquus dried biomass. The results show that the production of biohydrogen required 71-100 MJ/MJ(H2) and emitted about 5-6 kg CO2/MJ(H2). Other studies and production technologies were taken into account to discuss an eventual process scale-up. Increased production rates of microalgal biomass and biohydrogen are necessary for bioH2 to become competitive with conventional production pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Biohydrogen Production from Glycerol using Thermotoga spp

    NARCIS (Netherlands)

    Maru, B.T.; Bielen, A.A.M.; Kengen, S.W.M.; Constantini, M.; Medina, F.

    2012-01-01

    Given the highly reduced state of carbon in glycerol and its availability as a substantial byproduct of biodiesel production, glycerol is of special interest for sustainable biofuel production. Glycerol was used as a substrate for biohydrogen production using the hyperthermophilic bacterium, Thermot

  14. Thermophilic biohydrogen production: how far are we?

    Science.gov (United States)

    Pawar, Sudhanshu S; van Niel, Ed W J

    2013-09-01

    Apart from being applied as an energy carrier, hydrogen is in increasing demand as a commodity. Currently, the majority of hydrogen (H2) is produced from fossil fuels, but from an environmental perspective, sustainable H2 production should be considered. One of the possible ways of hydrogen production is through fermentation, in particular, at elevated temperature, i.e. thermophilic biohydrogen production. This short review recapitulates the current status in thermophilic biohydrogen production through fermentation of commercially viable substrates produced from readily available renewable resources, such as agricultural residues. The route to commercially viable biohydrogen production is a multidisciplinary enterprise. Microbiological studies have pointed out certain desirable physiological characteristics in H2-producing microorganisms. More process-oriented research has identified best applicable reactor types and cultivation conditions. Techno-economic and life cycle analyses have identified key process bottlenecks with respect to economic feasibility and its environmental impact. The review has further identified current limitations and gaps in the knowledge, and also deliberates directions for future research and development of thermophilic biohydrogen production.

  15. Optimization of Biohydrogen Production with Biomechatronics

    Directory of Open Access Journals (Sweden)

    Shao-Yi Hsia

    2014-01-01

    Full Text Available Massive utilization of petroleum and natural gas caused fossil fuel shortages. Consequently, a large amount of carbon dioxide and other pollutants are produced and induced environmental impact. Hydrogen is considered a clean and alternative energy source. It contains relatively high amount of energy compared with other fuels and by-product is water. In this study, the combination of ultrasonic mechanical and biological effects is utilized to increase biohydrogen production from dark fermentation bacteria. The hydrogen production is affected by many process conditions. For obtaining the optimal result, experimental design is planned using the Taguchi Method. Four controlling factors, the ultrasonic frequency, energy, exposure time, and starch concentration, are considered to calculate the highest hydrogen production by the Taguchi Method. Under the best operating conditions, the biohydrogen production efficiency of dark fermentation increases by 19.11%. Results have shown that the combination of ultrasound and biological reactors for dark fermentation hydrogen production outperforms the traditional biohydrogen production method. The ultrasonic mechanical effects in this research always own different significances on biohydrogen production.

  16. Influence of iron on sulfide inhibition in dark biohydrogen fermentation.

    Science.gov (United States)

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Nakhla, George

    2012-12-01

    Sulfide impact on biohydrogen production using dark fermentation of glucose at 37 °C was investigated. Dissolved sulfide (S(2-)) at a low concentration (25mg/L) increased biohydrogen production by 54% relative to the control (without iron addition). Whereas on initial dissolved S(2-) concentration of 500 mg/L significantly inhibited the biohydrogen production with total cumulative biohydrogen decreasing by 90% compared to the control (without iron addition). At sulfide concentrations of 500 mg S(2-)/L, addition of Fe(2+) at 3-4 times the theoretical requirement to precipitate 100% of the dissolved S(2-) entirely eliminated the inhibitory effect of sulfide.

  17. Isolation and characterization of Bacillus thermophilic bacteria AT07-1 and its application in sludge solubilization and bio-hydrogen production by anaerobic fermentation%嗜热菌株AT07-1的分离鉴定及其在污泥溶解预处理厌氧发酵产氢中的应用

    Institute of Scientific and Technical Information of China (English)

    汤迎; 李小明; 杨永林; 杨麒; 曾光明; 郭亮; 朱小峰; 李焕利; 潘维

    2009-01-01

    A novel strain of thermophilic bacteria with high efficiency for sludge dissolution was isolated from garden soil by the method of dilution spread. The strain's colony morphology, physiological and biochemical characteristics were observed. Results showed that the strain was a small, Gram-positive, rod-shaped, spore-forming, aerobic or facultative aerobic bacterium. The strain grew optimally at 651 and pH 6. 8 ~7.5. The 16S rDNA analysis showed that the strain has not been previously reported and therefore it was labeled Bacillus thermophilic bacteria AT07-1 (registration number: FJ231108). The pure culture of the strain was then used in sludge solubilization tests ( S-TE tests) and an enhanced solubilization process was obtained. The volatile suspended solid ( VSS) solubilization rate reached 59.41% at 2.5 d after the inoculation, 25.58% higher than the process without it, which meets the standard of sludge stability suggested by the U. S. Environmental Protection Agency. Preliminary investigations on hydrogen production from anaerobic fermentation of sludge showed that bio-hydrogen production after pretreatment with Bacillus thermophilic bacteria AT07-lwas 26.4% higher than without it, and the biogas was only composed of hydrogen and carbon dioxide.%从湖南大学花园土壤中采集样品,用稀释涂布法分离和纯化适于污泥溶解的典型嗜热菌菌株,从中选出一株高效菌进行形态观察,并对其进行生理生化鉴定.结果表明,该菌株的革兰氏染色为阳性,呈细杆状,产芽孢,为好氧或兼性需氧细菌,最适生长温度为65℃,最适生长pH值为6.8~7.5.通过16SrDNA碱基测序和对比证实,该菌株是目前尚未报道过的一株嗜热菌,GenBank中注册命名为Bacillus thermophilic bacteria AT07-1(注册号:FJ231108).同时,将其纯种菌用于嗜热酶溶解(solubilization by thermophilic enzyme,S-TE)污泥稳定化处理,接种该嗜热菌可促进污泥中悬浮固体的溶解,2.5d时接种

  18. Recent advances in fermentative biohydrogen production

    Institute of Scientific and Technical Information of China (English)

    Xuemei Liu; Nanqi Ren; Funan Song; Chuanping Yang; Aijie Wang

    2008-01-01

    Hydrogen energy, as a kind of clean energy with great potential, has been a hotspot for study worldwide. Based on the recent research on biohydrogen production, this paper gives a brief review on the following aspects: fermentative hydrogen production process and the engineering control statagy, key factors affecting the efficiency of hydrogen production, such as substrates, cysteine, metal ions, anaerobic fermentation terminal products, and formic acid and ammonia. Moreover, anaerobic fermentative hydrogen-producing strain and regulation and control of enzyme gene in fermentative hydrogen production are also discussed. Finally, the prospect of anaerobic fermentative biohydrogen production is proposed in three study areas, namely developing new techniques for breeding hydrogen-producing bacteria, exploitations of more strains and gene resources, and intensifying the application of microbial molecular breeding in hydrogen production.

  19. Evaluation of Biohydrogen Production Potential of Wastes

    Directory of Open Access Journals (Sweden)

    Nevim Genç

    2011-02-01

    Full Text Available In this article, types of potential biomass that could be the source for biohydrogen generation such as energy crops, lignocellulosic residues, waste and wastewaters are discussed. The major criteria that have to be met for the selection of substrates suitable for fermentative biohydrogen production are availability, cost, carbohydrate content (high proportion of readily fermentable compounds such as sugars and carbohydrates and biodegradability (a high concentration of degradable organic compounds and low concentration of inhibitory to microbiological activity compounds. Although starchy and sugar based biomass and wastes are readily fermentable by microorganisms for hydrogen generation, lignocellulosic biomass needs to be pretreated. Pretreatment is carry out for altering the structural features of biomass which are classified as psysical or chemical. In general, pretreatment methods of lignocellulosic biomass can be divided into three main types, according to the means used for altering its structural features: mechanical, physicochemical and biological.

  20. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A [ORNL; Wall, Judy D. [University of Missouri; Mormile, Dr. Melanie R. [Missouri University of Science and Technology; Begemann, Matthew B [University of Wisconsin, Madison

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  1. Biohydrogen facilitated denitrification at biocathode in bioelectrochemical system (BES).

    Science.gov (United States)

    Liu, Hao; Yan, Qun; Shen, Wei

    2014-11-01

    Reductive removal of nitrate in bioelectrochemical system (BES) at abiotic cathode, biocathode and biohydrogen facilitated biocathode were investigated. It was found that nitrate removal efficiency reached 95% and 59% at the biohydrogen facilitated biocathode and biocathode respectively, while which was only 13% at the abiotic cathode. Meanwhile, activity of nitrate reductase reached 0.701 g-N/Lh for the biohydrogen facilitated group, which was about 9.3 times of the biocathode group. Moreover, electrochemical performances as power density, ohmic resistance, and polarization resistance of the biohydrogen facilitated group reached 76.96 mW/m(3), 8.63 ohm and 383 ohm, respectively, which were better than two other groups. Finally, an obvious shift of bacterial community responsible for the enhanced nitrate reduction between the two biocathode groups was observed. Therefore, nitrate reduction in BES could be enhanced at the biocathode than that of the abiotic cathode, and then be further boosted with the combination of biohydrogen.

  2. DECENTRALIZED THERMOPHILIC BIOHYDROGEN: A MORE EFFICIENT AND COST EFFECTIVE PROCESS

    Directory of Open Access Journals (Sweden)

    Rajesh K. Sani

    2011-11-01

    Full Text Available Nonfood lignocellulosic biomass is an ideal substrate for biohydrogen production. By avoiding pretreatment steps (acid, alkali, or enzymatic, there is potential to make the process economical. Utilization of regional untreated lignocellulosic biomass by cellulolytic and fermentative thermophiles in a consolidated mode using a single reactor is one of the ways to achieve economical and sustainable biohydrogen production. Employing these potential microorganisms along with decentralized biohydrogen energy production will lead us towards regional and national independence having a positive influence on the bioenergy sector.

  3. Biohydrogen production from used diapers: Evaluation of effect of temperature and substrate conditioning.

    Science.gov (United States)

    Sotelo-Navarro, P X; Poggi-Varaldo, H M; Turpin-Marion, S J; Vázquez-Morillas, A; Beltrán-Villavicencio, M; Espinosa-Valdemar, R M

    2017-03-01

    This research assessed the viability to use disposable diapers as a substrate for the production of biohydrogen, a valuable clean-energy source. The important content of cellulose of disposable diapers indicates that this waste could be an attractive substrate for biofuel production. Two incubation temperatures (35 °C and 55 °C) and three diaper conditioning methods (whole diapers with faeces, urine, and plastics, WD; diapers without plastic components, with urine and faeces, DWP; diapers with urine but without faeces and plastic, MSD) were tested in batch bioreactors. The bioreactors were operated in the solid substrate anaerobic hydrogenogenic fermentation with intermittent venting mode (SSAHF-IV). The batch reactors were loaded with the substrate at ca. 25% of total solids and 10% w/w inoculum. The average cumulative bioH2 production followed the order WD > MSD > DWP. The bio-H2 production using MSD was unexpectedly higher than DWP; the presence of plastics in the first was expected to be associated to lower degradability and H2 yield. BioH2 production at 55 °C was superior to that of 35 °C, probably owing to a more rapid microbial metabolism in the thermophilic regime. The results of this work showed low yields in the production of H2 at both temperatures compared with those reported in the literature for municipal and agricultural organic waste. The studied process could improve the ability to dispose of this residue with H2 generation as the value-added product. Research is ongoing to increase the yield of biohydrogen production from waste disposable diapers.

  4. Development of a submerged anaerobic membrane bioreactor for concurrent extraction of volatile fatty acids and biohydrogen production.

    Science.gov (United States)

    Trad, Zaineb; Akimbomi, Julius; Vial, Christophe; Larroche, Christian; Taherzadeh, Mohammad J; Fontaine, Jean-Pierre

    2015-11-01

    The aim of this work was to study an externally-submerged membrane bioreactor for the cyclic extraction of volatile fatty acids (VFAs) during anaerobic fermentation, combining the advantages of submerged and external technologies for enhancing biohydrogen (BioH2) production from agrowaste. Mixing and transmembrane pressure (TMP) across a hollow fiber membrane placed in a recirculation loop coupled to a stirred tank were investigated, so that the loop did not significantly modify the hydrodynamic properties in the tank. The fouling mechanism, due to cake layer formation, was reversible. A cleaning procedure based on gas scouring and backwashing with the substrate was defined. Low TMP, 10(4)Pa, was required to achieve a 3Lh(-1)m(-2) critical flux. During fermentation, BioH2 production was shown to restart after removing VFAs with the permeate, so as to enhance simultaneously BioH2 production and the recovery of VFAs as platform molecules.

  5. Bioelectrochemical Systems for Indirect Biohydrogen Production

    KAUST Repository

    Regan, John M.

    2014-01-01

    Bioelectrochemical systems involve the use of exoelectrogenic (i.e., anode-reducing) microbes to produce current in conjunction with the oxidation of reduced compounds. This current can be used directly for power in a microbial fuel cell, but there are alternate uses of this current. One such alternative is the production of hydrogen in a microbial electrolysis cell (MEC), which accomplishes cathodic proton reduction with a slight applied potential by exploiting the low redox potential produced by exoelectrogens at the anode. As an indirect approach to biohydrogen production, these systems are not subject to the hydrogen yield constraints of fermentative processes and have been proven to work with virtually any biodegradable organic substrate. With continued advancements in reactor design to reduce the system internal resistance, increase the specific surface area for anode biofilm development, and decrease the material costs, MECs may emerge as a viable alternative technology for biohydrogen production. Moreover, these systems can also incorporate other value-added functionalities for applications in waste treatment, desalination, and bioremediation.

  6. DECENTRALIZED THERMOPHILIC BIOHYDROGEN: A MORE EFFICIENT AND COST EFFECTIVE PROCESS

    OpenAIRE

    Sani, Rajesh.K.; Rajesh V. Shende; Sudhir Kumar; Aditya Bhalla

    2011-01-01

    Nonfood lignocellulosic biomass is an ideal substrate for biohydrogen production. By avoiding pretreatment steps (acid, alkali, or enzymatic), there is potential to make the process economical. Utilization of regional untreated lignocellulosic biomass by cellulolytic and fermentative thermophiles in a consolidated mode using a single reactor is one of the ways to achieve economical and sustainable biohydrogen production. Employing these potential microorganisms along with decentralized biohyd...

  7. Biohydrogen Production from Lignocellulosic Biomass: Technology and Sustainability

    Directory of Open Access Journals (Sweden)

    Anoop Singh

    2015-11-01

    Full Text Available Among the various renewable energy sources, biohydrogen is gaining a lot of traction as it has very high efficiency of conversion to usable power with less pollutant generation. The various technologies available for the production of biohydrogen from lignocellulosic biomass such as direct biophotolysis, indirect biophotolysis, photo, and dark fermentations have some drawbacks (e.g., low yield and slower production rate, etc., which limits their practical application. Among these, metabolic engineering is presently the most promising for the production of biohydrogen as it overcomes most of the limitations in other technologies. Microbial electrolysis is another recent technology that is progressing very rapidly. However, it is the dark fermentation approach, followed by photo fermentation, which seem closer to commercialization. Biohydrogen production from lignocellulosic biomass is particularly suitable for relatively small and decentralized systems and it can be considered as an important sustainable and renewable energy source. The comprehensive life cycle assessment (LCA of biohydrogen production from lignocellulosic biomass and its comparison with other biofuels can be a tool for policy decisions. In this paper, we discuss the various possible approaches for producing biohydrogen from lignocellulosic biomass which is an globally available abundant resource. The main technological challenges are discussed in detail, followed by potential solutions.

  8. Effect of short-time hydrothermal pretreatment of kitchen waste on biohydrogen production: fluorescence spectroscopy coupled with parallel factor analysis.

    Science.gov (United States)

    Li, Mingxiao; Xia, Tianming; Zhu, Chaowei; Xi, Beidou; Jia, Xuan; Wei, Zimin; Zhu, Jinlong

    2014-11-01

    The enhancement of bio-hydrogen production from kitchen waste by a short-time hydrothermal pretreatment at different temperatures (i.e., 90°C, 120°C, 150°C and 200°C) was evaluated. The effects of temperature for the short-time hydrothermal pretreatment on kitchen waste protein conversion and dissolved organic matter characteristics were investigated in this study. A maximum bio-hydrogen yield of 81.27mL/g VS was acquired at 200°C by the short-time hydrothermal pretreatment during the anaerobic fermentative hydrogen production. Analysis of the dissolved organic matter composition showed that the protein-like peak dominated and that three fluorescent components were separated using fluorescence excitation-emission matrix spectra coupled with the parallel factor model. The maximum fluorescence intensities of protein-like components decomposed through the parallel factor analysis has a significant correlation with the raw protein concentration, showed by further correlation analysis. This directly impacted the hydrogen production ability.

  9. Biohydrogen production as a potential energy fuel in South Africa

    Directory of Open Access Journals (Sweden)

    P.T. Sekoai

    2015-06-01

    Full Text Available Biohydrogen production has captured increasing global attention due to it social, economic and environmental benefits. Over the past few years, energy demands have been growing significantly in South Africa due to rapid economic and population growth. The South African parastatal power supplier i.e. Electricity Supply Commission (ESKOM has been unable to meet the country’s escalating energy needs. As a result, there have been widespread and persistent power cuts throughout the country. This prompts an urgent need for exploration and implementation of clean and sustainable energy fuels like biohydrogen production in order to address this crisis. Therefore, this paper discusses the current global energy challenges in relation to South Africa’s problems. It then examines the feasibility of using biohydrogen production as a potential energy fuel in South Africa. Finally, it reviews the hydrogen-infrastructure development plans in the country.

  10. Electro-extractive fermentation for efficient biohydrogen production.

    Science.gov (United States)

    Redwood, Mark D; Orozco, Rafael L; Majewski, Artur J; Macaskie, Lynne E

    2012-03-01

    Electrodialysis, an electrochemical membrane technique, was found to prolong and enhance the production of biohydrogen and purified organic acids via the anaerobic fermentation of glucose by Escherichia coli. Through the design of a model electrodialysis medium using cationic buffer, pH was precisely controlled electrokinetically, i.e. by the regulated extraction of acidic products with coulombic efficiencies of organic acid recovery in the range 50-70% maintained over continuous 30-day experiments. Contrary to previous reports, E. coli produced H(2) after aerobic growth in minimal medium without inducers and with a mixture of organic acids dominated by butyrate. The selective separation of organic acids from fermentation provides a potential nitrogen-free carbon source for further biohydrogen production in a parallel photofermentation. A parallel study incorporated this fermentation system into an integrated biohydrogen refinery (IBR) for the conversion of organic waste to hydrogen and energy.

  11. Sago Biomass as a Sustainable Source for Biohydrogen Production by Clostridium butyricum A1

    Directory of Open Access Journals (Sweden)

    Mohamad Faizal Ibrahim

    2013-12-01

    Full Text Available Biohydrogen production from biomass is attracting many researchers in developing a renewable, clean and environmental friendly biofuel. The biohydrogen producer, Clostridium butyricum A1, was successfully isolated from landfill soil. This strain produced a biohydrogen yield of 1.90 mol H2/mol glucose with productivity of 170 mL/L/h using pure glucose as substrate. The highest cumulative biohydrogen collected after 24 h of fermentation was 2468 mL/L-medium. Biohydrogen fermentation using sago hampas hydrolysate produced higher biohydrogen yield (2.65 mol H2/mol glucose than sago pith residue (SPR hydrolysate that produced 2.23 mol H2/mol glucose. A higher biohydrogen productivity of 1757 mL/L/h was obtained when using sago hampas hydrolysate compared to when using pure glucose that has the productivity of 170 mL/L/h. A comparable biohydrogen production was also obtained by C. butyricum A1 when compared to C. butyricum EB6 that produced a biohydrogen yield of 2.50 mol H2/mol glucose using sago hampas hydrolysate as substrate. This study shows that the new isolate C. butyricum A1 together with the use of sago biomass as substrate is a promising technology for future biohydrogen production.

  12. Combining urban wastewater treatment with biohydrogen production--an integrated microalgae-based approach.

    Science.gov (United States)

    Batista, Ana Paula; Ambrosano, Lucas; Graça, Sofia; Sousa, Catarina; Marques, Paula A S S; Ribeiro, Belina; Botrel, Elberis P; Castro Neto, Pedro; Gouveia, Luisa

    2015-05-01

    The aim of the present work was the simultaneous treatment of urban wastewater using microalgae and the energetic valorization of the obtained biomass. Chlorella vulgaris (Cv), Scenedesmus obliquus (Sc) and a naturally occurring algal Consortium C (ConsC) were grown in an urban wastewater. The nutrient removals were quite high and the treated water fits the legislation (PT Dec-Lei 236/98) in what concerns the parameters analysed (N, P, COD). After nutrient depletion the microalgae remained two more weeks in the photobioreactor (PBR) under nutritional stress conditions, to induce sugar accumulation (22-43%). The stressed biomass was converted into biohydrogen (bioH2), a clean energy carrier, through dark fermentation by a strain of the bacteria Enterobacter aerogenes. The fermentation kinetics were monitored and fitted to a modified Gompertz model. The highest bioH2 production yield was obtained for S. obliquus (56.8 mL H2/gVS) which was very similar when using the same algae grown in synthetic media.

  13. Biohydrogen production from beet molasses by sequential dark and photofermentation

    NARCIS (Netherlands)

    Özgür, E.; Mars, A.E.; Peksel, B.; Louwerse, A.; Yücel, M.; Gündüz, U.; Claassen, P.A.M.; Eroglu, I.

    2010-01-01

    Biological hydrogen production using renewable resources is a promising possibility to generate hydrogen in a sustainable way. In this study, a sequential dark and photofermentation has been employed for biohydrogen production using sugar beet molasses as a feedstock. An extreme thermophile Caldicel

  14. Improvement of biohydrogen production using a reduced pressure fermentation.

    Science.gov (United States)

    Kisielewska, M; Dębowski, M; Zieliński, M

    2015-10-01

    This study investigated the effect of reduced pressure on biohydrogen production in an upflow anaerobic sludge blanket (UASB) reactor from whey permeate. The results showed that the reduced pressure fermentation was more effective in enhancing biohydrogen production than dark fermentative hydrogen production at atmospheric pressure. Mesophilic fermentative biohydrogen production was investigated at a constant hydraulic retention time (HRT) of 24 h and increasing organic loading rates (OLRs) of 20, 25, 30, 35 kg COD/m(3) day. The reduced pressure fermentation was successfully operated at all OLRs tested. The maximum proportion of hydrogen in biogas of 47.7 %, volumetric hydrogen production rate (VHPR) of 7.10 L H2/day and hydrogen yield of 4.55 mol H2/kg COD removed occurred at the highest OLR. Increase in OLR affected the hydrogen production in UASB reactor exploited at atmospheric pressure. The reduced pressure process was able to remarkably improve the biohydrogen performance at high OLRs.

  15. The molecular biological characterization of a strain of biohydrogen-producing anaerobe in Clostridium Genus

    Institute of Scientific and Technical Information of China (English)

    LI Yong-feng; REN Nan-qi; ZHENG Guo-xiang; LIU Min; HU Li-jie; CHEN Ying; WANG Xiang-jing

    2005-01-01

    The anaerobic process of biohydrogen production was developed recently. The isolation and identification of biohydrogen producing anaerobic bacteria with high evolution rate and yield is an important foundation of the fermented biohydrogen production process through which anaerobic bacteria digest organic wastewater. By considering physiological and biochemical traits, morphological characteristics and a 16S rDNA sequence, the isolated Rennanqilyf33 is shown to be a new species.

  16. Hydrolysates of lignocellulosic materials for biohydrogen production

    Directory of Open Access Journals (Sweden)

    Rong Chen

    2013-05-01

    Full Text Available Lignocellulosic materials are commonly used in bio-H2 productionfor the sustainable energy resource development asthey are abundant, cheap, renewable and highly biodegradable.In the process of the bio-H2 production, the pretreated lignocellulosicmaterials are firstly converted to monosaccharidesby enzymolysis and then to H2 by fermentation. Since thestructures of lignocellulosic materials are rather complex, thehydrolysates vary with the used materials. Even using the samelignocellulosic materials, the hydrolysates also change withdifferent pretreatment methods. It has been shown that the appropriatehydrolysate compositions can dramatically improvethe biological activities and bio-H2 production performances.Over the past decades, hydrolysis with respect to differentlignocellulosic materials and pretreatments has been widelyinvestigated. Besides, effects of the hydrolysates on the biohydrogenyields have also been examined. In this review, recentstudies on hydrolysis as well as their effects on the biohydrogenproduction performance are summarized. [BMBReports 2013; 46(5: 244-251

  17. Draft Genome Sequence of Clostridium bifermentans Strain WYM, a Promising Biohydrogen Producer Isolated from Landfill Leachate Sludge.

    Science.gov (United States)

    Wong, Y M; Juan, J C; Gan, H M; Austin, C M

    2014-03-06

    Clostridium bifermentans strain WYM is an effective biohydrogen producer isolated from landfill leachate sludge. Here, we present the assembly and annotation of its genome, which may provide further insights into the metabolic pathways involved in efficient biohydrogen production.

  18. Biohydrogen and carboxylic acids production from wheat straw hydrolysate.

    Science.gov (United States)

    Chandolias, Konstantinos; Pardaev, Sindor; Taherzadeh, Mohammad J

    2016-09-01

    Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42g COD/L.d, whilst the highest lactic acid production occurred at an OLR of 9.33g COD/L.d. Furthermore, the bioreactor with both free and membrane-encased cells produced 60% more lactic acid compared to the conventional, free-cell bioreactor. In addition, an increase of 121% and 100% in the production of acetic and isobutyric acid, respectively, was achieved in the 2nd-stage bioreactor compared to the 1st-stage bioreactor.

  19. Utilization of keratin-containing biowaste to produce biohydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Balint, B.; Rakhely, G.; Kovacs, K.L. [Szeged Univ. (Hungary). Dept. of Biotechnology; Hungarian Academy of Sciences, Szeged (Hungary). Inst. of Biophysics; Bagi, Z.; Perei, K. [Szeged Univ. (Hungary). Dept. of Biotechnology; Toth, A. [Hungarian Academy of Sciences, Szeged (Hungary). Inst. of Biophysics

    2005-12-01

    A two-stage fermentation system was constructed to test and demonstrate the feasibility of biohydrogen generation from keratin-rich biowaste. We isolated a novel aerobic Bacillus strain (Bacillus licheniformis KK1) that displays outstanding keratinolytic activity. The isolated strain was employed to convert keratin-containing biowaste into a fermentation product that is rich in amino acids and peptides. The process was optimized for the second fermentation step, in which the product of keratin fermentation-supplemented with essential minerals-was metabolized by Thermococcus litoralis, an anaerobic hyperthermophilic archaeon. T. litoralis grew on the keratin hydrolysate and produced hydrogen gas as a physiological fermentation byproduct. Hyperthermophilic cells utilized the keratin hydrolysate in a similar way as their standard nutrient, i.e., bacto-peptone. The generalization of the findings to protein-rich waste treatment and production of biohydrogen is discussed and possible means of further improvements are listed. (orig.)

  20. Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes

    OpenAIRE

    Kuppam Chandrasekhar; Yong-Jik Lee; Dong-Woo Lee

    2015-01-01

    The current fossil fuel-based generation of energy has led to large-scale industrial development. However, the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly, enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2), a clean energy ...

  1. Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen

    NARCIS (Netherlands)

    Bélafi-Bakó, K.; Búcsú, D.; Pientka, Z.; Bálint, B.; Herbel, Z.; Kovács, K.I.; Wessling, Matthias

    2006-01-01

    An integrated system for biohydrogen production and separation was designed, constructed and operated where biohydrogen was fermented by Thermococcus litoralis, a heterotrophic archaebacterium, and a two-step gas separation process was coupled to recover and concentrate hydrogen. A special liquid

  2. Biohydrogen production from forest and agricultural residues for upgrading of bitumen from oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Susanjib; Kumar, Amit [Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta (Canada)

    2010-02-15

    In this study, forest residues (limbs, tops, and branches) and straw (from wheat and barley) are considered for producing biohydrogen in Western Canada for upgrading of bitumen from oil sands. Two types of gasifiers, namely, the Battelle Columbus Laboratory (BCL) gasifier and the Gas Technology Institute (GTI) gasifier are considered for biohydrogen production. Production costs of biohydrogen from forest and agricultural residues from a BCL gasification plant with a capacity of 2000 dry tonnes/day are 1.17 and 1.29/kg of H{sub 2}, respectively. For large-scale biohydrogen plant, GTI gasification is the optimum technology. The delivered-biohydrogen costs are 2.19 and 2.31/kg of H{sub 2} at a plant capacity of 2000 dry tonnes/day from forest and agricultural residues, respectively. Optimum capacity for biohydrogen plant is 3000 dry tonnes/day for both residues in a BCL gasifier. In a GTI gasifier, although the theoretical optimum sizes are higher than 3000 dry tonnes/day for both feedstocks, the cost of production of biohydrogen is flat above a plant size of 3000 dry tonnes/day. Hence, a plant at the size of 3000 dry tonnes/day could be built to minimize risk. Carbon credits of 119 and 124/tonne of CO{sub 2} equivalent are required for biohydrogen from forest and agricultural residues, respectively. (author)

  3. Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen

    NARCIS (Netherlands)

    Bélafi-Bakó, K.; Búcsú, D.; Pientka, Z.; Bálint, B.; Herbel, Z.; Kovács, K.I.; Wessling, M.

    2006-01-01

    An integrated system for biohydrogen production and separation was designed, constructed and operated where biohydrogen was fermented by Thermococcus litoralis, a heterotrophic archaebacterium, and a two-step gas separation process was coupled to recover and concentrate hydrogen. A special liquid se

  4. Continuous biohydrogen production from waste bread by anaerobic sludge.

    Science.gov (United States)

    Han, Wei; Huang, Jingang; Zhao, Hongting; Li, Yongfeng

    2016-07-01

    In this study, continuous biohydrogen production from waste bread by anaerobic sludge was performed. The waste bread was first hydrolyzed by the crude enzymes which were generated by Aspergillus awamori and Aspergillus oryzae via solid-state fermentation. It was observed that 49.78g/L glucose and 284.12mg/L free amino nitrogen could be produced with waste bread mass ratio of 15% (w/v). The waste bread hydrolysate was then used for biohydrogen production by anaerobic sludge in a continuous stirred tank reactor (CSTR). The optimal hydrogen production rate of 7.4L/(Ld) was achieved at chemical oxygen demand (COD) of 6000mg/L. According to the results obtained from this study, 1g waste bread could generate 0.332g glucose which could be further utilized to produce 109.5mL hydrogen. This is the first study which reports continuous biohydrogen production from waste bread by anaerobic sludge.

  5. Production of Biohydrogen from Wastewater by Klebsiella oxytoca ATCC 13182.

    Science.gov (United States)

    Thakur, Veena; Tiwari, K L; Jadhav, S K

    2015-08-01

    Production of biohydrogen from distillery effluent was carried out by using Klebsiella oxytoca ATCC 13182. The work focuses on optimization of pH, temperature, and state of bacteria, which are the various affecting factors for fermentative biohydrogen production. Results indicates that at 35 °C for suspended cultures, the production was at its maximum (i.e., 91.33 ± 0.88 mL) when compared with other temperatures. At 35 °C and at pH 5 and 6, maximum productions of 117.67 ± 1.45 and 111.67 ± 2.72 mL were observed with no significant difference. When immobilized, Klebsiella oxytoca ATCC 13182 was used for biohydrogen production at optimized conditions, production was 186.33 ± 3.17 mL. Hence, immobilized cells were found to be more advantageous for biological hydrogen production over suspended form. Physicochemical analysis of the effluent was conducted before and after fermentation and the values suggested that the fermentative process is an efficient method for biological treatment of wastewater.

  6. Production of biohydrogen from hydrolyzed bagasse with thermally preheated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Chairattanamanokorn, Prapaipid [Environmental Technology Unit, Department of Environmental Science, Kasetsart University, Bangkok (Thailand); Research Group for Development of Microbial Hydrogen Production Process from Biomass (Thailand); Penthamkeerati, Patthra [Environmental Technology Unit, Department of Environmental Science, Kasetsart University, Bangkok (Thailand); Reungsang, Alissara [Research Group for Development of Microbial Hydrogen Production Process from Biomass (Thailand); Department of Biotechnology, Khon Kaen University, Khon Kaen, Bangkok (Thailand); Lo, Yung-Chung [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Lu, Wei-Bin [Department of Cosmetic Science, Chung Hwa University of Medical Technology, Tainan (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China)

    2009-09-15

    Production of biohydrogen from dark fermentation is an interesting alternative to producing renewable fuels because of its low cost and various usable substrates. Cellulosic content in plentiful bagasse residue is an economically feasible feedstock for biohydrogen production. A statistical experimental design was applied to identify the optimal condition for biohydrogen production from enzymatically hydrolyzed bagasse with 60-min preheated seed sludge. The bagasse substrate was first heated at 100 C for 2 h and was then hydrolyzed with cellulase. Culture of the pretreated bagasse at 55 C provided a higher H{sub 2} production performance than that obtained from cultures at 45 C, 65 C, 35 C and 25 C. On the other hand, the culture at pH 5 resulted in higher H{sub 2} production than the cultures at pH 6, pH 4 and pH 7. The optimal culture condition for the hydrogen production rate was around 56.5 C and pH 5.2, which was identified using response surface methodology. Moreover, the pretreatment of bagasse under alkaline conditions gave a thirteen-fold increase in H{sub 2} production yield when compared with that from preheatment under neutral condition. (author)

  7. Kinetic study of biohydrogen production in mixed cultures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.-H.; Khanal, S.K.; Sung, S. [Iowa State Univ., Ames, IA (United States). Dept. of Civil Construction and Environmental Engineering

    2004-07-01

    Hydrogen is considered to be a clean energy source and a promising alternative to fossil fuels. The production of biohydrogen from renewable feedstocks such as sugars and organic wastes has gained renewed interest in response to energy insecurity and environmental concerns. The main challenge of producing biohydrogen is the low hydrogen conversion efficiency in the dark fermentation process. A better reactor design could solve the problem. A good index for process design is the microbial growth rate during a growth phase, as this has a strong impact on culture productivity. Microbial growth rate is also a good index for maximizing biohydrogen production. Kinetic studies generally identify the significant operating parameters such as maximum specific growth rate and half-saturation constant. However, this traditional approach cannot be used for hydrogen producing systems. This study established an alternative method to determine growth kinetics for hydrogen producing bacteria. Sucrose and nonfat dairy milk were the substrates used to identify the growth kinetics in a series of batch experiments. The parameters can be used to design a continuous reactor system for an enriched culture of hydrogen producing bacteria. 1 fig.

  8. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium.

    Science.gov (United States)

    Begemann, Matthew B; Mormile, Melanie R; Sitton, Oliver C; Wall, Judy D; Elias, Dwayne A

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobiumhydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6-carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate, and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  9. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium

    Directory of Open Access Journals (Sweden)

    Matthew eBegemann

    2012-03-01

    Full Text Available Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium hydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  10. Food waste and food processing waste for biohydrogen production: a review.

    Science.gov (United States)

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed.

  11. Optimisation and enhancement of biohydrogen production using nickel nanoparticles - a novel approach.

    Science.gov (United States)

    Mullai, P; Yogeswari, M K; Sridevi, K

    2013-08-01

    The effect of initial glucose concentration, initial pH and nickel nanoparticles concentration on biohydrogen production was experimented at mesophilic temperature (30-35 °C) using anaerobic microflora in batch tests. It revealed that yield of biohydrogen using nickel nanoparticles with an average size of 13.64 nm was higher than the corresponding control tests. The optimisation of biohydrogen production was carried out by employing response surface methodology (RSM) with a central composite design (CCD). Results showed that the maximum cumulative biohydrogen production of 4400 mL and biohydrogen yield of 2.54 mol of hydrogen/mol of glucose was achieved at optimum conditions, initial glucose concentration of 14.01 g/L at initial pH of 5.61 and nickel nanoparticles concentration of 5.67 mg/L. The results demonstrated that linear and interactive effect of initial substrate concentration and nickel nanoparticles concentration was significant in optimisation of biohydrogen production. Nickel nanoparticles enhanced the biohydrogen production by 22.71%.

  12. Biohydrogen production by anaerobic fermentation of waste. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Karakashev, D.; Angelidaki, I.

    2009-01-15

    The objective of this project was to investigate and increase dark fermentative hydrogen production from organic wastes by optimizing important process parameters (reactor type, pH, temperature, organic loading, retention time, inoculation strategy, microbial composition). Labscale experiments were carried out at the Department of Environmental Engineering, Technical University of Denmark. A two steps process for hydrogen production in the first step and methane production in the second step in serial connected fully mixed reactors was developed and could successfully convert organic matter to approx. 20-25 % hydrogen and 15-80 % to methane. Sparging with methane produced in the second stage could significantly increase the hydrogen production. Additionally it was shown that upflow anaerobic sludge blanket (UASB) reactor system was very promising for high effective biohydrogen production from glucose at 70 deg C. Glucose-fed biofilm reactors filled with plastic carriers demonstrated high efficient extreme thermophilic biohydrogen production with mixed cultures. Repeated batch cultivations via exposure of the cultures to increased concentrations of household solid waste was found to be most useful method to enhance hydrogen production rate and reduce lag phase of extreme thermophilic fermentation process. Low level of pH (5.5) at 3-day HRT was enough to inhibit completely the methanogenesis and resulted in stable extreme thermophilic hydrogen production. Homoacetogenisis was proven to be an alternative competitor to biohydrogen production from organic acids under thermophilic (55 deg. C) conditions. With respect to microbiology, 16S rRNA targeted oligonucleotide probes were designed to monitor the spatial distribution of hydrogen producing bacteria in sludge and granules from anaerobic reactors. An extreme thermophilic (70 deg. C), strict anaerobic, mixed microbial culture with high hydrogen producing potential was enriched from digested household waste. Culture

  13. Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate

    Energy Technology Data Exchange (ETDEWEB)

    Davila-Vazquez, Gustavo; Cota-Navarro, Ciria Berenice; Razo-Flores, Elias [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico); Rosales-Colunga, Luis Manuel; de Leon-Rodriguez, Antonio [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico)

    2009-05-15

    Due to the renewed interest in finding sustainable fuels or energy carriers, biohydrogen (Bio-H{sub 2}) from biomass is a promising alternative. Fermentative Bio-H{sub 2} production was studied in a continuous stirred tank reactor (CSTR) operated during 65.6 d with cheese whey (CW) as substrate. Three hydraulic retention times (HRTs) were tested (10, 6 and 4 h) and the highest volumetric hydrogen production rate (VHPR) was attained with HRT of 6 h. Therefore, four organic loading rates (OLRs) at a fixed HRT of 6 h were tested thereafter, being: 92.4, 115.5, 138.6 and 184.4 g lactose/L/d. The highest VHPR (46.61 mmol H{sub 2}/L/h) and hydrogen molar yield (HMY) of 2.8 mol H{sub 2}/mol lactose were found at an OLR of 138.6 g lactose/L/d; a sharp fall in VHPR occurred at an OLR of 184.4 g lactose/L/d. Butyric, propionic and acetic acids were the main soluble metabolites found, with butyric-to-acetic ratios ranging from 1.0 to 2.4. Bacterial community was identified by partial sequence analysis of the 16S rRNA and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that at HRT of 10 h and 6 h were dominated by the Clostridium genus. The VHPR attained in this study is the highest reported value for a CSTR system using CW as substrate with anaerobic sludge as inoculum and represents a 33-fold increase compared to a previous study. Thus, it was demonstrated that continuous fermentative Bio-H{sub 2} production from CW can be significantly enhanced by an appropriate selection of parameters such as HRT and OLR. Enhancements in VHPR are significant because it is a critical parameter to determine the full-scale practical application of fermentation technologies that will be used for sustainable and clean energy generation. (author)

  14. Ruminal Biohydrogenation Pattern of Poly-Unsaturated Fatty Acid as Influenced by Dietary Tannin

    Directory of Open Access Journals (Sweden)

    Anuraga Jayanegara

    2013-09-01

    Full Text Available Large amounts of polyunsaturated fatty acids undergo transformation processes in the rumen through microbial biohydrogenation to form fatty acids with higher saturation degree. The respective process explains the high content of saturated fatty acids in products of ruminants and the potential risk of consumers’ health by consuming such products. Various nutritional approaches have been attempted to modulate biohydrogenation process in order to obtain healthier fatty acid profile from consumers’ perspective. The present paper is aimed to review the influence of dietary tannin, a naturally produced plant secondary compound, on the pattern of polyunsaturated fatty acids biohydrogenation occurring in the rumen. The effect of tannin on some key fatty acids involved in biohydrogenation process is presented together with the underlying mechanisms, particularly from up-to-date research results. Accordingly, different form of tannin as well as different level of the application are also discussed.

  15. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production.

    Science.gov (United States)

    Ding, Jie; Wang, Xu; Zhou, Xue-Fei; Ren, Nan-Qi; Guo, Wan-Qian

    2010-09-01

    There has been little work on the optimal configuration of biohydrogen production reactors. This paper describes three-dimensional computational fluid dynamics (CFD) simulations of gas-liquid flow in a laboratory-scale continuous stirred-tank reactor used for biohydrogen production. To evaluate the role of hydrodynamics in reactor design and optimize the reactor configuration, an optimized impeller design has been constructed and validated with CFD simulations of the normal and optimized impeller over a range of speeds and the numerical results were also validated by examination of residence time distribution. By integrating the CFD simulation with an ethanol-type fermentation process experiment, it was shown that impellers with different type and speed generated different flow patterns, and hence offered different efficiencies for biohydrogen production. The hydrodynamic behavior of the optimized impeller at speeds between 50 and 70 rev/min is most suited for economical biohydrogen production.

  16. Acid tolerance response (ATR) of microbial communities during the enhanced biohydrogen process via cascade acid stress.

    Science.gov (United States)

    Lin, Xiaoqin; Xia, Yan; Yan, Qun; Shen, Wei; Zhao, Mingxing

    2014-03-01

    Enhanced biohydrogen production via cascade acid stress on microbial communities, structure patterns of the microbial communities revealed by PLFAs, and the succession of biohydrogen related species against cascade acid stress were all investigated. It was found that hydrogen production could be improved from 48.7 to 79.4mL/gVS after cascade acid stress. In addition, the Gram negative (G(-)) bacteria were found to be more tolerant to organic acids than those of the Gram positive (G(+)) bacteria, regardless of the dominance of G(+) bacteria within the microbial communities. Moreover, Clostridium butyricum, Clostridium aciditolerans and Azospira oryzae, were proved to be enriched, and then might play indispensable roles for the enhanced biohydrogen production after cascade acid stress, as which were responsible for the biohydrogen accumulation, acid tolerance and nitrogen removal, respectively.

  17. Challenges in developing biohydrogen as a sustainable energy source: implications for a research agenda.

    Science.gov (United States)

    Brentner, Laura B; Peccia, Jordan; Zimmerman, Julie B

    2010-04-01

    The U.S. Department of Energy's Hydrogen Program aims to develop hydrogen as an energy carrier to decrease emissions of greenhouse gases and other air pollutants and reduce the use of fossil fuels. However, current hydrogen production technologies are not sustainable as they rely heavily on fossil fuels, either directly or indirectly through electricity generation. Production of hydrogen by microorganisms, biohydrogen, has potential as a renewable alternative to current technologies. The state-of-the-art for four different biohydrogen production mechanisms is reviewed, including biophotolysis, indirect biophotolysis, photofermentation, and dark fermentation. Future research challenges are outlined for bioreactor design, optimization of bioreactor conditions, and metabolic engineering. Development of biohydrogen technologies is still in the early stages, although some fermentation systems have demonstrated efficiencies reasonable for implementation. To enhance the likelihood of biohydrogen as a feasible system to meet future hydrogen demands sustainably, directed investment in a strategic research agenda will be necessary.

  18. Ruminal biohydrogenation as affected by tannins in vitro.

    Science.gov (United States)

    Vasta, Valentina; Makkar, Harinder P S; Mele, Marcello; Priolo, Alessandro

    2009-07-01

    The aim of the present work was to study the effects of tannins from carob (CT; Ceratonia siliqua), acacia leaves (AT; Acacia cyanophylla) and quebracho (QT; Schinopsis lorentzii) on ruminal biohydrogenation in vitro. The tannins extracted from CT, AT and QT were incubated for 12 h in glass syringes in cow buffered ruminal fluid (BRF) with hay or hay plus concentrate as a substrate. Within each feed, three concentrations of tannins were used (0.0, 0.6 and 1.0 mg/ml BRF). The branched-chain volatile fatty acids, the branched-chain fatty acids and the microbial protein concentration were reduced (P < 0.05) by tannins. In the tannin-containing fermenters, vaccenic acid was accumulated (+23 %, P < 0.01) while stearic acid was reduced ( - 16 %, P < 0.0005). The concentration of total conjugated linoleic acid (CLA) isomers in the BRF was not affected by tannins. The assay on linoleic acid isomerase (LA-I) showed that the enzyme activity (nmol CLA produced/min per mg protein) was unaffected by the inclusion of tannins in the fermenters. However, the CLA produced by LA-I (nmol/ml per min) was lower in the presence of tannins. These results suggest that tannins reduce ruminal biohydrogenation through the inhibition of the activity of ruminal micro-organisms.

  19. Critical parameters for optimal biomass refineries: the case of biohydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Koukios, Emmanuel; Koullas, Dimitrios; Koukios, Irene Daouti; Avgerinos, Emmanouil [National Technical University of Athens, Bioresource Technology Unit, School of Chemical Engineering, Athens (Greece)

    2010-04-15

    The object of this paper is to identify and assess the elements taken from agro-industries and fossil hydrocarbon refineries, especially with respect to biomass logistics, fractionation kinetics, and process energetics. Such critical information will be of immediate use by policy and decision makers, especially in the early phase of planning and designing the first generation of biorefineries. Concerning feedstock logistics, biorefineries have a lot to learn from food and wood supply chains. This learning could lead to the deployment of complex, decentralised, stage-wise biorefining systems, consisting of local agro-refineries, regional biorefineries, where the primary plant fractions are processed and upgraded to useful intermediates, and central bioconversion units for the generation of market-grade biofuels, such as biohydrogen and other high value-added vectors. The kinetic aspects of biorefineries are related to the physico-chemical nature of the macromolecules. Finally, to solve the problem of the non-optimal energy transformations a tailored-up bioenergy plan is proposed for each biorefinery. The example of a wheat bran-based biorefinery, aiming at the production of biohydrogen will be used to illustrate the way ahead. (orig.)

  20. Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles.

    Science.gov (United States)

    Seelert, Trevor; Ghosh, Dipankar; Yargeau, Viviane

    2015-05-01

    In order to supplement the need for alternative energy resources within the near future, enhancing the production of biohydrogen with immobilized Clostridium beijerinckii NCIMB8052 was investigated. Magnetite nanoparticles were functionalized, with chitosan and alginic acid polyelectrolytes using a layer-by-layer method, to promote bacterial attachment. Cultivating C. beijerinckii with these nanoparticles resulted in a shorter lag growth phase and increased total biohydrogen production within 100-ml, 250-ml and 3.6-L reactors compared with freely suspended organisms. The greatest hydrogen yield was obtained in the 250-ml reactor with a value of 2.1 ± 0.7 mol H2/mol glucose, corresponding to substrate conversion and energy conversion efficiencies of 52 ± 18 and 10 ± 3 %, respectively. The hydrogen yields obtained using the immobilized bacteria are comparable to values found in literature. However, to make this process viable, further improvements are required to increase the substrate and energy conversion efficiencies.

  1. Sodium borohydride removes aldehyde inhibitors for enhancing biohydrogen fermentation.

    Science.gov (United States)

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Zhou, Junhu; Cen, Kefa

    2015-12-01

    To enhance biohydrogen production from glucose and xylose in the presence of aldehyde inhibitors, reducing agent (i.e., sodium borohydride) was in situ added for effective detoxification. The detoxification efficiencies of furfural (96.7%) and 5-hydroxymethylfurfural (5-HMF, 91.7%) with 30mM NaBH4 were much higher than those of vanillin (77.3%) and syringaldehyde (69.3%). Biohydrogen fermentation was completely inhibited without detoxification, probably because of the consumption of nicotinamide adenine dinucleotide (NADH) by inhibitors reduction (R-CHO+2NADH→R-CH2OH+2NAD(+)). Addition of 30mM NaBH4 provided the reducing power necessary for inhibitors reduction (4R-CHO+NaBH4+2H2O→4R-CH2OH+NaBO2). The recovered reducing power in fermentation resulted in 99.3% recovery of the hydrogen yield and 64.6% recovery of peak production rate. Metabolite production and carbon conversion after detoxification significantly increased to 63.7mM and 81.9%, respectively.

  2. Revealing the factors influencing a fermentative biohydrogen production process using industrial wastewater as fermentation substrate

    OpenAIRE

    Boboescu, Iulian Zoltan; Ilie, Mariana; Gherman, Vasile Daniel; Mirel, Ion; Pap, Bernadett; Negrea, Adina; Kondorosi, Éva; Bíró, Tibor; Maróti, Gergely

    2014-01-01

    Background Biohydrogen production through dark fermentation using organic waste as a substrate has gained increasing attention in recent years, mostly because of the economic advantages of coupling renewable, clean energy production with biological waste treatment. An ideal approach is the use of selected microbial inocula that are able to degrade complex organic substrates with simultaneous biohydrogen generation. Unfortunately, even with a specifically designed starting inoculum, there is s...

  3. Two-Stage Conversion of Land and Marine Biomass for Biogas and Biohydrogen Production

    OpenAIRE

    Nkemka, Valentine

    2012-01-01

    The replacement of fossil fuels by renewable fuels such as biogas and biohydrogen will require efficient and economically competitive process technologies together with new kinds of biomass. A two-stage system for biogas production has several advantages over the widely used one-stage continuous stirred tank reactor (CSTR). However, it has not yet been widely implemented on a large scale. Biohydrogen can be produced in the anaerobic two-stage system. It is considered to be a useful fuel for t...

  4. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability.

    Science.gov (United States)

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N; Singh, Devendra P

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.

  5. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability

    Science.gov (United States)

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N.; Singh, Devendra P.

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet. PMID:27148218

  6. Marine pollution by heavy oil and bio-purification. Bacteria decomposing oil hydrocarbon; Juyu ni yoru umi no osen to seibutsu joka. Juyu tanka suiso wo bunkaisuru saikin

    Energy Technology Data Exchange (ETDEWEB)

    Itagaki, E. [Kanazawa Univ., Ishikawa (Japan). Faculty of Science

    1997-10-20

    It is said that 23 genuses of bacteria decomposing hydrocarbon such as bacterium species, actinomycetes species, mold species and yeast of 10-10{sup 5}/ml live in seawater. No survey has been made on bacteria decomposing heavy oil hydrocarbon in the area contaminated by heavy oil from Russian tanker `Nakhodka` in the Sea of Japan. Survey was thus made on the existence and distribution of bacteria decomposing heavy oil hydrocarbon along the coast of Kaga district, Ishikawa prefecture. Such bacteria were successfully separated by repeated cultivation. The bacteria are short bacillus of nearly 1{mu}m long, and show a spherical shape as preserved at low temperature. Since the bacteria change their shape according to growth conditions, those are the germ of `Arthrobacter` genus. The bacteria of nearly 10{sup 5}/g lived along the sand beach in spite of low seawater and air temperatures in the early spring. The bacteria increased to nearly 10{sup 7}/g in May, however, decreased with a progress of oil decomposition in June. 3 figs.

  7. Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem.

    Science.gov (United States)

    Jenkins, T C; Wallace, R J; Moate, P J; Mosley, E E

    2008-02-01

    Recent advances in chromatographic identification of CLA isomers, combined with interest in their possible properties in promoting human health (e.g., cancer prevention, decreased atherosclerosis, improved immune response) and animal performance (e.g., body composition, regulation of milk fat synthesis, milk production), has renewed interest in biohydrogenation and its regulation in the rumen. Conventional pathways of biohydrogenation traditionally ignored minor fatty acid intermediates, which led to the persistence of oversimplified pathways over the decades. Recent work is now being directed toward accounting for all possible trans-18:1 and CLA products formed, including the discovery of novel bioactive intermediates. Modern microbial genetics and molecular phylogenetic techniques for identifying and classifying microorganisms by their small-subunit rRNA gene sequences have advanced knowledge of the role and contribution of specific microbial species in the process of biohydrogenation. With new insights into the pathways of biohydrogenation now available, several attempts have been made at modeling the pathway to predict ruminal flows of unsaturated fatty acids and biohydrogenation intermediates across a range of ruminal conditions. After a brief historical account of major past accomplishments documenting biohydrogenation, this review summarizes recent advances in 4 major areas of biohydrogenation: the microorganisms involved, identification of intermediates, the biochemistry of key enzymes, and the development and testing of mathematical models to predict biohydrogenation outcomes.

  8. Bio-Hydrogen Potential Of Easily Biodegradable Substrate Through Dark Fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Baris Calli; Wesley Boenne; Karolien Vanbroekhoven [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, (Belgium)

    2006-07-01

    For hydrogen production through dark fermentation of glucose, a continuously stirred 1-liter bioreactor was inoculated with yard waste compost and operated at 55 C with fed-batch runs. The reducing pH was regulated automatically by using pH transmitter and kept constant at 5.4. In this way, no methane was generated in any of the fed-batch runs and H{sub 2} yield in the range of 0.25 to 1.75 mol H{sub 2}/mol glucose consumed was obtained by inhibiting methanogenic H{sub 2} consumption. Astonishingly, the highest H{sub 2} yield was achieved with fresh inoculum which was neither heat treated nor acclimated. However, yield was not steady and decreased due to shift in metabolic pathway from acido-genesis to ethanol fermentation subsequent to high H{sub 2} partial pressure. Effluent ethanol concentrations above 400 mg/l after high H{sub 2} yielding runs were indication of this metabolic shift. (authors)

  9. [Bioaugmentation of hydrogen producing bacteria on operation of bio-hydrogen producing reactor].

    Science.gov (United States)

    Qin, Zhi; Ren, Nan-qi; Li, Jian-zheng

    2007-12-01

    Hydrogen producing strain Ethanoligenens sp. B49 was inoculated into activated sludge of continuous stirred tank reactor (CSTR)to bioaugment hydrogen production. Hydrogen production capacities, compositions of fermentation products and pH value before and after bioaugmentation were investigated. When organic loading rate was 12 kg/(m3 x d), bioaugmentation of hydrogen producing strain enhanced hydrogen production rate and improved the composition of fermentation products significantly. After bioaugmentation, hydrogen production rate increased from 3.6 mmol/(kg x d) to 5.7 mmol/(kg x d), which was 1.5 times as that before bioaugmentation. Before bioaugmentation, average concentration of ethanol, acetic acid and propionic acid were 6.8 mmol/L, 5.3 mmol/L, 4.8 mmol/L respectively, while after bioaugmentation, those were 10.5 mmol/L, 7.5 mmol/L and 1.7 mmol/L respectively. Ethanol and acetic acid accounted for 86.8% in total fermentative products after bioaugmentation, while only 72% before bioaugmentation. pH value of effluent dropped from 4.5-4.7 to 4.3. Bioaugmentation of hydrogen producing strain is helpful to promote the formation of ethanol-type fermentation in low organic loading rate.

