WorldWideScience

Sample records for biogeography based satellite

  1. Biogeography based Satellite Image Classification

    CERN Document Server

    Panchal, V K; Kaur, Navdeep; Kundra, Harish

    2009-01-01

    Biogeography is the study of the geographical distribution of biological organisms. The mindset of the engineer is that we can learn from nature. Biogeography Based Optimization is a burgeoning nature inspired technique to find the optimal solution of the problem. Satellite image classification is an important task because it is the only way we can know about the land cover map of inaccessible areas. Though satellite images have been classified in past by using various techniques, the researchers are always finding alternative strategies for satellite image classification so that they may be prepared to select the most appropriate technique for the feature extraction task in hand. This paper is focused on classification of the satellite image of a particular land cover using the theory of Biogeography based Optimization. The original BBO algorithm does not have the inbuilt property of clustering which is required during image classification. Hence modifications have been proposed to the original algorithm and...

  2. Biogeography

    Science.gov (United States)

    Quattrochi, Dale A.; Arnold, James E. (Technical Monitor)

    2002-01-01

    As a field of study, biogeography may be considered a bricolage - it has been constructed from many different facets from an array of research disciplines including biology, botany, zoology, geography, and geology. Biogeography focuses on the study of the constantly changing ranges of plants and animals, over multitude of space and time scales. It also includes the study of the structure and dynamics of biotic communities and ecosystems as they relate to both natural and anthropogenic processes. As it exists today, biogeography is an interdisciplinary research area founded in both the biological and Earth sciences. From a purely biological perspective, biogeography may be perceived as one of two types of studies: 1. biotic distributions and broad scales, and interpretations of the evolutionary and dispersal history of a single taxon or a few taxa; or 2. biotic distributions at local-to-regional scales, and interpretations of these distributions in relation to contemporary environments and rates of immigration or extinction. The first type of study is what is most usually associated with the term "biogeography" as disciplinary research field. It is conventionally termed "classical biogeography" because it reflects the continuity of research foci on which biogeography was founded in the nineteenth-century. The second type of biogeographical study has more modern day roots and is termed "geographical ecology" to reflect the theoretical predilections of ecologists and population biologists. Geographical ecology for all intents has become merged with ecology and exists as a sub discipline within this larger field of study.

  3. Concentric Circular Antenna Array Synthesis Using Biogeography Based Optimization

    Directory of Open Access Journals (Sweden)

    Urvinder Singh

    2012-03-01

    Full Text Available Biogeography based optimization (BBO is a new stochastic force based on the science of biogeography. Biogeography is the schoolwork of geographical allotment of biological organisms. BBO utilizes migration operator to share information between the problem solutions. The problem solutions are known as habitats and sharing of features is called migration. In this paper, BBO algorithm is developed to optimize the current excitations of concentric circular antenna arrays (CCAA. Concentric Circular Antenna Array (CCAA has numerous attractive features that make it essential in mobile and communication applications. The goal of the optimization is to reduce the side lobe levels and the primary lobe beam width as much as possible. To confirm the capabilities of BBO, three different CCAA antennas of different sizes are taken. The results obtained by BBO are compared with the Real coded Genetic Algorithm (RGA, Craziness based Particle Swarm Optimization (CRPSO and Hybrid Evolutionary Programming (HEP.

  4. Statistical Mechanics Approximation of Biogeography-Based Optimization.

    Science.gov (United States)

    Ma, Haiping; Simon, Dan; Fei, Minrui

    2016-01-01

    Biogeography-based optimization (BBO) is an evolutionary algorithm inspired by biogeography, which is the study of the migration of species between habitats. This paper derives a mathematical description of the dynamics of BBO based on ideas from statistical mechanics. Rather than trying to exactly predict the evolution of the population, statistical mechanics methods describe the evolution of statistical properties of the population fitness. This paper uses the one-max problem, which has only one optimum and whose fitness function is the number of 1s in a binary string, to derive equations that predict the statistical properties of BBO each generation in terms of those of the previous generation. These equations reveal the effect of migration and mutation on the population fitness dynamics of BBO. The results obtained in this paper are similar to those for the simple genetic algorithm with selection and mutation. The paper also derives equations for the population fitness dynamics of general separable functions, and we find that the results obtained for separable functions are the same as those for the one-max problem. The statistical mechanics theory of BBO is shown to be in good agreement with simulation.

  5. Complex System Optimization Using Biogeography-Based Optimization

    Directory of Open Access Journals (Sweden)

    Dawei Du

    2013-01-01

    Full Text Available Complex systems are frequently found in modern industry. But with their multisubsystems, multiobjectives, and multiconstraints, the optimization of complex systems is extremely hard. In this paper, a new algorithm adapted from biogeography-based optimization (BBO is introduced for complex system optimization. BBO/Complex is the combination of BBO with a multiobjective ranking system, an innovative migration approach, and effective diversity control. Based on comparisons with three complex system optimization algorithms (multidisciplinary feasible (MDF, individual discipline feasible (IDF, and collaborative optimization (CO on four real-world benchmark problems, BBO/Complex demonstrates competitive performance. BBO/Complex provides the best performance in three of the benchmark problems and the second best in the fourth problem.

  6. A biogeography-based optimization for optimum discrete design of skeletal structures

    Science.gov (United States)

    Jalili, Shahin; Hosseinzadeh, Yousef; Taghizadieh, Nasser

    2016-09-01

    This article presents a modified biogeography-based optimization (MBBO) algorithm for optimum design of skeletal structures with discrete variables. The main idea of the biogeography-based optimization (BBO) algorithm is based on the science of biogeography, in which each habitat is a possible solution for the optimization problem in the search space. This algorithm consists of two main operators: migration and mutation. The migration operator helps the habitats to exploit the search space, while the mutation operator guides habitats to escape from the local optimum. To enhance the performance of the standard algorithm, some modifications are made and an MBBO algorithm is presented. The performance of the MBBO algorithm is evaluated by optimizing five benchmark design examples, and the obtained results are compared with other methods in the literature. The numerical results demonstrate that the MBBO algorithm is able to show very competitive results and has merits in finding optimum designs.

  7. On the Convergence of Biogeography-Based Optimization for Binary Problems

    Directory of Open Access Journals (Sweden)

    Haiping Ma

    2014-01-01

    Full Text Available Biogeography-based optimization (BBO is an evolutionary algorithm inspired by biogeography, which is the study of the migration of species between habitats. A finite Markov chain model of BBO for binary problems was derived in earlier work, and some significant theoretical results were obtained. This paper analyzes the convergence properties of BBO on binary problems based on the previously derived BBO Markov chain model. Analysis reveals that BBO with only migration and mutation never converges to the global optimum. However, BBO with elitism, which maintains the best candidate in the population from one generation to the next, converges to the global optimum. In spite of previously published differences between genetic algorithms (GAs and BBO, this paper shows that the convergence properties of BBO are similar to those of the canonical GA. In addition, the convergence rate estimate of BBO with elitism is obtained in this paper and is confirmed by simulations for some simple representative problems.

  8. Design of Large Thinned Arrays Using Different Biogeography-Based Optimization Migration Models

    Directory of Open Access Journals (Sweden)

    Sotirios K. Goudos

    2016-01-01

    Full Text Available Array thinning is a common discrete-valued combinatorial optimization problem. Evolutionary algorithms are suitable techniques for above-mentioned problem. Biogeography-Based Optimization (BBO, which is inspired by the science of biogeography, is a stochastic population-based evolutionary algorithm (EA. The original BBO uses a linear migration model to describe how species migrate from one island to another. Other nonlinear migration models have been proposed in the literature. In this paper, we apply BBO with four different migration models to five different large array design cases. Additionally we compare results with five other popular algorithms. The problems dimensions range from 150 to 300. The results show that BBO with sinusoidal migration model generally performs better than the other algorithms. However, these results are considered to be indicative and do not generally apply to all optimization problems in antenna design.

  9. A Hybrid Grey Based KOHONEN Model and Biogeography-Based Optimization for Project Portfolio Selection

    Directory of Open Access Journals (Sweden)

    Farshad Faezy Razi

    2014-01-01

    Full Text Available The problem of selection and the best option are the main subject of operation research science in decision-making theory. Selection is a process that scrutinizes and investigates several quantitative and qualitative, and most often incompatible, factors. One of the most fundamental management issues in multicriteria selection literature is the multicriteria adoption of the projects portfolio. In such decision-making condition, manager is seeking for the best combination to build up a portfolio among the existing projects. In the present paper, KOHONEN algorithm was first employed to build up a portfolio of the projects. Next, each portfolio was evaluated using grey relational analysis (GRA and then scheduled risk of the project was predicted using Mamdani fuzzy inference method. Finally, the multiobjective biogeography-based optimization algorithm was utilized for drawing risk and rank Pareto analysis. A case study is used concurrently to show the efficiency of the proposed model.

  10. Voltage Profile Enhancement and Reduction of Real Power loss by Hybrid Biogeography Based Artificial Bee Colony algorithm

    Directory of Open Access Journals (Sweden)

    K. Lenin

    2014-04-01

    Full Text Available This paper presents Hybrid Biogeography algorithm for solving the multi-objective reactive power dispatch problem in a power system. Real Power Loss minimization and maximization of voltage stability margin are taken as the objectives. Artificial bee colony optimization (ABC is quick and forceful algorithm for global optimization. Biogeography-Based Optimization (BBO is a new-fangled biogeography inspired algorithm. It mainly utilizes the biogeography-based relocation operator to share the information among solutions. In this work, a hybrid algorithm with BBO and ABC is projected, and named as HBBABC (Hybrid Biogeography based Artificial Bee Colony Optimization, for the universal numerical optimization problem. HBBABC merge the searching behavior of ABC with that of BBO. Both the algorithms have different solution probing tendency like ABC have good exploration probing tendency while BBO have good exploitation probing tendency.  HBBABC used to solve the reactive power dispatch problem and the proposed technique has been tested in standard IEEE30 bus test system.

  11. Novel migration operators of biogeography-based optimization and Markov analysis

    DEFF Research Database (Denmark)

    Guo, Weian; Wang, Lei; Si, Chenyong;

    2016-01-01

    Biogeography-based optimization (BBO) is a nature-inspired optimization algorithm and has been developed in both theory and practice. In canonical BBO, migration operator is crucial to affect algorithm’s performance. In migration operator, a good solution has a large probability to be selected......, a number of benchmark tests are carried out to empirically assess the performance of the proposed migration operators, on both low-dimensional and high-dimensional numerical optimization problems. The comparison results demonstrate that the proposed migration operators are feasible and effective to enhance...

  12. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem.

    Science.gov (United States)

    Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah

    2016-01-01

    The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.

  13. A Biogeography-Based Optimization Algorithm Hybridized with Tabu Search for the Quadratic Assignment Problem

    Directory of Open Access Journals (Sweden)

    Wee Loon Lim

    2016-01-01

    Full Text Available The quadratic assignment problem (QAP is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO, a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.

  14. A Modified Biogeography-Based Optimization for the Flexible Job Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Yuzhen Yang

    2015-01-01

    Full Text Available The flexible job shop scheduling problem (FJSSP is a practical extension of classical job shop scheduling problem that is known to be NP-hard. In this paper, an effective modified biogeography-based optimization (MBBO algorithm with machine-based shifting is proposed to solve FJSSP with makespan minimization. The MBBO attaches great importance to the balance between exploration and exploitation. At the initialization stage, different strategies which correspond to two-vector representation are proposed to generate the initial habitats. At global phase, different migration and mutation operators are properly designed. At local phase, a machine-based shifting decoding strategy and a local search based on insertion to the habitat with best makespan are introduced to enhance the exploitation ability. A series of experiments on two well-known benchmark instances are performed. The comparisons between MBBO and other famous algorithms as well as BBO variants prove the effectiveness and efficiency of MBBO in solving FJSSP.

  15. Hybridizing artificial bee colony with biogeography-based optimization for constrained mechanical design problems

    Institute of Scientific and Technical Information of China (English)

    蔡绍洪; 龙文; 焦建军

    2015-01-01

    A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony (ABC) algorithm with biogeography-based optimization (BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm’s performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.

  16. Natural Image Enhancement Using a Biogeography Based Optimization Enhanced with Blended Migration Operator

    Directory of Open Access Journals (Sweden)

    J. Jasper

    2014-01-01

    Full Text Available This paper addresses a novel and efficient algorithm for solving optimization problem in image processing applications. Image enhancement (IE is one of the complex optimization problems in image processing. The main goal of this paper is to enhance color images such that the eminence of the image is more suitable than the original image from the perceptual viewpoint of human. Traditional methods require prior knowledge of the image to be enhanced, whereas the aim of the proposed biogeography based optimization (BBO enhanced with blended migration operator (BMO algorithm is to maximize the objective function in order to enhance the image contrast by maximizing the parameters like edge intensity, edge information, and entropy. Experimental results are compared with the current state-of-the-art approaches and indicate the superiority of the proposed technique in terms of subjective and objective evaluation.

  17. Parameters Identification of Fluxgate Magnetic Core Adopting the Biogeography-Based Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Wenjuan Jiang

    2016-06-01

    Full Text Available The main part of the magnetic fluxgate sensor is the magnetic core, the hysteresis characteristic of which affects the performance of the sensor. When the fluxgate sensors are modelled for design purposes, an accurate model of hysteresis characteristic of the cores is necessary to achieve good agreement between modelled and experimental data. The Jiles-Atherton model is simple and can reflect the hysteresis properties of the magnetic material precisely, which makes it widely used in hysteresis modelling and simulation of ferromagnetic materials. However, in practice, it is difficult to determine the parameters accurately owing to the sensitivity of the parameters. In this paper, the Biogeography-Based Optimization (BBO algorithm is applied to identify the Jiles-Atherton model parameters. To enhance the performances of the BBO algorithm such as global search capability, search accuracy and convergence rate, an improved Biogeography-Based Optimization (IBBO algorithm is put forward by using Arnold map and mutation strategy of Differential Evolution (DE algorithm. Simulation results show that IBBO algorithm is superior to Genetic Algorithm (GA, Particle Swarm Optimization (PSO algorithm, Differential Evolution algorithm and BBO algorithm in identification accuracy and convergence rate. The IBBO algorithm is applied to identify Jiles-Atherton model parameters of selected permalloy. The simulation hysteresis loop is in high agreement with experimental data. Using permalloy as core of fluxgate probe, the simulation output is consistent with experimental output. The IBBO algorithm can identify the parameters of Jiles-Atherton model accurately, which provides a basis for the precise analysis and design of instruments and equipment with magnetic core.

  18. Comprehensive species set revealing the phylogeny and biogeography of Feliformia (Mammalia, Carnivora) based on mitochondrial DNA

    Science.gov (United States)

    Ma, Jian-Zhang

    2017-01-01

    Extant Feliformia species are one of the most diverse radiations of Carnivora (~123 species). Despite substantial recent interest in their conservation, diversification, and systematic study, no previous phylogeny contains a comprehensive species set, and no biogeography of this group is available. Here, we present a phylogenetic estimate for Feliformia with a comprehensive species set and establish a historical biogeography based on mitochondrial DNA. Both the Bayesian and maximum likelihood phylogeny for Feliformia are elucidated in our analyses and are strongly consistent with many groups recognized in previous studies. The mitochondrial phylogenetic relationships of Felidae were for the first time successfully reconstructed in our analyses with strong supported. When divergence times and dispersal/vicariance histories were compared with historical sea level changes, four dispersal and six vicariance events were identified. These vicariance events were closely related with global sea level changes. The transgression of sea into the lowland plains between Eurasia and Africa may have caused the vicariance in these regions. A fall in the sea level during late Miocene to Pliocene produced the Bering strait land bridge, which assisted the migration of American Feliformia ancestors from Asia to North America. In contrast with the ‘sweepstakes hypothesis’, our results suggest that the climate cooling during 30–27 Ma assisted Feliformia migration from the African mainland to Madagascar by creating a short-lived ice bridge across the Mozambique Channel. Lineages-through-time plots revealed a large increase in lineages since the Mid-Miocene. During the Mid-Miocene Climatic Optimum, the ecosystems and population of Feliformia rapidly expanded. Subsequent climate cooling catalyzed immigration, speciation, and the extinction of Feliformia. PMID:28358848

  19. Cognitive radio adaptation for power consumption minimization using biogeography-based optimization

    Science.gov (United States)

    Qi, Pei-Han; Zheng, Shi-Lian; Yang, Xiao-Niu; Zhao, Zhi-Jin

    2016-12-01

    Adaptation is one of the key capabilities of cognitive radio, which focuses on how to adjust the radio parameters to optimize the system performance based on the knowledge of the radio environment and its capability and characteristics. In this paper, we consider the cognitive radio adaptation problem for power consumption minimization. The problem is formulated as a constrained power consumption minimization problem, and the biogeography-based optimization (BBO) is introduced to solve this optimization problem. A novel habitat suitability index (HSI) evaluation mechanism is proposed, in which both the power consumption minimization objective and the quality of services (QoS) constraints are taken into account. The results show that under different QoS requirement settings corresponding to different types of services, the algorithm can minimize power consumption while still maintaining the QoS requirements. Comparison with particle swarm optimization (PSO) and cat swarm optimization (CSO) reveals that BBO works better, especially at the early stage of the search, which means that the BBO is a better choice for real-time applications. Project supported by the National Natural Science Foundation of China (Grant No. 61501356), the Fundamental Research Funds of the Ministry of Education, China (Grant No. JB160101), and the Postdoctoral Fund of Shaanxi Province, China.

  20. Improving the performance of the Egyptian second testing nuclear research reactor using interval type-2 fuzzy logic controller tuned by modified biogeography-based optimization

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, M.M., E-mail: M.M.Sayed@ieee.org; Saad, M.S.; Emara, H.M.; Abou El-Zahab, E.E.

    2013-09-15

    Highlights: • A modified version of the BBO was proposed. • A novel method for interval type-2 FLC design tuned by MBBO was proposed. • The performance of the ETRR-2 was improved by using IT2FLC tuned by MBBO. -- Abstract: Power stabilization is a critical issue in nuclear reactors. The conventional proportional derivative (PD) controller is currently used in the Egyptian second testing research reactor (ETRR-2). In this paper, we propose a modified biogeography-based optimization (MBBO) algorithm to design the interval type-2 fuzzy logic controller (IT2FLC) to improve the performance of the Egyptian second testing research reactor (ETRR-2). Biogeography-based optimization (BBO) is a novel evolutionary algorithm that is based on the mathematical models of biogeography. Biogeography is the study of the geographical distribution of biological organisms. In the BBO model, problem solutions are represented as islands, and the sharing of features between solutions is represented as immigration and emigration between the islands. A modified version of the BBO is applied to design the IT2FLC to get the optimal parameters of the membership functions of the controller. We test the optimal IT2FLC obtained by modified biogeography-based optimization (MBBO) using the integral square error (ISE) and is compared with the currently used PD controller.

  1. Certain investigations on the reduction of side lobe level of an uniform linear antenna array using biogeography based optimization technique with sinusoidal migration model and simplified-BBO

    Indian Academy of Sciences (India)

    T S Jeyali Laseetha; R Sukanesh

    2014-02-01

    In this paper, we propose biogeography based optimization technique, with linear and sinusoidal migration models and simplified biogeography based optimization (S-BBO), for uniformly spaced linear antenna array synthesis to maximize the reduction of side lobe level (SLL). This paper explores biogeography theory. It generalizes two migration models in BBO namely, linear migration model and sinusoidal migration model. The performance of SLL reduction in ULA is investigated. Our performance study shows that among the two, sinusoidal migration model is a promising candidate for optimization. In our work, simplified – BBO algorithmis also deployed. This determines an optimum set value for amplitude excitations of antenna array elements that generate a radiation pattern with maximum side lobe level reduction. Our detailed investigation also shows that sinusoidal migration model of BBO performs better compared to the other evolutionary algorithms discussed in this paper.

  2. 14 CFR 141.91 - Satellite bases.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Satellite bases. 141.91 Section 141.91... OTHER CERTIFICATED AGENCIES PILOT SCHOOLS Operating Rules § 141.91 Satellite bases. The holder of a... assistant chief instructor is designated for each satellite base, and that assistant chief instructor...

  3. Satellite-Based Sunshine Duration for Europe

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-06-01

    Full Text Available In this study, two different methods were applied to derive daily and monthly sunshine duration based on high-resolution satellite products provided by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT Satellite Application Facility on Climate Monitoring using data from Meteosat Second Generation (MSG SEVIRI (Spinning Enhanced Visible and Infrared Imager. The satellite products were either hourly cloud type or hourly surface incoming direct radiation. The satellite sunshine duration estimates were not found to be significantly different using the native 15-minute temporal resolution of SEVIRI. The satellite-based sunshine duration products give additional spatial information over the European continent compared with equivalent in situ-based products. An evaluation of the satellite sunshine duration by product intercomparison and against station measurements was carried out to determine their accuracy. The satellite data were found to be within ±1 h/day compared to high-quality Baseline Surface Radiation Network or surface synoptic observations (SYNOP station measurements. The satellite-based products differ more over the oceans than over land, mainly because of the treatment of fractional clouds in the cloud type-based sunshine duration product. This paper presents the methods used to derive the satellite sunshine duration products and the performance of the different retrievals. The main benefits and disadvantages compared to station-based products are also discussed.

  4. Phylogeny and biogeography of Alyssum (Brassicaceae) based on nuclear ribosomal ITS DNA sequences

    Indian Academy of Sciences (India)

    Yan Li; Yan Kong; Zhe Zhang; Yanqiang Yin; Bin Liu; Guanghui Lv; Xiyong Wang

    2014-08-01

    The genus Alyssum consists of about 195 species native to Europe, Asia and northern Africa. All species were assigned to six sections. Previous molecular phylogeny studies indicate that Alyssum is polyphyletic. However, the divergence time and dispersal of the genus are not well studied. In this study, the phylogenetic relationships within the genus Alyssum were studied with nrDNA ITS sequences obtained from five sections. The divergence time was estimated by fossil calibration and the biogeography was examined by spread analysis. The phylogeny indicated two main lineages: lineage 1 includes the section of Alyssum, Gamosepalum and Psilonema; lineage 2 includes the section of Odontarrhena, Meniocus and Clypeola. The phylogenetic relationship was not congruent with the previous sectional classifications. The age of Alyssum was dated to the upper Miocene. Molecular data suggested the diversification of Alyssum in Mediterranean areas and wide-ranging distribution such as North Africa, eastward into Central Asia and immigration into North America. Climatic aridification and arid/semiarid areas established in the Pliocene/Pleistocene could have provided favourable conditions for the migration and diversification of Alyssum.

  5. The historical biogeography of Pteroglossus aracaris (Aves, Piciformes, Ramphastidae based on Bayesian analysis of mitochondrial DNA sequences

    Directory of Open Access Journals (Sweden)

    Sérgio L. Pereira

    2008-01-01

    Full Text Available Most Neotropical birds, including Pteroglossus aracaris, do not have an adequate fossil record to be used as time constraints in molecular dating. Hence, the evolutionary timeframe of the avian biota can only be inferred using alternative time constraints. We applied a Bayesian relaxed clock approach to propose an alternative interpretation for the historical biogeography of Pteroglossus based on mitochondrial DNA sequences, using different combinations of outgroups and time constraints obtained from outgroup fossils, vicariant barriers and molecular time estimates. The results indicated that outgroup choice has little effect on the Bayesian posterior distribution of divergence times within Pteroglossus , that geological and molecular time constraints seem equally suitable to estimate the Bayesian posterior distribution of divergence times for Pteroglossus , and that the fossil record alone overestimates divergence times within the fossil-lacking ingroup. The Bayesian estimates of divergence times suggest that the radiation of Pteroglossus occurred from the Late Miocene to the Pliocene (three times older than estimated by the “standard” mitochondrial rate of 2% sequence divergence per million years, likely triggered by Andean uplift, multiple episodes of marine transgressions in South America, and formation of present-day river basins. The time estimates are in agreement with other Neotropical taxa with similar geographic distributions.

  6. Biogeography-Based Combinatorial Strategy for Efficient Autonomous Underwater Vehicle Motion Planning and Task-Time Management

    Institute of Scientific and Technical Information of China (English)

    S.M.Zadeh; D.M.W Powers; K. Sammut; A.M. Yazdani

    2016-01-01

    Autonomous Underwater Vehicles (AUVs) are capable of conducting various underwater missions and marine tasks over long periods of time. In this study, a novel conflict-free motion-planning framework is introduced. This framework enhances AUV mission performance by completing the maximum number of highest priority tasks in a limited time through a large-scale waypoint cluttered operating field and ensuring safe deployment during the mission. The proposed combinatorial route-path-planner model takes advantage of the Biogeography- Based Optimization (BBO) algorithm to satisfy the objectives of both higher- and lower-level motion planners and guarantee the maximization of mission productivity for a single vehicle operation. The performance of the model is investigated under different scenarios, including cost constraints in time-varying operating fields. To demonstrate the reliability of the proposed model, the performance of each motion planner is separately assessed and statistical analysis is conducted to evaluate the total performance of the entire model. The simulation results indicate the stability of the proposed model and the feasibility of its application to real-time experiments.

  7. A Simultaneous Biogeography based Optimal Placement of DG Units and Capacitor Banks in Distribution Systems with Nonlinear Loads

    Science.gov (United States)

    Sadeghi, Hassan; Ghaffarzadeh, Navid

    2016-09-01

    This paper uses a new algorithm namely biogeography based optimization (BBO) intended for the simultaneous placement of the distributed generation (DG) units and the capacitor banks in the distribution network. The procedure of optimization has been conducted in the presence of nonlinear loads (a cause of harmonic injection). The purpose of simultaneous optimal placement of the DG and the capacitor is the reduction of active and reactive losses. The difference in the values of loss reduction at different levels of the load have been included in the objective function and the considered objective function includes the constraints of voltage, size and the number of DG units and capacitor banks and the allowable range of the total harmonic distortion (THD) of the total voltage in accordance with the IEEE 519 standards. In this paper the placement has been performed on two load types ie constant and mixed power, moreover the effects of load models on the results and the effects of optimal placement on reduction of the THD levels have also been analyzed. The mentioned cases have been studied on a 33 bus radial distribution system.

  8. Biogeography-based combinatorial strategy for efficient autonomous underwater vehicle motion planning and task-time management

    Science.gov (United States)

    Zadeh, S. M.; Powers, D. M. W.; Sammut, K.; Yazdani, A. M.

    2016-12-01

    Autonomous Underwater Vehicles (AUVs) are capable of spending long periods of time for carrying out various underwater missions and marine tasks. In this paper, a novel conflict-free motion planning framework is introduced to enhance underwater vehicle's mission performance by completing maximum number of highest priority tasks in a limited time through a large scale waypoint cluttered operating field, and ensuring safe deployment during the mission. The proposed combinatorial route-path planner model takes the advantages of the Biogeography-Based Optimization (BBO) algorithm toward satisfying objectives of both higher-lower level motion planners and guarantees maximization of the mission productivity for a single vehicle operation. The performance of the model is investigated under different scenarios including the particular cost constraints in time-varying operating fields. To show the reliability of the proposed model, performance of each motion planner assessed separately and then statistical analysis is undertaken to evaluate the total performance of the entire model. The simulation results indicate the stability of the contributed model and its feasible application for real experiments.

  9. Hybrid Differential Evolution with Biogeography-Based Optimization for Design of a Reconfigurable Antenna Array with Discrete Phase Shifters

    Directory of Open Access Journals (Sweden)

    Xiangtao Li

    2011-01-01

    Full Text Available Multibeam antenna arrays have important applications in communications and radar. This paper presents a new method of designing a reconfigurable antenna with quantized phase excitations using a new hybrid algorithm, called DE/BBO. The reconfigurable design problem is to find the element excitation that will result in a sector pattern main beam with low sidelobes with additional requirement that the same excitation amplitudes applied to the array with zero-phase should be in a high directivity, low sidelobe pencil-shaped main beam. In order to reduce the effect of mutual coupling between the antenna-array elements, the dynamic range ratio is minimized. Additionally, compared with the continuous realization and subsequent quantization, experimental results indicate that the performance of the discrete realization of the phase excitation value can be improved. In order to test the performances of hybrid differential evolution with biogeography-based optimization, the results of some state-of-art algorithms are considered, for the purposed of comparison. Experiment results indicate the better performance of the DE/BBO.

  10. Comparison of Genetic Algorithm, Particle Swarm Optimization and Biogeography-based Optimization for Feature Selection to Classify Clusters of Microcalcifications

    Science.gov (United States)

    Khehra, Baljit Singh; Pharwaha, Amar Partap Singh

    2016-06-01

    Ductal carcinoma in situ (DCIS) is one type of breast cancer. Clusters of microcalcifications (MCCs) are symptoms of DCIS that are recognized by mammography. Selection of robust features vector is the process of selecting an optimal subset of features from a large number of available features in a given problem domain after the feature extraction and before any classification scheme. Feature selection reduces the feature space that improves the performance of classifier and decreases the computational burden imposed by using many features on classifier. Selection of an optimal subset of features from a large number of available features in a given problem domain is a difficult search problem. For n features, the total numbers of possible subsets of features are 2n. Thus, selection of an optimal subset of features problem belongs to the category of NP-hard problems. In this paper, an attempt is made to find the optimal subset of MCCs features from all possible subsets of features using genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO). For simulation, a total of 380 benign and malignant MCCs samples have been selected from mammogram images of DDSM database. A total of 50 features extracted from benign and malignant MCCs samples are used in this study. In these algorithms, fitness function is correct classification rate of classifier. Support vector machine is used as a classifier. From experimental results, it is also observed that the performance of PSO-based and BBO-based algorithms to select an optimal subset of features for classifying MCCs as benign or malignant is better as compared to GA-based algorithm.

  11. Comparative study of migration operator for Biogeography-Based Optimization%生物地理学优化算法中迁移算子的比较

    Institute of Scientific and Technical Information of China (English)

    吴斌; 林锦国; 崔志勇

    2012-01-01

    Biogeography-Based Optimization (BBO) algorithm is a new kind of optimization algorithm based on biogeography. It is designed based on the migration strategy of species to solve global optimization problem. The migration and mutation operators play the key role in the BBO. Four migration patterns based on the selection model for the islands (which is guiding high emigration rate or high immigration rate) and the scale of migration (single or part variable) are analyzed and discussed. To compare the performance of the four migration operators, 13 experiments are carried out on a set of well-known benchmark global optimization problems. Simulation results show that the partial immigration strategy outperforms other three operators.%生物地理学优化算法(Biogeography-Based Optimization,BBO)是一种模仿物种迁移规律的智能优化算法,其中迁移算子是影响优化效果的关键环节.基于迁移地的选择模式(以迁出率高的栖息地为主导或者以迁入率高的栖息地为主导)和迁移量的规模(单变量和部分变量),提出了BBO算法中可能存在的四种迁移方式.通过对13个经典实例的实验仿真,比较4种迁移算子的优化结果,阐明了产生差异的原因.实验结果表明,迁入主导的部分迁移式算子优化效果最好.