  10. The Autonomous House: A Bio-Hydrogen Based Energy Self-Sufficient Approach

    Directory of Open Access Journals (Sweden)

    Ming-jen Cheng

    2009-04-01

    Full Text Available In the wake of the greenhouse effect and global energy crisis, finding sources of clean, alternative energy and developing everyday life applications have become urgent tasks. This study proposes the development of an "autonomous house" emphasizing the use of modern green energy technology to reduce environmental load, achieve energy autonomy and use energy intelligently in order to create a sustainable, comfortable living environment. The houses' two attributes are: (1 a self-sufficient energy cycle and (2 autonomous energy control to maintain environmental comfort. The autonomous house thus combines energy-conserving, carbon emission-reducing passive design with active elements needed to maintain a comfortable environment.

  11. The autonomous house: a bio-hydrogen based energy self-sufficient approach.

    Science.gov (United States)

    Chen, Shang-Yuan; Chu, Chen-Yeon; Cheng, Ming-Jen; Lin, Chiu-Yue

    2009-04-01

    In the wake of the greenhouse effect and global energy crisis, finding sources of clean, alternative energy and developing everyday life applications have become urgent tasks. This study proposes the development of an "autonomous house" emphasizing the use of modern green energy technology to reduce environmental load, achieve energy autonomy and use energy intelligently in order to create a sustainable, comfortable living environment. The houses' two attributes are: (1) a self-sufficient energy cycle and (2) autonomous energy control to maintain environmental comfort. The autonomous house thus combines energy-conserving, carbon emission-reducing passive design with active elements needed to maintain a comfortable environment.

  12. Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Argun, Hidayet; Kargi, Fikret; Kapdan, Ilgi K. [Department of Environmental Engineering, Dokuz Eylul University, Buca, Izmir (Turkey)

    2009-03-15

    Hydrogen formation performances of different anaerobic bacteria were investigated in batch dark fermentation of waste wheat powder solution (WPS). Serum bottles containing wheat powder were inoculated with pure cultures of Clostridium acetobutylicum (CAB), Clostridium butyricum (CB), Enterobacter aerogenes (EA), heat-treated anaerobic sludge (ANS) and a mixture of those cultures (MIX). Cumulative hydrogen formation (CHF), hydrogen yield (HY) and specific hydrogen production rate (SHPR) were determined for every culture. The heat-treated anaerobic sludge was found to be the most effective culture with a cumulative hydrogen formation of 560 ml, hydrogen yield of 223 ml H{sub 2} g{sup -1} starch and a specific hydrogen production rate of 32.1 ml H{sub 2} g{sup -1} h{sup -1}. (author)

  13. Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nan-Qi; Xu, Ji-Fei; Gao, Ling-Fang; Xin, Liang; Qiu, Jie; Su, Dong-Xia [State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2010-04-15

    The performance of hydrogen production from cellulose by the cow dung compost enriched continuously in defined medium containing cellulose was investigated. In the initial experiments, batch-fermentation was carried out to observe the effects of different substrate concentration conditions on the rate of cellulose-degrading, growth of bacteria and the capability of hydrogen-producing from cellulose. The result showed that the cellulose degradation decreased from 55% at 5 g/l to 22% at 30 g/l. The maximum cumulative hydrogen production and the rate of hydrogen production first increased from 828 ml/l at 5 g/l to 1251 ml/l at 10 g/l then remained constant beyond 10 g/l. The maximum hydrogen production potential, the rate of hydrogen production and the yield of hydrogen was 1525 ml/l, 33 ml/l.h, and 272 ml/g-cellulose (2.09 mol/mol-hexose) was obtained at substrate concentration 10 g/l, the hydrogen concentration in biogas was 47-50%(v/v) and there was no methane observed. During the conversion of cellulose into hydrogen, acetate and butyrate were main liquid end-products in the metabolism of hydrogen fermentation. These results proposed that cow dung compost enriched cultures were ideal microflora for hydrogen production from cellulose. (author)

  14. Development of a simple bio-hydrogen production system through dark fermentation by using unique microflora

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Akihiro; Bando, Yukiko; Fujimoto, Naoshi; Suzuki, Masaharu [Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, 1-1 Sakuragaoka 1-chome, Setagaya-ku, Tokyo 156-8502 (Japan)

    2010-08-15

    In order to ensure efficient functioning of hydrogen fermentation systems that use Clostridium as the dominant hydrogen producer, energy-intensive process such as heat pretreatment of inoculum and/or substrate, continuous injection, and control of anaerobic conditions are required. Here, we describe a simple hydrogen fermentation system designed using microflora from leaf-litter cattle-waste compost. Hydrogen and volatile fatty acid production was measured at various hydraulic retention times, and bacterial genera were determined by PCR amplification and sequencing. Although hydrogen fermentation yield was approximately one-third of values reported in previous studies, this system requires no additional treatment and thus may be advantageous in terms of cost and operational control. Interestingly, Clostridium was absent from this system. Instead, Megasphaera elsdenii was the dominant hydrogen-producing bacterium, and lactic acid-producing bacteria (LAB) were prevalent. This study is the first to characterize M. elsdenii as a useful hydrogen producer in hydrogen fermentation systems. These results demonstrate that pretreatment is not necessary for stable hydrogen fermentation using food waste. (author)

  15. Carbon nanofiber mesoporous films: efficient platforms for bio-hydrogen oxidation in biofuel cells.

    Science.gov (United States)

    de Poulpiquet, Anne; Marques-Knopf, Helena; Wernert, Véronique; Giudici-Orticoni, Marie Thérèse; Gadiou, Roger; Lojou, Elisabeth

    2014-01-28

    The discovery of oxygen and carbon monoxide tolerant [NiFe] hydrogenases was the first necessary step toward the definition of a novel generation of hydrogen fed biofuel cells. The next important milestone is now to identify and overcome bottlenecks limiting the current densities, hence the power densities. In the present work we report for the first time a comprehensive study of herringbone carbon nanofiber mesoporous films as platforms for enhanced biooxidation of hydrogen. The 3D network allows mediatorless hydrogen oxidation by the membrane-bound hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. We investigate the key physico-chemical parameters that enhance the catalytic efficiency, including surface chemistry and hierarchical porosity of the biohybrid film. We also emphasize that the catalytic current is limited by mass transport inside the mesoporous carbon nanofiber film. Provided hydrogen is supplied inside the carbon film, the combination of the hierarchical porosity of the carbon nanofiber film with the hydrophobicity of the treated carbon material results in very high efficiency of the bioelectrode. By optimization of the whole procedure, current densities as high as 4.5 mA cm(-2) are reached with a turnover frequency of 48 s(-1). This current density is almost 100 times higher than when hydrogenase is simply adsorbed at a bare graphite electrode, and more than 5 times higher than the average of the previous reported current densities at carbon nanotube modified electrodes, suggesting that carbon nanofibers can be efficiently used in future sustainable H2/O2 biofuel cells.

  16. Effects of thermally pretreated temperature on bio-hydrogen production from sewage sludge.

    Science.gov (United States)

    Xiao, Ben-Yi; Liu, Jun-Xin

    2006-01-01

    Hydrogen can be obtained by anaerobic fermentation of sewage sludge. Therefore, in this paper the effects of thermally pretreated temperatures on hydrogen production from sewage sludge were investigated under different pre-treatment conditions. In the thermal pretreatment, some microbial matters of sludge were converted into soluble matters from insoluble ones. As a result, the suspended solid (SS) and volatile suspended solid (VSS) of sludge decreased and the concentration of soluble COD (SCOD) increased, including soluble carbohydrates and proteins. The experimental results showed that all of those pretreated sludge could produce hydrogen by anaerobic fermentation and the hydrogen yields under the temperatures of 121 degrees C and 50 degrees C were 12.23 ml/g VS (most) and 1.17 ml/g VS (least), respectively. It illuminated that the hydrogen yield of sludge was affected by the thermally pretreated temperatures. Additionally, the endurance of high hydrogen yield depended on the translation of microbial matters and inhibition of methanogens in the sludge. The temperatures of 100 degrees C and 121 degrees C (treated time, 30 min) could kill or inhibit completely the methanogens while the others could not. To produce hydrogen and save energy, 100 degrees C was chosen as the optimal temperature for thermal pretrcatment. The composition changes in liquid phase in the fermentation process were also discussed. The SCOD of sludge increased, which was affected by the pretreatment temperature. The production of volatile fatty acids in the anaerobic fermentation increased with the pretreatment temperature.

  17. Effects of thermally pretreated temperature on bio-hydrogen production from sewage sludge

    Institute of Scientific and Technical Information of China (English)

    XIAO Ben-yi; LIU Jun-xin

    2006-01-01

    Hydrogen can be obtained by anaerobic fermentation of sewage sludge. Therefore, in this paper the effects of thermally pretreated temperatures on hydrogen production from sewage sludge were investigated under different pre-treatment conditions. In the thermal pretreatment, some microbial matters of sludge were converted into soluble matters from insoluble ones. As a result, the suspended solid(SS) and volatile suspended solid(VSS) of sludge decreased and the concentration of soluble COD(SCOD) increased,including soluble carbohydrates and proteins. The experimental results showed that all of those pretreated sludge could produce hydrogen by anaerobic fermentation and the hydrogen yields under the temperatures of 121 ℃ and 50℃ were 12.23 ml/g VS(most)and 1.17 ml/g VS (least), respectively. It illuminated that the hydrogen yield of sludge was affected by the thermally pretreated temperatures. Additionally, the endurance of high hydrogen yield depended on the translation of microbial matters and inhibition of methanogens in the sludge. The temperatures of 100℃ and 121℃ (treated time, 30 min) could kill or inhibit completely the methanogens while the others could not. To produce hydrogen and save energy, 100℃ was chosen as the optimal temperature for thermal pretreatment. The composition changes in liquid phase in the fermentation process were also discussed. The SCOD of sludge increased, which was affected by the pretreatment temperature. The production of volatile fatty acids in the anaerobic fermentation increased with the pretreatment temperature.

  18. Bio-Hydrogen Production from Pineapple Waste Extract by Anaerobic Mixed Cultures

    Directory of Open Access Journals (Sweden)

    Chakkrit Sreela-or

    2013-04-01

    Full Text Available A statistical experimental design was employed to optimize factors that affect the production of hydrogen from the glucose contained in pineapple waste extract by anaerobic mixed cultures. Results from Plackett-Burman design indicated that substrate concentration, initial pH and FeSO4 concentration had a statistically significant (p ≤ 0.05 influence on the hydrogen production potential (Ps and the specific hydrogen production rate (SHPR. The path of steepest ascent was undertaken to approach the optimal region of these three significant factors which was then optimized using response surface methodology (RSM with central composite design (CCD. The presence of a substrate concentration of 25.76 g-total sugar/L, initial pH of 5.56, and FeSO4 concentration of 0.81 g/L gave a maximum predicted Ps of 5489 mL H2/L, hydrogen yield of 1.83 mol H2/mol glucose, and SHPR of 77.31 mL H2/g-volatile suspended solid (VSS h. A verification experiment indicated highly reproducible results with the observed Ps and SHPR being only 1.13% and 1.14% different from the predicted values.

  19. Two stage anaerobic baffled reactors for bio-hydrogen production from municipal food waste.

    Science.gov (United States)

    Tawfik, A; Salem, A; El-Qelish, M

    2011-09-01

    A two-step anaerobic baffled reactor (ABR-1 and ABR-2) for H2 production from municipal food waste (MFW) was investigated at a temperature of 26 °C. In ABR-1, the average yield of H2 at an HRT of 26 h and OLR of 58 kg COD/m3 d was 250 ml H2/g VS removed. As unexpected; the H2 production in the ABR-2 was further increased up to 370 ml H2/gVS removed at a HRT of 26 h and OLR of 35 kg COD/m3 d. The total H2 yield in the two-step process was estimated to be 4.9 mol H2/mol hexose. The major part of H2 production in the ABR-1 was due to the conversion of COD(particulate) (36%). In the ABR-2 the H2 yield was mainly due to the conversion of COD in the soluble form (76%). Based on these results MFW could be ideal substrate for H2 production in a two-step ABR processes.

  20. Bio-hydrolysis and bio-hydrogen production from food waste by thermophilic and hyperthermophilic anaerobic process.

    Science.gov (United States)

    Algapani, Dalal E; Qiao, Wei; Su, Min; di Pumpo, Francesca; Wandera, Simon M; Adani, Fabrizio; Dong, Renjie

    2016-09-01

    High-temperature pretreatment plays a key role in the anaerobic digestion of food waste (FW). However, the suitable temperature is not yet determined. In this work, a long-term experiment was conducted to compare hydrolysis, acidogenesis, acetogenesis, and hydrogen production at 55°C and 70°C, using real FW in CSTR reactors. The results obtained indicated that acidification was the rate-limiting step at both temperatures with similar process kinetics characterizations. However, the thermophilic pretreatment was more advantageous than the hyperthermophilic with suspended solids solubilization of 47.7% and 29.5% and total VFA vs. soluble COD ratio of 15.2% and 4.9%, for thermophilic and hyperthermophilic treatment, respectively, with a hydrolytic reaction time (HRT) of 10days and an OLR of 14kgCOD/m(3)d. Moreover, stable hydrogen yield (70.7ml-H2/gVSin) and content in off gas (58.6%) was achieved at HRT 5days, pH 5.5, and temperature of 55°C, as opposed to 70°C.

  1. Biohydrogenation of unsaturated fatty acids by a mixed culture of rumen microorganisms.

    Science.gov (United States)

    Kellens, M J; Goderis, H L; Tobback, P P

    1986-08-01

    The biohydrogenation of C-18 unsaturated fatty acids was examined in a mixed culture of microorganisms prepared by inoculating a proper growth medium with a sample of rumen fluid. Some major factors influencing the hydrogenation capacity have been investigated. The age of the mixed culture, the type of inoculum used, the concentration of substrates as well as the presence of sterile rumen fluid in the growth medium were found to be important factors determining biohydrogenation behavior. It could be shown that the mixed microbial culture, which had been grown for about 24 h on a medium similar to that of Bryant and Robinson, contained sterile rumen fluid (10% v/v), and had been inoculated with a sample of the whole untreated rumen content, had the best biohydrogenation capacity. The culture was able to carry out the complete conversion of linoleic and linolenic acid to stearic acid.

  2. Harvesting biohydrogen from cellobiose from sulfide or nitrite-containing wastewaters using Clostridium sp. R1.

    Science.gov (United States)

    Ho, Kuo-Ling; Lee, Duu-Jong

    2011-09-01

    Harvesting biohydrogen from inhibiting wastewaters is of practical interest since the toxicity of compounds in a wastewater stream commonly prevents the bioenergy content being recovered. The isolated Clostridium sp. R1 is utilized to degrade cellobiose in sulfide or nitrite-containing medium for biohydrogen production. The strain can effectively degrade cellobiose free of severe inhibitory effects at up to 200 mgl(-1) sulfide or to 5 mgl(-1) nitrite, yielding hydrogen at >2.0 mol H2 mol(-1) cellobiose. Principal metabolites of cellobiose fermentation are acetate and butyrate, with the concentration of the former increases with increasing sulfide and nitrite concentrations. The isolated strain can yield hydrogen from cellobiose in sulfide-laden wastewaters. However, the present of nitrite significantly limit the efficiency of the biohydrogen harvesting process.

  3. Integrated treatment of municipal sewage sludge by deep dewatering and anaerobic fermentation for biohydrogen production.

    Science.gov (United States)

    Yu, Li; Yu, Yang; Jiang, Wentian; Wei, Huangzhao; Sun, Chenglin

    2015-02-01

    The increasing sludge generated in wastewater treatment plants poses a threat to the environment. Based on the traditional processes, sludge dewatered by usual methods was further dewatered by hydraulic compression and the filtrate released was treated by anaerobic fermentation. The difficulties in sludge dewatering were associated with the existence of sludge flocs or colloidal materials. A suitable CaO dosage of 125 mg/g dry sludge (DS) could further decrease the moisture content of sludge from 82.4 to 50.9 %. The filtrate from the dewatering procedure was a potential substrate for biohydrogen production. Adding zero-valent iron (ZVI) into the anaerobic system improved the biohydrogen yield by 20 %, and the COD removal rate was lifted by 10 % as well. Meanwhile, the sludge morphology and microbial community were altered. The novel method could greatly reduce the sludge volume and successfully treated filtrate along with the conversion of organics into biohydrogen.

  4. Biohydrogen production from CO-rich syngas via a locally isolated Rhodopseudomonas palustris PT.

    Science.gov (United States)

    Pakpour, Fatemeh; Najafpour, Ghasem; Tabatabaei, Meisam; Tohidfar, Masoud; Younesi, Habiboallah

    2014-05-01

    Biohydrogen production through water–gas shift (WGS) reaction by a biocatalyst was conducted in batch fermentation. The isolated photosynthetic bacterium Rhodopseudomonas palustris PT was able to utilize carbon monoxide and simultaneously produce hydrogen. Light exposure was provided as an indispensable requirement for the first stage of bacterial growth, but throughout the hydrogen production stage, the energy requirement was met through the WGS reaction. At ambient pressure and temperature, the effect of various sodium acetate concentrations in presence of CO-rich syngas on cell growth, carbon monoxide consumption, and biohydrogen production was also investigated. Maximal efficiency of hydrogen production in response to carbon monoxide consumption was recorded at 86 % and the highest concentration of hydrogen at 33.5 mmol/l was achieved with sodium acetate concentration of 1.5 g/l. The obtained results proved that the local isolate; R. palustris PT, was able to utilize CO-rich syngas and generate biohydrogen via WGS reaction.

  5. Feasibility of biohydrogen production from tofu wastewater with glutamine auxotrophic mutant of Rhodobacter sphaeroides

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, G.H.; Wang, L.; Kang, Z.H. [School of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping road, Shanghai 200092 (China)

    2010-12-15

    NH{sub 4}{sup +}, which is normally the integrant in organic wastewater, such as Tofu wastewater, is an inhibitor to hydrogen production by anoxygenic phototrophic bacterium. In order to release inhibition of NH{sub 4}{sup +} to biohydrogen generation by Rhodobacter sphaeroides, a glutamine auxotrophic mutant R. sphaeroides TJ-0803 was obtained by mutagenizing with ethyl methane sulfonate. The mutant could generate biohydrogen efficiently in the medium with high NH{sub 4}{sup +} concentration, because the inhibition of NH{sub 4}{sup +} to nitrogenase was released. Under suitable conditions, TJ-0803 could effectively produce biohydrogen from tofu wastewater, which commonly containing 50-60 mg L{sup -1} NH{sub 4}{sup +}, and the generation rate was increased by more than 100% compared with that from wild-type R. sphaeroides. (author)

  6. Improved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase.

    Science.gov (United States)

    Kim, Jaoon Y H; Jo, Byung Hoon; Jo, Younghwa; Cha, Hyung Joon

    2012-01-04

    -powered cell factories for biohydrogen production by introducing proteorhodopsin. © 2012 Kim et al; licensee BioMed Central Ltd.

  7. Biohydrogen production with the light-harvesting function of grana from spirulina and colloidal platinum

    Energy Technology Data Exchange (ETDEWEB)

    Amao, Yutaka; Nakamura, Naoki [Department of Applied Chemistry, Oita University Dannoharu 700, Oita 870-1192 (Japan)

    2006-01-15

    Biohydrogen production with the light-harvesting function of grana from spirulina by use of three-component system consisting of NADH, methylviologen (MV{sup 2+}) and colloidal platinum was investigated. The decay rate of chlorophyll included in grana was suppressed by addition of NADH and little degradation was observed in 120min irradiation. The biohydrogen production system was developed using the light-harvesting function of grana and platinum colloid in the presence of NADH and MV{sup 2+} and the amount of hydrogen produced was estimated to be 0.14{mu}mol after 4h irradiation. (author)

  8. Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Belafi-Bako, K.; Bucsu, D. [Research Institute of Chemical and Process Engineering, University of Veszprem, Egyetem u. 2., 8200 Veszprem (Hungary); Pientka, Z. [Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovsky sq. 2., Prague (Czech Republic); Balint, B.; Herbel, Z.; Kovacs, K.L. [Department of Biotechnology and Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, University of Szeged, Temesvari krt. 62., 6726 Szeged (Hungary); Wessling, M. [Membrane Technology Group, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2006-09-15

    An integrated system for biohydrogen production and separation was designed, constructed and operated where biohydrogen was fermented by Thermococcus litoralis, a heterotrophic archaebacterium, and a two-step gas separation process was coupled to recover and concentrate hydrogen. A special liquid seal system was built to deliver, compress and collect the laboratory scale, low volume gas mixtures consisting of hydrogen, nitrogen and carbon dioxide. As a result, gas mixture with 73% high hydrogen content was produced by a combination of a porous and a non-porous gas separation membrane. (author)

  9. Biohydrogen production: strategies to improve process efficiency through microbial routes.

    Science.gov (United States)

    Chandrasekhar, Kuppam; Lee, Yong-Jik; Lee, Dong-Woo

    2015-04-14

    The current fossil fuel-based generation of energy has led to large-scale industrial development. However, the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly, enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2), a clean energy carrier with high-energy yields; upon the combustion of H2, H2O is the only major by-product. In recent decades, the attractive and renewable characteristics of H2 led us to develop a variety of biological routes for the production of H2. Based on the mode of H2 generation, the biological routes for H2 production are categorized into four groups: photobiological fermentation, anaerobic fermentation, enzymatic and microbial electrolysis, and a combination of these processes. Thus, this review primarily focuses on the evaluation of the biological routes for the production of H2. In particular, we assess the efficiency and feasibility of these bioprocesses with respect to the factors that affect operations, and we delineate the limitations. Additionally, alternative options such as bioaugmentation, multiple process integration, and microbial electrolysis to improve process efficiency are discussed to address industrial-level applications.

  10. Biohydrogen Production: Strategies to Improve Process Efficiency through Microbial Routes

    Directory of Open Access Journals (Sweden)

    Kuppam Chandrasekhar

    2015-04-01

    Full Text Available The current fossil fuel-based generation of energy has led to large-scale industrial development. However, the reliance on fossil fuels leads to the significant depletion of natural resources of buried combustible geologic deposits and to negative effects on the global climate with emissions of greenhouse gases. Accordingly, enormous efforts are directed to transition from fossil fuels to nonpolluting and renewable energy sources. One potential alternative is biohydrogen (H2, a clean energy carrier with high-energy yields; upon the combustion of H2, H2O is the only major by-product. In recent decades, the attractive and renewable characteristics of H2 led us to develop a variety of biological routes for the production of H2. Based on the mode of H2 generation, the biological routes for H2 production are categorized into four groups: photobiological fermentation, anaerobic fermentation, enzymatic and microbial electrolysis, and a combination of these processes. Thus, this review primarily focuses on the evaluation of the biological routes for the production of H2. In particular, we assess the efficiency and feasibility of these bioprocesses with respect to the factors that affect operations, and we delineate the limitations. Additionally, alternative options such as bioaugmentation, multiple process integration, and microbial electrolysis to improve process efficiency are discussed to address industrial-level applications.

  11. A comprehensive and quantitative review of dark fermentative biohydrogen production

    Directory of Open Access Journals (Sweden)

    Rittmann Simon

    2012-08-01

    Full Text Available Abstract Biohydrogen production (BHP can be achieved by direct or indirect biophotolysis, photo-fermentation and dark fermentation, whereof only the latter does not require the input of light energy. Our motivation to compile this review was to quantify and comprehensively report strains and process performance of dark fermentative BHP. This review summarizes the work done on pure and defined co-culture dark fermentative BHP since the year 1901. Qualitative growth characteristics and quantitative normalized results of H2 production for more than 2000 conditions are presented in a normalized and therefore comparable format to the scientific community. Statistically based evidence shows that thermophilic strains comprise high substrate conversion efficiency, but mesophilic strains achieve high volumetric productivity. Moreover, microbes of Thermoanaerobacterales (Family III have to be preferred when aiming to achieve high substrate conversion efficiency in comparison to the families Clostridiaceae and Enterobacteriaceae. The limited number of results available on dark fermentative BHP from fed-batch cultivations indicates the yet underestimated potential of this bioprocessing application. A Design of Experiments strategy should be preferred for efficient bioprocess development and optimization of BHP aiming at improving medium, cultivation conditions and revealing inhibitory effects. This will enable comparing and optimizing strains and processes independent of initial conditions and scale.

  12. Performance of mesophilic biohydrogen-producing cultures at thermophilic conditions.

    Science.gov (United States)

    Gupta, Medhavi; Gomez-Flores, Maritza; Nasr, Noha; Elbeshbishy, Elsayed; Hafez, Hisham; Hesham El Naggar, M; Nakhla, George

    2015-09-01

    In this study, batch tests were conducted to investigate the performance of mesophilic anaerobic digester sludge (ADS) at thermophilic conditions and estimate kinetic parameters for co-substrate fermentation. Starch and cellulose were used as mono-substrate and in combination as co-substrates (1:1 mass ratio) to conduct a comparative assessment between mesophilic (37 °C) and thermophilic (60 °C) biohydrogen production. Unacclimatized mesophilic ADS responded well to the temperature change. The highest hydrogen yield of 1.13 mol H2/mol hexose was observed in starch-only batches at thermophilic conditions. The thermophilic cellulose-only yield (0.42 mol H2/mol hexose) was three times the mesophilic yield (0.13 mol H2/mol hexose). Interestingly, co-fermentation of starch-cellulose at mesophilic conditions enhanced the hydrogen yield by 26% with respect to estimated mono-substrate yields, while under thermophilic conditions no enhancement in the overall yield was observed. Interestingly, the estimated overall Monod kinetic parameters showed higher rates at mesophilic than thermophilic conditions.

  13. Biohydrogen production from tequila vinasses using a fixed bed reactor.

    Science.gov (United States)

    Buitrón, Germán; Prato-Garcia, Dorian; Zhang, Axue

    2014-01-01

    In Mexico, the industrial production of tequila leads to the discharge of more than 31.2 million of m(3) of vinasse, which causes serious environmental issues because of its acidity, high organic load and the presence of recalcitrant compounds. The aim of this research was to study the feasibility of a fixed bed reactor for the production of biohydrogen by using tequila vinasse as substrate. The experiments were carried out in a continuous mode under mesophilic and acidic conditions. The maximum hydrogen yield and hydrogen production rate were 1.3 mol H2 mol/mol glucose and 72 ± 9 mL H2/(Lreactor h), respectively. Biogas consisted of carbon dioxide (36%) and hydrogen (64%); moreover methane was not observed. The electron-equivalent mass balance fitted satisfactorily (sink of electrons from 0.8 to 7.6%). For vinasses, hydrogen production accounted for 10.9% of the total available electron-equivalents. In the liquid phase, the principal metabolites identified were acetic, butyric and iso-butyric acids, which indicated a butyrate-acetate type fermentation. Tequila vinasses did not result in potential inhibition of the fermentative process. Considering the process as a water treatment system, only 20% of the original carbon was removed (as carbon dioxide and biomass) when the tequila vinasses are used.

  14. Characterization and phylogenetics of a new species of genus Lactobacillus from the activated sludge in biohydrogen production

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Anaerobic process of biohydrogen production was developed. There is a great deal of Lactobacillus bacteria in the activated sludge of biohydrogen reactor. The isolation and identification of different anaerobic bacteria in the reactor is important for fermented biohydrogen production process by anaerobic digesting organic wastewater. Considering with the physiological and biochemical traits, morphological characteristics and 16SrDNA sequence, the isolated Rennanqilyfl3 is a new species in Lactobacillus genus. And the temporary nomenclature of the species is Lactobacillus Strain Rennanqilyfl3 sp. nov.

  15. Ruminal microbe of biohydrogenation of trans-vaccenic acid to stearic acid in vitro

    Directory of Open Access Journals (Sweden)

    Li Dan

    2012-02-01

    Full Text Available Abstract Background Optimization of the unsaturated fatty acid composition of ruminant milk and meat is desirable. Alteration of the milk and fatty acid profile was previously attempted by the management of ruminal microbial biohydrogenation. The aim of this study was to identify the group of ruminal trans-vaccenic acid (trans-11 C18:1, t-VA hydrogenating bacteria by combining enrichment studies in vitro. Methods The enrichment culture growing on t-VA was obtained by successive transfers in medium containing t-VA. Fatty acids were detected by gas chromatograph and changes in the microbial composition during enrichment were analyzed by denaturing gradient gel electrophoresis (DGGE. Prominent DGGE bands of the enrichment cultures were identified by 16S rRNA gene sequencing. Results The growth of ruminal t-VA hydrogenating bacteria was monitored through the process of culture transfer according to the accumulation of stearic acid (C18:0, SA and ratio of the substrate (t-VA transformed to the product (SA. A significant part of the retrieved 16S rRNA gene sequences was most similar to those of uncultured bacteria. Bacteria corresponding to predominant DGGE bands in t-VA enrichment cultures clustered with t-VA biohydrogenated bacteria within Group B. Conclusions This study provides more insight into the pathway of biohydrogenation. It also may be important to control the production of t-VA, which has metabolic and physiological benefits, through management of ruminal biohydrogenation bacterium.

  16. Critical assessment of anaerobic processes for continuous biohydrogen production from organic wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Show, Kuan-Yeow [Faculty of Engineering and Green Technology, University Tunku Abdul Rahman, Jalan University, Bandar Barat, 31900 Kampar, Perak (Malaysia); Zhang, Zhen-Peng [Beijing Enterprises Water Group Limited, BLK 25, No. 3 Minzhuang Road, Beijing 100195 (China); Tay, Joo-Hwa [School of Civil and Environmental Engineering, Nanyang Technological University, Nanyang Avenue (Singapore); Liang, David Tee [Institute of Environmental Science and Engineering, Nanyang Technological University (Singapore); Lee, Duu-Jong [Department of Chemical Engineering, National Taiwan University, Taipei (China); Ren, Nanqi; Wang, Aijie [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2010-12-15

    Production of biohydrogen using dark fermentation has received much attention owing to the fact that hydrogen can be generated from renewable organics including waste materials. The key to successful application of anaerobic fermentation is to uncouple the liquid retention time and the biomass retention time in the reactor system. Various reactor designs based on biomass retention within the reactor system have been developed. This paper presents our research work on bioreactor designs and operation for biohydrogen production. Comparisons between immobilized-cell systems and suspended-cell systems based on biomass growth in the forms of granule, biofilm and flocs were made. Reactor configurations including column- and tank-based reactors were also assessed. Experimental results indicated that formation of granules or biofilms substantially enhanced biomass retention which was found to be proportional to the hydrogen production rate. Rapid hydrogen-producing culture growth and high organic loading rate might limit the application of biofilm biohydrogen production, since excessive growth of fermentative biomass would result in washout of support carrier. It follows that column-based granular sludge process is a preferred choice of process for continuous biohydrogen production from organic wastewater, indicating maximum hydrogen yield of 1.7 mol-H{sub 2}/mol-glucose and hydrogen production rate of 6.8 L-H{sub 2}/L-reactor h. (author)

  17. Two-stage alkaline-enzymatic pretreatments to enhance biohydrogen production from sunflower stalks.

    Science.gov (United States)

    Monlau, Florian; Trably, Eric; Barakat, Abdellatif; Hamelin, Jérôme; Steyer, Jean-Philippe; Carrere, Hélène

    2013-01-01

    Because of their rich composition in carbohydrates, lignocellulosic residues represent an interesting source of biomass to produce biohydrogen by dark fermentation. Nevertheless, pretreatments should be applied to enhance the solubilization of holocelluloses and increase their further conversion into biohydrogen. The aim of this study was to investigate the effect of thermo-alkaline pretreatment alone and combined with enzymatic hydrolysis to enhance biohydrogen production from sunflower stalks. A low increase of hydrogen potentials from 2.3 ± 0.9 to 4.4 ± 2.6 and 20.6 ± 5.6 mL of H2 g(-1) of volatile solids (VS) was observed with raw sunflower stalks and after thermo-alkaline pretreatment at 55 °C, 24 h, and 4% NaOH and 170 °C, 1 h, and 4% NaOH, respectively. Enzymatic pretreatment alone showed an enhancement of the biohydrogen yields to 30.4 mL of H2 g(-1) of initial VS, whereas it led to 49 and 59.5 mL of H2 g(-1) of initial VS when combined with alkaline pretreatment at 55 and 170 °C, respectively. Interestingly, a diauxic effect was observed with sequential consumption of sugars by the mixed cultures during dark fermentation. Glucose was first consumed, and once glucose was completely exhausted, xylose was used by the microorganisms, mainly related to Clostridium species.

  18. Immunogenic inhibition of prominent ruminal bacteria as a means to reduce lipolysis and biohydrogenation activity in vitro

    Science.gov (United States)

    Through the microbial processes of lipolysis and biohydrogenation, ruminal animals promote the accumulation of saturated fatty acids in their meat and milk. Anaerovibrio lipolyticus, Butyrivibrio fibrisolvens, and Propionibacterium avidum and acnes have been identified as contributors to ruminal li...

  19. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70(degree)C)

    DEFF Research Database (Denmark)

    Zheng, H.; Zeng, Raymond Jianxiong; Angelidaki, Irini

    2008-01-01

    Biohydrogen could efficiently be produced in glucose-fed biofilm reactors filled with plastic carriers and operated at 70°C. Batch experiments were, in addition, conducted to enrich and cultivate glucose-fed extremethermophilic hydrogen producing microorganisms from a biohydrogen CSTR reactor fed...... with household solid waste. Kinetic analysis of the biohydrogen enrichment cultures show that substrate (glucose) likely inhibited hydrogen production when its concentration was higher than 1 g/L. Different start up strategies were applied for biohydrogen production in biofilm reactors operated at 70°C, and fed...... with synthetic medium with glucose as the only carbon and energy source. A biofilm reactor, started up with plastic carriers, that were previously inoculated with the enrichment cultures, resulted in higher hydrogen yield (2.21 mol H2/mol glucose consumed) but required longer start up time (1 month), while...

  20. Biohydrogen production from soluble condensed molasses fermentation using anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Lay, Chyi-How; Lin, Chiu-Yue [Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724 (China); Wu, Jou-Hsien; Hsiao, Chin-Lang [Department of Water Resource Engineering, Feng Chia University (China); Chang, Jui-Jen [Department of Life Sciences, National Chung Hsing University (China); Chen, Chin-Chao [Environmental Resources Laboratory, Department of Landscape Architecture, Chungchou Institute of Technology (China)

    2010-12-15

    Using anaerobic micro-organisms to convert organic waste to produce hydrogen gas gives the benefits of energy recovery and environmental protection. The objective of this study was to develop a biohydrogen production technology from food wastewater focusing on hydrogen production efficiency and micro-flora community at different hydraulic retention times. Soluble condensed molasses fermentation (CMS) was used as the substrate because it is sacchariferous and ideal for hydrogen production. CMS contains nutrient components that are necessary for bacterial growth: microbial protein, amino acids, organic acids, vitamins and coenzymes. The seed sludge was obtained from the waste activated sludge from a municipal sewage treatment plant in Central Taiwan. This seed sludge was rich in Clostridium sp. A CSTR (continuously stirred tank reactor) lab-scale hydrogen fermentor (working volume, 4.0 L) was operated at a hydraulic retention time (HRT) of 3-24 h with an influent CMS concentration of 40 g COD/L. The results showed that the peak hydrogen production rate of 390 mmol H{sub 2}/L-d occurred at an organic loading rate (OLR) of 320 g COD/L-d at a HRT of 3 h. The peak hydrogen yield was obtained at an OLR of 80 g COD/L-d at a HRT of 12 h. At HRT 8 h, all hydrogenase mRNA detected were from Clostridium acetobutylicum-like and Clostridium pasteurianum-like hydrogen-producing bacteria by RT-PCR analysis. RNA based hydrogenase gene and 16S rRNA gene analysis suggests that Clostridium exists in the fermentative hydrogen-producing system and might be the dominant hydrogen-producing bacteria at tested HRTs (except 3 h). The hydrogen production feedstock from CMS is lower than that of sucrose and starch because CMS is a waste and has zero cost, requiring no added nutrients. Therefore, producing hydrogen from food wastewater is a more commercially feasible bioprocess. (author)

  1. Effects of various pretreatments on biohydrogen production from sewage sludge

    Institute of Scientific and Technical Information of China (English)

    XIAO BenYi; LIU JunXin

    2009-01-01

    The sewage sludge of wastewater treatment plant is a kind of biomass which contains many organics,mainly carbohydrates and proteins. Four pretreatments, acid pretreatment, alkaline pretreatment,thermal pretreatment and ultrasonic pretreatment, were used to enhance biohydrogen production from sewage sludge. The experimental results showed that the four pretreatments could all increase the soluble chemical oxygen demand (SCOD) of sludge and decrease the dry solid (DS) and volatile solid(VS) because the pretreatments could disrupt the floc structure and even the microbial cells of sludge.The results of batch anaerobic fermentation experiments demonstrated that all of the four pretreat-ments could select hydrogen-producing microorganisms from the microflora of sludge and enhance the hydrogen production. The hydrogen yield of the alkaline pretreated sludge at initial pH of 11.5 was the maximal (11.68 mL H2/g VS) and that of the thermal pretreated sludge was the next (8.62 mL H2/g VS).The result showed that the hydrogen yield of pretreated sludge was correlative with its SCOD. The hydrogen yields of acid pretreated sludge and alkaline pretreated sludge were also influenced by their initial pH. No methane could be detected in the anaerobic fermentation of alkaline pretreated sludge and thermal pretreated sludge, which suggested that these pretreatments could fully inhibit the activity of methanogens. The volatile fatty acids (VFA) production in anaerobic fermentation of alkaline pretreated sludge was the maximum and the next is that of thermal pretreated sludge.

  2. Biohydrogen production from beet molasses by sequential dark and photofermentation

    Energy Technology Data Exchange (ETDEWEB)

    Oezguer, Ebru; Eroglu, Inci [Middle East Technical University, Department of Chemical Engineering, 06531, Ankara (Turkey); Mars, Astrid E.; Louwerse, Annemarie; Claassen, Pieternel A.M. [Wageningen UR, Agrotechnology and Food Sciences Group, Wageningen UR, P.O. Box 17, 6700 AA Wageningen (Netherlands); Peksel, Beguem; Yuecel, Meral; Guenduez, Ufuk [Middle East Technical University, Department of Biology, 06531, Ankara (Turkey)

    2010-01-15

    Biological hydrogen production using renewable resources is a promising possibility to generate hydrogen in a sustainable way. In this study, a sequential dark and photofermentation has been employed for biohydrogen production using sugar beet molasses as a feedstock. An extreme thermophile Caldicellulosiruptor saccharolyticus was used for the dark fermentation, and several photosynthetic bacteria (Rhodobacter capsulatus wild type, R. capsulatus hup{sup -} mutant, and Rhodopseudomonas palustris) were used for the photofermentation. C. saccharolyticus was grown in a pH-controlled bioreactor, in batch mode, on molasses with an initial sucrose concentration of 15 g/L. The influence of additions of NH{sub 4}{sup +} and yeast extract on sucrose consumption and hydrogen production was determined. The highest hydrogen yield (4.2 mol of H{sub 2}/mol sucrose) and maximum volumetric productivity (7.1 mmol H{sub 2}/L{sub c}.h) were obtained in the absence of NH{sub 4}{sup +}. The effluent of the dark fermentation containing no NH{sub 4}{sup +} was fed to a photobioreactor, and hydrogen production was monitored under continuous illumination, in batch mode. Productivity and yield were improved by dilution of the dark fermentor effluent (DFE) and the additions of buffer, iron-citrate and sodium molybdate. The highest hydrogen yield (58% of the theoretical hydrogen yield of the consumed organic acids) and productivity (1.37 mmol H{sub 2}/L{sub c}.h) were attained using the hup{sup -} mutant of R. capsulatus. The overall hydrogen yield from sucrose increased from the maximum of 4.2 mol H{sub 2}/mol sucrose in dark fermentation to 13.7 mol H{sub 2}/mol sucrose (corresponding to 57% of the theoretical yield of 24 mol of H{sub 2}/mole of sucrose) by sequential dark and photofermentation. (author)

  3. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.

    Science.gov (United States)

    Poggi-Varaldo, Héctor M; Munoz-Paez, Karla M; Escamilla-Alvarado, Carlos; Robledo-Narváez, Paula N; Ponce-Noyola, M Teresa; Calva-Calva, Graciano; Ríos-Leal, Elvira; Galíndez-Mayer, Juvencio; Estrada-Vázquez, Carlos; Ortega-Clemente, Alfredo; Rinderknecht-Seijas, Noemí F

    2014-05-01

    Biohydrogen is a sustainable form of energy as it can be produced from organic waste through fermentation processes involving dark fermentation and photofermentation. Very often biohydrogen is included as a part of biorefinery approaches, which reclaim organic wastes that are abundant sources of renewable and low cost substrate that can be efficiently fermented by microorganisms. The aim of this work was to critically assess selected bioenergy alternatives from organic solid waste, such as biohydrogen and bioelectricity, to evaluate their relative advantages and disadvantages in the context of biorefineries, and finally to indicate the trends for future research and development. Biorefining is the sustainable processing of biomass into a spectrum of marketable products, which means: energy, materials, chemicals, food and feed. Dark fermentation of organic wastes could be the beach-head of complete biorefineries that generate biohydrogen as a first step and could significantly influence the future of solid waste management. Series systems show a better efficiency than one-stage process regarding substrate conversion to hydrogen and bioenergy. The dark fermentation also produces fermented by-products (fatty acids and solvents), so there is an opportunity for further combining with other processes that yield more bioenergy. Photoheterotrophic fermentation is one of them: photosynthetic heterotrophs, such as non-sulfur purple bacteria, can thrive on the simple organic substances produced in dark fermentation and light, to give more H2. Effluents from photoheterotrophic fermentation and digestates can be processed in microbial fuel cells for bioelectricity production and methanogenic digestion for methane generation, thus integrating a diverse block of bioenergies. Several digestates from bioenergies could be used for bioproducts generation, such as cellulolytic enzymes and saccharification processes, leading to ethanol fermentation (another bioenergy), thus completing

  4. Bio-hydrogen: immobilization of enzymes on electrodes modified by clayey nano-particles; Biohydrogene: immobilisation d'enzymes sur des electrodes modifiees par des nanoparticules argileuses

    Energy Technology Data Exchange (ETDEWEB)

    Lojou, E.; Giudici-Orticoni, M.T.; Bianco, P. [Centre National de la Recherche Scientifique (CNRS), Lab. de Bioenergetique et Ingenierie des Proteines, 13 - Marseille (France)

    2006-07-01

    In this work, has been studied the immobilization of enzymes inside micro-films constituted of clayey nano-particles and layer by layer nano-assembling of clayey nano-particles and enzyme. Natural clays have very great specific surface areas, very strong ions exchange capacities and a swelling lamellar structure particularly well adapted to the non denaturing adsorption of proteins and charged enzymes. In this study, the enzymes have been extracted of sulfate-reducing bacteria. The immobilization of this system in clayey films has been studied by micro-gravimetry/electrochemistry coupling and the catalytic activity towards the production and the consumption of hydrogen quantified. At first, the clay is deposited in layer of thickness of the micron on the gold or graphite electrode. When the hydrogenase is immobilized in the clayey film, the electro-enzymatic oxidation of hydrogen occurs inside the clayey structure. An electrode able to measure either the hydrogen consumption or its production on a wide pH range as thus been prepared, by co-immobilization of hydrogenase and of MV{sup 2+} in montmorillonite films. The catalytic efficiencies obtained by immobilization in the clayey matrix of the two physiological partners, cytochrome c3 and hydrogenase, are strongly improved. Then, this process has been still improved, and three cytochrome c3/clay bilayers have been superposed without loss of the enzymatic activity. (O.M.)

  5. Increasing levels of two different fish oils lower ruminal biohydrogenation of eicosapentaenoic and docosahexaenoic acid in vitro

    OpenAIRE

    Dohme, Frigga; Fievez, Veerle; Raes, Katleen; Demeyer, Daniel

    2003-01-01

    International audience; Ruminal biohydrogenation of dietary $n-3$ fatty acids limits any attempt to increase their contents in products of ruminants. The aim of the study was to determine whether total lipolysis, release rate of eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) from triacylglycerols (TG), their biohydrogenation and their accumulation as unesterified fatty acids was affected by the fish oil type (FOa; FOb), inclusion level (12.5, 25, 50, 75, 100 and 125 mg per incubation ...

  6. Simultaneous glucose sensing and biohydrogen evolution from direct photoelectrocatalytic glucose oxidation on robust Cu₂O-TiO₂ electrodes.

    Science.gov (United States)

    Devadoss, Anitha; Sudhagar, P; Ravidhas, C; Hishinuma, Ryota; Terashima, Chiaki; Nakata, Kazuya; Kondo, Takeshi; Shitanda, Isao; Yuasa, Makoto; Fujishima, Akira

    2014-10-21

    We report simultaneous photoelectrocatalytic (PEC) glucose sensing and biohydrogen generation for the first time from the direct PEC oxidation of glucose at multifunctional and robust Cu2O-TiO2 photocatalysts. Striking improvement of 30% in overall H2 gas evolution (∼122 μmol h(-1) cm(-2)) by photoholes assisted glucose oxidation opens a new platform in solar-driven PEC biohydrogen generation.

  7. A cost-effective strategy for the bio-prospecting of mixed microalgae with high carbohydrate content: diversity fluctuations in different growth media.

    Science.gov (United States)

    Cea-Barcia, Glenda; Buitrón, Germán; Moreno, Gloria; Kumar, Gopalakrishnan

    2014-07-01

    In recent years, widespread efforts have been directed towards decreasing the costs associated with microalgae culture systems for the production of biofuels. In this study, a simple and inexpensive strategy to bio-prospect and cultivate mixed indigenous chlorophytes with a high carbohydrate content for biomethane and biohydrogen production was developed. Mixed microalgae were collected from four different water-bodies in Queretaro, Mexico, and were grown in Bold's basal mineral medium and secondary effluent from a wastewater treatment plant using inexpensive photo-bioreactors. The results showed large fluctuations in microalgal genera diversity based on different culture media and nitrogen sources. In secondary effluent, Golenkinia sp. and Scenedesmus sp. proliferated. The carbohydrate content, for secondary effluent, varied between 12% and 57%, and the highest volumetric and areal productivity were 61 mg L(-1)d(-1) and 4.6 g m(-2)d(-1), respectively. These results indicate that mixed microalgae are a good feedstock for biomethane and biohydrogen production.

  8. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  9. Cyanobacteria: A precious bio-resource in agriculture, ecosystem and environmental sustainability

    Directory of Open Access Journals (Sweden)

    Jay Shankar eSingh

    2016-04-01

    Full Text Available Keeping in view the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters, generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, syngas and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.

  10. The scientometric biography of a leading scientist working on the field of bio-energy

    Energy Technology Data Exchange (ETDEWEB)

    Konur, Ozcan [Sirnak University Faculty of Engineering, Department of Mechanical Engineering (Turkey)], email: okonur@hotmail.com

    2011-07-01

    This paper presents a scientometric biography of a Turkish scientist, Prof. Dr. Ayhan Demirbas, who is a leading figure in the field of bio-energy. It describes the method and importance of doing such biographies and suggests that there are too few of them, this one being the first in this specific area. It provides insight into the individual, his work, his research and links in his field of studies and research. Prof. Dr. Demirbas has spent almost three decades in research, particularly in the field of bio-energy. He has researched and taught in the field of renewable energies including biodiesels, biofuels, biomass pyrolysis, liquefaction and gasification, biogas, bioalcohols, and biohydrogen. He has also studied a great variety of subjects, such as the development of pulp from plants, chemical and engineering thermodynamics, chemical and energy education, global climate change, drinking water and cereal analyses. He has published 454 articles as of 2011.

  11. Biohydrogen production from waste bread in a continuous stirred tank reactor: A techno-economic analysis.

    Science.gov (United States)

    Han, Wei; Hu, Yun Yi; Li, Shi Yi; Li, Fei Fei; Tang, Jun Hong

    2016-12-01

    Biohydrogen production from waste bread in a continuous stirred tank reactor (CSTR) was techno-economically assessed. The treating capacity of the H2-producing plant was assumed to be 2 ton waste bread per day with lifetime of 10years. Aspen Plus was used to simulate the mass and energy balance of the plant. The total capital investment (TCI), total annual production cost (TAPC) and annual revenue of the plant were USD931020, USD299746/year and USD639920/year, respectively. The unit hydrogen production cost was USD1.34/m(3) H2 (or USD14.89/kg H2). The payback period and net present value (NPV) of the plant were 4.8years and USD1266654, respectively. Hydrogen price and operators cost were the most important variables on the NPV. It was concluded that biohydrogen production from waste bread in the CSTR was feasible for practical application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Insights into the global regulation of anaerobic metabolism for improved biohydrogen production.

    Science.gov (United States)

    Lu, Yuan; Zhao, Hongxin; Zhang, Chong; Xing, Xin-Hui

    2016-01-01

    To improve the biohydrogen yield in bacterial dark fermentation, a new approach of global anaerobic regulation was introduced. Two cellular global regulators FNR and NarP were overexpressed in two model organisms: facultatively anaerobic Enterobacter aerogenes (Ea) and strictly anaerobic Clostridium paraputrificum (Cp). The overexpression of FNR and NarP greatly altered anaerobic metabolism and increased the hydrogen yield by 40%. Metabolic analysis showed that the global regulation caused more reducing environment inside the cell. To get a thorough understanding of the global metabolic regulation, more genes (fdhF, fhlA, ppk, Cb-fdh1, and Sc-fdh1) were overexpressed in different Ea and Cp mutants. For the first time, it demonstrated that there were approximately linear relationships between the relative change of hydrogen yield and the relative change of NADH yield or ATP yield. It implied that cellular reducing power and energy level played vital roles in the biohydrogen production.

  13. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Serrano, Maria; Thomsen, Anne Belinda

    2009-01-01

    The production of bioethanol, biohydrogen and biogas from wheat straw was investigated within a biorefinery framework. Initially, wheat straw was hydrothermally liberated to a cellulose rich fiber fraction and a hemicellulose rich liquid fraction (hydrolysate). Enzymatic hydrolysis and subsequent......, multiple biofuels production from wheat straw can increase the efficiency for material and energy and can presumably be more economical process for biomass utilization. (C) 2008 Elsevier Ltd. All rights reserved........ Additionally, evaluation of six different wheat straw-to-biofuel production scenaria showed that either use of wheat straw for biogas production or multi-fuel production were the energetically most efficient processes compared to production of mono-fuel such as bioethanol when fermenting C6 sugars alone. Thus......The production of bioethanol, biohydrogen and biogas from wheat straw was investigated within a biorefinery framework. Initially, wheat straw was hydrothermally liberated to a cellulose rich fiber fraction and a hemicellulose rich liquid fraction (hydrolysate). Enzymatic hydrolysis and subsequent...

  14. Optimization of biohydrogen yield produced by bacterial consortia using residual glycerin from biodiesel production.

    Science.gov (United States)

    Faber, Mariana de Oliveira; Ferreira-Leitão, Viridiana Santana

    2016-11-01

    The aims of this study were to simplify the fermentation medium and to optimize the conditions of dark fermentation of residual glycerin to produce biohydrogen. It was possible to remove all micronutrients of fermentation medium and improve biohydrogen production by applying residual glycerin as feedstock. After statistical analysis of the following parameters pH, glycerin concentration and volatile suspended solids, the values of 5.5; 0.5g.L(-1) and 8.7g.L(-1), respectively, were defined as optimum condition for this process. It generated 2.44molH2/molglycerin, an expressive result when compared to previous results reported in literature and considering that theoretical yield of H2 from glycerol in dark fermentation process is 3molH2/molglycerol. This study allowed the improvement of yield and productivity by 68% and 67%, respectively.

  15. Effect of fermentation conditions on biohydrogen production from cassava starch by anaerobic mixed cultures

    Science.gov (United States)

    Tien, Hai M.; Le, Kien A.; Tran, An T.; Le, Phung K.

    2016-06-01

    In this work, a series of batch tests were conducted to investigate the effect of pH, temperature, fermentation time, and inoculums ratio to hydrogen production using cassava starch as a substrate. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. It was fouund that the suitable fermentation conditions of biohydrogen production should be at temperature 40 ° C; pH 6.5, inoculums to medium ratio 10 % and COD operation at 4800 g/mL. The maximum value of hydrogen volume produced was 76.22 mL. These affected has been evaluated and the result can be used as an reference for the pilot or industrial biohydrogen production.

  16. Biohydrogen-production from beer lees biomass by cow dung compost

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yao-Ting; Zhang, Gao-Sheng; Xing, Yan [Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052 (China); Guo, Xin-Yong [Laboratory of Special Functional Materials, Henan University, Kaifeng, Henan 475001 (China); Fan, Mao-Hong [Center for Sustainable Environmental Technologies, Iowa State University, Ames, Iowa 50011 (United States)

    2006-05-15

    Efficient conversion of beer lees wastes into biohydrogen gas by microorganisms was reported for the first time. Batch tests were carried out to analyze influences of several environmental factors on yield of H{sub 2} from beer lees wastes. The maximum yield of H{sub 2} 68.6mlH{sub 2}/g TVS was observed, the value is about 10-fold as compared with that of raw beer lees wastes. The hydrogen content in the biogas was more than 45% and there was no significant methane observed in this study. In addition, biodegradation characteristics of the substrate were also discussed. The results indicated that the HCl pretreatment of the substrate plays a key role in the conversion of the beer lees wastes into biohydrogen by the cow dung composts. (author)

  17. Optimization of process parameters for production of volatile fatty acid, biohydrogen and methane from anaerobic digestion.

    Science.gov (United States)

    Khan, M A; Ngo, H H; Guo, W S; Liu, Y; Nghiem, L D; Hai, F I; Deng, L J; Wang, J; Wu, Y

    2016-11-01

    The anaerobic digestion process has been primarily utilized for methane containing biogas production over the past few years. However, the digestion process could also be optimized for producing volatile fatty acids (VFAs) and biohydrogen. This is the first review article that combines the optimization approaches for all three possible products from the anaerobic digestion. In this review study, the types and configurations of the bioreactor are discussed for each type of product. This is followed by a review on optimization of common process parameters (e.g. temperature, pH, retention time and organic loading rate) separately for the production of VFA, biohydrogen and methane. This review also includes additional parameters, treatment methods or special additives that wield a significant and positive effect on production rate and these products' yield.

  18. Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review.

    Science.gov (United States)

    Bundhoo, M A Zumar; Mohee, Romeela; Hassan, M Ali

    2015-07-01

    Biohydrogen production from dark fermentation of lignocellulosic materials represents a huge potential in terms of renewable energy exploitation. However, the low hydrogen yield is currently hindering its development on industrial scale. This study reviewed various technologies that have been investigated for enhancing dark fermentative biohydrogen production. The pre-treatment technologies can be classified based on their applications as inoculum or substrates pre-treatment or they can be categorised into physical, chemical, physicochemical and biological based on the techniques used. From the different technologies reviewed, heat and acid pre-treatments are the most commonly studied technologies for both substrates and inoculum pre-treatment. Nevertheless, these two technologies need not necessarily be the most suitable since across different studies, a wide array of other emerging techniques as well as combined technologies have yielded positive findings. To date, there exists no perfect technology for either inoculum or substrate pre-treatment. Although the aim of inoculum pre-treatment is to suppress H2-consumers and enrich H2-producers, many sporulating H2-consumers survive the pre-treatment while some non-spore H2-producers are inhibited. Besides, several inoculum pre-treatment techniques are not effective in the long run and repeated pre-treatment may be required for continuous suppression of H2-consumers and sustained biohydrogen production. Furthermore, many technologies employed for substrates pre-treatment may yield inhibitory compounds that can eventually decrease biohydrogen production. Consequently, much research needs to be done to find out the best technology for both substrates and inoculum pre-treatment while also taking into consideration the energetic, economic and technical feasibility of implementing such a process on an industrial scale.

  19. Draft Genome Sequence of Clostridium sp. Strain Ade.TY, a New Biohydrogen- and Biochemical-Producing Bacterium Isolated from Landfill Leachate Sludge.