  12. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    (SPoTS) supplying other satellites with energy. SPoTS is due to be commercially viable and operative in 2020. of Technology designed the SPoTS during a full-time design period of six weeks as a third year final project. The team, organized according to the principles of systems engineering, first conducted a literature study on space wireless energy transfer to select the most suitable candidates for use on the SPoTS. After that, several different system concepts have been generated and evaluated, the most promising concept being worked out in greater detail. km altitude. Each SPoTS satellite has a 50m diameter inflatable solar collector that focuses all received sunlight. Then, the received sunlight is further redirected by means of four pointing mirrors toward four individual customer satellites. A market-analysis study showed, that providing power to geo-stationary communication satellites during their eclipse would be most beneficial. At arrival at geo-stationary orbit, the focused beam has expended to such an extent that its density equals one solar flux. This means that customer satellites can continue to use their regular solar arrays during their eclipse for power generation, resulting in a satellite battery mass reduction. the customer satellites in geo-stationary orbit, the transmitted energy beams needs to be pointed with very high accuracy. Computations showed that for this degree of accuracy, sensors are needed, which are not mainstream nowadays. Therefore further research must be conducted in this area in order to make these high-accuracy-pointing systems commercially attractive for use on the SPoTS satellites around 2020. Total 20-year system lifetime cost for 18 SPoT satellites are estimated at approximately USD 6 billion [FY2001]. In order to compete with traditional battery-based satellite power systems or possible ground based wireless power transfer systems the price per kWh for the customer must be significantly lower than the present one

  13. Lorentz Force Based Satellite Attitude Control

    Science.gov (United States)

    Giri, Dipak Kumar; Sinha, Manoranjan

    2016-07-01

    Since the inception of attitude control of a satellite, various active and passive control strategies have been developed. These include using thrusters, momentum wheels, control moment gyros and magnetic torquers. In this present work, a new technique named Lorentz force based Coulombic actuators for the active control is proposed. This method uses electrostatic charged shells, which interact with the time varying earth's magnetic field to establish a full three axes control of the satellite. It is shown that the proposed actuation mechanism is similar to a satellite actuated by magnetic coils except that the resultant magnetic moment vanishes under two different conditions. The equation for the required charges on the the Coulomb shells attached to the satellite body axes is derived, which is in turn used to find the available control torque for actuating the satellite along the orbit. Stability of the proposed system for very high initial angular velocity and exponential stability about the origin are proved for a proportional-differential control input. Simulations are carried out to show the efficacy of the proposed system for the attitude control of the earth-pointing satellite.

  14. Wind Statistics Offshore based on Satellite Images

    DEFF Research Database (Denmark)

    Hasager, Charlotte Bay; Mouche, Alexis; Badger, Merete

    2009-01-01

    Ocean wind maps from satellites are routinely processed both at Risø DTU and CLS based on the European Space Agency Envisat ASAR data. At Risø the a priori wind direction is taken from the atmospheric model NOGAPS (Navel Operational Global Atmospheric Prediction System) provided by the U.S. Navy......’s Master Environmental Library. At CLS the a priori wind direction is taken from the ECMWF (European Centre of Medium-range Weather Forecasting). It is also possible to use other sources of wind direction e.g. the satellite-based ASCAT wind directions as demonstrated by CLS. The wind direction has to known...

  15. Satellite Formation based on SDDF Method

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-04-01

    Full Text Available The technology of satellite formation flying has being a research focus in flight application. The relative position and velocity between satellites are basic parameters to achieve the control of formation flight during the satellite formation flying mission. In order to improve the navigation accuracy, a new filter different from Extended Kalman Filter (EKF should be adopted to estimate the errors of relative position and velocity, which is based on the nonlinearity of the kinetic model for the satellite formation flying. A nonlinear Divided Difference Filter (DDF based on Stirling interpolation formula was proposed in this paper. According to the linearity of the measurement equation for the filter, a simplified differential filter was designed by means of expanding the polynomial of the nonlinear system equation and linear approximating of the finite differential interpolation. Digital simulation experiment for the relative positioning of satellite formation flying was carried out. The result demonstrates that the filter proposed in this paper has a higher filtering accuracy, faster convergence speed and better stability. Compared with the EKF, the estimation accuracy of the relative position and velocity has improved by 77.1%and 47% respectively in the method of simplified DDF, which indicates the significance for practical applications. 

  16. Satellite-based terrestrial production efficiency modeling

    Directory of Open Access Journals (Sweden)

    Obersteiner Michael

    2009-09-01

    Full Text Available Abstract Production efficiency models (PEMs are based on the theory of light use efficiency (LUE which states that a relatively constant relationship exists between photosynthetic carbon uptake and radiation receipt at the canopy level. Challenges remain however in the application of the PEM methodology to global net primary productivity (NPP monitoring. The objectives of this review are as follows: 1 to describe the general functioning of six PEMs (CASA; GLO-PEM; TURC; C-Fix; MOD17; and BEAMS identified in the literature; 2 to review each model to determine potential improvements to the general PEM methodology; 3 to review the related literature on satellite-based gross primary productivity (GPP and NPP modeling for additional possibilities for improvement; and 4 based on this review, propose items for coordinated research. This review noted a number of possibilities for improvement to the general PEM architecture - ranging from LUE to meteorological and satellite-based inputs. Current PEMs tend to treat the globe similarly in terms of physiological and meteorological factors, often ignoring unique regional aspects. Each of the existing PEMs has developed unique methods to estimate NPP and the combination of the most successful of these could lead to improvements. It may be beneficial to develop regional PEMs that can be combined under a global framework. The results of this review suggest the creation of a hybrid PEM could bring about a significant enhancement to the PEM methodology and thus terrestrial carbon flux modeling. Key items topping the PEM research agenda identified in this review include the following: LUE should not be assumed constant, but should vary by plant functional type (PFT or photosynthetic pathway; evidence is mounting that PEMs should consider incorporating diffuse radiation; continue to pursue relationships between satellite-derived variables and LUE, GPP and autotrophic respiration (Ra; there is an urgent need for

  17. An SDR based AIS receiver for satellites

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Mortensen, Hans Peter; Nielsen, Jens Frederik Dalsgaard

    2011-01-01

    For a few years now, there has been a high interest in monitoring the global ship traffic from space. A few satellite, capable of listening for ship borne AIS transponders have already been launched, and soon the AAUSAT3, carrying two different types of AIS receivers will also be launched. One...... of the AIS receivers onboard AAUSAT3 is an SDR based AIS receiver. This paper serves to describe the background of the AIS system, and how the SDR based receiver has been integrated into the AAUSAT3 satellite. Amongst some of the benefits of using an SDR based receiver is, that due to its versatility, new...... detection algorithms are easily deployed, and it is easily adapted the new proposed AIS transmission channels....

  18. Satellite Contamination and Materials Outgassing Knowledge base

    Science.gov (United States)

    Minor, Jody L.; Kauffman, William J. (Technical Monitor)

    2001-01-01

    Satellite contamination continues to be a design problem that engineers must take into account when developing new satellites. To help with this issue, NASA's Space Environments and Effects (SEE) Program funded the development of the Satellite Contamination and Materials Outgassing Knowledge base. This engineering tool brings together in one location information about the outgassing properties of aerospace materials based upon ground-testing data, the effects of outgassing that has been observed during flight and measurements of the contamination environment by on-orbit instruments. The knowledge base contains information using the ASTM Standard E- 1559 and also consolidates data from missions using quartz-crystal microbalances (QCM's). The data contained in the knowledge base was shared with NASA by government agencies and industry in the US and international space agencies as well. The term 'knowledgebase' was used because so much information and capability was brought together in one comprehensive engineering design tool. It is the SEE Program's intent to continually add additional material contamination data as it becomes available - creating a dynamic tool whose value to the user is ever increasing. The SEE Program firmly believes that NASA, and ultimately the entire contamination user community, will greatly benefit from this new engineering tool and highly encourages the community to not only use the tool but add data to it as well.

  19. Satellite-based Tropical Cyclone Monitoring Capabilities

    Science.gov (United States)

    Hawkins, J.; Richardson, K.; Surratt, M.; Yang, S.; Lee, T. F.; Sampson, C. R.; Solbrig, J.; Kuciauskas, A. P.; Miller, S. D.; Kent, J.

    2012-12-01

    Satellite remote sensing capabilities to monitor tropical cyclone (TC) location, structure, and intensity have evolved by utilizing a combination of operational and research and development (R&D) sensors. The microwave imagers from the operational Defense Meteorological Satellite Program [Special Sensor Microwave/Imager (SSM/I) and the Special Sensor Microwave Imager Sounder (SSMIS)] form the "base" for structure observations due to their ability to view through upper-level clouds, modest size swaths and ability to capture most storm structure features. The NASA TRMM microwave imager and precipitation radar continue their 15+ yearlong missions in serving the TC warning and research communities. The cessation of NASA's QuikSCAT satellite after more than a decade of service is sorely missed, but India's OceanSat-2 scatterometer is now providing crucial ocean surface wind vectors in addition to the Navy's WindSat ocean surface wind vector retrievals. Another Advanced Scatterometer (ASCAT) onboard EUMETSAT's MetOp-2 satellite is slated for launch soon. Passive microwave imagery has received a much needed boost with the launch of the French/Indian Megha Tropiques imager in September 2011, basically greatly supplementing the very successful NASA TRMM pathfinder with a larger swath and more frequent temporal sampling. While initial data issues have delayed data utilization, current news indicates this data will be available in 2013. Future NASA Global Precipitation Mission (GPM) sensors starting in 2014 will provide enhanced capabilities. Also, the inclusion of the new microwave sounder data from the NPP ATMS (Oct 2011) will assist in mapping TC convective structures. The National Polar orbiting Partnership (NPP) program's VIIRS sensor includes a day night band (DNB) with the capability to view TC cloud structure at night when sufficient lunar illumination exits. Examples highlighting this new capability will be discussed in concert with additional data fusion efforts.

  20. Operational evapotranspiration based on Earth observation satellites

    Science.gov (United States)

    Gellens-Meulenberghs, Françoise; Ghilain, Nicolas; Arboleda, Alirio; Barrios, Jose-Miguel

    2016-04-01

    Geostationary satellites have the potential to follow fast evolving atmospheric and Earth surface phenomena such those related to cloud cover evolution and diurnal cycle. Since about 15 years, EUMETSAT has set up a network named 'Satellite Application Facility' (SAF, http://www.eumetsat.int/website/home/Satellites/GroundSegment/Safs/index.html) to complement its ground segment. The Land Surface Analysis (LSA) SAF (http://landsaf.meteo.pt/) is devoted to the development of operational products derived from the European meteorological satellites. In particular, an evapotranspiration (ET) product has been developed by the Royal Meteorological Institute of Belgium. Instantaneous and daily integrated results are produced in near real time and are freely available respectively since the end of 2009 and 2010. The products cover Europe, Africa and the Eastern part of South America with the spatial resolution of the SEVIRI sensor on-board Meteosat Second Generation (MSG) satellites. The ET product algorithm (Ghilain et al., 2011) is based on a simplified Soil-Vegetation-Atmosphere transfer (SVAT) scheme, forced with MSG derived radiative products (LSA SAF short and longwave surface fluxes, albedo). It has been extensively validated against in-situ validation data, mainly FLUXNET observations, demonstrating its good performances except in some arid or semi-arid areas. Research has then been pursued to develop an improved version for those areas. Solutions have been found in reviewing some of the model parameterizations and in assimilating additional satellite products (mainly vegetation indices and land surface temperature) into the model. The ET products will be complemented with related latent and sensible heat fluxes, to allow the monitoring of land surface energy partitioning. The new algorithm version should be tested in the LSA-SAF operational computer system in 2016 and results should become accessible to beta-users/regular users by the end of 2016/early 2017. In

  1. Monitoring objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  2. The Great Cacti: Ethnobotany & Biogeography

    Directory of Open Access Journals (Sweden)

    David A. Hooper

    2010-08-01

    Full Text Available Review of The Great Cacti: Ethnobotany & Biogeography. David Yetman. 2007. The University of Arizona, Tucson. Pp. 320, 366 color photographs, 17 maps. $59.95 (cloth. ISBN 9780816524310.

  3. Earth Observation Satellites Scheduling Based on Decomposition Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Feng Yao

    2010-11-01

    Full Text Available A decomposition-based optimization algorithm was proposed for solving Earth Observation Satellites scheduling problem. The problem was decomposed into task assignment main problem and single satellite scheduling sub-problem. In task assignment phase, the tasks were allocated to the satellites, and each satellite would schedule the task respectively in single satellite scheduling phase. We adopted an adaptive ant colony optimization algorithm to search the optimal task assignment scheme. Adaptive parameter adjusting strategy and pheromone trail smoothing strategy were introduced to balance the exploration and the exploitation of search process. A heuristic algorithm and a very fast simulated annealing algorithm were proposed to solve the single satellite scheduling problem. The task assignment scheme was valued by integrating the observation scheduling result of multiple satellites. The result was responded to the ant colony optimization algorithm, which can guide the search process of ant colony optimization. Computation results showed that the approach was effective to the satellites observation scheduling problem.

  4. Phylogeny of the Labeoninae (Teleostei, Cypriniformes) based on nuclear DNA sequences and implications on character evolution and biogeography

    Institute of Scientific and Technical Information of China (English)

    Lanping ZHENG; Junxing YANG; Xiaoyong CHEN

    2012-01-01

    The Labeoninae is a subfamily of the family Cyprinidae,Order Cypriniformes.Oromandibular morphology within the Labeoninae is the greatest among cyprinid fishes.Although several phylogenetic studies about labeonines have been undertaken the results have been inconsistent and a comprehensive phylogeny is needed.Further,an incongruence between morphological and molecular phylogeny requires a systematic exploration of the significance of morphological characters on the basis of the molecular phylogeny.In this study,a total of 292 nucleotide sequences from 73 individuals (representing 24 genera and 73 species) of Labeoninae were analyzed.The results of the phylogenetic analysis indicate that there are four major clades within Labeoninae and three monophyletic lineages within the fourth clade.Results of the character evolution show that all oromandibular morphological characters are homoplastically distributed on the molecular phylogenetic tree and suggests that these characters evolved several times during the history of labeonines.In particular,the labeonine,a specific disc on the lower lip,has been acquired three times and reversed twice.These morphological characters do not have systematic significance but can be useful for taxonomy.The results of biogeography suggest that the Labeoninae originated from Southeast Asia and separately dispersed to Africa,East Asia and South Asia.

  5. Amplicon-Based Pyrosequencing Reveals High Diversity of Protistan Parasites in Ships' Ballast Water: Implications for Biogeography and Infectious Diseases.

    Science.gov (United States)

    Pagenkopp Lohan, K M; Fleischer, R C; Carney, K J; Holzer, K K; Ruiz, G M

    2016-04-01

    Ships' ballast water (BW) commonly moves macroorganisms and microorganisms across the world's oceans and along coasts; however, the majority of these microbial transfers have gone undetected. We applied high-throughput sequencing methods to identify microbial eukaryotes, specifically emphasizing the protistan parasites, in ships' BW collected from vessels calling to the Chesapeake Bay (Virginia and Maryland, USA) from European and Eastern Canadian ports. We utilized tagged-amplicon 454 pyrosequencing with two general primer sets, amplifying either the V4 or V9 domain of the small subunit (SSU) of the ribosomal RNA (rRNA) gene complex, from total DNA extracted from water samples collected from the ballast tanks of bulk cargo vessels. We detected a diverse group of protistan taxa, with some known to contain important parasites in marine systems, including Apicomplexa (unidentified apicomplexans, unidentified gregarines, Cryptosporidium spp.), Dinophyta (Blastodinium spp., Euduboscquella sp., unidentified syndinids, Karlodinium spp., Syndinium spp.), Perkinsea (Parvilucifera sp.), Opisthokonta (Ichthyosporea sp., Pseudoperkinsidae, unidentified ichthyosporeans), and Stramenopiles (Labyrinthulomycetes). Further characterization of groups with parasitic taxa, consisting of phylogenetic analyses for four taxa (Cryptosporidium spp., Parvilucifera spp., Labyrinthulomycetes, and Ichthyosporea), revealed that sequences were obtained from both known and novel lineages. This study demonstrates that high-throughput sequencing is a viable and sensitive method for detecting parasitic protists when present and transported in the ballast water of ships. These data also underscore the potential importance of human-aided dispersal in the biogeography of these microbes and emerging diseases in the world's oceans.

  6. Global Ocean Surveillance With Electronic Intelligence Based Satellite System

    Science.gov (United States)

    Venkatramanan, Haritha

    2016-07-01

    The objective of this proposal is to design our own ELINT based satellite system to detect and locate the target by using satellite Trilateration Principle. The target position can be found by measuring the radio signals arrived at three satellites using Time Difference of Arrival(TDOA) technique. To locate a target it is necessary to determine the satellite position. The satellite motion and its position is obtained by using Simplified General Perturbation Model(SGP4) in MATLAB. This SGP4 accepts satellite Two Line Element(TLE) data and returns the position in the form of state vectors. These state vectors are then converted into observable parameters and then propagated in space. This calculations can be done for satellite constellation and non - visibility periods can be calculated. Satellite Trilateration consists of three satellites flying in formation with each other. The satellite constellation design consists of three satellites with an inclination of 61.3° maintained at equal distances between each other. The design is performed using MATLAB and simulated to obtain the necessary results. The target's position can be obtained using the three satellites ECEF Coordinate system and its position and velocity can be calculated in terms of Latitude and Longitude. The target's motion is simulated to obtain the Speed and Direction of Travel.

  7. SAW based systems for mobile communications satellites

    Science.gov (United States)

    Peach, R. C.; Miller, N.; Lee, M.

    1993-01-01

    Modern mobile communications satellites, such as INMARSAT 3, EMS, and ARTEMIS, use advanced onboard processing to make efficient use of the available L-band spectrum. In all of these cases, high performance surface acoustic wave (SAW) devices are used. SAW filters can provide high selectivity (100-200 kHz transition widths), combined with flat amplitude and linear phase characteristics; their simple construction and radiation hardness also makes them especially suitable for space applications. An overview of the architectures used in the above systems, describing the technologies employed, and the use of bandwidth switchable SAW filtering (BSSF) is given. The tradeoffs to be considered when specifying a SAW based system are analyzed, using both theoretical and experimental data. Empirical rules for estimating SAW filter performance are given. Achievable performance is illustrated using data from the INMARSAT 3 engineering model (EM) processors.

  8. Fruit Classification by Wavelet-Entropy and Feedforward Neural Network Trained by Fitness-Scaled Chaotic ABC and Biogeography-Based Optimization

    Directory of Open Access Journals (Sweden)

    Shuihua Wang

    2015-08-01

    Full Text Available Fruit classification is quite difficult because of the various categories and similar shapes and features of fruit. In this work, we proposed two novel machine-learning based classification methods. The developed system consists of wavelet entropy (WE, principal component analysis (PCA, feedforward neural network (FNN trained by fitness-scaled chaotic artificial bee colony (FSCABC and biogeography-based optimization (BBO, respectively. The K-fold stratified cross validation (SCV was utilized for statistical analysis. The classification performance for 1653 fruit images from 18 categories showed that the proposed “WE + PCA + FSCABC-FNN” and “WE + PCA + BBO-FNN” methods achieve the same accuracy of 89.5%, higher than state-of-the-art approaches: “(CH + MP + US + PCA + GA-FNN ” of 84.8%, “(CH + MP + US + PCA + PSO-FNN” of 87.9%, “(CH + MP + US + PCA + ABC-FNN” of 85.4%, “(CH + MP + US + PCA + kSVM” of 88.2%, and “(CH + MP + US + PCA + FSCABC-FNN” of 89.1%. Besides, our methods used only 12 features, less than the number of features used by other methods. Therefore, the proposed methods are effective for fruit classification.

  9. Morphology-based phylogeny and biogeography of Wockia (Lepidoptera: Urodidae) with description of a new species from Japan and South Korea.

    Science.gov (United States)

    Sohn, Jae-Cheon

    2014-04-01

    Wockia, one of the six genera within the lepidopteran family Urodidae, currently includes nine species distributed in Holarctic, Oriental, and Neotropical regions. A new species of the genus, W. magna sp. nov., is described from Japan and South Korea. This is the first record of Urodidae from Japan. A cladistic analysis was constructed based on 27 morphological characters from five ingroup species and two outgroup taxa. A single most parsimonious tree was found (length = 38, CI = 71, RI = 70). The resulting tree failed to recover the monophyly of Wockia chewbacca and a clade Wockia sensu stricto, including four congeners from North America, temperate East Asia and Southeast Asia. Wockia sensu stricto was resolved as monophyletic and was divided into two subgroups, one including W. asperipunctella and W. magna, and the other including W. koreana and W. variata. The sister-group relationship of W. asperipunctella and W. magna was moderately supported. Synapomorphies of Wockia sensu stricto are provided from the resulting phylogeny. Systematic definitions of Wockia and other allied genera are revised. Optimal ancestral area reconstruction implemented in DIVA resulted in different hypotheses for Wockia, depending on how to constrain the maximum number of areas. The maximum area number set as two yielded a more likely scenario suggesting that Wockia sensu stricto originated in temperate East Asia and then dispersed into the Oriental region, North America, and Europe. A working hypothesis and other equally possible alternative explanations for the biogeography of Wockia are provided.

  10. Satellite-Based EMI Detection, Identification, and Mitigation

    Science.gov (United States)

    Stottler, R.; Bowman, C.

    2016-09-01

    Commanding, controlling, and maintaining the health of satellites requires a clear operating spectrum for communications. Electro Magnetic Interference (EMI) from other satellites can interfere with these communications. Determining which satellite is at fault improves space situational awareness and can be used to avoid the problem in the future. The Rfi detection And Prediction Tool, Optimizing Resources (RAPTOR) monitors the satellite communication antenna signals to detect EMI (also called RFI for Radio Frequency Interference) using a neural network trained on past cases of both normal communications and EMI events. RAPTOR maintains a database of satellites that have violated the reserved spectrum in the past. When satellite-based EMI is detected, RAPTOR first checks this list to determine if any are angularly close to the satellite being communicated with. Additionally, RAPTOR checks the Space Catalog to see if any of its active satellites are angularly close. RAPTOR also consults on-line databases to determine if the described operating frequencies of the satellites match the detected EMI and recommends candidates to be added to the known offenders database, accordingly. Based on detected EMI and predicted orbits and frequencies, RAPTOR automatically reschedules satellite communications to avoid current and future satellite-based EMI. It also includes an intuitive display for a global network of satellite communications antennas and their statuses including the status of their EM spectrum. RAPTOR has been prototyped and tested with real data (amplitudes versus frequency over time) for both satellite communication signals and is currently undergoing full-scale development. This paper describes the RAPTOR technologies and results of testing.

  11. Observer-based Satellite Attitude Control and Simulation Researches

    Institute of Scientific and Technical Information of China (English)

    王子才; 马克茂

    2002-01-01

    Observer design method is applied to the realization of satellite attitude control law baaed on simplified control model. Exact mathematical model of the satellite attitude control system is also constructed, together with the observer-based control law, to conduct simulation research. The simulation results justify the effectiveness andfeasibility of the observer-based control method.

  12. Biogeography of sulfate-reducing prokaryotes in river floodplains

    NARCIS (Netherlands)

    Miletto, M.; Loy, A.; Antheunisse, A.M.; Loeb, R.; Bodelier, P.L.E.; Laanbroek, R.

    2008-01-01

    In this study, a large-scale field survey was conducted to describe the biogeography of sulfate-reducing prokaryotes (SRPs) in river floodplains. Fingerprints obtained with three methods, i.e. 16S rRNA gene-based oligonucleotide microarray, dsrB-based denaturing gradient gel electrophoresis (DGGE) a

  13. System refinement for content based satellite image retrieval

    Directory of Open Access Journals (Sweden)

    NourElDin Laban

    2012-06-01

    Full Text Available We are witnessing a large increase in satellite generated data especially in the form of images. Hence intelligent processing of the huge amount of data received by dozens of earth observing satellites, with specific satellite image oriented approaches, presents itself as a pressing need. Content based satellite image retrieval (CBSIR approaches have mainly been driven so far by approaches dealing with traditional images. In this paper we introduce a novel approach that refines image retrieval process using the unique properties to satellite images. Our approach uses a Query by polygon (QBP paradigm for the content of interest instead of using the more conventional rectangular query by image approach. First, we extract features from the satellite images using multiple tiling sizes. Accordingly the system uses these multilevel features within a multilevel retrieval system that refines the retrieval process. Our multilevel refinement approach has been experimentally validated against the conventional one yielding enhanced precision and recall rates.

  14. An horizon scan of biogeography

    DEFF Research Database (Denmark)

    Dawson, Michael; Algar, Adam; Antonelli, Alexandre;

    2013-01-01

    The opportunity to reflect broadly on the accomplishments, prospects, and reach of a field may present itself relatively infrequently. Each biennial meeting of the International Biogeography Society showcases ideas solicited and developed largely during the preceding year, by individuals or teams...... from across the breadth of the discipline. Here, we highlight challenges, developments, and opportunities in biogeography from that biennial synthesis. We note the realized and potential impact of rapid data accumulation in several fields, a renaissance for inter‐disciplinary research, the importance......‐deductive branches and establish a greater role within and outside academia....

  15. Radio occultation based on BeiDou satellite navigation

    Science.gov (United States)

    Jiang, Hu; Hu, Haiying; Shen, Xue-min; Gong, Wenbin; Zhang, Yonghe

    2014-11-01

    With the development of GNSS systems, it has become a tendency that radio occultation is used to sense the Earth's atmosphere. By this means, the moisture, temperature, pressure, and total electron content can be derived. Based on the sensing results, more complicated models for atmosphere might come into being. Meteorology well benefits from this technology. As scheduled, the BD satellite navigation system will have a worldwide coverage by the end of 2020. Radio occultation studies in China have been highlighted in the recent decade. More and more feasibilities reports have been published in either domestic or international journals. Herein, some scenarios are proposed to assess the coverage of radio occultation based on two different phases of BD satellite navigation system. Phase one for BD is composed of GEO,IGSO and several MEO satellites. Phase two for BD consists mostly of 24 MEO satellites, some GEO and IGSO satellites. The characteristics of radio occultation based on these two phases are presented respectively.

  16. Satellite based wind resource assessment over the South China Sea

    DEFF Research Database (Denmark)

    Badger, Merete; Astrup, Poul; Hasager, Charlotte Bay

    2014-01-01

    modeling to develop procedures and best practices for satellite based wind resource assessment offshore. All existing satellite images from the Envisat Advanced SAR sensor by the European Space Agency (2002-12) have been collected over a domain in the South China Sea. Wind speed is first retrieved from...

  17. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  18. Global trends in satellite-based emergency mapping

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-01-01

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  19. Global trends in satellite-based emergency mapping.

    Science.gov (United States)

    Voigt, Stefan; Giulio-Tonolo, Fabio; Lyons, Josh; Kučera, Jan; Jones, Brenda; Schneiderhan, Tobias; Platzeck, Gabriel; Kaku, Kazuya; Hazarika, Manzul Kumar; Czaran, Lorant; Li, Suju; Pedersen, Wendi; James, Godstime Kadiri; Proy, Catherine; Muthike, Denis Macharia; Bequignon, Jerome; Guha-Sapir, Debarati

    2016-07-15

    Over the past 15 years, scientists and disaster responders have increasingly used satellite-based Earth observations for global rapid assessment of disaster situations. We review global trends in satellite rapid response and emergency mapping from 2000 to 2014, analyzing more than 1000 incidents in which satellite monitoring was used for assessing major disaster situations. We provide a synthesis of spatial patterns and temporal trends in global satellite emergency mapping efforts and show that satellite-based emergency mapping is most intensively deployed in Asia and Europe and follows well the geographic, physical, and temporal distributions of global natural disasters. We present an outlook on the future use of Earth observation technology for disaster response and mitigation by putting past and current developments into context and perspective.

  20. Digital, Satellite-Based Aeronautical Communication

    Science.gov (United States)

    Davarian, F.

    1989-01-01

    Satellite system relays communication between aircraft and stations on ground. System offers better coverage with direct communication between air and ground, costs less and makes possible new communication services. Carries both voice and data. Because many data exchanged between aircraft and ground contain safety-related information, probability of bit errors essential.

  1. Delivery of satellite based broadband services

    Science.gov (United States)

    Chandrasekhar, M. G.; Venugopal, D.

    2007-06-01

    Availability of speedy communication links to individuals and organizations is essential to keep pace with the business and social requirements of this modern age. While the PCs have been continuously growing in processing speed and memory capabilities, the availability of broadband communication links still has not been satisfactory in many parts of the world. Recognizing the need to give fillip to the growth of broadband services and improve the broadband penetration, the telecom policies of different counties have placed special emphasis on the same. While emphasis is on the use of fiber optic and copper in local loop, satellite communications systems will play an important role in quickly establishing these services in areas where fiber and other communication systems are not available and are not likely to be available for a long time to come. To make satellite communication systems attractive for the wide spread of these services in a cost effective way special emphasis has to be given on factors affecting the cost of the bandwidth and the equipment. As broadband services are bandwidth demanding, use of bandwidth efficient modulation technique and suitable system architecture are some of the important aspects that need to be examined. Further there is a need to re-look on how information services are provided keeping in view the user requirements and broadcast capability of satellite systems over wide areas. This paper addresses some of the aspects of delivering broadband services via satellite taking Indian requirement as an example.

  2. Model-based satellite image fusion

    DEFF Research Database (Denmark)

    Aanæs, Henrik; Sveinsson, J. R.; Nielsen, Allan Aasbjerg

    2008-01-01

    A method is proposed for pixel-level satellite image fusion derived directly from a model of the imaging sensor. By design, the proposed method is spectrally consistent. It is argued that the proposed method needs regularization, as is the case for any method for this problem. A framework for pixel...