    Science.gov (United States)

    Wong, Y M; Juan, J C; Ting, Adeline; Wu, T Y; Gan, H M; Austin, C M

    2014-03-06

    Clostridium sp. strain Ade.TY is potentially a new biohydrogen-producing species isolated from landfill leachate sludge. Here we present the assembly and annotation of its genome, which may provide further insights into its gene interactions for efficient biohydrogen production.

  20. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

    Science.gov (United States)

    Han, Wei; Yan, Yingting; Shi, Yiwen; Gu, Jingjing; Tang, Junhong; Zhao, Hongting

    2016-01-01

    In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield. PMID:27910937

  1. Optimization of organosolv pretreatment of rice straw for enhanced biohydrogen production using Enterobacter aerogenes.

    Science.gov (United States)

    Asadi, Nooshin; Zilouei, Hamid

    2017-03-01

    Ethanol organosolv pretreated rice straw was used to produce biohydrogen using Enterobacter aerogenes. The effect of temperature (120-180°C), residence time (30-90min), and ethanol concentration (45-75%v/v) on the hydrogen yield, residual biomass, and lignin recovery was investigated using RSM. In contrast to the residual solid and lignin recovery, no considerable trend could be observed for the changes in the hydrogen yield at different treatment severities. The maximum hydrogen yield of 19.73mlg(-1) straw was obtained at the ethanol concentration of 45%v/v and 180°C for 30min. Furthermore, the potential amount of biohydrogen was estimated in the top ten rice producing nations using the experimental results. Approximately 355.8kt of hydrogen and 11.3Mt of lignin could globally be produced. Based on a Monte Carlo analysis, the production of biohydrogen from rice straw has the lowest risk in China and the highest in Japan.

  2. Enzymatic saccharification and fermentation of paper and pulp industry effluent for biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmidevi, Rajendran; Muthukumar, Karuppan [Department of Chemical Engineering, Alagappa College of Technology Campus, Anna University Chennai, Chennai 600 025 (India)

    2010-04-15

    Paper and pulp industry effluent was enzymatically hydrolysed using crude cellulase enzyme (0.8-2.2FPU/ml) obtained from Trichoderma reesei and from the hydrolysate biohydrogen was produced using Enterobacter aerogenes. The influence of temperature and incubation time on enzyme production was studied. The optimum temperature for the growth of T. reesei was found to be around 29 C. The enzyme activity of 2.5 FPU/ml was found to produce about 22 g/l of total sugars consisting mainly of glucose, xylose and arabinose. Relevant kinetic parameters with respect to sugars production were estimated using two fraction model. The enzymatic hydrolysate was used for the biohydrogen production using E. aerogenes. The growth data obtained for E. aerogenes were fitted well with Monod and Logistic equations. The maximum hydrogen yield of 2.03 mol H{sub 2}/mol sugar and specific hydrogen production rate of 225 mmol of H{sub 2}/g cell/h were obtained with an initial concentration of 22 g/l of total sugars. The colour and COD of effluent was also decreased significantly during the production of hydrogen. The results showed that the paper and pulp industry effluent can be used as a substrate for biohydrogen production. (author)

  3. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    Science.gov (United States)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  4. Enhancement of photoheterotrophic biohydrogen production at elevated temperatures by the expression of a thermophilic clostridial hydrogenase.

    Science.gov (United States)

    Lo, Shou-Chen; Shih, Shau-Hua; Chang, Jui-Jen; Wang, Chun-Ying; Huang, Chieh-Chen

    2012-08-01

    The working temperature of a photobioreactor under sunlight can be elevated above the optimal growth temperature of a microorganism. To improve the biohydrogen productivity of photosynthetic bacteria at higher temperatures, a [FeFe]-hydrogenase gene from the thermophile Clostridium thermocellum was expressed in the mesophile Rhodopseudomonas palustris CGA009 (strain CGA-CThydA) using a log-phase expression promoter P( pckA ) to drive the expression of heterogeneous hydrogenase gene. In contrast, a mesophilic Clostridium acetobutylicum [FeFe]-hydrogenase gene was also constructed and expressed in R. palustris (strain CGA-CAhydA). Both transgenic strains were tested for cell growth, in vivo hydrogen production rate, and in vitro hydrogenase activity at elevated temperatures. Although both CGA-CThydA and CGA-CAhydA strains demonstrated enhanced growth over the vector control at temperatures above 38 °C, CGA-CThydA produced more hydrogen than the other strains. The in vitro hydrogenase activity assay, measured at 40 °C, confirmed that the activity of the CGA-CThydA hydrogenase was higher than the CGA-CAhydA hydrogenase. These results showed that the expression of a thermophilic [FeFe]-hydrogenase in R. palustris increased the growth rate and biohydrogen production at elevated temperatures. This transgenic strategy can be applied to a broad range of purple photosynthetic bacteria used to produce biohydrogen under sunlight.

  5. Process simulation of integrated biohydrogen production: hydrogen recovery by membrane separation

    Directory of Open Access Journals (Sweden)

    László Koók

    2014-10-01

    Full Text Available In this project, the production of biohydrogen, as a renewable and sustainable energy source was studied. Biohydrogen was manufactured by using E. coli strain in a batch dark fermentative process integrated with membrane gas separation. Two different methods were applied: Firstly, the amount of the produced gas and component concentrations were measured, but CO2 and H2 gases were not separated. In the second experiment CO2 was removed from the gas mixture via chemical sorption (reacting with NaOH. Both methods use continuous product removal in order to enhance the biohydrogen formation. In addition, process modeling was carried out with a simulation software (SuperPro Designer, Intelligen Inc. so that experimental and computational results could be compared. CO2 and H2 flow rates and fluxes were calculated on the basis of the membrane permeation data obtained by using pure gases and silicone (PDMS hollow-fiber membrane module (PermSelect – MedArray Inc..

  6. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation.

    Science.gov (United States)

    Choi, Jeongdong; Ahn, Youngho

    2015-05-01

    Microbial fuel cells (MFCs) treating the food waste leachate produced from biohydrogen fermentation were examined to enhance power generation and energy recovery. In batch mode, the maximum voltage production was 0.56 V and the power density reached 1540 mW/m(2). The maximum Coulombic efficiency (CEmax) and energy efficiency (EE) in the batch mode were calculated to be 88.8% and 18.8%, respectively. When the organic loading rate in sequencing batch mode varied from 0.75 to 6.2 g COD/L-d (under CEmax), the maximum power density reached 769.2 mW/m(2) in OLR of 3.1 g COD/L-d, whereas higher energy recovery (CE=52.6%, 0.346 Wh/g CODrem) was achieved at 1.51 g COD/L-d. The results demonstrate that readily biodegradable substrates in biohydrogen fermentation can be effectively used for the enhanced bioelectricity harvesting of MFCs and a MFC coupled with biohydrogen fermentation is of great benefit on higher electricity generation and energy efficiency.

  7. Biohydrogen production from a novel alkalophilic isolate Clostridium sp. IODB-O3.

    Science.gov (United States)

    Patel, Anil Kumar; Debroy, Arundhati; Sharma, Sandeep; Saini, Reetu; Mathur, Anshu; Gupta, Ravi; Tuli, Deepak Kumar

    2015-01-01

    Hydrogen producing bacteria IODB-O3 was isolated from sludge and identified as Clostridium sp. by 16S rDNA gene analysis. In this study, biohydrogen production process was developed using low-cost agro-waste. Maximum H2 was produced at 37°C and pH 8.5. Maximum H2 yield was obtained 2.54±0.2mol-H2/mol-reducing sugar from wheat straw pre-hydrolysate (WSPH) and 2.61±0.1mol-H2/mol-reducing sugar from pre-treated wheat straw enzymatic-hydrolysate (WSEH). The cumulative H2 production (ml/L), 3680±105 and 3270±100, H2 production rate (ml/L/h), 153±5 and 136±5, and specific H2 production (ml/g/h), 511±5 and 681±10 with WSPH and WSEH were obtained, respectively. Biomass pre-treatment via steam-explosion generates ample amount of WSPH which remains unutilized for bioethanol production due to non-availability of efficient C5-fermenting microorganisms. This study shows that Clostridium sp. IODB-O3 is capable of utilizing WSPH efficiently for biohydrogen production. This would lead to reduced economic constrain on the overall cellulosic ethanol process and also establish a sustainable biohydrogen production process.

  8. Trends in biohydrogen production: major challenges and state-of-the-art developments.

    Science.gov (United States)

    Gupta, Sanjay Kumar; Kumari, Sheena; Reddy, Karen; Bux, Faizal

    2013-01-01

    Hydrogen has shown enormous potential to be an alternative fuel of the future. Hydrogen production technology has gained much attention in the last few decades due to advantages such as its high conversion efficiency, recyclability and non-polluting nature. Over the last few decades, biological hydrogen production has shown great promise for generating large scale sustainable energy to meet ever increasing global energy demands. Various microorganisms, namely bacteria, cyanobacteria, and algae which are capable of producing hydrogen from water, solar energy, and a variety of organic substrates, are explored and studied in detail. Current biohydrogen production technologies, however, face two major challenges such as low-yield and high production cost. Advances have been made in recent years in biohydrogen research to improve the hydrogen yield through process modifications, physiological manipulations, through metabolic and genetic engineering. Recently, cell immobilization such as microbes trapping with nanoparticles within the bioreactor has shown an increase in hydrogen production. This review critically evaluated various biological hydrogen production technologies, key challenges, and recent advancements in biohydrogen research and development.

  9. Persistent BioPerl

    OpenAIRE

    Hilmar Lapp

    2007-01-01

    I present BioSQL, a generic and highly extensible relational model for storing biological sequences, sequence clusters, genes, sequence features, sequence and feature annotation, and ontology terms. BioSQL also represents the interoperable persistence API among the Bio* life science programming toolkits (BioPerl, Biojava, Biopython, BioRuby), each of which has a language-binding to the BioSQL schema. I specifically present the Bioperl-db software, which in a transparent manner makes BioPerl o...

  10. Comparison of tubular and panel type photobioreactors for biohydrogen production utilizing Chlamydomonas reinhardtii considering mixing time and light intensity.

    Science.gov (United States)

    Oncel, S; Kose, A

    2014-01-01

    Two different photobioreactor designs; tubular and panel, were investigated for the biohydrogen production utilizing a green microalgae Chlamydomonas reinhardtii strain CC124 following the two stage protocol. Mixing time and light intensity of the systems were adjusted to compare the productivity of both aerobic culture phase and the following anaerobic biohydrogen production phase. The results showed there was an effect on both phases related with the design. During the aerobic phase bigger illumination area serving more energy, tubular photobioreactor reached higher biomass productivity of 31.8±2.1 mg L(-1) h(-1) which was about 11% higher than the panel photobioreactor. On the other hand biohydrogen productivity in the panel photobioreactor reached a value of 1.3±0.05 mL L(-1) h(-1) based on the efficient removal of biohydrogen gas. According to the results it would be a good approach to utilize tubular design for aerobic phase and panel for biohydrogen production phase.

  11. Biohydrogen production from rotten orange with immobilized mixed culture: Effect of immobilization media for various composition of substrates

    Energy Technology Data Exchange (ETDEWEB)

    Damayanti, Astrilia, E-mail: liasholehasd@gmail.com [Department of Chemical Engineering, Faculty of Engineering, Semarang State University, E1 Building, 2nd floor, Kampus Sekaran, Gunungpati, Semarang 50229 (Indonesia); Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, Jl. Grafika No. 2, Kampus UGM, Yogyakarta 55281 (Indonesia); Sarto,; Syamsiah, Siti; Sediawan, Wahyudi B. [Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, Jl. Grafika No. 2, Kampus UGM, Yogyakarta 55281 (Indonesia)

    2015-12-29

    Enriched–immobilized mixed culture was utilized to produce biohydrogen in mesophilic condition under anaerobic condition using rotten orange as substrate. The process was conducted in batch reactors for 100 hours. Microbial cultures from three different sources were subject to a series of enrichment and immobilized in two different types of media, i.e. calcium alginate (CA, 2%) and mixture of alginate and activated carbon (CAC, 1:1). The performance of immobilized culture in each media was tested for biohydrogen production using four different substrate compositions, namely orange meat (OM), orange meat added with peel (OMP), orange meat added with limonene (OML), and mixture of orange meat and peel added with limonene (OMPL). The results show that, with immobilized culture in CA, the variation of substrate composition gave significant effect on the production of biohydrogen. The highest production of biohydrogen was detected for substrate containing only orange meet, i.e. 2.5%, which was about 3-5 times higher than biohydrogen production from other compositions of substrate. The use of immobilized culture in CAC in general has increased the hydrogen production by 2-7 times depending on the composition of substrate, i.e. 5.4%, 4.8%, 5.1%, and 4.4% for OM, OMP, OML, and OMPL, respectively. The addition of activated carbon has eliminated the effect of inhibitory compounds in the substrate. The major soluble metabolites were acetic acid, propionic acid, and butyric acid.

  12. Biohydrogen production from rotten orange with immobilized mixed culture: Effect of immobilization media for various composition of substrates

    Science.gov (United States)

    Damayanti, Astrilia; Sarto, Syamsiah, Siti; Sediawan, Wahyudi B.

    2015-12-01

    Enriched-immobilized mixed culture was utilized to produce biohydrogen in mesophilic condition under anaerobic condition using rotten orange as substrate. The process was conducted in batch reactors for 100 hours. Microbial cultures from three different sources were subject to a series of enrichment and immobilized in two different types of media, i.e. calcium alginate (CA, 2%) and mixture of alginate and activated carbon (CAC, 1:1). The performance of immobilized culture in each media was tested for biohydrogen production using four different substrate compositions, namely orange meat (OM), orange meat added with peel (OMP), orange meat added with limonene (OML), and mixture of orange meat and peel added with limonene (OMPL). The results show that, with immobilized culture in CA, the variation of substrate composition gave significant effect on the production of biohydrogen. The highest production of biohydrogen was detected for substrate containing only orange meet, i.e. 2.5%, which was about 3-5 times higher than biohydrogen production from other compositions of substrate. The use of immobilized culture in CAC in general has increased the hydrogen production by 2-7 times depending on the composition of substrate, i.e. 5.4%, 4.8%, 5.1%, and 4.4% for OM, OMP, OML, and OMPL, respectively. The addition of activated carbon has eliminated the effect of inhibitory compounds in the substrate. The major soluble metabolites were acetic acid, propionic acid, and butyric acid.

  13. Effects of pH, glucose and iron sulfate concentration on the yield of biohydrogen by Clostridium butyricum EB6

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Mei-Ling; Abdul Rahman, Nor' Aini; Yee, Phang Lai; Aziz, Suraini Abd; Hassan, Mohd Ali [Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Rahim, Raha Abdul [Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Shirai, Yoshihito [Graduate School of Life Sciences and System Engineering, Kyushu Institute of Technology, 808-0196 Hibikino 2-4, Wakamatsu-ku, Kitakyushu-shi, Fukuoka (Japan)

    2009-11-15

    A local bacterial isolate from palm oil mill effluent (POME) sludge, identified as Clostridium butyricum EB6, was used for biohydrogen production. Optimization of biohydrogen production was performed via statistical analysis, namely response surface methodology (RSM), with respect to pH, glucose and iron concentration. The results show that pH, glucose concentration and iron concentration significantly influenced the biohydrogen gas production individually, interactively and quadratically (P < 0.05). The center composite design (CCD) results indicated that pH 5.6, 15.7 g/L glucose and 0.39 g/L FeSO{sub 4} were the optimal conditions for biohydrogen production, yielding 2.2 mol H{sub 2}/mol glucose. In confirmation of the experimental model, t-test results showed that curve fitted to the experimental data had a high confidence level, at 95% with t = 2.225. Based on the results of this study, optimization of the culture conditions for C. butyricum EB6 significantly increased the production of biohydrogen. (author)

  14. Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials.

    Science.gov (United States)

    Monlau, Florian; Sambusiti, Cecilia; Barakat, Abdellatif; Guo, Xin Mei; Latrille, Eric; Trably, Eric; Steyer, Jean-Philippe; Carrere, Hélène

    2012-11-01

    In an integrated biorefinery concept, biological hydrogen and methane production from lignocellulosic substrates appears to be one of the most promising alternatives to produce energy from renewable sources. However, lignocellulosic substrates present compositional and structural features that can limit their conversion into biohydrogen and methane. In this study, biohydrogen and methane potentials of 20 lignocellulosic residues were evaluated. Compositional (lignin, cellulose, hemicelluloses, total uronic acids, proteins, and soluble sugars) as well as structural features (crystallinity) were determined for each substrate. Two predictive partial least square (PLS) models were built to determine which compositional and structural parameters affected biohydrogen or methane production from lignocellulosic substrates, among proteins, total uronic acids, soluble sugars, crystalline cellulose, amorphous holocelluloses, and lignin. Only soluble sugars had a significant positive effect on biohydrogen production. Besides, methane potentials correlated negatively to the lignin contents and, to a lower extent, crystalline cellulose showed also a negative impact, whereas soluble sugars, proteins, and amorphous hemicelluloses showed a positive impact. These findings will help to develop further pretreatment strategies for enhancing both biohydrogen and methane production.

  15. Ionic liquid-impregnated activated carbon for biohydrogen purification in an adsorption unit

    Science.gov (United States)

    Yusuf, N. Y.; Masdar, M. S.; Isahak, W. N. R. W.; Nordin, D.; Husaini, T.; Majlan, E. H.; Rejab, S. A. M.; Chew, C. L.

    2017-06-01

    Biological methods for hydrogen production (biohydrogen) are known as energy intensive and can be operated at ambient temperature and pressure; however, consecutive productions such as purification and separation processes still remain challenging in the industry. Various techniques are used to purify and separate hydrogen. These techniques include the use of sorbents/solvents, membranes and cryogenic distillation. In this study, carbon dioxide (CO2) was purified and separated from biohydrogen to produce high purity hydrogen gas. CO2 capture was studied using the activated carbon (AC) modified with the ionic liquid (IL) choline chloride as adsorbent. The physical and chemical properties of the adsorbents were characterized through XRD, FTIR, SEM-EDX, TGA, and BET analyses. The effects of IL loading, flow rate, temperature, and gas mixture were also investigated based on the absorption and desorption of CO2. The CO2 level in the biohydrogen composition was analyzed using a CO2 gas analyzer. The SEM image indicated that the IL homogeneously covered the AC surface. High IL dispersion inlet enhanced the capability of the adsorbent to capture CO2 gas. The thermal stability and presence of the functionalized group of ILs on AC were analyzed by TGA and FTIR techniques, respectively. CO2 adsorption experiments were conducted using a 1 L adsorber unit. Hence, adsorption technologies exhibit potential for biohydrogen purification and mainly affected by adsorbent ability and operating parameters. This research presents an improved biohydrogen technique based on adsorption technology with novel adsorbents. Two different types of commercial CO2 adsorbents were used in the experiment. Results show that the IL/AC exhibited properties suitable for CO2 adsorption. The IL/AC sample presented a high CO2 uptake of 30 wt. % IL when treated at 30 °C for 6 h under a flow rate of 1 L/min. The presence of IL increased the selectivity of CO2 removal during the adsorption process. This IL

  16. Assessment of optimum dilution ratio for biohydrogen production by anaerobic co-digestion of press mud with sewage and water.

    Science.gov (United States)

    Radjaram, B; Saravanane, R

    2011-02-01

    Anaerobic co-digestion of press mud with water or sewage at ratios of 1:7.5, 1:10 and 1:12.5 were performed in continuously fed UASB reactors for hydrogen production. At a constant hydraulic retention time of 30 h, the specific hydrogen production rate was 187 mL/g volatile solids (VS) reduced during maximum biohydrogen production of 7960 mL/day at a 1:10 ratio of press mud to sewage. Chemical oxygen demand (COD) and VS reductions of 61% and 59% were noted on peak biohydrogen yield. A pH range of 5-6 was suitable at ambient temperature for entire process; a lower pH was inhibitory. Co-digestion of acidic press mud with sewage controlled pH for fermentation. Hence press mud can be exploited for biohydrogen production.

  17. Effects of saponins, quercetin, eugenol, and cinnamaldehyde on fatty acid biohydrogenation of forage polyunsaturated fatty acids in dual-flow continuous culture fermenters.

    Science.gov (United States)

    Lourenço, M; Cardozo, P W; Calsamiglia, S; Fievez, V

    2008-11-01

    Four different plant secondary metabolites were screened for their effect on rumen biohydrogenation of forage long-chain fatty acids, using dual-flow continuous culture fermenters. Treatments were as follows: control (no additive), positive control (12 mg/L of monensin), and plant extracts (500 and 1,000 mg/L of triterpene saponin; 250 and 500 mg/L of quercetin; 250 mg/L of eugenol; 500 mg/L of cinnamaldehyde). Monensin increased propionate, decreased acetate and butyrate proportions, and inhibited the complete biohydrogenation of fatty acids resulting in the accumulation of intermediates of the biohydrogenation process (C18:2 trans-11, cis-15 rather than C18:1 trans-11). Cinnamaldehyde decreased total VFA concentration and proportions of odd and branched-chain fatty acids in total fat effluent. Apparent biohydrogenation of C18:2n-6 and C18:3n-3 was also less, and a shift from the major known biohydrogenation pathway to a secondary pathway of C18:2n-6 was observed, as evidenced by an accumulation of C18:1 trans-10 and trans-10, cis-12 CLA. Quercetin (500 mg/L) increased total VFA concentration, but no shifts in the pathways or extent of biohydrogenation were observed. Eugenol resulted in the accumulation of C18:1 trans-15 and C18:1 cis-15, end products of an alternative biohydrogenation pathway of C18:3n-3. Triterpene saponins did not affect the fermentation pattern, the biohydrogenation pathways, or the extent of biohydrogenation. At the doses tested in this study, we could only show a direct relation between changes in the rumen fatty acid metabolism and the presence of cinnamaldehyde but not for eugenol, quercetin, or triterpene saponins.

  18. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation

    DEFF Research Database (Denmark)

    Kongjan, Prawit; Min, Booki; Angelidaki, Irini

    2009-01-01

    high hydrogen partial pressure (>0.14 atm) was present in the headspace of the batch reactors. Biohydrogen could be successfully produced in continuously stirred reactor (CSTR) operated at 72-h hydraulic retention time (HRT) with 1 g/L of xylose as substrate at 70 degrees C. The hydrogen production...... yield achieved in the CSTR was 1.36 +/- 0.03 mol-H-2/Mol-xylose(consumed),, and the production rate was 62 +/- 2 ml/d.L-reactor. The hydrogen content in the methane-free mixed gas was approximately 31 +/- 1%, and the rest was carbon dioxide. The main intermediate by-products from the effluent were...

  19. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.

    Science.gov (United States)

    Kongjan, Prawit; Min, Booki; Angelidaki, Irini

    2009-03-01

    Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) was investigated in batch and continuous-mode operation. Biohydrogen was successfully produced from xylose by repeated batch cultivations with mixed culture received from a biohydrogen reactor treating household solid wastes at 70 degrees C. The highest hydrogen yield of 1.62+/-0.02 mol-H2/mol-xylose(consumed) was obtained at initial xylose concentration of 0.5 g/L with synthetic medium amended with 1g/L of yeast extract. Lower hydrogen yield was achieved at initial xylose concentration higher than 2g/L. Addition of yeast extract in the cultivation medium resulted in significant improvement of hydrogen yield. The main metabolic products during xylose fermentation were acetate, ethanol, and lactate. The specific growth rates were able to fit the experimental points relatively well with Haldane equation assuming substrate inhibition, and the following kinetic parameters were obtained: the maximum specific growth rate (mu(max)) was 0.17 h(-1), the half-saturation constant (K(s)) was 0.75g/L, and inhibition constant (K(i)) was 3.72 g/L of xylose. Intermittent N2 sparging could enhance hydrogen production when high hydrogen partial pressure (> 0.14 atm) was present in the headspace of the batch reactors. Biohydrogen could be successfully produced in continuously stirred reactor (CSTR) operated at 72-h hydraulic retention time (HRT) with 1g/L of xylose as substrate at 70 degrees C. The hydrogen production yield achieved in the CSTR was 1.36+/-0.03 mol-H2/mol-xylose(sonsumed), and the production rate was 62+/-2 ml/d x L(reactor). The hydrogen content in the methane-free mixed gas was approximately 31+/-1%, and the rest was carbon dioxide. The main intermediate by-products from the effluent were acetate, formate, and ethanol at 4.25+/-0.10, 3.01+/-0.11, and 2.59+/-0.16 mM, respectively.

  20. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70 degrees C).

    Science.gov (United States)

    Zheng, Hang; Zeng, Raymond J; Angelidaki, Irini

    2008-08-01

    Biohydrogen could efficiently be produced in glucose-fed biofilm reactors filled with plastic carriers and operated at 70 degrees C. Batch experiments were, in addition, conducted to enrich and cultivate glucose-fed extreme-thermophilic hydrogen producing microorganisms from a biohydrogen CSTR reactor fed with household solid waste. Kinetic analysis of the biohydrogen enrichment cultures show that substrate (glucose) likely inhibited hydrogen production when its concentration was higher than 1 g/L. Different start up strategies were applied for biohydrogen production in biofilm reactors operated at 70 degrees C, and fed with synthetic medium with glucose as the only carbon and energy source. A biofilm reactor, started up with plastic carriers, that were previously inoculated with the enrichment cultures, resulted in higher hydrogen yield (2.21 mol H(2)/mol glucose consumed) but required longer start up time (1 month), while a biofilm reactor directly inoculated with the enrichment cultures reached stable state much faster (8 days) but with very low hydrogen yield (0.69 mol H(2)/mol glucose consumed). These results indicate that hydraulic pressure is necessary for successful immobilization of bacteria on carriers, while there is the risk of washing out specific high yielding bacteria.

  1. Comparison of different mixed cultures for bio-hydrogen production from ground wheat starch by combined dark and light fermentation.

    Science.gov (United States)

    Ozmihci, Serpil; Kargi, Fikret

    2010-04-01

    Composition of the mixed culture was varied in combined dark-light fermentation of wheat powder starch in order to improve hydrogen gas formation rate and yield. Heat-treated anaerobic sludge and pure culture of Clostridium beijerinckii (DSMZ 791T) were combined with two different light fermentation bacteria of Rhodobacter sphaeroides (RS-NRRL and RS-RV) in order to select a more suitable mixture resulting in high hydrogen yield and formation rate. A combination of the anaerobic sludge and RS-NRRL yielded the highest cumulative hydrogen (CHF = 140 ml), the highest yield (0.36 mol H2 mol(-1) glucose) and specific hydrogen formation rate (2.5 ml H2 g(-1) biomass h(-1)). During dark fermentation (70 h) hydrogen was produced simultaneously by the dark and light fermentation bacteria using glucose from hydrolyzed starch. However, only light fermentation bacteria produced hydrogen from VFA's derived from dark fermentation after a long adaptation period.

  2. The organic agricultural waste as a basic source of biohydrogen production

    Science.gov (United States)

    Sriwuryandari, Lies; Priantoro, E. Agung; Sintawardani, Neni; Astuti, J. Tri; Nilawati, Dewi; Putri, A. Mauliva Hada; Mamat, Sentana, Suharwadji; Sembiring, T.

    2016-02-01

    Biohydrogen production research was carried out using raw materials of agricultural organic waste that was obtained from markets around the Bandung city. The organic part, which consisted of agricultural waste material, mainly fruit and vegetable waste, was crushed and milled using blender. The sludge that produced from milling process was then used as a substrate for mixed culture microorganism as a raw material to produce biohydrogen. As much as 1.2 kg.day-1 of sludge (4% of total solid) was fed into bioreactor that had a capacity of 30L. Experiment was done under anaerobic fermentation using bacteria mixture culture that maintained at pH in the range of 5.6-6.5 and temperature of 25-30oC on semi-continuous mode. Parameters of analysis include pH, temperature, total solid (TS), organic total solid (OTS), total gas production, and hydrogen gas production. The results showed that from 4% of substrate resulted 897.86 L of total gas, which contained 660.74 L (73.59%) of hydrogen gas. The rate of hydrogen production in this study was 11,063 mol.L-1.h-1.

  3. Biohydrogen production from specified risk materials co-digested with cattle manure

    Energy Technology Data Exchange (ETDEWEB)

    Gilroyed, Brandon H. [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta T1J 4B1 (Canada); Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Li, Chunli; Hao, Xiying; McAllister, Tim A. [Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, Alberta T1J 4B1 (Canada); Chu, Angus [Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4 (Canada)

    2010-02-15

    Biohydrogen production from the anaerobic digestion of specified risk materials (SRM) co-digested with cattle manure was assessed in a 3 x 5 factorial design. Total organic loading rates (OLR) of 10, 20, and 40 g L{sup -1} volatile solids (VS) were tested using manure:SRM (wt/wt) mixtures of 100:0 (control), 90:10, 80:20, 60:40, and 50:50 using five 2 L continuously stirred biodigesters operating at 55 C. Gas samples were taken daily to determine hydrogen production, and slurry samples were analyzed daily for volatile fatty acid (VFA) concentration, total ammonia nitrogen (TAN), and VS degradation. Hydrogen production (mL g{sup -1} VS fed) varied quadratically according to OLR (P < 0.01), with maximum production at OLR20, while production decreased linearly (P < 0.0001) as SRM concentration increased. Reduced hydrogen production associated with SRM inclusion at >10% VS may be attributed to a rapid increase in TAN (r = -0.55) or other inhibitors such as long chain fatty acids. Reduced hydrogen production (P < 0.01) at OLR40 versus OLR20 may be related to increased rate of VFA accumulation and final VFA concentration (P < 0.001), as well as inhibition due to hydrogen accumulation (P < 0.001). Biohydrogen production from SRM co-digested with cattle manure may not be feasible on an industrial scale due to reduced hydrogen production with increasing levels of SRM. (author)

  4. Enhanced biohydrogen production from sugarcane bagasse by Clostridium thermocellum supplemented with CaCO3.

    Science.gov (United States)

    Tian, Qing-Qing; Liang, Lei; Zhu, Ming-Jun

    2015-12-01

    Clostridium thermocellum ATCC 27405 was used to degrade sugarcane bagasse (SCB) directly for hydrogen production, which was significantly enhanced by supplementing medium with CaCO3. The effect of CaCO3 concentration on the hydrogen production was investigated. The hydrogen production was significantly enhanced with the CaCO3 concentration increased from 10mM to 20mM. However, with the CaCO3 concentration further increased from 20mM to 100mM, the hydrogen production didn't increase further. Under the optimal CaCO3 concentration of 20mM, the hydrogen production reached 97.83±5.19mmol/L from 2% sodium hydroxide-pretreated SCB, a 116.72% increase over the control (45.14±1.03mmol/L), and the yield of hydrogen production reached 4.89mmol H2/g SCBadded. Additionally, CaCO3 promoted the biodegradation of SCB and the growth of C. thermocellum. The stimulatory effects of CaCO3 on biohydrogen production are mainly attributed to the buffering capacity of carbonate. The study provides a novel strategy to enhance biohydrogen production from lignocellulose.

  5. Biohydrogen production and kinetic modeling using sediment microorganisms of Pichavaram mangroves, India.

    Science.gov (United States)

    Mullai, P; Rene, Eldon R; Sridevi, K

    2013-01-01

    Mangrove sediments host rich assemblages of microorganisms, predominantly mixed bacterial cultures, which can be efficiently used for biohydrogen production through anaerobic dark fermentation. The influence of process parameters such as effect of initial glucose concentration, initial medium pH, and trace metal (Fe(2+)) concentration was investigated in this study. A maximum hydrogen yield of 2.34, 2.3, and 2.6 mol H2 mol(-1) glucose, respectively, was obtained under the following set of optimal conditions: initial substrate concentration-10,000 mg L(-1), initial pH-6.0, and ferrous sulphate concentration-100 mg L(-1), respectively. The addition of trace metal to the medium (100 mg L(-1) FeSO4 ·7H2O) enhanced the biohydrogen yield from 2.3 mol H2 mol(-1) glucose to 2.6 mol H2 mol(-1) glucose. Furthermore, the experimental data was subjected to kinetic analysis and the kinetic constants were estimated with the help of well-known kinetic models available in the literature, namely, Monod model, logistic model and Luedeking-Piret model. The model fitting was found to be in good agreement with the experimental observations, for all the models, with regression coefficient values >0.92.

  6. Biohydrogen Production and Kinetic Modeling Using Sediment Microorganisms of Pichavaram Mangroves, India

    Directory of Open Access Journals (Sweden)

    P. Mullai

    2013-01-01

    Full Text Available Mangrove sediments host rich assemblages of microorganisms, predominantly mixed bacterial cultures, which can be efficiently used for biohydrogen production through anaerobic dark fermentation. The influence of process parameters such as effect of initial glucose concentration, initial medium pH, and trace metal (Fe2+ concentration was investigated in this study. A maximum hydrogen yield of 2.34, 2.3, and 2.6 mol H2 mol−1 glucose, respectively, was obtained under the following set of optimal conditions: initial substrate concentration—10,000 mg L−1, initial pH—6.0, and ferrous sulphate concentration—100 mg L−1, respectively. The addition of trace metal to the medium (100 mg L−1 FeSO4·7H2O enhanced the biohydrogen yield from 2.3 mol H2 mol−1 glucose to 2.6 mol H2 mol−1 glucose. Furthermore, the experimental data was subjected to kinetic analysis and the kinetic constants were estimated with the help of well-known kinetic models available in the literature, namely, Monod model, logistic model and Luedeking-Piret model. The model fitting was found to be in good agreement with the experimental observations, for all the models, with regression coefficient values >0.92.

  7. Bio Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry and biology laboratories The Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...

  8. Bio Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry and biology laboratoriesThe Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...

  9. Evidence for the inhibition of the terminal step of ruminal alpha-linolenic acid biohydrogenation by condensed tannins.

    Science.gov (United States)

    Khiaosa-Ard, R; Bryner, S F; Scheeder, M R L; Wettstein, H-R; Leiber, F; Kreuzer, M; Soliva, C R

    2009-01-01

    Effects of condensed tannins (CT), either via extract or plant-bound, and saponin extract on ruminal biohydrogenation of alpha-linolenic acid (ALA) were investigated in vitro. Grass-clover hay served as basal diet (control). The control hay was supplemented with extracts contributing either CT from Acacia mearnsii [7.9% of dietary dry matter (DM)] or saponins from Yucca schidigera (1.1% of DM). The fourth treatment consisted of dried sainfoin (Onobrychis viciifolia), a CT-containing forage legume, in an amount also providing 7.9% CT in dietary DM. All diets were supplemented with linseed oil at a level contributing 60% of total dietary ALA in all treatments. Diets were incubated for 10 d (n = 4) in the rumen simulation technique system, using the last 5 d for statistical evaluation. Fatty acids were analyzed in feed, feed residues, incubation fluid, and its effluent. Data were subjected to ANOVA considering diet and experimental run as main effects. Both CT treatments reduced ruminal fiber and crude protein degradation, and lowered incubation fluid ammonia concentration. Only the CT extract suppressed methane formation and shifted microbial populations toward bacteria at cost of protozoa. The saponin extract remained without clear effects on fermentation characteristics except for increased protozoal counts. The extent of ALA biohydrogenation was 20% less with the CT plant, but this probably resulted from reduced organic matter degradability rather than from an inhibition of biohydrogenation. After incubation analysis of incubation fluid effluent and feed residues showed a considerable proportion of the 3 biohydrogenation intermediates, cis-9, trans-11, cis-15 C18:3, trans-11, cis-15 C18:2, and trans-11 C18:1, which did not occur in the initial feeds. Only the CT-extract diet led to a different profile in the effluent compared with the control diet with trans-11 C18:1 being considerably increased at cost of C18:0. This could have been achieved by suppressing

  10. Effects of chemically or technologically treated linseed products and docosahexaenoic acid addition to linseed oil on biohydrogenation of C18:3n-3 in vitro.

    Science.gov (United States)

    Sterk, A; Hovenier, R; Vlaeminck, B; van Vuuren, A M; Hendriks, W H; Dijkstra, J

    2010-11-01

    Rumen biohydrogenation kinetics of C18:3n-3 from several chemically or technologically treated linseed products and docosahexaenoic acid (DHA; C22:6n-3) addition to linseed oil were evaluated in vitro. Linseed products evaluated were linseed oil, crushed linseed, formaldehyde treated crushed linseed, sodium hydroxide/formaldehyde treated crushed linseed, extruded whole linseed (2 processing variants), extruded crushed linseed (2 processing variants), micronized crushed linseed, commercially available extruded linseed, lipid encapsulated linseed oil, and DHA addition to linseed oil. Each product was incubated with rumen liquid using equal amounts of supplemented C18:3n-3 and fermentable substrate (freeze-dried total mixed ration) for 0, 0.5, 1, 2, 4, 6, 12, and 24h using a batch culture technique. Disappearance of C18:3n-3 was measured to estimate the fractional biohydrogenation rate and lag time according to an exponential model and to calculate effective biohydrogenation of C18:3n-3, assuming a fractional passage rate of 0.060/h. Treatments showed no differences in rumen fermentation parameters, including gas production rate and volatile fatty acid concentration. Technological pretreatment (crushing) followed by chemical treatment applied as formaldehyde of linseed resulted in effective protection of C18:3n-3 against biohydrogenation. Additional chemical pretreatment (sodium hydroxide) before applying formaldehyde treatment did not further improve the effectiveness of protection. Extrusion of whole linseed compared with extrusion of crushed linseed was effective in reducing C18:3n-3 biohydrogenation, whereas the processing variants were not different in C18:3n-3 biohydrogenation. Crushed linseed, micronized crushed linseed, lipid encapsulated linseed oil, and DHA addition to linseed oil did not reduce C18:3n-3 biohydrogenation. Compared with the other treatments, docosahexaenoic acid addition to linseed oil resulted in a comparable trans11,cis15-C18

  11. Understanding bio-economics

    NARCIS (Netherlands)

    Patel, M.K.

    2008-01-01

    New plants for production of bio-based fuels, chemicals or plastics are being set up at an accelerating pace. However, this transition towards bio-based fuels, feedstocks and chemicals has not come without consequences. Increased demand has pushed up prices of key agricultural products such as maize

  12. Acidogenic spent wash valorization through polyhydroxyalkanoate (PHA) synthesis coupled with fermentative biohydrogen production.

    Science.gov (United States)

    Amulya, K; Reddy, M Venkateswar; Mohan, S Venkata

    2014-04-01

    The production of polyhydroxyalkanoates (PHAs) by Bacillus tequilensis biocatalyst using spent wash effluents as substrate was evaluated to increase the versatility of the existing PHA production process and reduce production cost. In this study, spent wash was used as a substrate for biohydrogen (H2) production and the resulting acidogenic effluents were subsequently employed as substrate for PHA production. Maximum H2 production of 39.8L and maximum PHA accumulation of 40% dry cell weight was attained. Good substrate removal associated with decrement in acidification (53% to 15%) indicates that the VFA generated were effectively utilized for PHA production. The PHA composition showed presence of copolymer [P (3HB-co-3HV)] with varying contents of hydroxybutyrate and hydroxyvalerate. The results obtained suggest that the use of spent wash effluents as substrate can considerably reduce the production cost of PHA with simultaneous waste valorization. PHA synthesis with B. tequilensis and spent wash effluents is reported for the first time.

  13. Performance of continuous stirred tank reactor (CSTR) on fermentative biohydrogen production from melon waste

    Science.gov (United States)

    Cahyari, K.; Sarto; Syamsiah, S.; Prasetya, A.

    2016-11-01

    This research was meant to investigate performance of continuous stirred tank reactor (CSTR) as bioreactor for producing biohydrogen from melon waste through dark fermentation method. Melon waste are commonly generated from agricultural processing stages i.e. cultivation, post-harvesting, industrial processing, and transportation. It accounted for more than 50% of total harvested fruit. Feedstock of melon waste was fed regularly to CSTR according to organic loading rate at value 1.2 - 3.6 g VS/ (l.d). Optimum condition was achieved at OLR 2.4 g VS/ (l.d) with the highest total gas volume 196 ml STP. Implication of higher OLR value is reduction of total gas volume due to accumulation of acids (pH 4.0), and lower substrate volatile solid removal. In summary, application of this method might valorize melon waste and generates renewable energy sources.

  14. Enhancement of biohydrogen production from brewers' spent grain by calcined-red mud pretreatment.

    Science.gov (United States)

    Zhang, Jishi; Zang, Lihua

    2016-06-01

    This paper investigated the utilization of calcined-red mud (CRM) pretreatment to enhance fermentative hydrogen yields from brewers' spent grain (BSG). The BSG samples were treated with different concentrations (0.0-20g/L) of CRM at 55°C for 48h, before the biohydrogen process with heat-treated anaerobic sludge inoculum. The highest specific hydrogen production of 198.62ml/g-VS was obtained from the BSG treated with 10g/L CRM, with the corresponding lag time of 10.60h. Hydrogen yield increments increased by 67.74%, compared to the control tests without CRM. The results demonstrated that the CRM could hydrolyze more cellulose and further provided adequate broth and suitable pH value for efficient fermentative hydrogen. The model-based analysis showed that the modified Gompertz model presented a better fit for the experimental data than the first-order model.

  15. Organic Waste Treatment via Anaerobic Bio-hydrogenation%有机废弃物厌氧生物制氢处理

    Institute of Scientific and Technical Information of China (English)

    高斯 M K; 孙义; 刘晋; 王黎; 西瓦 K M

    2015-01-01

    The resources of fossil fuel will be dried up in the near future. Moreover,greenhouse gas from fossil fuel burning has worsened the global warming situation. The development of sustainable en-ergy has currently become a hot issue in the world. H2 as cleanest ernergy was combused with O2 to pro-duce pure water. The paper presents a model of bio-hydrogenation process with anaerobic bacterial growth on organic wastewater. Data from laboratory scale reactors operating with artificial substrates u-sing bacteria from agricultural waste were conducted. The calculating bio-hydrogen yields and assuming from the waste stream were suitable properties in the digestion. Bacteria played a very important role in the processes of bio-hydrogenation. Bacteria that produce hydrogen were isolated by its characteristic of heat-resistance. Factors that affect the efficiency of bio-hydrogenation process include pH, temperature and the ratio of biomass to substrate concentration( F/M) . By using glucose as the substrate with Clos-tridium sp. seeding,it is shown that of bio-hydrogenation can be produced efficiently in the experiment. Methanogenesis which consumes H2 may be prevented by special operation,and optimum parameters, such as pH around 5,Temperature at 35 ℃,HRT approximately 8hours and F/M between 25% ~50%. And the maximum hydrogen concentration is found to be 88. 6%( V/V) for practical application were obtained from the model.%化石燃料的枯竭,化石燃料燃烧排放的温室气体加剧了全球变暖的问题,已经成为世界的热点问题之一.氢气作为清洁能源,与沼气和化石燃料相比,燃烧产物只有水.利用有机废弃物厌氧发酵制氢气,通过厌氧反应器和农业废弃物生物制氢模型,计算实验过程中生物产氢量和废弃物消解与微生物生长的关系.实验过程表明:在生物制氢过程中,产氢细菌作用显著,产氢菌可以通过其耐热性进行筛选.而影响生物制氢效率的因素还包括:pH值

  16. Biohydrogen and biomethane production sustained by untreated matrices and alternative application of compost waste.

    Science.gov (United States)

    Arizzi, Mariaconcetta; Morra, Simone; Pugliese, Massimo; Gullino, Maria Lodovica; Gilardi, Gianfranco; Valetti, Francesca

    2016-10-01

    Biohydrogen and biomethane production offers many advantages for environmental protection over the fossil fuels or the existing physical-chemical methods for hydrogen and methane synthesis. The aim of this study is focused on the exploitation of several samples from the composting process: (1) a mixture of waste vegetable materials ("Mix"); (2) an unmatured compost sample (ACV15); and (3) three types of green compost with different properties and soil improver quality (ACV1, ACV2 and ACV3). These samples were tested for biohydrogen and biomethane production, thus obtaining second generation biofuels and resulting in a novel possibility to manage renewable waste biomasses. The ability of these substrates as original feed during dark fermentation was assayed anaerobically in batch, in glass bottles, in order to determine the optimal operating conditions for hydrogen and/or methane production using "Mix" or ACV1, ACV2 or ACV3 green compost and a limited amount of water. Hydrogen could be produced with a fast kinetic in the range 0.02-2.45mLH2g(-1)VS, while methane was produced with a slower kinetic in the range 0.5-8mLCH4g(-1)VS. It was observed that the composition of each sample influenced significantly the gas production. It was also observed that the addition of different water amounts play a crucial role in the development of hydrogen or methane. This parameter can be used to push towards the alternative production of one or another gas. Hydrogen and methane production was detected spontaneously from these matrices, without additional sources of nutrients or any pre-treatment, suggesting that they can be used as an additional inoculum or feed into single or two-stage plants. This might allow the use of compost with low quality as soil improver for alternative and further applications.

  17. Innovative self-powered submersible microbial electrolysis cell (SMEC) for biohydrogen production from anaerobic reactors.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2012-05-15

    A self-powered submersible microbial electrolysis cell (SMEC), in which a specially designed anode chamber and external electricity supply were not needed, was developed for in situ biohydrogen production from anaerobic reactors. In batch experiments, the hydrogen production rate reached 17.8 mL/L/d at the initial acetate concentration of 410 mg/L (5 mM), while the cathodic hydrogen recovery ( [Formula: see text] ) and overall systemic coulombic efficiency (CE(os)) were 93% and 28%, respectively, and the systemic hydrogen yield ( [Formula: see text] ) peaked at 1.27 mol-H(2)/mol-acetate. The hydrogen production increased along with acetate and buffer concentration. The highest hydrogen production rate of 32.2 mL/L/d and [Formula: see text] of 1.43 mol-H(2)/mol-acetate were achieved at 1640 mg/L (20 mM) acetate and 100 mM phosphate buffer. Further evaluation of the reactor under single electricity-generating or hydrogen-producing mode indicated that further improvement of voltage output and reduction of electron losses were essential for efficient hydrogen generation. In addition, alternate exchanging the electricity-assisting and hydrogen-producing function between the two cell units of the SMEC was found to be an effective approach to inhibit methanogens. Furthermore, 16S rRNA genes analysis showed that this special operation strategy resulted same microbial community structures in the anodic biofilms of the two cell units. The simple, compact and in situ applicable SMEC offers new opportunities for reactor design for a microbial electricity-assisted biohydrogen production system.

  18. Impact of pH Management Interval on Biohydrogen Production from Organic Fraction of Municipal Solid Wastes by Mesophilic Thermophilic Anaerobic Codigestion.

    Science.gov (United States)

    Arslan, Chaudhry; Sattar, Asma; Changying, Ji; Nasir, Abdul; Mari, Irshad Ali; Bakht, Muhammad Zia

    2015-01-01

    The biohydrogen productions from the organic fraction of municipal solid wastes (OFMSW) were studied under pH management intervals of 12 h (PM12) and 24 h (PM24) for temperature of 37 ± 0.1°C and 55 ± 0.1°C. The OFMSW or food waste (FW) along with its two components, noodle waste (NW) and rice waste (RW), was codigested with sludge to estimate the potential of biohydrogen production. The biohydrogen production was higher in all reactors under PM12 as compared to PM24. The drop in pH from 7 to 5.3 was observed to be appropriate for biohydrogen production via mesophilic codigestion of noodle waste with the highest biohydrogen yield of 145.93 mL/g CODremoved under PM12. When the temperature was increased from 37°C to 55°C and pH management interval was reduced from 24 h to 12 h, the biohydrogen yields were also changed from 39.21 mL/g COD removed to 89.67 mL/g COD removed, 91.77 mL/g COD removed to 145.93 mL/g COD removed, and 15.36 mL/g COD removed to 117.62 mL/g COD removed for FW, NW, and RW, respectively. The drop in pH and VFA production was better controlled under PM12 as compared to PM24. Overall, PM12 was found to be an effective mean for biohydrogen production through anaerobic digestion of food waste.

  19. Impact of pH Management Interval on Biohydrogen Production from Organic Fraction of Municipal Solid Wastes by Mesophilic Thermophilic Anaerobic Codigestion

    Directory of Open Access Journals (Sweden)

    Chaudhry Arslan

    2015-01-01

    Full Text Available The biohydrogen productions from the organic fraction of municipal solid wastes (OFMSW were studied under pH management intervals of 12 h (PM12 and 24 h (PM24 for temperature of 37±0.1°C and 55±0.1°C. The OFMSW or food waste (FW along with its two components, noodle waste (NW and rice waste (RW, was codigested with sludge to estimate the potential of biohydrogen production. The biohydrogen production was higher in all reactors under PM12 as compared to PM24. The drop in pH from 7 to 5.3 was observed to be appropriate for biohydrogen production via mesophilic codigestion of noodle waste with the highest biohydrogen yield of 145.93 mL/g CODremoved under PM12. When the temperature was increased from 37°C to 55°C and pH management interval was reduced from 24 h to 12 h, the biohydrogen yields were also changed from 39.21 mL/g CODremoved to 89.67 mL/g CODremoved, 91.77 mL/g CODremoved to 145.93 mL/g CODremoved, and 15.36 mL/g CODremoved to 117.62 mL/g CODremoved for FW, NW, and RW, respectively. The drop in pH and VFA production was better controlled under PM12 as compared to PM24. Overall, PM12 was found to be an effective mean for biohydrogen production through anaerobic digestion of food waste.

  20. Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems--a review.

    Science.gov (United States)

    Hung, Chun-Hsiung; Chang, Yi-Tang; Chang, Yu-Jie

    2011-09-01

    Anaerobic fermentative biohydrogen production, the conversion of organic substances especially from organic wastes to hydrogen gas, has become a viable and promising means of producing sustainable energy. Successful biological hydrogen production depends on the overall performance (results of interactions) of bacterial communities, i.e., mixed cultures in reactors. Mixed cultures might provide useful combinations of metabolic pathways for the processing of complex waste material ingredients, thereby supporting the more efficient decomposition and hydrogenation of biomass than pure bacteria species would. Therefore, understanding the relationships between variations in microbial composition and hydrogen production efficiency is the first step in constructing more efficient hydrogen-producing consortia, especially when complex and non-sterilized organic wastes are used as feeding substrates. In this review, we describe recent discoveries on bacterial community composition obtained from dark fermentation biohydrogen production systems, with emphasis on the possible roles of microorganisms that co-exist with common hydrogen producers.

  1. Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell.

    Science.gov (United States)

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Hafez, Hisham; Lee, Hyung-Sool

    2015-12-01

    An integrated dark fermentation and microbial electrochemical cell (MEC) process was evaluated for hydrogen production from sugar beet juice. Different substrate to inoculum (S/X) ratios were tested for dark fermentation, and the maximum hydrogen yield was 13% of initial COD at the S/X ratio of 2 and 4 for dark fermentation. Hydrogen yield was 12% of initial COD in the MEC using fermentation liquid end products as substrate, and butyrate only accumulated in the MEC. The overall hydrogen production from the integrated biohydrogen process was 25% of initial COD (equivalent to 6 mol H2/mol hexoseadded), and the energy recovery from sugar beet juice was 57% using the combined biohydrogen.

  2. Bayesian Computational Approaches for Gene Regulation Studies of Bioethanol and Biohydrogen Production. Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Newberg, Lee; McCue, Lee Anne; Van Roey, Patrick

    2014-04-17

    The project developed mathematical models and first-version software tools for the understanding of gene regulation across multiple related species. The project lays the foundation for understanding how certain alpha-proteobacterial species control their own genes for bioethanol and biohydrogen production, and sets the stage for exploiting bacteria for the production of fuels. Enabling such alternative sources of fuel is a high priority for the Department of Energy and the public.

  3. Bios data analyzer.

    Science.gov (United States)

    Sabelli, H; Sugerman, A; Kovacevic, L; Kauffman, L; Carlson-Sabelli, L; Patel, M; Konecki, J

    2005-10-01

    The Bios Data Analyzer (BDA) is a set of computer programs (CD-ROM, in Sabelli et al., Bios. A Study of Creation, 2005) for new time series analyses that detects and measures creative phenomena, namely diversification, novelty, complexes, nonrandom complexity. We define a process as creative when its time series displays these properties. They are found in heartbeat interval series, the exemplar of bios .just as turbulence is the exemplar of chaos, in many other empirical series (galactic distributions, meteorological, economic and physiological series), in biotic series generated mathematically by the bipolar feedback, and in stochastic noise, but not in chaotic attractors. Differencing, consecutive recurrence and partial autocorrelation indicate nonrandom causation, thereby distinguishing chaos and bios from random and random walk. Embedding plots distinguish causal creative processes (e.g. bios) that include both simple and complex components of variation from stochastic processes (e.g. Brownian noise) that include only complex components, and from chaotic processes that decay from order to randomness as the number of dimensions is increased. Varying bin and dimensionality show that entropy measures symmetry and variety, and that complexity is associated with asymmetry. Trigonometric transformations measure coexisting opposites in time series and demonstrate bipolar, partial, and uncorrelated opposites in empirical processes and bios, supporting the hypothesis that bios is generated by bipolar feedback, a concept which is at variance with standard concepts of polar and complementary opposites.

  4. Dynamic modelling of high biomass density cultivation and biohydrogen production in different scales of flat plate photobioreactors.

    Science.gov (United States)

    Zhang, Dongda; Dechatiwongse, Pongsathorn; Del Rio-Chanona, Ehecatl Antonio; Maitland, Geoffrey C; Hellgardt, Klaus; Vassiliadis, Vassilios S

    2015-12-01

    This paper investigates the scaling-up of cyanobacterial biomass cultivation and biohydrogen production from laboratory to industrial scale. Two main aspects are investigated and presented, which to the best of our knowledge have never been addressed, namely the construction of an accurate dynamic model to simulate cyanobacterial photo-heterotrophic growth and biohydrogen production and the prediction of the maximum biomass and hydrogen production in different scales of photobioreactors. To achieve the current goals, experimental data obtained from a laboratory experimental setup are fitted by a dynamic model. Based on the current model, two key original findings are made in this work. First, it is found that selecting low-chlorophyll mutants is an efficient way to increase both biomass concentration and hydrogen production particularly in a large scale photobioreactor. Second, the current work proposes that the width of industrial scale photobioreactors should not exceed 0.20 m for biomass cultivation and 0.05 m for biohydrogen production, as severe light attenuation can be induced in the reactor beyond this threshold.

  5. Biohydrogen and polyhydroxyalkanoate co-production by Enterobacter aerogenes and Rhodobacter sphaeroides from Calophyllum inophyllum oil cake.

    Science.gov (United States)

    Arumugam, A; Sandhya, M; Ponnusami, V

    2014-07-01

    The feasibility of coupled biohydrogen and polyhydroxyalkanoate production by Enterobacter aerogenes and Rhodobacter sphaeroides using Calophyllum inophyllum oil cake was studied under dark and photo fermentation conditions. The utilization of a non-edible acidic oil cake (C. inophyllum), and exploitation of a modified minimal salt media led to reduction in the cost of media. Cost of fermentation is reduced by implementation of alternate dark-photo fermentative periods and through the use of a co-culture consisting of a dark fermentative (E. aerogenes) and a photo fermentative (R. sphaeroides) bacterium. The biohydrogen and polyhydroxyalkanoate produced were 7.95 L H2/L media and 10.73 g/L media, respectively, under alternate dark and photo fermentation and were 3.23 L H2/L media and 5.6g/L media, respectively under complete dark fermentation. The characteristics of the oil cake and alternate dark (16 h) and photo (8h) fermentative conditions were found to be supportive in producing high biohydrogen and polyhydroxyalkanoate (PHA) yield.

  6. Fatty acid rich effluent from acidogenic biohydrogen reactor as substrate for lipid accumulation in heterotrophic microalgae with simultaneous treatment.