  3. Co-Channel Interference Mitigation Using Satellite Based Receivers

    Science.gov (United States)

    2014-12-01

    While there is some phase noise present in the continuous time-shifted signal, it is important to recognize that this signal is plotted over the [−π...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RECEIVERS by John E. Patterson...07-02-2012 to 12-19-2014 4. TITLE AND SUBTITLE CO-CHANNEL INTERFERENCE MITIGATION USING SATELLITE BASED RE- CEIVERS 5. FUNDING NUMBERS 6. AUTHOR(S

  4. Efficient chaotic based satellite power supply subsystem

    Energy Technology Data Exchange (ETDEWEB)

    Ramos Turci, Luiz Felipe [Technological Institute of Aeronautics (ITA), Sao Jose dos Campos, SP (Brazil)], E-mail: felipeturci@yahoo.com.br; Macau, Elbert E.N. [National Institute of Space Research (Inpe), Sao Jose dos Campos, SP (Brazil)], E-mail: elbert@lac.inpe.br; Yoneyama, Takashi [Technological Institute of Aeronautics (ITA), Sao Jose dos Campos, SP (Brazil)], E-mail: takashi@ita.br

    2009-10-15

    In this work, we investigate the use of the Dynamical System Theory to increase the efficiency of the satellite power supply subsystems. The core of a satellite power subsystem relies on its DC/DC converter. This is a very nonlinear system that presents a multitude of phenomena ranging from bifurcations, quasi-periodicity, chaos, coexistence of attractors, among others. The traditional power subsystem design techniques try to avoid these nonlinear phenomena so that it is possible to use linear system theory in small regions about the equilibrium points. Here, we show that more efficiency can be drawn from a power supply subsystem if the DC/DC converter operates in regions of high nonlinearity. In special, if it operates in a chaotic regime, is has an intrinsic sensitivity that can be exploited to efficiently drive the power subsystem over high ranges of power requests by using control of chaos techniques.

  5. Autonomous sensor-based dual-arm satellite grappling

    Science.gov (United States)

    Wilcox, Brian; Tso, Kam; Litwin, Todd; Hayati, Samad; Bon, Bruce

    1989-01-01

    Dual-arm satellite grappling involves the integration of technologies developed in the Sensing and Perception (S&P) Subsystem for object acquisition and tracking, and the Manipulator Control and Mechanization (MCM) Subsystem for dual-arm control. S&P acquires and tracks the position, orientation, velocity, and angular velocity of a slowly spinning satellite, and sends tracking data to the MCM subsystem. MCM grapples the satellite and brings it to rest, controlling the arms so that no excessive forces or torques are exerted on the satellite or arms. A 350-pound satellite mockup which can spin freely on a gimbal for several minutes, closely simulating the dynamics of a real satellite is demonstrated. The satellite mockup is fitted with a panel under which may be mounted various elements such as line replacement modules and electrical connectors that will be used to demonstrate servicing tasks once the satellite is docked. The subsystems are housed in three MicroVAX II microcomputers. The hardware of the S&P Subsystem includes CCD cameras, video digitizers, frame buffers, IMFEX (a custom pipelined video processor), a time-code generator with millisecond precision, and a MicroVAX II computer. Its software is written in Pascal and is based on a locally written vision software library. The hardware of the MCM Subsystem includes PUMA 560 robot arms, Lord force/torque sensors, two MicroVAX II computers, and unimation pneumatic parallel grippers. Its software is written in C, and is based on a robot language called RCCL. The two subsystems are described and test results on the grappling of the satellite mockup with rotational rates of up to 2 rpm are provided.

  6. A comparative study of satellite and ground-based phenology.

    Science.gov (United States)

    Studer, S; Stöckli, R; Appenzeller, C; Vidale, P L

    2007-05-01

    Long time series of ground-based plant phenology, as well as more than two decades of satellite-derived phenological metrics, are currently available to assess the impacts of climate variability and trends on terrestrial vegetation. Traditional plant phenology provides very accurate information on individual plant species, but with limited spatial coverage. Satellite phenology allows monitoring of terrestrial vegetation on a global scale and provides an integrative view at the landscape level. Linking the strengths of both methodologies has high potential value for climate impact studies. We compared a multispecies index from ground-observed spring phases with two types (maximum slope and threshold approach) of satellite-derived start-of-season (SOS) metrics. We focus on Switzerland from 1982 to 2001 and show that temporal and spatial variability of the multispecies index correspond well with the satellite-derived metrics. All phenological metrics correlate with temperature anomalies as expected. The slope approach proved to deviate strongly from the temporal development of the ground observations as well as from the threshold-defined SOS satellite measure. The slope spring indicator is considered to indicate a different stage in vegetation development and is therefore less suited as a SOS parameter for comparative studies in relation to ground-observed phenology. Satellite-derived metrics are, however, very susceptible to snow cover, and it is suggested that this snow cover should be better accounted for by the use of newer satellite sensors.

  7. DIGITAL VIDEO BROADCAST RETURN CHANNEL VIA SATELLITE (DVB-RCS HUB FOR SATELLITE BASED E-LEARNING

    Directory of Open Access Journals (Sweden)

    N.G.Vasantha Kumar

    2011-02-01

    Full Text Available This paper discusses in-house designed and developed scale-down DVB-RCS hub along with the performance of the realized hub. This development is intended to support the Satellite Based e-Learning initiative in India. The scale-down DVB-RCS HUB is implemented around a single PC with other subsystems making it very cost effective and unique of its kind. This realization will drastically reduce the total cost of Satellite based Education Networks as very low cost commercially available Satellite Interactive Terminals (SITs complying to open standard could be used at remote locations. The system is successfully tested to work with a commercial SIT using a GEO satellite EDUSAT which is especially dedicated for satellite based e-Learning. The internal detail of the DVB-RCS Forward and Return Link Organization and how it manages the Satellite Interactive Terminals access to the satellite channel using MF-TDMA approach has been described.

  8. Technology status of HNF-based monopropellants for satellite propulsion

    NARCIS (Netherlands)

    Marée, A.G.M.; Moerel, J.L.P.A.; Weiland-Veltmans, W.H.M.; Wierkx, F.J.M.; Zevenbergen, J.

    2004-01-01

    This paper reports on significant technological progress made over the last few years in determining the feasibility of HNF-based monopropellants. An HNF-based monopropellant is an interesting alternative for hydrazine as monopropellant for satellite propulsion. New non-toxic monopropellants based o

  9. Constrained Multiobjective Biogeography Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Hongwei Mo

    2014-01-01

    Full Text Available Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA.

  10. Constrained multiobjective biogeography optimization algorithm.

    Science.gov (United States)

    Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping

    2014-01-01

    Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA.

  11. An horizon scan of biogeography

    Directory of Open Access Journals (Sweden)

    Michael N Dawson

    2013-07-01

    Full Text Available The opportunity to reflect broadly on the accomplishments, prospects, and reach of a field may present itself relatively infrequently. Each biennial meeting of the International Biogeography Society showcases ideas solicited and developed largely during the preceding year, by individuals or teams from across the breadth of the discipline. Here, we highlight challenges, developments, and opportunities in biogeography from that biennial synthesis. We note the realized and potential impact of rapid data accumulation in several fields, a renaissance for inter-disciplinary research, the importance of recognizing the evolution-ecology continuum across spatial and temporal scales and at different taxonomic, phylogenetic and functional levels, and re-exploration of classical assumptions and hypotheses using new tools. However, advances are taxonomically and geographically biased, key theoretical frameworks await tools to handle, or strategies to simplify, the biological complexity seen in empirical systems. Current threats to biodiversity require unprecedented integration of knowledge and development of predictive capacity that may enable biogeography to unite its descriptive and hypothetico-deductive branches and establish a greater role within and outside academia.

  12. A satellite based telemetry link for a UAV application

    Science.gov (United States)

    Bloise, Anthony

    1995-01-01

    The requirements for a satellite based communication facility to service the needs of the Geographical Information System (GIS) data collection community are addressed in this paper. GIS data is supplied in the form of video imagery at sub-television rates in one or more spectral bands / polarizations laced with a position correlated data stream. The limitations and vicissitudes of using a terrestrial based telecommunications link to collect GIS data are illustrated from actual mission scenarios. The expectations from a satellite based communications link by the geophysical data collection community concerning satellite architecture, operating bands, bandwidth, footprint agility, up link and down link hardware configurations on the UAV, the Mobile Control Vehicle and at the Central Command and Data Collection Facility comprise the principle issues discussed in the first section of this paper. The final section of the paper discusses satellite based communication links would have an increased volume and scope of services the GIS data collection community could make available to the GIS user community, and the price the data collection community could afford to pay for access to the communication satellite described in the paper.

  13. Multi-spectral band selection for satellite-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Clodius, W.B.; Weber, P.G.; Borel, C.C.; Smith, B.W.

    1998-09-01

    The design of satellite based multispectral imaging systems requires the consideration of a number of tradeoffs between cost and performance. The authors have recently been involved in the design and evaluation of a satellite based multispectral sensor operating from the visible through the long wavelength IR. The criteria that led to some of the proposed designs and the modeling used to evaluate and fine tune the designs will both be discussed. These criteria emphasized the use of bands for surface temperature retrieval and the correction of atmospheric effects. The impact of cost estimate changes on the final design will also be discussed.

  14. Biogeography of speciation of two sister species of neotropical amazona (Aves, Psittaciformes based on mitochondrial sequence data.

    Directory of Open Access Journals (Sweden)

    Amanda V Rocha

    Full Text Available Coalescent theory provides powerful models for population genetic inference and is now increasingly important in estimates of divergence times and speciation research. We use molecular data and methods based on coalescent theory to investigate whether genetic evidence supports the hypothesis of A. pretrei and A. tucumana as separate species and whether genetic data allow us to assess which allopatric model seems to better explain the diversification process in these taxa. We sampled 13 A. tucumana from two provinces in northern Argentina and 28 A. pretrei from nine localities of Rio Grande do Sul, Brazil. A 491 bp segment of the mitochondrial gene cytochrome c oxidase I was evaluated using the haplotype network and phylogenetic methods. The divergence time and other demographic quantities were estimated using the isolation and migration model based on coalescent theory. The network and phylogenetic reconstructions showed similar results, supporting reciprocal monophyly for these two taxa. The divergence time of lineage separation was estimated to be approximately 1.3 million years ago, which corresponds to the lower Pleistocene. Our results enforce the current taxonomic status for these two Amazon species. They also support that A. pretrei and A. tucumana diverged with little or no gene flow approximately 1.3 million years ago, most likely after the establishment of a small population in the Southern Yungas forest by dispersion of a few founders from the A. pretrei ancestral population. This process may have been favored by habitat corridors formed in hot and humid periods of the Quaternary. Considering that these two species are considered threatened, the results were evaluated for their implications for the conservation of these two species.

  15. Tracking target objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, Willem H; Olivier, Scot S; Pertica, Alexander J

    2014-10-14

    A system for tracking objects that are in earth orbit via a constellation or network of satellites having imaging devices is provided. An object tracking system includes a ground controller and, for each satellite in the constellation, an onboard controller. The ground controller receives ephemeris information for a target object and directs that ephemeris information be transmitted to the satellites. Each onboard controller receives ephemeris information for a target object, collects images of the target object based on the expected location of the target object at an expected time, identifies actual locations of the target object from the collected images, and identifies a next expected location at a next expected time based on the identified actual locations of the target object. The onboard controller processes the collected image to identify the actual location of the target object and transmits the actual location information to the ground controller.

  16. Sympatry inference and network analysis in biogeography.

    Science.gov (United States)

    Dos Santos, Daniel A; Fernández, Hugo R; Cuezzo, María Gabriela; Domínguez, Eduardo

    2008-06-01

    A new approach for biogeography to find patterns of sympatry, based on network analysis, is proposed. Biogeographic analysis focuses basically on sympatry patterns of species. Sympatry is a network (= relational) datum, but it has never been analyzed before using relational tools such as Network Analysis. Our approach to biogeographic analysis consists of two parts: first the sympatry inference and second the network analysis method (NAM). The sympatry inference method was designed to propose sympatry hypothesis, constructing a basal sympatry network based on punctual data, independent of a priori distributional area determination. In this way, two or more species are considered sympatric when there is interpenetration and relative proximity among their records of occurrence. In nature, groups of species presenting within-group sympatry and between-group allopatry constitute natural units (units of co-occurrence). These allopatric units are usually connected by intermediary species. The network analysis method (NAM) that we propose here is based on the identification and removal of intermediary species to segregate units of co-occurrence, using the betweenness measure and the clustering coefficient. The species ranges of the units of co-occurrence obtained are transferred to a map, being considered as candidates to areas of endemism. The new approach was implemented on three different real complex data sets (one of them a classic example previously used in biogeography) resulting in (1) independence of predefined spatial units; (2) definition of co-occurrence patterns from the sympatry network structure, not from species range similarities; (3) higher stability in results despite scale changes; (4) identification of candidates to areas of endemism supported by strictly endemic species; (5) identification of intermediary species with particular biological attributes.

  17. SOFT project: a new forecasting system based on satellite data

    Science.gov (United States)

    Pascual, Ananda; Orfila, A.; Alvarez, Alberto; Hernandez, E.; Gomis, D.; Barth, Alexander; Tintore, Joaquim

    2002-01-01

    The aim of the SOFT project is to develop a new ocean forecasting system by using a combination of satellite dat, evolutionary programming and numerical ocean models. To achieve this objective two steps are proved: (1) to obtain an accurate ocean forecasting system using genetic algorithms based on satellite data; and (2) to integrate the above new system into existing deterministic numerical models. Evolutionary programming will be employed to build 'intelligent' systems that, learning form the past ocean variability and considering the present ocean state, will be able to infer near future ocean conditions. Validation of the forecast skill will be carried out by comparing the forecasts fields with satellite and in situ observations. Validation with satellite observations will provide the expected errors in the forecasting system. Validation with in situ data will indicate the capabilities of the satellite based forecast information to improve the performance of the numerical ocean models. This later validation will be accomplished considering in situ measurements in a specific oceanographic area at two different periods of time. The first set of observations will be employed to feed the hybrid systems while the second set will be used to validate the hybrid and traditional numerical model results.

  18. Phylogeny and biogeography of 91 species of heroine cichlids (Teleostei: Cichlidae) based on sequences of the cytochrome b gene.

    Science.gov (United States)

    Pérez, Gustavo A Concheiro; Rícan, Oldrich; Ortí, Guillermo; Bermingham, Eldredge; Doadrio, Ignacio; Zardoya, Rafael

    2007-04-01

    Heroini constitute the second largest tribe of Neotropical cichlids and show their greatest diversity in Mesoamerica. Although heroine species are morphologically and ecologically very diverse, they were all historically assigned to one single genus, Cichlasoma that was never formally revised from a phylogenetic point of view. Here, we present the most comprehensive molecular phylogeny of the tribe Heroini to date, based on the complete DNA sequence of the mitochondrial gene cytochrome b, and the analysis of 204 individuals representing 91 species. Phylogenetic analyses did not support the monophyly of heroines because the genus Pterophyllum was placed as the sister group of all remaining heroines plus cichlasomatines. However, the recovered relative position of Pterophyllum was without strong statistical support. Within the remaining heroines, Hyspelecara and Hoplarchus are recovered with low support in a basal position with respect to a clade that includes Heros, Uaru, Mesonauta, and Symphysodon, and the circumamazonian (CAM) heroines. The first clade is restricted to South America. The largest clade of heroines, the CAM heroines, include more than 85% of the species within the tribe. This clade is mostly Mesoamerican, but also contains four species found in the Greater Antilles (Nandopsis), and three genera found in South America (the 'Heros' festae group, Australoheros, and Caquetaia). Up to eight major lineages can be recovered within the CAM heroines, but the phylogenetic relationships among them remain unresolved. Two large suprageneric groups can be distinguished, the amphilophines and the herichthyines. The amphilophines include Amphilophus, Archocentrus, Hypsophrys, Neetroplus, Parachromis, Petenia, and five additional unnamed genera (the 'Heros' istlanus group, the 'Amphilophus' calobrensis group, the 'Heros' urophthalmus group, the 'Heros' wesseli group, and the 'Heros' sieboldii group). The herichthyines include the crown-group herichthyines

  19. Validation of an Innovative Satellite-Based UV Dosimeter

    Science.gov (United States)

    Morelli, Marco; Masini, Andrea; Simeone, Emilio; Khazova, Marina

    2016-08-01

    We present an innovative satellite-based UV (ultraviolet) radiation dosimeter with a mobile app interface that has been validated by exploiting both ground-based measurements and an in-vivo assessment of the erythemal effects on some volunteers having a controlled exposure to solar radiation.Both validations showed that the satellite-based UV dosimeter has a good accuracy and reliability needed for health-related applications.The app with this satellite-based UV dosimeter also includes other related functionalities such as the provision of safe sun exposure time updated in real-time and end exposure visual/sound alert. This app will be launched on the global market by siHealth Ltd in May 2016 under the name of "HappySun" and available both for Android and for iOS devices (more info on http://www.happysun.co.uk).Extensive R&D activities are on-going for further improvement of the satellite-based UV dosimeter's accuracy.

  20. Engineering satellite-based navigation and timing global navigation satellite systems, signals, and receivers

    CERN Document Server

    Betz, J

    2016-01-01

    This book describes the design and performance analysis of satnav systems, signals, and receivers. It also provides succinct descriptions and comparisons of all the world’s satnav systems. Its comprehensive and logical structure addresses all satnav signals and systems in operation and being developed. Engineering Satellite-Based Navigation and Timing: Global Navigation Satellite Systems, Signals, and Receivers provides the technical foundation for designing and analyzing satnav signals, systems, and receivers. Its contents and structure address all satnav systems and signals: legacy, modernized, and new. It combines qualitative information with detailed techniques and analyses, providing a comprehensive set of insights and engineering tools for this complex multidisciplinary field. Part I describes system and signal engineering including orbital mechanics and constellation design, signal design principles and underlying considerations, link budgets, qua tifying receiver performance in interference, and e...

  1. A Satellite Based Fog Study of the Korean Peninsula

    Science.gov (United States)

    2007-06-01

    total number of fog and fog likely days detected from the two MODIS satellites, Aqua and Tera , respectively. Results from all nine areas of...trends in fog detection based on the satellite differences. 46 0 20 40 60 80 100 120 N um be r o f D ay s 1 2 3 4 5 6 7 8 9 Areas Four Month Tera vs...Aqua Fog Totals Tera Fog Tera Fog Likely Aqua Fog Aqua Fog Likely Figure 29. Comparisons of the four month total number of fog and fog likely days

  2. Trellis-coded CPM for satellite-based mobile communications

    Science.gov (United States)

    Abrishamkar, Farrokh; Biglieri, Ezio

    1988-01-01

    Digital transmission for satellite-based land mobile communications is discussed. To satisfy the power and bandwidth limitations imposed on such systems, a combination of trellis coding and continuous-phase modulated signals are considered. Some schemes based on this idea are presented, and their performance is analyzed by computer simulation. The results obtained show that a scheme based on directional detection and Viterbi decoding appears promising for practical applications.

  3. Satellite Type Estination from Ground-based Photometric Observation

    Science.gov (United States)

    Endo, T.; Ono, H.; Suzuki, J.; Ando, T.; Takanezawa, T.

    2016-09-01

    The optical photometric observation is potentially a powerful tool for understanding of the Geostationary Earth Orbit (GEO) objects. At first, we measured in laboratory the surface reflectance of common satellite materials, for example, Multi-layer Insulation (MLI), mono-crystalline silicon cells, and Carbon Fiber Reinforced Plastic (CFRP). Next, we calculated visual magnitude of a satellite by simplified shape and albedo. In this calculation model, solar panels have dimensions of 2 by 8 meters, and the bus area is 2 meters squared with measured optical properties described above. Under these conditions, it clarified the brightness can change the range between 3 and 4 magnitudes in one night, but color index changes only from 1 to 2 magnitudes. Finally, we observed the color photometric data of several GEO satellites visible from Japan multiple times in August and September 2014. We obtained that light curves of GEO satellites recorded in the B and V bands (using Johnson filters) by a ground-base optical telescope. As a result, color index changed approximately from 0.5 to 1 magnitude in one night, and the order of magnitude was not changed in all cases. In this paper, we briefly discuss about satellite type estimation using the relation between brightness and color index obtained from the photometric observation.

  4. The principle of the positioning system based on communication satellites

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    It is a long dream to realize the communication and navigation functionality in a satellite system in the world. This paper introduces how to establish the system, a positioning system based on communication satellites called Chinese Area Positioning System (CAPS). Instead of the typical navigation satellites, the communication satellites are configured firstly to transfer navigation signals from ground stations, and can be used to obtain service of the positioning, velocity and time, and to achieve the function of navigation and positioning. Some key technique issues should be first solved; they include the accuracy position determination and orbit prediction of the communication satellites, the measur- ing and calculation of transfer time of the signals, the carrier frequency drift in communication satellite signal transfer, how to improve the geometrical configuration of the constellation in the system, and the integration of navigation & communication. Several innovative methods are developed to make the new system have full functions of navigation and communication. Based on the development of crucial techniques and methods, the CAPS demonstration system has been designed and developed. Four communication satellites in the geosynchronous orbit (GEO) located at 87.5°E, 110.5°E, 134°E, 142°E and barometric altimetry are used in the CAPS system. The GEO satellites located at 134°E and 142°E are decommissioned GEO (DGEO) satellites. C-band is used as the navigation band. Dual frequency at C1=4143.15 MHz and C2=3826.02 MHz as well as dual codes with standard code (CA code and precision code (P code)) are adopted. The ground segment consists of five ground stations; the master station is in Lintong, Xi’an. The ground stations take a lot of responsibilities, including monitor and management of the operation of all system components, determination of the satellite position and prediction of the satellite orbit, accomplishment of the virtual atomic clock

  5. Possible satellite-based observations of the 1997 Leonid meteoroids

    Energy Technology Data Exchange (ETDEWEB)

    Pongratz, M.B.; Carlos, R.C.; Cayton, T.

    1998-12-01

    The Block IIA GPS satellites are equipped with a sensor designed to detect electromagnetic transients. Several phenomena will produce triggers in this sensor. They include earth-based electromagnetic transients such as lightning and two space-based phenomena--deep dielectric discharge and meteoroid or hyper-velocity micro-gram particle impact (HMPI). Energetic electrons in the GPS environment cause the deep dielectric charging. HMPIs cause triggers through the transient electric fields generated by the ejecta plasma. During the 1997 Leonid passage the energetic particle fluxes were very low. In the presence of such low fluxes the typical median trigger rate is 20 per minute with a standard deviation of about 20 per minute. Between 0800 UT and 1200 UT on November 17, 1997, the sensor on a specially configured satellite observed trigger rates more than 10 sigma above the nominal median rate. Sensors on other Block IIA GPS satellites also observed excess triggers during November. Detection is enhanced when the sensor antenna is oriented into the Leonid radiant. While many questions persist the authors feel that it is likely that the excess events during the November interval were caused by the close approach of the satellites to the Leonid meteoroid path.

  6. An Ontology Based Methodology for Satellite Data Semantic Interoperability

    Directory of Open Access Journals (Sweden)

    ABBURU, S.

    2015-08-01

    Full Text Available Satellites and ocean based observing system consists of various sensors and configurations. These observing systems transmit data in heterogeneous file formats and heterogeneous vocabulary from various data centers. These data centers maintain a centralized data management system that disseminates the observations to various research communities. Currently, different data naming conventions are being used by existing observing systems, thus leading to semantic heterogeneity. In this work, sensor data interoperability and semantics of the data are being addressed through ontologies. The present work provides an effective technical solution to address semantic heterogeneity through semantic technologies. These technologies provide interoperability, capability to build knowledge base, and framework for semantic information retrieval by developing an effective concept vocabulary through domain ontologies. The paper aims at a new methodology to interlink the multidisciplinary and heterogeneous sensor data products. A four phase methodology has been implemented to address satellite data semantic interoperability. The paper concludes with the evaluation of the methodology by linking and interfacing multiple ontologies to arrive at ontology vocabulary for sensor observations. Data from Indian Meteorological satellite INSAT-3D satellite have been used as a typical example to illustrate the concepts. This work on similar lines can also be extended to other sensor observations.

  7. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez Valencia, Oliver M.

    2016-06-15

    Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological

  8. Satellite Based Extrusion Rates for the 2006 Augustine Eruption

    Science.gov (United States)

    Dehn, J.; Bailey, J. E.; Dean, K. G.; Skoog, R.; Valcic, L.

    2006-12-01

    Extrusion rates were calculated from polar orbiting infrared satellite data for the 2006 eruption of Augustine Volcano, Alaska. The pixel integrated brightness temperatures from the satellite data were converted to estimates of ground temperature by making assumptions and using first hand observations about the geometry of the hot area (lava dome, flows and pyroclastic flow deposits) relative to the cold area in the kilometer scale pixels. Extrusion rate is calculated by assuming that at a given temperature, a lava emits an amount of radiation proportional to its volume. On ten occasions during the activity, helicopter based infrared imagers were used to validate the satellite observations. The pre-January 11 thermal activity was not significantly above background in satellite data. The first strong thermal anomalies were recorded during the first explosive phase on January 11. During successive explosive phases in January, bright thermal signals were observed, often saturating the sensors. Large areas (many km2) were observed to be warm in the satellite data, indicative of pyroclastic flows. Sometime during or after January 29, during a phase of sustained ash emission, the thermal signal became persistent, suggesting the beginning of lava effusion. The extrusion rates derived from satellite data varied from 0 to nearly 7 m3/s, giving an eruption rate of 2.7 m3/s. The extrusion event produced two blocky lava flows which moved down the north flank of the volcano. Extrusion occurred through at least March 15 (day 76) when a sharp drop in extrusion rate and thermal signal is observed. Based on the derived extrusion rates, it is estimated that 18 million m3 of lava was extruded during the course of the eruption. This value agreed well with photogrammetric measurements, but does not agree with volumes derived through subtraction of digital elevation models post- and pre- eruption. It should be noted that the thermal approach only works for hot lavas, and does not

  9. Solving flexible Job-Shop scheduling problem based on biogeography-based optimization algorithm%生物地理学算法求解柔性作业车间调度问题

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-hui; NIE Li; MAO Xue-gang

    2014-01-01

    For the flexible Job-Shop scheduling problem (FJSP), this paper proposed the improved biogeography-based optimization algorithm (BBO), modified the migration operator and mutation operator. In the initial stage of the algorithm, it adopted hybrid initiali%针对柔性作业车间调度问题,对生物地理学优化算法中的迁移操作和突变操作进行改进,提出一种改进的生物地理学优化算法。在算法初始阶段采用混合初始化的方法,提高初始种群质量;对迁移操作和突变操作采用不同选择方法,提高算法全局搜索能力,加快收敛速度。通过编程仿真对柔性作业车间调度问题标准测试算例进行运算,并与其他文献中的计算结果进行比较,验证了该算法是可行和有效的,也可用于其他车间调度问题中。

  10. The principle of the positioning system based on communication satellites

    Institute of Scientific and Technical Information of China (English)

    AI GuoXiang; SHI HuLi; WU HaiTao; LI ZhiGang; GUO Ji

    2009-01-01

    It is a long dream to realize the communication and navigation functionality in a satellite system in the world.This paper introduces how to establish the system,a positioning system based on communication satellites called Chinese Area Positioning System (CAPS).Instead of the typical navigation satelIites,the communication satellites are configured firstly to transfer navigation signals from ground stations,and can be used to obtain service of the positioning,velocity and time,and to achieve the function of navigation and positioning.Some key technique issues should be first solved; they include the accuracy position determination and orbit prediction of the communication satellites,the measuring and calculation of transfer time of the signals,the carrier frequency drift in communication satellite ignal transfer,how to improve the geometrical configuration of the constellation in the system,and the integration of navigation & communication.Several innovative methods are developed to make the new system have full functions of navigation and communication.Based on the development of crucial techniques and methods,the CAPS demonstration system has been designed and developed.Four communication satellites in the geosynchronous orbit (GEO) located at 87.5°E,110.5°E,134°E,142°E and barometric altimetry are used in the CAPS system.The GEO satellites located at 134°E and 142°E re decommissioned GEO (DGEO) satellites.C-band is used as the navigation band.Dual frequency at C1=4143.15 MHz and C2=3826.02 MHz as well as dual codes with standard code (CA code and precision code (P code)) are adopted.The ground segment consists of five ground stations; the master station is in Lintong,Xi'an.The ground stations take a lot of responsibilities,including monitor and management of the operation of all system components,determination of the satellite position and prediction of the satellite orbit,accomplishment of the virtual atomic clock measurement,transmission and receiving

  11. Periodic material-based vibration isolation for satellites

    Directory of Open Access Journals (Sweden)

    Xinnan Liu

    2016-01-01

    Full Text Available The vibration environment of a satellite is very severe during launch. Isolating the satellitevibrations during launch will significantly enhance reliability and lifespan, and reduce the weight of satellite structure and manufacturing cost. Guided by the recent advances in solid-state physics research, a new type of satellite vibration isolator is proposed by usingperiodic material that is hence called periodic isolator. The periodic isolator possesses a unique dynamic property, i.e., frequency band gaps. External vibrations with frequencies falling in the frequency band gaps of the periodic isolator are to be isolated. Using the elastodynamics and the Bloch-Floquet theorem, the frequency band gaps of periodic isolators are determined. A parametric study is conducted to provide guidelines for the design of periodic isolators. Based on these analytical results, a finite element model of a micro-satellite with a set of designed periodic isolators is built to show the feasibility of vibration isolation. The periodic isolator is found to be a multi-directional isolator that provides vibration isolation in the three directions.

  12. GPS SATELLITE SIMULATOR SIGNAL ESTIMATION BASED ON ANN

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Multi-channel Global Positioning System (GPS) satellite signal simulator is used to provide realistic test signals for GPS receivers and navigation systems. In this paper, signals arriving the antenna of GPS receiver are analyzed from the viewpoint of simulator design. The estimation methods are focused of which several signal parameters are difficult to determine directly according to existing experiential models due to various error factors. Based on the theory of Artificial Neural Network (ANN), an approach is proposed to simulate signal propagation delay,carrier phase, power, and other parameters using ANN. The architecture of the hardware-in-the-loop test system is given. The ANN training and validation process is described. Experimental results demonstrate that the ANN designed can statistically simulate sample data in high fidelity.Therefore the computation of signal state based on this ANN can meet the design requirement,and can be directly applied to the development of multi-channel GPS satellite signal simulator.

  13. The satellite based augmentation system – EGNOS for non-precision approach global navigation satellite system

    Directory of Open Access Journals (Sweden)

    Andrzej FELLNER

    2012-01-01

    Full Text Available First in the Poland tests of the EGNOS SIS (Signal in Space were conducted on 5th October 2007 on the flight inspection with SPAN (The Synchronized Position Attitude Navigation technology at the Mielec airfield. This was an introduction to a test campaign of the EGNOS-based satellite navigation system for air traffic. The advanced studies will be performed within the framework of the EGNOS-APV project in 2011. The implementation of the EGNOS system to APV-I precision approach operations, is conducted according to ICAO requirements in Annex 10. Definition of usefulness and certification of EGNOS as SBAS (Satellite Based Augmentation System in aviation requires thorough analyses of accuracy, integrity, continuity and availability of SIS. Also, the project will try to exploit the excellent accuracy performance of EGNOS to analyze the implementation of GLS (GNSS Landing System approaches (Cat I-like approached using SBAS, with a decision height of 200 ft. Location of the EGNOS monitoring station Rzeszów, located near Polish-Ukrainian border, being also at the east border of planned EGNOS coverage for ECAC states is very useful for SIS tests in this area. According to current EGNOS programmed schedule, the project activities will be carried out with EGNOS system v2.2, which is the version released for civil aviation certification. Therefore, the project will allow demonstrating the feasibility of the EGNOS certifiable version for civil applications.