    Science.gov (United States)

    Venkata Mohan, S; Prathima Devi, M

    2012-11-01

    Acid-rich effluent generated from acidogenic biohydrogen production process was evaluated as substrate for lipid synthesis by integrating with heterotrophic cultivation of mixed microalgae. Experiments were performed both with synthetic volatile fatty acids (SVFA) and fermented fatty acids (FFA) from biohydrogen producing reactor. Fatty acid based platform evidenced significant influence on algal growth as well as lipid accumulation by the formation of triglycerides through fatty acid synthesis. Comparatively FFA documented higher biomass and lipid productivity (1.42mg/ml (wet weight); 26.4%) than SVFAs ((HAc+HBu+HPr), 0.60mg/ml; 23.1%). Lipid profiles varied with substrates and depicted 18 types of saturated and unsaturated fatty acids with wide fuel and food characteristics. The observed higher concentrations of Chl b over Chl a supports the biosynthesis of triacylglycerides. Microalgae diversity visualized the presence of lipid accumulating species viz., Scenedesmus sp. and Chlorella sp. Integration of microalgae cultivation with biohydrogen production showed lipid productivity for biodiesel production along with additional treatment.

  7. Effect of silage botanical composition on ruminal biohydrogenation and transfer of fatty acids to milk in dairy cows

    DEFF Research Database (Denmark)

    Adler, S A; Jensen, Søren Krogh; Thuen, E;

    2013-01-01

    Ruminal biohydrogenation and transfer of fatty acids (FA) to milk were determined for 4 silages with different botanical compositions using 4 multiparous Norwegian Red dairy cows [(mean ± SD) 118 ± 40.9 d in milk, 22.5 ± 2.72 kg of milk/d, 631 ± 3.3 kg of body weight, 3.3 ± 0.40 points on body...... for CON-TI than for the other silages. Silage type had no effect on dry matter intake, but milk yield was lower for CON-TI than for the other silages. Apparent biohydrogenation of C18:3n-3 was lower for ORG-SG (932 g/kg) than for ORG-LG (956 g/kg), CON-PR (959 g/kg), and CON-TI (958 g/kg). Compared....../kg), and milk fat proportion of C18:3n-3 was higher for ORG-SG than for CON-TI. Milk fat proportions of C16:0 were lower for ORG-SG and ORG-LG compared with those for CON-PR and CON-TI. It was concluded that high proportions of red clover and other dicotyledons in the silages affected ruminal biohydrogenation...

  8. BioSentinel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — BioSentinel technology will provide critical information about how living systems, from humans down to cells, adapt, respond and survive in deep space, beyond LEO...

  9. BioProject

    Data.gov (United States)

    U.S. Department of Health & Human Services — The BioProject database provides an organizational framework to access information about research projects with links to data that have been or will be deposited...

  10. BioSystems

    Data.gov (United States)

    U.S. Department of Health & Human Services — The NCBI BioSystems Database provides integrated access to biological systems and their component genes, proteins, and small molecules, as well as literature...

  11. BioArchitecture

    OpenAIRE

    Gunning, Peter

    2012-01-01

    Volume 1 has defined the scope of BioArchitecture. From the outset we have strived to ensure that BioArchitecture is not limited to the three major polymer systems of the cytoplasm. I am happy to say that a cursory glance at the contents of volume 1 makes it clear that we are interested in all aspects of bioarchitecture from molecules to polymers to cells to tissue to the organism.

  12. Engineering BioBrick vectors from BioBrick parts

    Directory of Open Access Journals (Sweden)

    Knight Thomas F

    2008-04-01

    Full Text Available Abstract Background The underlying goal of synthetic biology is to make the process of engineering biological systems easier. Recent work has focused on defining and developing standard biological parts. The technical standard that has gained the most traction in the synthetic biology community is the BioBrick standard for physical composition of genetic parts. Parts that conform to the BioBrick assembly standard are BioBrick standard biological parts. To date, over 2,000 BioBrick parts have been contributed to, and are available from, the Registry of Standard Biological Parts. Results Here we extended the same advantages of BioBrick standard biological parts to the plasmid-based vectors that are used to provide and propagate BioBrick parts. We developed a process for engineering BioBrick vectors from BioBrick parts. We designed a new set of BioBrick parts that encode many useful vector functions. We combined the new parts to make a BioBrick base vector that facilitates BioBrick vector construction. We demonstrated the utility of the process by constructing seven new BioBrick vectors. We also successfully used the resulting vectors to assemble and propagate other BioBrick standard biological parts. Conclusion We extended the principles of part reuse and standardization to BioBrick vectors. As a result, myriad new BioBrick vectors can be readily produced from all existing and newly designed BioBrick parts. We invite the synthetic biology community to (1 use the process to make and share new BioBrick vectors; (2 expand the current collection of BioBrick vector parts; and (3 characterize and improve the available collection of BioBrick vector parts.

  13. Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kim Jaoon YH

    2010-07-01

    Full Text Available Abstract Background Hydrogenases catalyze reversible reaction between hydrogen (H2 and proton. Inactivation of hydrogenase by exposure to oxygen is a critical limitation in biohydrogen production since strict anaerobic conditions are required. While [FeFe]-hydrogenases are irreversibly inactivated by oxygen, it was known that [NiFe]-hydrogenases are generally more tolerant to oxygen. The physiological function of [NiFe]-hydrogenase 1 is still ambiguous. We herein investigated the H2 production potential of [NiFe]-hydrogenase 1 of Escherichia coli in vivo and in vitro. The hyaA and hyaB genes corresponding to the small and large subunits of [NiFe]-hydrogenase 1 core enzyme, respectively, were expressed in BL21, an E. coli strain without H2 producing ability. Results Recombinant BL21 expressing [NiFe]-hydrogenase 1 actively produced H2 (12.5 mL H2/(h·L in 400 mL glucose minimal medium under micro-aerobic condition, whereas the wild type BL21 did not produce H2 even when formate was added as substrate for formate hydrogenlyase (FHL pathway. The majority of recombinant protein was produced as an insoluble form, with translocation of a small fraction to the membrane. However, the membrane fraction displayed high activity (~65% of total cell fraction, based on unit protein mass. Supplement of nickel and iron to media showed these metals contribute essentially to the function of [NiFe]-hydrogenase 1 as components of catalytic site. In addition, purified E. coli [NiFe]-hydrogenase 1 using his6-tag displayed oxygen-tolerant activity of ~12 nmol H2/(min·mg protein under a normal aeration environment, compared to [FeFe]-hydrogenase, which remains inactive under this condition. Conclusions This is the first report on physiological function of E. coli [NiFe]-hydrogenase 1 for H2 production. We found that [NiFe]-hydrogenase 1 has H2 production ability even under the existence of oxygen. This oxygen-tolerant property is a significant advantage because it is

  14. Biomethane production in an AnSBBR treating wastewater from biohydrogen process.

    Science.gov (United States)

    Lullio, T G; Souza, L P; Ratusznei, S M; Rodrigues, J A D; Zaiat, M

    2014-11-01

    An anaerobic sequencing batch reactor containing immobilized biomass (AnSBBR) was used to produce biomethane by treating the effluent from another AnSBBR used to produce biohydrogen from glucose- (AR-EPHG) and sucrose-based (AR-EPHS) wastewater. In addition, biomethane was also produced from sucrose-based synthetic wastewater (AR-S) in a single AnSBBR to compare the performance of biomethane production in two steps (acidogenic and methanogenic) in relation to a one-step operation. The system was operated at 30 °C and at a fixed stirring rate of 300 rpm. For AR-EPHS treatment, concentrations were 1,000, 2,000, 3,000, and 4,000 mg chemical oxygen demand (COD) L(-1) and cycle lengths were 6 and 8 h. The applied volumetric organic loads were 2.15, 4.74, 5.44, and 8.22 g COD L(-1) day(-1). For AR-EPHG treatment, concentration of 4,000 mg COD L(-1) and 4-h cycle length (7.21 g COD L(-1) day(-1)) were used. For AR-S treatment, concentration was 4,000 mg COD L(-1) day(-1) and cycle lengths were 8 (7.04 g COD L(-1) day(-1)) and 12 h (4.76 g COD L(-1) day(-1)). The condition of 8.22 g COD L(-1) day(-1) (AR-EPHS) showed the best performance with respect to the following parameters: applied volumetric organic load of 7.56 g COD L(-1) day(-1), yield between produced methane and removed organic material of 0.016 mol CH4 g COD(-1), CH4 content in the produced biogas of 85 %, and molar methane productivity of 127.9 mol CH4 m(-3) day(-1). In addition, a kinetic study of the process confirmed the trend that, depending on the biodegradability characteristics of the wastewaters used, the two-step treatment (acidogenic for biohydrogen production and methanogenic for biomethane production) has potential advantages over the single-step process.

  15. BioFET-SIM

    DEFF Research Database (Denmark)

    Hediger, M. R.; Martinez, K. L.; Nygård, J.

    2013-01-01

    signals through its web-based interface www.biofetsim.org. The model also allows for predictions of the effects of changes in the experimental setup on the sensor signal. After an introduction to nanowire-based FET biosensors, this chapter reviews the theoretical basis of BioFET-SIM models describing both...... single and multiple charges on the analyte. Afterwards the usage of the interface and its relative command line version is briefly shown. Finally, possible applications of the BioFET-SIM model are presented. Among the possible uses of the interface, the effects on the predicted signal of pH, buffer ionic...... strength, analyte concentration, and analyte relative orientation on nanowire surface are illustrated. Wherever possible, a comparison to experimental data available in literature is given, displaying the potential of BioFETSIM for interpreting experimental results....

  16. Engineering BioBrick vectors from BioBrick parts

    OpenAIRE

    Knight Thomas F; Endy Drew; Shetty Reshma P

    2008-01-01

    Abstract Background The underlying goal of synthetic biology is to make the process of engineering biological systems easier. Recent work has focused on defining and developing standard biological parts. The technical standard that has gained the most traction in the synthetic biology community is the BioBrick standard for physical composition of genetic parts. Parts that conform to the BioBrick assembly standard are BioBrick standard biological parts. To date, over 2,000 BioBrick parts have ...

  17. Optimization of biohydrogen production from beer lees using anaerobic mixed bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Maojin; Yuan, Zhuliang; Zhi, Xiaohua; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2009-10-15

    Beer lees are the main by-product of the brewing industry. Biohydrogen production from beer lees using anaerobic mixed bacteria was investigated in this study, and the effects of acidic pretreatment, initial pH value and ferrous iron concentration on hydrogen production were studied at 35 C in batch experiments. The hydrogen yield was significantly enhanced by optimizing environmental factors such as hydrochloric acid (HCl) pretreatment of substrate, initial pH value and ferrous iron concentration. The optimal environmental factors of substrate pretreated with 2% HCl, pH = 7.0 and 113.67 mg/l Fe{sup 2+} were observed. A maximum cumulative hydrogen yield of 53.03 ml/g-dry beer lees was achieved, which was approximately 17-fold greater than that in raw beer lees. In addition, the degradation efficiency of the total reducing sugar, and the contents of hemicellulose, cellulose, lignin and metabolites are presented, which showed a strong dependence on the environmental factors. (author)

  18. Development of low-concentration mercury adsorbents from biohydrogen-generation agricultural residues using sulfur impregnation.

    Science.gov (United States)

    Hsi, Hsing-Chengi; Tsai, Cheng-Yen; Kuo, Tien-Ho; Chiang, Cheng-Sheng

    2011-08-01

    Mercury adsorbents were derived from waste biohydrogen-generation barley husk and rice husk via carbonization, steam activation, and sulfur impregnation at 300-650°C. The samples derived from agricultural residues showed a greater Hg(0) adsorption than that of a coal-based activated carbon, confirming the feasibility of resource recovery of these agricultural residuals for low-concentration gaseous Hg adsorption. Sulfur impregnation reduced both the surface area and pore volume of the samples, with lower temperature causing a greater decrease. Elevating the impregnation temperature increased the organic sulfur contents, suggesting that in addition to elemental sulfur, organic sulfur may also act as active sites to improve Hg(0) adsorption. Oxygen and sulfur functional groups accompanying the microporous structures may account for the enhancing Hg(0) adsorption of the raw and sulfur-treated samples, respectively. The pseudo-second-order model can best describe the chemisorption characteristics, implying that Hg(0) adsorption on the samples was in a bimolecular reaction form.

  19. Biohydrogen production in the suspended and attached microbial growth systems from waste pastry hydrolysate.

    Science.gov (United States)

    Han, Wei; Hu, Yunyi; Li, Shiyi; Li, Feifei; Tang, Junhong

    2016-10-01

    Waste pastry was hydrolyzed by glucoamylase and protease which were obtained from solid state fermentation of Aspergillus awamori and Aspergillus oryzae to produce waste pastry hydrolysate. Then, the effects of hydraulic retention times (HRTs) (4-12h) on hydrogen production rate (HPR) in the suspended microbial growth system (continuous stirred tank reactor, CSTR) and attached microbial growth system (continuous mixed immobilized sludge reactor, CMISR) from waste pastry hydrolysate were investigated. The maximum HPRs of CSTR (201.8mL/(h·L)) and CMISR (255.3mL/(h·L)) were obtained at HRT of 6h and 4h, respectively. The first-order reaction could be used to describe the enzymatic hydrolysis of waste pastry. The carbon content of the waste pastry remained 22.8% in the undigested waste pastry and consumed 77.2% for carbon dioxide and soluble microbial products. To our knowledge, this is the first study which reports biohydrogen production from waste pastry.

  20. Development of Enterobacter aerogenes fuel cells: from in situ biohydrogen oxidization to direct electroactive biofilm.

    Science.gov (United States)

    Zhuang, Li; Zhou, Shungui; Yuan, Yong; Liu, Tinglin; Wu, Zhifeng; Cheng, Jiong

    2011-01-01

    This study described an Enterobacter aerogenes-catalyzed microbial fuel cell (MFC) with a carbon-based anode that exhibited a maximum power density of 2.51 W/m(3) in the absence of artificial electron mediators. The MFC was started up rapidly, within hours, and the current generation in the early stage was demonstrated to result from in situ oxidation of biohydrogen produced by E. aerogenes during glucose fermentation. Over periodic replacement of substrate, both planktonic biomass in the culture liquid and hydrogen productivity decreased, while increased power density and coulombic efficiency and decreased internal resistance were unexpectedly observed. Using scanning electron microscopy and cyclic voltammetry, it was found that the enhanced MFC performance was associated with the development of electroactive biofilm on the anodic surface, proposed to involve an acclimation and selection process of E. aerogenes cells under electrochemical tension. The significant advantage of rapid start-up and the ability to develop an electroactive biofilm identifies E. aerogenes as a suitable biocatalyst for MFC applications.

  1. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    Directory of Open Access Journals (Sweden)

    Servé W. M. Kengen

    2013-01-01

    Full Text Available Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus.

  2. Optimization performance of an AnSBBR applied to biohydrogen production treating whey.

    Science.gov (United States)

    Lima, D M F; Lazaro, C Z; Rodrigues, J A D; Ratusznei, S M; Zaiat, M

    2016-03-15

    The present study investigated the influence of the influent concentration of substrate, feeding time and temperature on the production of biohydrogen from cheese whey in an AnSBBR with liquid phase recirculation. The highest hydrogen yield (0.80 molH2.molLactose(-1)) and productivity (660 mLH2 L(-1) d(-1)) were achieved for influent concentrations of 5400 mgDQO L(-1). No significant difference was noted in the biological hydrogen production for the feeding time conditions analyzed. The lowest temperature tested (15 °C) promoted the highest hydrogen yield and productivity (1.12 molH2 molLactose(-1) and 1080 mLH2 L(-1) d(-1)), and for the highest temperature (45 °C), hydrogen production did not occur. The indicator values for the hydrogen production obtained with this configuration were higher than those obtained in other studies using traditional configurations such as UASBr and CSTR. A phylogenetic analysis showed that the majority of the analyzed clones were similar to Clostridium. In addition, clones phylogenetically similar to the Lactobacilaceae family, notably Lactobacillus rhamnosus, and clones with similar sequences to Acetobacter indonesiensis were observed in small proportion in the reactor.

  3. The start-up of biohydrogen-producing process by bioaugmentation in the EGSB reactor

    Institute of Scientific and Technical Information of China (English)

    Wang Xiangjing; Ren Nanqi; Xiang Wensheng; Guo Wanqian

    2006-01-01

    Expanded granular sludge bed (EGSB) reactor and bioaugmentation were employed to investigate biohydrogen production with molasses wastewater. The start-up experiments consisted of two stages. In the first stage (0~24d) seeded with activated sludge, the butyric acid type-fermentation formed when the initial expanding rate, organic loading rate (OLR), the initial redox potential (ORP) and hydraulic retention time (HRT) were 10%, 10.0 kg COD/(m3·d), - 215 mV and 6.7 h, respectively. At the beginning of the second stage on day 25, the novel hydrogen-producing fermentative bacterial strain B49 (AF481148 in EMBL) were inoculated into the reactor under the condition of OLR 16. 0 kg COD/(m3·d), ORP and HRT about - 139 mV and 6.7 h, respectively, and then the reaction system transformed to ethanol-type fermentation gradually with the increase in OLR. When OLR, ORP and HRT were about 94.3 kg COD/(m3·d), -250 mV and 1.7 h, respectively, the system achieved the maximum hydrogen-producing rate of 282.6 mL H2/L reactor· h and hydrogen percentage of 51%~53% in the biogas.

  4. Modulation of in vitro rumen biohydrogenation by Cistus ladanifer tannins compared with other tannin sources.

    Science.gov (United States)

    Costa, Mónica; Alves, Susana P; Cabo, Ângelo; Guerreiro, Olinda; Stilwell, George; Dentinho, Maria T; Bessa, Rui Jb

    2017-01-01

    Tannins are polyphenolic compounds able to modify the ruminal biohydrogenation (BH) of unsaturated fatty acids, but their activity may vary among different tannin sources. The effect of rockrose (Cistus ladanifer) on BH has never been compared with other more common tannin sources. Tannin extracts (100 g kg(-1) substrate dry matter) from chestnut (CH), quebracho (QB), grape seed (GS) and rockrose (CL) were incubated in vitro for 6 h with ruminal fluid using as substrate a feed containing 60 g kg(-1) of sunflower oil. A control treatment with no added tannins was also included. Compared with the control, GS and CL, but not CH and QB, increased (P 0.05) were observed for the disappearance of c9-18:1 and c9,c12,c15-18:3. The production of 18:0 was not different (P > 0.05) among treatments, although its proportion in the total BH products was lower (P < 0.05) for GS than for the other treatments. Condensed tannins from GS and, to a lesser extent, from CL stimulate the first steps of BH, without a clear inhibition of 18:0 production. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. Modeling dark fermentation for biohydrogen production: ADM1-based model vs. Gompertz model

    Energy Technology Data Exchange (ETDEWEB)

    Gadhamshetty, Venkataramana [Air Force Research Laboratory, Tyndall AFB, 139 Barnes Drive, Panama City, FL 32403 (United States); Arudchelvam, Yalini; Nirmalakhandan, Nagamany [Civil Engineering Department, New Mexico State University, Las Cruces, NM 88003 (United States); Johnson, David C. [Institute for Energy and Environment, New Mexico State University, Las Cruces, NM 88003 (United States)

    2010-01-15

    Biohydrogen production by dark fermentation in batch reactors was modeled using the Gompertz equation and a model based on Anaerobic Digestion Model (ADM1). The ADM1 framework, which has been well accepted for modeling methane production by anaerobic digestion, was modified in this study for modeling hydrogen production. Experimental hydrogen production data from eight reactor configurations varying in pressure conditions, temperature, type and concentration of substrate, inocula source, and stirring conditions were used to evaluate the predictive abilities of the two modeling approaches. Although the quality of fit between the measured and fitted hydrogen evolution by the Gompertz equation was high in all the eight reactor configurations with r{sup 2} {proportional_to}0.98, each configuration required a different set of model parameters, negating its utility as a general approach to predict hydrogen evolution. On the other hand, the ADM1-based model (ADM1BM) with predefined parameters was able to predict COD, cumulative hydrogen production, as well as volatile fatty acids production, albeit at a slightly lower quality of fit. Agreement between the experimental temporal hydrogen evolution data and the ADM1BM predictions was statistically significant with r{sup 2} > 0.91 and p-value <1E-04. Sensitivity analysis of the validated model revealed that hydrogen production was sensitive to only six parameters in the ADM1BM. (author)

  6. Biohydrogen production by dark fermentation of glycerol using Enterobacter and Citrobacter Sp.

    Science.gov (United States)

    Maru, Biniam T; Constanti, Magda; Stchigel, Alberto M; Medina, Francesc; Sueiras, Jesus E

    2013-01-01

    Glycerol is an attractive substrate for biohydrogen production because, in theory, it can produce 3 mol of hydrogen per mol of glycerol. Moreover, glycerol is produced in substantial amounts as a byproduct of producing biodiesel, the demand for which has increased in recent years. Therefore, hydrogen production from glycerol was studied by dark fermentation using three strains of bacteria: namely, Enterobacter spH1, Enterobacter spH2, and Citrobacter freundii H3 and a mixture thereof (1:1:1). It was found that, when an initial concentration of 20 g/L of glycerol was used, all three strains and their mixture produced substantial amounts of hydrogen ranging from 2400 to 3500 mL/L, being highest for C. freundii H3 (3547 mL/L) and Enterobacter spH1 (3506 mL/L). The main nongaseous fermentation products were ethanol and acetate, albeit in different ratios. For Enterobacter spH1, Enterobacter spH2, C. freundii H3, and the mixture (1:1:1), the ethanol yields (in mol EtOH/mol glycerol consumed) were 0.96, 0.67, 0.31, and 0.66, respectively. Compared to the individual strains, the mixture (1:1:1) did not show a significantly higher hydrogen level, indicating that there was no synergistic effect. Enterobacter spH1 was selected for further investigation because of its higher yield of hydrogen and ethanol.

  7. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives.

    Science.gov (United States)

    Bielen, Abraham A M; Verhaart, Marcel R A; van der Oost, John; Kengen, Servé W M

    2013-01-17

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus.

  8. Additional paper waste in pulping sludge for biohydrogen production by heat-shocked sludge.

    Science.gov (United States)

    Chairattanamanokorn, Prapaipid; Tapananont, Supachok; Detjaroen, Siriporn; Sangkhatim, Juthatip; Anurakpongsatorn, Patana; Sirirote, Pramote

    2012-01-01

    Dark anaerobic fermentation is an interesting alternative method for producing biohydrogen (H(2)) as a renewable fuel because of its low cost and various usable organic substrates. Pulping sludge from wastewater treatment containing plentiful cellulosic substrate could be feasibly utilized for H(2) production by dark fermentation. The objective of this study was to investigate the optimal proportion of pulping sludge to paper waste, the optimal initial pH, and the optimal ratio of carbon and nitrogen (C/N) for H(2) production by anaerobic seed sludge pretreated with heat. The pulping sludge was pretreated with NaOH solution at high temperature and further hydrolyzed with crude cellulase. Pretreatment of the pulping sludge with 3% NaOH solution under autoclave at 121 °C for 2 h, hydrolysis with 5 FPU crude cellulase at 50 °C, and pH 4.8 for 24 h provided the highest reducing sugar production yield (229.68 ± 2.09 mg/g(TVS)). An initial pH of 6 and a C/N ratio of 40 were optimal conditions for H(2) production. Moreover, the supplement of paper waste in the pulping sludge enhanced the cumulative H(2) production yield. The continuous hydrogen production was further conducted in a glass reactor with nylon pieces as supporting media and the maximum hydrogen production yield was 151.70 ml/g(TVS).

  9. Continuous biohydrogen production from fruit wastewater at low pH conditions.

    Science.gov (United States)

    Diamantis, Vasileios; Khan, Abid; Ntougias, Spyridon; Stamatelatou, Katerina; Kapagiannidis, Anastasios G; Aivasidis, Alexander

    2013-07-01

    Biohydrogen production from a simulated fruit wastewater (soluble COD = 3.17 ± 0.10 g L⁻¹) was carried out in a continuous stirred tank reactor (CSTR) of 2 L operational volume without biomass inoculation, heat pre-treatment or pH adjustment, resulting in a low operational pH (3.75 ± 0.09). The hydraulic retention time (HRT) varied from 15 to 5 h. A strong negative correlation (p CSTR was operated under the same HRT. The biogas hydrogen content was estimated as high as 55.8 ± 2.3 % and 55.4 ± 2.5 % at 25 and 30 °C, respectively. The main fermentation end products were acetic and butyric acids, followed by ethanol. Significant differences (p CSTR at 25 or 30 °C were identified for butyric acid at almost all HRTs examined. Simulation of the acidogenesis process in the CSTR (based on COD and carbon balances) indicated the possible metabolic compounds produced at 25 and 30 °C reactions and provided an adequate fit of the experimental data.

  10. Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate.

    Science.gov (United States)

    Ghimire, Anish; Frunzo, Luigi; Pontoni, Ludovico; d'Antonio, Giuseppe; Lens, Piet N L; Esposito, Giovanni; Pirozzi, Francesco

    2015-04-01

    The Biohydrogen Potential (BHP) of six different types of waste biomass typical for the Campania Region (Italy) was investigated. Anaerobic sludge pre-treated with the specific methanogenic inhibitor sodium 2-bromoethanesulfonic acid (BESA) was used as seed inoculum. The BESA pre-treatment yielded the highest BHP in BHP tests carried out with pre-treated anaerobic sludge using potato and pumpkin waste as the substrates, in comparison with aeration or heat shock pre-treatment. The BHP tests carried out with different complex waste biomass showed average BHP values in a decreasing order from potato and pumpkin wastes (171.1 ± 7.3 ml H2/g VS) to buffalo manure (135.6 ± 4.1 ml H2/g VS), dried blood (slaughter house waste, 87.6 ± 4.1 ml H2/g VS), fennel waste (58.1 ± 29.8 ml H2/g VS), olive pomace (54.9 ± 5.4 ml H2/g VS) and olive mill wastewater (46.0 ± 15.6 ml H2/g VS). The digestate was analyzed for major soluble metabolites to elucidate the different biochemical pathways in the BHP tests. These showed the H2 was produced via mixed type fermentation pathways.

  11. Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen.

    Science.gov (United States)

    Dahiya, Shikha; Sarkar, Omprakash; Swamy, Y V; Mohan, S Venkata

    2015-04-01

    Fermentation experiments were designed to elucidate the functional role of the redox microenvironment on volatile fatty acid (VFA, short chain carboxylic acid) production and co-generation of biohydrogen (H2). Higher VFA productivity was observed at pH 10 operation (6.3g/l) followed by pH 9, pH 6, pH 5, pH 7, pH 8 and pH 11 (3.5 g/l). High degree of acidification, good system buffering capacity along with co-generation of higher H2 production from food waste was also noticed at alkaline condition. Experiments illustrated the role of initial pH on carboxylic acids synthesis. Alkaline redox conditions assist solubilization of carbohydrates, protein and fats and also suppress the growth of methanogens. Among the carboxylic acids, acetate fraction was higher at alkaline condition than corresponding neutral or acidic operations. Integrated process of VFA production from waste with co-generation of H2 can be considered as a green and sustainable platform for value-addition.

  12. Production of biohydrogen from crude glycerol in an upflow column bioreactor.

    Science.gov (United States)

    Dounavis, Athanasios S; Ntaikou, Ioanna; Lyberatos, Gerasimos

    2015-12-01

    A continuous attached growth process for the production of biohydrogen from crude glycerol was developed. The process consisted of an anaerobic up-flow column bioreactor (UFCB), packed with cylindrical ceramic beads, which constituted the support matrix for the attachment of bacterial cells. The effect of crude glycerol concentration, pH and hydraulic retention time on glycerol conversion, hydrogen yield and metabolite distribution was investigated. It was shown that the most critical parameter for the efficient bioconversion was the pH of the influent, whereas the hydrogen yield increased with an increase in feed glycerol concentration and a decrease in the hydraulic retention time. The main soluble metabolite detected was 1,3-propanediol in all cases, followed by butyric and hexanoic acids. The latter is reported to be produced from glycerol for the first time. Acidification of the waste reached 38.5%, and the maximum H2 productivity was 107.3 ± 0.7 L/kg waste glycerol at optimal conditions.

  13. Enhanced biohydrogen and subsequent biomethane production from sugarcane bagasse using nano-titanium dioxide pretreatment.

    Science.gov (United States)

    Jafari, Omid; Zilouei, Hamid

    2016-08-01

    Nano-titanium dioxide (nanoTiO2) under ultraviolet irradiation (UV) followed by dilute sulfuric acid hydrolysis of sugarcane bagasse was used to enhance the production of biohydrogen and biomethane in a consecutive dark fermentation and anaerobic digestion. Different concentrations of 0.001, 0.01, 0.1 and 1g nanoTiO2/L under different UV times of 30, 60, 90 and 120min were used. Sulfuric acid (2%v/v) at 121°C was used for 15, 30 and 60min to hydrolyze the pretreated bagasse. For acidic hydrolysis times of 15, 30 and 60min, the highest total free sugar values were enhanced by 260%, 107%, and 189%, respectively, compared to samples without nanoTiO2 pretreatment. The highest hydrogen production samples for the same acidic hydrolysis times showed 88%, 127%, and 25% enhancement. The maximum hydrogen production of 101.5ml/g VS (volatile solids) was obtained at 1g nanoTiO2/L and 120min UV irradiation followed by 30min acid hydrolysis.

  14. Biohydrogen Fermentation from Sucrose and Piggery Waste with High Levels of Bicarbonate Alkalinity

    Directory of Open Access Journals (Sweden)

    Jeongdong Choi

    2015-03-01

    Full Text Available This study examined the influence of biohydrogen fermentation under the high bicarbonate alkalinity (BA and pH to optimize these critical parameters. When sucrose was used as a substrate, hydrogen was produced over a wide range of pH values (5–9 under no BA supplementation; however, BA affected hydrogen yield significantly under different initial pHs (5–10. The actual effect of high BA using raw piggery waste (pH 8.7 and BA 8.9 g CaCO3/L showed no biogas production or propionate/acetate accumulation. The maximum hydrogen production rate (0.32 L H2/g volatile suspended solids (VSS-d was observed at pH 8.95 and 3.18 g CaCO3/L. BA greater than 4 g CaCO3/L also triggered lactate-type fermentation, leading to propionate accumulation, butyrate reduction and homoacetogenesis, potentially halting the hydrogen production rate. These results highlight that the substrate with high BA need to amend adequately to maximize hydrogen production.

  15. Immobilized Biofilm in Thermophilic Biohydrogen Production using Synthetic versus Biological Materials

    Directory of Open Access Journals (Sweden)

    Jaruwan Wongthanate

    2015-02-01

    Full Text Available Biohydrogen production was studied from the vermicelli processing wastewater using synthetic and biological materials as immobilizing substrate employing a mixed culture in a batch reactor operated at the initial pH 6.0 and thermophilic condition (55 ± 1ºC. Maximum cumulative hydrogen production (1,210 mL H2/L wastewater was observed at 5% (v/v addition of ring-shaped synthetic material, which was the ring-shaped hydrophobic acrylic. Regarding 5% (v/v addition of synthetic and biological materials, the maximum cumulative hydrogen production using immobilizing synthetic material of ball-shaped hydrophobic polyethylene (HBPE (1,256.5 mL H2/L wastewater was a two-fold increase of cumulative hydrogen production when compared to its production using immobilizing biological material of rope-shaped hydrophilic ramie (609.8 mL H2/L wastewater. SEM observation of immobilized biofilm on a ball-shaped HBPE or a rope-shaped hydrophilic ramie was the rod shape and gathered into group.

  16. Investigation of the links between heterocyst and biohydrogen production by diazotrophic cyanobacterium A. variabilis ATCC 29413.

    Science.gov (United States)

    Salleh, Siti Fatihah; Kamaruddin, Azlina; Uzir, Mohamad Hekarl; Karim, Khairiah Abd; Mohamed, Abdul Rahman

    2016-03-01

    This work investigates the effect of heterocyst toward biohydrogen production by A. variabilis. The heterocyst frequency was artificially promoted by adding an amino acid analog, in this case DL-7-azatryptophan into the growth medium. The frequency of heterocyst differentiation was found to be proportional to the concentration of azatryptophan (0-25 µM) in the medium. Conversely, the growth and nitrogenase activity were gradually suppressed. In addition, there was also a distinct shortening of the cells filaments and detachment of heterocyst from the vegetative cells. Analysis on the hydrogen production performance revealed that both the frequency and distribution of heterocyst in the filaments affected the rate of hydrogen production. The highest hydrogen production rate and yield (41 µmol H2 mg chl a(-1) h(-1) and 97 mL H2 mg chl a(-1), respectively) were achieved by cells previously grown in 15 µM of azatryptophan with 14.5 % of heterocyst frequency. The existence of more isolated heterocyst has been shown to cause a relative loss in nitrogenase activity thus lowering the hydrogen production rate.

  17. Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors.

    Science.gov (United States)

    Han, Wei; Liu, Da Na; Shi, Yi Wen; Tang, Jun Hong; Li, Yong Feng; Ren, Nan Qi

    2015-03-01

    A continuous mixed immobilized sludge reactor (CMISR) using activated carbon as support carrier for dark fermentative hydrogen production from enzymatic hydrolyzed food waste was developed. The effects of immobilized sludge packing ratio (10-20%, v/v) and substrate loading rate (OLR) (8-40kg/m(3)/d) on biohydrogen production were examined, respectively. The hydrogen production rates (HPRs) with packing ratio of 15% were significantly higher than the results obtained from packing ratio of 10% and 20%. The best HPR of 353.9ml/h/L was obtained at the condition of packing ratio=15% and OLR=40kg/m(3)/d. The Minitab was used to elicit the effects of OLR and packing ratio on HPR (Y) which could be expressed as Y=5.31 OLR+296 packing ratio+40.3 (p=0.003). However, the highest hydrogen yield (85.6ml/g food waste) was happened at OLR of 16kg/m(3)/d because of H2 partial pressure and oxidization/reduction of NADH.

  18. Bio-Inspired Dry Adhesives

    Science.gov (United States)

    2013-02-01

    of mask respirators with bio -inspired adhesive integrated into their peripheral seals; and (2) assessment of the competitive position of the new bio -inspired adhesives in broader fields of application.

  19. BioMEMS

    CERN Document Server

    Urban, Gerald A

    2007-01-01

    Explosive growth in the field of Microsystem Technology has introduced a variety of promising products in major disciplines from microelectronics to life sciences. 'Biomes' is a discipline which focuses on microsystems for living systems. This work presents the exciting field of bio-microsystems.

  20. Bio-technologies; Biotechnologies

    Energy Technology Data Exchange (ETDEWEB)

    Grawitz, X. [Systems Bio Industries, 92 - Boulogne Billancourt (France)

    1997-12-31

    This paper is a series of transparencies which describes the measures taken by Systems Bio-Industries company to adapt its central heating plants, turbines, engines and dryers to the new French 2910 by-law about thermal efficiency and environmental impact of heating plants. The project of development of a cogeneration system in the Angouleme site is briefly described. (J.S.)

  1. Effects of chemically or technologically treated linseed products and docosahexaenoic acid addition to linseed oil on biohydrogenation of C18:3n-3 in vitro

    NARCIS (Netherlands)

    Sterk, A.R.; Hovenier, R.; Vlaeminck, B.; Vuuren, van A.M.; Hendriks, W.H.; Dijkstra, J.

    2010-01-01

    Rumen biohydrogenation kinetics of C18:3n-3 from several chemically or technologically treated linseed products and docosahexaenoic acid (DHA; C22:6n-3) addition to linseed oil were evaluated in vitro. Linseed products evaluated were linseed oil, crushed linseed, formaldehyde treated crushed

  2. Effect of in vitro docosahexaenoic acid supplementation to marine algae-adapted and unadapted rumen inoculum on the biohydrogenation of unsaturated fatty acids infreeze-dried grass

    NARCIS (Netherlands)

    Vlaeminck, B.; Mengistu, G.; Fievez, V.; Jonge, de L.H.; Dijkstra, J.

    2008-01-01

    The objective of this study was to examine the ruminal biohydrogenation of linoleic (18:2n-6) and linolenic (18:3n-3) acid during in vitro incubations with rumen inoculum from dairy cattle adapted or not to marine algae and with or without additional in vitro docosahexaenoic acid (DHA, 22:6n-3) supp

  3. Effects of a tannin-rich legume (Onobrychis viciifolia) on in vitro ruminal biohydrogenation and fermentation

    Energy Technology Data Exchange (ETDEWEB)

    González, M.A.; Peláez, F.R.; Martínez, A.L.; Avilés, C.; Peña, F.

    2016-11-01

    There is still controversy surrounding the ability of tannins to modulate the ruminal biohydrogenation (BH) of fatty acids (FA) and improve the lipid profile of milk or meat without conferring a negative response in the digestive utilization of the diet. Based on this, an in vitro trial using batch cultures of rumen microorganisms was performed to compare the effects of two legume hays with similar chemical composition but different tannin content, alfalfa and sainfoin (Onobrychis viciifolia), on the BH of dietary unsaturated FA and on the ruminal fermentation. The first incubation substrate, alfalfa, was practically free of tannins, while the second, sainfoin, contained 3.5% (expressed as tannic acid equivalents). Both hays were enriched with sunflower oil as a source of unsaturated FA. Most results of the lipid composition analysis (e.g., greater concentrations of 18:2n-6, cis-9 18:1 or total polyunsaturated FA in sainfoin incubations) showed the ability of this tannin-containing legume to inhibit the BH process. However, no significant differences were detected in the accumulation of cis-9 trans-11 conjugated linoleic acid, and variations in trans-11 18:1 and trans-11 cis-15 18:2 did not follow a regular pattern. Regarding the rumen fermentation, gas production, ammonia concentration and volatile FA production were lower in the incubations with sainfoin (‒17, ‒23 and ‒11%, respectively). Thus, although this legume was able to modify the ruminal BH, which might result in improvements in the meat or milk lipid profile, the present results were not as promising as expected or as obtained before with other nutritional strategies. (Author)

  4. Effects of a tannin-rich legume (Onobrychis viciifolia on in vitro ruminal biohydrogenation and fermentation

    Directory of Open Access Journals (Sweden)

    Gonzalo Hervás

    2016-03-01

    Full Text Available There is still controversy surrounding the ability of tannins to modulate the ruminal biohydrogenation (BH of fatty acids (FA and improve the lipid profile of milk or meat without conferring a negative response in the digestive utilization of the diet. Based on this, an in vitro trial using batch cultures of rumen microorganisms was performed to compare the effects of two legume hays with similar chemical composition but different tannin content, alfalfa and sainfoin (Onobrychis viciifolia, on the BH of dietary unsaturated FA and on the ruminal fermentation. The first incubation substrate, alfalfa, was practically free of tannins, while the second, sainfoin, contained 3.5% (expressed as tannic acid equivalents. Both hays were enriched with sunflower oil as a source of unsaturated FA. Most results of the lipid composition analysis (e.g., greater concentrations of 18:2n-6, cis-9 18:1 or total polyunsaturated FA in sainfoin incubations showed the ability of this tannin-containing legume to inhibit the BH process. However, no significant differences were detected in the accumulation of cis-9 trans-11 conjugated linoleic acid, and variations in trans-11 18:1 and trans-11 cis-15 18:2 did not follow a regular pattern. Regarding the rumen fermentation, gas production, ammonia concentration and volatile FA production were lower in the incubations with sainfoin (-17, -23 and -11%, respectively. Thus, although this legume was able to modify the ruminal BH, which might result in improvements in the meat or milk lipid profile, the present results were not as promising as expected or as obtained before with other nutritional strategies.

  5. Biohydrogen production from cheese whey wastewater in a two-step anaerobic process.

    Science.gov (United States)

    Rai, Pankaj K; Singh, S P; Asthana, R K

    2012-07-01

    Cheese whey-based biohydrogen production was seen in batch experiments via dark fermentation by free and immobilized Enterobacter aerogenes MTCC 2822 followed by photofermentation of VFAs (mainly acetic and butyric acid) in the spent medium by Rhodopseudomonas BHU 01 strain. E. aerogenes free cells grown on cheese whey diluted to 10 g lactose/L, had maximum lactose consumption (∼79%), high production of acetic acid (1,900 mg/L), butyric acid (537.2 mg/L) and H(2) yield (2.04 mol/mol lactose; rate,1.09 mmol/L/h). The immobilized cells improved lactose consumption (84%), production of acetic acid (2,100 mg/L), butyric acid (718 mg/L) and also H(2) yield (3.50 mol/mol lactose; rate, 1.91 mmol/L/h). E. aerogenes spent medium (10 g lactose/L) when subjected to photofermentation by free Rhodopseudomonas BHU 01 cells, the H(2) yield reached 1.63 mol/mol acetic acid (rate, 0.49 mmol/L/h). By contrast, immobilized Rhodopseudomonas cells improved H(2) yield to 2.69 mol/mol acetic acid (rate, 1.87 mmol/L/h). The cumulative H(2) yield for free and immobilized bacterial cells was 3.40 and 5.88 mol/mol lactose, respectively. Bacterial cells entrapped in alginate, had a sluggish start of H(2) production but outperformed the free cells subsequently. Also, the concomitant COD reduction for free cells (29.5%) could be raised to 36.08% by immobilized cells. The data suggest that two-step fermentative H(2) production from cheese whey involving immobilized bacterial cells, offers greater substrate to- hydrogen conversion efficiency, and the effective removal of organic load from the wastewater in the long-term.

  6. Effects of the heating process of soybean oil and seeds on fatty acid biohydrogenation in vitro.

    Science.gov (United States)

    Troegeler-Meynadier, A; Puaut, S; Farizon, Y; Enjalbert, F

    2014-09-01

    Heating fat is an efficient way to alter ruminal biohydrogenation (BH) and milk fat quality. Nevertheless, results are variable among studies and this could be due to various heating conditions differently affecting BH. The objectives of this study were to determine the effect of type and duration of heating of soybean oil or seeds on BH in vitro. Ruminal content cultures were incubated to first investigate the effects of roasting duration (no heating, and 0.5- and 6-h roasting) at 125°C and its interaction with fat source (soybean seeds vs. soybean oil), focusing on linoleic acid BH and its intermediates: conjugated linoleic acid (CLA) and trans-C18:1. Additionally, we compared the effects of seed extrusion with the 6 combinations of unheated and roasted oils and seeds. None of the treatments was efficient to protect linoleic acid from BH. Soybean oil resulted in higher trans-11 isomer production than seeds: 5.7 and 1.2 times higher for cis-9,trans-11 CLA and trans-11 C18:1, respectively. A 125°C, 0.5-h roasting increased trans-11 isomer production by 11% compared with no heating and 6-h roasted fat. Extrusion of seeds was more efficient to increase trans-11 C18:1 production than seed roasting, leading to values similar to oils. For other fatty acids, including cis-9,trans-11 CLA, extrusion resulted in similar balances to seeds (mainly 0.5-h-roasted seeds). Extruded oilseeds would be more efficient than roasted seeds to produce trans-11 C18:1; nevertheless, effects of conditions of extrusion need to be explored.

  7. BIOHYDROGEN FROM CHEESE WHEY TREATMENT IN AN AnSBBR: ACHIEVING PROCESS STABILITY

    Directory of Open Access Journals (Sweden)

    D. M. F. Lima

    2015-06-01

    Full Text Available AbstractAn AnSBBR (anaerobic sequencing batch reactor containing biomass immobilized on an inert support with liquid phase recirculation, containing a 3.5 L working volume, treated 1.5 L of cheese whey wastewater in 3 and 4 h cycles at 30 ºC to produce biohydrogen. From startup the bioreactor presented process instability. To overcome this problem the following measures were taken, however without success: adaptation of the biomass with uncontaminated easily degradable substrates, pH control at very low levels, and a different form of inoculation (natural fermentation of the feed medium. The problem was solved by cooling the feed medium to 4 ºC to prevent acidification in the storage container, by eliminating nutrient supplementation to prevent possible formation of H2S by sulfate-reducing bacteria and by periodic washing of the support material to improve the food/microorganism ratio. Hence, stable hydrogen production could be achieved with minimal presence of methane (36% H2; 62% CO2; 2% CH4 and the AnSBBR fed with cheese whey (influent concentration of 4070 mgCOD.L-1 and 3240 mgCarbohydrate.L-1 and applied volumetric organic loading of 14.6 gCOD.L-1.d-1 presented improved productivity and yield indicators compared to pure lactose and other reactor configurations, reaching values of 420 NmLH2.L-1.d-1 and 0.60 molH2.molCarbohydrate-1 in the steady-state phase (conversions of carbohydrates and COD were 98% and 30%, respectively.

  8. Integration of acidogenic and methanogenic processes for simultaneous production of biohydrogen and methane from wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Mohan, S.; Mohanakrishna, G.; Sarma, P.N. [Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Hyderabad 500 007 (India)

    2008-05-15

    Feasibility of integrating acidogenic and methanogenic processes for simultaneous production of biohydrogen (H{sub 2}) and methane (CH{sub 4}) was studied in two separate biofilm reactors from wastewater treatment. Acidogenic bioreactor (acidogenic sequencing batch biofilm reactor, AcSBBR) was operated with designed synthetic wastewater [organic loading rate (OLR) 4.75 kg COD/m{sup 3}-day] under acidophilic conditions (pH 6.0) using selectively enriched acidogenic mixed consortia. The resultant outlet from AcSBBR composed of fermentative soluble intermediates (with residual carbon source), was used as feed for subsequent methanogenic bioreactor (methanogenic/anaerobic sequencing batch biofilm reactor, AnSBBR, pH 7.0) to generate additional biogas (CH{sub 4}) utilizing residual organic composition employing anaerobic mixed consortia. During the stabilized phase of operation (after 60 days) AcSBBR showed H{sub 2} production of 16.91 mmol/day in association with COD removal efficiency of 36.56% (SDR{sub A} - 1.736 kg COD/m{sup 3}-day). AnSBBR showed additional COD removal efficiency of 54.44% (SDR{sub M} - 1.071 kg COD/m{sup 3}-day) along with CH{sub 4} generation. Integration of the acidogenic and methanogenic processes enhanced substrate degradation efficiency (SDR{sub T} - 4.01 kg COD/m{sup 3}-day) along with generation of both H{sub 2} and CH{sub 4} indicating sustainability of the process. (author)

  9. Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Kyu-Jung; Choi, Mi-Jin; Kim, Kyoung-Yeol; Ajayi, F.F.; Chang, In-Seop; Kim, In S. [Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2010-12-15

    The microbial electrolysis cell (MEC) is a promising technology for producing biohydrogen at greater yield than with conventional technology. However, during a run of an acetate-fed MEC at an applied voltage of 0.5 V, substantial amounts of substrate are consumed in undesirable methanogenesis. Therefore, in order to suppress the methanogens specifically without adversely affecting exoelectrogens, this study examined the effects of sudden changes in pH, temperature and air-exposure, as well as chemical inhibitors, such as 2-bromoethanesulfonate (BES) and lumazine on methanogenesis. An abrupt decrease in temperature and pH from 30 to 20 C and 7 to 4.9, respectively, had no effect on methanogenesis. Exposing the anode biofilm to air was also ineffective in inhibiting specific methanogens because both methanogens and exoelectrogens were damaged by oxygen. However, an injection of BES (286 {mu}M) reduced the methanogenic electron losses substantially from 36.4 {+-} 4.4 (= 145.8 {+-} 17.4 {mu}mol-CH{sub 4}) to 2.5 {+-} 0.3% (= 10.2 {+-} 1.2 {mu}mol-CH{sub 4}), which in turn improved the overall hydrogen efficiency (acetate to H{sub 2}) from 56.1 {+-} 5.7 to 80.1 {+-} 6.5% (= 3.2 mol-H{sub 2}/mol-acetate). Once after inhibited, the inhibitory influence was retained even after 10 batch cycles in the absence of further BES addition. In contrast to BES, methanogenesis was unaffected by lumazine, even at much higher concentrations. The installation of a Nafion membrane resulted in the production of high purity hydrogen at the cathode but hindered proton migration, which caused a serious pH imbalance between the anode and cathode compartments. (author)

  10. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum.

    Science.gov (United States)

    Dan Jiang; Fang, Zhen; Chin, Siew-Xian; Tian, Xiao-Fei; Su, Tong-Chao

    2016-06-02

    Biohydrogen production has received widespread attention from researchers in industry and academic fields. Response surface methodology (RSM) was applied to evaluate the effects of several key variables in anaerobic fermentation of glucose with Clostridium butyrium, and achieved the highest production rate and yield of hydrogen. Highest H2 yield of 2.02 mol H2/mol-glucose was achieved from 24 h bottle fermentation of glucose at 35 °C, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O, which was very different from that for cell growth. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hull hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7-64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen.

  11. Biohydrogen Production from Hydrolysates of Selected Tropical Biomass Wastes with Clostridium Butyricum

    Science.gov (United States)

    Dan Jiang; Fang, Zhen; Chin, Siew-Xian; Tian, Xiao-Fei; Su, Tong-Chao

    2016-06-01

    Biohydrogen production has received widespread attention from researchers in industry and academic fields. Response surface methodology (RSM) was applied to evaluate the effects of several key variables in anaerobic fermentation of glucose with Clostridium butyrium, and achieved the highest production rate and yield of hydrogen. Highest H2 yield of 2.02 mol H2/mol-glucose was achieved from 24 h bottle fermentation of glucose at 35 °C, while the composition of medium was (g/L): 15.66 glucose, 6.04 yeast extract, 4 tryptone, 3 K2HPO4, 3 KH2PO4, 0.05 L-cysteine, 0.05 MgSO4·7H2O, 0.1 MnSO4·H2O and 0.3 FeSO4·7H2O, which was very different from that for cell growth. Sugarcane bagasse and Jatropha hulls were selected as typical tropical biomass wastes to produce sugars via a two-step acid hydrolysis for hydrogen production. Under the optimized fermentation conditions, H2 yield (mol H2/mol-total reducing sugar) was 2.15 for glucose, 2.06 for bagasse hydrolysate and 1.95 for Jatropha hull hydrolysate in a 3L fermenter for 24 h at 35 °C, with H2 purity of 49.7–64.34%. The results provide useful information and basic data for practical use of tropical plant wastes to produce hydrogen.

  12. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor.

    Science.gov (United States)

    Jitrwung, Rujira; Yargeau, Viviane

    2015-05-11

    Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR). Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol) and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  13. Biohydrogen and Bioethanol Production from Biodiesel-Based Glycerol by Enterobacter aerogenes in a Continuous Stir Tank Reactor

    Directory of Open Access Journals (Sweden)

    Rujira Jitrwung

    2015-05-01

    Full Text Available Crude glycerol from the biodiesel manufacturing process is being produced in increasing quantities due to the expanding number of biodiesel plants. It has been previously shown that, in batch mode, semi-anaerobic fermentation of crude glycerol by Enterobacter aerogenes can produce biohydrogen and bioethanol simultaneously. The present study demonstrated the possible scaling-up of this process from small batches performed in small bottles to a 3.6-L continuous stir tank reactor (CSTR. Fresh feed rate, liquid recycling, pH, mixing speed, glycerol concentration, and waste recycling were optimized for biohydrogen and bioethanol production. Results confirmed that E. aerogenes uses small amounts of oxygen under semi-anaerobic conditions for growth before using oxygen from decomposable salts, mainly NH4NO3, under anaerobic condition to produce hydrogen and ethanol. The optimal conditions were determined to be 500 rpm, pH 6.4, 18.5 g/L crude glycerol (15 g/L glycerol and 33% liquid recycling for a fresh feed rate of 0.44 mL/min. Using these optimized conditions, the process ran at a lower media cost than previous studies, was stable after 7 days without further inoculation and resulted in yields of 0.86 mol H2/mol glycerol and 0.75 mol ethanol/mole glycerol.

  14. Efficient induction of formate hydrogen lyase of aerobically grown Escherichia coli in a three-step biohydrogen production process.

    Science.gov (United States)

    Yoshida, Akihito; Nishimura, Taku; Kawaguchi, Hideo; Inui, Masayuki; Yukawa, Hideaki

    2007-03-01

    A three-step biohydrogen production process characterized by efficient anaerobic induction of the formate hydrogen lyase (FHL) of aerobically grown Escherichia coli was established. Using E. coli strain SR13 (fhlA (++), DeltahycA) at a cell density of 8.2 g/l medium in this process, a specific hydrogen productivity (28.0 +/- 5.0 mmol h(-1) g(-1) dry cell) of one order of magnitude lower than we previously reported was realized after 8 h of anaerobic incubation. The reduced productivity was attributed partly to the inhibitory effects of accumulated metabolites on FHL induction. To avoid this inhibition, strain SR14 (SR13 DeltaldhA DeltafrdBC) was constructed and used to the effect that specific hydrogen productivity increased 1.3-fold to 37.4 +/- 6.9 mmol h(-1) g(-1). Furthermore, a maximum hydrogen production rate of 144.2 mmol h(-1) g(-1) was realized when a metabolite excretion system that achieved a dilution rate of 2.0 h(-1) was implemented. These results demonstrate that by avoiding anaerobic cultivation altogether, more economical harvesting of hydrogen-producing cells for use in our biohydrogen process was made possible.

  15. Impact of organic loading rate on biohydrogen production in an up-flow anaerobic packed bed reactor (UAnPBR).

    Science.gov (United States)

    Ferraz, Antônio Djalma Nunes; Zaiat, Marcelo; Gupta, Medhavi; Elbeshbishy, Elsayed; Hafez, Hisham; Nakhla, George

    2014-07-01

    This study assesses the impact of organic loading rate on biohydrogen production from glucose in an up-flow anaerobic packed bed reactor (UAnPBR). Two mesophilic UAPBRs (UAnPBR1 and 2) were tested at organic loading rates (OLRs) ranging from 6.5 to 51.4 g COD L(-1)d(-1). To overcome biomass washout, design modifications were made in the UAnPBR2 to include a settling zone to capture the detached biomass. The design modifications in UAnPBR2 increased the average hydrogen yield from 0.98 to 2.0 mol-H2 mol(-1)-glucose at an OLR of 25.7 g COD L(-1)d(-1). Although, a maximum hydrogen production rate of 23.4 ± 0.9 L H2 L(-1)d(-1) was achieved in the UAnPBR2 at an OLR of 51.4 g COD L(-1)d(-1), the hydrogen yield dropped by 50% to around 1 mol-H2 mol(-1)-glucose. The microbiological analysis (PCR/DGGE) showed that the biohydrogen production was due to the presence of the hydrogen and volatile acid producers such as Clostridium beijerinckii, Clostridium butyricum, Megasphaera elsdenii and Propionispira arboris.

  16. A biorefinery from Nannochloropsis sp. microalga--extraction of oils and pigments. Production of biohydrogen from the leftover biomass.

    Science.gov (United States)

    Nobre, B P; Villalobos, F; Barragán, B E; Oliveira, A C; Batista, A P; Marques, P A S S; Mendes, R L; Sovová, H; Palavra, A F; Gouveia, L

    2013-05-01

    The microalga Nannochloropsis sp. was used in this study, in a biorefinery context, as biomass feedstock for the production of fatty acids for biodiesel, biohydrogen and high added-value compounds. The microalgal biomass, which has a high lipid and pigment content (mainly carotenoids), was submitted to supercritical CO2 extraction. The temperature, pressure and solvent flow-rate were evaluated to check their effect on the extraction yield. The best operational conditions to extract 33 g lipids/100 g dry biomass were found to be at 40 °C, 300 bar and a CO2 flow-rate of 0.62 g/min. The effect of adding a co-solvent (ethanol) was also studied. When supercritical CO2 doped with 20% (w/w) ethanol was used, it was possible to extract 45 g lipids/100 g dry biomass of lipids and recover 70% of the pigments. Furthermore, the remaining biomass after extraction was effectively used as feedstock to produce biohydrogen through dark fermentation by Enterobacter aerogenes resulting in a hydrogen production yield of 60.6 mL/g dry biomass.