  14. Satellite Formation Design for Space Based Radar Applications

    Science.gov (United States)

    2007-07-30

    Practical Guidance Methodology for Relative Motion of LEO Spacecraft Based on the Clohessy-Wiltshire Equations,” AAS Paper 04-252, AAS/AIAA Space...Non- Circular Reference Orbit," AAS Paper 01-222, AAS/AIAA Space Flight Mechanics Meeting, Santa Barbara, CA, Feb 11-16, 2001. 11. D. Brouwer ...Small Eccentricities or Inclinations in the Brouwer Theory of the Artificial Satellite,” The Astronomical Journal, Vol. 68, October 1963, pp. 555

  15. Efficient enhancing scheme for TCP performance over satellite-based internet

    Institute of Scientific and Technical Information of China (English)

    Wang Lina; Gu Xuemai

    2007-01-01

    Satellite link characteristics drastically degrade transport control protocol (TCP) performance. An efficient performance enhancing scheme is proposed. The improvement of TCP performance over satellite-based Intemet is accomplished by protocol transition gateways at each end ora satellite link. The protocol which runs over a satellite link executes the receiver-driven flow control and acknowledgements- and timeouts-based error control strategies. The validity of this TCP performance enhancing scheme is verified by a series of simulation experiments. Results show that the proposed scheme can efficiently enhance the TCP performance over satellite-based Intemet and ensure that the available bandwidth resources of the satellite link are fully utilized.

  16. Biomass prediction model in maize based on satellite images

    Science.gov (United States)

    Mihai, Herbei; Florin, Sala

    2016-06-01

    Monitoring of crops by satellite techniques is very useful in the context of precision agriculture, regarding crops management and agricultural production. The present study has evaluated the interrelationship between maize biomass production and satellite indices (NDVI and NDBR) during five development stages (BBCH code), highlighting different levels of correlation. Biomass production recorded was between 2.39±0.005 t ha-1 (12-13 BBCH code) and 51.92±0.028 t ha-1 (83-85 BBCH code), in relation to vegetation stages studied. Values of chlorophyll content ranged from 24.1±0.25 SPAD unit (12-13 BBCH code) to 58.63±0.47 SPAD unit (71-73 BBCH code), and the obtained satellite indices ranged from 0.035641±0.002 and 0.320839±0.002 for NDVI indices respectively 0.035095±0.034 and 0.491038±0.018 in the case of NDBR indices. By regression analysis it was possible to obtain predictive models of biomass in maize based on the satellite indices, in statistical accurate conditions. The most accurate prediction was possible based on NDBR index (R2 = 0.986, F = 144.23, p<0.001, RMSE = 1.446), then based on chlorophyll content (R2 = 0.834, F = 16.14, p = 0.012, RMSE = 6.927) and NDVI index (R2 = 0.682, F = 3.869, p = 0.116, RMSE = 12.178).

  17. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  18. Efficient Satellite Scheduling Based on Improved Vector Evaluated Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tengyue Mao

    2012-03-01

    Full Text Available Satellite scheduling is a typical multi-peak, many-valley, nonlinear multi-objective optimization problem. How to effectively implement the satellite scheduling is a crucial research in space areas.This paper mainly discusses the performance of VEGA (Vector Evaluated Genetic Algorithm based on the study of basic principles of VEGA algorithm, algorithm realization and test function, and then improves VEGA algorithm through introducing vector coding, new crossover and mutation operators, new methods to assign fitness and hold good individuals. As a result, the diversity and convergence of improved VEGA algorithm of improved VEGA algorithm have been significantly enhanced and will be applied to Earth-Mars orbit optimization. At the same time, this paper analyzes the results of the improved VEGA, whose results of performance analysis and evaluation show that although VEGA has a profound impact upon multi-objective evolutionary research,  multi-objective evolutionary algorithm on the basis of Pareto seems to be a more effective method to get the non-dominated solutions from the perspective of diversity and convergence of experimental result. Finally, based on Visual C + + integrated development environment, we have implemented improved vector evaluation algorithm in the satellite scheduling.

  19. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  20. Covariance analysis of differential drag-based satellite cluster flight

    Science.gov (United States)

    Ben-Yaacov, Ohad; Ivantsov, Anatoly; Gurfil, Pini

    2016-06-01

    One possibility for satellite cluster flight is to control relative distances using differential drag. The idea is to increase or decrease the drag acceleration on each satellite by changing its attitude, and use the resulting small differential acceleration as a controller. The most significant advantage of the differential drag concept is that it enables cluster flight without consuming fuel. However, any drag-based control algorithm must cope with significant aerodynamical and mechanical uncertainties. The goal of the current paper is to develop a method for examination of the differential drag-based cluster flight performance in the presence of noise and uncertainties. In particular, the differential drag control law is examined under measurement noise, drag uncertainties, and initial condition-related uncertainties. The method used for uncertainty quantification is the Linear Covariance Analysis, which enables us to propagate the augmented state and filter covariance without propagating the state itself. Validation using a Monte-Carlo simulation is provided. The results show that all uncertainties have relatively small effect on the inter-satellite distance, even in the long term, which validates the robustness of the used differential drag controller.

  1. Entropy-Based Block Processing for Satellite Image Registration

    Directory of Open Access Journals (Sweden)

    Ikhyun Lee

    2012-11-01

    Full Text Available Image registration is an important task in many computer vision applications such as fusion systems, 3D shape recovery and earth observation. Particularly, registering satellite images is challenging and time-consuming due to limited resources and large image size. In such scenario, state-of-the-art image registration methods such as scale-invariant feature transform (SIFT may not be suitable due to high processing time. In this paper, we propose an algorithm based on block processing via entropy to register satellite images. The performance of the proposed method is evaluated using different real images. The comparative analysis shows that it not only reduces the processing time but also enhances the accuracy.

  2. Chaos Based Secure IP Communications over Satellite DVB

    Science.gov (United States)

    Caragata, Daniel; El Assad, Safwan; Tutanescu, Ion; Sofron, Emil

    2010-06-01

    The Digital Video Broadcasting—Satellite (DVB-S) standard was originally conceived for TV and radio broadcasting. Later, it became possible to send IP packets using encapsulation methods such as Multi Protocol Encapsulation, MPE, or Unidirectional Lightweight Encapsulation, ULE. This paper proposes a chaos based security system for IP communications over DVB-S with ULE encapsulation. The proposed security system satisfies all the security requirements while respecting the characteristics of satellite links, such as the importance of efficient bandwidth utilization and high latency time. It uses chaotic functions to generate the keys and to encrypt the data. The key management is realized using a multi-layer architecture. A theoretical analysis of the system and a simulation of FTP and HTTP traffic are presented and discussed to show the cost of the security enhancement and to provide the necessary tools for security parameters setup.

  3. Detecting weather radar clutter using satellite-based nowcasting products

    DEFF Research Database (Denmark)

    Jensen, Thomas B.S.; Gill, Rashpal S.; Overgaard, Søren

    2006-01-01

    This contribution presents the initial results from experiments with detection of weather radar clutter by information fusion with satellite based nowcasting products. Previous studies using information fusion of weather radar data and first generation Meteosat imagery have shown promising results...... for the detecting and removal of clutter. Naturally, the improved spatio-temporal resolution of the Meteosat Second Generation sensors, coupled with its increased number of spectral bands, is expected to yield even better detection accuracies. Weather radar data from three C-band Doppler weather radars...... for three rain intensity classes (heavy precipitation, light to moderate precipitation, and no precipitation) to every pixel in the Meteosat-8 images. Image fusion of the satellite image product and the radar composite images was done by resampling to a common grid of a spatial resolution dictated...

  4. 基于改进生物地理学优化算法的SVC次同步阻尼控制器设计%Design of SVC Subsynchronous Damping Controller Based on Improved Biogeography Based Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    董飞飞; 刘涤尘; 吴军; 岑炳成; 宋春丽; 马文媛

    2014-01-01

    针对常用的次同步振荡控制器不能较好地适应电力系统时变非线性的特点,提出了一种引入余弦迁移模型、早熟判断机制、变尺度混沌变异策略及排重操作的改进生物地理学优化算法。基于该算法结合静止无功补偿器(SVC)抑制次同步振荡的机理,对次同步阻尼控制器进行优化设计,并采用特征值分析和时域仿真验证了控制系统的有效性。锦界电厂算例分析表明:经改进生物地理学算法优化的SVC次同步阻尼控制器能较好地提高机组扭振的模态阻尼,可有效抑制次同步振荡,进而保证机组和电网的安全稳定运行;与传统的生物地理学优化算法、粒子群算法及遗传算法相比,改进生物地理学优化算法在搜索最优控制参数时具有较快的搜索速度和较高的搜索精度。%In view of the common subsynchronous oscillation (SSO) controller incapability of suiting the time-varying and nonlinear characteristics of power system,the cosine migration model,the premature judging mechanism,the mutative scale of chaos mutation strategy, and re-scheduling operations are introduced into the improved biogeography-based optimization (IBBO) algorithm to design subsynchronous damping controller(SSDC)optimally based on the mechanism of suppressing SSO by static var compensator (SVC).Finally,eigenvalue analysis and electromagnetic simulation are conducted to verify the effectiveness of the controller developed.The simulation analysis of Jinjie Plant indicates that SVC-SSDC optimized by the IBBO algorithm can greatly improve the damping of the three torsional modes and thus effectively depress the multimodal SSO, ensuring stability of the system and safety of the generator shafts.Moreover,The IBBO algorithm has a faster search speed and higher search accuracy in searching for the optimal control parameters compared with the traditional biogeography-based optimization (BBO) algorithm

  5. Interoperability of satellite-based augmentation systems for aircraft navigation

    Science.gov (United States)

    Dai, Donghai

    The Federal Aviation Administration (FAA) is pioneering a transformation of the national airspace system from its present ground based navigation and landing systems to a satellite based system using the Global Positioning System (GPS). To meet the critical safety-of-life aviation positioning requirements, a Satellite-Based Augmentation System (SBAS), the Wide Area Augmentation System (WAAS), is being implemented to support navigation for all phases of flight, including Category I precision approach. The system is designed to be used as a primary means of navigation, capable of meeting the Required Navigation Performance (RNP), and therefore must satisfy the accuracy, integrity, continuity and availability requirements. In recent years there has been international acceptance of Global Navigation Satellite Systems (GNSS), spurring widespread growth in the independent development of SBASs. Besides the FAA's WAAS, the European Geostationary Navigation Overlay Service System (EGNOS) and the Japan Civil Aviation Bureau's MTSAT-Satellite Augmentation System (MSAS) are also being actively developed. Although all of these SBASs can operate as stand-alone, regional systems, there is increasing interest in linking these SBASs together to reduce costs while improving service coverage. This research investigated the coverage and availability improvements due to cooperative efforts among regional SBAS networks. The primary goal was to identify the optimal interoperation strategies in terms of performance, complexity and practicality. The core algorithms associated with the most promising concepts were developed and demonstrated. Experimental verification of the most promising concepts was conducted using data collected from a joint international test between the National Satellite Test Bed (NSTB) and the EGNOS System Test Bed (ESTB). This research clearly shows that a simple switch between SBASs made by the airborne equipment is the most effective choice for achieving the

  6. The Biogeography of Putative Microbial Antibiotic Production.

    Directory of Open Access Journals (Sweden)

    Hélène Morlon

    Full Text Available Understanding patterns in the distribution and abundance of functional traits across a landscape is of fundamental importance to ecology. Mapping these distributions is particularly challenging for species-rich groups with sparse trait measurement coverage, such as flowering plants, insects, and microorganisms. Here, we use likelihood-based character reconstruction to infer and analyze the spatial distribution of unmeasured traits. We apply this framework to a microbial dataset comprised of 11,732 ketosynthase alpha gene sequences extracted from 144 soil samples from three continents to document the spatial distribution of putative microbial polyketide antibiotic production. Antibiotic production is a key competitive strategy for soil microbial survival and performance. Additionally, novel antibiotic discovery is highly relevant to human health, making natural antibiotic production by soil microorganisms a major target for bioprospecting. Our comparison of trait-based biogeographical patterns to patterns based on taxonomy and phylogeny is relevant to our basic understanding of microbial biogeography as well as the pressing need for new antibiotics.

  7. Convolutional neural network features based change detection in satellite images

    Science.gov (United States)

    Mohammed El Amin, Arabi; Liu, Qingjie; Wang, Yunhong

    2016-07-01

    With the popular use of high resolution remote sensing (HRRS) satellite images, a huge research efforts have been placed on change detection (CD) problem. An effective feature selection method can significantly boost the final result. While hand-designed features have proven difficulties to design features that effectively capture high and mid-level representations, the recent developments in machine learning (Deep Learning) omit this problem by learning hierarchical representation in an unsupervised manner directly from data without human intervention. In this letter, we propose approaching the change detection problem from a feature learning perspective. A novel deep Convolutional Neural Networks (CNN) features based HR satellite images change detection method is proposed. The main guideline is to produce a change detection map directly from two images using a pretrained CNN. This method can omit the limited performance of hand-crafted features. Firstly, CNN features are extracted through different convolutional layers. Then, a concatenation step is evaluated after an normalization step, resulting in a unique higher dimensional feature map. Finally, a change map was computed using pixel-wise Euclidean distance. Our method has been validated on real bitemporal HRRS satellite images according to qualitative and quantitative analyses. The results obtained confirm the interest of the proposed method.

  8. Development and validation of satellite based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2015-10-01

    A satellite based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5% for classifying Clear (V ≥ 30 km), Moderate (10 km ≤ V skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network, and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  9. Optimization of nonlinear controller with an enhanced biogeography approach

    Directory of Open Access Journals (Sweden)

    Mohammed Salem

    2014-07-01

    Full Text Available This paper is dedicated to the optimization of nonlinear controllers basing of an enhanced Biogeography Based Optimization (BBO approach. Indeed, The BBO is combined to a predator and prey model where several predators are used with introduction of a modified migration operator to increase the diversification along the optimization process so as to avoid local optima and reach the optimal solution quickly. The proposed approach is used in tuning the gains of PID controller for nonlinear systems. Simulations are carried out over a Mass spring damper and an inverted pendulum and has given remarkable results when compared to genetic algorithm and BBO.

  10. 基于生物地理学优化算法的输电网络规划%Application of Biogeography-Based Optimization in Transmission Network Planning

    Institute of Scientific and Technical Information of China (English)

    李翔硕; 王淳

    2013-01-01

    随着栖息地居住条件的变化,生物物种在各个栖息地之间不断迁移.将根据自然界物种迁移规律构造的生物地理学优化算法(biogeography-based optimization,BBO)应用于求解输电网络规划问题.针对BBO算法开采能力较强而搜索能力偏弱的特点,采用排重操作对其进行改进.以18节点系统为算例,对各种机制作用下的BBO算法的寻优能力以及与遗传算法的性能差别进行了对比分析.结果显示包含排重操作的BBO算法为兼顾了开发能力和搜索能力、可与遗传算法比拟的寻优方法.%Along with the variation of living environment decided by rainfall, geological condition, climate and so on, biological species migrate among different habitats continually. The biogeography-based optimization (BBO) algorithm that is constructed according to the law of species migration is applied in the solution of transmission network planning. In view of the features of BBO that it possesses strong exploitation ability and weak exploration ability, the BBO algorithm is improved through the operation of seeking and removing repetitive suitability vectors. Taking an 18-bus power system as the case, the performance differences between searching ability of BBO algorithm and genetic algorithm under various mechanisms are compared and analyzed. Results of comparative analysis show that the BBO algorithm, to which the operation of seeking and removing repetitive suitability vectors is applied, can considers both exploitation ability and exploration ability simultaneously, and its optimization ability is comparable to genetic algorithm.

  11. A Time and Space-based Dynamic IP Routing in Broadband Satellite Networks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The topology architecture, characteristics and routing technologies of broadband satellite networks are studied in this paper. The authors propose the routing scheme of satellite networks and design a time and space-based distributed routing algorithm whose complexity is O(1). Simulation results aiming at satellite mobility show that the new algorithm can determine the minimum propagation delay paths effectively.

  12. Conservation biogeography - foundations, concepts and challenges

    DEFF Research Database (Denmark)

    Richardson, Timothy; Whittaker, R.J.; Whittaker, Robert J.

    2010-01-01

    Conservation biogeography involves the application of biogeographical principles, theories, and analyses to problems regarding biodiversity conservation. The field was formally defined in 2005, and considerable research has been conducted in the ensuing 5 years. This editorial sets the context...... for 16 contributions in a special issue of Diversity and Distributions on developments and challenges in conservation biogeography. Papers are grouped into the following main themes: species distribution modelling; data requirements; approaches for assigning conservation priorities; approaches...... for integrating information from numerous disparate sources; special challenges involving invasive species; and the crucial issue of determining how elements of biodiversity are likely to respond to rapid climate change. One paper provides a synthesis of requirements for a robust conservation biogeography...

  13. Evolution and biogeography of gymnosperms.

    Science.gov (United States)

    Wang, Xiao-Quan; Ran, Jin-Hua

    2014-06-01

    Living gymnosperms comprise only a little more than 1000 species, but represent four of the five main lineages of seed plants, including cycads, ginkgos, gnetophytes and conifers. This group has huge ecological and economic value, and has drawn great interest from the scientific community. Here we review recent advances in our understanding of gymnosperm evolution and biogeography, including phylogenetic relationships at different taxonomic levels, patterns of species diversification, roles of vicariance and dispersal in development of intercontinental disjunctions, modes of molecular evolution in different genomes and lineages, and mechanisms underlying the formation of large nuclear genomes. It is particularly interesting that increasing evidence supports a sister relationship between Gnetales and Pinaceae (the Gnepine hypothesis) and the contribution of recent radiations to present species diversity, and that expansion of retrotransposons is responsible for the large and complex nuclear genome of gymnosperms. In addition, multiple coniferous genera such as Picea very likely originated in North America and migrated into the Old World, further indicating that the center of diversity is not necessarily the place of origin. The Bering Land Bridge acted as an important pathway for dispersal of gymnosperms in the Northern Hemisphere. Moreover, the genome sequences of conifers provide an unprecedented opportunity and an important platform for the evolutionary studies of gymnosperms, and will also shed new light on evolution of many important gene families and biological pathways in seed plants.

  14. Scheduler for monitoring objects orbiting earth using satellite-based telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W

    2015-04-28

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  15. Planning for a data base system to support satellite conceptual design

    Science.gov (United States)

    Claydon, C. R.

    1976-01-01

    The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.

  16. Zenith Pass Problem of Inter-satellite Linkage Antenna Based on Program Guidance Method

    Institute of Scientific and Technical Information of China (English)

    Zhai Kun; Yang Di

    2008-01-01

    While adopting an elevation-over-azimuth architecture by an inter-satellite linkage antenna of a user satellite, a zenith pass problem always occurs when the antenna is tracing the tracking and data relay satellite (TDRS). This paper deals with this problem by way of,firstly, introducing movement laws of the inter-satellite linkage to predict the movement of the user satellite antenna followed by analyzing the potential pass moment and the actual one of the zenith pass in detail. A number of specific orbit altitudes for the user satellite that can remove the blindness zone are obtained. Finally, on the base of the predicted results from the movement laws of the inter-satellite linkage, the zenith pass tracing strategies for the user satellite antenna are designed under the program guidance using a trajectory preprocessor. Simulations have confirmed the reasonability and feasibility of the strategies in dealing with the zenith pass problem.

  17. A second horizon scan of biogeography

    DEFF Research Database (Denmark)

    Dawson, Michael N.; Axmacher, Jan C.; Beierkuhnlein, Carl

    2016-01-01

    time; moreover, what appears to be a Golden Age may sometimes have an undesirable 'Midas touch'. Contexts within and outwith biogeography-e.g., methods, knowledge, climate, biodiversity, politics-are continually changing, and at times it can be challenging to establish or maintain relevance. In so many...

  18. Parameterization of oceanic whitecap fraction based on satellite observations

    Directory of Open Access Journals (Sweden)

    M. F. M. A. Albert

    2015-08-01

    Full Text Available In this study the utility of satellite-based whitecap fraction (W values for the prediction of sea spray aerosol (SSA emission rates is explored. More specifically, the study is aimed at improving the accuracy of the sea spray source function (SSSF derived by using the whitecap method through the reduction of the uncertainties in the parameterization of W by better accounting for its natural variability. The starting point is a dataset containing W data, together with matching environmental and statistical data, for 2006. Whitecap fraction W was estimated from observations of the ocean surface brightness temperature TB by satellite-borne radiometers at two frequencies (10 and 37 GHz. A global scale assessment of the data set to evaluate the wind speed dependence of W revealed a quadratic correlation between W and U10, as well as a relatively larger spread in the 37 GHz data set. The latter could be attributed to secondary factors affecting W in addition to U10. To better visualize these secondary factors, a regional scale assessment over different seasons was performed. This assessment indicates that the influence of secondary factors on W is for the largest part imbedded in the exponent of the wind speed dependence. Hence no further improvement can be expected by looking at effects of other factors on the variation in W explicitly. From the regional analysis, a new globally applicable quadratic W(U10 parameterization was derived. An intrinsic correlation between W and U10 that could have been introduced while estimating W from TB was determined, evaluated and presumed to lie within the error margins of the newly derived W(U10 parameterization. The satellite-based parameterization was compared to parameterizations from other studies and was applied in a SSSF to estimate the global SSA emission rate. The thus obtained SSA production for 2006 of 4.1 × 1012 kg is within previously reported estimates. While recent studies that account for

  19. Advanced Multipath Mitigation Techniques for Satellite-Based Positioning Applications

    Directory of Open Access Journals (Sweden)

    Mohammad Zahidul H. Bhuiyan

    2010-01-01

    Full Text Available Multipath remains a dominant source of ranging errors in Global Navigation Satellite Systems (GNSS, such as the Global Positioning System (GPS or the future European satellite navigation system Galileo. Multipath is generally considered undesirable in the context of GNSS, since the reception of multipath can make significant distortion to the shape of the correlation function used for time delay estimation. However, some wireless communications techniques exploit multipath in order to provide signal diversity though in GNSS, the major challenge is to effectively mitigate the multipath, since we are interested only in the satellite-receiver transit time offset of the Line-Of-Sight (LOS signal for the receiver's position estimate. Therefore, the multipath problem has been approached from several directions in order to mitigate the impact of multipath on navigation receivers, including the development of novel signal processing techniques. In this paper, we propose a maximum likelihood-based technique, namely, the Reduced Search Space Maximum Likelihood (RSSML delay estimator, which is capable of mitigating the multipath effects reasonably well at the expense of increased complexity. The proposed RSSML attempts to compensate the multipath error contribution by performing a nonlinear curve fit on the input correlation function, which finds a perfect match from a set of ideal reference correlation functions with certain amplitude(s, phase(s, and delay(s of the multipath signal. It also incorporates a threshold-based peak detection method, which eventually reduces the code-delay search space significantly. However, the downfall of RSSML is the memory requirement which it uses to store the reference correlation functions. The multipath performance of other delay-tracking methods previously studied for Binary Phase Shift Keying-(BPSK- and Sine Binary Offset Carrier- (SinBOC- modulated signals is also analyzed in closed loop model with the new Composite

  20. Satellite-based Flood Modeling Using TRMM-based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Greg Easson

    2007-12-01

    Full Text Available Increasingly available and a virtually uninterrupted supply of satellite-estimatedrainfall data is gradually becoming a cost-effective source of input for flood predictionunder a variety of circumstances. However, most real-time and quasi-global satelliterainfall products are currently available at spatial scales ranging from 0.25o to 0.50o andhence, are considered somewhat coarse for dynamic hydrologic modeling of basin-scaleflood events. This study assesses the question: what are the hydrologic implications ofuncertainty of satellite rainfall data at the coarse scale? We investigated this question onthe 970 km2 Upper Cumberland river basin of Kentucky. The satellite rainfall productassessed was NASA’s Tropical Rainfall Measuring Mission (TRMM Multi-satellitePrecipitation Analysis (TMPA product called 3B41RT that is available in pseudo real timewith a latency of 6-10 hours. We observed that bias adjustment of satellite rainfall data canimprove application in flood prediction to some extent with the trade-off of more falsealarms in peak flow. However, a more rational and regime-based adjustment procedureneeds to be identified before the use of satellite data can be institutionalized among floodmodelers.

  1. Internet-Protocol-Based Satellite Bus Architecture Designed

    Science.gov (United States)

    Slywczak, Richard A.

    2004-01-01

    NASA is designing future complex satellite missions ranging from single satellites and constellations to space networks and sensor webs. These missions require more interoperability, autonomy, and coordination than previous missions; in addition, a desire exists to have scientists retrieve data directly from the satellite rather than a central distribution source. To meet these goals, NASA has been studying the possibility of extending the Transmission Control Protocol/Internet Protocol (TCP/IP) suite for spacebased applications.

  2. Dsm Based Orientation of Large Stereo Satellite Image Blocks

    Science.gov (United States)

    d'Angelo, P.; Reinartz, P.

    2012-07-01

    High resolution stereo satellite imagery is well suited for the creation of digital surface models (DSM). A system for highly automated and operational DSM and orthoimage generation based on CARTOSAT-1 imagery is presented, with emphasis on fully automated georeferencing. The proposed system processes level-1 stereo scenes using the rational polynomial coefficients (RPC) universal sensor model. The RPC are derived from orbit and attitude information and have a much lower accuracy than the ground resolution of approximately 2.5 m. In order to use the images for orthorectification or DSM generation, an affine RPC correction is required. In this paper, GCP are automatically derived from lower resolution reference datasets (Landsat ETM+ Geocover and SRTM DSM). The traditional method of collecting the lateral position from a reference image and interpolating the corresponding height from the DEM ignores the higher lateral accuracy of the SRTM dataset. Our method avoids this drawback by using a RPC correction based on DSM alignment, resulting in improved geolocation of both DSM and ortho images. Scene based method and a bundle block adjustment based correction are developed and evaluated for a test site covering the nothern part of Italy, for which 405 Cartosat-1 Stereopairs are available. Both methods are tested against independent ground truth. Checks against this ground truth indicate a lateral error of 10 meters.

  3. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling.

    Science.gov (United States)

    Escobar, Luis E; Craft, Meggan E

    2016-01-01

    Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches for disease mapping can fail to generate robust study designs, producing incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables), identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks.

  4. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling

    Science.gov (United States)

    Escobar, Luis E.; Craft, Meggan E.

    2016-01-01

    Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches for disease mapping can fail to generate robust study designs, producing incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables), identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks. PMID:27547199

  5. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling

    Directory of Open Access Journals (Sweden)

    Luis E Escobar

    2016-08-01

    Full Text Available Mapping disease transmission risk is crucial in public and animal health for evidence based decision-making. Ecology and epidemiology are highly related disciplines that may contribute to improvements in mapping disease, which can be used to answer health related questions. Ecological niche modeling is increasingly used for understanding the biogeography of diseases in plants, animals, and humans. However, epidemiological applications of niche modeling approaches can fail to generate robust study designs, generating incomplete or incorrect inferences. This manuscript is an overview of the history and conceptual bases behind ecological niche modeling, specifically as applied to epidemiology and public health; it does not pretend to be an exhaustive and detailed description of ecological niche modeling literature and methods. Instead, this review includes selected state-of-the-science approaches and tools, providing a short guide to designing studies incorporating information on the type and quality of the input data (i.e., occurrences and environmental variables, identification and justification of the extent of the study area, and encourages users to explore and test diverse algorithms for more informed conclusions. We provide a friendly introduction to the field of disease biogeography presenting an updated guide for researchers looking to use ecological niche modeling for disease mapping. We anticipate that ecological niche modeling will soon be a critical tool for epidemiologists aiming to map disease transmission risk, forecast disease distribution under climate change scenarios, and identify landscape factors triggering outbreaks.

  6. Fuel type characterization based on coarse resolution MODIS satellite data

    Directory of Open Access Journals (Sweden)

    Lanorte A

    2007-01-01

    Full Text Available Fuel types is one of the most important factors that should be taken into consideration for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. In the present study, forest fuel mapping is considered from a remote sensing perspective. The purpose is to delineate forest types by exploring the use of coarse resolution satellite remote sensing MODIS imagery. In order to ascertain how well MODIS data can provide an exhaustive classification of fuel properties a sample area characterized by mixed vegetation covers and complex topography was analysed. The study area is located in the South of Italy. Fieldwork fuel type recognitions, performed before, after and during the acquisition of remote sensing MODIS data, were used as ground-truth dataset to assess the obtained results. The method comprised the following three steps: (I adaptation of Prometheus fuel types for obtaining a standardization system useful for remotely sensed classification of fuel types and properties in the considered Mediterranean ecosystems; (II model construction for the spectral characterization and mapping of fuel types based on two different approach, maximum likelihood (ML classification algorithm and spectral Mixture Analysis (MTMF; (III accuracy assessment for the performance evaluation based on the comparison of MODIS-based results with ground-truth. Results from our analyses showed that the use of remotely sensed MODIS data provided a valuable characterization and mapping of fuel types being that the achieved classification accuracy was higher than 73% for ML classifier and higher than 83% for MTMF.

  7. Three-Axis Satellite Attitude Control Based on Magnetic Torquing

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    1995-01-01

    Recently small satellite missions have gained considerable interest due to low-cost launch opportunities and technilogical improvement of micro-electronics.......Recently small satellite missions have gained considerable interest due to low-cost launch opportunities and technilogical improvement of micro-electronics....

  8. A Hybrid Algorithm for Satellite Data Transmission Schedule Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Yun-feng; WU Xiao-yue

    2008-01-01

    A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission. At first, based on description of satellite data transmission request, satellite data transmission task modal and satellite data transmission scheduling problem model are established. Secondly, the conflicts in scheduling are discussed. According to the meaning of possible conflict, the method to divide possible conflict task set is given. Thirdly, a hybrid algorithm which consists of genetic algorithm and heuristic information is presented. The heuristic information comes from two concepts, conflict degree and conflict number. Finally, an example shows the algorithm's feasibility and performance better than other traditional algorithms.

  9. New dynamic routing algorithm based on MANET in LEO/MEO satellite network

    Institute of Scientific and Technical Information of China (English)

    LI Zhe; LI Dong-ni; WANG Guang-xing

    2006-01-01

    The features of low earth orbit/medium earth orbit (LEO/MEO) satellite networks routing algorithm based on inter-satellite link are analyzed and the similarities between satellite networks and mobile Ad Hoc network (MANET) are pointed out.The similar parts in MANET routing protocol are used in the satellite network for reference.A new dynamic routing algorithm based on MANET in LEO/MEO satellite networks,which fits for the LEO/MEO satellite communication system,is proposed.At the same time,the model of the algorithm is simulated and features are analyzed.It is shown that the algorithm has strong adaptability.It can give the network high autonomy,perfect function,low system overhead and great compatibility.