  17. A novel anaerobic two-phase system for biohydrogen production and in situ extraction of organic acid byproducts.

    Science.gov (United States)

    Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Le Bihan, Yann; Buelna, Gerardo

    2015-06-01

    Owing to CO2-free emission, hydrogen is considered as a potential green alternative of fossil fuels. Water is the major emission of hydrogen combustion process and gravimetric energy density of hydrogen is nearly three times more than that of gasoline and diesel fuel. Biological hydrogen production, therefore, has commercial significance; especially, when it is produced from low-cost industrial waste-based feedstock. Light independent anaerobic fermentation is simple and mostly studied method of biohydrogen production. During hydrogen production by this method, a range of organic acid byproducts are produced. Accumulation of these byproducts is inhibitory for hydrogen production as it may result in process termination due to sharp decrease in medium pH or by possible metabolic shift. For the first time, therefore, a two-phase anaerobic bioreactor system has been reported for biohydrogen production which involves in situ extraction of different organic acids. Among different solvents, based on biocompatibility oleyl alcohol has been chosen as the organic phase of the two-phase system. An organic:aqueous phase ratio of 1:50 has been found to be optimum for hydrogen production. The strategy was capable of increasing the hydrogen production from 1.48 to 11.65 mmol/L-medium.

  18. Effects of dilution ratio and Fe° dosing on biohydrogen production from dewatered sludge by hydrothermal pretreatment.

    Science.gov (United States)

    Yu, Li; Jiang, Wentian; Yu, Yang; Sun, Chenglin

    2014-01-01

    Biohydrogen fermentation of dewatered sludge (DS) with sewage at ratios from 4:1 to 1:20 was investigated. Hydrothermal pretreatment of the sludge solution was performed to accelerate the organic release from the solid phase. The maximum hydrogen yield of 26.3 ± 0.5 mL H₂/g volatile solid (VS) was obtained at a 1:10 ratio. Although addition of zero valent iron (ZVI) to anaerobic system was not new, the study of dosing it to enhance the biohydrogen yield might be the first attempt. While Fe° plate slightly affected the hydrogen yield, Fe° powder improved the amount of hydrogen by 16% and shortened the lag time by 36%. The state of bacteria in the reactor added with ZVI powder was changed and the key enzyme activity was improved as well. Correspondingly, the mechanism of ZVI in accelerating the biofermentation process was also proposed. Our research provides a solution for the centralized treatment of DS in a city.

  19. Clinical application of bio ceramics

    Science.gov (United States)

    Anu, Sharma; Gayatri, Sharma

    2016-05-01

    Ceramics are the inorganic crystalline material. These are used in various field such as biomedical, electrical, electronics, aerospace, automotive and optical etc. Bio ceramics are the one of the most active areas of research. Bio ceramics are the ceramics which are biocompatible. The unique properties of bio ceramics make them an attractive option for medical applications and offer some potential advantages over other materials. During the past three decades, a number of major advances have been made in the field of bio ceramics. This review focuses on the use of these materials in variety of clinical scenarios.

  20. bioética

    Directory of Open Access Journals (Sweden)

    Francisco Javier León Correa

    2006-01-01

    Full Text Available Desde el inicio de la publicación de la revista Cuadernos de Bioética, hemos podido comprobar una evolución importante en el desarrollo de esta disciplina, tanto en España como en Latinoamérica, que son los ámbitos donde muy especialmente se difunde. Trataré de señalar los aspectos que considero de mayor interés en los inicios y desarrollo de esta nueva disciplina, para poder entender mejor los retos actualesque enfrenta y cuáles son las líneas que ha seguido la revista en esta andadura inicial, y que deberá seguir para responder a los retos de los próximos años. Es un reto la realidad que vivimos en nuestros países, con la aprobación de leyes impuestas desde los poderes públicos con muy poca o ninguna discusión social que se parezca de lejos al diálogo tolerante racional que propugna la Bioética; con las reformas aceleradas e indecisas de los sistemas de salud; con el cambio del rol del médico y de la relación médico-paciente desde un paternalismo aún presente a un modelo participativo o contractual sin defi nir claramente; con importantes desigualdades en el acceso a la atención de salud dentro de cada propio país, pero a la vez con un creciente reconocimiento de los derechos de los pacientes y de su necesaria participación para mejorar la calidad de la asistencia clínica. Tiene especial importancia valorar cuáles han sido los instrumentos del éxito y de la difusión de la Bioética clínica, y cuáles pueden ser las nuevas propuestas para el desarrollo de la Bioética como una disciplina de debate ético social y político, ligada a las exigencias éticas de la justicia y el desarrollo social. Hemos de ver cuál ha sido el aporte en estos quince años de la revista Cuadernos de Bioética, con la colaboración de cientos de autores de diversos países, en que se ha mantenido fi el a la propuesta de los que la iniciamos en Santiago de Compostela en el año 1990: construir un buen aporte al debate actual de Bio

  1. Bio-forensics

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J. (Jill)

    2004-01-01

    Bioforensics presents significant technical challenges. Determining if an outbreak is natural or not, and then providing evidence to trace an outbreak to its origin is very complex. Los Alamos scientists pioneered research and development that has generated leading edge strain identification methods based on sequence data. Molecular characterization of environmental background samples enable development of highly specific pathogen signatures. Economic impacts of not knowing the relationships at the molecular level Many different kinds of data are needed for DNA-based bio-forensics.

  2. Bioética

    OpenAIRE

    Nunes, Cássia Regina Rodrigues [UNESP; Nunes,Amauri Porto

    2004-01-01

    A bioética é um novo campo de conhecimento e uma corrente de pensamento que vem se desenvolvendo amplamente no Brasil, principalmente a partir da década de 90. Nesse artigo buscamos contextualizar o seu surgimento, justificando a necessidade da criação desse neologismo, uma vez que a ética estava de certo modo esquecida, em relação à técnica, restringindo-se apenas à ética profissional. Hoje nos deparamos com uma ampla gama de produções nessa área que ajudam a nortear nossa ação enquanto cida...

  3. A farm-scale pilot plant for biohydrogen and biomethane production by two-stage fermentation

    Directory of Open Access Journals (Sweden)

    R. Oberti

    2013-09-01

    laboratory results, with a typical hydrogen and methane specific productivity of 2.2 and 0.5 Nm3/m3reactor per day, in the first and second stage of the plant respectively. At our best knowledge, this plant is one of the very first prototypes producing biohydrogen at farm scale, and it represents a distributed, small scale demonstration to obtain hydrogen from renewable waste-sources.

  4. Organic loading rates affect composition of soil-derived bacterial communities during continuous, fermentative biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yonghua; Bruns, Mary Ann [Department of Crop and Soil Sciences, The Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Husen; Salerno, Michael; Logan, Bruce E. [Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802 (United States)

    2008-11-15

    Bacterial community composition during steady-state, fermentative H{sub 2} production was compared across a range of organic loading rates (OLRs) of 0.5-19 g COD l{sup -1} h{sup -1} in a 2-l continuous flow reactor at 30 C. The varied OLRs were achieved with glucose concentrations of 2.5-10 g l{sup -1} and hydraulic retention times of 1-10 h. The synthetic wastewater feed was amended with L-cysteine and maintained at a pH of 5.5. For each run at a given glucose concentration, the reactor was inoculated with an aliquot of well-mixed agricultural topsoil that had been heat-treated to reduce numbers of vegetative cells. At OLRs less than 2 g COD l{sup -1} h{sup -1}, DNA sequences from ribosomal RNA intergenic spacer analysis profiles revealed more diverse and variable populations (Selenomonas, Enterobacter, and Clostridium spp.) than were observed above 2 g COD l{sup -1} h{sup -1} (Clostridium spp. only). An isolate, LYH1, was cultured from a reactor sample (10 g glucose l{sup -1} at a 10-h HRT) on medium containing L-cysteine. In confirming H{sub 2} production by LYH1 in liquid batch culture, lag periods for H{sub 2} production in the presence and absence of L-cysteine were 5 and 50 h, respectively. The 16S rRNA gene sequence of LYH1 indicated that the isolate was a Clostridium sp. affiliated with RNA subcluster Ic, with >99% similarity to Clostridium sp. FRB1. In fluorescent in situ hybridization tests, an oligonucleotide probe complementary to the 16S rRNA of LYH1 hybridized with 90% of cells observed at an OLR of 2 g COD h{sup -1}, compared to 26% of cells at an OLR of 0.5 g COD l{sup -1} h{sup -1}. An OLR of 2 g COD l{sup -1} h{sup -1} appeared to be a critical threshold above which clostridia were better able to outcompete Enterobacteriaceae and other organisms in the mixed soil inoculum. Our results are discussed in light of other biohydrogen studies employing pure cultures and mixed inocula. (author)

  5. Solid phase bio-electrofermentation of food waste to harvest value-added products associated with waste remediation.

    Science.gov (United States)

    Chandrasekhar, K; Amulya, K; Mohan, S Venkata

    2015-11-01

    A novel solid state bio-electrofermentation system (SBES), which can function on the self-driven bioelectrogenic activity was designed and fabricated in the laboratory. SBES was operated with food waste as substrate and evaluated for simultaneous production of electrofuels viz., bioelectricity, biohydrogen (H2) and bioethanol. The system illustrated maximum open circuit voltage and power density of 443 mV and 162.4 mW/m(2), respectively on 9 th day of operation while higher H2 production rate (21.9 ml/h) was observed on 19th day of operation. SBES system also documented 4.85% w/v bioethanol production on 20th day of operation. The analysis of end products confirmed that H2 production could be generally attributed to a mixed acetate/butyrate-type of fermentation. Nevertheless, the presence of additional metabolites in SBES, including formate, lactate, propionate and ethanol, also suggested that other metabolic pathways were active during the process, lowering the conversion of substrate into H2. SBES also documented 72% substrate (COD) removal efficiency along with value added product generation. Continuous evolution of volatile fatty acids as intermediary metabolites resulted in pH drop and depicted its negative influence on SBES performance. Bio-electrocatalytic analysis was carried out to evaluate the redox catalytic capabilities of the biocatalyst. Experimental data illustrated that solid-state fermentation can be effectively integrated in SBES for the production of value added products with the possibility of simultaneous solid waste remediation.

  6. Bio-tribology.

    Science.gov (United States)

    Dowson, Duncan

    2012-01-01

    It is now forty six years since the separate topics of friction, lubrication, wear and bearing design were integrated under the title 'Tribology' [Department of Education and Science, Lubrication (Tribology) Education and Research. A Report on the Present Position and Industry's Needs, HMSO, London, 1966]. Significant developments have been reported in many established and new aspects of tribology during this period. The subject has contributed to improved performance of much familiar equipment, such as reciprocating engines, where there have been vast improvements in engine reliability and efficiency. Nano-tribology has been central to remarkable advances in information processing and digital equipment. Shortly after widespread introduction of the term tribology, integration with biology and medicine prompted rapid and extensive interest in the fascinating sub-field now known as Bio-tribology [D. Dowson and V. Wright, Bio-tribology, in The Rheology of Lubricants, ed. T. C. Davenport, Applied Science Publishers, Barking, 1973, pp. 81-88]. An outline will be given of some of the developments in the latter field.

  7. Bio-threat microparticle simulants

    Science.gov (United States)

    Farquar, George Roy; Leif, Roald N

    2012-10-23

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  8. What is BioOne?

    Science.gov (United States)

    Fitzpatrick, Roberta Bronson

    2005-01-01

    BioOne is a Web-based aggregation of full-text, high-impact bioscience research journals. Most of its titles are published by small societies or non-commercial publishers and have not been previously available in electronic format. This column describes the BioOne database and gives some basic information about the best ways to search its content.

  9. Autonomous Bio-Optical Instruments

    Science.gov (United States)

    2000-09-30

    Autonomous Bio -Optical Instruments Russ E. Davis Scripps Institution of Oceanography La Jolla CA 92093-0230 phone: (858) 534-4415 fax: (858) 534... Bio -Optical Instruments 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK

  10. Bio-threat microparticle simulants

    Science.gov (United States)

    Farquar, George Roy; Leif, Roald

    2014-09-16

    A bio-threat simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the bio-threat simulant.

  11. Effects of Chrysanthemum coronarium Extract on Fermentation Characteristics and Biohydrogenation of Polyunsaturated Fatty Acids in vitro Batch Culture

    Institute of Scientific and Technical Information of China (English)

    WANG Li-fang; MA Yan-fen; GAO Min; LU De-xun

    2011-01-01

    IntroductionCis-9,trans-11 CLA has been shown to be potentially healthpromoting CLA in many animal models.The C18∶1 trans-11 fatty acid (VA) is also desirable as a product flowing from the rumen,because the flow from the rumen of VA play a more important role than CLA in determining CLA concentration in animal tissues.The factors which affect CLA content in milk have been studied mainly in dairy cows and most factors are basically dietary factors,especially fat source(e.g.,plant oils,fish oil,et al.).Recently some researches showed that some plants or plant extracts could increase cis-9,trans-11 -CLA content in milk.The purpose of this experiment was to evaluate the effects of Chrysanthemum coronarium extract on in vitro Biohydrogenation of polyunsaturated fatty acids and fermentation characteristics of mixed rumen microorganisms.

  12. Delving into sensible measures to enhance the environmental performance of biohydrogen: A quantitative approach based on process simulation, life cycle assessment and data envelopment analysis.

    Science.gov (United States)

    Martín-Gamboa, Mario; Iribarren, Diego; Susmozas, Ana; Dufour, Javier

    2016-08-01

    A novel approach is developed to evaluate quantitatively the influence of operational inefficiency in biomass production on the life-cycle performance of hydrogen from biomass gasification. Vine-growers and process simulation are used as key sources of inventory data. The life cycle assessment of biohydrogen according to current agricultural practices for biomass production is performed, as well as that of target biohydrogen according to agricultural practices optimised through data envelopment analysis. Only 20% of the vineyards assessed operate efficiently, and the benchmarked reduction percentages of operational inputs range from 45% to 73% in the average vineyard. The fulfilment of operational benchmarks avoiding irregular agricultural practices is concluded to improve significantly the environmental profile of biohydrogen (e.g., impact reductions above 40% for eco-toxicity and global warming). Finally, it is shown that this type of bioenergy system can be an excellent replacement for conventional hydrogen in terms of global warming and non-renewable energy demand. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The application of an innovative continuous multiple tube reactor as a strategy to control the specific organic loading rate for biohydrogen production by dark fermentation.

    Science.gov (United States)

    Gomes, Simone D; Fuess, Lucas T; Penteado, Eduardo D; Lucas, Shaiane D M; Gotardo, Jackeline T; Zaiat, Marcelo

    2015-12-01

    Biohydrogen production in fixed-bed reactors often leads to unstable and decreasing patterns because the excessive accumulation of biomass in the bed negatively affects the specific organic loading rate (SOLR) applied to the reactor. In this context, an innovative reactor configuration, i.e., the continuous multiple tube reactor (CMTR), was assessed in an attempt to better control the SOLR for biohydrogen production. The CMTR provides a continuous discharge of biomass, preventing the accumulation of solids in the long-term. Sucrose was used as the carbon source and mesophilic temperature conditions (25°C) were applied in three continuous assays. The reactor showed better performance when support material was placed in the outlet chamber to enhance biomass retention within the reactor. Although the SOLR could not be effectively controlled, reaching values usually higher than 10gsucroseg(-1)VSSd(-1), the volumetric hydrogen production and molar hydrogen production rates peaked, respectively, at 1470mLH2L(-1)d(-1) and 45mmolH2d(-1), indicating that the CMTR was a suitable configuration for biohydrogen production.

  14. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...... that modulates the parameters of the locomotor central pattern generators. We present phonotactic performance results of the simulated lizard-salamander hybrid robot....

  15. Combining Bio-inspired Sensing with Bio-inspired Locomotion

    DEFF Research Database (Denmark)

    Shaikh, Danish; Hallam, John; Christensen-Dalsgaard, Jakob

    In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model that modula......In this paper we present a preliminary Braitenberg vehicle–like approach to combine bio-inspired audition with bio-inspired quadruped locomotion in simulation. Locomotion gaits of the salamander–like robot Salamandra robotica are modified by a lizard’s peripheral auditory system model...... that modulates the parameters of the locomotor central pattern generators. We present phonotactic performance results of the simulated lizard-salamander hybrid robot....

  16. Bio-Glasses An Introduction

    CERN Document Server

    Jones, Julian

    2012-01-01

    This new work is dedicated to glasses and their variants which can be used as biomaterials to repair diseased and damaged tissues. Bio-glasses are superior to other biomaterials in many applications, such as healing bone by signaling stem cells to become bone cells.   Key features:  First book on biomaterials to focus on bio-glassesEdited by a leading authority on bio-glasses trained by one of its inventors, Dr Larry HenchSupported by the International Commission on Glass (ICG)Authored by members of the ICG Biomedical Glass Committee, with the goal of creating a seamless textb

  17. BioAir: Bio-Inspired Airborne Infrastructure Reconfiguration

    Science.gov (United States)

    2016-01-01

    UAV ) in order to autonomously form and maintain a dynamic communication network. This system draws upon inspirations from biological cell...presents the BioAIR system for autonomous communication , command and control of a swarm of UAVs . The idea is to form a communication network comprised of...deployment, yet maintaining communications should not interfere with the primary tasks of these entities. The BioAIR system was developed to coordinate

  18. International Collaboration on bio-hydrogen R and D. Report for the Research Institute of Innovative Technology for the Earth (RITE), Tokyo, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Huesing, B.

    1998-01-01

    In order to solve the problem of the foreseeable depletion of fossil energy resources and of expected global climatic changes due to the emission of greenhouse gases future energy systems are required which meet the growing world energy demand but do not depend on fossil fuels. One possible option which is discussed as a clean and environmentally friendly energy source for the 21{sup st} century is the conversion of solar energy into hydrogen. Hydrogen as an environmentally friendly energy source can also be an integral part of a zero-emission economy because it can contribute to the minimization of toxic dispersion (especially the greenhouse gas CO{sub 2}) and to the maximization of sustainable use of renewable resources. It has been known for more than 50 years that certain living organisms are able to produce hydrogen. Biological hydrogen production has several comparative advantages over competing hydrogen production technologies such as photovoltaic or solarthermic electricity generation plus water hydrolysis. These advantages are - simpler systems: hydrogen production from direct water splitting without involvement of electricity/electrolysis, - self-regenerating systems, - biologically degradable systems: disposal can be coupled to the production of additional value-added substances, - flexible systems: production organisms can adapt to changing environmental conditions, - versatile systems: production organisms which are tailor-made to special environmental conditions can be selected. (orig.)

  19. Effect of dilution and L-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, N.; Tuba, F.; Dokgoz, C. [Bioengineering Dept., Faculty of Engineering, Ege Univ., Izmir (Turkey)], E-mail: nuri.azbar@ege.edu.tr

    2009-07-01

    In this study, H{sub 2} was produced in a two-stage biological process: I) first stage; the dark fermentation of cheese whey wastewater, which is rich in lactose, by mixed anaerobic culture grown at thermophilic temperature in a continuously running fermentor and ii) second stage; the photo-fermentation of the residual medium by R. palustris strain (DSM 127) at 31{sup o}C under illumination of 150 W in batch mode, respectively. In the first part of the study, the effluent from the dark fermentation reactor was used either as it is (no dilution) or after dilution with distilled water at varying ratios such as 1/2 , 1/5, 1/10 (1 volume effluent/5 volume distilled water) before used in photo-fermentation experiments. In the second part of the study, L-malic acid at varying amounts was added into the hydrogen production medium in order to have L-malic acid concentrations ranging from 0 to 4 g/l. Non-diluted and pre-diluted mediums with or without L-malic acid addition were also tested for comparison purpose (as controls). Prior to the hydrogen production experiments, all samples were subjected to pH adjustment, (pH 6.7) and sterilized by autoclave at 121{sup o}C for 15 min. In regards to the experiments in which the effect of dilution of the effluent from dark fermentation was studied, it was observed that dilution of the effluent from dark fermentation resulted in much better hydrogen productions. Among the dilution rates used, the experiments operated with 1/5 dilution ratio produced the best hydrogen production (241 ml H{sub 2}/ g COD{sub fed}). On the other hand, it was seen that the mixing the effluent with L-malic acid (0 - 4 g/l) at increasing ratios (studied from 0% L-malic acid up to 100% by volume in the mixture) had further positive effect and improved the hydrogen production. The bioreactors containing only L-malic acid media resulted in the best hydrogen production (438 ml H{sub 2} / g COD{sub fed}). It was found that, undiluted raw cheese whey wastewater effluent from dark hydrogen production reactor was not suitable for photo-fermentative hydrogen production. It was concluded that dilution of the feeding helps to reduce the nitrogen content and the volatile fatty acid content that might be otherwise harmful to the photo-heterotrophic organisms. The second conclusion that can be drawn is that cheese whey effluent should be mixed with L-malic acid rich co-substrates such as fruit juice processing effluents before fed into the photo-fermentation reactor. Finally, the two-stage H{sub 2}-producing process could be applied in remediation of lactose-containing industrial wastes, H{sub 2} being used on-site, to reduce process costs via generation of electricity by the help of hydrogen fuel cells. (author)

  20. Effective conversion of maize straw wastes into bio-hydrogen by two-stage process integrating H2 fermentation and MECs.

    Science.gov (United States)

    Li, Yan-Hong; Bai, Yan-Xia; Pan, Chun-Mei; Li, Wei-Wei; Zheng, Hui-Qin; Zhang, Jing-Nan; Fan, Yao-Ting; Hou, Hong-Wei

    2015-12-01

    The enhanced H2 production from maize straw had been achieved through the two-stage process of integrating H2 fermentation and microbial electrolysis cells (MECs) in the present work. Several key parameters affecting hydrolysis of maize straw through subcritical H2O were optimized by orthogonal design for saccharification of maize straw followed by H2 production through H2 fermentation. The maximum reducing sugar (RS) content of maize straw reached 469.7 mg/g-TS under the optimal hydrolysis condition with subcritical H2O combining with dilute HCl of 0.3% at 230 °C. The maximum H2 yield, H2 production rate, and H2 content was 115.1 mL/g-TVS, 2.6 mL/g-TVS/h, and 48.9% by H2 fermentation, respectively. In addition, the effluent from H2 fermentation was used as feedstock of MECs for additional H2 production. The maximum H2 yield of 1060 mL/g-COD appeared at an applied voltage of 0.8 V, and total COD removal reached about 35%. The overall H2 yield from maize straw reached 318.5 mL/g-TVS through two-stage processes. The structural characterization of maize straw was also carefully investigated by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) spectra.

  1. The effect of dilution and L-malic acid addition on bio-hydrogen production with Rhodopseudomonas palustris from effluent of an acidogenic anaerobic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Azbar, Nuri; Cetinkaya Dokgoz, F.Tuba [Ege University, Faculty of Engineering, Bioengineering Department, 35100 Izmir (Turkey)

    2010-05-15

    In this study, H{sub 2} was produced from cheese whey wastewater in a two-stage biological process: i) first stage; thermophilic dark fermentation ii) second stage; the photo fermentation using Rhodopseudomonas palustris strain DSM 127 (R. palustris). The effect of both dilution and addition of L-malic acid on the hydrogen production was investigated. Among the dilution rates used, 1/5 dilution ratio was found to produce the best hydrogen production (349 ml H{sub 2}/g COD{sub fed}). On the other hand, It was seen that the mixing the effluent with L-malic acid at increasing ratios had further positive effect and improved the hydrogen production significantly. It was concluded that dilution of the feeding helps to reduce the nitrogen content and the volatile fatty acid content that might be otherwise harmful to the photo-heterotrophic organisms. Overall hydrogen production yield (for dark + photo fermentation) was found to vary 2 and 10 mol H{sub 2}/mol lactose. Second conclusion is that cheese whey effluent should be mixed with a co-substrate containing L-malic acid such as apple juice processing effluents before fed into the photo fermentation reactor. (author)

  2. Improved bio-hydrogen production from glucose by adding a specific methane inhibitor to microbial electrolysis cells with a double anode arrangement.

    Science.gov (United States)

    Zhang, Jingnan; Bai, Yanxia; Fan, Yaoting; Hou, Hongwei

    2016-10-01

    Improved hydrogen production from glucose was achieved by adding a specific methane inhibitor (such as chloroform) to repress the activity of methanogens in a single-chamber microbial electrolysis cells (MECs) with a double anode arrangement. A maximum hydrogen production of 8.4±0.2 mol H2/mol-G (G represents glucose), a hydrogen production rate of 2.39±0.3 m(3) H2/m3/d and a high energy efficiency (relative to the electrical input) of ηE=165±5% had been recorded from 1 g/L glucose at a low dosage of chloroform (5‰, v:v) and an applied voltage of 0.8 V. Almost all of the glucose was removed within 4 h, with 66% of the electrons in intermediates (mainly including acetate and ethanol), and methane gas was not detected in the MECs through 11 batch cycles. The experimental results confirmed that chloroform was an effective methane inhibitor that improved hydrogen production from glucose in the MECs. In addition, the cyclic voltammetry tests demonstrated that the electron transfer in the MECs was mainly due to the biofilm-bound redox compounds rather than soluble electron shuttles. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Key factors affecting on bio-hydrogen production from co-digestion of organic fraction of municipal solid waste and kitchen wastewater.

    Science.gov (United States)

    Tawfik, Ahmed; El-Qelish, Mohamed

    2014-09-01

    The effects of sludge residence time (SRT) and dilution ratio (DR) on the continuous H2 production (HP) from co-digestion of organic fraction of municipal solid waste (OFMSW) and kitchen wastewater (KWW) via mesophilic anaerobic baffled reactor (ABR) was investigated. Increasing DR from 1:2 to 1:3 significantly (P<0.1) increased the H2 yield (HY) from 116.5±76 to 142.5±54 ml H2/g CODremoved d, respectively. However, at a DR of 1:4, the HY was dropped to 114.5±65 ml H2/g CODremoved d. Likewise, HY increased from 83±37 to 95±24 ml H2/g CODremoved d, when SRT increased from 3.6 to 4.0 d. Further increase in HY of 148±42 ml H2/g CODremoved d, was occurred at a SRT of 5.6d. Moreover, hydrogen fermentation facilitated carbohydrate, lipids, protein and volatile solids removal efficiencies of 87±5.8%, 74.3±9.12%, 76.4±11.3% and 84.8±4.1%, respectively.

  4. Effect of thermal pre-treatment on inoculum sludge to enhance bio-hydrogen production from alkali hydrolysed rice straw in a mesophilic anaerobic baffled reactor.

    Science.gov (United States)

    El-Bery, Haitham; Tawfik, Ahmed; Kumari, Sheena; Bux, Faizal

    2013-01-01

    The effect of thermal pre-treatment on inoculum sludge for continuous H2 production from alkali hydrolysed rice straw using anaerobic baffled reactor (ABR) was investigated. Two reactors, ABR1 and ABR2, were inoculated with untreated and thermally pre-treated sludge, respectively. Both reactors were operated in parallel at a constant hydraulic retention time of 20 h and organic loading rate ranged from 0.5 to 2.16 g COD/L d. The results obtained indicated that ABR2 achieved a better hydrogen conversion rate and hydrogen yield as compared with ABR1. The hydrogen conversion rates were 30% and 24%, while the hydrogen yields were 1.19 and 0.97 mol H2/mol glucose for ABR2 and ABR1, respectively. Similar trend was observed for chemical oxygen demand (COD) and carbohydrate removal, where ABR2 provided a removal efficiency of 53 +/- 2.3% for COD and 46 +/- 2% for carbohydrate. The microbial community analysis using 16S rRNA phylogeny revealed the presence of different species of bacteria, namely Clostridium, Prevotella, Paludibacter, Ensifer, and Petrimonas within the reactors. Volatile fatty acids generated from ABR1 and ABR2 were mainly in the form of acetate and butyrate and a relatively low fraction ofpropionate was detected in ABR1. Based on these results, thermal pre-treatment ofinoculum sludge is preferable for hydrogen production from hydrolysed rice straw.

  5. Navigating the Bio-Politics of Childhood

    Science.gov (United States)

    Lee, Nick; Motzkau, Johanna

    2011-01-01

    Childhood research has long shared a bio-political terrain with state agencies in which children figure primarily as "human futures". In the 20th century bio-social dualism helped to make that terrain navigable by researchers, but, as life processes increasingly become key sites of bio-political action, bio-social dualism is becoming…

  6. NIH NeuroBioBank

    Data.gov (United States)

    Federal Laboratory Consortium — The NIH NeuroBioBank (NBB), supported by the National Institute of Mental Health, the National Institute of Neurological Disorders and Stroke, and the Eunice Kennedy...

  7. New Frontier Process using Bio Technology

    Science.gov (United States)

    2013-02-05

    1 New Frontier Process using Bio Technology (AOARD-114014) Yukiharu Uraoka, Nara Institute of Science and Technology Term:2011.5.1-2012.12.31...Fabricated by Bio -layer-by-layer Method The properties of a nanodot-type floating gate memory with a multilayered nanodot array were investigated...High-density and uniform cobalt bio -nanodot (Co-BND) arrays were stacked on a SiO2 tunnel oxide layer by a bio -layer-by-layer method ( Bio -LBL

  8. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis.

    Science.gov (United States)

    Karnati, S K R; Sylvester, J T; Ribeiro, C V D M; Gilligan, L E; Firkins, J L

    2009-08-01

    Methane is an end product of ruminal fermentation that is energetically wasteful and contributes to global climate change. Bromoethanesulfonate, animal-vegetable fat, and monensin were compared with a control treatment to suppress different functional groups of ruminal prokaryotes in the presence or absence of protozoa to evaluate changes in fermentation, digestibility, and microbial N outflow. Four dual-flow continuous culture fermenter systems were used in 4 periods in a 4 x 4 Latin square design split into 2 subperiods. In subperiod 1, a multistage filter system (50-microm smallest pore size) retained most protozoa. At the start of subperiod 2, conventional filters (300-microm pore size) were substituted to efflux protozoa via filtrate pumps over 3 d; after a further 7 d of adaptation, the fermenters were sampled for 3 d. Treatments were retained during both subperiods. Flow of total N and digestibilities of NDF and OM were 18, 16, and 9% higher, respectively, for the defaunated subperiod but were not different among treatments. Ammonia concentration was 33% higher in the faunated fermenters but was not affected by treatment. Defaunation increased the flow of nonammonia N and bacterial N from the fermenters. Protozoal counts were not different among treatments, but bromoethanesulfonate increased the generation time from 43.2 to 55.6 h. Methanogenesis was unaffected by defaunation but tended to be increased by unsaturated fat. Defaunation did not affect total volatile fatty acid production but decreased the acetate:propionate ratio; monensin increased production of isovalerate and valerate. Biohydrogenation of unsaturated fatty acids was impaired in the defaunated fermenters because effluent flows of oleic, linoleic, and linolenic acids were 60, 77, and 69% higher, and the ratio of vaccenic acid:unsaturated FA ratio was decreased by 34% in the effluent. This ratio was increased in both subperiods with the added fat diet, indicating an accumulation of

  9. Influence of Organic Load on Biohydrogen Production in an AnSBBR Treating Glucose-Based Wastewater.

    Science.gov (United States)

    Souza, L P; Lullio, T G; Ratusznei, S M; Rodrigues, J A D; Zaiat, M

    2015-06-01

    An anaerobic sequencing batch reactor with immobilized biomass (AnSBBR) was applied to the production of biohydrogen treating a glucose-based wastewater. The influence of the applied volumetric organic load was studied by varying the concentration of influent at 3600 and 5250 mg chemical oxygen demand (COD) L(-1) and cycle lengths of 4, 3, and 2 h resulting in volumetric organic loads of 10.5 to 31.1 g COD L(-1). The results revealed system stability in the production of biohydrogen and substrate consumption. The best performance was an organic removal (COD) of 24 % and carbohydrate removal (glucose) of 99 %. Volumetric and specific molar productivity were 60.9 mol H2 m(-3) day(-1) and 5.8 mol H2 kg SVT(-1) day(-1) (biogas containing 40 % H2 and no CH4) at 20.0 g COD L(-1) day(-1) (5250 mg COD L(-1) and 3 h). The yield between produced hydrogen and removed organic matter in terms of carbohydrates was 0.94 mol H2 Mol GLU(-1) (biogas containing 52 % H2 and no CH4) at 10.5 g COD L(-1) day(-1) (3600 mg COD L(-1) and 4 h), corresponding to 23 and 47 % of the theoretical values of the acetic and butyric acid metabolic routes, respectively. Metabolites present at significant amounts were ethanol, acetic acid, and butyric acid. The conditions with higher influent concentration and intermediate cycle length, and the condition with lower influent concentration and longer cycle showed the best results in terms of productivity and yield, respectively. This indicates that the best productivity tends to occur at higher organic loads, as this parameter involves the biogas production, and the best yield tends to occur at lower and/or intermediate organic loads, as this parameter also involves substrate consumption.

  10. Improved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase

    Directory of Open Access Journals (Sweden)

    Kim Jaoon YH

    2012-01-01

    Full Text Available Abstract Background Solar energy is the ultimate energy source on the Earth. The conversion of solar energy into fuels and energy sources can be an ideal solution to address energy problems. The recent discovery of proteorhodopsin in uncultured marine γ-proteobacteria has made it possible to construct recombinant Escherichia coli with the function of light-driven proton pumps. Protons that translocate across membranes by proteorhodopsin generate a proton motive force for ATP synthesis by ATPase. Excess protons can also be substrates for hydrogen (H2 production by hydrogenase in the periplasmic space. In the present work, we investigated the effect of the co-expression of proteorhodopsin and hydrogenase on H2 production yield under light conditions. Results Recombinant E. coli BL21(DE3 co-expressing proteorhodopsin and [NiFe]-hydrogenase from Hydrogenovibrio marinus produced ~1.3-fold more H2 in the presence of exogenous retinal than in the absence of retinal under light conditions (70 μmole photon/(m2·s. We also observed the synergistic effect of proteorhodopsin with endogenous retinal on H2 production (~1.3-fold more with a dual plasmid system compared to the strain with a single plasmid for the sole expression of hydrogenase. The increase of light intensity from 70 to 130 μmole photon/(m2·s led to an increase (~1.8-fold in H2 production from 287.3 to 525.7 mL H2/L-culture in the culture of recombinant E. coli co-expressing hydrogenase and proteorhodopsin in conjunction with endogenous retinal. The conversion efficiency of light energy to H2 achieved in this study was ~3.4%. Conclusion Here, we report for the first time the potential application of proteorhodopsin for the production of biohydrogen, a promising alternative fuel. We showed that H2 production was enhanced by the co-expression of proteorhodopsin and [NiFe]-hydrogenase in recombinant E. coli BL21(DE3 in a light intensity-dependent manner. These results demonstrate that E. coli

  11. Bio-inspired vision

    Science.gov (United States)

    Posch, C.

    2012-01-01

    Nature still outperforms the most powerful computers in routine functions involving perception, sensing and actuation like vision, audition, and motion control, and is, most strikingly, orders of magnitude more energy-efficient than its artificial competitors. The reasons for the superior performance of biological systems are subject to diverse investigations, but it is clear that the form of hardware and the style of computation in nervous systems are fundamentally different from what is used in artificial synchronous information processing systems. Very generally speaking, biological neural systems rely on a large number of relatively simple, slow and unreliable processing elements and obtain performance and robustness from a massively parallel principle of operation and a high level of redundancy where the failure of single elements usually does not induce any observable system performance degradation. In the late 1980`s, Carver Mead demonstrated that silicon VLSI technology can be employed in implementing ``neuromorphic'' circuits that mimic neural functions and fabricating building blocks that work like their biological role models. Neuromorphic systems, as the biological systems they model, are adaptive, fault-tolerant and scalable, and process information using energy-efficient, asynchronous, event-driven methods. In this paper, some basics of neuromorphic electronic engineering and its impact on recent developments in optical sensing and artificial vision are presented. It is demonstrated that bio-inspired vision systems have the potential to outperform conventional, frame-based vision acquisition and processing systems in many application fields and to establish new benchmarks in terms of redundancy suppression/data compression, dynamic range, temporal resolution and power efficiency to realize advanced functionality like 3D vision, object tracking, motor control, visual feedback loops, etc. in real-time. It is argued that future artificial vision systems

  12. Bio-oil fractionation and condensation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert C.; Jones, Samuel T.; Pollard, Anthony

    2017-04-04

    The present invention relates to a method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also disclosed are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  13. Bio-oil fractionation and condensation

    Science.gov (United States)

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  14. Life cycle assessment of biohydrogen production as a transportation fuel in Germany.

    Science.gov (United States)

    Wulf, Christina; Kaltschmitt, Martin

    2013-12-01

    The goal of this work was to study the assessment of the life cycle of hydrogen production from biomass for transportation purposes concerning greenhouse gas emissions, emissions with an acidification potential and the fossil energy demand. As feedstocks woody biomass from forestry or short rotation coppice, herbaceous biomass (i.e., straw), energy crops (mainly maize and grain), bio-waste and organic by-products (e.g., glycerol) were considered and their potential in Germany assessed. The results showed that hydrogen produced from woody biomass emitted the least emissions due to the low emissions caused by the provision of the biomass. Regarding the cumulative fossil energy demand biomass from short rotation coppice showed the lowest values. The highest biomass potential for hydrogen production could be identified for woody biomass from forests as well as from short rotation coppice.

  15. Fermentative production of biohydrogen from biogenic raw materials and residues; Fermentative Produktion von Biowasserstoff aus biogenen Roh- und Reststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.; Rechtenbach, D.; Stegmann, R. [Technische Univ. Hamburg-Harburg (Germany). Inst. fuer AbfallRessourcenWirtschaft

    2006-07-01

    Hydrogen (H{sub 2}) is regarded as an energy resource of the future. Thermophilic laboratory studies were carried out on the fermentative production of biohydrogen in three test systems (500 ml Sensomat System, 6 l ATS and 30 l agitated reactor) at 60 C in batch or discontinuous operation using glucose and agricultural products as substrates. Fully digested, heat-pretreated sewage sludge, taken to represent a natural mixed culture, was used as inoculating agent. The highest specific hydrogen production rate was achieved in the agitated reactor with glucose at 5.5 pH, reaching 280 Nml H{sub 2}/ g ODM (112% conversion rate). Maize and potato starch reached 211 Nml H{sub 2}/ g ODM (75% conversion rate) and 123 Nml H{sub 2}/ g ODM (45% conversion rate). The two agricultural products sugar beet (192 Nml H{sub 2}/ g ODM (70% conversion rate) and fodder beet (185 Nml H{sub 2}/ g ODM (65% conversion rate) showed a high potential for biological hydrogen production. Potato, swede and maize and potato peel as a biowaste are also all promising hydrogen producers, reaching degradation rates of 60%, 50%, 49% and 30%, respectively. In discontinuous operation hydrogen production rates reached 0.6 Nl/(I{sub R})xd) to 1.3 Nl/(I{sub R})xd) and yields ranging from 83 to 445 Nml H{sub 2}/ g DM.

  16. Thermo-acidophillic biohydrogen production from rice bran de-oiled wastewater by Selectively enriched mixed culture

    Energy Technology Data Exchange (ETDEWEB)

    Sivaramakrishna, D.; Sreekanth, D.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally Hyderabad-500 085 (India); Narasu, M. Lakshmi [Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally Hyderabad-500 085 (India)

    2010-07-01

    The present study focuses on the biohydrogen production in an anaerobic batch reactor operated at thermophillic (570C) and acidophilic conditions (pH 6) with rice bran de-oiled wastewater (RBOW) as substrate. The hydrogen generating mixed microflora was enriched from slaughter house sludge (SHS) through acid treatment (pH 3-4, for 24h) coupled with heat treatment (1h at 1000C) to eliminate non-spore forming bacteria and to inhibit the growth of methanogenic bacteria (MB) prior to inoculation in the reactor. The hydrogen production rate was maximum at 570C (1861 +- 14ml/L-WW/d) compared to 370C (651 +- 30ml/L-ww/d). The Hydrogen yield increased with temperature from 1.1 to 2.2 molH2/mol of substrate respectively. The optimum pH range for hydrogen production in this system was observed in between 5.5 to 6. Acid-forming pathway with butyric acid as a major metabolite dominated the metabolic flow during the hydrogen production.

  17. Metabolic and energetic aspects of biohydrogen production of Clostridium tyrobutyricum: The effects of hydraulic retention time and peptone addition.

    Science.gov (United States)

    Whang, Liang-Ming; Lin, Che-An; Liu, I-Chun; Wu, Chao-Wei; Cheng, Hai-Hsuan

    2011-09-01

    This study evaluates the microbial metabolism and energy demand in fermentative biohydrogen production using Clostridium tyrobutyricum FYa102 at different hydraulic retention times (HRT) over a period of 1-18 h. The hydrogen yield shows a positive correlation with the butyrate yield, the B/A ratio, and the Y(H2)/2(Y(HAc)+Y(HBu)) ratio, but a negative correlation with the lactate yield. A decrease in HRT, which is accompanied by an increased biomass growth, tends to decrease the B/A ratio, due presumably to a higher energy demand for microbial growth. The production of lactate at a low HRT, however, may involve an unfavorable change in e(-) equiv distribution to result in a reduced hydrogen production. Finally, the relatively high hydrogen yields observed in the bioreactor with the peptone addition may be ascribed to the utilization of peptone as an additional energy and/or amino-acid source, thus reducing the glucose demand for biomass growth during the hydrogen production process.

  18. Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production.

    Science.gov (United States)

    Saratale, Ganesh D; Kshirsagar, Siddheshwar D; Sampange, Vilas T; Saratale, Rijuta G; Oh, Sang-Eun; Govindwar, Sanjay P; Oh, Min-Kyu

    2014-12-01

    Phanerochaete chrysosporium was evaluated for cellulase and hemicellulase production using various agricultural wastes under solid state fermentation. Optimization of various environmental factors, type of substrate, and medium composition was systematically investigated to maximize the production of enzyme complex. Using grass powder as a carbon substrate, maximum activities of endoglucanase (188.66 U/gds), exoglucanase (24.22 U/gds), cellobiase (244.60 U/gds), filter paperase (FPU) (30.22 U/gds), glucoamylase (505.0 U/gds), and xylanase (427.0 U/gds) were produced under optimized conditions. The produced crude enzyme complex was employed for hydrolysis of untreated and mild acid pretreated rice husk. The maximum amount of reducing sugar released from enzyme treated rice husk was 485 mg/g of the substrate. Finally, the hydrolysates of rice husk were used for hydrogen production by Clostridium beijerinckii. The maximum cumulative H2 production and H2 yield were 237.97 mL and 2.93 mmoL H2/g of reducing sugar, (or 2.63 mmoL H2/g of cellulose), respectively. Biohydrogen production performance obtained from this work is better than most of the reported results from relevant studies. The present study revealed the cost-effective process combining cellulolytic enzymes production under solid state fermentation (SSF) and the conversion of agro-industrial residues into renewable energy resources.

  19. Inoculum type response to different pHs on biohydrogen production from L-arabinose, a component of hemicellulosic biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, A.A.; Danko, A.S.; Costa, J.C.; Ferreira, E.C.; Alves, M.M. [IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus Gualtar, 4710-057 Braga (Portugal)

    2009-02-15

    Biohydrogen production from arabinose was examined using four different anaerobic sludges with different pHs ranging from 4.5 to 8.0. Arabinose (30 g l{sup -1}) was used as the substrate for all experiments. Individual cumulative hydrogen production data was used to estimate the three parameters of the modified Gompertz equation. Higher hydrogen production potentials were observed for higher pH values for all the sludges. G2 (acclimated granular sludge) showed the highest hydrogen production potential and percentage of arabinose consumption compared to the other sludges tested. Granular sludges (G1 and G2) showed different behaviour than the suspended sludges (S1 and S2). The differences were observed to be smaller lag phases, the percentage of acetate produced, the higher percentage of ethanol produced, and the amount of arabinose consumed. A high correlation (R{sup 2} = 0.973) was observed between the percentage of n-butyrate and the percentage of ethanol in G1 sludge, suggesting that ethanol/butyrate fermentation was the dominant fermentative pathway followed by this sludge. In S1, however, the percentage of n-butyrate was highly correlated with the percentage of acetate (R{sup 2} = 0.980). This study indicates that granular sludge can be used for larger pH ranges without reducing its capacity to consume arabinose and achieve higher hydrogen production potentials. (author)

  20. Concomitant biohydrogen and poly-β-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures.

    Science.gov (United States)

    Ghimire, Anish; Valentino, Serena; Frunzo, Luigi; Pirozzi, Francesco; Lens, Piet N L; Esposito, Giovanni

    2016-10-01

    This work aimed at investigating concomitant production of biohydrogen and poly-β-hydroxybutyrate (PHB) by photofermentation (PF) using dark fermentation effluents (DFE). An adapted culture of Rhodobacter sphaeroides AV1b (pH 6.5, 24±2°C) achieved H2 and PHB yields of 256 (±2) NmLH2/g Chemical Oxygen Demand (COD) and 273.8mgPHB/gCOD (32.5±3% of the dry cells weight (DCW)), respectively. When a diluted (1:2) DFE medium was applied to the adapted pure and mixed photofermentative culture, the respective H2 yields were 164.0 (±12) and 71.3 (±6) NmLH2/gCOD and the PHB yields were 212.1 (±105.2) and 50.7 (±2.7) mgPHB/gCOD added, corresponding to 24 (±0.7) and 6.3 (±0) % DCW, respectively. The concomitant H2 and PHB production from the PF process gave a good DFE post treatment achieving up to 80% COD removal from the initial DFE.

  1. Microbial diversity analysis of long term operated biofilm configured anaerobic reactor producing biohydrogen from wastewater under diverse conditions

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Mohan, S.; Raghavulu, S. Veer; Goud, R. Kannaiah; Srikanth, S.; Babu, V. Lalit; Sarma, P.N. [Bioengineering and Environmental Centre (BEEC), Indian Institute of Chemical Technology (IICT), Hyderabad 500 607 (India)

    2010-11-15

    This communication provides an insight into the composition of the microbial community survived in the biofilm configured anaerobic reactor operated for biohydrogen (H{sub 2}) production using wastewater as substrate under diverse conditions for past four years. PCR amplified 16S rDNA product (at variable V3 region using universal primers 341F and 517R) was separated by using denaturing gradient gel electrophoresis (DGGE) to identify the diversity in microbial population survived. The phyologenetic profile of the bioreactor showed significant diversity in the microbial community where major nucleotide sequences were affiliated to Class Clostridia followed by Bacteroidetes, Deltaproteobacteria and Flavobacteria. Clostridium were found to be dominant in the microbial community observed. The controlled growth conditions, application of pre-treatment to biocatalyst, operation with specific pH and variation in substrate composition are reasoned for the robust acidogenic culture identified in the bioreactor. Most of the operational taxonomic units (OTUs) observed in the bioreactor are capable to undergo acetate producing pathway, feasible for effective H{sub 2} production. (author)

  2. Feasibility study on the application of rhizosphere microflora of rice for the biohydrogen production from wasted bread

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Tetsuya [Field Production Science Center, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo 188-0002 (Japan); Nishihara Environment Technology Inc., Tokyo 108-0023 (Japan); Matsumoto, Hisami [Nishihara Environment Technology Inc., Tokyo 108-0023 (Japan); Abe, Jun [AE-Bio, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Morita, Shigenori [Field Production Science Center, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo 188-0002 (Japan)

    2009-02-15

    We performed an experiment of continuous anaerobic hydrogen fermentation as a pilot-plant-scale test, in which waste from a bread factory was fermented by microflora of rice rhizosphere origin. The community structure of microflora during anaerobic hydrogen fermentation was analyzed using PCR-DGGE, FISH, and quinone profiles. The relation of those results to hydrogen generation was discussed. Results show that a suitable condition was a reactor temperature of 35 C, with HRT 12-36 h, volume load of 30-70 kg-COD{sub Cr}/m{sup 3} day, and maximum hydrogen production rate of 1.30 mol-H{sub 2}/mol-hexose. Regarding characteristics of microflora during fermentation, PCR-DGGE results show specific 16S rDNA band patterns; Megasphaera elsdenii and Clostridium sp. of the hydrogen-producing bacteria were identified. M. elsdenii was detected throughout the fermentation period, while Clostridium sp. of hydrogen-producing bacteria was detected on the 46th day. Furthermore, FISH revealed large amounts of Clostridium spp. in the sample. The quinone profile showed that the dominant molecular species of quinone is MK-7. Because Clostridium spp. belong to MK-7, results suggest that the quinone profile result agrees with the results of PCR-DGGE and FISH. Microflora in the rhizosphere of rice plants can be a possible resource for effective bacteria of biohydrogen production. (author)

  3. Biohydrogen production by isolated halotolerant photosynthetic bacteria using long-wavelength light-emitting diode (LW-LED)

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoshi, Yasunori; Oki, Yukinori; Nakano, Issei; Fujimoto, Aya [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Takahashi, Hirokazu [Environmental Business DivisionDaiki Ataka Engineering Co. Ltd., 2-1-9 Nishiku-Urihori, Osaka 550-0012 (Japan)

    2010-12-15

    Biohydrogen is expected as one of the alternative energy to fossil fuel. In this study, halotolerant photosynthetic hydrogen producing bacteria (ht-PHB) were isolated from a sediment of tideland, and hydrogen gas (H{sub 2}) production by isolated ht-PHB from mixed short-chain fatty acids (SFAs) using a long-wavelength light emitting diode (LW-LED) was investigated. The isolated ht-PHB grow on a culture containing three kinds of SFAs (lactic acid, acetic acid, butyric acid) and produced H{sub 2} with their complete consumption at NaCl concentration in the 0-3% range in the light of tungsten lamp. The isolated ht-PHB was phylogenetically identified as Rhodobacter sp. KUPB1. The KUPB1 showed well growth and H{sub 2} production even under LW-LED light irradiation, indicating that LW-LED is quite useful as an energy-saving light source for photosynthetic H{sub 2} production. (author)

  4. Potential Application of Biohydrogen Production Liquid Waste as Phosphate Solubilizing Agent-A Study Using Soybean Plants.

    Science.gov (United States)

    Sarma, Saurabh Jyoti; Brar, Satinder Kaur; LeBihan, Yann; Buelna, Gerardo

    2016-03-01

    With CO2 free emission and a gravimetric energy density higher than gasoline, diesel, biodiesel, and bioethanol, biohydrogen is a promising green renewable energy carrier. During fermentative hydrogen production, 60-70 % of the feedstock is converted to different by-products, dominated by organic acids. In the present investigation, a simple approach for value addition of hydrogen production liquid waste (HPLW) containing these compounds has been demonstrated. In soil, organic acids produced by phosphate solubilizing bacteria chelate the cations of insoluble inorganic phosphates (e.g., Ca3 (PO4)2) and make the phosphorus available to the plants. Organic acid-rich HPLW, therefore, has been evaluated as soil phosphate solubilizer. Application of HPLW as soil phosphate solubilizer was found to improve the phosphorus uptake of soybean plants by 2.18- to 2.74-folds. Additionally, 33-100 % increase in seed germination rate was also observed. Therefore, HPLW has the potential to be an alternative for phosphate solubilizing biofertilizers available in the market. Moreover, the strategy can be useful for phytoremediation of phosphorus-rich soil.

  5. Deciphering acidogenic process towards biohydrogen, biohythane, and short chain fatty acids production: multi-output optimization strategy

    Directory of Open Access Journals (Sweden)

    Omprakash Sarkar

    2016-09-01

    Full Text Available Optimization of process parameters is crucial to understand the acidogenic fermentation process and its regulation towards the production of specific metabolites, viz., biohydrogen (H2, methane (CH4, biohythane (H2+CH4, and volatile fatty acids (VFA. Design of experiments (DOE based on orthogonal array (OA was employed to optimize and evaluate the influence of eight critical factors on multiple metabolic output parameters. Analysis of the experimental data revealed a specific influential regime of selected factors in terms of biogas generation and/or VFA synthesis. Application of pretreated inoculum as biocatalyst and high substrate concentration showed substantial enhancement of both H2 and VFA production. High COD of 10 g/L in combination with pretreated inoculum resulted in higher cumulative hydrogen production (CHP, while the higher fraction of acetic acid in the fermentation broth resulted in a higher degree of acidification (DOA. H2/H2+CH4 ratio varied from 0.1 to 0.97 and the application of untreated inoculum was shown to favor biohythane (H2+CH4 production. Overall, this communication holistically documented the feasibility of regulating acidogenic fermentation process towards a spectrum of metabolic end products of high value, while waste treatment was also achieved.

  6. Structural assembly effects of Pt nanoparticle-carbon nanotube-polyaniline nanocomposites on the enhancement of biohydrogen fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Hoa, Le Quynh, E-mail: hoa@p.eng.osaka-u.ac.jp [Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sugano, Yasuhito; Yoshikawa, Hiroyuki; Saito, Masato [Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tamiya, Eiichi, E-mail: tamiya@ap.eng.osaka-u.ac.jp [Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2011-11-30

    Graphical abstract: - Abstract: In this work, we designed various polyaniline (PANI) nanocomposites with platinum (Pt) nanoparticle-decorated multi-walled carbon nanotubes (MWCNTs), employed them as anodic catalysts, and studied their structural assembly effects with regard to enhancing biohydrogen fuel cell performance. Of two proposed structures, the PANI/Pt/MWCNTs multilayer nanocomposites showed superior electrocatalytic activities in the hydrogen oxidation reaction and in fuel cell power density relative to the Pt/MWCNTs-PANI core-shell design. These enhancements were attributed to the active interface formed between the Pt nanoparticles and polyaniline nanofibers, where the higher electronic and ionic conductivities of the thin PANI nanofiber layers in contact with Pt active sites were better than with the PANI bound Pt/MWCNTs. We also investigated the change in the electronic state of the composites and the charge-transfer rate caused by varying the structural assembly. Finally, the role of each catalyst component was examined to understand its individual effect on fuel cell performance and to understand its structural assembly effect on enhanced power density.

  7. The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation.

    Science.gov (United States)

    Zagrodnik, R; Laniecki, M

    2015-10-01

    The role of pH control on biohydrogen production by co-culture of dark-fermentative Clostridium acetobutylicum and photofermentative Rhodobacter sphaeroides was studied. Single stage dark fermentation, photofermentation and hybrid co-culture systems were studied at different values of controlled and uncontrolled pH. Increasing pH during dark fermentation resulted in lower hydrogen production rate (HPR) and longer lag time for both controlled and uncontrolled conditions. However, it only slightly affected cumulative H2 volume. Results have shown that pH control at pH 7.5 increased photofermentative hydrogen production from 0.966 to 2.502 L H2/L(medium) when compared to uncontrolled process. Fixed pH value has proven to be an important control strategy also for the hybrid process and resulted in obtaining balanced co-culture of dark and photofermentative bacteria. Control of pH at 7.0 was found optimum for bacteria cooperation in the co-culture what resulted in obtaining 2.533 L H2/L(medium) and H2 yield of 6.22 mol H2/mol glucose.

  8. Thermo-acidophillic biohydrogen production from rice bran de-oiled wastewater by Selectively enriched mixed culture

    Directory of Open Access Journals (Sweden)

    D.Sivaramakrishna, D.Sreekanth, V.Himabindu, M.Lakshmi Narasu

    2010-07-01

    Full Text Available The present study focuses on the biohydrogen production in an anaerobic batch reactor operated at thermophillic (570C and acidophilic conditions (pH 6 with rice bran de-oiled wastewater (RBOW as substrate. The hydrogen generating mixed microflora was enriched from slaughter house sludge (SHS through acid treatment (pH 3-4, for 24h coupled with heat treatment (1h at 1000C to eliminate non-spore forming bacteria and to inhibit the growth of methanogenic bacteria (MB prior to inoculation in the reactor. The hydrogen production rate was maximum at 570C (1861±14ml/L-WW/d compared to 370C (651±30ml/L-ww/d. The Hydrogen yield increased with temperature from 1.1 to 2.2 molH2/mol of substrate respectively. The optimum pH range for hydrogen production in this system was observed in between 5.5 to 6. Acid-forming pathway with butyric acid as a major metabolite dominated the metabolic flow during the hydrogen production.