  10. Improving the Projections of Vegetation Biogeography by Integrating Climate Envelope Models and Dynamic Global Vegetation Models

    Science.gov (United States)

    Case, M. J.; Kim, J. B.

    2015-12-01

    Assessing changes in vegetation is increasingly important for conservation planning in the face of climate change. Dynamic global vegetation models (DGVMs) are important tools for assessing such changes. DGVMs have been applied at regional scales to create projections of range expansions and contractions of plant functional types. Many DGVMs use a number of algorithms to determine the biogeography of plant functional types. One such DGVM, MC2, uses a series of decision trees based on bioclimatic thresholds while others, such as LPJ, use constraining emergent properties with a limited set of bioclimatic threshold-based rules. Although both approaches have been used widely, we demonstrate that these biogeography outputs perform poorly at continental scales when compared to existing potential vegetation maps. Specifically, we found that with MC2, the algorithm for determining leaf physiognomy is too simplistic to capture arid and semi-arid vegetation in much of the western U.S., as well as is the algorithm for determining the broadleaf and needleleaf mix in the Southeast. With LPJ, we found that the bioclimatic thresholds used to allow seedling establishment are too broad and fail to capture regional-scale biogeography of the plant functional types. In response, we demonstrate a new approach to determining the biogeography of plant functional types by integrating the climatic thresholds produced for individual tree species by a series of climate envelope models with the biogeography algorithms of MC2 and LPJ. Using this approach, we find that MC2 and LPJ perform considerably better when compared to potential vegetation maps.

  11. Object Based and Pixel Based Classification Using Rapideye Satellite Imager of ETI-OSA, Lagos, Nigeria

    OpenAIRE

    Esther Oluwafunmilayo Makinde; Ayobami Taofeek Salami; James Bolarinwa Olaleye; Oluwapelumi Comfort Okewusi

    2016-01-01

    Several studies have been carried out to find an appropriate method to classify the remote sensing data. Traditional classification approaches are all pixel-based, and do not utilize the spatial information within an object which is an important source of information to image classification. Thus, this study compared the pixel based and object based classification algorithms using RapidEye satellite image of Eti-Osa LGA, Lagos. In the object-oriented approach, the image was segmented to homog...

  12. A Collective Detection Based GPS Receiver for Small Satellites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To solve the problem of autonomous navigation on small satellite platforms less than 20 kg, we propose to develop an onboard orbit determination receiver for small...

  13. Satellite Image Time Series Decomposition Based on EEMD

    Directory of Open Access Journals (Sweden)

    Yun-long Kong

    2015-11-01

    Full Text Available Satellite Image Time Series (SITS have recently been of great interest due to the emerging remote sensing capabilities for Earth observation. Trend and seasonal components are two crucial elements of SITS. In this paper, a novel framework of SITS decomposition based on Ensemble Empirical Mode Decomposition (EEMD is proposed. EEMD is achieved by sifting an ensemble of adaptive orthogonal components called Intrinsic Mode Functions (IMFs. EEMD is noise-assisted and overcomes the drawback of mode mixing in conventional Empirical Mode Decomposition (EMD. Inspired by these advantages, the aim of this work is to employ EEMD to decompose SITS into IMFs and to choose relevant IMFs for the separation of seasonal and trend components. In a series of simulations, IMFs extracted by EEMD achieved a clear representation with physical meaning. The experimental results of 16-day compositions of Moderate Resolution Imaging Spectroradiometer (MODIS, Normalized Difference Vegetation Index (NDVI, and Global Environment Monitoring Index (GEMI time series with disturbance illustrated the effectiveness and stability of the proposed approach to monitoring tasks, such as applications for the detection of abrupt changes.

  14. Satellite-Based Study of Glaciers Retreat in Northern Pakistan

    Science.gov (United States)

    Munir, Siraj

    Glaciers serve as a natural regulator of regional water supplies. About 16933 Km 2 area of glaciers is covered by Pakistan. These glaciers are enormous reservoirs of fresh water and their meltwater is an important resource which feed rivers in Pakistan. Glacier depletion, especially recent melting can affect agriculture, drinking water supplies, hydro-electric power, and ecological habitats. This can also have a more immediate impact on Pakistan's economy that depends mainly on water from glacier melt. Melting of seasonal snowfall and permanent glaciers has resulted not only in reduction of water resources but also caused flash floods in many areas of Pakistan. With the advent of satellite technology, using optical and SAR data the study of glaciers, has become possible. Using temporal data, based on calculation of snow index, band ratios and texture reflectance it has been revealed that the rate of glacier melting has increased as a consequent of global warming. Comparison of Landsat images of Batura glacier for October 1992 and October 2000 has revealed that there is a decrease of about 17 sq km in Batura glaciers. Although accurate changes in glacier extent cannot be assessed without baseline information, these efforts have been made to analyze future changes in glaciated area.

  15. A Novel Sampling Method for Satellite-Based Offshore Wind Resource Estimation

    DEFF Research Database (Denmark)

    Badger, Merete; Badger, Jake; Hasager, Charlotte Bay

    advantage of satellite-based offshore wind resource assessment is the spatial information gained at high resolution from the satellite imagery. Limitations include the low sampling rate and the fixed acquisition times of satellite data. A new satellite scene is typically available every 3-4 days over......-based wind climatology have improved gradually as more data were collected. The satellite scenes have been treated as random samples and weighted equally in our previous analyses. Here we introduce a novel sampling strategy based on the wind class methodology that is normally applied in numerical modeling...... of wind resources. The method is applied within a wind and solar resource assessment study for the United Arab Emirates funded by MASDAR and coordinated by UNEP. Thirty years of NCEP/NCAR reanalysis data are used to define approximately 100 geostrophic wind classes. These wind classes show...

  16. Preliminary Analysis of a Novel SAR Based Emergency System for Earth Orbit Satellites using Galileo

    NARCIS (Netherlands)

    Gill, E.K.A.; Helderweirt, A.

    2010-01-01

    This paper presents a preliminary analysis of a novel Search and Rescue (SAR) based emergency system for Low Earth Orbit (LEO) satellites using the Galileo Global Navigation Satellite System (GNSS). It starts with a description of the space user SAR system including a concept description, mission ar

  17. Global Crop Monitoring: A Satellite-Based Hierarchical Approach

    Directory of Open Access Journals (Sweden)

    Bingfang Wu

    2015-04-01

    Full Text Available Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, the CropWatch system has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The approach adopts a hierarchical system covering four spatial levels of detail: global, regional, national (thirty-one key countries including China and “sub-countries” (for the nine largest countries. The thirty-one countries encompass more that 80% of both production and exports of maize, rice, soybean and wheat. The methodology resorts to climatic and remote sensing indicators at different scales. The global patterns of crop environmental growing conditions are first analyzed with indicators for rainfall, temperature, photosynthetically active radiation (PAR as well as potential biomass. At the regional scale, the indicators pay more attention to crops and include Vegetation Health Index (VHI, Vegetation Condition Index (VCI, Cropped Arable Land Fraction (CALF as well as Cropping Intensity (CI. Together, they characterize crop situation, farming intensity and stress. CropWatch carries out detailed crop condition analyses at the national scale with a comprehensive array of variables and indicators. The Normalized Difference Vegetation Index (NDVI, cropped areas and crop conditions are integrated to derive food production estimates. For the nine largest countries, CropWatch zooms into the sub-national units to acquire detailed information on crop condition and production by including new indicators (e.g., Crop type proportion. Based on trend analysis, CropWatch also issues crop production supply outlooks, covering both long-term variations and short-term dynamic changes in key food exporters and importers. The hierarchical approach adopted by CropWatch is the basis of the analyses of climatic and crop conditions assessments published in the quarterly “CropWatch bulletin” which

  18. Satellite link augmentation of ground based packet switched data networks

    Science.gov (United States)

    Farrell, J. B.; McLane, P. J.; Campbell, L. L.

    Use of satellite link augmentation to improve the performance of a packet switched data network is considered. Particular attention is paid to the analysis of two queues in series from the standpoint of time delay. A finite state machine model is used to aid the analysis. The results from the analysis are then used in a flow deviation routing algorithm. This algorithm is applied to study the performance improvement when satellite links are used to augment the Canadian DATAPAC network. The results are backed up by extensive simulations on a digital computer.

  19. Evaluation of satellite-based precipitation estimates in winter season using an object-based approach

    Science.gov (United States)

    Li, J.; Hsu, K.; AghaKouchak, A.; Sorooshian, S.

    2012-12-01

    Verification has become an integral component of satellite precipitation algorithms and products. A number of object-based verification methods have been proposed to provide diagnostic information regarding the precipitation products' ability to capture the spatial pattern, intensity, and placement of precipitation. However, most object-based methods are not capable of investigating precipitation objects at the storm-scale. In this study, an image processing approach known as watershed segmentation was adopted to detect the storm-scale rainfall objects. Then, a fuzzy logic-based technique was utilized to diagnose and analyze storm-scale object attributes, including centroid distance, area ratio, intersection area ratio and orientation angle difference. Three verification metrics (i.e., false alarm ratio, missing ratio and overall membership score) were generated for validation and verification. Three satellite-based precipitation products, including PERSIANN, CMORPH, 3B42RT, were evaluated against NOAA stage IV MPE multi-sensor composite rain analysis at 0.25° by 0.25° on a daily scale in the winter season of 2010 over the contiguous United States. Winter season is dominated by frontal systems which usually have larger area coverage. All three products and the stage IV observation tend to find large size storm objects. With respect to the evaluation attributes, PERSIANN tends to obtain larger area ratio and consequently has larger centroid distance to the stage IV observations, while 3B42RT are found to be closer to the stage IV for the object size. All evaluation products give small orientation angle differences but vary significantly for the missing ratio and false alarm ratio. This implies that satellite estimates can fail to detect storms in winter. The overall membership scores are close for all three different products which indicate that all three satellite-based precipitation products perform well for capturing the spatial and geometric characteristics of

  20. Recent Developments for Satellite-Based Fire Monitoring in Canada

    Science.gov (United States)

    Abuelgasim, A.; Fraser, R.

    2002-05-01

    Wildfires in Canadian forests are a major source of natural disturbance. These fires have a tremendous impact on the local environment, humans and wildlife, ecosystem function, weather, and climate. Approximately 9000 fires burn 3 million hectares per year in Canada (based on a 10-year average). While only 2 to 3 percent of these wildfires grow larger than 200 hectares in size, they account for almost 97 percent of the annual area burned. This provides an excellent opportunity to monitor active fires using a combination of low and high resolution sensors for the purpose of determining fire location and burned areas. Given the size of Canada, the use of remote sensing data is a cost-effective way to achieve a synoptic overview of large forest fire activity in near-real time. In 1998 the Canada Centre for Remote Sensing (CCRS) and the Canadian Forest Service (CFS) developed a system for Fire Monitoring, Mapping and Modelling (Fire M3;http://fms.nofc.cfs.nrcan.gc.ca/FireM3/). Fire M3 automatically identifies, monitors, and maps large forest fires on a daily basis using NOAA AVHRR data. These data are processed daily using the GEOCOMP-N satellite image processing system. This presentation will describe recent developments to Fire M3, included the addition of a set of algorithms tailored for NOAA-16 (N-16) data. The two fire detection algorithms are developed for N-16 day and night-time daily data collection. The algorithms exploit both the multi-spectral and thermal information from the AVHRR daily images. The set of N-16 day and night algorithms was used to generate daily active fire maps across North America for the 2001 fire season. Such a combined approach for fire detection leads to an improved detection rate, although day-time detection based on the new 1.6 um channel was much less effective (note - given the low detection rate with day time imagery, I don't think we can make the statement about capturing the diurnal cycle). Selected validation sites in western

  1. Conference program and abstracts. International Biogeography Society 6th Biennial Meeting – 9-13 January 2013, Miami, Florida, USA

    Directory of Open Access Journals (Sweden)

    Joaquín Hortal

    2012-12-01

    Full Text Available Proceedings of the Sixth biennial conference of the International Biogeography Society, an international and interdisciplinary society contributing to the advancement of all studies of the geography of nature. Held at Miami, Florida, USA, 9 – 13 January 2013.Abstracts include:(i the Opening, MacArthur & Wilson Award and Alfred Russel Award Plenary Lectures;(ii four symposia entitled "Island Biogeography: New Syntheses", "Beyond Bergmann: New perspectives on the biogeography of traits", "The Convergence of Conservation Paleontology and Biogeography" and "Predicting species and biodiversity in a warmer world: are we doing a good job?";(iii oral presentations from contributed papers on Phylogeography, Marine Biogeography, Biogeography of the Anthropocene, Hot Topics in biogeography, Island Biogeography, Neotropical Biogeography, Global Change Biogeography, Historical and Paleo-biogeography, Conservation Biogeography and Global-Scale Biogeography; and(iv contributions presented as posters on Phylogeography, Geospatial techniques and land cover, Biodiversity gradients and macroecology, Biogeography of traits, Island Biogeography, Neotropical Biogeography, Conservation Biogeography, Disturbance and Disease Biogeography, Climate Change Biogeography and Historical and Paleo-Biogeography.

  2. A Constraint Based Approach for Building Operationally Responsive Satellites

    Science.gov (United States)

    2008-09-01

    discipline specific software codes into a common environment. LLB team also uses MATLAB R© to integrate CAD tools such as Catia , Pro/Engineer with FE...satellite configuration through a Catia CAD tool. The LLB approach is similar to the approach discussed in this research because it provides a method

  3. GPS/Magnetometer Based Satellite Navigation and Attitude Determination

    Science.gov (United States)

    Deutschmann, Julie; Bar-Itzhack, Itzhack; Harman, Rick; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    In recent years algorithms were developed for orbit, attitude and angular-rate determination of Low Earth Orbiting (LEO) satellites. Those algorithms rely on measurements of magnetometers, which are standard, relatively inexpensive, sensors that are normally installed on every LEO satellite. Although magnetometers alone are sufficient for obtaining the desired information, the convergence of the algorithms to the correct values of the satellite orbital parameters, position, attitude and angular velocity is very slow. The addition of sun sensors reduces the convergence time considerably. However, for many LEO satellites the sun data is not available during portions of the orbit when the spacecraft (SC) is in the earth shadow. It is here where the GPS space vehicles (SV) can provide valuable support. This is clearly demonstrated in the present paper. Although GPS measurements alone can be used to obtain SC position, velocity, attitude and angular-rate, the use of magnetometers improve the results due to the synergistic effect of sensor fusion. Moreover, it is possible to obtain these results with less than three SVs. In this paper we introduce an estimation algorithm, which is a combination of an Extended Kalman Filter (EKF) and a Pseudo Linear Kalman Filter (PSELIKA).

  4. Biogeography in the air: fungal diversity over land and oceans

    Directory of Open Access Journals (Sweden)

    J. Fröhlich-Nowoisky

    2012-03-01

    Full Text Available Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we find that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the understanding of global changes in biodiversity.

  5. Biogeography in the air: fungal diversity over land and oceans

    Directory of Open Access Journals (Sweden)

    J. Fröhlich-Nowoisky

    2011-07-01

    Full Text Available Biogenic aerosols are relevant for the Earth system, climate, and public health on local, regional, and global scales. Up to now, however, little is known about the diversity and biogeography of airborne microorganisms. We present the first DNA-based analysis of airborne fungi on global scales, showing pronounced geographic patterns and boundaries. In particular we found that the ratio of species richness between Basidiomycota and Ascomycota is much higher in continental air than in marine air. This may be an important difference between the "blue ocean" and "green ocean" regimes in the formation of clouds and precipitation, for which fungal spores can act as nuclei. Our findings also suggest that air flow patterns and the global atmospheric circulation are important for the evolution of microbial ecology and for the understanding of global changes in biodiversity.

  6. An Image-Based Sensor System for Autonomous Rendez-Vous with Uncooperative Satellites

    CERN Document Server

    Miravet, Carlos; Krouch, Eloise; del Cura, Juan Manuel

    2008-01-01

    In this paper are described the image processing algorithms developed by SENER, Ingenieria y Sistemas to cope with the problem of image-based, autonomous rendez-vous (RV) with an orbiting satellite. The methods developed have a direct application in the OLEV (Orbital Life Extension Extension Vehicle) mission. OLEV is a commercial mission under development by a consortium formed by Swedish Space Corporation, Kayser-Threde and SENER, aimed to extend the operational life of geostationary telecommunication satellites by supplying them control, navigation and guidance services. OLEV is planned to use a set of cameras to determine the angular position and distance to the client satellite during the complete phases of rendez-vous and docking, thus enabling the operation with satellites not equipped with any specific navigational aid to provide support during the approach. The ability to operate with un-equipped client satellites significantly expands the range of applicability of the system under development, compar...

  7. Spline model of the high latitude scintillation based on in situ satellite data

    Science.gov (United States)

    Priyadarshi, S.; Wernik, A. W.

    2013-12-01

    We present a spline model for the high latitude ionospheric scintillation using satellite in situ measurements made by the Dynamic Explorer 2 (DE 2) satellite. DE 2 satellite measurements give observations only along satellite orbit but our interpolation model fills the gaps between the satellite orbits. This analytical model is based on products of cubic B-splines and coefficients determined by least squares fit to the binned data and constrained to make the fit periodic in 24 hours of geomagnetic local time, periodic in 360 degrees of invariant longitude, in geomagnetic indices and solar radio flux. Discussion of our results clearly shows the seasonal and diurnal behavior of ionospheric parameters important in scintillation modeling for different geophysical and solar activity conditions. We also show that results obtained from our analytical model match observations obtained from in situ measurements. Shishir Priyadarshi Space Research Centre, Poland

  8. Simultaneous ground- and satellite-based observation of MF/HF auroral radio emissions

    Science.gov (United States)

    Sato, Yuka; Kumamoto, Atsushi; Katoh, Yuto; Shinbori, Atsuki; Kadokura, Akira; Ogawa, Yasunobu

    2016-05-01

    We report on the first simultaneous measurements of medium-high frequency (MF/HF) auroral radio emissions (above 1 MHz) by ground- and satellite-based instruments. Observational data were obtained by the ground-based passive receivers in Iceland and Svalbard, and by the Plasma Waves and Sounder experiment (PWS) mounted on the Akebono satellite. We observed two simultaneous appearance events, during which the frequencies of the auroral roar and MF bursts detected at ground level were different from those of the terrestrial hectometric radiation (THR) observed by the Akebono satellite passing over the ground-based stations. This frequency difference confirms that auroral roar and THR are generated at different altitudes across the F peak. We did not observe any simultaneous observations that indicated an identical generation region of auroral roar and THR. In most cases, MF/HF auroral radio emissions were observed only by the ground-based detector, or by the satellite-based detector, even when the satellite was passing directly over the ground-based stations. A higher detection rate was observed from space than from ground level. This can primarily be explained in terms of the idea that the Akebono satellite can detect THR emissions coming from a wider region, and because a considerable portion of auroral radio emissions generated in the bottomside F region are masked by ionospheric absorption and screening in the D/E regions associated with ionization which results from auroral electrons and solar UV radiation.

  9. A Novel Onboard-gateway-based Mechanism to Improve TCP Performance in Aeronautical Satellite Networks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The IP-based networks on aircraft serve to support Internet services via satellites. However, in aeronautical satellite hybrid networks, the TCP protocol performance often deteriorates due to improper decreases and slow recovery of the congestion window. This paper proposes a window size determination and notification mechanism, onboard-gateway-based mechanism (OGBM), which is based on the onboard gateway in the networks on aircraft. A cross-layer approach is adopted by the onboard gateway to obtain the satellite link bandwidth information. And then, by the gateway, through changing the receiver's advertised window field in ACK packets, TCP sources are notified of the window size of each TCP source calculated on the ground of bandwidth delay product and flow numbers. The mechanism is able to avoid improper changes of TCP window and serve multiple users. Simulation results show that the mechanism with the fairness index close to 1 improves TCP performance in aeronautical satellite networks.

  10. A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm.

    Science.gov (United States)

    Song, Jiancai; Xue, Guixiang; Kang, Yanan

    2016-01-01

    In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones.

  11. Research on Coal Exploration Technology Based on Satellite Remote Sensing

    Directory of Open Access Journals (Sweden)

    Dong Xiao

    2016-01-01

    Full Text Available Coal is the main source of energy. In China and Vietnam, coal resources are very rich, but the exploration level is relatively low. This is mainly caused by the complicated geological structure, the low efficiency, the related damage, and other bad situations. To this end, we need to make use of some advanced technologies to guarantee the resource exploration is implemented smoothly and orderly. Numerous studies show that remote sensing technology is an effective way in coal exploration and measurement. In this paper, we try to measure the distribution and reserves of open-air coal area through satellite imagery. The satellite picture of open-air coal mining region in Quang Ninh Province of Vietnam was collected as the experimental data. Firstly, the ENVI software is used to eliminate satellite imagery spectral interference. Then, the image classification model is established by the improved ELM algorithm. Finally, the effectiveness of the improved ELM algorithm is verified by using MATLAB simulations. The results show that the accuracies of the testing set reach 96.5%. And it reaches 83% of the image discernment precision compared with the same image from Google.

  12. A comparing design of satellite attitude control system based on reaction wheel

    Institute of Scientific and Technical Information of China (English)

    CHENG Hao; GE Sheng-min; SHEN Yi

    2008-01-01

    The disturbance caused by the reaction wheel with a current controller greatly influences the accuracy and stability of the satellite attitude control system.To solve this problem,the idea of speed feedback compensation control reaction wheel is put forward.This paper introduces the comparison on design and performance of two satellite attitude control systems,which are separately based on the current control reaction wheel and the speed feedback compensation control reaction wheel.Analysis shows that the speed feedback compensation control flywheel system may effectively suppress the torque fluctuation.Simulation results indicate that the satellite attitude control system with the speed feedback compensation control flywheel has improved performance.

  13. Smoothing of Fused Spectral Consistent Satellite Images with TV-based Edge Detection

    DEFF Research Database (Denmark)

    Sveinsson, Johannes; Aanæs, Henrik; Benediktsson, Jon Atli

    2007-01-01

    Several widely used methods have been proposed for fusing high resolution panchromatic data and lower resolution multi-channel data. However, many of these methods fail to maintain the spectral consistency of the fused high resolution image, which is of high importance to many of the applications...... based on satellite data. Additionally, most conventional methods are loosely connected to the image forming physics of the satellite image, giving these methods an ad hoc feel. Vesteinsson et al. [1] proposed a method of fusion of satellite images that is based on the properties of imaging physics...... in a statistically meaningful way and was called spectral consistent panshapening (SCP). In this paper we improve this framework for satellite image fusion by introducing a better image prior, via data-dependent image smoothing. The dependency is obtained via total variation edge detection method....

  14. Design and simulation of satellite attitude control system based on Simulink and VR

    Science.gov (United States)

    Zhang, Yang; Gan, Qingbo; Kang, Jingshu

    2016-01-01

    In order to research satellite attitude control system design and visual simulation, the simulation framework of satellite dynamics and attitude control using Simulink were established. The design of satellite earth-oriented control system based on quaternion feedback was completed. The 3D scene based on VR was created and models in the scene were driven by simulation data of Simulink. By coordinate transformation. successful observing the scene in inertial coordinate system, orbit coordinate system and body coordinate system. The result shows that application of simulation method of Simulink combined with VR in the design of satellite attitude control system field, has the advantages of high confidence level, hard real-time property, multi-perspective and multi-coordinate system observing the scene, and improves the comprehensibility and accuracy of the design.

  15. UKF-based attitude determination method for gyroless satellite

    Institute of Scientific and Technical Information of China (English)

    张红梅; 邓正隆

    2004-01-01

    UKF (unscented Kalman filtering) is a new filtering method suitable to nonlinear systems. The method need not linearize nonlinear systems at the prediction stage of filtering, which is indispensable in EKF (extended Kalman filtering). As a result, the linearization error is avoided, and the filtering accuracy is greatly improved. UKF is applied to the attitude determination for gyroless satellite. Simulations are made to compare the new filter with the traditional EKF.The results indicate that under same conditions, compared with EKF, UKF has faster convergence speed, higher filtering accuracy and more stable estimation performance.

  16. Space-Based Observations of Satellites From the MOST Microsatellite

    Science.gov (United States)

    2006-11-01

    observations spatiales canadiennes d’un objet en orbite terrestre . Deux satellites de géolocalisation GPS ont été suivis à l’aide du télescope optique monté...the derived orbital metric data with high precision ephemerides yielded root mean square errors of 13 arcseconds. The errors are shown to result...space surveillance from an orbiting platform. Résumé Le 12 octobre 2005, le microsatellite MOST du Canada a acquis les premières images

  17. Three genome-based phylogeny of Cupressaceae s.l.: further evidence for the evolution of gymnosperms and Southern Hemisphere biogeography.

    Science.gov (United States)

    Yang, Zu-Yu; Ran, Jin-Hua; Wang, Xiao-Quan

    2012-09-01

    Phylogenetic information is essential to interpret the evolution of species. While DNA sequences from different genomes have been widely utilized in phylogenetic reconstruction, it is still difficult to use nuclear genes to reconstruct phylogenies of plant groups with large genomes and complex gene families, such as gymnosperms. Here, we use two single-copy nuclear genes, together with chloroplast and mitochondrial genes, to reconstruct the phylogeny of the ecologically-important conifer family Cupressaceae s.l., based on a complete sampling of its 32 genera. The different gene trees generated are highly congruent in topology, supporting the basal position of Cunninghamia and the seven-subfamily classification, and the estimated divergence times based on different datasets correspond well with each other and with the oldest fossil record. These results imply that we have obtained the species phylogeny of Cupressaceae s.l. In addition, possible origins of all three polyploid conifers were investigated, and a hybrid origin was suggested for Cupressus, Fitzroya and Sequoia. Moreover, we found that the biogeographic history of Cupressaceae s.l. is associated with the separation between Laurasia and Gondwana and the further break-up of the latter. Our study also provides new evidence for the gymnosperm phylogeny.

  18. Authentication Scheme Based on Principal Component Analysis for Satellite Images

    Directory of Open Access Journals (Sweden)

    Ashraf. K. Helmy

    2009-09-01

    Full Text Available This paper presents a multi-band wavelet image content authentication scheme for satellite images by incorporating the principal component analysis (PCA. The proposed schemeachieves higher perceptual transparency and stronger robustness. Specifically, the developed watermarking scheme can successfully resist common signal processing such as JPEG compression and geometric distortions such as cropping. In addition, the proposed scheme can be parameterized, thus resulting in more security. That is, an attacker may not be able to extract the embedded watermark if the attacker does not know the parameter.In an order to meet these requirements, the host image is transformed to YIQ to decrease the correlation between different bands, Then Multi-band Wavelet transform (M-WT is applied to each channel separately obtaining one approximate sub band and fifteen detail sub bands. PCA is then applied to the coefficients corresponding to the same spatial location in all detail sub bands. The last principle component band represents an excellent domain forinserting the water mark since it represents lowest correlated features in high frequency area of host image.One of the most important aspects of satellite images is spectral signature, the behavior of different features in different spectral bands, the results of proposed algorithm shows that the spectral stamp for different features doesn't tainted after inserting the watermark.

  19. Satellite image based methods for fuels maps updating

    Science.gov (United States)

    Alonso-Benito, Alfonso; Hernandez-Leal, Pedro A.; Arbelo, Manuel; Gonzalez-Calvo, Alejandro; Moreno-Ruiz, Jose A.; Garcia-Lazaro, Jose R.

    2016-10-01

    Regular updating of fuels maps is important for forest fire management. Nevertheless complex and time consuming field work is usually necessary for this purpose, which prevents a more frequent update. That is why the assessment of the usefulness of satellite data and the development of remote sensing techniques that enable the automatic updating of these maps, is of vital interest. In this work, we have tested the use of the spectral bands of OLI (Operational Land Imager) sensor on board Landsat 8 satellite, for updating the fuels map of El Hierro Island (Spain). From previously digitized map, a set of 200 reference plots for different fuel types was created. A 50% of the plots were randomly used as a training set and the rest were considered for validation. Six supervised and 2 unsupervised classification methods were applied, considering two levels of detail. A first level with only 5 classes (Meadow, Brushwood, Undergrowth canopy cover >50%, Undergrowth canopy cover <15%, and Xeric formations), and the second one containing 19 fuel types. The level 1 classification methods yielded an overall accuracy ranging from 44% for Parellelepided to an 84% for Maximun Likelihood. Meanwhile, level 2 results showed at best, an unacceptable overall accuracy of 34%, which prevents the use of this data for such a detailed characterization. Anyway it has been demonstrated that in some conditions, images of medium spatial resolution, like Landsat 8-OLI, could be a valid tool for an automatic upgrade of fuels maps, minimizing costs and complementing traditional methodologies.

  20. Validation of PV performance models using satellite-based irradiance measurements : a case study.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Parkins, Andrew (Clean Power Research); Perez, Richard (University at Albany)

    2010-05-01

    Photovoltaic (PV) system performance models are relied upon to provide accurate predictions of energy production for proposed and existing PV systems under a wide variety of environmental conditions. Ground based meteorological measurements are only available from a relatively small number of locations. In contrast, satellite-based radiation and weather data (e.g., SUNY database) are becoming increasingly available for most locations in North America, Europe, and Asia on a 10 x 10 km grid or better. This paper presents a study of how PV performance model results are affected when satellite-based weather data is used in place of ground-based measurements.

  1. A scalable satellite-based crop yield mapper: Integrating satellites and crop models for field-scale estimation in India

    Science.gov (United States)

    Jain, M.; Singh, B.; Srivastava, A.; Lobell, D. B.

    2015-12-01

    Food security will be challenged over the upcoming decades due to increased food demand, natural resource degradation, and climate change. In order to identify potential solutions to increase food security in the face of these changes, tools that can rapidly and accurately assess farm productivity are needed. With this aim, we have developed generalizable methods to map crop yields at the field scale using a combination of satellite imagery and crop models, and implement this approach within Google Earth Engine. We use these methods to examine wheat yield trends in Northern India, which provides over 15% of the global wheat supply and where over 80% of farmers rely on wheat as a staple food source. In addition, we identify the extent to which farmers are shifting sow date in response to heat stress, and how well shifting sow date reduces the negative impacts of heat stress on yield. To identify local-level decision-making, we map wheat sow date and yield at a high spatial resolution (30 m) using Landsat satellite imagery from 1980 to the present. This unique dataset allows us to examine sow date decisions at the field scale over 30 years, and by relating these decisions to weather experienced over the same time period, we can identify how farmers learn and adapt cropping decisions based on weather through time.

  2. Biochemical bases for the biogeography of C3/C4 grasses and implications for changing distributions since the last glacial maximum

    Energy Technology Data Exchange (ETDEWEB)

    Collatz, G.J. [NASA/GSFC, Greenbelt, MD (United States); Clark, J.S. [Duke Univ., Durham, NC (United States); Berry, J.A. [Carnegie Institution of Washington, Stanford, CA (United States)

    1995-06-01

    Differential distributions of C3 and C4 grass taxa correlate with geographic and climatic factors. A simple model based on the temperature dependence of the photosynthetic quantum yield of C3 plants and the lack of response of the C4 quantum yield to temperature is used to predict the global distribution of C4 grasses at current atmospheric CO2 concentrations and climate. The model predicts a cross over temperature at which the quantum yield responses intersect; at temperatures above the cross over point C4 grasses are favored over C3. The cross over temperature is about 22{degrees}C at current atmospheric CO2 concentrations. Using this criterion an accurate 1x1 degree map of C4 grass dominance over C3 grasses is produced from climatological mean monthly temperatures. Accuracy is improved by considering the co-occurrence of sufficient rainfall for growth during the months warm enough for C4 dominance. Rising temperatures and CO2 concentrations since the last glacial maximum (LGM) are expected to have an impact on past C4 grass distributions. We have used climate generated by the NCAR CCM to predict the extent of climatic regions favoring C4 over C3 since the LGM. Though low temperatures favor C3 photosynthesis, the low CO2 concentrations in the past more than off-set this effect. The extent of C4 favorable climates are predicted to have been greater during the LGM and have shrunk since then. The model does not take into account important biotic factors such as competition for light and herbivory or abiotic factors such as fire frequency that can affect the dominance of grasslands over other vegetation types.

  3. Satellite Fault Diagnosis Using Support Vector Machines Based on a Hybrid Voting Mechanism

    Directory of Open Access Journals (Sweden)

    Hong Yin

    2014-01-01

    Full Text Available The satellite fault diagnosis has an important role in enhancing the safety, reliability, and availability of the satellite system. However, the problem of enormous parameters and multiple faults makes a challenge to the satellite fault diagnosis. The interactions between parameters and misclassifications from multiple faults will increase the false alarm rate and the false negative rate. On the other hand, for each satellite fault, there is not enough fault data for training. To most of the classification algorithms, it will degrade the performance of model. In this paper, we proposed an improving SVM based on a hybrid voting mechanism (HVM-SVM to deal with the problem of enormous parameters, multiple faults, and small samples. Many experimental results show that the accuracy of fault diagnosis using HVM-SVM is improved.

  4. Energy-Efficient Network Transmission between Satellite Swarms and Earth Stations Based on Lyapunov Optimization Techniques

    Directory of Open Access Journals (Sweden)

    Weiwei Fang

    2014-01-01

    Full Text Available The recent advent of satellite swarm technologies has enabled space exploration with a massive number of picoclass, low-power, and low-weight spacecraft. However, developing swarm-based satellite systems, from conceptualization to validation, is a complex multidisciplinary activity. One of the primary challenges is how to achieve energy-efficient data transmission between the satellite swarm and terrestrial terminal stations. Employing Lyapunov optimization techniques, we present an online control algorithm to optimally dispatch traffic load among different satellite-ground links for minimizing overall energy consumption over time. Our algorithm is able to independently and simultaneously make control decisions on traffic dispatching over intersatellite-links and up-down-links so as to offer provable energy and delay guarantees, without requiring any statistical information of traffic arrivals and link condition. Rigorous analysis and extensive simulations have demonstrated the performance and robustness of the proposed new algorithm.

  5. Validation of satellite-based noontime UVI with NDACC ground-based instruments: influence of topography, environment and satellite overpass time

    Science.gov (United States)

    Brogniez, Colette; Auriol, Frédérique; Deroo, Christine; Arola, Antti; Kujanpää, Jukka; Sauvage, Béatrice; Kalakoski, Niilo; Riku Aleksi Pitkänen, Mikko; Catalfamo, Maxime; Metzger, Jean-Marc; Tournois, Guy; Da Conceicao, Pierre

    2016-12-01

    Spectral solar UV radiation measurements are performed in France using three spectroradiometers located at very different sites. One is installed in Villeneuve d'Ascq, in the north of France (VDA). It is an urban site in a topographically flat region. Another instrument is installed in Observatoire de Haute-Provence, located in the southern French Alps (OHP). It is a rural mountainous site. The third instrument is installed in Saint-Denis, Réunion Island (SDR). It is a coastal urban site on a small mountainous island in the southern tropics. The three instruments are affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC) and carry out routine measurements to monitor the spectral solar UV radiation and enable derivation of UV index (UVI). The ground-based UVI values observed at solar noon are compared to similar quantities derived from the Ozone Monitoring Instrument (OMI, onboard the Aura satellite) and the second Global Ozone Monitoring Experiment (GOME-2, onboard the Metop-A satellite) measurements for validation of these satellite-based products. The present study concerns the period 2009-September 2012, date of the implementation of a new OMI processing tool. The new version (v1.3) introduces a correction for absorbing aerosols that were not considered in the old version (v1.2). Both versions of the OMI UVI products were available before September 2012 and are used to assess the improvement of the new processing tool. On average, estimates from satellite instruments always overestimate surface UVI at solar noon. Under cloudless conditions, the satellite-derived estimates of UVI compare satisfactorily with ground-based data: the median relative bias is less than 8 % at VDA and 4 % at SDR for both OMI v1.3 and GOME-2, and about 6 % for OMI v1.3 and 2 % for GOME-2 at OHP. The correlation between satellite-based and ground-based data is better at VDA and OHP (about 0.99) than at SDR (0.96) for both space-borne instruments. For all

  6. Characterization of satellite based proxies for estimating nucleation mode particles over South Africa

    Directory of Open Access Journals (Sweden)

    A.-M. Sundström

    2014-10-01

    Full Text Available In this work satellite observations from the NASA's A-Train constellation were used to derive the values of primary emission and regional nucleation proxies over South Africa to estimate the potential for new particle formation. As derived in Kulmala et al. (2011, the satellite based proxies consist of source terms (NO2, SO2 and UV-B radiation, and a sink term describing the pre-existing aerosols. The first goal of this work was to study in detail the use of satellite aerosol optical depth (AOD as a substitute to the in situ based condensation sink (CS. One of the major factors affecting the agreement of CS and AOD was the elevated aerosol layers that increased the value of column integrated AOD but not affected the in situ CS. However, when the AOD in the proxy sink was replaced by an estimate from linear bivariate fit between AOD and CS, the agreement with the actual nucleation mode number concentration improved somewhat. The second goal of the work was to estimate how well the satellite based proxies can predict the potential for new particle formation. For each proxy the highest potential for new particle formation were observed over the Highveld industrial area, where the emissions were high but the sink due to pre-existing aerosols was relatively low. Best agreement between the satellite and in situ based proxies were obtained for NO2/AOD and UV-B/AOD2, whereas proxies including SO2 in the source term had lower correlation. Even though the OMI SO2 boundary layer product showed reasonable spatial pattern and detected the major sources over the study area, some of the known minor point sources were not detected. When defining the satellite proxies only for days when new particle formation event was observed, it was seen that for all the satellite based proxies the event day medians were higher than the entire measurement period median.

  7. Simulation and Analysis of Autonomous Time Synchronization Based on Asynchronism Two-way Inter-satellite Link

    Science.gov (United States)

    Fang, L.; Yang, X. H.; Sun, B. Q.; Qin, W. J.; Kong, Y.

    2013-09-01

    The measurement of the inter-satellite link is one of the key techniques in the autonomous operation of satellite navigation system. Based on the asynchronism inter-satellite two-way measurement mode in GPS constellation, the reduction formula of the inter-satellite time synchronization is built in this paper. Moreover, the corrective method of main systematic errors is proposed. Inter-satellite two-way time synchronization is simulated on the basis of IGS (International GNSS Service) precise ephemeris. The impacts of the epoch domestication of asynchronism inter-satellite link pseudo-range, the initial orbit, and the main systematic errors on satellite time synchronization are analyzed. Furthermore, the broadcast clock error of each satellite is calculated by the ``centralized'' inter-satellite autonomous time synchronization. Simulation results show that the epoch domestication of asynchronism inter-satellite link pseudo-range and the initial orbit have little impact on the satellite clock errors, and thus they needn't be taken into account. The errors caused by the relativistic effect and the asymmetry of path travel have large impact on the satellite clock errors. These should be corrected with theoretical formula. Compared with the IGS precise clock error, the root mean square of the broadcast clock error of each satellite is about 0.4 ns.

  8. A new algorithm for agile satellite-based acquisition operations

    Science.gov (United States)

    Bunkheila, Federico; Ortore, Emiliano; Circi, Christian

    2016-06-01

    Taking advantage of the high manoeuvrability and the accurate pointing of the so-called agile satellites, an algorithm which allows efficient management of the operations concerning optical acquisitions is described. Fundamentally, this algorithm can be subdivided into two parts: in the first one the algorithm operates a geometric classification of the areas of interest and a partitioning of these areas into stripes which develop along the optimal scan directions; in the second one it computes the succession of the time windows in which the acquisition operations of the areas of interest are feasible, taking into consideration the potential restrictions associated with these operations and with the geometric and stereoscopic constraints. The results and the performances of the proposed algorithm have been determined and discussed considering the case of the Periodic Sun-Synchronous Orbits.

  9. Fairness based channel borrowing strategy in multimedia LEO satellite communications

    Institute of Scientific and Technical Information of China (English)

    HUANG Fei; XU Hui; WU Shiqi

    2007-01-01

    A novel bandwidth allocation strategy along with a connection admission control technique was proposed to improve the utilization of network resources.It provides the network with better quality-of-service (QoS) guarantees,such as new call blocking probability (CBP) and handoff call dropping probability (CDP) in multimedia low earth orbit (LEO) satellite networks.Simulation results show that,compared with other bandwidth allocation schemes,the proposed scheme offers very low call dropping probability for real-time connections while,at the same time,keeping resource utilization high.Finally we discussed the fairness for the borrowed nonreal-time connections under three different channel borrowing methods.

  10. Wave energy resource assessment based on satellite observations around Indonesia

    Science.gov (United States)

    Ribal, Agustinus; Zieger, Stefan

    2016-06-01

    A preliminary assessment of wave energy resource around Indonesian's ocean has been carried out by means of analyzing satellite observations. The wave energy flux or wave power can be approximated using parameterized sea states. Wave power scales with significant wave height, characteristic wave period and water depth. In this approach, the significant wave heights were obtained from ENVISAT (Environmental Satellite) data which have been calibrated. However, as the characteristic wave period is rarely specified and therefore must be estimated from other variables when information about the wave spectra is unknown. Here, the characteristic wave period was calculated with an empirical model that utilizes altimeter estimates of wave height and backscatter coefficient originally proposed. For the Indonesian region, wave power energy is calculated over two periods of one year each and was compared with the results from global hindcast carried out with a recent release of wave model WAVEWATCH III. We found that, the most promising wave power energy regions around the Indonesian archipelago are located in the south of Java island and the south west of Sumatera island. In these locations, about 20 - 30 kW/m (90th percentile: 30-50 kW/m, 99th percentile: 40-60 kW/m) wave power energy on average has been found around south of Java island during 2010. Similar results have been found during 2011 at the same locations. Some small areas which are located around north of Irian Jaya (West Papua) are also very promising and need further investigation to determine its capacity as a wave energy resource.

  11. Object Based and Pixel Based Classification Using Rapideye Satellite Imager of ETI-OSA, Lagos, Nigeria

    Directory of Open Access Journals (Sweden)

    Esther Oluwafunmilayo Makinde

    2016-12-01

    Full Text Available Several studies have been carried out to find an appropriate method to classify the remote sensing data. Traditional classification approaches are all pixel-based, and do not utilize the spatial information within an object which is an important source of information to image classification. Thus, this study compared the pixel based and object based classification algorithms using RapidEye satellite image of Eti-Osa LGA, Lagos. In the object-oriented approach, the image was segmented to homogenous area by suitable parameters such as scale parameter, compactness, shape etc. Classification based on segments was done by a nearest neighbour classifier. In the pixel-based classification, the spectral angle mapper was used to classify the images. The user accuracy for each class using object based classification were 98.31% for waterbody, 92.31% for vegetation, 86.67% for bare soil and 90.57% for Built up while the user accuracy for the pixel based classification were 98.28% for waterbody, 84.06% for Vegetation 86.36% and 79.41% for Built up. These classification techniques were subjected to accuracy assessment and the overall accuracy of the Object based classification was 94.47%, while that of Pixel based classification yielded 86.64%. The result of classification and accuracy assessment show that the object-based approach gave more accurate and satisfying results

  12. Adjusting thresholds of satellite-based convective initiation interest fields based on the cloud environment

    Science.gov (United States)

    Jewett, Christopher P.; Mecikalski, John R.

    2013-11-01

    The Time-Space Exchangeability (TSE) concept states that similar characteristics of a given property are closely related statistically for objects or features within close proximity. In this exercise, the objects considered are growing cumulus clouds, and the data sets to be considered in a statistical sense are geostationary satellite infrared (IR) fields that help describe cloud growth rates, cloud top heights, and whether cloud tops contain significant amounts of frozen hydrometeors. In this exercise, the TSE concept is applied to alter otherwise static thresholds of IR fields of interest used within a satellite-based convective initiation (CI) nowcasting algorithm. The convective environment in which the clouds develop dictate growth rate and precipitation processes, and cumuli growing within similar mesoscale environments should have similar growth characteristics. Using environmental information provided by regional statistics of the interest fields, the thresholds are examined for adjustment toward improving the accuracy of 0-1 h CI nowcasts. Growing cumulus clouds are observed within a CI algorithm through IR fields for many 1000 s of cumulus cloud objects, from which statistics are generated on mesoscales. Initial results show a reduction in the number of false alarms of ~50%, yet at the cost of eliminating approximately ~20% of the correct CI forecasts. For comparison, static thresholds (i.e., with the same threshold values applied across the entire satellite domain) within the CI algorithm often produce a relatively high probability of detection, with false alarms being a significant problem. In addition to increased algorithm performance, a benefit of using a method like TSE is that a variety of unknown variables that influence cumulus cloud growth can be accounted for without need for explicit near-cloud observations that can be difficult to obtain.

  13. Object-based illumination normalization for multi-temporal satellite images in urban area

    Science.gov (United States)

    Su, Nan; Zhang, Ye; Tian, Shu; Yan, Yiming

    2016-09-01

    Multi-temporal satellite images acquisition with different illumination conditions cause radiometric difference to have a huge effect on image quality during remote sensing image processing. In particular, image matching of satellite stereo images with great difference between acquisition dates is very difficult for the high-precision DSM generation in the field of satellite photogrammetry. Therefore, illumination normalization is one of the greatest application technology to eliminate radiometric difference for image matching and other image applications. In this paper, we proposed a novel method of object-based illumination normalization to improve image matching of different temporal satellite stereo images in urban area. Our proposed method include two main steps: 1) the object extraction 2) multi-level illumination normalization. Firstly, we proposed a object extraction method for the same objects extraction among the multi-temporal satellite images, which can keep the object structural attribute. Moreover, the multi-level illumination normalization is proposed by combining gradient domain method and singular value decomposition (SVD) according to characteristic information of relevant objects. Our proposed method has great improvement for the illumination of object area to be benefit for image matching in urban area with multiple objects. And the histogram similarity parameter and matching rate are used for illumination consistency quantitative evaluation. The experiments have been conducted on different satellite images with different acquisition dates in the same urban area to verify the effectiveness of our proposed method. The experimental results demonstrate a good performance by comparing other methods.

  14. Assessing Satellite-Based Fire Data for use in the National Emissions Inventory

    Science.gov (United States)

    Soja, Amber J.; Al-Saadi, Jassim; Giglio, Louis; Randall, Dave; Kittaka, Chieko; Pouliot, George; Kordzi, Joseph J.; Raffuse, Sean; Pace, Thompson G.; Pierce, Thomas E.; Moore, Tom; Biswadev, Roy; Pierce, R. Bradley; Szykman, James J.

    2009-01-01

    Biomass burning is significant to emission estimates because: (1) it can be a major contributor of particulate matter and other pollutants; (2) it is one of the most poorly documented of all sources; (3) it can adversely affect human health; and (4) it has been identified as a significant contributor to climate change through feedbacks with the radiation budget. Additionally, biomass burning can be a significant contributor to a regions inability to achieve the National Ambient Air Quality Standards for PM 2.5 and ozone, particularly on the top 20% worst air quality days. The United States does not have a standard methodology to track fire occurrence or area burned, which are essential components to estimating fire emissions. Satellite imagery is available almost instantaneously and has great potential to enhance emission estimates and their timeliness. This investigation compares satellite-derived fire data to ground-based data to assign statistical error and helps provide confidence in these data. The largest fires are identified by all satellites and their spatial domain is accurately sensed. MODIS provides enhanced spatial and temporal information, and GOES ABBA data are able to capture more small agricultural fires. A methodology is presented that combines these satellite data in Near-Real-Time to produce a product that captures 81 to 92% of the total area burned by wildfire, prescribed, agricultural and rangeland burning. Each satellite possesses distinct temporal and spatial capabilities that permit the detection of unique fires that could be omitted if using data from only one satellite.

  15. Detecting Anomaly Regions in Satellite Image Time Series Based on Sesaonal Autocorrelation Analysis

    Science.gov (United States)

    Zhou, Z.-G.; Tang, P.; Zhou, M.

    2016-06-01

    Anomaly regions in satellite images can reflect unexpected changes of land cover caused by flood, fire, landslide, etc. Detecting anomaly regions in satellite image time series is important for studying the dynamic processes of land cover changes as well as for disaster monitoring. Although several methods have been developed to detect land cover changes using satellite image time series, they are generally designed for detecting inter-annual or abrupt land cover changes, but are not focusing on detecting spatial-temporal changes in continuous images. In order to identify spatial-temporal dynamic processes of unexpected changes of land cover, this study proposes a method for detecting anomaly regions in each image of satellite image time series based on seasonal autocorrelation analysis. The method was validated with a case study to detect spatial-temporal processes of a severe flooding using Terra/MODIS image time series. Experiments demonstrated the advantages of the method that (1) it can effectively detect anomaly regions in each of satellite image time series, showing spatial-temporal varying process of anomaly regions, (2) it is flexible to meet some requirement (e.g., z-value or significance level) of detection accuracies with overall accuracy being up to 89% and precision above than 90%, and (3) it does not need time series smoothing and can detect anomaly regions in noisy satellite images with a high reliability.

  16. DETECTING ANOMALY REGIONS IN SATELLITE IMAGE TIME SERIES BASED ON SESAONAL AUTOCORRELATION ANALYSIS

    Directory of Open Access Journals (Sweden)

    Z.-G. Zhou

    2016-06-01

    Full Text Available Anomaly regions in satellite images can reflect unexpected changes of land cover caused by flood, fire, landslide, etc. Detecting anomaly regions in satellite image time series is important for studying the dynamic processes of land cover changes as well as for disaster monitoring. Although several methods have been developed to detect land cover changes using satellite image time series, they are generally designed for detecting inter-annual or abrupt land cover changes, but are not focusing on detecting spatial-temporal changes in continuous images. In order to identify spatial-temporal dynamic processes of unexpected changes of land cover, this study proposes a method for detecting anomaly regions in each image of satellite image time series based on seasonal autocorrelation analysis. The method was validated with a case study to detect spatial-temporal processes of a severe flooding using Terra/MODIS image time series. Experiments demonstrated the advantages of the method that (1 it can effectively detect anomaly regions in each of satellite image time series, showing spatial-temporal varying process of anomaly regions, (2 it is flexible to meet some requirement (e.g., z-value or significance level of detection accuracies with overall accuracy being up to 89% and precision above than 90%, and (3 it does not need time series smoothing and can detect anomaly regions in noisy satellite images with a high reliability.

  17. Satellite-Based actual evapotranspiration over drying semiarid terrain in West-Africa

    NARCIS (Netherlands)

    Schuttemeyer, D.; Schillings, Ch.; Moene, A.F.; Bruin, de H.A.R.

    2007-01-01

    A simple satellite-based algorithm for estimating actual evaporation based on Makkink¿s equation is applied to a seasonal cycle in 2002 at three test sites in Ghana, West Africa: at a location in the humid tropical southern region and two in the drier northern region. The required input for the algo

  18. Intercontinental and intracontinental biogeography patterns and methods

    Institute of Scientific and Technical Information of China (English)

    Jun WEN; Qiu-Yun (Jenny) XIANG; Hong QIAN; Jian-hua LI; Xiao-Quan WANG; Stefanie M. ICKERT-BOND

    2009-01-01

    @@ The study of biogeography has benefited from the exponential increase of DNA sequence data from recent molecular systematic studies, the development of analytical methods in the last decade concerning divergence time estimation and geographic area analyses, and the availability of large-scale distribution data of species in many groups of organisms. The underlying principle of divergence time estimation from DNA and protein data is that sequence divergence depends on the product of evolutionary rate and time. With their molecular clock hypothesis, Zuckerkandl and Pauling (1965) separated rates of molecular evolution from time by incorporating fossil evidence. Originally, a constant rate of sequence evolution was assumed, but soon it became evident that many data sets do not obey the constant rate assumption of a strict molecular clock.

  19. Region of Interest Detection Based on Histogram Segmentation for Satellite Image

    Science.gov (United States)

    Kiadtikornthaweeyot, Warinthorn; Tatnall, Adrian R. L.

    2016-06-01

    High resolution satellite imaging is considered as the outstanding applicant to extract the Earth's surface information. Extraction of a feature of an image is very difficult due to having to find the appropriate image segmentation techniques and combine different methods to detect the Region of Interest (ROI) most effectively. This paper proposes techniques to classify objects in the satellite image by using image processing methods on high-resolution satellite images. The systems to identify the ROI focus on forests, urban and agriculture areas. The proposed system is based on histograms of the image to classify objects using thresholding. The thresholding is performed by considering the behaviour of the histogram mapping to a particular region in the satellite image. The proposed model is based on histogram segmentation and morphology techniques. There are five main steps supporting each other; Histogram classification, Histogram segmentation, Morphological dilation, Morphological fill image area and holes and ROI management. The methods to detect the ROI of the satellite images based on histogram classification have been studied, implemented and tested. The algorithm is be able to detect the area of forests, urban and agriculture separately. The image segmentation methods can detect the ROI and reduce the size of the original image by discarding the unnecessary parts.

  20. Neural Network Based Lna Design for Mobile Satellite Receiver

    Directory of Open Access Journals (Sweden)

    Abhijeet Upadhya

    2014-08-01

    Full Text Available Paper presents a Neural Network Modelling approach to microwave LNA design. To acknowledge the specifications of the amplifier, Mobile Satellite Systems are analyzed. Scattering parameters of the LNA in the frequency range 0.5 to 18 GHz are calculated using a Multilayer Perceptron Artificial Neural Network model and corresponding smith charts and polar charts are plotted as output to the model. From these plots, the microwave scattering parameter description of the LNA are obtained. Model is efficiently trained using Agilent ATF 331M4 InGaAs/InP Low Noise pHEMT amplifier datasheet and the neural model’s output seem to follow the various device characteristic curves with high regression. Next, Maximum Allowable Gain and Noise figure of the device are modelled and plotted for the same frequency range. Finally, the optimized model is utilized as an interpolator and the resolution of the amplifying capability with noise characteristics are obtained for the L Band of MSS operation.

  1. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    Science.gov (United States)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  2. Satellite-based assessment of yield variation and its determinants in smallholder African systems

    Science.gov (United States)

    Lobell, David B.

    2017-01-01

    The emergence of satellite sensors that can routinely observe millions of individual smallholder farms raises possibilities for monitoring and understanding agricultural productivity in many regions of the world. Here we demonstrate the potential to track smallholder maize yield variation in western Kenya, using a combination of 1-m Terra Bella imagery and intensive field sampling on thousands of fields over 2 y. We find that agreement between satellite-based and traditional field survey-based yield estimates depends significantly on the quality of the field-based measures, with agreement highest (R2 up to 0.4) when using precise field measures of plot area and when using larger fields for which rounding errors are smaller. We further show that satellite-based measures are able to detect positive yield responses to fertilizer and hybrid seed inputs and that the inferred responses are statistically indistinguishable from estimates based on survey-based yields. These results suggest that high-resolution satellite imagery can be used to make predictions of smallholder agricultural productivity that are roughly as accurate as the survey-based measures traditionally used in research and policy applications, and they indicate a substantial near-term potential to quickly generate useful datasets on productivity in smallholder systems, even with minimal or no field training data. Such datasets could rapidly accelerate learning about which interventions in smallholder systems have the most positive impact, thus enabling more rapid transformation of rural livelihoods. PMID:28202728

  3. PARTICLE SWARM OPTIMIZATION BASED ON PYRAMID MODEL FOR SATELLITE MODULE LAYOUT

    Institute of Scientific and Technical Information of China (English)

    Zhang Bao; Teng Hongfei

    2005-01-01

    To improve the global search ability of particle swarm optimization (PSO), a multi-population PSO based on pyramid model (PPSO) is presented. Then, it is applied to solve the layout optimization problems against the background of an international commercial communication satellite (INTELSAT-Ⅲ) module. Three improvements are developed, including multi-population search based on pyramid model, adaptive collision avoidance among particles, and mutation of degraded particles. In the numerical examples of the layout design of this simplified satellite module, the performance of PPSO is compared to global version PSO and local version PSO (ring and Neumann PSO). The results show that PPSO has higher computational accuracy, efficiency and success ratio.

  4. Evaluation of satellite soil moisture products over Norway using ground-based observations

    Science.gov (United States)

    Griesfeller, A.; Lahoz, W. A.; Jeu, R. A. M. de; Dorigo, W.; Haugen, L. E.; Svendby, T. M.; Wagner, W.

    2016-03-01

    In this study we evaluate satellite soil moisture products from the advanced SCATterometer (ASCAT) and the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over Norway using ground-based observations from the Norwegian water resources and energy directorate. The ASCAT data are produced using the change detection approach of Wagner et al. (1999), and the AMSR-E data are produced using the VUA-NASA algorithm (Owe et al., 2001, 2008). Although satellite and ground-based soil moisture data for Norway have been available for several years, hitherto, such an evaluation has not been performed. This is partly because satellite measurements of soil moisture over Norway are complicated owing to the presence of snow, ice, water bodies, orography, rocks, and a very high coastline-to-area ratio. This work extends the European areas over which satellite soil moisture is validated to the Nordic regions. Owing to the challenging conditions for soil moisture measurements over Norway, the work described in this paper provides a stringent test of the capabilities of satellite sensors to measure soil moisture remotely. We show that the satellite and in situ data agree well, with averaged correlation (R) values of 0.72 and 0.68 for ASCAT descending and ascending data vs in situ data, and 0.64 and 0.52 for AMSR-E descending and ascending data vs in situ data for the summer/autumn season (1 June-15 October), over a period of 3 years (2009-2011). This level of agreement indicates that, generally, the ASCAT and AMSR-E soil moisture products over Norway have high quality, and would be useful for various applications, including land surface monitoring, weather forecasting, hydrological modelling, and climate studies. The increasing emphasis on coupled approaches to study the earth system, including the interactions between the land surface and the atmosphere, will benefit from the availability of validated and improved soil moisture satellite datasets, including those

  5. An ASIFT-Based Local Registration Method for Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiangjun Wang

    2015-05-01

    Full Text Available Imagery registration is a fundamental step, which greatly affects later processes in image mosaic, multi-spectral image fusion, digital surface modelling, etc., where the final solution needs blending of pixel information from more than one images. It is highly desired to find a way to identify registration regions among input stereo image pairs with high accuracy, particularly in remote sensing applications in which ground control points (GCPs are not always available, such as in selecting a landing zone on an outer space planet. In this paper, a framework for localization in image registration is developed. It strengthened the local registration accuracy from two aspects: less reprojection error and better feature point distribution. Affine scale-invariant feature transform (ASIFT was used for acquiring feature points and correspondences on the input images. Then, a homography matrix was estimated as the transformation model by an improved random sample consensus (IM-RANSAC algorithm. In order to identify a registration region with a better spatial distribution of feature points, the Euclidean distance between the feature points is applied (named the S criterion. Finally, the parameters of the homography matrix were optimized by the Levenberg–Marquardt (LM algorithm with selective feature points from the chosen registration region. In the experiment section, the Chang’E-2 satellite remote sensing imagery was used for evaluating the performance of the proposed method. The experiment result demonstrates that the proposed method can automatically locate a specific region with high registration accuracy between input images by achieving lower root mean square error (RMSE and better distribution of feature points.

  6. Unmodelled magnetic contributions in satellite-based models

    Science.gov (United States)

    Tozzi, Roberta; Mandea, Mioara; De Michelis, Paola

    2016-06-01

    A complex system of electric currents flowing in the ionosphere and magnetosphere originates from the interaction of the solar wind and the Interplanetary Magnetic Field (IMF) with the Earth's magnetic field. These electric currents generate magnetic fields contributing themselves to those measured by both ground observatories and satellites. Here, low-resolution (1 Hz) magnetic vector data recorded between 1 March 2014 and 31 May 2015 by the recently launched Swarm constellation are considered. The core and crustal magnetic fields and part of that originating in the magnetosphere are removed from Swarm measurements using CHAOS-5 model. Low- and mid-latitude residuals of the geomagnetic field representing the ionospheric and the unmodelled magnetospheric contributions are investigated, in the Solar Magnetic frame, according to the polarity of IMF B y (azimuthal) and B z (north-south) components and to different geomagnetic activity levels. The proposed approach makes it possible to investigate the features of unmodelled contributions due to the external sources of the geomagnetic field. Results show, on one side, the existence of a relation between the analysed residuals and IMF components B y and B z , possibly due to the long distance effect of high-latitude field-aligned currents. On the other side, they suggest the presence of a contribution due to the partial ring current that is activated during the main phase of geomagnetic storms. The perturbation observed on residuals is also compatible with the effect of the net field-aligned currents. Moreover, we have quantitatively estimated the effect of these current systems on computed residuals.

  7. Species tree estimation and the historical biogeography of heroine cichlids.

    Science.gov (United States)

    Hulsey, C Darrin; Keck, Benjamin P; Hollingsworth, Phillip R

    2011-01-01

    Heroine cichlids are major components of the fish faunas in both Central America and the Caribbean. To examine the evolutionary patterns of how cichlids colonized both of these regions, we reconstructed the phylogenetic relationships among 23 cichlid lineages. We used three phylogenetically novel nuclear markers (Dystropin b, Myomesin1, and Wnt7b) in combination with sequence data from seven other gene regions (Nd2, Rag1, Enc1, Sreb2, Ptr, Plagl2, and Zic1) to elucidate the species tree of these cichlids. The species examined represent major heroine lineages in South America, Central America, and the Greater Antilles. The individual gene trees of these groups were topologically quite discordant. Therefore, we combined the genetic partitions and inferred the species tree using both concatenation and a coalescent-based Bayesian method. The two resulting phylogenetic topologies were largely concordant but differed in two fundamental ways. First, more nodes in the concatenated tree were supported with substantial or 100% Bayesian posterior support than in the coalescent-based tree. Second, there was a minor, but biogeographically critical, topological difference between the concatenated and coalescent-based trees. Nevertheless, both analyses recovered topologies consistent with the Greater Antillean heroines being phylogenetically nested within the largely Central American heroine radiation. This study suggests that reconstructions of cichlid phylogeny and historical biogeography should account for the vagaries of individual gene histories.