  9. Enhanced biohydrogen production from beverage industrial wastewater using external nitrogen sources and bioaugmentation with facultative anaerobic strains.

    Science.gov (United States)

    Kumar, Gopalakrishnan; Bakonyi, Péter; Sivagurunathan, Periyasamy; Kim, Sang-Hyoun; Nemestóthy, Nándor; Bélafi-Bakó, Katalin; Lin, Chiu-Yue

    2015-08-01

    In this work biohydrogen generation and its improvement possibilities from beverage industrial wastewater were sought. Firstly, mesophilic hydrogen fermentations were conducted in batch vials by applying heat-treated (80°C, 30 min) sludge and liquid (LB-grown) cultures of Escherichia coli XL1-Blue/Enterobacter cloacae DSM 16657 strains for bioaugmentation purposes. The results showed that there was a remarkable increase in hydrogen production capacities when facultative anaerobes were added in the form of inoculum. Furthermore, experiments were carried out in order to reveal whether the increment occurred either due to the efficient contribution of the facultative anaerobic microorganisms or the culture ingredients (in particular yeast extract and tryptone) supplied when the bacterial suspensions (LB media-based inocula) were mixed with the sludge. The outcome of these tests was that both the applied nitrogen sources and the bacteria (E. coli) could individually enhance hydrogen formation. Nevertheless, the highest increase took place when they were used together. Finally, the optimal initial wastewater concentration was determined as 5 g/L.

  10. Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage.

    Science.gov (United States)

    Santos, Samantha Christine; Rosa, Paula Rúbia Ferreira; Sakamoto, Isabel Kimiko; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz

    2014-05-01

    This study aimed to evaluate the effect of high organic loading rates (OLR) (60.0-480.00 kg COD m(-3)d(-1)) on biohydrogen production at 55°C, from sugarcane stillage for 15,000 and 20,000 mg CODL(-1), in two anaerobic fluidized bed reactors (AFBR1 and AFBR2). It was obtained, for H2 yield and content, a decreasing trend by increasing the OLR. The maximum H2 yield was observed in AFBR1 (2.23 mmol g COD added(-1)). The volumetric H2 production was proportionally related to the applied hydraulic retention time (HRT) of 6, 4, 2 and 1h and verified in AFBR1 the highest value (1.49 L H2 h(-1)L(-1)). Among the organic acids obtained, there was a predominance of lactic acid (7.5-22.5%) and butyric acid (9.4-23.8%). The microbial population was set with hydrogen-producing fermenters (Megasphaera sp.) and other organisms (Lactobacillus sp.).

  11. Bio-nanopatterning of Surfaces

    Directory of Open Access Journals (Sweden)

    Yeung Chun

    2007-01-01

    Full Text Available AbstractBio-nanopatterning of surfaces is a very active interdisciplinary field of research at the interface between biotechnology and nanotechnology. Precise patterning of biomolecules on surfaces with nanometre resolution has great potential in many medical and biological applications ranging from molecular diagnostics to advanced platforms for fundamental studies of molecular and cell biology. Bio-nanopatterning technology has advanced at a rapid pace in the last few years with a variety of patterning methodologies being developed for immobilising biomolecules such as DNA, peptides, proteins and viruses at the nanoscale on a broad range of substrates. In this review, the status of research and development are described, with particular focus on the recent advances on the use of nanolithographic techniques as tools for biomolecule immobilisation at the nanoscale. Present strengths and weaknesses, as well future challenges on the different nanolithographic bio-nanopatterning approaches are discussed.

  12. Evaluation of Emissions Bio diesel

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Maroto, J. J.; Dorronsoro Arenal, J. L.; Rojas Garcia, E.; Perez Pastor, R.; Garcia Alonso, S.

    2007-09-27

    The generation of energy from vegetal products is one of the possibilities to our reach in order to reduce the atmospheric pollution. Particularly, the use of bio diesel in internal combustion engines can be one of the best options. The finest particles emitted by the combustion engines are easily breathable and on them different substances can be absorbed presumably toxic, between which it is possible to emphasize the polycyclic aromatic hydrocarbons (PAHs), by its demonstrated carcinogen character. In this work, it is studied on the one hand, the characteristics that can present the aerosol of emission in a diesel engine with a maximum power of 97 kW, working without load to 600 rpm, using as combustible mixtures of bio diesel and diesel in different proportions. On the other hand, the evolution that takes place in the concentration of PAHs in emission particles, according to the percentage of bio diesel used in the combustible mixture. (Author) 9 refs.

  13. Fatty acid oxidation products ('green odour') released from perennial ryegrass following biotic and abiotic stress, potentially have antimicrobial properties against the rumen microbiota resulting in decreased biohydrogenation.

    Science.gov (United States)

    Huws, S A; Scott, M B; Tweed, J K S; Lee, M R F

    2013-11-01

    In this experiment, we investigated the effect of 'green odour' products typical of those released from fresh forage postabiotic and biotic stresses on the rumen microbiota and lipid metabolism. Hydroperoxyoctadecatrienoic acid (HP), a combination of salicylic and jasmonic acid (T), and a combination of both (HPT) were incubated in vitro in the presence of freeze-dried ground silage and rumen fluid, under rumen-like conditions. 16S rRNA (16S cDNA) HaeIII-based terminal restriction fragment length polymorphism-based (T-RFLP) dendrograms, canonical analysis of principal coordinates graphs, peak number and Shanon-Weiner diversity indices show that HP, T and HPT likely had antimicrobial effects on the microbiota compared to control incubations. Following 6 h of in vitro incubation, 15.3% of 18:3n-3 and 4.4% of 18:2n-6 was biohydrogenated in control incubations, compared with 1.3, 9.4 and 8.3% of 18:3n-3 for HP, T and HPT treatments, respectively, with negligible 18:2n-6 biohydrogenation seen. T-RFLP peaks lost due to application of HP, T and HPT likely belonged to as yet uncultured bacteria within numerous genera. Hydroperoxyoctadecatrienoic acid, T and HPT released due to plant stress potentially have an antimicrobial effect on the rumen microbiota, which may explain the decreased biohydrogenation in vitro. These data suggest that these volatile chemicals may be responsible for the higher summer n-3 content of bovine milk. © 2013 The Society for Applied Microbiology.

  14. Changes in fermentation and biohydrogenation intermediates in continuous cultures fed low and high levels of fat with increasing rates of starch degradability.

    Science.gov (United States)

    Lascano, G J; Alende, M; Koch, L E; Jenkins, T C

    2016-08-01

    Excessive levels of starch in diets for lactating dairy cattle is a known risk factor for milk fat depression, but little is known about how this risk is affected by differences in rates of starch degradability (Kd) in the rumen. The objective of this study was to compare accumulation of biohydrogenation intermediates causing milk fat depression, including conjugated linoleic acid (CLA), when corn with low or high Kd were fed to continuous cultures. Diets contained (dry matter basis) 50% forage (alfalfa pellets and grass hay) and 50% concentrate, with either no added fat (LF) or 3.3% added soybean oil (HF). Within both the LF and HF diets, 3 starch degradability treatments were obtained by varying the ratio of processed (heat and pressure treatments) and unprocessed corn sources, giving a total of 6 dietary treatments. Each diet was fed to dual-flow continuous fermenters 3 times a day at 0800, 1600, and 2400h. Diets were fed for four 10-d periods, with 7d for adaptation and 3d for sample collection. Orthogonal contrasts were used in the GLIMMIX procedure of SAS to test the effects of fat, starch degradability, and their interaction. Acetate and acetate:propionate were lower for HF than for LF but daily production of trans-10 18:1 and trans-10,cis-12 CLA were higher for HF than for LF. Increasing starch Kd from low to high increased culture pH, acetate, and valerate but decreased butyrate and isobutyrate. Changes in biohydrogenation intermediates (expressed as % of total isomers) from low to high starch Kd included reductions in trans-11 18:1 and cis-9,trans-11 CLA but increases in trans-10 18:1 and trans-10,cis-12 CLA. The results show that increasing the starch Kd in continuous cultures while holding starch level constant causes elevation of biohydrogenation intermediates linked to milk fat depression.

  15. Biohydrogen production from household solid waste (HSW) at extreme-thermophilic temperature (70 degrees C) - Influence of pH and acetate concentration

    DEFF Research Database (Denmark)

    Liu, Dawei; Min, Booki; Angelidaki, Irini

    2008-01-01

    pH of 7.0. Acetate was proved to be inhibiting the dark fermentation process at neutral pH, which indicates that the inhibition was caused by total acetate concentration not by undissociated acetate. Initial inhibition was detected at acetate concentration of 50 mM, while the hydrogen fermentation......Hydrogen production from household solid waste (HSW) was performed via dark fermentation by using an extreme-thermophilic mixed culture, and the effect of pH and acetate on the biohydrogen production was investigated. The highest hydrogen production yield was 257 +/- 25 mL/gVS(added) at the optimum...

  16. Effects of Ruminal Infusion of Garlic Oil on Fermentation Dynamics, Fatty Acid Profile and Abundance of Bacteria Involved in Biohydrogenation in Rumen of Goats

    OpenAIRE

    Zhu, Zhi; Mao, Shengyong; Zhu, Weiyun

    2012-01-01

    This study aimed to investigate the effects of ruminal infusion of garlic oil (GO) on fermentation dynamics, fatty acid (FA) profile, and abundance of bacteria involved in biohydrogenation in the rumen. Six wethers fitted with ruminal fistula were assigned to two groups for cross-over design with a 14-d interval. Each 30-d experimental period consisted of a 27-d adaptation and a 3-d sample collection. Goats were fed a basal diet without (control) or with GO ruminal infusion (0.8 g/d). Ruminal...

  17. Bio-Inspired Odor Source Localization

    Science.gov (United States)

    2011-07-01

    1 Distribution A: Approved for Public Release; Distribution Unlimited Bio -Inspired Odor Source Localization Bio -Inspired Odor Source Localization...2011 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Bio -Inspired Odor Source Localization 5a. CONTRACT NUMBER 5b. GRANT...Distribution Unlimited Bio -Inspired Odor Source Localization Why study odor tracking? • Engineer odor tracking systems – Gas leaks – Hazardous waste

  18. Comparative Study of Various E. coli Strains for Biohydrogen Production Applying Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Péter Bakonyi

    2012-01-01

    Full Text Available The proper strategy to establish efficient hydrogen-producing biosystems is the biochemical, physiological characterization of hydrogen-producing microbes followed by metabolic engineering in order to give extraordinary properties to the strains and, finally, bioprocess optimization to realize enhanced hydrogen fermentation capability. In present paper, it was aimed to show the utility both of strain engineering and process optimization through a comparative study of wild-type and genetically modified E. coli strains, where the effect of two major operational factors (substrate concentration and pH on bioH2 production was investigated by experimental design and response surface methodology (RSM was used to determine the suitable conditions in order to obtain maximum yields. The results revealed that by employing the genetically engineered E. coli (DJT 135 strain under optimized conditions (pH: 6.5; Formate conc.: 1.25 g/L, 0.63 mol H2/mol formate could be attained, which was 1.5 times higher compared to the wild-type E. coli (XL1-BLUE that produced 0.42 mol H2/mol formate (pH: 6.4; Formate conc.: 1.3 g/L.

  19. BioMagResBank.

    NARCIS (Netherlands)

    Ulrich, E.L.; Akutsu, H.; Doreleijers, J.; Harano, Y.; Ioannidis, Y.E.; Lin, J.; Livny, M.; Mading, S.; Maziuk, D.; Miller, Z.; Nakatani, E.; Schulte, C.F.; Tolmie, D.E.; Wenger, R Kent; Yao, H.; Markley, J.L.

    2008-01-01

    The BioMagResBank (BMRB: www.bmrb.wisc.edu) is a repository for experimental and derived data gathered from nuclear magnetic resonance (NMR) spectroscopic studies of biological molecules. BMRB is a partner in the Worldwide Protein Data Bank (wwPDB). The BMRB archive consists of four main data deposi

  20. BioMagResBank.

    NARCIS (Netherlands)

    Ulrich, E.L.; Akutsu, H.; Doreleijers, J.; Harano, Y.; Ioannidis, Y.E.; Lin, J.; Livny, M.; Mading, S.; Maziuk, D.; Miller, Z.; Nakatani, E.; Schulte, C.F.; Tolmie, D.E.; Wenger, R Kent; Yao, H.; Markley, J.L.

    2008-01-01

    The BioMagResBank (BMRB: www.bmrb.wisc.edu) is a repository for experimental and derived data gathered from nuclear magnetic resonance (NMR) spectroscopic studies of biological molecules. BMRB is a partner in the Worldwide Protein Data Bank (wwPDB). The BMRB archive consists of four main data

  1. Novel dark fermentation involving bioaugmentation with constructed bacterial consortium for enhanced biohydrogen production from pretreated sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Kotay, Shireen Meher; Das, Debabrata [Department of Biotechnology, Indian Institute of Technology, Kharagpur (India)

    2009-09-15

    The present study summarizes the observations on various nutrient and seed formulation methods using sewage sludge that have been aimed at ameliorating the biohydrogen production potential. Pretreatment methods viz., acid/base treatment, heat treatment, sterilization, freezing-thawing, microwave, ultrasonication and chemical supplementation were attempted on sludge. It was observed that pretreatment was essential not only to reduce the needless, competitive microbial load but also to improve the nutrient solublization of sludge. Heat treatment at 121 C for 20 min was found to be most effective in reducing the microbial load by 98% and hydrolyzing the organic fraction of sludge. However, this pretreatment alone was either not sufficient or inconsistent in developing a suitable microbial consortium for hydrogen production. Hydrogen yield was found to improve 1.5-4 times upon inoculation with H{sub 2}-producing microorganisms. A defined microbial consortium was developed consisting of three established bacteria viz., Enterobacter cloacae IIT-BT 08, Citrobacter freundii IIT-BT L139 and Bacillus coagulans IIT-BT S1. Following pretreatments soluble proteins and lipids (the major component of the sludge) were also found to be consumed besides carbohydrates. This laid out the concurrent proteolytic/lipolytic ability of the developed H{sub 2}-producing consortium. 1:1:1 v/v ratio of these bacteria in consortium was found to give the maximum yield of H{sub 2} from sludge, 39.15 ml H{sub 2}/g COD{sub reduced}. 15%v/v dilution and supplementation with 0.5%w/v cane molasses prior to heat treatment was found to further improve the yield to 41.23 ml H{sub 2}/g COD{sub reduced}. (author)

  2. AN OVERVIEW OF GAS-UPGRADING TECHNOLOGIES FOR BIOHYDROGEN PRODUCED FROM TREATMENT OF PALM OIL MILL EFFLUENT

    Directory of Open Access Journals (Sweden)

    IZZATI NADIA MOHAMAD

    2017-03-01

    Full Text Available To date, a high energy demand has led to massive research efforts towards improved gas-separation techniques for more energy-efficient and environmenttally friendly methods. One of the potential alternative energies is biogas produced from the fermentation of liquid waste generated from the oil-extraction process, which is known as palm oil mill effluent (POME. Basically, the gas produced from the POME fermentation process consists mainly of a CO2 and H2 gas mixture. CO2 is known as an anthropogenic greenhouse gas, which contributes towards the climate change phenomenon. Hence, it is crucial to determine a suitable technique for H2 separation and purification with good capability for CO2 capture, as this will reduce CO2 emission to the environment as well. This paper reviewed the current gas-separation techniques that consist of absorption, adsorption and a membrane in order to determine the advantages and disadvantages of these techniques towards the efficiency of the separation system. Crucial aspects for gas-separation techniques such as energy, economic, and environmental considerations are discussed, and a potential biohydrogen and biogas-upgrading technique for industrial POME application is presented and concluded in this paper. Based on the comparison on these aspects, water scrubbing is found to be the best technique to be used in the biogas-upgrading industry, followed by membrane and chemical scrubbing as well as PSA. Hence, these guidelines are justified for selecting the best gas-upgrading technique to be used in palm oil mill industry applications.

  3. Monitoring of microbial community structure and succession in the biohydrogen production reactor by denaturing gradient gel electrophoresis (DGGE)

    Institute of Scientific and Technical Information of China (English)

    XING; Defeng; REN; Nanqi; GONG; Manli; LI; Jianzheng; LI; Q

    2005-01-01

    To study the structure of microbial communities in the biological hydrogen production reactor and determine the ecological function of hydrogen producing bacteria, anaerobic sludge was obtained from the continuous stirred tank reactor (CSTR) in different periods of time, and the diversity and dynamics of microbial communities were investigated by denaturing gradient gel electrophoresis (DGGE). The results of DGGE demonstrated that an obvious shift of microbial population happened from the beginning of star-up to the 28th day, and the ethanol type fermentation was established. After 28 days the structure of microbial community became stable, and the climax community was formed. Comparative analysis of 16S rDNA sequences from reamplifying and sequencing the prominent bands indicated that the dominant population belonged to low G+C Gram-positive bacteria (Clostridium sp. And Ethanologenbacterium sp.), β- proteobacteria (Acidovorax sp.), γ-proteobacteria (Kluyvera sp.), Bacteroides (uncultured bacterium SJA-168), and Spirochaetes (uncultured eubacterium E1-K13), respectively. The hydrogen production rate increased obviously with the increase of Ethanologenbacterium sp., Clostridium sp. And uncultured Spirochaetes after 21 days, meanwhile the succession of ethanol type fermentation was formed. Throughout the succession the microbial diversity increased however it decreased after 21 days. Some types of Clostridium sp. Acidovorax sp., Kluyvera sp., and Bacteroides were dominant populations during all periods of time. These special populations were essential for the construction of climax community. Hydrogen production efficiency was dependent on both hydrogen producing bacteria and other populations. It implied that the co-metabolism of microbial community played a great role of biohydrogen production in the reactors.

  4. Effect of pH on conjugated linoleic acid (CLA) formation of linolenic acid biohydrogenation by ruminal microorganisms.

    Science.gov (United States)

    Lee, Yongjae

    2013-08-01

    Conventional beliefs surrounding the linolenic acid (LNA; cis-9 cis-12 cis-15 C18:3) biohydrogenation (BH) pathway propose that it converts to stearic acid (SA) without the formation of conjugated linoleic acid (CLA) as intermediate isomers. However, an advanced study (Lee and Jenkins, 2011) verified that LNA BH yields multiple CLAs. This study utilized the stable isotope tracer to investigate the BH intermediates of (13)C-LNA with different pH conditions (5.5 and 6.5). The (13)C enrichment was calculated as a (13)C/(12)C ratio of labeled minus unlabeled. After 24 h, eight CLA isomers were significantly enriched on both pH treatment, this result verifies that these CLAs originated from (13)C-LNA BH which supports the results of Lee and Jenkins (2011). The enrichment of cis-cis double bond CLAs (cis-9 cis-11 and cis-10 cis-12 CLA) were significantly higher at low pH conditions. Furthermore, the concentration of cis-10 cis-12 CLA at low pH was four times higher than at high pH conditions after a 3 h incubation. These differences support the LNA BH pathways partial switch under different pH conditions, with a strong influence on the cis-cis CLA at low pH. Several mono-, di-, and tri-enoic fatty acid isomers were enriched during 24 h of incubation, but the enrichment was decreased or restricted at low pH treatment. Based on these results, it is proposed that low pH conditions may cause a changed or limited capacity of the isomerization and reduction steps in BH.

  5. Monitoring of microbial community structure and succession in the biohydrogen production reactor by denaturing gradient gel electrophoresis (DGGE).

    Science.gov (United States)

    Xing, Defeng; Ren, Nanqi; Gong, Manli; Li, Jianzheng; Li, Qiubo

    2005-04-01

    To study the structure of microbial communities in the biological hydrogen production reactor and determine the ecological function of hydrogen producing bacteria, anaerobic sludge was obtained from the continuous stirred tank reactor (CSTR) in different periods of time, and the diversity and dynamics of microbial communities were investigated by denaturing gradient gel electrophoresis (DGGE). The results of DGGE demonstrated that an obvious shift of microbial population happened from the beginning of star-up to the 28th day, and the ethanol type fermentation was established. After 28 days the structure of microbial community became stable, and the climax community was formed. Comparative analysis of 16S rDNA sequences from reamplifying and sequencing the prominent bands indicated that the dominant population belonged to low G+C Gram-positive bacteria (Clostridium sp. and Ethanologenbacterium sp.), beta-proteobacteria (Acidovorax sp.), gamma-proteobacteria (Kluyvera sp.), Bacteroides (uncultured bacterium SJA-168), and Spirochaetes (uncultured eubacterium E1-K13), respectively. The hydrogen production rate increased obviously with the increase of Ethanologenbacterium sp., Clostridium sp. and uncultured Spirochaetes after 21 days, meanwhile the succession of ethanol type fermentation was formed. Throughout the succession the microbial diversity increased however it decreased after 21 days. Some types of Clostridium sp. Acidovorax sp., Kluyvera sp., and Bacteroides were dominant populations during all periods of time. These special populations were essential for the construction of climax community. Hydrogen production efficiency was dependent on both hydrogen producing bacteria and other populations. It implied that the co-metabolism of microbial community played a great role of biohydrogen production in the reactors.

  6. Simultaneous biohydrogen production and wastewater treatment in biofilm configured anaerobic periodic discontinuous batch reactor using distillery wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Mohan, S.; Mohanakrishna, G.; Ramanaiah, S.V.; Sarma, P.N. [Bioengineering and Environmental Centre, Indian Institute of Chemical Technology, Hyderabad 500007 (India)

    2008-01-15

    Biohydrogen (H{sub 2}) production with simultaneous wastewater treatment was studied in anaerobic sequencing batch biofilm reactor (AnSBBR) using distillery wastewater as substrate at two operating pH values. Selectively enriched anaerobic mixed consortia sequentially pretreated with repeated heat-shock (100{sup o}C; 2 h) and acid (pH -3.0; 24 h) methods, was used as parent inoculum to startup the bioreactor. The reactor was operated at ambient temperature (28{+-}2 {sup circle} C) with detention time of 24 h in periodic discontinuous batch mode. Experimental data showed the feasibility of hydrogen production along with substrate degradation with distillery wastewater as substrate. The performance of the reactor was found to be dependent on the operating pH. Adopted acidophilic microenvironment (pH 6.0) favored H{sub 2} production (H{sub 2} production rate - 26 mmol H{sub 2}/day; specific H{sub 2} production - 6.98 mol H{sub 2}/kg COD{sub R}-day) over neutral microenvironment (H{sub 2} production rate - 7 mmol H{sub 2}/day; specific H{sub 2} production - 1.63 mol H{sub 2}/kg COD{sub R}-day). However, COD removal efficiency was found to be effective in operated neutral microenvironment (pH 7 - 69.68%; pH 6.0 - 56.25%). The described process documented the dual benefit of renewable energy generation in the form of H{sub 2} with simultaneous wastewater treatment utilizing it as substrate. (author)

  7. DEVELOPMENT OF A METHANE-FREE, CONTINUOUS BIOHYDROGEN PRODUCTION SYSTEM FROM PALM OIL MILL EFFLUENT (POME IN CSTR

    Directory of Open Access Journals (Sweden)

    MARIATUL FADZILLAH MANSOR

    2016-08-01

    Full Text Available This study aimed to develop the start-up experiment for producing biological hydrogen in 2 L continuous stirred tank reactor (CSTR from palm oil mill effluent (POME by the use of mixed culture sludge under non-sterile conditions. Besides using different source of starter culture, the effects of acid treated culture and various operating temperature from 35 °C to 55 °C were studied against the evolved gas in terms of volumetric H2 production rate (VHPR and soluble metabolite products (SMPs. The formation of methane was closely observed throughout the run. Within the studied temperature, VHPR was found as low as 0.71 L/L.d and ethanol was the main by-products (70-80% of total soluble metabolites. Attempts were made to produce biohydrogen without methane formation at higher thermophilic temperature (45-55 °C than the previous range. The average of 1.7 L H2 of 2 L working volume per day was produced at 55 oC with VHPR of 1.16 L/L.d. The results of soluble metabolites also are in agreement with the volatile fatty acids (VFAs which is higher than ethanol. Higher VFAs of 2269 mg/L was obtained with acetic acid being the main by-product. At this time methanogen has been deactivated and no methane was produced. From this study, it can be concluded that thermophilic environment may offer a better option in a way to eliminate methane from the biogas and at the same time improving hydrogen production rate as well.

  8. Effect of hydraulic retention time on suppression of methanogens during a continuous biohydrogen production process using molasses wastewater.

    Science.gov (United States)

    Yun, Jeong Hee; Cho, Kyung-Suk

    2017-01-02

    This study was undertaken to investigate the reduction of the hydraulic retention time (HRT) to decrease methane generation and recover hydrogen production during the long-term operation of biohydrogen production in a continuous stirred tank reactor (CSTR) using molasses wastewater. Reduction of HRT can be a simple and economic method to immediately control unfavorable methane generated during continuous operation of a hydrogen production system. The steady-state performance of the CSTR showed a hydrogen content of 41.3 ± 3.30% and a hydrogen production rate (HPR) of 63.7 ± 10.01 mmol-H2L(-1)d(-1) under an organic loading rate (OLR) of 29.7 g CODL(-1) at an HRT of 24 h. Increase in the methane level above 40% during long-term operation caused decrease in the hydrogen content and HPR to 5.9 ± 1.6% and 2.1 ± 1.1 mmoL-H2L(-1)d(-1), respectively. When methane increased to a high level over 40%, the CSTR at the HRT of 24 h was operated at the HRT of 12 h. Reduction of the HRT from 24 to 12 h led to decrease in the methane content of 12.1 ± 4.44% and recovery of the HPR value to 48.9 ± 15.37 mmol-H2L(-1)d(-1) over a duration of 13-22 d. When methane is generated in a continuously operated reactor, reduction of the HRT can be an easy way to suppress methanogens and recover hydrogen production without any additives or extra treatments.

  9. Optimization and microbial community analysis for production of biohydrogen from palm oil mill effluent by thermophilic fermentative process

    Energy Technology Data Exchange (ETDEWEB)

    Prasertsan, Poonsuk [Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112 (Thailand); Palm Oil Product and Technology Research Center, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112 (Thailand); O-Thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Phatthalung 93110 (Thailand); Birkeland, Nils-Kaare [Department of Biology and Centre for Geobiology, University of Bergen, P.O. Box 7800, N-5020 Bergen (Norway)

    2009-09-15

    The optimum values of hydraulic retention time (HRT) and organic loading rate (OLR) of an anaerobic sequencing batch reactor (ASBR) for biohydrogen production from palm oil mill effluent (POME) under thermophilic conditions (60 C) were investigated in order to achieve the maximum process stability. Microbial community structure dynamics in the ASBR was studied by denaturing gradient gel electrophoresis (DGGE) aiming at improved insight into the hydrogen fermentation microorganisms. The optimum values of 2-d HRT with an OLR of 60 gCOD l{sup -1} d{sup -1} gave a maximum hydrogen yield of 0.27 l H{sub 2} g COD{sup -1} with a volumetric hydrogen production rate of 9.1 l H{sub 2} l{sup -1} d{sup -1} (16.9 mmol l{sup -1}h{sup -1}). The hydrogen content, total carbohydrate consumption, COD (chemical oxygen demand) removal and suspended solids removal were 55 {+-} 3.5%, 92 {+-} 3%, 57 {+-} 2.5% and 78 {+-} 2%, respectively. Acetic acid and butyric acid were the major soluble end-products. The microbial community structure was strongly dependent on the HRT and OLR. DGGE profiling illustrated that Thermoanaerobacterium spp., such as Thermoanaerobacterium thermosaccharolyticum and Thermoanaerobacterium bryantii, were dominant and probably played an important role in hydrogen production under the optimum conditions. The shift in the microbial community from a dominance of T. thermosaccharolyticum to a community where also Caloramator proteoclasticus constituted a major component occurred at suboptimal HRT (1 d) and OLR (80 gCOD l{sup -1} d{sup -1}) conditions. The results showed that the hydrogen production performance was closely correlated with the bacterial community structure. This is the first report of a successful ASBR operation achieving a high hydrogen production rate from real wastewater (POME). (author)

  10. Selective fermentation of carbohydrate and protein fractions of Scenedesmus, and biohydrogenation of its lipid fraction for enhanced recovery of saturated fatty acids.

    Science.gov (United States)

    Lai, YenJung Sean; Parameswaran, Prathap; Li, Ang; Aguinaga, Alyssa; Rittmann, Bruce E

    2016-02-01

    Biofuels derived from microalgae have promise as carbon-neutral replacements for petroleum. However, difficulty extracting microalgae-derived lipids and the co-extraction of non-lipid components add major costs that detract from the benefits of microalgae-based biofuel. Selective fermentation could alleviate these problems by managing microbial degradation so that carbohydrates and proteins are hydrolyzed and fermented, but lipids remain intact. We evaluated selective fermentation of Scenedesmus biomass in batch experiments buffered at pH 5.5, 7, or 9. Carbohydrates were fermented up to 45% within the first 6 days, protein fermentation followed after about 20 days, and lipids (measured as fatty acid methyl esters, FAME) were conserved. Fermentation of the non-lipid components generated volatile fatty acids, with acetate, butyrate, and propionate being the dominant products. Selective fermentation of Scenedesmus biomass increased the amount of extractable FAME and the ratio of FAME to crude lipids. It also led to biohydrogenation of unsaturated FAME to more desirable saturated FAME (especially to C16:0 and C18:0), and the degree of saturation was inversely related to the accumulation of hydrogen gas after fermentation. Moreover, the microbial communities after selective fermentation were enriched in bacteria from families known to perform biohydrogenation, i.e., Porphyromonadaceae and Ruminococcaceae. Thus, this study provides proof-of-concept that selective fermentation can improve the quantity and quality of lipids that can be extracted from Scenedesmus.

  11. Back propagation neural network modelling of biodegradation and fermentative biohydrogen production using distillery wastewater in a hybrid upflow anaerobic sludge blanket reactor.

    Science.gov (United States)

    Sridevi, K; Sivaraman, E; Mullai, P

    2014-08-01

    In a hybrid upflow anaerobic sludge blanket (HUASB) reactor, biodegradation in association with biohydrogen production was studied using distillery wastewater as substrate. The experiments were carried out at ambient temperature (34±1°C) and acidophilic pH of 6.5 with constant hydraulic retention time (HRT) of 24h at various organic loading rates (OLRs) (1-10.2kgCODm(-3)d(-1)) in continuous mode. A maximum hydrogen production rate of 1300mLd(-1) was achieved. A back propagation neural network (BPNN) model with network topology of 4-20-1 using Levenberg-Marquardt (LM) algorithm was developed and validated. A total of 231 data points were studied to examine the performance of the HUASB reactor in acclimatisation and operation phase. The statistical qualities of BPNN models were significant due to the high correlation coefficient, R(2), and lower mean absolute error (MAE) between experimental and simulated data. From the results, it was concluded that BPNN modelling could be applied in HUASB reactor for predicting the biodegradation and biohydrogen production using distillery wastewater.

  12. Effects of changes in chemical and structural characteristic of ammonia fibre expansion (AFEX) pretreated oil palm empty fruit bunch fibre on enzymatic saccharification and fermentability for biohydrogen.

    Science.gov (United States)

    Abdul, Peer Mohamed; Jahim, Jamaliah Md; Harun, Shuhaida; Markom, Masturah; Lutpi, Nabilah Aminah; Hassan, Osman; Balan, Venkatesh; Dale, Bruce E; Mohd Nor, Mohd Tusirin

    2016-07-01

    Oil palm empty fruit bunch (OPEFB) fibre is widely available in Southeast Asian countries and found to have 60% (w/w) sugar components. OPEFB was pretreated using the ammonia fibre expansion (AFEX) method and characterised physically by the Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that there were significant structural changes in OPEFB after the pretreatment step, and the sugar yield after enzymatic hydrolysis using a cocktail of Cellic Ctec2® and Cellic Htec2® increased from 0.15gg(-1) of OPEFB in the raw untreated OPEFB sample to 0.53gg(-1) of OPEFB in AFEX-pretreated OPEFB (i.e. almost a fourfold increase in sugar conversion), which enhances the economic value of OPEFB. A biohydrogen fermentability test of this hydrolysate was carried out using a locally isolated bacterium, Enterobacter sp. KBH6958. The biohydrogen yield after 72h of fermentation was 1.68mol H2 per mol sugar. Butyrate, ethanol, and acetate were the major metabolites.

  13. Effects of pH, hydraulic retention time and organic loading rate on biohydrogen production from the anaerobic fermentation of agri-food wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Won, S.; Lau, A. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2009-07-01

    This presentation reported on an experimental study in which biohydrogen was produced via anaerobic fermentation of dairy wastewater using a 6 L sequencing batch reactor. Tests were performed at ambient temperature and varying pH, hydraulic retention time (HRT) and organic loading rate (OLR). The seed sludge was not pretreated. The tests showed that methanogenic activity could be suppressed via short HRT and large OLR changes. However, the maximum hydrogen production rate was only 0.08 L/L per day without pH control. The rate of hydrogen production increased considerably when sucrose-rich synthetic wastewater was used as the substrate, and when pH was controlled. When HRT was reduced from 2.5 days to 1.25 days, observed hydrogen yield and hydrogen production rate reached 73 per cent and 4.38 L/L per day, respectively, for an optimal pH of 4.0. Volatile fatty acid was analyzed in order to determine the microbial metabolic pathway that favours increased hydrogen production. It was concluded that the co-fermentation of agri-food wastewater could improve the utilization of animal wastewater for the production of biohydrogen.

  14. Changes in performance and bacterial communities in response to various process disturbances in a high-rate biohydrogen reactor fed with galactose.

    Science.gov (United States)

    Park, Jeong-Hoon; Kumar, Gopalakrishnan; Park, Jong-Hun; Park, Hee-Deung; Kim, Sang-Hyoun

    2015-01-01

    High-rate biohydrogen production was achieved via hybrid immobilized cells fed with galactose in a continuous reactor system. The hybrid immobilized cells were broken down after 20 days and began to form granules by self-aggregation. The peak hydrogen production rate (HPR) and hydrogen yield (HY) of 11.8 ± 0.6 LH2/L-d and 2.1 ± 0.1 mol H2/molgalactose(added), respectively, were achieved at the hydraulic retention time (HRT) of 8h with an organic loading rate (OLR) of 45 g/L-d. This is the highest yet reported for the employment of galactose in a continuous system. Various process disturbances including shock loading, acidification, alkalization and starvation were examined through bacterial community analysis via pyrosequencing of the 16S rRNA genes. The proportion of Clostridia increased during the stable biohydrogen production periods, while that of Bacilli increased when the reactor was disturbed. However, due to the stability of the self-aggregated granules, the process performance was regained within 4-7 days.

  15. Effect of the culture media optimization, pH and temperature on the biohydrogen production and the hydrogenase activities by Klebsiella pneumoniae ECU-15.

    Science.gov (United States)

    Xiao, Yan; Zhang, Xu; Zhu, Minglong; Tan, Wensong

    2013-06-01

    The low yield of the biohydrogen production is the main constraint for its industrialization process. In order to improve its production, medium compositions of the hydrogen fermentation by Klebsiella pneumoniae ECU-15 were optimized through the response surface methodology (RSM). Experimental results showed that the optimum hydrogen production of 5363.8 ml/L was obtained when the concentration of glucose, the ammonium sulfate and the trace elements were 35.62 g/L, 2.78 g/L and 23.15 ml/L at temperature 37.0°C, pH 6.0. H2 evolving hydrogenase was greatly enhanced by the optimization of the medium compositions. The activity of H2 evolving hydrogenase increased with the temperature, and decreased with the pH, while the activity of the uptake hydrogenase increased with the temperature and the pH. So the biohydrogen production process of the K. pneumoniae ECU-15 was the comprehensive results of the evolution hydrogen process and the uptake hydrogen process.

  16. Effect of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids in steers fed grass or red clover silages.

    Science.gov (United States)

    Lee, M R F; Shingfield, K J; Tweed, J K S; Toivonen, V; Huws, S A; Scollan, N D

    2008-12-01

    Red clover and fish oil (FO) are known to alter ruminal lipid biohydrogenation leading to an increase in the polyunsaturated fatty acid (PUFA) and conjugated linoleic acid (CLA) content of ruminant-derived foods, respectively. The potential to exploit these beneficial effects were examined using eight Hereford × Friesian steers fitted with rumen and duodenal cannulae. Treatments consisted of grass silage or red clover silage fed at 90% of ad libitum intake and FO supplementation at 0, 10, 20 or 30 g/kg diet dry matter (DM). The experiment was conducted with two animals per FO level and treatments formed extra-period Latin squares. Flows of fatty acids at the duodenum were assessed using ytterbium acetate and chromium ethylene diamine tetra-acetic acid as indigestible markers. Intakes of DM were higher (P silage than grass silage (5.98 v. 5.09 kg/day). There was a linear interaction effect (P = 0.004) to FO with a reduction in DM intake in steers fed red clover silage supplemented with 30 g FO/kg diet DM. Apparent ruminal biohydrogenation of C18:2n-6 and C18:3n-3 were lower (P silage than grass silage (0.83 and 0.79 v. 0.87 and 0.87, respectively), whilst FO increased the extent of biohydrogenation on both diets. Ruminal biohydrogenation of C20:5n-3 and C22:6n-3 was extensive on both silage diets, averaging 0.94 and 0.97, respectively. Inclusion of FO in the diet enhanced the flow of total CLA leaving the rumen with an average across silages of 0.22, 0.31, 0.41 and 0.44 g/day for 0, 10, 20 or 30 g FO/kg, respectively, with a linear interaction effect between the two silages (P = 0.03). FO also showed a dose-dependent increase in the flow of trans-C18:1 intermediates at the duodenum from 4.6 to 15.0 g/day on grass silage and from 9.4 to 22.5 g/day for red clover silage. Concentrations of trans-C18:1 with double bonds from Δ4-16 in duodenal digesta were all elevated in response to FO in both diets, with trans-11 being the predominant isomer. FO inhibited the

  17. Bio-batteries and bio-fuel cells: leveraging on electronic charge transfer proteins.

    Science.gov (United States)

    Kannan, A M; Renugopalakrishnan, V; Filipek, S; Li, P; Audette, G F; Munukutla, L

    2009-03-01

    Bio-fuel cells are alternative energy devises based on bio-electrocatalysis of natural substrates by enzymes or microorganisms. Here we review bio-fuel cells and bio-batteries based on the recent literature. In general, the bio-fuel cells are classified based on the type of electron transfer; mediated electron transfer and direct electron transfer or electronic charge transfer (ECT). The ECT of the bio-fuel cells is critically reviewed and a variety of possible applications are considered. The technical challenges of the bio-fuel cells, like bioelectrocatalysis, immobilization of bioelectrocatalysts, protein denaturation etc. are highlighted and future research directions are discussed leveraging on the use of electron charge transfer proteins. In addition, the packaging aspects of the bio-fuel cells are also analyzed and the found that relatively little work has been done in the engineering development of bio-fuel cells.

  18. Types for BioAmbients

    CERN Document Server

    Capecchi, Sara; 10.4204/EPTCS.19.7

    2010-01-01

    The BioAmbients calculus is a process algebra suitable for representing compartmentalization, molecular localization and movements between compartments. In this paper we enrich this calculus with a static type system classifying each ambient with group types specifying the kind of compartments in which the ambient can stay. The type system ensures that, in a well-typed process, ambients cannot be nested in a way that violates the type hierarchy. Exploiting the information given by the group types, we also extend the operational semantics of BioAmbients with rules signalling errors that may derive from undesired ambients' moves (i.e. merging incompatible tissues). Thus, the signal of errors can help the modeller to detect and locate unwanted situations that may arise in a biological system, and give practical hints on how to avoid the undesired behaviour.

  19. Types for BioAmbients

    Directory of Open Access Journals (Sweden)

    Sara Capecchi

    2010-02-01

    Full Text Available The BioAmbients calculus is a process algebra suitable for representing compartmentalization, molecular localization and movements between compartments. In this paper we enrich this calculus with a static type system classifying each ambient with group types specifying the kind of compartments in which the ambient can stay. The type system ensures that, in a well-typed process, ambients cannot be nested in a way that violates the type hierarchy. Exploiting the information given by the group types, we also extend the operational semantics of BioAmbients with rules signalling errors that may derive from undesired ambients' moves (i.e. merging incompatible tissues. Thus, the signal of errors can help the modeller to detect and locate unwanted situations that may arise in a biological system, and give practical hints on how to avoid the undesired behaviour.

  20. Bioética Bioética Boethics

    Directory of Open Access Journals (Sweden)

    Cássia Regina Rodrigues Nunes

    2004-10-01

    Full Text Available A bioética é um novo campo de conhecimento e uma corrente de pensamento que vem se desenvolvendo amplamente no Brasil, principalmente a partir da década de 90. Nesse artigo buscamos contextualizar o seu surgimento, justificando a necessidade da criação desse neologismo, uma vez que a ética estava de certo modo esquecida, em relação à técnica, restringindo-se apenas à ética profissional. Hoje nos deparamos com uma ampla gama de produções nessa área que ajudam a nortear nossa ação enquanto cidadãos que buscam qualidade de vida e a preservação da vida no planeta. A bioética, no entanto, preocupa-se com o modo de ser: pensamento-julgamento-ação, em relação aos seres humanos entre si e com a natureza.La bioética es un nuevo campo de conocimiento y una corriente del pensamiento que está en pleno desarrollo en Brasil, principalmente a partir de la década del 90. En este artículo explicamos el contexto de su surgimiento, justificando la necesidad de la creación de este neologismo, una vez que la ética estaba de una cierta manera relegada, con relación a la técnica, limitada apenas a la ética profesional. Hoy nosotros notamos una amplia gama de producciones en esta área que nos ayudan a orientar nuestras acciones como ciudadanos que buscan la calidad de vida y la preservación de la vida en el planeta. La bioética, sin embargo, se preocupa con el modo de ser: pensamiento-juicio-acción, con relación a los seres humanos entre sí y con la naturaleza.Bioethics is a new field of knowledge and a current of thought that has been largely developing in Brazil, especially since the Nineties. In this article, we try to contextualize its inception by justifying the need to create such a neologism, since ethics was somewhat forgotten, in relation to the technique, being restricted to professional ethics. We are nowadays faced with a wide scope of works in this area that help guide our action as citizens who want quality of life

  1. Bioética Bioética Boethics

    OpenAIRE

    Cássia Regina Rodrigues Nunes; Amauri Porto Nunes

    2004-01-01

    A bioética é um novo campo de conhecimento e uma corrente de pensamento que vem se desenvolvendo amplamente no Brasil, principalmente a partir da década de 90. Nesse artigo buscamos contextualizar o seu surgimento, justificando a necessidade da criação desse neologismo, uma vez que a ética estava de certo modo esquecida, em relação à técnica, restringindo-se apenas à ética profissional. Hoje nos deparamos com uma ampla gama de produções nessa área que ajudam a nortear nossa ação enquanto cida...

  2. Software Package for Bio-Signal Analysis

    Science.gov (United States)

    2002-10-15

    We have developed a MatlabTM based software package for bio -signal analysis. The software is based on modular design and can thus be easily adapted...to fit on analysis of various kind of time variant or event-related bio -signals. Currently analysis programs for event-related potentials (ERP) heart...rate variability (HRV), galvanic skin responses (GSR) and quantitative EEG (qEEG) are implemented. A tool for time varying spectral analysis of bio

  3. The Bio* toolkits--a brief overview.

    Science.gov (United States)

    Mangalam, Harry

    2002-09-01

    Bioinformatics research is often difficult to do with commercial software. The Open Source BioPerl, BioPython and Biojava projects provide toolkits with multiple functionality that make it easier to create customised pipelines or analysis. This review briefly compares the quirks of the underlying languages and the functionality, documentation, utility and relative advantages of the Bio counterparts, particularly from the point of view of the beginning biologist programmer.

  4. Effects of organic loading, influent concentration, and feed time on biohydrogen production in a mechanically stirred AnSBBR treating sucrose-based wastewater.

    Science.gov (United States)

    Manssouri, M; Rodrigues, J A D; Ratusznei, S M; Zaiat, M

    2013-12-01

    An anaerobic sequencing batch biofilm reactor (AnSBBR-total volume 7.5 L; liquid volume 3.6 L; treated volume per cycle 1.5 L) treated sucrose-based wastewater to produce biohydrogen (at 30 °C). Different applied volumetric organic loads (AVOL of 9.0, 12.0, 13.5, 18.0, and 27.0 kg COD m(-3) day(-1)), which were varied according to the influent concentration (3,600 and 5,400 mg COD L(-1)) and cycle length (4, 3, and 2 h), have been used to assess the following parameters: productivity and yield of biohydrogen per applied and removed load, reactor stability, and efficiency. The removed organic matter (COD) remained stable and close to 18 % and carbohydrates (sucrose) uptake rate remained between 83 and 97 % during operation. The decrease in removal performance of the reactor with increasing AVOL, by increasing the influent concentration (at constant cycle length) and decreasing the cycle lengths (at constant influent concentrations), resulted in lower conversion efficiencies. Under all conditions, when organic load increased there was a predominance of acetic, propionic, and butyric acid as well as ethanol. The highest concentration of biohydrogen in the biogas (24-25 %) was achieved at conditions with AVOL of 12.0 and 13.5 kg COD m(-3) day(-1), the highest daily production rate (0.139 mol H2 day(-1)) was achieved at AVOL of 18.0 kg COD m(-3) day(-1), and the highest production yields per removed and applied load were 2.83 and 3.04 mol H2 kg SUC(-1), respectively, at AVOL of 13.5 kg COD m(-3) day(-1). The results indicated that the best productivity tends to occur at higher organic loads, as this parameter involves the "biochemical generation" of biogas, and the best yield tends to occur at lower and/or intermediate organic loads, as this parameter involves "biochemical consumption" of the substrate.

  5. AnSBBR with circulation applied to biohydrogen production treating sucrose based wastewater: effects of organic loading, influent concentration and cycle length

    Directory of Open Access Journals (Sweden)

    D. A. Santos

    2014-09-01

    Full Text Available An anaerobic sequencing batch biofilm reactor (AnSBBR containing immobilized biomass and operating with recirculation of the liquid phase (total liquid volume 4.5 L; treated volume per cycle 1.9 L was used to treat sucrose-based wastewater at 30 ºC and produce biohydrogen. The influence of applied volumetric organic load was studied by varying the influent concentration at 3600 and 5400 mgCOD.L-1 and using cycle lengths of 4, 3 and 2 hours, obtaining in this manner volumetric organic loads of 9, 12, 13.5, 18 and 27 gCOD.L-1.d-1. Different performance indicators were used: productivity and yield of biohydrogen per applied and removed load, reactor stability and efficiency based on the applied and removed organic loads, both in terms of organic matter (measured as COD and carbohydrate (sucrose. The results revealed system stability (32-37% of H2 in biogas during biohydrogen production, as well as substrate consumption (12-19% COD; 97-99% sucrose. Conversion efficiencies decreased when the influent concentration was increased (at constant cycle length and when cycle lengths were reduced (at constant influent concentrations. The best yield was 4.16 mol-H2.kg-SUC-1 (sucrose load at 9 gCOD.L-1.d-1 (3600 mgCOD.L-1 and 4 h with H2 content in the biogas of 36% (64% CO2 and 0% CH4. However, the best specific molar productivity of hydrogen was 8.5 molH2.kgTVS-1.d-1 (32% H2; 68% CO2; 0% CH4, at 18 gCOD.L-1.d-1 (5400 mgCOD.L-1 and 3 h, indicating that the best productivity tends to occur at higher organic loads, as this parameter involves the "biochemical generation" of biogas, whereas the best yield tends to occur at lower and/or intermediate organic loads, as this parameter involves "biochemical consumption" of the substrate. The most significant metabolites were ethanol, acetic acid and butyric acid. Microbiological analyses revealed that the biomass contained bacilli and endospore filaments and showed no significant variations in morphology between

  6. Bio-Matematik ved Roskilde Universitet

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.

    2010-01-01

    Ved Institut for Natur, Systemer og Modeller ved Roskilde Universitet finder man en velkonsolideret gruppe af forskere, BioMath-gruppen, der beskæftiger sig med Bio-Matematik og Bio-Medicinsk Modellering. Faktisk startede BioMath-gruppen på det tidligere Institut for Studiet af Matematik og Fysik...... pumper; 3) Endokrin fysiologi; 4) Type 1 og type 2 diabetes; 5) Populationsdynamik og sygdomsspredning; og 6) Parameterestimering i patient-specifikke modeller.   Udover overnævnte modelleringsområder har vi ved instituttet en stærk tradition for at beskæftige os med metaaspekter af modellering, f...

  7. Authentifizierung von Bio-Milch im Labor

    OpenAIRE

    2008-01-01

    In Deutschland ist die Nachfrage nach Bio-Lebensmitteln in den letzten Jahren stetig gestiegen. So erhöhte sich der Absatz von Bio-Trinkmilch in 2007 im Vergleich zum Vorjahr erneut kräftig um 34 Prozent (ZMP, Bonn) und der Bio-Anteil beträgt inzwischen bei Frischmilch knapp elf Prozent. Aufgrund sporadisch resultierender Lieferengpässe bei Bio-Milch sowie der vorhandenen Handelspreisdifferenz besteht zunehmend ein potenzielles Risiko der Falschdeklaration konventionell erzeugter Milch als Bi...

  8. Bio-logic设备优点

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ 世界第一台数字脑电图是Bio-logic厂家设计并生产 世界第一台数字视频脑电图是Bio-logic厂家设计并生产 在中国市场"癫痫刀"这个概念,也为Bio-logic厂家所推广 在美国市场,脑电图仪器的行业标准是以Bio-logic产品为基准定制的.

  9. Kinetics of ruminal lipolysis of triacylglycerol and biohydrogenation of long-chain fatty acids: new insights from old data.

    Science.gov (United States)

    Moate, P J; Boston, R C; Jenkins, T C; Lean, I J

    2008-02-01

    Previous investigations into ruminal lipolysis of triacylglycerol and ruminal biohydrogenation (BH) of unsaturated long-chain fatty acids have generally quantified these processes with either zero-order or first-order kinetics. This investigation examined if Michaelis-Menten and other nonlinear kinetics might be useful for quantifying these processes. Data from 2 previously published in vitro experiments employing rumen fluid from sheep to investigate the lipolysis of trilinolein, the BH of cis-9, cis-12 linoleic acid (LA), and the BH of fatty acids derived from the lipolysis of trilinolein were used for the development of a multi-compartmental model. The model described the lipolysis of triacylglycerol well. The model also provided a good mathematical description of the resulting production of nonesterified fatty acids, the isomerization of nonesterified LA, and subsequent production of rumenic acid (RA), vaccenic acid (VA), and stearic acid (SA). However, the model described poorly the patterns of the concentrations of LA, RA, VA, and SA after incubation of trilinolein in rumen fluid. The model is consistent with known stoichiometry and biochemistry and is parsimonious in that it employs a minimal number of parameters to describe all of the major aspects of lipolysis and BH. The first step in the lipolysis of trilinolein was described by Michaelis-Menten kinetics (Vmax = 529 +/- 16 mg/L per h; Km = 698 +/- 41 mg/L). Both subsequent lipolysis steps were approximated by a first-order (linear kinetics) rate constant (k = 2.64 +/- 0.041 /h). Isomerization of LA to RA was modeled by simple Michaelis-Menten kinetics (Vmax = 2,421 +/- 83 mg/L per h; Km = 440 +/- 22 mg/L). The kinetics of the BH of RA to VA was described by a Michaelis-Menten-type process involving competitive inhibition by VA (Vmax = 492 +/- 6.5 mg/L per h; Km = 1 mg/L). The final step, the BH of VA to SA, was modeled by a quasi-first-order process (k = 0.533 +/- 0.021 /h), but as the concentration of

  10. Profitable use of bio fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ekelund, Mats [Strateco Develoment AB, Vega (Sweden)], e-mail: mats.e@strateco.se

    2012-11-01

    Traditionally, the transportation industry has been opposed to any new legislation and when rather stringent emission legislation occurred, they objected just as they did when new fuels came on the agenda. On very short notice, Taxi Stockholm lost 20 % of their business when the County decided to award all public transportation contracts to a competitor. It was time to change plans instead of complaining and to take advantage of new opportunities - 'The first mover advantage'. Making the use of bio fuels into a profitable business takes a change of a standard 'business model' to do and there is still much room others to do the same. With a new CEO, an active marketing department and active individuals among the Board of Directors, Taxi Stockholm massaged a strategy where more business and private customers would be attracted by justifying the green leaf on every cab. All initiatives were publically announced and Taxi Stockholm broke new ice by putting a ban on spike tires - a decision which the vice Mayor made part of her ruling for the whole city. The Ban on gasoline and diesel cars were announced and such a statement attracted business from a loyalty point of view and from companies that had a 'Green Transport Policy' to live up to. Taxi Stockholm has seen growth and profitability grow since and credit the green policy on bio fuels such as bio gas and ethanol for most of it. Preem, Stockholm Transit, Volvo and other market driven operators have all seen markets grow from green initiatives.

  11. E-bioética

    OpenAIRE

    López de la Vieja de la Torre, Mª Teresa

    2013-01-01

    In bioethics, the use of new technology facilitates access to information on issues affecting the beginning and end of life, as well as for research. However, the transparency and openness of information does not guarantee the participation and responsibility in decision-making. En Bioética, el uso de las nuevas tecnologías facilita el acceso a información sobre cuestiones que afectan al principio y al fin de la vida, así como a la investigación. Sin embargo, la transparencia y la apertura...

  12. Types of oilseed and adipose tissue influence the composition and relationships of polyunsaturated fatty acid biohydrogenation products in steers fed a grass hay diet.

    Science.gov (United States)

    Mapiye, C; Aalhus, J L; Turner, T D; Rolland, D C; Basarab, J A; Baron, V S; McAllister, T A; Block, H C; Proctor, S D; Dugan, M E R

    2014-03-01

    The current study evaluated the composition and relationships of polyunsaturated fatty acid biohydrogenation products (PUFA-BHP) from the perirenal (PRF) and subcutaneous fat (SCF) of yearling steers fed a 70 % grass hay diet with concentrates containing either sunflower-seed (SS) or flaxseed (FS). Analysis of variance indicated several groups or families of structurally related FA, and individual FA within these were affected by a number of novel oilseed by fat depot interactions (P adipose tissue differences, therefore, present unique opportunities to differentially enrich a number of PUFA-BHP which seem to have positive health potential in humans (i.e., t11-18:1, c9,t11-18:2 and c9,t11,c15-18:3).

  13. Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source.

    Science.gov (United States)

    Sydney, Eduardo Bittencourt; Larroche, Christian; Novak, Alessandra Cristine; Nouaille, Regis; Sarma, Saurabh Jyoti; Brar, Satinder Kaur; Letti, Luiz Alberto; Soccol, Vanete Thomaz; Soccol, Carlos Ricardo

    2014-05-01

    This work evaluates the potential of vinasse (a waste obtained at the bottom of sugarcane ethanol distillation columns) as nutrient source for biohydrogen and volatile fatty acids production by means of anaerobic consortia. Two different media were proposed, using sugarcane juice or molasses as carbon source. The consortium LPBAH1 was selected for fermentation of vinasse supplemented with sugarcane juice, resulting in a higher H2 yield of 7.14 molH2 molsucrose(-1) and hydrogen content in biogas of approx. 31%, while consortium LPBAH2 resulted in 3.66 molH2/molsucrose and 32.7% hydrogen content in biogas. The proposed process showed a rational and economical use for vinasse, a mandatory byproduct of the renewable Brazilian energy matrix.

  14. Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail.

    Science.gov (United States)

    Nkemka, Valentine Nkongndem; Gilroyed, Brandon; Yanke, Jay; Gruninger, Robert; Vedres, Darrell; McAllister, Tim; Hao, Xiying

    2015-06-01

    Bioaugmentation with an anaerobic fungus, Piromyces rhizinflata YM600, was evaluated in an anaerobic two-stage system digesting corn silage and cattail. Comparable methane yields of 328.8±16.8mLg(-1)VS and 295.4±14.5mLg(-1)VS and hydrogen yields of 59.4±4.1mLg(-1)VS and 55.6±6.7mLg(-1)VS were obtained for unaugmented and bioaugmented corn silage, respectively. Similar CH4 yields of 101.0±4.8mLg(-1)VS and 104±19.1mLg(-1)VS and a low H2 yield (biohydrogen production.

  15. Bio-oxidation of arsenopyrite

    Institute of Scientific and Technical Information of China (English)

    JIANG Tao; LI Qian; YANG Yong-bin; LI Guang-hui; QIU Guan-zhou

    2008-01-01

    Oxidation of arsenopyrite with Acidithiobacillus ferrooxidans was studied.The electrochemical results show that arsenopyrite is firstly oxidized to As2S2 at the potential of 0.2-0.3 V (vs SHE) and As2S2 covers the electrode and retards the process continuously.While at higher potential over 0.3 V (vs SHE),As2S2 is oxidized to H3AsO3,and H3AsO3 is then oxidized to H3AsO4 at 0.8 V (vs SHE).The leaching results show that the addition of FeS2 can promote the oxidation of As3+ to As5+ and increase the activity of the bacteria.The best bio-oxidation technical parameters are the initial pH of 1.8-2.0,particle sizes less than 0.074 mm,temperature in the range of 25-30 ℃ and rotating speed of the orbital incubator of 100-160 r/min.The results provide theoretical and technological supports of bio-oxidation arsenopyrite for pretreating refractory arsenic gold ores.

  16. A terracotta bio-battery.

    Science.gov (United States)

    Ajayi, Folusho F; Weigele, Peter R

    2012-07-01

    Terracotta pots were converted into simple, single chamber, air-cathode bio-batteries. This bio-battery design used a graphite-felt anode and a conductive graphite coating without added catalyst on the exterior as a cathode. Bacteria enriched from river sediment served as the anode catalyst. These batteries gave an average OCV of 0.56 V ± 0.02, a Coulombic efficiency of 21 ± 5%, and a peak power of 1.06 mW ± 0.01(33.13 mW/m(2)). Stable current was also produced when the batteries were operated with hay extract in salt solution. The bacterial community on the anode of the batteries was tested for air tolerance and desiccation resistance over a period ranging from 2 days to 2 weeks. The results showed that the anode community could survive complete drying of the electrolyte for several days. These data support the further development of this technology as a potential power source for LED-based lighting in off-grid, rural communities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Israel Marine Bio-geographic Database (ISRAMAR-BIO)

    Science.gov (United States)

    Greengrass, Eyal; Krivenko, Yevgeniya; Ozer, Tal; Ben Yosef, Dafna; Tom, Moshe; Gertman, Isaac

    2015-04-01

    The knowledge of the space/time variations of species is the basis for any ecological investigations. While historical observations containing integral concentrations of biological parameters (chlorophyll, abundance, biomass…) are organized partly in ISRAMAR Cast Database, the taxon-specific data collected in Israel has not been sufficiently organized. This has been hindered by the lack of standards, variability of methods and complexity of biological data formalization. The ISRAMAR-BIO DB was developed to store various types of historical and future available information related to marine species observations and related metadata. Currently the DB allows to store biological data acquired by the following sampling devices such as: van veer grab, box corer, sampling bottles, nets (plankton, trawls and fish), quadrates, and cameras. The DB's logical unit is information regarding a specimen (taxa name, barcode, image), related attributes (abundance, size, age, contaminants…), habitat description, sampling device and method, time and space of sampling, responsible organization and scientist, source of information (cruise, project and publication). The following standardization of specimen and attributes naming were implemented: Taxonomy according to World Register of Marine Species (WoRMS: http://www.marinespecies.org). Habitat description according to Coastal and Marine Ecological Classification Standards (CMECS: http://www.cmecscatalog.org) Parameter name; Unit; Device name; Developmental stage; Institution name; Country name; Marine region according to SeaDataNet Vocabularies (http://www.seadatanet.org/Standards-Software/Common-Vocabularies). This system supports two types of data submission procedures, which support the above stated data structure. The first is a downloadable excel file with drop-down fields based on the ISRAMAR-BIO vocabularies. The file is filled and uploaded online by the data contributor. Alternatively, the same dataset can be assembled by

  18. Core ethical values: EuropaBio.

    Science.gov (United States)

    2002-01-01

    EuropaBio, the European Association for BioIndustries, represents 40 companies operating world wide and 14 national association (totaling around 600 small and medium-sized enterprises) involved in the research, development, testing, manufacturing, marketing, sales and distribution of biotechnology products and services in the fields of healthcare, agriculture, food and the environment.

  19. Bio-Conjugates for Nanoscale Applications

    DEFF Research Database (Denmark)

    Villadsen, Klaus

    Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...

  20. Microorganisms interacting in a bio filter

    Energy Technology Data Exchange (ETDEWEB)

    Barba-Avila, M. D.; Flores-Tene, F. J.; Moreno-Terrazas, R.; Ramirez-Lopez, E. M.

    2009-07-01

    Biofilm microorganisms developed on a bio filter support media allow the metabolism of volatile organic compounds (VOCs) to carbon dioxide and water. VOCs are present in polluted gaseous streams for varied industrial activities. The main objective of this study was to identify the microorganisms present in the biofilm developed on a bio filter support media using molecular biology techniques. (Author)

  1. 76 FR 53631 - BioPreferred Program

    Science.gov (United States)

    2011-08-29

    ... biobased preferred procurement program (one part of the BioPreferred Program) is available on the Internet... reference Amend: to: And adding in its place: Sec. 2904.2, definition of ``Biobased part 2902 part 3201. content''. Sec. 2904.2, definition of part 2902 part 3201. ``BioPreferred Product''. Sec....

  2. Biosecurity--The Bio-Link Project.

    Science.gov (United States)

    Johnson, Elaine A.

    2002-01-01

    Describes Bio-Link, the Advanced Technological Education (ATE) Center for Biotechnology established with funding from the National Science Foundation (NSF). Reports that Bio-Link, headquartered at City College of San Francisco, has created a national network and resource base for community colleges, industry, and others interested in biotechnology…

  3. Bio-Conjugates for Nanoscale Applications

    DEFF Research Database (Denmark)

    Villadsen, Klaus

    Bio-conjugates for Nanoscale Applications is the title of this thesis, which covers three different projects in chemical bio-conjugation research, namely synthesis and applications of: Lipidated fluorescent peptides, carbohydrate oxime-azide linkers and N-aryl O-R2 oxyamine derivatives. Lipidated...

  4. EFFECT OF INFLUENT COD CONCENTRATION ON PERFORMANCE OF BIOHYDROGEN PRODUCTION IN CONTINOUS STIRRED TANK REACTOR%进水COD浓度变化对连续流搅拌槽式发酵制氢系统的影响

    Institute of Scientific and Technical Information of China (English)

    韩伟; 陈红; 王占青; 李永峰; 杨传平

    2012-01-01

    利用糖蜜废水作为发酵底物,以连续流搅拌槽式反应器(CSTR)作为反应装置,探讨进水COD浓度变化对厌氧发酵产氢效能的影响.结果表明:在水力停留时间(HRT)为6h,温度为36℃时,CSTR反应器进水COD浓度在2~8g/L范围内变化,即有机负荷(OLR)=8~32kg/(m3 ·d),系统产氢效率和生物量(以挥发性悬浮固体VSS计)随进水浓度的提高而增加,并在进水COD浓度为6g/L时,得到最大产气量和产氢量分别为23.49L/d和8.19L/d.在液相末端产物中,乙醇和乙酸为主要代谢产物,占液相产物总量的82%,为乙醇型发酵.然而,当进水COD浓度升高到8g/L后,生物量和产氢量呈下降趋势,这表明产氢污泥的形成在高浓度底物下可能受到抑制.系统中的产酸发酵类型由乙醇型发酵变为混合酸发酵.发酵气体中H2含量并未随进水浓度的变化而出现明显差异,这反映出CSTR反应器是一个相对稳定的制氢系统.%The continuous stirred tank reactor (CSTR) for bio-hydrogen production was operated under the organic loading rates (OLR) of 8-32kg COD/( m3·d) (COD: Chemical Oxygen Demand) with molasses as the substrate. Increasing substrate concentration (2.0-6.0g/L) gave better biomass content and hydrogen production, signifying that the average cellular activity for H2 production may be enhanced as the substrate concentration increased. The overall maximal biogas and hydrogen production yield were 23.49L/d and 8.19L/d, respectively, both of them occurred at 6g/L. The major soluble products from hydrogen fermentation were ethanol and acetic acid, accounting for 59% and 23% of total liquid fermentation products, respectively. Thus, the dominant H2 producers in the mixed culture belonged to acidogenic bacteria that underwent ethanol-type fermentation. However, the biomass content and hydrogen production yield tended to decrease as the substrate concentration increased to 8g/L, suggesting that granular sludge formation and

  5. Switchable bio-inspired adhesives

    Science.gov (United States)

    Kroner, Elmar

    2015-03-01

    Geckos have astonishing climbing abilities. They can adhere to almost any surface and can run on walls and even stick to ceilings. The extraordinary adhesion performance is caused by a combination of a complex surface pattern on their toes and the biomechanics of its movement. These biological dry adhesives have been intensely investigated during recent years because of the unique combination of adhesive properties. They provide high adhesion, allow for easy detachment, can be removed residue-free, and have self-cleaning properties. Many aspects have been successfully mimicked, leading to artificial, bio-inspired, patterned dry adhesives, and were addressed and in some aspects they even outperform the adhesion capabilities of geckos. However, designing artificial patterned adhesion systems with switchable adhesion remains a big challenge; the gecko's adhesion system is based on a complex hierarchical surface structure and on advanced biomechanics, which are both difficult to mimic. In this paper, two approaches are presented to achieve switchable adhesion. The first approach is based on a patterned polydimethylsiloxane (PDMS) polymer, where adhesion can be switched on and off by applying a low and a high compressive preload. The switch in adhesion is caused by a reversible mechanical instability of the adhesive silicone structures. The second approach is based on a composite material consisting of a Nickel- Titanium (NiTi) shape memory alloy and a patterned adhesive PDMS layer. The NiTi alloy is trained to change its surface topography as a function of temperature, which results in a change of the contact area and of alignment of the adhesive pattern towards a substrate, leading to switchable adhesion. These examples show that the unique properties of bio-inspired adhesives can be greatly improved by new concepts such as mechanical instability or by the use of active materials which react to external stimuli.

  6. PacBio Sequencing and Its Applications

    Institute of Scientific and Technical Information of China (English)

    Anthony Rhoads; Kin Fai Au

    2015-01-01

    Single-molecule, real-time sequencing developed by Pacific BioSciences offers longer read lengths than the second-generation sequencing (SGS) technologies, making it well-suited for unsolved problems in genome, transcriptome, and epigenetics research. The highly-contiguous de novo assemblies using PacBio sequencing can close gaps in current reference assemblies and characterize structural variation (SV) in personal genomes. With longer reads, we can sequence through extended repetitive regions and detect mutations, many of which are associated with dis-eases. Moreover, PacBio transcriptome sequencing is advantageous for the identification of gene isoforms and facilitates reliable discoveries of novel genes and novel isoforms of annotated genes, due to its ability to sequence full-length transcripts or fragments with significant lengths. Addition-ally, PacBio’s sequencing technique provides information that is useful for the direct detection of base modifications, such as methylation. In addition to using PacBio sequencing alone, many hybrid sequencing strategies have been developed to make use of more accurate short reads in conjunction with PacBio long reads. In general, hybrid sequencing strategies are more affordable and scalable especially for small-size laboratories than using PacBio Sequencing alone. The advent of PacBio sequencing has made available much information that could not be obtained via SGS alone.

  7. BIO::Phylo-phyloinformatic analysis using perl

    Directory of Open Access Journals (Sweden)

    Hartmann Klaas

    2011-02-01

    Full Text Available Abstract Background Phyloinformatic analyses involve large amounts of data and metadata of complex structure. Collecting, processing, analyzing, visualizing and summarizing these data and metadata should be done in steps that can be automated and reproduced. This requires flexible, modular toolkits that can represent, manipulate and persist phylogenetic data and metadata as objects with programmable interfaces. Results This paper presents Bio::Phylo, a Perl5 toolkit for phyloinformatic analysis. It implements classes and methods that are compatible with the well-known BioPerl toolkit, but is independent from it (making it easy to install and features a richer API and a data model that is better able to manage the complex relationships between different fundamental data and metadata objects in phylogenetics. It supports commonly used file formats for phylogenetic data including the novel NeXML standard, which allows rich annotations of phylogenetic data to be stored and shared. Bio::Phylo can interact with BioPerl, thereby giving access to the file formats that BioPerl supports. Many methods for data simulation, transformation and manipulation, the analysis of tree shape, and tree visualization are provided. Conclusions Bio::Phylo is composed of 59 richly documented Perl5 modules. It has been deployed successfully on a variety of computer architectures (including various Linux distributions, Mac OS X versions, Windows, Cygwin and UNIX-like systems. It is available as open source (GPL software from http://search.cpan.org/dist/Bio-Phylo

  8. Bio-inspired computation in telecommunications

    CERN Document Server

    Yang, Xin-She; Ting, TO

    2015-01-01

    Bio-inspired computation, especially those based on swarm intelligence, has become increasingly popular in the last decade. Bio-Inspired Computation in Telecommunications reviews the latest developments in bio-inspired computation from both theory and application as they relate to telecommunications and image processing, providing a complete resource that analyzes and discusses the latest and future trends in research directions. Written by recognized experts, this is a must-have guide for researchers, telecommunication engineers, computer scientists and PhD students.

  9. Stinging plants: as future bio-weapon.

    Science.gov (United States)

    Gupta, Sanjay Mohan; Kumar, Kamal

    2016-09-01

    In the present opinion paper, we have been introducing for the first time the stinging plants and/or their biological toxins as novel bio-threat agents that may be used for the development of bio-weapons for self-defence purpose. The selected studied stinging plants are having dual role as nutraceutical and ethno-pharmacological uses apart from their less explored stinging property. However, future detailed work is required for identification and characterization of the precise stinging chemical components that will be used for the formulation of novel bio-warfare agents for self-defence purpose.

  10. Spider Silk: Mother Nature's Bio-Superlens

    Science.gov (United States)

    Monks, James N.; Yan, Bing; Hawkins, Nicholas; Vollrath, Fritz; Wang, Zengbo

    2016-09-01

    This paper demonstrates a possible new microfiber bio near field lens that uses minor ampullate spider silk,spun from the Nephila edulis spider, to create a real time image of a surface using near field optical techniques. The microfiber bio lens is the world's first natural superlens created by exploring biological materials. The resolution of the surface image overcomes the diffraction limit, with the ability to resolve patterns at 100 nm under a standard white light source in reflection mode. This resolution offers further developments in superlens technology and paves the way for new bio optics.

  11. Bio-Inspired, Odor-Based Navigation

    Science.gov (United States)

    2006-03-01

    Bio -Inspired, Odor-Based Navigation THESIS Maynard John Porter III, Captain, USAF AFIT/GE/ENG/06-48 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR...States Government. AFIT/GE/ENG/06-48 Bio -Inspired, Odor-Based Navigation THESIS Presented to the Faculty Department of Electrical and Computer...APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT/GE/ENG/06-48 Bio -Inspired, Odor-Based Navigation Maynard John Porter III, B.S.E.E. Captain

  12. Branding the bio/biomedical engineering degree.

    Science.gov (United States)

    Voigt, Herbert F

    2011-01-01

    The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.

  13. Cognitive bio-radar: The natural evolution of bio-signals measurement.

    Science.gov (United States)

    Malafaia, Daniel; Oliveira, Beatriz; Ferreira, Pedro; Varum, Tiago; Vieira, José; Tomé, Ana

    2016-10-01

    In this article we discuss a novel approach to Bio-Radar, contactless measurement of bio-signals, called Cognitive Bio-Radar. This new approach implements the Bio-Radar in a Software Defined Radio (SDR) platform in order to obtain awareness of the environment where it operates. Due to this, the Cognitive Bio-Radar can adapt to its surroundings in order to have an intelligent usage of the radio frequency spectrum to improve its performance. In order to study the feasibility of such implementation, a SDR based Bio-Radar testbench was developed and evaluated. The prototype is shown to be able to acquire the heartbeat activity and the respiratory effort. The acquired data is compared with the acquisitions from a Biopac research data acquisition system, showing coherent results for both heartbeat and breathing rate.

  14. Nano-Electronics and Bio-Electronics

    Science.gov (United States)

    Srivastava, Deepak; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Viewgraph presentation on Nano-Electronics and Bio-Electronics is discussed. Topics discussed include: NASA Ames nanotechnology program, Potential Carbon Nanotube (CNT) application, CNT synthesis,Computational Nanotechnology, and protein nanotubes.

  15. Bio-Ethanol Production from Poultry Manure

    African Journals Online (AJOL)

    john

    methanol, methane, natural gas, propane, hydrogen, etc. Nevertheless, the .... promise and is capturing the interest of the bio-products industry. However, further ... solid fraction was refrigerated at 4°C in plastic bottles prior to acid hydrolysis.

  16. A Next Generation BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Palima, Darwin; Tauro, Sandeep

    2011-01-01

    We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials....

  17. Wireless MEMs BioSensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Crossfield is proposing to develop a low cost, single chip plant bio-monitor using an embedded MEMs based infrared (IR) spectroscopy gas sensor for carbon dioxide...

  18. Negated bio-events: analysis and identification

    Directory of Open Access Journals (Sweden)

    Nawaz Raheel

    2013-01-01

    Full Text Available Abstract Background Negation occurs frequently in scientific literature, especially in biomedical literature. It has previously been reported that around 13% of sentences found in biomedical research articles contain negation. Historically, the main motivation for identifying negated events has been to ensure their exclusion from lists of extracted interactions. However, recently, there has been a growing interest in negative results, which has resulted in negation detection being identified as a key challenge in biomedical relation extraction. In this article, we focus on the problem of identifying negated bio-events, given gold standard event annotations. Results We have conducted a detailed analysis of three open access bio-event corpora containing negation information (i.e., GENIA Event, BioInfer and BioNLP’09 ST, and have identified the main types of negated bio-events. We have analysed the key aspects of a machine learning solution to the problem of detecting negated events, including selection of negation cues, feature engineering and the choice of learning algorithm. Combining the best solutions for each aspect of the problem, we propose a novel framework for the identification of negated bio-events. We have evaluated our system on each of the three open access corpora mentioned above. The performance of the system significantly surpasses the best results previously reported on the BioNLP’09 ST corpus, and achieves even better results on the GENIA Event and BioInfer corpora, both of which contain more varied and complex events. Conclusions Recently, in the field of biomedical text mining, the development and enhancement of event-based systems has received significant interest. The ability to identify negated events is a key performance element for these systems. We have conducted the first detailed study on the analysis and identification of negated bio-events. Our proposed framework can be integrated with state-of-the-art event

  19. Negated bio-events: analysis and identification

    Science.gov (United States)

    2013-01-01

    Background Negation occurs frequently in scientific literature, especially in biomedical literature. It has previously been reported that around 13% of sentences found in biomedical research articles contain negation. Historically, the main motivation for identifying negated events has been to ensure their exclusion from lists of extracted interactions. However, recently, there has been a growing interest in negative results, which has resulted in negation detection being identified as a key challenge in biomedical relation extraction. In this article, we focus on the problem of identifying negated bio-events, given gold standard event annotations. Results We have conducted a detailed analysis of three open access bio-event corpora containing negation information (i.e., GENIA Event, BioInfer and BioNLP’09 ST), and have identified the main types of negated bio-events. We have analysed the key aspects of a machine learning solution to the problem of detecting negated events, including selection of negation cues, feature engineering and the choice of learning algorithm. Combining the best solutions for each aspect of the problem, we propose a novel framework for the identification of negated bio-events. We have evaluated our system on each of the three open access corpora mentioned above. The performance of the system significantly surpasses the best results previously reported on the BioNLP’09 ST corpus, and achieves even better results on the GENIA Event and BioInfer corpora, both of which contain more varied and complex events. Conclusions Recently, in the field of biomedical text mining, the development and enhancement of event-based systems has received significant interest. The ability to identify negated events is a key performance element for these systems. We have conducted the first detailed study on the analysis and identification of negated bio-events. Our proposed framework can be integrated with state-of-the-art event extraction systems. The

  20. Increase of Bio-Gas Power Potential

    OpenAIRE

    V. Sednin; О. Kraetskaya; I. Prokoрenia

    2012-01-01

    The paper presents a review of industrial technologies for obtaining gas-synthesis which is applicable for bio-gas enrichment process. Comparative characteristics are given in the paper. The paper thoroughly considers a technology of dry methane conversion as the most expedient variant recommended for the application in this case. The bio-gas enrichment carried out during its production expands possibilities and efficiency of its application.

  1. Next Generation BioPhotonics Workstation

    DEFF Research Database (Denmark)

    Glückstad, Jesper

    2010-01-01

    We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials.......We are developing a Next Generation BioPhotonics Workstation to be applied in research on regulated microbial cell growth including their underlying physiological mechanisms, in vivo characterization of cell constituents and manufacturing of nanostructures and meta-materials....

  2. The NCBI BioSystems database.

    Science.gov (United States)

    Geer, Lewis Y; Marchler-Bauer, Aron; Geer, Renata C; Han, Lianyi; He, Jane; He, Siqian; Liu, Chunlei; Shi, Wenyao; Bryant, Stephen H

    2010-01-01

    The NCBI BioSystems database, found at http://www.ncbi.nlm.nih.gov/biosystems/, centralizes and cross-links existing biological systems databases, increasing their utility and target audience by integrating their pathways and systems into NCBI resources. This integration allows users of NCBI's Entrez databases to quickly categorize proteins, genes and small molecules by metabolic pathway, disease state or other BioSystem type, without requiring time-consuming inference of biological relationships from the literature or multiple experimental datasets.

  3. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture.

    Science.gov (United States)

    Fuentes, M C; Calsamiglia, S; Cardozo, P W; Vlaeminck, B

    2009-09-01

    Milk fat depression in cows fed high-grain diets has been related to an increase in the concentration of trans-10 C(18:1) and trans-10,cis-12 conjugated linoleic acid (CLA) in milk. These fatty acids (FA) are produced as a result of the alteration in rumen biohydrogenation of dietary unsaturated FA. Because a reduction in ruminal pH is usually observed when high-concentrate diets are fed, the main cause that determines the alteration in the biohydrogenation pathways is not clear. The effect of pH (6.4 vs. 5.6) and dietary forage to concentrate ratios (F:C; 70:30 F:C vs. 30:70 F:C) on rumen microbial fermentation, effluent FA profile, and DNA concentration of bacteria involved in lipolysis and biohydrogenation processes were investigated in a continuous culture trial. The dual-flow continuous culture consisted of 2 periods of 8 d (5 d for adaptation and 3 d for sampling), with a 2 x 2 factorial arrangement of treatments. Samples from solid and liquid mixed effluents were taken for determination of total N, ammonia-N, and volatile fatty acid concentrations, and the remainder of the sample was lyophilized. Dry samples were analyzed for dry matter, ash, neutral and acid detergent fiber, FA, and purine contents. The pH 5.6 reduced organic matter and fiber digestibility, ammonia-N concentration and flow, and crude protein degradation, and increased nonammonia and dietary N flows. The pH 5.6 decreased the flow of C(18:0), trans-11 C(18:1) and cis-9, trans-11 CLA, and increased the flow of trans-10 C(18:1), C(18:2n-6), C(18:3n-3), trans-11,cis-15 C(18:2) and trans-10,cis-12 CLA in the 1 h after feeding effluent. The pH 5.6 reduced Anaerovibrio lipolytica (32.7 vs. 72.1 pg/10 ng of total DNA) and Butyrivibrio fibrisolvens vaccenic acid subgroup (588 vs. 1,394 pg/10 ng of total DNA) DNA concentrations. The high-concentrate diet increased organic matter and fiber digestibility, nonammonia and bacterial N flows, and reduced ammonia-N concentration and flow. The high

  4. BioMagResBank

    Science.gov (United States)

    Ulrich, Eldon L.; Akutsu, Hideo; Doreleijers, Jurgen F.; Harano, Yoko; Ioannidis, Yannis E.; Lin, Jundong; Livny, Miron; Mading, Steve; Maziuk, Dimitri; Miller, Zachary; Nakatani, Eiichi; Schulte, Christopher F.; Tolmie, David E.; Kent Wenger, R.; Yao, Hongyang; Markley, John L.

    2008-01-01

    The BioMagResBank (BMRB: www.bmrb.wisc.edu) is a repository for experimental and derived data gathered from nuclear magnetic resonance (NMR) spectroscopic studies of biological molecules. BMRB is a partner in the Worldwide Protein Data Bank (wwPDB). The BMRB archive consists of four main data depositories: (i) quantitative NMR spectral parameters for proteins, peptides, nucleic acids, carbohydrates and ligands or cofactors (assigned chemical shifts, coupling constants and peak lists) and derived data (relaxation parameters, residual dipolar couplings, hydrogen exchange rates, pKa values, etc.), (ii) databases for NMR restraints processed from original author depositions available from the Protein Data Bank, (iii) time-domain (raw) spectral data from NMR experiments used to assign spectral resonances and determine the structures of biological macromolecules and (iv) a database of one- and two-dimensional 1H and 13C one- and two-dimensional NMR spectra for over 250 metabolites. The BMRB website provides free access to all of these data. BMRB has tools for querying the archive and retrieving information and an ftp site (ftp.bmrb.wisc.edu) where data in the archive can be downloaded in bulk. Two BMRB mirror sites exist: one at the PDBj, Protein Research Institute, Osaka University, Osaka, Japan (bmrb.protein.osaka-u.ac.jp) and the other at CERM, University of Florence, Florence, Italy (bmrb.postgenomicnmr.net/). The site at Osaka also accepts and processes data depositions. PMID:17984079

  5. BioMagResBank.

    Science.gov (United States)

    Ulrich, Eldon L; Akutsu, Hideo; Doreleijers, Jurgen F; Harano, Yoko; Ioannidis, Yannis E; Lin, Jundong; Livny, Miron; Mading, Steve; Maziuk, Dimitri; Miller, Zachary; Nakatani, Eiichi; Schulte, Christopher F; Tolmie, David E; Kent Wenger, R; Yao, Hongyang; Markley, John L

    2008-01-01

    The BioMagResBank (BMRB: www.bmrb.wisc.edu) is a repository for experimental and derived data gathered from nuclear magnetic resonance (NMR) spectroscopic studies of biological molecules. BMRB is a partner in the Worldwide Protein Data Bank (wwPDB). The BMRB archive consists of four main data depositories: (i) quantitative NMR spectral parameters for proteins, peptides, nucleic acids, carbohydrates and ligands or cofactors (assigned chemical shifts, coupling constants and peak lists) and derived data (relaxation parameters, residual dipolar couplings, hydrogen exchange rates, pK(a) values, etc.), (ii) databases for NMR restraints processed from original author depositions available from the Protein Data Bank, (iii) time-domain (raw) spectral data from NMR experiments used to assign spectral resonances and determine the structures of biological macromolecules and (iv) a database of one- and two-dimensional (1)H and (13)C one- and two-dimensional NMR spectra for over 250 metabolites. The BMRB website provides free access to all of these data. BMRB has tools for querying the archive and retrieving information and an ftp site (ftp.bmrb.wisc.edu) where data in the archive can be downloaded in bulk. Two BMRB mirror sites exist: one at the PDBj, Protein Research Institute, Osaka University, Osaka, Japan (bmrb.protein.osaka-u.ac.jp) and the other at CERM, University of Florence, Florence, Italy (bmrb.postgenomicnmr.net/). The site at Osaka also accepts and processes data depositions.

  6. Lasers for bio-optics

    Science.gov (United States)

    Sona, Alberto

    1992-03-01

    Lasers are being increasingly used in bioptics and in life sciences in general, especially for medical applications for therapy and diagnostics. Lasers are also broadly used in environment sciences to monitor atmospheric parameters and concentrations of molecular species of natural origin or coming from human activities such as the various kind of pollutants. The peculiar features of lasers exploited in these areas are mainly the capability of developing an action or performing a measurement without physical contact with the target and, if required, from a remote position with the assistance of suitable beam delivery systems such as telescopes, microscopes, or optical fibers. These features are directly related to the space and time coherence of the laser light and to the energy storage capability of the laser material which allow an extremely effective concentration of the beam energy in space, direction frequency, or time. A short description of the principle of operation and relevant properties of lasers are given and the most significant properties of the laser emission are briefly reviewed. Lasers for medical applications (mainly for therapy) will be mentioned, pointing out the specific property exploited for the various applications. Finally, examples of laser applications to the environmental sciences will be reported. A summary of the properties exploited in the various bio-optical applications is shown.

  7. Effects of Ruminal Infusion of Garlic Oil on Fermentation Dynamics, Fatty Acid Profile and Abundance of Bacteria Involved in Biohydrogenation in Rumen of Goats

    Directory of Open Access Journals (Sweden)

    Zhi Zhu

    2012-07-01

    Full Text Available This study aimed to investigate the effects of ruminal infusion of garlic oil (GO on fermentation dynamics, fatty acid (FA profile, and abundance of bacteria involved in biohydrogenation in the rumen. Six wethers fitted with ruminal fistula were assigned to two groups for cross-over design with a 14-d interval. Each 30-d experimental period consisted of a 27-d adaptation and a 3-d sample collection. Goats were fed a basal diet without (control or with GO ruminal infusion (0.8 g/d. Ruminal contents collected before (0 h and at 2, 4, 6, 8, and 10 h after morning feeding were used for fermentation analysis, and 0 h samples were further used for FA determination and DNA extraction. Garlic oil had no influence on dry matter intakes of concentrate and hay. During ruminal fermentation, GO had no effects on total VFA concentration and individual VFA molar proportions, whereas GO increased the concentrations of ammonia nitrogen and microbial crude protein (p<0.05. Compared with control, GO group took a longer time for total VFA concentration and propionate molar proportion to reach their respective maxima after morning feeding. The ratio of acetate to propionate in control reduced sharply after morning feeding, whereas it remained relatively stable in GO group. Fatty acid analysis showed that GO reduced saturated FA proportion (p<0.05, while increasing the proportions of C18, t11–18:1 (TVA, c9,t11-conjugated linoleic acid (c9,t11-CLA, t10,c12-CLA, and polyunsaturated FA (p<0.05. The values of TVA/(c9,t11-CLA+TVA and C18:0/(TVA+ C18:0 were reduced by GO (p<0.05. Real-time PCR showed that GO tended to reduce Butyrivibrio proteoclasticus abundance (p = 0.058, whereas GO had no effect on total abundance of the Butyrivibrio group bacteria. A low correlation was found between B. proteoclasticus abundance and C18:0/(TVA+C18:0 (p = 0.910. The changes of fermentation over time suggested a role of GO in delaying the fermentation process and maintaining a

  8. Effects of ruminal infusion of garlic oil on fermentation dynamics, Fatty Acid profile and abundance of bacteria involved in biohydrogenation in rumen of goats.

    Science.gov (United States)

    Zhu, Zhi; Mao, Shengyong; Zhu, Weiyun

    2012-07-01

    This study aimed to investigate the effects of ruminal infusion of garlic oil (GO) on fermentation dynamics, fatty acid (FA) profile, and abundance of bacteria involved in biohydrogenation in the rumen. Six wethers fitted with ruminal fistula were assigned to two groups for cross-over design with a 14-d interval. Each 30-d experimental period consisted of a 27-d adaptation and a 3-d sample collection. Goats were fed a basal diet without (control) or with GO ruminal infusion (0.8 g/d). Ruminal contents collected before (0 h) and at 2, 4, 6, 8, and 10 h after morning feeding were used for fermentation analysis, and 0 h samples were further used for FA determination and DNA extraction. Garlic oil had no influence on dry matter intakes of concentrate and hay. During ruminal fermentation, GO had no effects on total VFA concentration and individual VFA molar proportions, whereas GO increased the concentrations of ammonia nitrogen and microbial crude protein (p<0.05). Compared with control, GO group took a longer time for total VFA concentration and propionate molar proportion to reach their respective maxima after morning feeding. The ratio of acetate to propionate in control reduced sharply after morning feeding, whereas it remained relatively stable in GO group. Fatty acid analysis showed that GO reduced saturated FA proportion (p<0.05), while increasing the proportions of C18, t11-18:1 (TVA), c9,t11-conjugated linoleic acid (c9,t11-CLA), t10,c12-CLA, and polyunsaturated FA (p<0.05). The values of TVA/(c9,t11-CLA+TVA) and C18:0/(TVA+ C18:0) were reduced by GO (p<0.05). Real-time PCR showed that GO tended to reduce Butyrivibrio proteoclasticus abundance (p = 0.058), whereas GO had no effect on total abundance of the Butyrivibrio group bacteria. A low correlation was found between B. proteoclasticus abundance and C18:0/(TVA+C18:0) (p = 0.910). The changes of fermentation over time suggested a role of GO in delaying the fermentation process and maintaining a relatively

  9. Effect of organic loading rate and fill time on the biohydrogen production in a mechanically stirred AnSBBR treating synthetic sucrose-based wastewater.

    Science.gov (United States)

    Inoue, R K; Lima, D M F; Rodrigues, J A D; Ratusznei, S M; Zaiat, M

    2014-11-01

    This study investigated the feasibility to produce biohydrogen of a mechanically stirred anaerobic sequencing batch biofilm reactor (AnSBBR) treating sucrose-based synthetic wastewater. The bioreactor performance (30 °C) was evaluated as to the combined effect of fill time (2, 1.5, and 1 h), cycle length (4, 3, and 2 h), influent concentration (3,500 and 5,250 mg chemical oxygen demand (COD) L(-1)) and applied volumetric organic load (AVOLCT from 9.0 to 27.0 g COD L(-1) d(-1)). AVOLs were varied according to influent concentration and cycle length (t C). The results showed that increasing AVOLCT resulted in a decrease in sucrose removal from 99 to 86 % and in improvement of molar yield per removed load (MYRLS.n) from 1.02 mol H2 mol carbohydrate(-1) at AVOLCT of 9.0 g COD L(-1) d(-1) to maximum value of 1.48 mol H2 mol carbohydrate(-1), at AVOLCT of 18.0 g COD L(-1) d(-1), with subsequent decrease. Increasing AVOLCT improved the daily molar productivity of hydrogen (MPr) from 15.28 to 49.22 mol H2 m(-3) d(-1). The highest daily specific molar productivity of hydrogen (SMPr) obtained was 8.71 mol H2 kg TVS(-1) d(-1) at an AVOLCT of 18.0 g COD L(-1) d(-1). Decreasing t C from 4 to 3 h decreased sucrose removal, increased MPr, and improved SMPr. Increasing influent concentration decreased sucrose removal only at t C of 2 h, improved MYRLS,n and MPr at all t C, and also improved SMPr at t C of 4 and 3 h. Feeding strategy had a significant effect on biohydrogen production; increasing fill time improved sucrose removal, MPr, SMPr, and MYRLS,n for all investigated AVOLCT. At all operational conditions, the main intermediate metabolic was acetic acid followed by ethanol, butyric, and propionic acids. Increasing fill time resulted in a decrease in ethanol concentration.

  10. Multi-Photon Fluorescence Spectroscopy of Fluorescent Bio-Probes and Bio-Molecules

    Science.gov (United States)

    2000-07-01

    the set-up of a multi-photon fluorescence microscope. The information can also be useful in the detection of multi-photon fluorescence in bio -chip...technology. In addition, we have investigated a few highly fluorescent bio -molecules commonly found in plant cells.

  11. Bio-Organic Reaction Animations (BioORA): Student Performance, Student Perceptions, and Instructor Feedback

    Science.gov (United States)

    Gunersel, Adalet Baris; Fleming, Steven

    2014-01-01

    Research shows that computer animations are especially helpful in fields such as chemistry and in this mixed-methods study, we investigate the educational effectiveness of Bio-Organic Reaction Animations (BioORA), a 3-D software, in four undergraduate biochemistry classes at different universities. Statistically significant findings indicate that…

  12. Bio-Organic Reaction Animations (BioORA): Student Performance, Student Perceptions, and Instructor Feedback

    Science.gov (United States)

    Gunersel, Adalet Baris; Fleming, Steven

    2014-01-01

    Research shows that computer animations are especially helpful in fields such as chemistry and in this mixed-methods study, we investigate the educational effectiveness of Bio-Organic Reaction Animations (BioORA), a 3-D software, in four undergraduate biochemistry classes at different universities. Statistically significant findings indicate that…

  13. tmBioC: improving interoperability of text-mining tools with BioC.

    Science.gov (United States)

    Khare, Ritu; Wei, Chih-Hsuan; Mao, Yuqing; Leaman, Robert; Lu, Zhiyong

    2014-01-01

    The lack of interoperability among biomedical text-mining tools is a major bottleneck in creating more complex applications. Despite the availability of numerous methods and techniques for various text-mining tasks, combining different tools requires substantial efforts and time owing to heterogeneity and variety in data formats. In response, BioC is a recent proposal that offers a minimalistic approach to tool interoperability by stipulating minimal changes to existing tools and applications. BioC is a family of XML formats that define how to present text documents and annotations, and also provides easy-to-use functions to read/write documents in the BioC format. In this study, we introduce our text-mining toolkit, which is designed to perform several challenging and significant tasks in the biomedical domain, and repackage the toolkit into BioC to enhance its interoperability. Our toolkit consists of six state-of-the-art tools for named-entity recognition, normalization and annotation (PubTator) of genes (GenNorm), diseases (DNorm), mutations (tmVar), species (SR4GN) and chemicals (tmChem). Although developed within the same group, each tool is designed to process input articles and output annotations in a different format. We modify these tools and enable them to read/write data in the proposed BioC format. We find that, using the BioC family of formats and functions, only minimal changes were required to build the newer versions of the tools. The resulting BioC wrapped toolkit, which we have named tmBioC, consists of our tools in BioC, an annotated full-text corpus in BioC, and a format detection and conversion tool. Furthermore, through participation in the 2013 BioCreative IV Interoperability Track, we empirically demonstrate that the tools in tmBioC can be more efficiently integrated with each other as well as with external tools: Our experimental results show that using BioC reduces >60% in lines of code for text-mining tool integration. The tmBioC toolkit

  14. Bio-films and processes of bio-corrosion and bio-deterioration in oil-and gas-processing industry

    Energy Technology Data Exchange (ETDEWEB)

    Kholodenko, V.P.; Irkhina, I.A.; Chugunov, V.A.; Rodin, V.B.; Zhigletsova, S.K.; Yermolenko, Z.M.; Rudavin, V.V. [State Research Center for Applied Microbiology, Obolensk, Moscow region (Russian Federation)

    2004-07-01

    As a rule, oil- and gas-processing equipment and pipelines are attacked by different microorganisms. Their vital ability determines processes of bio-deterioration and bio-corrosion that lead often to technological accidents and severe environmental contamination. Bio-films presenting a complex association of different microorganisms and their metabolites are responsible for most of damages. In this context, to study the role bio-films may play in processes of bio-damages and in efficacy of protective measures is important. We have developed method of culturing bio-films on the surface of metal coupons by using a natural microbial association isolated from oil-processing sites. Simple and informative methods of determining microbiological parameters of bio-films required to study bio-corrosion processes are also developed. In addition, a method of electron microscopic analysis of bio-films and pitting corrosion is offered. Using these methods, we conducted model experiments to determine the dynamics of corrosion processes depending on qualitative and quantitative composition of bio-films, aeration conditions and duration of the experiment. A harmful effect of soil bacteria and micro-mycetes on different pipeline coatings was also investigated. Experiments were conducted within 3-6 months and revealed degrading action of microorganisms. This was confirmed by axial tension testing of coatings. All these approaches will be used for further development of measures to protect gas- and oil-processing equipment and pipelines against bio-corrosion and bio-damages (first of all biocides). (authors)

  15. Bio-optofluidics and Bio-photonics: Programmable Phase Optics activities at DTU Fotonik

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Pedersen, Finn

    We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micromanipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optica...... the BioPhotonics Workstation platform more photon efficient by studying the 3D distribution of the counter propagating beams and utilizing the Generalized Phase Contrast (GPC) method for illuminating the applied spatial light modulators.......We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micromanipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optical...

  16. Bio-functionalization of biomedical metals.

    Science.gov (United States)

    Xiao, M; Chen, Y M; Biao, M N; Zhang, X D; Yang, B C

    2017-01-01

    Bio-functionalization means to endow biomaterials with bio-functions so as to make the materials or devices more suitable for biomedical applications. Traditionally, because of the excellent mechanical properties, the biomedical metals have been widely used in clinic. However, the utilized functions are basically supporting or fixation especially for the implantable devices. Nowadays, some new functions, including bioactivity, anti-tumor, anti-microbial, and so on, are introduced to biomedical metals. To realize those bio-functions on the metallic biomedical materials, surface modification is the most commonly used method. Surface modification, including physical and chemical methods, is an effective way to alter the surface morphology and composition of biomaterials. It can endow the biomedical metals with new surface properties while still retain the good mechanical properties of the bulk material. Having analyzed the ways of realizing the bio-functionalization, this article briefly summarized the bio-functionalization concepts of six hot spots in this field. They are bioactivity, bony tissue inducing, anti-microbial, anti-tumor, anticoagulation, and drug loading functions. Copyright © 2016. Published by Elsevier B.V.

  17. Sequential dark-photo fermentation and autotrophic microalgal growth for high-yield and CO{sub 2}-free biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yung-Chung [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Chen, Chun-Yen [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China); Lee, Chi-Mei [Department of Environmental Engineering, National Chung Hsing University, Taichung (China); Chang, Jo-Shu [Department of Chemical Engineering, National Cheng Kung University, Tainan 701 (China); Sustainable Environment Research Center, National Cheng Kung University, Tainan (China); Center for Biosciences and Biotechnology, National Cheng Kung University, Tainan (China)

    2010-10-15

    Dark fermentation, photo fermentation, and autotrophic microalgae cultivation were integrated to establish a high-yield and CO{sub 2}-free biohydrogen production system by using different feedstock. Among the four carbon sources examined, sucrose was the most effective for the sequential dark (with Clostridium butyricum CGS5) and photo (with Rhodopseudomonas palutris WP3-5) fermentation process. The sequential dark-photo fermentation was stably operated for nearly 80 days, giving a maximum H{sub 2} yield of 11.61 mol H{sub 2}/mol sucrose and a H{sub 2} production rate of 673.93 ml/h/l. The biogas produced from the sequential dark-photo fermentation (containing ca. 40.0% CO{sub 2}) was directly fed into a microalga culture (Chlorella vulgaris C-C) cultivated at 30 C under 60 {mu}mol/m{sup 2}/s illumination. The CO{sub 2} produced from the fermentation processes was completely consumed during the autotrophic growth of C. vulgaris C-C, resulting in a microalgal biomass concentration of 1999 mg/l composed mainly of 48.0% protein, 23.0% carbohydrate and 12.3% lipid. (author)

  18. Manipulation of Rumen Microbial Fermentation by Polyphenol Rich Solvent Fractions from Papaya Leaf to Reduce Green-House Gas Methane and Biohydrogenation of C18 PUFA.

    Science.gov (United States)

    Jafari, Saeid; Meng, Goh Yong; Rajion, Mohamed Ali; Jahromi, Mohammad Faseleh; Ebrahimi, Mahdi

    2016-06-01

    Different solvents (hexane, chloroform, ethyl acetate, butanol, and water) were used to identify the effect of papaya leaf (PL) fractions (PLFs) on ruminal biohydrogenation (BH) and ruminal methanogenesis in an in vitro study. PLFs at a concentration of 0 (control, CON) and 15 mg/250 mg dry matter (DM) were mixed with 30 mL of buffered rumen fluid and were incubated for 24 h. Methane (CH4) production (mL/250 mg DM) was the highest (P < 0.05) for CON (7.65) and lowest for the chloroform fraction (5.41) compared to those of other PLFs at 24 h of incubation. Acetate to propionate ratio was the lowest for PLFs compared to that of CON. Supplementation of the diet with PLFs significantly (P < 0.05) decreased the rate of BH of C18:1n-9 (oleic acid; OA), C18:2n-6 (linoleic acid; LA), and C18:3n-3 (α-linolenic acid; LNA) compared to that of CON after 24 h of incubation. Real time PCR indicated that total protozoa and total methanogen population in PLFs decreased (P < 0.05) compared to those of CON.

  19. Beef Fat Enriched with Polyunsaturated Fatty Acid Biohydrogenation Products Improves Insulin Sensitivity Without Altering Dyslipidemia in Insulin Resistant JCR:LA-cp Rats.

    Science.gov (United States)

    Diane, Abdoulaye; Borthwick, Faye; Mapiye, Cletos; Vahmani, Payam; David, Rolland C; Vine, Donna F; Dugan, Michael E R; Proctor, Spencer D

    2016-07-01

    The main dietary sources of trans fatty acids are partially hydrogenated vegetable oils (PHVO), and products derived from polyunsaturated fatty acid biohydrogenation (PUFA-BHP) in ruminants. Trans fatty acid intake has historically been associated with negative effects on health, generating an anti-trans fat campaign to reduce their consumption. The profiles and effects on health of PHVO and PUFA-BHP can, however, be quite different. Dairy products naturally enriched with vaccenic and rumenic acids have many purported health benefits, but the putative benefits of beef fat naturally enriched with PUFA-BHP have not been investigated. The objective of the present experiment was to determine the effects of beef peri-renal fat (PRF) with differing enrichments of PUFA-BHP on lipid and insulin metabolism in a rodent model of dyslipidemia and insulin resistance (JCR:LA-cp rat). The results showed that 6 weeks of diet supplementation with beef PRF naturally enriched due to flaxseed (FS-PRF) or sunflower-seed (SS-PRF) feeding to cattle significantly improved plasma fasting insulin levels and insulin sensitivity, postprandial insulin levels (only in the FS-PRF) without altering dyslipidemia. Moreover, FS-PRF but not SS-PRF attenuated adipose tissue accumulation. Therefore, enhancing levels of PUFA-BHP in beef PRF with FS feeding may be a useful approach to maximize the health-conferring value of beef-derived fats.

  20. The effect of organic load and feed strategy on biohydrogen production in an AnSBBR treating glycerin-based wastewater.

    Science.gov (United States)

    Lovato, G; Moncayo Bravo, I S; Ratusznei, S M; Rodrigues, J A D; Zaiat, M

    2015-05-01

    An anaerobic sequencing batch biofilm reactor (AnSBBR) with recirculation of the liquid phase (at 30 °C with 3.5 L of working volume and treating 1.5 L per cycle) treating pure glycerin-based wastewater was applied to biohydrogen production. The applied volumetric organic load (AVOL) ranged from 7.7 to 17.1 kgCOD m(-3) d(-1), combining different influent concentrations (3000, 4000 and 5000 mgCOD L(-1)) and cycle lengths (4 and 3 h). The feed strategy used was to maintain the feeding time equal to half of the cycle time. The increase in the influent concentration and the decrease in cycle length improved the molar yield and molar productivity of hydrogen. The highest productivity (100.8 molH2 m(-3) d(-1)) and highest yield of hydrogen per load removed (20.0 molH2 kgCOD(-1)) were reached when the reactor operated with an AVOL of 17.1 kgCOD m(-3) d(-1), with 68% of H2 and only 3% of CH4 in its biogas. It was also found that pretreatment of the sludge/inoculum does not influence the productivity/yield of the process and the use of crude industrial glycerin-based wastewater in relation to the pure glycerol-based wastewater substantially decreased the production and composition of the hydrogen produced.

  1. Can a fermentation gas mainly produced by rumen Isotrichidae ciliates be a potential source of biohydrogen and a fuel for a chemical fuel cell?

    Science.gov (United States)

    Piela, Piotr; Michałowski, Tadeusz; Miltko, Renata; Szewczyk, Krzysztof; Sikora, Radosław; Grzesiuk, Elzbieta; Sikora, Anna

    2010-07-01

    Bacteria, fungi and protozoa inhabiting the rumen, the largest chamber of the ruminants' stomach, release large quantities of hydrogen during the fermentation of carbohydrates. The hydrogen is used by coexisting methanogens to produce methane in energy-yielding processes. This work shows, for the first time, a fundamental possibility of using a hydrogen-rich fermentation gas produced by selected rumen ciliates to feed a low-temperature hydrogen fuel cell. A biohydrogen fuel cell (BHFC) was constructed consisting of (i) a bioreactor, in which a hydrogen-rich gas was produced from glucose by rumen ciliates, mainly of the Isotrichidae family, deprived of intra- and extracellular bacteria, methanogens, and fungi, and (ii) a chemical fuel cell of the polymer-electrolyte type (PEFC). The fuel cell was used as a tester of the technical applicability of the fermentation gas produced by the rumen ciliates for power generation. The average estimated hydrogen yield was ca. 1.15 mol H2 per mol of fermented glucose. The BHFC performance was equal to the performance of the PEFC running on pure hydrogen. No fuel cell poisoning effects were detected. A maximum power density of 1.66 kW/m2 (PEFC geometric area) was obtained at room temperature. The maximum volumetric power density was 128 W/m3 but the coulombic efficiency was only ca. 3.8%. The configuration of the bioreactor limited the continuous operation time of this BHFC to ca. 14 hours.

  2. Single-Stage Operation of Hybrid Dark-Photo Fermentation to Enhance Biohydrogen Production through Regulation of System Redox Condition: Evaluation with Real-Field Wastewater

    Directory of Open Access Journals (Sweden)

    Rashmi Chandra

    2015-04-01

    Full Text Available Harnessing hydrogen competently through wastewater treatment using a particular class of biocatalyst is indeed a challenging issue. Therefore, biohydrogen potential of real-field wastewater was evaluated by hybrid fermentative process in a single-stage process. The cumulative hydrogen production (CHP was observed to be higher with distillery wastewater (271 mL than with dairy wastewater (248 mL. Besides H2 production, the hybrid process was found to be effective in wastewater treatment. The chemical oxygen demand (COD removal efficiency was found higher in distillery wastewater (56% than in dairy wastewater (45%. Co-culturing photo-bacterial flora assisted in removal of volatile fatty acids (VFA wherein 63% in distillery wastewater and 68% in case of dairy wastewater. Voltammograms illustrated dominant reduction current and low cathodic Tafel slopes supported H2 production. Overall, the augmented dark-photo fermentation system (ADPFS showed better performance than the control dark fermentation system (DFS. This kind of holistic approach is explicitly viable for practical scale-up operation.

  3. Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR.

    Science.gov (United States)

    Chang, Jui-Jen; Chen, Wei-En; Shih, Shiou-Yun; Yu, Sian-Jhong; Lay, Jiunn-Jyi; Wen, Fu-Shyan; Huang, Chieh-Chen

    2006-05-01

    Molecular biological approaches were developed to monitor the potential biohydrogen-producing clostridia in an anaerobic semisolid fermentation system that used brewery yeast waste as the fermentation substrate. The denaturing gradient gel electrophoresis with 16S rDNA gene-targeted polymerase chain reaction (PCR) analysis was employed to confirm the existence of clostridia in the system. Remarkably, reproducible nucleotide sequences of clostridia were obtained from different hydrogen production stages by using hydrogenase gene-targeted reverse transcription (RT)-PCR. These RNA-based information suggested that the predominant hydrogen-producing strains possess either a specific Clostridium pasteurianum-like or a specific Clostridium saccharobutylicum-like hydrogenase sequence. Comparison of the hydrogenase gene-targeted sequence profiles between PCR and RT-PCR revealed that the specific C. pasteurianum-like hydrogenase harboring bacterial strains were dominant in both mRNA and bacterial population level. On the other hand, the specific C. saccharobutylicum-like hydrogenase harboring strains expressed high level of hydrogenase mRNA but may not be dominant in population. Furthermore, quantitative real-time RT-PCR analysis showed the expression pattern of the clostridial hydrogenase mRNA and may serve as an activity index for the system.

  4. Single-Stage Operation of Hybrid Dark-Photo Fermentation to Enhance Biohydrogen Production through Regulation of System Redox Condition: Evaluation with Real-Field Wastewater.

    Science.gov (United States)

    Chandra, Rashmi; Nikhil, G N; Mohan, S Venkata

    2015-04-28

    Harnessing hydrogen competently through wastewater treatment using a particular class of biocatalyst is indeed a challenging issue. Therefore, biohydrogen potential of real-field wastewater was evaluated by hybrid fermentative process in a single-stage process. The cumulative hydrogen production (CHP) was observed to be higher with distillery wastewater (271 mL) than with dairy wastewater (248 mL). Besides H₂ production, the hybrid process was found to be effective in wastewater treatment. The chemical oxygen demand (COD) removal efficiency was found higher in distillery wastewater (56%) than in dairy wastewater (45%). Co-culturing photo-bacterial flora assisted in removal of volatile fatty acids (VFA) wherein 63% in distillery wastewater and 68% in case of dairy wastewater. Voltammograms illustrated dominant reduction current and low cathodic Tafel slopes supported H₂ production. Overall, the augmented dark-photo fermentation system (ADPFS) showed better performance than the control dark fermentation system (DFS). This kind of holistic approach is explicitly viable for practical scale-up operation.

  5. Performance evaluation and phylogenetic characterization of anaerobic fluidized bed reactors using ground tire and pet as support materials for biohydrogen production.

    Science.gov (United States)

    Barros, Aruana Rocha; Adorno, Maria Angela Tallarico; Sakamoto, Isabel Kimiko; Maintinguer, Sandra Imaculada; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz

    2011-02-01

    This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30°C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8h. The reactor R1 operating with a HRT of 2h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2)mol(-1) glucose with 1.3mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter.

  6. Evaluation of biohydrogenation rate of canola vs. soya bean seeds as unsaturated fatty acids sources for ruminants in situ.

    Science.gov (United States)

    Pashaei, S; Ghoorchi, T; Yamchi, A

    2016-04-01

    An experiment was conducted to study disappearance of C14 to C18 fatty acids, lag times and biohydrogenation (BH) rates of C18 fatty acids of ground soya bean and canola seeds in situ. Three ruminally fistulated Dallagh sheep were used to determine ruminal BH of unsaturated fatty acids (UFAs). Differences in the disappearance of fatty acids through the bags and lag times were observed between the oilseeds. We saw that the longer the incubation time of the oilseeds in the rumen, the lower the content of C18:2 and C18:3. Significantly higher lag times for both C18:2 and C18:3 were observed in ground canola compared to ground soya bean. BH rates of C18:2 and C18:3 fatty acids in soya bean were three times higher than those of canola. These results suggest that the fatty acid profile of fat source can affect the BH of UFAs by rumen micro-organisms. So that UFAs of canola had higher ability to escape from ruminal BH. It seems that fatty acid profile of ruminant products is more affected by canola seed compared to soya bean seed. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  7. The 3rd DBCLS BioHackathon

    DEFF Research Database (Denmark)

    Katayama, Toshiaki; Wilkinson, Mark D; Micklem, Gos

    2013-01-01

    together representatives from public databases, analytical tool providers, and cyber-infrastructure researchers to jointly tackle important challenges in the area of in silico biological research. RESULTS: The theme of BioHackathon 2010 was the 'Semantic Web', and all attendees gathered with the shared......ABSTRACT: BACKGROUND: BioHackathon 2010 was the third in a series of meetings hosted by the Database Center for Life Sciences (DBCLS) in Tokyo, Japan. The overall goal of the BioHackathon series is to improve the quality and accessibility of life science research data on the Web by bringing...... goal of producing Semantic Web data from their respective resources, and/or consuming or interacting those data using their tools and interfaces. We discussed on topics including guidelines for designing semantic data and interoperability of resources. We consequently developed tools and clients...