  8. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals

    Directory of Open Access Journals (Sweden)

    Y. Y. Liu

    2010-09-01

    Full Text Available Combining information derived from satellite-based passive and active microwave sensors has the potential to offer improved retrievals of surface soil moisture variations at global scales. Here we propose a technique to take advantage of retrieval characteristics of passive (AMSR-E and active (ASCAT microwave satellite estimates over sparse-to-moderately vegetated areas to obtain an improved soil moisture product. To do this, absolute soil moisture values from AMSR-E and relative soil moisture derived from ASCAT are rescaled against a reference land surface model date set using a cumulative distribution function (CDF matching approach. While this technique imposes the bias of the reference to the rescaled satellite products, it adjusts both satellite products to the same range and almost preserves the correlation between satellite products and in situ measurements. Comparisons with in situ data demonstrated that over the regions where the correlation coefficient between rescaled AMSR-E and ASCAT is above 0.65 (hereafter referred to as transitional regions, merging the different satellite products together increases the number of observations while minimally changing the accuracy of soil moisture retrievals. These transitional regions also delineate the boundary between sparsely and moderately vegetated regions where rescaled AMSR-E and ASCAT are respectively used in the merged product. Thus the merged product carries the advantages of better spatial coverage overall and increased number of observations particularly for the transitional regions. The combination approach developed in this study has the potential to be applied to existing microwave satellites as well as to new microwave missions. Accordingly, a long-term global soil moisture dataset can be developed and extended, enhancing basic understanding of the role of soil moisture in the water, energy and carbon cycles.

  9. Research of Multi-Agent System based satellite fault diagnosis technology

    Institute of Scientific and Technical Information of China (English)

    范显峰; 姜兴渭; 黄文虎; 谷吉海

    2002-01-01

    Following the theory of Multi-Agent System (MAS) and using series-wound structure and shunt-wound structure of Agents, the performance of Agent was improved to satisfy the need of satellite fault diagno-sis, and a tridimensional MAS model of satellite fault diagnosis was thus established for the MAS based planardiagnosis system, which decentralizes the whole diagnosing task into subtasks to be performed by different func-tional Agents to make the complicated fault diagnosis very simple and the diagnosis system more intelligent.This method improved the reliability and accuracy of diagnosis and made the maintenance and upgrading of thesatellite fault diagnosis system very easy as well.

  10. Evaluation of Clear Sky Models for Satellite-Based Irradiance Estimates

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, M.; Gotseff, P.

    2013-12-01

    This report describes an intercomparison of three popular broadband clear sky solar irradiance model results with measured data, as well as satellite-based model clear sky results compared to measured clear sky data. The authors conclude that one of the popular clear sky models (the Bird clear sky model developed by Richard Bird and Roland Hulstrom) could serve as a more accurate replacement for current satellite-model clear sky estimations. Additionally, the analysis of the model results with respect to model input parameters indicates that rather than climatological, annual, or monthly mean input data, higher-time-resolution input parameters improve the general clear sky model performance.

  11. Satellite-based empirical models linking river plume dynamics with hypoxic area andvolume

    Science.gov (United States)

    Satellite-based empirical models explaining hypoxic area and volume variation were developed for the seasonally hypoxic (O2 < 2 mg L−1) northern Gulf of Mexico adjacent to the Mississippi River. Annual variations in midsummer hypoxic area and ...

  12. Efficient GOCE satellite gravity field recovery based on least-squares using QR decomposition

    NARCIS (Netherlands)

    Baur, O.; Austen, G.; Kusche, J.

    2007-01-01

    We develop and apply an efficient strategy for Earth gravity field recovery from satellite gravity gradiometry data. Our approach is based upon the Paige-Saunders iterative least-squares method using QR decomposition (LSQR). We modify the original algorithm for space-geodetic applications: firstly,

  13. MISAT : Designing a Series of Powerful Small Satellites Based upon Micro Systems Technology

    NARCIS (Netherlands)

    Gill, E.; Monna, G.L.E.; Scherpen, J.M.A.; Verhoeven, C.J.M.

    2007-01-01

    MISAT is a research and development cluster which will create a small satellite platform based on Micro Systems Technology (MST) aiming at innovative space as well as terrestrial applications. MISAT is part of the Dutch MicroNed program which has established a microsystems infrastructure to fully ex

  14. A Handover Strategy in the LEO Satellite-Based Constellation Networks with ISLs

    Institute of Scientific and Technical Information of China (English)

    LIU Gang; GOU Dingyong; WU Shiqi

    2003-01-01

    A new handover strategy named minimal-hops handover(MHH) strategy for the low earth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy, which is based on the hops of the end-to-end connection paths and makes good use of the regularity of the constellation network topology, can appropriately combine the handover procedure with routing and efficiently solve the inter-satellite handover issue. Moreover, MHH strategy can provide quality of services( QoS) guarantees to some extent. The system performances of the MHH strategy, such as time propagation delay and handover frequency, are evaluated and compared with that of other previous strategies. The simulation results show that MHH strategy performs better than other previous handover strategies.

  15. Multi-Objective Reinforcement Learning for Cognitive Radio-Based Satellite Communications

    Science.gov (United States)

    Ferreira, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.

    2016-01-01

    Previous research on cognitive radios has addressed the performance of various machine-learning and optimization techniques for decision making of terrestrial link properties. In this paper, we present our recent investigations with respect to reinforcement learning that potentially can be employed by future cognitive radios installed onboard satellite communications systems specifically tasked with radio resource management. This work analyzes the performance of learning, reasoning, and decision making while considering multiple objectives for time-varying communications channels, as well as different cross-layer requirements. Based on the urgent demand for increased bandwidth, which is being addressed by the next generation of high-throughput satellites, the performance of cognitive radio is assessed considering links between a geostationary satellite and a fixed ground station operating at Ka-band (26 GHz). Simulation results show multiple objective performance improvements of more than 3.5 times for clear sky conditions and 6.8 times for rain conditions.

  16. Satellites vs. fiber optics based networks and services - Road map to strategic planning

    Science.gov (United States)

    Marandi, James H. R.

    An overview of a generic telecommunications network and its components is presented, and the current developments in satellite and fiber optics technologies are discussed with an eye on the trends in industry. A baseline model is proposed, and a cost comparison of fiber- vs satellite-based networks is made. A step-by-step 'road map' to the successful strategic planning of telecommunications services and facilities is presented. This road map provides for optimization of the current and future networks and services through effective utilization of both satellites and fiber optics. The road map is then applied to different segments of the telecommunications industry and market place, to show its effectiveness for the strategic planning of executives of three types: (1) those heading telecommunications manufacturing concerns, (2) those leading communication service companies, and (3) managers of telecommunication/MIS departments of major corporations. Future networking issues, such as developments in integrated-services digital network standards and technologies, are addressed.

  17. THE SATELLITE STRUCTURE TOPOLOGY OPTIMIZATION BASED ON HOMOGENIZATION METHOD AND ITS SIZE SENSITIVITY ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    ChenChangya; PanJin; WangDeyu

    2005-01-01

    With the development of satellite structure technology, more and more design parameters will affect its structural performance. It is desirable to obtain an optimal structure design with a minimum weight, including optimal configuration and sizes. The present paper aims to describe an optimization analysis for a satellite structure, including topology optimization and size optimization. Based on the homogenization method, the topology optimization is carried out for the main supporting frame of service module under given constraints and load conditions, and then the sensitivity analysis is made of 15 structural size parameters of the whole satellite and the optimal sizes are obtained. The numerical result shows that the present optimization design method is very effective.

  18. Protocol Support for a New Satellite-Based Airspace Communication Network

    Science.gov (United States)

    Shang, Yadong; Hadjitheodosiou, Michael; Baras, John

    2004-01-01

    We recommend suitable transport protocols for an aeronautical network supporting Internet and data services via satellite. We study the characteristics of an aeronautical satellite hybrid network and focus on the problems that cause dramatically degraded performance of the Transport Protocol. We discuss various extensions to standard TCP that alleviate some of these performance problems. Through simulation, we identify those TCP implementations that can be expected to perform well. Based on the observation that it is difficult for an end-to-end solution to solve these problems effectively, we propose a new TCP-splitting protocol, termed Aeronautical Transport Control Protocol (AeroTCP). The main idea of this protocol is to use a fixed window for flow control and one duplicated acknowledgement (ACK) for fast recovery. Our simulation results show that AeroTCP can maintain higher utilization for the satellite link than end-to-end TCP, especially in high BER environment.

  19. Evaluation of Satellite and Ground Based Precipitation Products for Flood Forecasting

    Science.gov (United States)

    Chintalapudi, S.; Sharif, H.; Yeggina, S.

    2012-04-01

    The development in satellite-derived rainfall estimates encouraged the hydrological modeling in sparse gauged basins or ungauged basins. Especially, physically-based distributed hydrological models can benefit from the good spatial and temporal coverage of satellite precipitation products. In this study, three satellite derived precipitation datasets (TRMM, CMORPH, and PERSIANN), NEXRAD, and rain gauge precipitation datasets were used to drive the hydrological model. The physically-based, distributed hydrological model Gridded Surface Subsurface Hydrological Analysis (GSSHA) was used in this study. Focus will be on the results from the Guadalupe River Basin above Canyon Lake and below Comfort, Texas. The Guadalupe River Basin above Canyon Lake and below Comfort Texas drains an area of 1232 km2. Different storm events will be used in these simulations. August 2007 event was used as calibration and June 2007 event was used as validation. Results are discussed interms of accuracy of satellite precipitation estimates with the ground based precipitation estimates, predicting peak discharges, runoff volumes, time lag, and spatial distribution. The initial results showed that, model was able to predict the peak discharges and runoff volumes when using NEXRAD MPE data, and TRMM 3B42 precipitation product. The results also showed that there was time lag in hydrographs driven by both PERSIANN and CMORPH data sets.

  20. Satellite-based estimation of rainfall erosivity for Africa

    NARCIS (Netherlands)

    Vrieling, A.; Sterk, G.; Jong, S.M. de

    2010-01-01

    Rainfall erosivity is a measure for the erosive force of rainfall. Rainfall kinetic energy determines the erosivity and is in turn greatly dependent on rainfall intensity. Attempts for its large-scale mapping are rare. Most are based on interpolation of erosivity values derived from rain gauge data.

  1. Linear and Nonlinear Relative Navigation Strategies for Small Satellite Formation Flying Based on Relative Position Measurement

    Science.gov (United States)

    Zhang, Xiaomin; Zheng, You

    Based on linear and nonlinear mathematical model of spacecraft formation flying and technology of relative position measurement of small satellites, the linear and nonlinear relative navigation strategies are developed in this paper. The dynamical characteristics of multi spacecraft formation flying have been researched in many references, including the authors' several International Astronautical Congress papers with numbers of IAF-98-A.2.06, IAA-99-IAA.11.1.09, IAA-01-IAA.11.4.08. Under conditions of short distance and short time, the linear model can describe relative orbit motion; otherwise, nonlinear model must be adopted. Furthermore the means of measurement and their error will influence relative navigation. Thus three kinds of relative navigation strategy are progressed. With consideration of difficulty in relative velocity measurement of small satellites, the three relative navigation strategies are proposed and only depend on sequential data of relative position through measuring the relative distance and relative orientation. The first kind of relative navigation strategy is based on linear model. The second relative navigation strategy is based on nonlinear model, with inclusion of the second order item. In fact the measurement error can not be avoided especially for small satellites, it is mainly considered in the third relative navigation strategy. This research is theoretical yet and a series of formulas of relative navigation are presented in this paper. Also the authors analyzed the three strategies qualitatively and quantitatively. According to results of simulation, the ranges of application are indicated and suggested in allusion to the three strategies of relative navigation. On the view of authors, the relative navigation strategies for small satellite formation flying based on relative position measurement are significant for engineering of small satellite formation flying.

  2. Implementing earth observation and advanced satellite based atmospheric sounders for water resource and climate modelling

    DEFF Research Database (Denmark)

    Boegh, E.; Dellwik, Ebba; Hahmann, Andrea N.;

    This paper discusses preliminary remote sensing (MODIS) based hydrological modelling results for the Danish island Sjælland (7330 km2) in relation to project objectives and methodologies of a new research project “Implementing Earth observation and advanced satellite based atmospheric sounders...... for effective land surface representation in water resource modeling” (2009- 2012). The purpose of the new research project is to develop remote sensing based model tools capable of quantifying the relative effects of site-specific land use change and climate variability at different spatial scales....... For this purpose, a) internal catchment processes will be studied using a Distributed Temperature Sensing (DTS) system, b) Earth observations will be used to upscale from field to regional scales, and c) at the largest scale, satellite based atmospheric sounders and meso-scale climate modelling will be used...

  3. Reconstructing ancestral ranges in historical biogeography: properties and prospects

    Institute of Scientific and Technical Information of China (English)

    Kristin S. LAMM; Benjamin D. REDELINGS

    2009-01-01

    Recent years have witnessed a proliferation of quantitative methods for biogeographic inference. In particular, novel parametric approaches represent exciting new opportunities for the study of range evolution. Here, we review a selection of current methods for biogeographic analysis and discuss their respective properties. These methods include generalized parsimony approaches, weighted ancestral area analysis, dispersal-vicariance analysis, the dispersal-extinction-cladogenesis model and other maximum likelihood approaches, and Bayesian stochastic mapping of ancestral ranges, including a novel approach to inferring range evolution in the context of island biogeography. Some of these methods were developed specifically for problems of ancestral range reconstruction, whereas others were designed for more general problems of character state reconstruction and subsequently applied to the study of ancestral ranges. Methods for reconstructing ancestral history on a phylogenetic tree differ not only in the types of ancestral range states that are allowed, but also in the various historical events that may change the ancestral ranges. We explore how the form of allowed ancestral ranges and allowed transitions can both affect the outcome of ancestral range estimation. Finally, we mention some promising avenues for future work in the development of model-based approaches to biogeographic analysis.

  4. Microbial Biogeography and Core Microbiota of the Rat Digestive Tract

    Science.gov (United States)

    Li, Dongyao; Chen, Haiqin; Mao, Bingyong; Yang, Qin; Zhao, Jianxin; Gu, Zhennan; Zhang, Hao; Chen, Yong Q.; Chen, Wei

    2017-01-01

    As a long-standing biomedical model, rats have been frequently used in studies exploring the correlations between gastrointestinal (GI) bacterial biota and diseases. In the present study, luminal and mucosal samples taken along the longitudinal axis of the rat digestive tract were subjected to 16S rRNA gene sequencing-based analysis to determine the baseline microbial composition. Results showed that the community diversity increased from the upper to lower GI segments and that the stratification of microbial communities as well as shift of microbial metabolites were driven by biogeographic location. A greater proportion of lactate-producing bacteria (such as Lactobacillus, Turicibacter and Streptococcus) were found in the stomach and small intestine, while anaerobic Lachnospiraceae and Ruminococcaceae, fermenting carbohydrates and plant aromatic compounds, constituted the bulk of the large-intestinal core microbiota where topologically distinct co-occurrence networks were constructed for the adjacent luminal and mucosal compartments. When comparing the GI microbiota from different hosts, we found that the rat microbial biogeography might represent a new reference, distinct from other murine animals. Our study provides the first comprehensive characterization of the rat GI microbiota landscape for the research community, laying the foundation for better understanding and predicting the disease-related alterations in microbial communities. PMID:28374781

  5. Studies of oceanic tectonics based on GEOS-3 satellite altimetry

    Science.gov (United States)

    Poehls, K. A.; Kaula, W. M.; Schubert, G.; Sandwell, D.

    1979-01-01

    Using statistical analysis, geoidal admittance (the relationship between the ocean geoid and seafloor topography) obtained from GEOS-3 altimetry was compared to various model admittances. Analysis of several altimetry tracks in the Pacific Ocean demonstrated a low coherence between altimetry and seafloor topography except where the track crosses active or recent tectonic features. However, global statistical studies using the much larger data base of all available gravimetry showed a positive correlation of oceanic gravity with topography. The oceanic lithosphere was modeled by simultaneously inverting surface wave dispersion, topography, and gravity data. Efforts to incorporate geoid data into the inversion showed that the base of the subchannel can be better resolved with geoid rather than gravity data. Thermomechanical models of seafloor spreading taking into account differing plate velocities, heat source distributions, and rock rheologies were discussed.

  6. Spacetime effects on satellite-based quantum communications

    Science.gov (United States)

    Bruschi, David Edward; Ralph, Timothy C.; Fuentes, Ivette; Jennewein, Thomas; Razavi, Mohsen

    2014-08-01

    We investigate the consequences of space-time being curved on space-based quantum communication protocols. We analyze tasks that require either the exchange of single photons in a certain entanglement distribution protocol or beams of light in a continuous-variable quantum key distribution scheme. We find that gravity affects the propagation of photons, therefore adding additional noise to the channel for the transmission of information. The effects could be measured with current technology.

  7. Spacetime effects on satellite-based quantum communications

    CERN Document Server

    Bruschi, David Edward; Fuentes, Ivette; Jennewein, Thomas; Razavi, Mohsen

    2013-01-01

    We investigate the effects of space-time curvature on space-based quantum communication protocols. We analyze tasks that require either the exchange of single photons in a certain entanglement distribution protocol or beams of light in a continuous-variable quantum key distribution scheme. We find that gravity affects the propagation of photons, therefore acting as a noisy channel for the transmission of information. The effects can be measured with current technology.

  8. Neural network-based recognition of whistlers on spectrograms detected by satellite

    Science.gov (United States)

    Conti, Livio

    2016-04-01

    We present a system to automatically recognize and classify the occurrence of whistler waves on spectrograms of electric field measurements performed by satellite. Whistlers - VLF waves generated by lightning, with a specific spectral dispersion relation - can induce precipitation of trapped Van Allen particles and have a role in the chemistry of some atmospheric components (mainly NOx). Moreover, it has also been suggested that the increase of the number of anomalous whistlers (i.e. whistlers with high value of dispersion constant) could be induced by disturbances in the Earth-ionosphere wave-guide, generated by seismo-electromagnetic emissions. On satellite, the recognition of whistlers asks for analyzing high-resolution spectrograms that cannot be downloaded to Earth, due to the limits of data transmission. For this reason, a real time identification and classification must be performed on satellite, by avoiding downloading all the unprocessed data. The procedure that we have developed is based on a Time Delay Neural Network (TDNN). The TDNN, proposed some years ago for speech recognition, can be fruitfully also applied in real-time analysis of electromagnetic spectrograms in order to detect phenomena characterized by a specific shape/signature such as those of the whistler waves. Some studies have been performed by the RNF experiment on board of the DEMETER satellite and our algorithm could be adopted on board of the satellite CSES (China Seismo-Electromagnetic Satellite), launch scheduled by the end of 2016. Moreover, the procedure can be also adopted to automatic analysis of whistlers detected on ground.

  9. Comparison of NO2 vertical profiles from satellite and ground based measurements over Antarctica

    OpenAIRE

    Kulkarni, Pavan; Bortoli, Daniele; Costa, Maria João; Silva, Ana Maria; Ravegnani, Fabrizio; Giovanelli, Giorgio

    2011-01-01

    The Intercomparison of nitrogen dioxide (NO2) vertical profiles, derived from the satellite based HALogen Occultation Experiment (HALOE) measurements and from the ground based UV-VIS spectrometer GASCOD (Gas Analyzer Spectrometer Correlating Optical Differences) observations at the Mario Zucchelli Station (MZS), in Antarctica, are done for the first time. It is shown here that both datasets are in good agreement showing the same features in terms of magnitude, profile structure, a...

  10. A Satellite-Based Multi-Pollutant Index of Global Air Quality

    Science.gov (United States)

    Cooper, Mathew J.; Martin, Randall V.; vanDonkelaar, Aaron; Lamsal, Lok; Brauer, Michael; Brook, Jeffrey R.

    2012-01-01

    Air pollution is a major health hazard that is responsible formillions of annual excess deaths worldwide. Simpleindicators are useful for comparative studies and to asses strends over time. The development of global indicators hasbeen impeded by the lack of ground-based observations in vast regions of the world. Recognition is growing of the need for amultipollutant approach to air quality to better represent human exposure. Here we introduce the prospect of amultipollutant air quality indicator based on observations from satellite remote sensing.

  11. Planetary gearbox condition monitoring of ship-based satellite communication antennas using ensemble multiwavelet analysis method

    Science.gov (United States)

    Chen, Jinglong; Zhang, Chunlin; Zhang, Xiaoyan; Zi, Yanyang; He, Shuilong; Yang, Zhe

    2015-03-01

    Satellite communication antennas are key devices of a measurement ship to support voice, data, fax and video integration services. Condition monitoring of mechanical equipment from the vibration measurement data is significant for guaranteeing safe operation and avoiding the unscheduled breakdown. So, condition monitoring system for ship-based satellite communication antennas is designed and developed. Planetary gearboxes play an important role in the transmission train of satellite communication antenna. However, condition monitoring of planetary gearbox still faces challenges due to complexity and weak condition feature. This paper provides a possibility for planetary gearbox condition monitoring by proposing ensemble a multiwavelet analysis method. Benefit from the property on multi-resolution analysis and the multiple wavelet basis functions, multiwavelet has the advantage over characterizing the non-stationary signal. In order to realize the accurate detection of the condition feature and multi-resolution analysis in the whole frequency band, adaptive multiwavelet basis function is constructed via increasing multiplicity and then vibration signal is processed by the ensemble multiwavelet transform. Finally, normalized ensemble multiwavelet transform information entropy is computed to describe the condition of planetary gearbox. The effectiveness of proposed method is first validated through condition monitoring of experimental planetary gearbox. Then this method is used for planetary gearbox condition monitoring of ship-based satellite communication antennas and the results support its feasibility.

  12. Heavy precipitation retrieval from combined satellite observations and ground-based lightning measurements

    Science.gov (United States)

    Mugnai, A.; Dietrich, S.; Casella, D.; di Paola, F.; Formenton, M.; Sanò, P.

    2010-09-01

    We have developed a series of algorithms for the retrieval of precipitation (especially, heavy precipitation) over the Mediterranean area using satellite observations from the available microwave (MW) radiometers onboard low Earth orbit (LEO) satellites and from the visible-infrared (VIS-IR) SEVIRI radiometer onboard the European geosynchronous (GEO) satellite Meteosat Second Generation (MSG), in conjunction with lightning data from ground-based networks - such as ZEUS and LINET. These are: • A new approach for precipitation retrieval from space (which we call the Cloud Dynamics and Radiation Database approach, CDRD) that incorporates lightning and environmental/dynamical information in addition to the upwelling microwave brightness temperatures (TB’s) so as to reduce the retrieval uncertainty and improve the retrieval performance; • A new combined MW-IR technique for producing frequent precipitation retrievals from space (which we call PM-GCD technique), that uses passive-microwave (PM) retrievals in conjunction with lightning information and the Global Convection Detection (GCD) technique to discriminate deep convective clouds within the GEO observations; • A new morphing approach (which we call the Lightning-based Precipitation Evolving Technique, L-PET) that uses the available lightning measurements for propagating the rainfall estimates from satellite-borne MW radiometers to a much higher time resolution than the MW observations. We will present and discuss our combined MW/IR/lightning precipitation algorithms and analyses with special reference to some case studies over the western Mediterranean.

  13. Satellite image blind restoration based on surface fitting and multivariate model

    Institute of Scientific and Technical Information of China (English)

    CHEN Xin-bing; YANG Shi-zhi; WANG Xian-hua; QIAO Yan-li

    2009-01-01

    Owing to the blurring effect from atmosphere and camera system in the satellite imaging a blind image restoration algo-rithm is proposed which includes the modulation transfer function (MTF) estimation and the image restoration. In the MTF estimation stage, based on every degradation process of satellite imaging-chain, a combined parametric model of MTF is given and used to fit the surface of normalized logarithmic amplitude spectrum of degraded image. In the image restoration stage, a maximum a posteriori (MAP) based edge-preserving image restoration method is presented which introduces multivariate Laplacian model to characterize the prior distribution of wavelet coefficients of original image. During the image restoration, in order to avoid solving high nonlinear equations, optimization transfer algorithm is adopted to decom-pose the image restoration procedure into two simple steps: Landweber iteration and wavelet thresholding denoising. In the numerical experiment, the satellite image restoration results from SPOT-5 and high resolution camera (HR) of China & Brazil earth resource satellite (CBERS-02B) ane compared, and the proposed algorithm is superior in the image edge preservation and noise inhibition.

  14. Marine cyanophages exhibit local and regional biogeography.

    Science.gov (United States)

    Marston, Marcia F; Taylor, Samantha; Sme, Noel; Parsons, Rachel J; Noyes, Timothy J E; Martiny, Jennifer B H

    2013-05-01

    Biogeographic patterns have been demonstrated for a wide range of microorganisms. Nevertheless, the biogeography of marine viruses has been slower to emerge. Here we investigate biogeographic patterns of marine cyanophages that infect Synechococcus sp. WH7803 across multiple spatial and temporal scales. We compared cyanophage myoviral communities from nine coastal sites in Southern New England (SNE), USA, one site in Long Island NY, and four sites from Bermuda's inshore waters by assaying cyanophage isolates using the myoviral g43 DNA polymerase gene. Cyanophage community composition varied temporally at each of the sites. Further, 6 years of sampling at one Narragansett Bay site revealed annual seasonal variations in community composition, driven by the seasonal reoccurrence of specific viral taxa. Although the four Bermuda communities were similar to one another, they were significantly different than the North American coastal communities, with almost no overlap of taxa between the two regions. Among the SNE sites, cyanophage community composition also varied significantly and was correlated with the body of water sampled (e.g. Narragansett Bay, Cape Cod Bay, Vineyard Sound), although here, the same viral taxa were found at multiple sites. This study demonstrates that marine cyanophages display striking seasonal and spatial biogeographic patterns.

  15. Biogeography of the leafhopper subfamily Stegelytrinae (Hemiptera: Cicadellidae), based on a cluster analysis of geographical distribution in areas of endemism combined with phylogeny of the subfamily%世界秀头叶蝉亚科生物地理学

    Institute of Scientific and Technical Information of China (English)

    魏琮; 程若琳; 张雅林

    2012-01-01

    Biogeography of the leafhopper subfamily Stegelytrinae Baker is studied based on an analysis of geographical distribution of this subfamily worldwide using a cluster analysis of the zoological distribution of areas of endemism as well as the phylogeny of representatives of this subfamily.Results show that the Stegelytrinae mainly occur in the Oriental Region and in the Mediterranean area of the Palaearctic Region,and this extends to the east side of both Wallace's and Weber's lines.Eleven areas of endemism of this subfamily are recognized.The proportions of endemic taxa in different areas of endemism are generally very high in comparison with other leafhopper groups,but distinct differences could be found among the different areas of endemism of Stegelytrinae.This subfamily is most intensively diversified in the Indochina Peninsula (INCN).This is the stegelytrine distribution center,having the highest biodiversity at both generic and species levels.The dendrogram of endemic areas of Stegelytrinae constructed using cluster analysis of the zoological distribution of Stegelytrinae at generic level shows the endemic areas of Stegelytrinae can be divided into 4 large groups.Relationships among different endemic areas of Stegelytrinae correspond largely to the geologic history of related areas,which indicates that the evolution and vicariance of this subfamily have been closely related to the history of continental drift and climate changes.It is deduced that the presumed monophyletic Stegelytrinae originated in the Oriental Region after North America had separated from Eurasia; this is the case in the monophyletic genera group which is supported by the lateral frontal sutures extending dorsally well beyond the corresponding ocellus.In addition,two expanding traces of the Stegelytrinae are presumed,which remain plausible explanations for the dispersal of Stegelytrinae:(1) New Guinea (and probably (+ Australia)) -Kalimantan-Sumatra-Malay Peninsula-Indochina Peninsula

  16. A MODIS-Based Robust Satellite Technique (RST for Timely Detection of Oil Spilled Areas

    Directory of Open Access Journals (Sweden)

    Teodosio Lacava

    2017-02-01

    Full Text Available Natural crude-oil seepages, together with the oil released into seawater as a consequence of oil exploration/production/transportation activities, and operational discharges from tankers (i.e., oil dumped during cleaning actions represent the main sources of sea oil pollution. Satellite remote sensing can be a useful tool for the management of such types of marine hazards, namely oil spills, mainly owing to the synoptic view and the good trade-off between spatial and temporal resolution, depending on the specific platform/sensor system used. In this paper, an innovative satellite-based technique for oil spill detection, based on the general robust satellite technique (RST approach, is presented. It exploits the multi-temporal analysis of data acquired in the visible channels of the Moderate Resolution Imaging Spectroradiometer (MODIS on board the Aqua satellite in order to automatically and quickly detect the presence of oil spills on the sea surface, with an attempt to minimize “false detections” caused by spurious effects associated with, for instance, cloud edges, sun/satellite geometries, sea currents, etc. The oil spill event that occurred in June 2007 off the south coast of Cyprus in the Mediterranean Sea has been considered as a test case. The resulting data, the reliability of which has been evaluated by both carrying out a confutation analysis and comparing them with those provided by the application of another independent MODIS-based method, showcase the potential of RST in identifying the presence of oil with a high level of accuracy.

  17. Volcview: A Web-Based Platform for Satellite Monitoring of Volcanic Activity and Eruption Response

    Science.gov (United States)

    Schneider, D. J.; Randall, M.; Parker, T.