  8. BioSense 2.0

    Science.gov (United States)

    Chester, Kelley G.

    2013-01-01

    Objective To familiarize public health practitioners with the BioSense 2.0 application and its use in all hazard surveillance. Introduction BioSense 2.0 protects the health of the American people by providing timely insight into the health of communities, regions, and the nation by offering a variety of features to improve data collection, standardization, storage, analysis, and collaboration. BioSense 2.0 is the result of a partnership between the Centers for Disease Control and Prevention (CDC) and the public health community to track the health and well-being of communities across the country. In 2010, the BioSense Program began a redesign effort to improve features such as centralized data mining and addressing concerns that the system could not meet its original objective to provide early warning or detect local outbreaks. Methods Using the latest technology, BioSense 2.0 integrates current health data shared by health departments from a variety of sources to provide insight on the health of communities and the country. By getting more information faster, local, state, and federal public health partners can detect and respond to more outbreaks and health events more quickly. From flu outbreaks to car accidents, BioSense 2.0 provides the critical data, information, and tools that public health officials need to better understand and address health problems at the local, state, regional, and national levels. Also, by knowing what is happening across local borders, public health professionals can anticipate potential health problems and respond effectively to protect the health of all people. The demonstration will include a basic overview of the BioSense 2.0 application and the functionality available to public health departments and their data providers. The presenter will also show an example of how BioSense 2.0 can be used in a real-world public health example. Conclusions Over the past two years much has been accomplished during the redesign effort. Bio

  9. Bio-based liquid crystalline polyesters

    Science.gov (United States)

    Wilsens, Carolus; Rastogi, Sanjay; Dutch Collaboration

    2013-03-01

    The reported thin-film polymerization has been used as a screening method in order to find bio-based liquid crystalline polyesters with convenient melting temperatures for melt-processing purposes. An in depth study of the structural, morphological and chemical changes occurring during the ongoing polycondensation reactions of these polymers have been performed. Structural and conformational changes during polymerization for different compositions have been followed by time resolved X-ray and Infrared spectroscopy. In this study, bio-based monomers such as vanillic acid and 2,5-furandicarboxylic acid are successfully incorporated in liquid crystalline polyesters and it is shown that bio-based liquid crystalline polymers with high aromatic content and convenient processing temperatures can be synthesized. Special thanks to the Dutch Polymer Institute for financial support

  10. Bio-Manufacturing to market pilot project

    Energy Technology Data Exchange (ETDEWEB)

    Dressen, Tiffaney [Univ. of California, Berkeley, CA (United States)

    2017-09-25

    The Bio-Manufacturing to Market pilot project was a part of the AMJIAC, the Advanced Manufacturing Jobs and Innovation Accelerator Challenge grant. This internship program set out to further define and enhance the talent pipeline from the University and local Community Colleges to startup culture in East Bay Area, provide undergraduate STEM students with opportunities outside academia, and provide startup companies with much needed talent. Over the 4 year period of performance, the Bio-Manufacturing to Market internship program sponsored 75 undergraduate STEM students who were able to spend anywhere from one to six semesters working with local Bay Area startup companies and DOE sponsored facilities/programs in the biotech, bio-manufacturing, and biomedical device fields.

  11. BIOS、CMOS和BIOS SETUP程序

    Institute of Scientific and Technical Information of China (English)

    海丽切木·阿不来提

    2004-01-01

    BIOS SETUP程序的任务是将硬件参数存放在BIOS参数存储器——CMOS中,CMOS需要电池供电来保存这些参数,以便于下次启动时使用.本文主要介绍了BIOS ROM的概念,BIOS的存放地点,BIOS的分类,BIOS主要内容,BIOS功能,CMOS RAM的概念,CMOS RAM的特点,CMOS RAM的内容,BIOS SETUP程序,SETUP存放地点,SETUP的类型,进入SETUP程序的方法和SETUP的设置等内容.

  12. Upscaling of Bio-mediated Soil Improvement

    Energy Technology Data Exchange (ETDEWEB)

    J. T. DeJong; B. C. Martinez; B. M. Mortensen; D. C. Nelson; J. T. Waller; M. H. Weil; T. R. Ginn; T. Weathers; T. Barkouki; Y. Fujita; G. Redden; C. Hunt; D. Major; B. Tunyu

    2009-10-01

    As demand for soil improvement continues to increase, new, sustainable, and innocuous methods are needed to alter the mechanical properties of soils. Recent research has demonstrated the potential of bio-mediated soil improvement for geotechnical applications (DeJong et al. 2006, Whiffin et al. 2007). Upscaling the bio-mediated treatment process for in situ implementation presents a number of challenges to be addressed, including soil and pore fluid interactions, bioaugmentation versus biostimulation of microbial communities, controlled distribution of mediated calcite precipitation, and permanence of the cementation. Current studies are utilizing large-scale laboratory experiments, non-destructive geophysical measurements, and modeling, to develop an optimized and predictable bio-mediated treatment method.

  13. Dry electrode bio-potential recordings.

    Science.gov (United States)

    Gargiulo, Gaetano; Bifulco, Paolo; McEwan, Alistair; Nasehi Tehrani, Joubin; Calvo, Rafael A; Romano, Maria; Ruffo, Mariano; Shephard, Richard; Cesarelli, Mario; Jin, Craig; Mohamed, Armin; van Schaik, André

    2010-01-01

    As wireless bio-medical long term monitoring moves towards personal monitoring it demands very high input impedance systems capable to extend the reading of bio-signal during the daily activities offering a kind of "stress free", convenient connection, with no need for skin preparation. In particular we highlight the development and broad applications of our own circuits for wearable bio-potential sensor systems enabled by the use of an FET based amplifier circuit with sufficiently high impedance to allow the use of passive dry electrodes which overcome the significant barrier of gel based contacts. In this paper we present the ability of dry electrodes in long term monitoring of ECG, EEG and fetal ECG.

  14. Determining the bio-based content of bio-plastics used in Thailand by radiocarbon analysis

    Science.gov (United States)

    Ploykrathok, T.; Chanyotha, S.

    2017-06-01

    Presently, there is an increased interest in the development of bio-plastic products from agricultural materials which are biodegradable in order to reduce the problem of waste disposal. Since the amount of modern carbon in bio-plastics can indicate how much the amount of agricultural materials are contained in the bio-plastic products, this research aims to determine the modern carbon in bio-plastic using the carbon dioxide absorption method. The radioactivity of carbon-14 contained in the sample is measured by liquid scintillation counter (Tri-carb 3110 TR, PerkinElmer). The percentages of bio-based content in the samples were determined by comparing the observed modern carbon content with the values contained in agricultural raw materials. The experimental results show that only poly(lactic acid) samples have the modern carbon content of 97.4%, which is close to the agricultural materials while other bio-plastics types are found to have less than 50% of the modern carbon content. In other words, most of these bio-plastic samples were mixed with other materials which are not agriculturally originated.

  15. Bio-methanol from Bio-oil Reforming Syngas Using Dual-reactor

    Institute of Scientific and Technical Information of China (English)

    Tong-qi Ye; Shi-zhi Yan; Yong Xu; Song-bai Qiu; Yong Liu; Quan-xin Li

    2011-01-01

    A dual-reactor,assembled with the on-line syngas conditioning and methanol synthesis,was successfully applied for high efficient conversion of rich CO2 bio-oil derived syngas to bio-methanol.In the forepart catalyst bed reactor,the catalytic conversion can effectively adjust the rich-CO2 crude bio-syngas into the CO-containing bio-syngas using the CuZnAlZr catalyst.After the on-line syngas conditioning at 450 ℃,the CO2/CO ratio in the biosyngas significantly decreased from 6.3 to 1.2.In the rearward catalyst bed reactor,the conversion of the conditioned bio-syngas to bio-methanol shows the maximum yield about 1.21 kg/(kgcatal·h) MeOH with a methanol selectivity of 97.9% at 260 ℃ and 5.05 MPa using conventional CuZnAl catalyst,which is close to the level typically obtained in the conventional methanol synthesis process using natural gas.The influences of temperature,pressure and space velocity on the bio-methanol synthesis were also investigated in detail.

  16. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char.

    Science.gov (United States)

    Moralı, Uğur; Yavuzel, Nazan; Şensöz, Sevgi

    2016-12-01

    Slow pyrolysis of hornbeam (Carpinus betulus L.) sawdust was performed to produce bio-oil and bio-char. The operational variables were as follows: pyrolysis temperature (400-600°C), heating rate (10-50°Cmin(-1)) and nitrogen flow rate (50-150cm(3)min(-1)). Physicochemical and thermogravimetric characterizations of hornbeam sawdust were performed. The characteristics of bio-oil and bio-char were analyzed on the basis of various spectroscopic and chromatographic techniques such as FTIR, GC-MS, 1H NMR, SEM, BET. Higher heating value, density and kinematic viscosity of the bio-oil with maximum yield of 35.28% were 23.22MJkg(-1), 1289kgm(-3) and 0.6mm(2)s(-1), respectively. The bio-oil with relatively high fuel potential can be obtained from the pyrolysis of the hornbeam sawdust and the bio-char with a calorific value of 32.88MJkg(-1) is a promising candidate for solid fuel applications that also contributes to the preservation of the environment.

  17. Bio-microfluidics: biomaterials and biomimetic designs.

    Science.gov (United States)

    Domachuk, Peter; Tsioris, Konstantinos; Omenetto, Fiorenzo G; Kaplan, David L

    2010-01-12

    Bio-microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub-micrometer scale, offer applications ranging from lab-on-a-chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio-microfluidic materials, designs and applications are examined. Biopolymers enable bio-microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio-microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self-regulating valves, microlens arrays and drug release systems, vital for integrated bio-microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio-related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.

  18. ¿Bioética narrativa o narrativa bioética?

    Directory of Open Access Journals (Sweden)

    Miguel Kottow

    2016-01-01

    Full Text Available Desde los inicios de la bioética, se presenta y agudiza el conflicto entre biomedicina científica basada en evidencia y la bioética preocupada de valores personales y participativos expresados en el consentimiento informado. La medicina terapéutica y la investigación biomédica propician la participación autónoma de pacientes y probandos, la cual se expresa en la narrativa que destaca los valores existenciales de cada persona y el contexto social donde vive. Las humanidades médicas son convocadas para sensibilizar a los profesionales de la salud en sus tareas. Su influencia por elevar los elementos narrativos en la comunicación biomédica ha sido insuficiente y de influencia decreciente, su aporte ancilar a la bioética narrativa no ha logrado evitar un academicismo extremo y una irrelevancia social de la disciplina bioética que está en riesgo de ser marginada, desoída y precipitada en una crisis de validación. Sugiere este artículo atender fuentes no académicas que se muestran plenamente competentes y atractivas para encarar los problemas que la bioética no ha sabido resolver, destacando la publicación de novelas ficcionales que abordan temas bioéticos de forma amena y sistemática, que impactan más allá de las deliberaciones anémicas de la bioética: The Children Act (I. McKewan, 2014 y Reparar a los vivo (M. de Kerangal, M., 2015 son presentadas como propuesta de inaugurar la narrativa bioética, que es el relato ficcional de temas bioéticos.

  19. State and parameter estimation in bio processes

    Energy Technology Data Exchange (ETDEWEB)

    Maher, M.; Roux, G.; Dahhou, B. [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France)]|[Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France)

    1994-12-31

    A major difficulty in monitoring and control of bio-processes is the lack of reliable and simple sensors for following the evolution of the main state variables and parameters such as biomass, substrate, product, growth rate, etc... In this article, an adaptive estimation algorithm is proposed to recover the state and parameters in bio-processes. This estimator utilizes the physical process model and the reference model approach. Experimentations concerning estimation of biomass and product concentrations and specific growth rate, during batch, fed-batch and continuous fermentation processes are presented. The results show the performance of this adaptive estimation approach. (authors) 12 refs.

  20. Context Dependent Analysis of BioAmbients

    DEFF Research Database (Denmark)

    Pilegaard, Henrik; Nielson, Flemming; Nielson, Hanne Riis

    2006-01-01

    BioAmbients is a derivative of mobile ambients that has shown promise of describing interesting features of the behaviour of biological systems. The technical contribution of this paper is to extend the Flow Logic approach to static analysis with a couple of new techniques in order to give precise...... information about the behaviour of systems written in BioAmbients. Applying the development to a simple model of a cell releasing nutrients from food compunds we illustrate how the proposed analysis does indeed improve on previous efforts....

  1. Bioética y democracia

    OpenAIRE

    Sádaba, Javier

    2006-01-01

    “El presente artículo pretende subrayar las principales consecuencias políticas de la revolución genética contemporánea. Comienza explicando el nacimiento de la bioética como disciplina surgida a partir de la necesidad epistemológica de crear una nueva república del saber con una metodología propia. La bioética se centra en la aplicación de la ética al ámbito de la estructura profunda de nuestras vidas, susceptible de redefi nición desde que hemos conseguido conocer el funciona...

  2. Bio-engineering in the Baltic Sea

    DEFF Research Database (Denmark)

    Zandersen, Marianne

    2011-01-01

    Bio-engineering in the Baltic Sea – value of water quality improvements & risk perceptions Dr. Marianne Zandersen1 Department of Environmental Science, Aarhus University Abstract The Baltic Sea is heavily eutrofied and the trend has gone from bad to worse. The hypoxic zone has increased about 4...... of the water column to the bottom waters/deepwater. The expected effects include a slowing down of the sediment release from the bottom and improvement of the possibilities for aerobic bacterial decomposition and over time for the establishment of fauna. The projects test a bio-engineered approach to speeding...

  3. Context Dependent Analysis of BioAmbients

    DEFF Research Database (Denmark)

    Pilegaard, Henrik; Nielson, Flemming; Nielson, Hanne Riis

    2006-01-01

    BioAmbients is a derivative of mobile ambients that has shown promise of describing interesting features of the behaviour of biological systems. The technical contribution of this paper is to extend the Flow Logic approach to static analysis with a couple of new techniques in order to give precise...... information about the behaviour of systems written in BioAmbients. Applying the development to a simple model of a cell releasing nutrients from food compunds we illustrate how the proposed analysis does indeed improve on previous efforts....

  4. Research on Miniature Hexapod Bio-robot

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper described the structure and control of a new kind of miniature hexapod bio-robot, analyzed the moving principle of the robot. The robot is based on the principle of bionics, its structure is simple, design novel, unique. It can move forwards and backwards. The external dimensions of bio-robot is: length 30 mm,width 40 mm, height 20 mm, weight 6.3 g. Some tests about the model robot were made. The experimental results show that the robot has good mobility.

  5. Bio-optofluidics and Bio-photonics: Programmable Phase Optics activities at DTU Fotonik

    DEFF Research Database (Denmark)

    Bañas, Andrew Rafael; Palima, Darwin; Pedersen, Finn

    We present ongoing research and development activities for constructing a compact next generation BioPhotonics Workstation and a Bio-optofluidic Cell Sorter (cell-BOCS) for all-optical micromanipulation platforms utilizing low numerical aperture beam geometries. Unlike conventional high NA optical...... tweezers, the BioPhotonics workstation is e.g. capable of long range 3D manipulation. This enables a variety of biological studies such as manipulation of intricate microfabricated assemblies or for automated and parallel optofluidic cell sorting. To further reduce its overhead, we propose ways of making...

  6. The fairy tale of bio-ethanol. Het sprookje van de bio-ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Beverloo, W.A. (Vakgroep Levensmiddelentechnologie, Landbouwuniversiteit Wageningen (Netherlands))

    1992-03-01

    Agricultural products can be converted into bio-ethanol. Proponents of the bio-ethanol production however use inaccurate arguments with regard to the comparison of the prices per liter for bio-ethanol and petrol instead of using the net heating value of the fuels. Also their basic assumptions concerning the energy efficiency or the energy balances or the carbon dioxide emissions are incorrect. The production of biomass for energy does not serve any other societal interest than subsidized employment for agricultural farmers. 4 tabs., 9 refs.

  7. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    Science.gov (United States)

    Elliott, Douglas C.; Hu, Jianli; Hart, Todd R.; Neuenschwander, Gary G.

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  8. JPRS Report, Science & Technology, Japan, Bio-Functional Materials.

    Science.gov (United States)

    1990-01-17

    BIO -Functional Materials Selected abstracts on the design, structure, and functions of bio -functional materials; "priority areas of research" sponsored by the Ministry of Education, Science and Culture

  9. Challenges for bio-based products in sustainable value chains

    OpenAIRE

    L. Cardon; Lin, J.W.; De Groote, M.; Ragaert, K.; Kopecka, J.A.; Koster, R.P.

    2011-01-01

    This work concerns studies related to strategic development of products in which bio-based plastics are or will be applied, referred to as bio-based products. The studies cover (1) current and potential benefits of bio-based products in extended value chains including activities after end-of-life of products, (2) value communication between stakeholders in extended value chains, and (3) creating an integrated development approach for optimized bio-based products. Most existing models for valu...

  10. Bioenergy Status Document 2012; Statusdocument Bio-energie 2012

    Energy Technology Data Exchange (ETDEWEB)

    Bles, M.; Schepers, B.; Van Grinsven, A.; Bergsma, G.; Croezen, H. [CE Delft, Delft (Netherlands)

    2013-05-15

    In addition to a review and characterisation of the current situation, the report contains an update on government policies on bio-energy and a review of the sources and sustainability of the biomass used in the Netherlands [Dutch] Het statusdocument bio-energie 2012 geeft de huidige status weer van bio-energie in Nederland, inclusief trends en verwachtingen voor de toekomst. Het doel van dit document is inzicht verstrekken in de ontwikkelingen van bio-energie, voor overheden en marktpartijen.

  11. Boron brings big benefits to bio-based blends

    Science.gov (United States)

    The solution to the problems with bio-based lubrication can be approached by a combination of blending and additive strategies. However, many additives do not show efficacy when used in bio-based lubricants. Additive addition also lowers the bio-based content of the blend, which in turn limits the a...

  12. Challenges for bio-based products in sustainable value chains

    NARCIS (Netherlands)

    Cardon, L.; Lin, J.W.; De Groote, M.; Ragaert, K.; Kopecka, J.A.; Koster, R.P.

    2011-01-01

    This work concerns studies related to strategic development of products in which bio-based plastics are or will be applied, referred to as bio-based products. The studies cover (1) current and potential benefits of bio-based products in extended value chains including activities after end-of-life of

  13. Challenges for bio-based products in sustainable value chains

    NARCIS (Netherlands)

    Cardon, L.; Lin, J.W.; De Groote, M.; Ragaert, K.; Kopecka, J.A.; Koster, R.P.

    2011-01-01

    This work concerns studies related to strategic development of products in which bio-based plastics are or will be applied, referred to as bio-based products. The studies cover (1) current and potential benefits of bio-based products in extended value chains including activities after end-of-life of

  14. [Implantable loop recorder BioMonitor 2 (Biotronik)].

    Science.gov (United States)

    Lewalter, Thorsten; Jilek, Clemens

    2016-12-01

    The implantable loop recorder BioMonitor 2 is available with an emphasis on syncope and one on detection of atrial tachycardias. The BioMonitor 2 can be easily implanted. The BioMonitor 2 pilot study showed a high and over time stable signal and the telemetric performance was above average.

  15. 78 FR 39327 - Bio Diagnostic International; Denial of Application

    Science.gov (United States)

    2013-07-01

    ... Doc No: 2013-15704] DEPARTMENT OF JUSTICE Drug Enforcement Administration [Docket No. 11-63] Bio... of Diversion Control, Drug Enforcement Administration, issued an Order to Show Cause to Bio... application of Bio Diagnostic International, Inc., for a DEA Certificate of Registration as a distributor...

  16. Bio-politics Reflexes” or something about what happens with Bio-politics today

    Directory of Open Access Journals (Sweden)

    Viorella Manolache

    2013-04-01

    Full Text Available Under the pressure dictated by Western modernity movements, life finally enters within strategic (long term relationships circuit. The present study establishes that, bio-politics and bio-power denounces the paradigm of politicization of the biological life. Foucault’s late writings confirm the subordination of bio-politics to the technologies of power, which integrate / reduce life to biological continuity of the species, to the objectification of individual body or investigation of self-techniques, that would allow (beyond the corset of the institutional, the (re affirmation of subjectivity as a force or a form of resistance. The present reactivation of the bio model establishes that we cannot evade Foucault’s view, in which, the biology- meeting – politics confirms that, none of the terms no longer retains its original meaning.

  17. BioProject Number PRJNA230524

    Science.gov (United States)

    This BioProject consists of raw genotyping-by-sequencing data collected in 96-plex format on an Illumina HiSeq 2000 sequencing system. There were four to six experimental replicates for each of the 46 plants. The development of tens of thousands of mapped SNP markers in wild tomato species was hig...

  18. Bio-antioxidant of Anthraquinone Derivatives

    Institute of Scientific and Technical Information of China (English)

    CUI,Jian; LI,Zhao-Long; HONG,Xiao-Yin

    2004-01-01

    @@ The Rubiaceae family is well known for containing anthraquinones. More specifically, lapachol and its analogues are known to possess antitumor, antibiotic, antimalarial and antiulceric activities.[1] Several report indicated that some quinones containing OH in its structure were found to have higher bio-activity than quinines lacking the OH group.

  19. BioNet Digital Communications Framework

    Science.gov (United States)

    Gifford, Kevin; Kuzminsky, Sebastian; Williams, Shea

    2010-01-01

    BioNet v2 is a peer-to-peer middleware that enables digital communication devices to talk to each other. It provides a software development framework, standardized application, network-transparent device integration services, a flexible messaging model, and network communications for distributed applications. BioNet is an implementation of the Constellation Program Command, Control, Communications and Information (C3I) Interoperability specification, given in CxP 70022-01. The system architecture provides the necessary infrastructure for the integration of heterogeneous wired and wireless sensing and control devices into a unified data system with a standardized application interface, providing plug-and-play operation for hardware and software systems. BioNet v2 features a naming schema for mobility and coarse-grained localization information, data normalization within a network-transparent device driver framework, enabling of network communications to non-IP devices, and fine-grained application control of data subscription band width usage. BioNet directly integrates Disruption Tolerant Networking (DTN) as a communications technology, enabling networked communications with assets that are only intermittently connected including orbiting relay satellites and planetary rover vehicles.

  20. Jatropha bio-diesel production and use

    Energy Technology Data Exchange (ETDEWEB)

    Achten, W.M.J.; Aerts, R.; Muys, B. [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E Box 2411, BE-3001 Leuven (Belgium); Verchot, L. [World Agroforestry Centre (ICRAF) Head Quarters, United Nations Avenue, P.O. Box 30677, Nairobi (Kenya); Franken, Y.J. [FACT Foundation, Horsten 1, 5612 AX Eindhoven (Netherlands); Mathijs, E. [Katholieke Universiteit Leuven, Division Agricultural and Food Economics, Willem de Croylaan 42 Box 2424, BE-3001 Leuven (Belgium); Singh, V.P. [World Agroforestry Centre (ICRAF) Regional Office for South Asia, CG Block, 1st Floor, National Agricultural Science Centre, Dev Prakash Shastri Marg, Pusa, New Delhi 110 012 (India)

    2008-12-15

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied. (author)

  1. Spatial Analysis of BioAmbients

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming; Pilegaard, Henrik

    2004-01-01

    Programming language technology can contribute to the development and understanding of Systems Biology by providing formal calculi for specifying and analysing the dynamic behaviour of biological systems. Our focus is on BioAmbients, a variation of the ambient calculi developed for modelling...

  2. Control Flow Analysis for BioAmbients

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Priami, C.

    2007-01-01

    This paper presents a static analysis for investigating properties of biological systems specified in BioAmbients. We exploit the control flow analysis to decode the bindings of variables induced by communications and to build a relation of the ambients that can interact with each other. We...

  3. Sustainability, polysaccharide science, and bio-economy

    NARCIS (Netherlands)

    Bos, Ten R.; Dam, Van J.E.G.

    2013-01-01

    At the opening of the 2nd EPNOE conference the role and responsibility of polysaccharide scientists was reflected upon and placed in the context of actual global issues like the transition process towards “sustainable bio-economy”. Difficulties in the chain of communication between the different

  4. Immersive Protein Gaming for Bio Edutainment

    Science.gov (United States)

    Cai, Yiyu; Lu, Baifang; Zheng, Jianmin; Li, Lin

    2006-01-01

    Games have long been used as a tool for teaching important subject matter, from concept building to problem solving. Through fun learning, students may further develop their curiosities and interest in their study. This article addresses the issue of learning biomolecular structures by virtual reality gaming. A bio edutainment solution featuring…

  5. Bio-Degradable Plastics Impact On Environment

    Directory of Open Access Journals (Sweden)

    T.SUBRAMANI

    2014-06-01

    Full Text Available The potential of biodegradable polymers and more particularly that of polymers obtained from renewable resources such as the polysaccharides (e.g., starch have long been recognized. However, these biodegradable polymers have been largely used in some applications (e.g., food industry and have not found extensive applications in the packaging industries to replace conventional plastic materials, although they could be an interesting way to overcome the limitation of the petrochemical resources in the future. The fossil fuel and gas could be partially replaced by greener agricultural sources, which should participate in the reduction of CO2 emissions. Bio-based and biodegradable plastics can form the basis for environmentally preferable, sustainable alternative to current materials based exclusively on petroleum feed stocks. These bio-based materials offer value in the sustainability/life-cycle equation by being a part of the biological carbon cycle, especially as it relates to carbon-based polymeric materials such as plastics, water soluble polymers and other carbon based products like lubricants, biodiesel, and detergents. Identification and quantification of bio based content uses radioactive C-14 signature. Biopolymers are generally capable of being utilized by living matter (biodegraded, and so can be disposed in safe and ecologically sound ways through disposal processes (waste management like composting, soil application, and biological wastewater treatment. Single use, short-life, disposable products can be engineered to be bio-based and biodegradable.

  6. Harvesting of microalgae by bio-flocculation

    NARCIS (Netherlands)

    Salim, S.; Bosma, R.; Vermuë, M.H.; Wijffels, R.H.

    2011-01-01

    The high-energy input for harvesting biomass makes current commercial microalgal biodiesel production economically unfeasible. A novel harvesting method is presented as a cost and energy efficient alternative: the bio-flocculation by using one flocculating microalga to concentrate the

  7. Bio-based targeted chemical engineering education

    NARCIS (Netherlands)

    N.M. Márquez Luzardoa; Dr. ir. Jan Venselaar

    2012-01-01

    Avans University of Applied Sciences is redrafting its courses and curricula in view of sustainability. For chemical engineering in particular that implies a focus on 'green' and bio-based processes, products and energy. Avans is situated in the Southwest region of the Netherlands and specifically

  8. NUUK BASIC: The BioBasis programme

    DEFF Research Database (Denmark)

    Bay, Christian; Nymand, Josephine; Aastrup, Peter

    2013-01-01

    The 2011 season was the fourth full season for the BioBasis monitoring programme. Generally, there is a high consistency in data collected during the four years indicating that the data and the procedures used are reliable and sound. A preliminary review of data related to fl owering and plant...

  9. A Review of BioTutor.

    Science.gov (United States)

    Duhrkopf, Richard

    1994-01-01

    A review of BioTutor which is software to accompany the third edition of Neil Campbell's textbook, "Biology," is provided. The review includes a brief description of the software and a discussion of good and bad features of the software. In the closing words, the reviewer expresses a considerable amount of concern regarding the quality of this…

  10. BIO PROSPECTING IN NIGERIA: EVALUATING THE ADEQUACY ...

    African Journals Online (AJOL)

    Professor of Law, Department of Public and International Law, College of Law Afe Baba- ... medical compounds.9 In some countries, a large percentage of prescriptions ... bio resources comprise of staple foods and high value cash crops and have ..... 40 Dutfield, G., Intellectual Property Rights, and Trade and Biodiversity: ...

  11. Spatial Analysis of BioAmbients

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming; Pilegaard, Henrik

    2004-01-01

    Programming language technology can contribute to the development and understanding of Systems Biology by providing formal calculi for specifying and analysing the dynamic behaviour of biological systems. Our focus is on BioAmbients, a variation of the ambient calculi developed for modelling...

  12. Harvesting of microalgae by bio-flocculation

    NARCIS (Netherlands)

    Salim, S.; Bosma, R.; Vermuë, M.H.; Wijffels, R.H.

    2011-01-01

    The high-energy input for harvesting biomass makes current commercial microalgal biodiesel production economically unfeasible. A novel harvesting method is presented as a cost and energy efficient alternative: the bio-flocculation by using one flocculating microalga to concentrate the non-flocculati

  13. Catalytic steam reforming of bio-oil

    DEFF Research Database (Denmark)

    Trane, R.; Dahl, S.; Skjøth-Rasmussen, M.S.;

    2012-01-01

    in an early stage of development and far from industrial application mainly due the short lifetime of the catalysts, but there are also other aspects of the process which need clarification. Future investigations in SR of bio-oil could be to find a sulfur tolerant and stable catalyst, or to investigate...

  14. Bio-gas production from alligator weeds

    Science.gov (United States)

    Latif, A.

    1976-01-01

    Laboratory experiments were conducted to study the effect of temperature, sample preparation, reducing agents, light intensity and pH of the media, on bio-gas and methane production from the microbial anaerobic decomposition of alligator weeds (Alternanthera philoxeroides. Efforts were also made for the isolation and characterization of the methanogenic bacteria.

  15. Taking a view on bio-ontologies

    NARCIS (Netherlands)

    S. Jupp; A. Gibson; J. Malone; H. Parkinson; R. Stevens

    2012-01-01

    We present a technique for separating knowledge representation from application specific views that are currently often conflated within bio-ontologies. Many ontologies contain information for two tasks; one to represent the knowledge of some field of interest and another to support an application t

  16. Design of pyrolysis reactor for production of bio-oil and bio-char simultaneously

    Science.gov (United States)

    Aladin, Andi; Alwi, Ratna Surya; Syarif, Takdir

    2017-05-01

    The residues from the wood industry are the main contributors to biomass waste in Indonesia. The conventional pyrolysis process, which needs a large energy as well as to produce various toxic chemical to the environment. Therefore, a pyrolysis unit on the laboratory scale was designed that can be a good alternative to achieve zero-waste and low energy cost. In this paper attempts to discuss design and system of pyrolysis reactor to produce bio-oil and bio-char simultaneously.

  17. Pathogenic fungi and Bio-control agents: Competitive bio-assay research

    OpenAIRE

    2014-01-01

    Fungi of the genus Trichoderma have a track record of being antagonist to quite of a number of agricultural important pathogens. Trichoderma have some unique characteristics that make it scientifically proven and suitable bio-control agents against varieties of pathogenic organism infecting economic food crops. Trichoderma has the advantage of being environment friendly and not hazardous to the health of human beings, livestock, soil and environment. Competitive bio-assay experiment was carri...

  18. BioProject and BioSample databases at NCBI: facilitating capture and organization of metadata.

    Science.gov (United States)

    Barrett, Tanya; Clark, Karen; Gevorgyan, Robert; Gorelenkov, Vyacheslav; Gribov, Eugene; Karsch-Mizrachi, Ilene; Kimelman, Michael; Pruitt, Kim D; Resenchuk, Sergei; Tatusova, Tatiana; Yaschenko, Eugene; Ostell, James

    2012-01-01

    As the volume and complexity of data sets archived at NCBI grow rapidly, so does the need to gather and organize the associated metadata. Although metadata has been collected for some archival databases, previously, there was no centralized approach at NCBI for collecting this information and using it across databases. The BioProject database was recently established to facilitate organization and classification of project data submitted to NCBI, EBI and DDBJ databases. It captures descriptive information about research projects that result in high volume submissions to archival databases, ties together related data across multiple archives and serves as a central portal by which to inform users of data availability. Concomitantly, the BioSample database is being developed to capture descriptive information about the biological samples investigated in projects. BioProject and BioSample records link to corresponding data stored in archival repositories. Submissions are supported by a web-based Submission Portal that guides users through a series of forms for input of rich metadata describing their projects and samples. Together, these databases offer improved ways for users to query, locate, integrate and interpret the masses of data held in NCBI's archival repositories. The BioProject and BioSample databases are available at http://www.ncbi.nlm.nih.gov/bioproject and http://www.ncbi.nlm.nih.gov/biosample, respectively.

  19. Hydrogen storage alloy electrode; Suiso kyuzo gokin denkyoku

    Energy Technology Data Exchange (ETDEWEB)

    Kato, H.; Shirakawa, R. [The Furukawa Battery Co. Ltd., Fukushima (Japan)

    1997-12-16

    In a previous method of manufacturing of a hydrogen storage alloy electrode incorporated in t nickel-hydrogen battery as an negative electrode, the binding strength among the alloy powder is not so strong and is pulverized and falls off during charge and discharge processes and also it has a problem of lowering of the collecting ability and mechanical strength of the electrode when a large amount of a binder is used in order to prevent the falling off. This invention aims to present a hydrogen storage alloy electrode useful as an negative electrode of a nickel-hydrogen battery which prevents the falling off of the hydrogen storage alloy powder during charge and discharge processes and shows excellent charge and discharge cycle life characteristics for a long period. In this invention, the hydrogen storage alloy powder is bound with a silane coupling agent, more preferably, with a silane coupling agent and a water repellent or/and thickner. A fluorine-containing silane coupling agent is preferred as the silane coupling agent. 6 tabs.

  20. Alkaline phosphatase immobilization onto Bio-Gide(R) and Bio-Oss(R) for periodontal and bone regeneration.

    NARCIS (Netherlands)

    Oortgiesen, D.A.W.; Plachokova, A.S.; Geenen, C.; Meijer, G.J.; Walboomers, X.F.; Beucken, J.J.J.P van den; Jansen, J.B.M.J.

    2012-01-01

    AIM: To evaluate the effect of alkaline phosphatase (ALP) immobilization onto Bio-Gide((R)) in vitro, and to study the in vivo performance of ALP-enriched Bio-Gide((R)) and/or Bio-Oss((R)) with the purpose to enhance periodontal regeneration. MATERIALS AND METHODS: Alkaline phosphatase ALP was

  1. Alkaline phosphatase immobilization onto Bio-Gide(R) and Bio-Oss(R) for periodontal and bone regeneration.

    NARCIS (Netherlands)

    Oortgiesen, D.A.W.; Plachokova, A.S.; Geenen, C.; Meijer, G.J.; Walboomers, X.F.; Beucken, J.J.J.P van den; Jansen, J.B.M.J.

    2012-01-01

    AIM: To evaluate the effect of alkaline phosphatase (ALP) immobilization onto Bio-Gide((R)) in vitro, and to study the in vivo performance of ALP-enriched Bio-Gide((R)) and/or Bio-Oss((R)) with the purpose to enhance periodontal regeneration. MATERIALS AND METHODS: Alkaline phosphatase ALP was immob

  2. Ecology versus economy: is biohydrogen the fuel of the future?; Ecologia contra Economia: ¿es el biohidrogeno el combustible del futuro?

    Energy Technology Data Exchange (ETDEWEB)

    Patino, Rodrigo [Centro de Investigacion y de Estudios Avanzados, Unidad Merida, Merida, Yucatan (Mexico)] e-mail: rtarkus@mda.cinvestav.mx

    2009-09-15

    This work presents a literature review of scientific research on different methodologies developed to produce hydrogen. Current processes to obtain commercial hydrogen are completely unsustainable in terms of the use of natural resources and environmental degradation. Different bioprocesses have been proposed in recent years as environmentally clean alternatives to produce combustible gases, but balance has not yet been obtained between production costs and performance. Therefore, a comparative analysis is performed of the different methods to obtain hydrogen, their limitations and the future prospects for each one. An in-depth reflection is also provided about challenges and recommendations for scientific and technological research aimed at proposing hydrogen (or biohydrogen) as the substitute for fossil fuels over the course of the 21st century, including not only its production but also storage and energy transformation mechanisms. [Spanish] En este trabajo se presenta una revision bibliografica acerca de las distintas metodologias desarrolladas en investigacion cientifica para producir hidrogeno. Los procesos actuales por los que se obtiene hidrogeno comercial son completamente insostenibles en cuanto a la utilizacion de recursos naturales y deterioro del medio ambiente. En los ultimos anos se han propuesto distintos bioprocesos como alternativas medioambientalmente limpias para la produccion del combustible gaseoso, pero aun no se llega a obtener un balance entre los costos y los rendimientos de produccion. Se hace entonces un analisis comparativo de los distintos metodos de obtencion de hidrogeno, de las limitantes presentes y las perspectivas futuras para cada uno de ellos. Tambien se hace una profunda reflexion acerca del reto y la orientacion que deben tener las investigaciones cientificas y tecnologicas para proponer al hidrogeno (o al biohidrogeno) como el combustible que deba sustituir a los combustibles fosiles durante el transcurso del siglo XXI

  3. Starch plus sunflower oil addition to the diet of dry dairy cows results in a trans-11 to trans-10 shift of biohydrogenation.

    Science.gov (United States)

    Zened, A; Enjalbert, F; Nicot, M C; Troegeler-Meynadier, A

    2013-01-01

    Trans fatty acids (FA), exhibit different biological properties. Among them, cis-9,trans-11 conjugated linoleic acid has some interesting putative health properties, whereas trans-10,cis-12 conjugated linoleic acid has negative effects on cow milk fat production and would negatively affect human health. In high-yielding dairy cows, a shift from trans-11 to trans-10 pathway of biohydrogenation (BH) can occur in the rumen of cows receiving high-concentrate diets, especially when the diet is supplemented with unsaturated fat sources. To study this shift, 4 rumen-fistulated nonlactating Holstein cows were assigned to a 4×4 Latin square design with 4 different diets during 4 periods. Cows received 12 kg of dry matter per day of 4 diets based on corn silage during 4 successive periods: a control diet (22% starch, sunflower oil diet supplemented with 5% of sunflower oil (20% starch, 7.6% crude fat), and a high-starch plus sunflower oil diet (33% starch, 7.3% crude fat). Five hours after feeding, proportions of trans-11 BH isomers greatly increased in the rumen content with the addition of sunflower oil, without change in ruminal pH compared with the control diet. Addition of starch to the control diet had no effect on BH pathways but decreased ruminal pH. The addition of a large amount of starch in association with sunflower oil increased trans-10 FA at the expense of trans-11 FA in the rumen content, revealing a trans-11 to trans-10 shift. Interestingly, with this latter diet, ruminal pH did not change compared with a single addition of starch. This trans-11 to trans-10 shift occurred progressively, after a decrease in the proportion of trans-11 FA in the rumen, suggesting that this shift could result from a dysbiosis in the rumen in favor of trans-10-producing bacteria at the expense of those producing trans-11 or a modification of bacterial activities.

  4. Effects of pistachio by-products in replacement of alfalfa hay on populations of rumen bacteria involved in biohydrogenation and fermentative parameters in the rumen of sheep.

    Science.gov (United States)

    Ghaffari, M H; Tahmasbi, A-M; Khorvash, M; Naserian, A-A; Ghaffari, A H; Valizadeh, H

    2014-06-01

    The objective of this study was to investigate the effect of sundried pistachio by-products (PBP) as a replacement of alfalfa hay (AH) on blood metabolites, rumen fermentation and populations of rumen bacteria involved in biohydrogenation (BH) in Baluchi sheep. Four adult male Baluchi sheep (41 ± 1.3 kg, BW) fitted with ruminal cannulae were randomly assigned to four experimental diets in a 4 × 4 Latin square design. The dietary treatments were as follows: (i) control, (ii) 12% PBP (0.33 of AH in basal diet replaced by PBP), (iii) 24% PBP (0.66 of AH in basal diet replaced by PBP) and (iv) 36% PBP (all of AH in basal diet replaced by PBP). The basal diet was 360 g/kg dry matter (DM) alfalfa hay, 160 g/kg DM wheat straw and 480 g/kg DM concentrate. The trial consisted of four periods, each composed of 16 days adaptation and 4 days data collection including measurement of blood metabolites, rumen fermentation and population of bacteria. No differences were observed in rumen pH among the treatments, while rumen ammonia-N concentrations were decreased (p< 0.05) with increasing PBP by up to 36% DM of the diets. Using of 36% PBP in the diet reduced (p < 0.05) total volatile fatty acids (VFA) concentrations and the molar proportion of acetate, while the concentration of propionate, butyrate and acetate to propionate ratio were similar to all other treatments. The concentration of blood urea nitrogen (BUN) decreased (p < 0.01) with increasing PBP by up to 36% DM in the diets of sheep. However, other blood metabolites were not affected by the experimental diets. It was concluded that PBP in replacement of AH had no effects on the relative abundance of Butyrivibrio fibrisolvens and Butyrivibrio proteoclasticus in relation to the control diet.

  5. Biohydrogen production in an AnSBBR treating glycerin-based wastewater: effects of organic loading, influent concentration, and cycle time.

    Science.gov (United States)

    Bravo, I S Moncayo; Lovato, G; Rodrigues, J A D; Ratusznei, S M; Zaiat, M

    2015-02-01

    This study evaluated the influence of the applied volumetric organic load on biohydrogen production in an anaerobic sequencing batch biofilm reactor (AnSBBR) with 3.5 L of liquid medium and treating 1.5 L of glycerin-based wastewater per cycle at 30 °C. Six applied volumetric organic loads (AVOLCT) were generated from the combination of cycle periods (3 and 4 h) and influent concentrations (3000, 4000, and 5000 mg chemical oxygen demand (COD) L(-1)), with values ranging from 7565 to 16,216 mg COD L(-1) day(-1). No clear relationship was found between the applied volumetric organic load and the hydrogen production. However, the highest hydrogen molar production (MPr 67.5 mol H2 m(-3) day(-1)) was reached when the reactor was operated with a cycle period of 4 h and an influent concentration of 5000 mg COD L(-1) (AVOLCT 12,911 mg COD L(-1) day(-1)). This condition also reached the highest molar yield per applied load based on the organic matter (MYALC,m 21.1 mol H2 kg COD(-1)). In addition, the pretreatment of the sludge/inoculum was found to not influence the productivity/yield of the process, and the use of crude glycerol as a sole source of carbon exhibited a clear disadvantage for hydrogen production compared to pure glycerol. The AnSBBR used for the hydrogen production experiments operated with pure glycerol as a sole carbon source exhibited important practical potential.

  6. Bio-hydrogen Production by Anaerobic Fermention of Enterobacter aerogenes in Pure Culture%产气肠杆菌厌氧发酵产氢工艺实验

    Institute of Scientific and Technical Information of China (English)

    张全国; 赫倚风; 胡建军; 王毅; 刘瑞

    2014-01-01

    以产气肠杆菌(Enterobacter aerogenes)为纯菌种,葡萄糖(G)为发酵底物,分别选取25、30、35、38℃的发酵温度,初始pH值为3.5、4.5、5.5、6.5的酸碱度,葡萄糖与蛋白酶消化物的质量比为2、3、6的碳氮比的实验条件进行厌氧发酵产氢工艺及其代谢调控途径的实验.实验结果表明,产气肠杆菌具有一定的耐酸性,耐酸范围为pH值4.5 ~7.0;不同工艺条件下产气肠杆菌发酵产氢的周期在68~156 h之间.产气肠杆菌发酵产氢周期最短为68 h的最优化发酵工艺条件为温度35℃、pH值6.5、碳氮质量比3,其氢气产率达261.5 mL/g,氢气转化率为2.1 mol/mol.

  7. Research status of bio-hydrogen production using continuous stirred tank reactor%利用CSTR生物制氢系统厌氧发酵的研究现状

    Institute of Scientific and Technical Information of China (English)

    赵健慧; 梁乾伟; 冯可心; 程国玲; 李永峰

    2014-01-01

    生物制氢技术在开发能源方面具有重要的现实地位,连续流搅拌槽式反应系统(CSTR)采用机械搅拌,传质效率高,可有效提高产氢效率,同时此设备技术要求较为简单,能大幅降低生物制氢的成本,易于实现氢气的工业化生产.本文阐述了连续流搅拌槽式反应器(CSTR)生物制氢系统的研究进展,着重剖析了CSTR生物制氢系统的影响因素、底物范围和相关的技术研究,并对其发展和实际应用进行了简要论述.

  8. Operation for bio-hydrogen production of CSTR with integration of immobilized and suspended cell process%基于细胞固定化悬浮培养的CSTR反应器运行

    Institute of Scientific and Technical Information of China (English)

    曹逸坤; 李永峰; 程国玲

    2013-01-01

    A new-styled continuous stirred tank reactor (CSTR) seeded with activated sludge attached onto granular activated carbon ( GAC ) was developed for raised hydrogen production using diluted grenadine syrup. Emphasis was placed on the hydrogen producing performance and stability of the reactor. It is found that the temperature of ( 35 ± 1 ) ℃, hydraulic retention time (HRT) of 4 h, influent COD of 6 000 mg/L, the maximum hydrogen production was up to 12.06 L/d. In addition, though pH decreased to 3.42, the microbial growth kept high and COD removal rate reached 50% , demonstrating that the reactor processed the ability of acid resistance.%为提高连续流发酵制氢(CSTR)生物反应器的产氢效能,以红糖水作为发酵底物,通过投加活性炭颗粒作为固定化载体强化活性污泥,形成固定悬浮一体化的新型CSTR反应器.着重探讨反应器内部的稳定性与其产氢性能.结果表明,在温度为(35±1)℃,水力停留时间(HRT)为4h,进水COD为6 000 mg/L时,其最大产氢量可达到12.06 L/d;此外,反应器内部的耐酸性能良好,pH值最低可达3.42,而且在载体颗粒物的作用下,生物量活性保持良好,COD去除率也可高达50%.

  9. Des bio-objets pour la bioéthique. Compte rendu de Bio-Objects: Life in the 21st Century

    Directory of Open Access Journals (Sweden)

    Couture, Vincent

    2014-09-01

    Full Text Available The collective work Bio-Objects: Life in the 21st Century, edited by Niki Vermeulen, Saka Tamminen and Andrew Webster analyzes new forms of life arising from the biosciences in terms of their bio-objectification. Firmly anchored in the field of science and technology studies, this collection invites us to follow bio-objects through the way they challenge the boundaries of the living and their associated social, legal and ethical issues.

  10. Bio fuels. A comparative analysis; Biokraftstoffe. Eine vergleichende Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Norbert; Henke, Jan; Klepper, Gernot

    2009-07-01

    The market for bio fuels is subject to very high dynamics worldwide. Due to the extreme rise of the prices of raw materials as well as due to the retrogressive tax reductions for bio fuels in Germany one hardly invests in bio fuels. Substantial changes are experienced in the markets for fossil raw materials. The prices for agrarian raw material used in this contribution originate from the years 2006 and 2007. The effects of clearly higher oil prices on the bio fuel market are described. The investigation under consideration also deals with criteria of sustainability. The contribution of the individual bio fuels to the reduction of greenhouse gases is analyzed. The costs resulting from this are numerated. This enables a well-established comparison in which less representative bio fuels such as bio methane, BtL fuels and cellulose ethanol also are included.

  11. Combustion characteristics and kinetics of bio-oil

    Institute of Scientific and Technical Information of China (English)

    Ruixia ZHANG; Zhaoping ZHONG; Yaji HUANG

    2009-01-01

    The combustion characteristics of bio-oils derived from rice husk and corn were studied by thermogravimetry analysis. According to the thermo-gravimetry (TG), differential thermogravimetry (DTG) and differential thermal analysis (DTA) curves of bio-oils in air and nitrogen atmosphere, we analyzed the combustion characteristics of different kinds of bio-oils in different atmospheres and worked out the combustion kinetics parameters of the bio-oil, providing reliable base data for the burning of bio-oil. The thermogravimetry indicated that the combustion process of bio-oil was divided into three stages. At the same time, the combustion process can be described by different order reaction models, and with the method of Coats-Redfern, the activation energy and frequency factor of different kinds of bio-oils were obtained.

  12. Generator cooling hydrogen purity improvement system using hydrogen absorbing alloy; Suiso kyuzo gokin riyo hatsudenkinai suiso jundo kojo system

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, H.; Kabutomori, T.; Wakisaka, Y. [Japan Steel Works, Ltd., Tokyo (Japan); Nishimura, Y.; Kogi, T.; Sato, J.; Haruki, N. [Kansai Electric Power Co. Inc., Osaka (Japan); Fujita, T. [Mitsubishi Electric Corp., Tokyo (Japan)

    1998-09-15

    Described herein is a system which uses a hydrogen-absorbing alloy to purify a hydrogen gas stream used as a coolant for power generator. Hydrogen in the stream containing impurities such as nitrogen can be selectively absorbed by sufficiently cooled hydrogen-absorbing alloy. Impurity gases concentrated in the alloy pores are released, and then the alloy is heated to release hydrogen. This purifies hydrogen to at least 99.99%. This system essentially consists of an hydrogen-absorbing unit, hot water production/supply system which circulates hot water of 80 to 90degC to release hydrogen out of the alloy, pretreatment unit, and temperature and pressure sensors. It is confirmed, by the test in which the system is connected to a commercial power generator of 600MW, that the system can be continuously operated to purify hydrogen to at least 99.9% for an extended period. 4 refs., 18 figs., 1 tab.

  13. BioASF: a framework for automatically generating executable pathway models specified in BioPAX.

    Science.gov (United States)

    Haydarlou, Reza; Jacobsen, Annika; Bonzanni, Nicola; Feenstra, K Anton; Abeln, Sanne; Heringa, Jaap

    2016-06-15

    Biological pathways play a key role in most cellular functions. To better understand these functions, diverse computational and cell biology researchers use biological pathway data for various analysis and modeling purposes. For specifying these biological pathways, a community of researchers has defined BioPAX and provided various tools for creating, validating and visualizing BioPAX models. However, a generic software framework for simulating BioPAX models is missing. Here, we attempt to fill this gap by introducing a generic simulation framework for BioPAX. The framework explicitly separates the execution model from the model structure as provided by BioPAX, with the advantage that the modelling process becomes more reproducible and intrinsically more modular; this ensures natural biological constraints are satisfied upon execution. The framework is based on the principles of discrete event systems and multi-agent systems, and is capable of automatically generating a hierarchical multi-agent system for a given BioPAX model. To demonstrate the applicability of the framework, we simulated two types of biological network models: a gene regulatory network modeling the haematopoietic stem cell regulators and a signal transduction network modeling the Wnt/β-catenin signaling pathway. We observed that the results of the simulations performed using our framework were entirely consistent with the simulation results reported by the researchers who developed the original models in a proprietary language. The framework, implemented in Java, is open source and its source code, documentation and tutorial are available at http://www.ibi.vu.nl/programs/BioASF CONTACT: j.heringa@vu.nl. © The Author 2016. Published by Oxford University Press.

  14. Feasibility Study for BioLEIR

    CERN Document Server

    Roy, G; Schuh, S

    2017-01-01

    The biomedical community asked CERN to investigate the possibility to transform the Low Energy Ion Ring (LEIR) accelerator into a multidisciplinary, biomedical research facil- ity (BioLEIR) that could provide ample, high-quality beams of a range of light ions suitable for clinically oriented fundamental research on cell cultures and for radiation instrumenta- tion development. BioLEIR would be operated when LEIR is not providing heavy ions for the CERN physics programme. The study group was mandated to write a Feasibility Study Report, using high-level engineering estimates based on previous experience, with the aim to: – collect the requirements for such a facility from the biomedical community in close collaboration with the International Strategy Committee for CERN Medical Applica- tions; – determine a coherent set of beam parameters, based on the requirements; – explore whether the beam requirements can be met throughout the facility, from the source to the biomedical end-stations; – perf...

  15. Bio-inspired variable structural color materials.

    Science.gov (United States)

    Zhao, Yuanjin; Xie, Zhuoying; Gu, Hongcheng; Zhu, Cun; Gu, Zhongze

    2012-04-21

    Natural structural color materials, especially those that can undergo reversible changes, are attracting increasing interest in a wide variety of research fields. Inspired by the natural creatures, many elaborately nanostructured photonic materials with variable structural colors were developed. These materials have found important applications in switches, display devices, sensors, and so on. In this critical review, we will provide up-to-date research concerning the natural and bio-inspired photonic materials with variable structural colors. After introducing the variable structural colors in natural creatures, we will focus on the studies of artificial variable structural color photonic materials, including their bio-inspired designs, fabrications and applications. The prospects for the future development of these fantastic variable structural color materials will also be presented. We believe this review will promote the communications among biology, bionics, chemistry, optical physics, and material science (196 references).

  16. Stomatal Density and Bio-water Saving

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Bio-water saving is to increase water use efficiency of crops or crop yield per unit of water input. Plant water use efficiency is determined by photosynthesis and transpiration, for both of which stomata are crucial. Stomata are pores on leaf epidermis for both water and carbon dioxide fluxes that are controlled by two major factors: stomatal behavior and density. Stomatal behavior has been the focus of intensive research, while less attention has been paid to stomatal density. Recently, a number of genes controlling stomatal development have been identified. This review summarizes the recent progress on the genes regulating stomatal density, and discusses the role of stomatal density in plant water use efficiency and the possibility to increase plant water use efficiency, hence bio-water saving by genetically manipulating stomatal density.

  17. Jefferson County Bio-energy Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Wade [Jefferson County Colorado, Golden, CO (United States)

    2006-06-01

    The Jefferson County Bio-energy Initiative (JCBI) seeks to develop economically viable market outlets for forest thinning biomass through the creation of new businesses and public-private sector partnerships, while simultaneously reducing the risk of catastrophic fires and associated costs and damages. Jefferson County has a strong interest in cooperating with the United States Forest Service (USFS) and private industry to help create the infrastructure that will reduce the barriers to new bio-energy markets due to logistical concerns over long-term forest biomass supply availability. Jefferson County believes that developing a site that allows for the creation of a large central biomass-processing facility will help reduce the costs and risks associated with supply uncertainty. The JCBI will operate as a cooperative between public and private sector entities, with Jefferson County acting as facilitator and not as a competitor.

  18. Bio energy in Norway; Bioenergi i Noreg

    Energy Technology Data Exchange (ETDEWEB)

    Hamnaberg, Haavard; Sidelnikova, Maria

    2011-07-01

    The main conclusion in this report is that it is possible to make available about 14 TWh bio energy in Norway than what is used today to a charge that is located less than ca. 30 oere / kWh. Almost all this potential come from the forest and requires an increase in output up to the net sustained yield. Further 5 TWh may be available in the form of biogas at a cost that is both higher and have greater uncertainty than the fixed bio energy. It is set up a cost curve based on this work, which is quoted here. This reflects only the technical costs, and does not regard wages, commissions, taxes or fees. The value of alternative uses of biomass are not considered. The cost curve must therefore not be mixed with a supply curve. (eb)

  19. Rethinking Value in the Bio-economy

    Science.gov (United States)

    2016-01-01

    Current debates in science and technology studies emphasize that the bio-economy—or, the articulation of capitalism and biotechnology—is built on notions of commodity production, commodification, and materiality, emphasizing that it is possible to derive value from body parts, molecular and cellular tissues, biological processes, and so on. What is missing from these perspectives, however, is consideration of the political-economic actors, knowledges, and practices involved in the creation and management of value. As part of a rethinking of value in the bio-economy, this article analyzes three key political-economic processes: financialization, capitalization, and assetization. In doing so, it argues that value is managed as part of a series of valuation practices, it is not inherent in biological materialities. PMID:28458406

  20. Thermoelectric Transducer Using Bio Nano Process

    Science.gov (United States)

    2015-08-01

    oxide NPs is also p-type semiconductor, so by embedding NPs, carrier de-dopping effect occured as shown in Fig.12. Thus power factor was enhanced...controlled at the nanoscale by using Poly- Ethylene Glycols (PEGs). 15. SUBJECT TERMS Nano-Materials, nano-bio, Thermoelectric 16...that the separation distance of NPs was controlled at the nanoscale by using Poly- Ethylene Glycols (PEGs). Ferritin was used to synthesize NPs and