    2014-12-01

    The U.S. Geological Survey (USGS), in cooperation with University and State partners, operates five volcano observatories that employ specialized software packages and computer systems to process and display real-time data coming from in-situ geophysical sensors and from near-real-time satellite sources. However, access to these systems both inside and from outside the observatory offices are limited in some cases by factors such as software cost, network security, and bandwidth. Thus, a variety of Internet-based tools have been developed by the USGS Volcano Science Center to: 1) Improve accessibility to data sources for staff scientists across volcano monitoring disciplines; 2) Allow access for observatory partners and for after-hours, on-call duty scientists; 3) Provide situational awareness for emergency managers and the general public. Herein we describe VolcView (volcview.wr.usgs.gov), a freely available, web-based platform for display and analysis of near-real-time satellite data. Initial geographic coverage is of the volcanoes in Alaska, the Russian Far East, and the Commonwealth of the Northern Mariana Islands. Coverage of other volcanoes in the United States will be added in the future. Near-real-time satellite data from NOAA, NASA and JMA satellite systems are processed to create image products for detection of elevated surface temperatures and volcanic ash and SO2 clouds. VolcView uses HTML5 and the canvas element to provide image overlays (volcano location and alert status, annotation, and location information) and image products that can be queried to provide data values, location and measurement capabilities. Use over the past year during the eruptions of Pavlof, Veniaminof, and Cleveland volcanoes in Alaska by the Alaska Volcano Observatory, the National Weather Service, and the U.S. Air Force has reinforced the utility of shared situational awareness and has guided further development. These include overlay of volcanic cloud trajectory and

  18. Formulation of geopotential difference determination using optical-atomic clocks onboard satellites and on ground based on Doppler cancellation system

    Science.gov (United States)

    Shen, Ziyu; Shen, Wen-Bin; Zhang, Shuangxi

    2016-08-01

    In this study, we propose an approach for determining the geopotential difference using high-frequency-stability microwave links between satellite and ground station based on Doppler cancellation system. Suppose a satellite and a ground station are equipped with precise optical-atomic clocks (OACs) and oscillators. The ground oscillator emits a signal with frequency fa towards the satellite and the satellite receiver (connected with the satellite oscillator) receives this signal with frequency fb which contains the gravitational frequency shift effect and other signals and noises. After receiving this signal, the satellite oscillator transmits and emits, respectively, two signals with frequencies fb and fc towards the ground station. Via Doppler cancellation technique, the geopotential difference between the satellite and the ground station can be determined based on gravitational frequency shift equation by a combination of these three frequencies. For arbitrary two stations on ground, based on similar procedures as described above, we may determine the geopotential difference between these two stations via a satellite. Our analysis shows that the accuracy can reach 1 m2 s- 2 based on the clocks' inaccuracy of about 10-17 (s s-1) level. Since OACs with instability around 10-18 in several hours and inaccuracy around 10-18 level have been generated in laboratory, the proposed approach may have prospective applications in geoscience, and especially, based on this approach a unified world height system could be realized with one-centimetre level accuracy in the near future.

  19. Satellite-based RAR performance simulation for measuring directional ocean wave spectrum based on SAR inversion spectrum

    Institute of Scientific and Technical Information of China (English)

    REN Lin; MAO Zhihua; HUANG Haiqing; GONG Fang

    2010-01-01

    Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence. Both them have their own advantages and limitations. Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future. For this study, the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum. The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified. To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR, the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system. In the process of simulation, the sea surface, backscattering signal, modulation spectrum and the estimated wave height spectrum are simulated in each look direction. Directional wave spectrum are measured based on the simulated observations from 0° to 360~. From the estimated wave spectrum, it has an 180° ambiguity like SAR, but it has no special high wave number cut off in all the direction. Finally, the estimated spectrum is compared with the input one in terms of the dominant wave wavelength, direction and SWH and the results are promising. The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties. Moreover, it indicates satellite-based RAR basically can measure waves that SAR can measure.

  20. BeiDou satellite's differential code biases estimation based on uncombined precise point positioning with triple-frequency observable

    Science.gov (United States)

    Fan, Lei; Li, Min; Wang, Cheng; Shi, Chuang

    2017-02-01

    The differential code bias (DCB) of BeiDou satellite is an important topic to make better use of BeiDou system (BDS) for many practical applications. This paper proposes a new method to estimate the BDS satellite DCBs based on triple-frequency uncombined precise point positioning (UPPP). A general model of both triple-frequency UPPP and Geometry-Free linear combination of Phase-Smoothed Range (GFPSR) is presented, in which, the ionospheric observable and the combination of triple-frequency satellite and receiver DCBs (TF-SRDCBs) are derived. Then the satellite and receiver DCBs (SRDCBs) are estimated together with the ionospheric delay that is modeled at each individual station in a weighted least-squares estimator, and the satellite DCBs are determined by introducing the zero-mean condition of all available BDS satellites. To validate the new method, 90 day's real tracking GNSS data (from January to March in 2014) collected from 9 Multi-GNSS Experiment (MGEX) stations (equipped with Trimble NETR9 receiver) is used, and the BDS satellite DCB products from German Aerospace Center (DLR) are taken as reference values for comparison. Results show that the proposed method is able to precisely estimate BDS satellite DCBs: (1) the mean value of the day-to-day scattering for all available BDS satellites is about 0.24 ns, which is reduced in average by 23% when compared with the results derived by only GFPSR. Moreover, the mean value of the day-to-day scattering of IGSO satellites is lower than that of GEO and MEO satellites; (2) the mean value of RMS of the difference with respect to DLR DCB products is about 0.39 ns, which is improved by an average of 11% when compared with the results derived by only GFPSR. Besides, the RMS of IGSO and MEO satellites is at the same level which is better than that of GEO satellites.

  1. Multiangle Bistatic SAR Imaging and Fusion Based on BeiDou-2 Navigation Satellite System

    Directory of Open Access Journals (Sweden)

    Zeng Tao

    2015-01-01

    Full Text Available Bistatic Synthetic Aperture Radar (BSAR based on the Global Navigation Service System (GNSSBSAR uses navigation satellites as radar transmitters, which are low in cost. However, GNSS-BSAR images have poor resolution and low Signal-to-Noise Ratios (SNR. In this paper, a multiangle observation and data processing strategy are presented based on BeiDou-2 navigation satellite imagery, from which twenty-six BSAR images in different configurations are obtained. A region-based fusion algorithm using region of interest segmentation is proposed, and a high-quality fusion image is obtained. The results reveal that the multiangle imaging method can extend the applications of GNSS-BSAR.

  2. Satellite-based phenology detection in broadleaf forests in South-Western Germany

    Science.gov (United States)

    Misra, Gourav; Buras, Allan; Menzel, Annette

    2016-04-01

    Many techniques exist for extracting phenological information from time series of satellite data. However, there have been only a few successful attempts to temporarily match satellite-derived observations with ground based phenological observations (Fisher et al., 2006; Hamunyela et al., 2013; Galiano et al., 2015). Such studies are primarily plagued with problems relating to shorter time series of satellite data including spatial and temporal resolution issues. A great challenge is to correlate spatially continuous and pixel-based satellite information with spatially discontinuous and point-based, mostly species-specific, ground observations of phenology. Moreover, the minute differences in phenology observed by ground volunteers might not be sufficient to produce changes in satellite-measured reflectance of vegetation, which also exposes the difference in the definitions of phenology (Badeck et al., 2004; White et al., 2014). In this study Start of Season (SOS) was determined for broadleaf forests at a site in south-western Germany using MODIS-sensor time series of Normalised Difference Vegetation Index (NDVI) data for the years covering 2001 to 2013. The NDVI time series raster data was masked for broadleaf forests using Corine Land Cover dataset, filtered and corrected for snow and cloud contaminations, smoothed with a Gaussian filter and interpolated to daily values. Several SOS techniques cited in literature, namely thresholds of amplitudes (20%, 50%, 60% and 75%), rates of change (1st, 2nd and 3rd derivative) and delayed moving average (DMA) were tested for determination of satellite SOS. The different satellite SOS were then compared with a species-rich ground based phenology information (e.g. understory leaf unfolding, broad leaf unfolding and greening of evergreen tree species). Working with all the pixels at a finer resolution, it is seen that the temporal trends in understory and broad leaf species are well captured. Initial analyses show promising

  3. Integration between terrestrial-based and satellite-based land mobile communications systems

    Science.gov (United States)

    Arcidiancono, Antonio

    A survey is given of several approaches to improving the performance and marketability of mobile satellite systems (MSS). The provision of voice/data services in the future regional European Land Mobile Satellite System (LMSS), network integration between the Digital Cellular Mobile System (GSM) and LMSS, the identification of critical areas for the implementation of integrated GSM/LMSS areas, space segment scenarios, LMSS for digital trunked private mobile radio (PMR) services, and code division multiple access (CDMA) techniques for a terrestrial/satellite system are covered.

  4. Integration between terrestrial-based and satellite-based land mobile communications systems

    Science.gov (United States)

    Arcidiancono, Antonio

    1990-01-01

    A survey is given of several approaches to improving the performance and marketability of mobile satellite systems (MSS). The provision of voice/data services in the future regional European Land Mobile Satellite System (LMSS), network integration between the Digital Cellular Mobile System (GSM) and LMSS, the identification of critical areas for the implementation of integrated GSM/LMSS areas, space segment scenarios, LMSS for digital trunked private mobile radio (PMR) services, and code division multiple access (CDMA) techniques for a terrestrial/satellite system are covered.

  5. Developing a sustainable satellite-based environmental monitoring system In Nigeria

    Science.gov (United States)

    Akinyede, J. O.; Adepoju, K. A.; Akinluyi, F. O.; Anifowose, A. Y. B.

    2015-10-01

    Increased anthropogenic activities over the year have remained a major factor of the Earth changing environment. This phenomenon has given rise to a number of environmental degraded sites that characterize the Nigeria's landscape. The human-induced elements include gully erosion, mangrove ecosystems degradation, desertification and deforestation, particularly in the south east, Niger Delta, north east and south west of Nigeria respectively, as well as river flooding/flood plain inundation and land degradation around Kainji lake area. Because of little or no effective management measures, the attendant environmental hazards have been extremely damaging to the infrastructures and socio-economic development of the affected area. Hence, a concerted effort, through integrated and space-based research, is being intensified to manage and monitor the environment in order to restore the stability, goods and services of the environment. This has justified Nigeria's investment in its space programme, especially the launch of NigeriaSat-1, an Earth observation micro-satellite in constellation with five (5) other similar satellites, Alsat-1, China DMC, Bilsat-1, DEMOS and UK DMC belonging to Algeria, China, Turkey, Spain and United Kingdom respectively. The use of data from these satellites, particularly NigeriaSat-1, in conjunction with associated technologies has proved to be very useful in understanding the influence of both natural and human activities on the Nigeria's ecosystems and environment. The results of some researches on specific applications of Nigerian satellites are presented in this paper. Appropriate sustainable land and water resources management in the affected areas, based on Nigeria's satellite data capture and integration, are also discussed.

  6. A Space Weather Forecasting System with Multiple Satellites Based on a Self-Recognizing Network

    Directory of Open Access Journals (Sweden)

    Masahiro Tokumitsu

    2014-05-01

    Full Text Available This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV. The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  7. Sensitivity of Distributed Hydrologic Simulations to Ground and Satellite Based Rainfall Products

    Directory of Open Access Journals (Sweden)

    Singaiah Chintalapudi

    2014-05-01

    Full Text Available In this study, seven precipitation products (rain gauges, NEXRAD MPE, PERSIANN 0.25 degree, PERSIANN CCS-3hr, PERSIANN CCS-1hr, TRMM 3B42V7, and CMORPH were used to force a physically-based distributed hydrologic model. The model was driven by these products to simulate the hydrologic response of a 1232 km2 watershed in the Guadalupe River basin, Texas. Storm events in 2007 were used to analyze the precipitation products. Comparison with rain gauge observations reveals that there were significant biases in the satellite rainfall products and large variations in the estimated amounts. The radar basin average precipitation compared very well with the rain gauge product while the gauge-adjusted TRMM 3B42V7 precipitation compared best with observed rainfall among all satellite precipitation products. The NEXRAD MPE simulated streamflows matched the observed ones the best yielding the highest Nash-Sutcliffe Efficiency correlation coefficient values for both the July and August 2007 events. Simulations driven by TRMM 3B42V7 matched the observed streamflow better than other satellite products for both events. The PERSIANN coarse resolution product yielded better runoff results than the higher resolution product. The study reveals that satellite rainfall products are viable alternatives when rain gauge or ground radar observations are sparse or non-existent.

  8. A space weather forecasting system with multiple satellites based on a self-recognizing network.

    Science.gov (United States)

    Tokumitsu, Masahiro; Ishida, Yoshiteru

    2014-05-05

    This paper proposes a space weather forecasting system at geostationary orbit for high-energy electron flux (>2 MeV). The forecasting model involves multiple sensors on multiple satellites. The sensors interconnect and evaluate each other to predict future conditions at geostationary orbit. The proposed forecasting model is constructed using a dynamic relational network for sensor diagnosis and event monitoring. The sensors of the proposed model are located at different positions in space. The satellites for solar monitoring equip with monitoring devices for the interplanetary magnetic field and solar wind speed. The satellites orbit near the Earth monitoring high-energy electron flux. We investigate forecasting for typical two examples by comparing the performance of two models with different numbers of sensors. We demonstrate the prediction by the proposed model against coronal mass ejections and a coronal hole. This paper aims to investigate a possibility of space weather forecasting based on the satellite network with in-situ sensing.

  9. Detecting aircrafts from satellite images using saliency and conical pyramid based template representation

    Indian Academy of Sciences (India)

    SAMIK BANERJEE; NITIN GUPTA; SUKHENDU DAS; PINAKI ROY CHOWDHURY; L K SINHA

    2016-10-01

    Automatic target localization in satellite images still remains as a challenging problem in the field of computer vision. The issues involved in locating targets in satellite images are viewpoint, spectral (intensity) and scale variations. Diversity in background texture and target clutter also adds up to the complexity of the problem of localizing aircrafts in satellite images. Failure of modern feature extraction and object detection methods highlight the complexity of the problem. In the proposed work, pre-processing techniques, viz.denoising and contrast enhancement, are first used to improve the quality of the images. Then, the concept of unsupervised saliency is used to detect the potential regions of interest, which reduces the search space. Parts from the salient regions are further processed using clustering and morphological processing to get the probable regions of isolated aircraft targets. Finally, a novel conical pyramid based framework for template representation of the target samples is proposed for matching. Experimental results shown on a few satellite images exhibit the superior performance of the proposed methods.

  10. Constellation design for earth observation based on the characteristics of the satellite ground track

    Science.gov (United States)

    Luo, Xin; Wang, Maocai; Dai, Guangming; Song, Zhiming

    2017-04-01

    This paper responds to the increasing need for Earth observation missions and deals with the design of Repeating Sun-Synchronous Constellations (RSSCs) which takes into consideration of constellations composed of one or more orbital planes. Based on the mature design approach of Repeating Sun-synchronous orbits, a novel technique to design RSSCs is presented, which takes the second gravitational zonal harmonic into consideration. In order to obtain regular cycles of observation of the Earth by a single satellite, the orbital relationships have to be satisfied firstly are illustrated. Then, by making full analyses of the characteristics of the satellite ground track, orbital parameters are properly calculated to make other satellites pass on the same or different ground track of the single satellite. Last, single-plane or multi-plane constellations are used to improve the repetitions of the observation and the ground resolution. RSSCs allow observing the same region once at the same local time in a solar day and several times at the different local time in a solar day. Therefore, this kind of constellations meets all requirements for the remote sensing applications, which need to observe the same region under the same or different visible conditions. Through various case studies, the calculation technique is successfully demonstrated.

  11. Evaluation of satellite based indices for primary production estimates in a sparse savanna in the Sudan

    Directory of Open Access Journals (Sweden)

    M. Sjöström

    2008-07-01

    Full Text Available One of the more frequently applied methods for integrating controls on primary production through satellite data is the Light Use Efficiency (LUE approach. Satellite indices such as the Enhanced Vegetation Index (EVI and the Shortwave Infrared Water Stress Index (SIWSI have previously shown promise as predictors of primary production in several different environments. In this study, we evaluate EVI and SIWSI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS satellite sensor against in-situ measurements from central Sudan in order to asses their applicability in LUE-based primary production modelling within a water limited environment. Results show a strong correlation between EVI against gross primary production (GPP, demonstrating the significance of EVI for deriving information on primary production with relatively high accuracy at similar areas. Evaluation of SIWSI however, reveal that the fraction of vegetation apparently is to low for the index to provide accurate information on canopy water content, indicating that the use of SIWSI as a predictor of water stress in satellite data-driven primary production modelling in similar semi-arid ecosystems is limited.

  12. Assessing satellite AOD based and WRF/CMAQ output PM2.5 estimators

    Science.gov (United States)

    Cordero, Lina; Wu, Yonghua; Gross, Barry M.; Moshary, Fred

    2013-05-01

    Fine particulate matter measurements (PM2.5) are essential for air quality monitoring and related public health; however, the shortage of reliable measurmennts constrains researchers to use other means for obtaining reliable estimates over large scales. In particular, model forecasters and satellite community use their respective products to develop ground particulate matter estimations but few experiments have explored how the remote sensing approaches compare to the high resolution models. . In this paper we focus on studying the performance of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Geostationary Operational Environmental Satellites (GOES) regression based estimates in comparison to more direct bias corrected outputs from the Community Multiscale Air Quality (CMAQ) model, We use a two-year dataset (2005-2006) and apply urban, season and hour filters to illustrate the agreement between estimated and in-situ measured fine particulate matter from the New York State Department of Environmental Conservation (NYSDEC). We first begin by analyzing the correspondence between ground aerosol optical depth (AOD) measurements from an AERONET (AErosol RObotic NETwork) Cimel sun/sky radiometer with both satellite and model products in one urban location; we show that satellite readings perform better than model outputs, especially during the summer (RMODIS>=0.65, RCMAQ>=0.37). This is a clear symptom of the difficulty in the models to properly model realistic optical properties. We then turn to a direct assessment of PM2.5 presenting individual comparisons between ground PM2.5 measurements with satellite/model predictions and demonstrate the higher accuracy from model estimations (RurbanMODIS >= 0.74, RurbanCMAQ >= 0.77; Rnon-urbanMODIS >= 0.48, Rnon-urbanCMAQ >= 0.78). In general, we find that the bias corrected CMAQ estimates are superior to satellite based estimators except at very high resolution. Finally, we show that when using both model and

  13. DroughtView: Satellite Based Drought Monitoring and Assessment

    Science.gov (United States)

    Hartfield, K. A.; Van Leeuwen, W. J. D.; Crimmins, M.; Marsh, S. E.; Torrey, Y.; Rahr, M.; Orr, B. J.

    2014-12-01

    Drought is an ever growing concern within the United States and Mexico. Extended periods of below-average precipitation can adversely affect agricultural production and ecosystems, impact local water resources and create conditions prime for wildfire. DroughtView (www.droughtview.arizona.edu) is a new on-line resource for scientists, natural resource managers, and the public that brings a new perspective to remote-sensing based drought impact assessment that is not currently available. DroughtView allows users to monitor the impact of drought on vegetation cover for the entire continental United States and the northern regions of Mexico. As a spatially and temporally dynamic geospatial decision support tool, DroughtView is an excellent educational introduction to the relationship between remotely sensed vegetation condition and drought. The system serves up Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) data generated from 250 meter 16-day composite Moderate-resolution Imaging Spectroradiometer (MODIS) imagery from 2000 to the present. Calculation of difference from average, previous period and previous year greenness products provide the user with a proxy for drought conditions and insight on the secondary impacts of drought, such as wildfire. The various image products and overlays are served up via the ArcGIS Server platform. DroughtView serves as a useful tool to introduce and teach vegetation time series analysis to those unfamiliar with the science. High spatial resolution imagery is available as a reference layer to locate points of interest, zoom in and export images for implementation in reports and presentations. Animation of vegetation time series allows users to examine ecosystem disturbances and climate data is also available to examine the relationship between precipitation, temperature and vegetation. The tool is mobile friendly allowing users to access the system while in the field. The systems capabilities and

  14. A Positioning System based on Communication Satellites and the Chinese Area Positioning System (CAPS)

    Science.gov (United States)

    Ai, Guo-Xiang; Shi, Hu-Li; Wu, Hai-Tao; Yan, Yi-Hua; Bian, Yu-Jing; Hu, Yong-Hui; Li, Zhi-Gang; Guo, Ji; Xian-DeCai

    2008-12-01

    The Chinese Area Positioning System (CAPS) is a positioning system based on satellite communication that is fundamentally different from the 3``G'' (GPS, GLONASS and GALILEO) systems. The latter use special-purpose navigation satellites to broadcast navigation information generated on-board to users, while the CAPS transfers ground-generated navigation information to users via the communication satellite. In order to achieve accurate Positioning, Velocity and Time (PVT), the CAPS employs the following strategies to overcome the three main obstacles caused by using the communication satellite: (a) by real-time following-up frequency stabilization to achieve stable frequency; (b) by using a single carrier in the transponder with 36 MHz band-width to gain sufficient power; (c) by incorporating Decommissioned Geostationary Orbit communication satellite (DGEO), barometric pressure and Inclined Geostationary Orbit communication satellite (IGSO) to achieve the 3-D positioning. Furthermore, the abundant transponders available on DGEO can be used to realize the large capacity of communication as well as the integrated navigation and communication. With the communication functions incorporated, five new functions appear in the CAPS: (1) combination of navigation and communication; (2) combination of navigation and high accuracy orbit measurement; (3) combination of navigation message and wide/local area differential processing; (4) combination of the switching of satellites, frequencies and codes; and (5) combination of the navigation message and the barometric altimetry. The CAPS is thereby labelled a PVT5C system of high accuracy. In order to validate the working principle and the performance of the CAPS, a trial system was established in the course of two years at a cost of about 20 million dollars. The trial constellation consists of two GEO satellites located at E87.5° and E110.5°, two DGEOs located at E130° and E142°, as well as barometric altimetry as a virtual

  15. A Positioning System based on Communication Satellites and the Chinese Area Positioning System (CAPS)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Chinese Area Positioning System (CAPS) is a positioning system based on satellite communication that is fundamentally different from the 3"G" (GPS, GLONASS and GALILEO) systems. The latter use special-purpose navigation satellites to broadcast navi-gation information generated on-board to users, while the CAPS transfers ground-generated navigation information to users via the communication satellite. In order to achieve accurate Positioning, Velocity and Time (PVT), the CAPS employs the following strategies to over-come the three main obstacles caused by using the communication satellite: (a) by real-time following-up frequency stabilization to achieve stable frequency; (b) by using a single carrier in the transponder with 36 MHz band-width to gain sufficient power; (c) by incorporating Decommissioned Geostationary Orbit communication satellite (DGEO), barometric pressure and Inclined Geostationary Orbit communication satellite (IGSO) to achieve the 3-D posi-tioning. Furthermore, the abundant transponders available on DGEO can be used to realize the large capacity of communication as well as the integrated navigation and communication. With the communication functions incorporated, five new functions appear in the CAPS: (1) combination of navigation and communication; (2) combination of navigation and high accu-racy orbit measurement; (3) combination of navigation message and wide/local area differen-tial processing; (4) combination of the switching of satellites, frequencies and codes; and (5) combination of the navigation message and the barometric altimetry. The CAPS is thereby labelled a PVT5C system of high accuracy. In order to validate the working principle and the performance of the CAPS, a trial system was established in the course of two years at a cost of about 20 million dollars. The trial constellation consists of two GEO satellites located at E87.5°and E110.5°, two DGEOs located at E130° and E142°, as well as barometric altimetry as a virtual

  16. Satellite-based climate information within the WMO RA VI Regional Climate Centre on Climate Monitoring

    Science.gov (United States)

    Obregón, A.; Nitsche, H.; Körber, M.; Kreis, A.; Bissolli, P.; Friedrich, K.; Rösner, S.

    2014-05-01

    The World Meteorological Organization (WMO) established Regional Climate Centres (RCCs) around the world to create science-based climate information on a regional scale within the Global Framework for Climate Services (GFCS). The paper introduces the satellite component of the WMO Regional Climate Centre on Climate Monitoring (RCC-CM) for Europe and the Middle East. The RCC-CM product portfolio is based on essential climate variables (ECVs) as defined by the Global Climate Observing System (GCOS), spanning the atmospheric (radiation, clouds, water vapour) and terrestrial domains (snow cover, soil moisture). In the first part, the input data sets are briefly described, which are provided by the EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) Satellite Application Facilities (SAF), in particular CM SAF, and by the ESA (European Space Agency) Climate Change Initiative (CCI). In the second part, the derived RCC-CM products are presented, which are divided into two groups: (i) operational monitoring products (e.g. monthly means and anomalies) based on near-real-time environmental data records (EDRs) and (ii) climate information records (e.g. climatologies, time series, trend maps) based on long-term thematic climate data records (TCDRs) with adequate stability, accuracy and homogeneity. The products are provided as maps, statistical plots and gridded data, which are made available through the RCC-CM website (www.dwd.de/rcc-cm).

  17. Satellite-based monitoring of particulate matter pollution at very high resolution: the HOTBAR method

    Science.gov (United States)

    Wilson, Robin; Milton, Edward; Nield, Joanna

    2016-04-01

    Particulate matter air pollution is a major health risk, and is responsible for millions of premature deaths each year. Concentrations tend to be highest in urban areas - particularly in the mega-cities of rapidly industrialising countries, where there are limited ground monitoring networks. Satellite-based monitoring has been used for many years to assess regional-scale trends in air quality, but currently available satellite products produce data at 1-10km resolution: too coarse to discern the small-scale patterns of sources and sinks seen in urban areas. Higher-resolution satellite products are required to provide accurate assessments of particulate matter concentrations in these areas, and to allow analysis of localised air quality effects on health. The Haze Optimized Transform-based Aerosol Retrieval (HOTBAR) method is a novel method which provides estimates of PM2.5 concentrations from high-resolution (approximately 30m) satellite imagery. This method is designed to work over a wide range of land covers and performs well over the complex land-cover mosaic found in urban areas. It requires only standard visible and near-infrared data, making it applicable to a range of data from sensors such as Landsat, SPOT and Sentinel-2. The method is based upon an extension of the Haze Optimized Transform (HOT), which was originally designed for assessing areas of thick haze in satellite imagery. This was done by calculating a 'haziness' value for each pixel in an image as the distance from a 'Clear Line' in feature space, defined by the high correlation between visible bands. Here, we adapt the HOT method and use it to estimate Aerosol Optical Thickness (a measure of the column-integrated haziness of the atmosphere) instead, from which PM2.5 concentrations can then be estimated. Significant extensions to the original HOT method include Monte Carlo estimation of the 'Clear Line', object-based correction for land cover, and estimation of AOT from the haziness values

  18. Massive information sharing among global data centers based on satellite laser communication

    Science.gov (United States)

    Yi, Longteng; Li, Cong; Liu, Naijin

    2015-10-01

    With the development of big data and information globalization, the requirements of massive information transmitting and sharing among data centers are expanding, especially among those data centers which are extremely far away from each other. In the above field, conventional optical fiber transmission faces many problems such as complex networking, poor security, long node switching delay, high lease and maintain cost and low migration flexibility. Besides, in the near future, data centers may tend to be built in the remote Polar Regions or on the sea for natural cooling. For the above situation, sharing the massive information among global data centers based on satellite laser communication is proposed in this paper. This proposal includes advantage analysis, research of restraining atmosphere interference, etc. At last, by comparison with conventional technology, the research result shows that massive information transmitting and sharing among global data centers based on satellite laser communication has far reaching application potential.

  19. Error analysis for satellite gravity field determination based on two-dimensional Fourier methods

    CERN Document Server

    Cai, Lin; Hsu, Houtse; Gao, Fang; Zhu, Zhu; Luo, Jun

    2012-01-01

    The time-wise and space-wise approaches are generally applied to data processing and error analysis for satellite gravimetry missions. But both the approaches, which are based on least-squares collocation, address the whole effect of measurement errors and estimate the resolution of gravity field models mainly from a numerical point of indirect view. Moreover, requirement for higher accuracy and resolution gravity field models could make the computation more difficult, and serious numerical instabilities arise. In order to overcome the problems, this study focuses on constructing a direct relationship between power spectral density of the satellite gravimetry measurements and coefficients of the Earth's gravity potential. Based on two-dimensional Fourier transform, the relationship is analytically concluded. By taking advantage of the analytical expression, it is efficient and distinct for parameter estimation and error analysis of missions. From the relationship and the simulations, it is analytically confir...

  20. A MEMS-based Adaptive AHRS for Marine Satellite Tracking Antenna

    DEFF Research Database (Denmark)

    Wang, Yunlong; Hussain, Dil Muhammed Akbar; Soltani, Mohsen

    2015-01-01

    Satellite tracking is a challenging task for marine applications. An attitude determination system should estimate the wave disturbances on the ship body accurately. To achieve this, an Attitude Heading Reference System (AHRS) based on Micro-Electro-Mechanical Systems (MEMS) sensors, composed...... of three-axis gyroscope, accelerometer and magnetometer, is developed for Marine Satellite Tracking Antenna (MSTA). In this paper, the attitude determination algorithm is improved using an adaptive mechanism that tunes the attitude estimator parameters based on an estimation of ship motion frequency....... In order to get fast running cycle frequency of attitude estimator, Kalman filter is simplified to reduce calculation burden together with other improvemetns. An Immersion and Invariance (I\\&I) frequency estimator is designed using Lyapunov theory to estimate the ship motion frequency. The estimated...

  1. Study on TT&C resources scheduling technique based on inter-satellite link

    Science.gov (United States)

    Gu, Xiaosong; Bai, Jian; Zhang, Chunze; Gao, Huili

    2014-11-01

    The navigation constellation will have the capability of supporting Tracking Telemetry and Command (TT&C) operations by inter-satellite link (ISL). The ISL will become an important solution to reduce the shortage of ground TT&C resources. The problems need to be studied urgently in the field of space TT&C network resources scheduling management are how to determine the availability of ISL and how to allocate TT&C resources of ISL. The performance and scheduling constraints of navigation constellation's ISL are analyzed, and three utilization strategies of ISL to perform TT&C operations are proposed. The allocation of TT&C resources based on ISL falls into two successive phases. Firstly, master satellite determination equation is established by using 0-1 Programming model based on the availability matrix. Mathematical method is used to solve the equation to determine the master satellite and the topology of ISL. Secondly, Constraint Programming (CP) model is used to describe the ground TT&C resources scheduling problem with special requirements of TT&C operations based on master satellite, and a heuristic algorithm is designed to solve the CP model. The equations and algorithm are verified by simulation examples. The algorithm of TT&C resources scheduling based on ISL has realized the synthesized usage of both the ISL and ground resources on TT&C field. This algorithm can improve TT&C supports of territorial ground TT&C network for global navigation constellation, and provides technical reference for the TT&C mission planning of global constellation by using ISL.

  2. Environmental evaluation of the forest of Mt. Fuji, based on multiple satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Shiosaka, K.; Konta, F.; Nishikawa, H. (The Inst. of Regional Environ. Planning, Shizuoka (Japan) Shizuoka Univ., Shizuoka (Japan) Nippon Univ., Narashino (Japan))

    1994-03-01

    Evaluation of environmental roles of the forest of Mt. Fuji and estimation of deposition of sulfur dioxide on the leaves of Japanese cypress (Chamaecyparis obtusa) were done based on satellite data. The evaluation suggests that artificial Japanese cypress forests, which occupy the largest area among vegetations of Mt. Fuji, have problems concerning environmental role of storing of soil water, and that the result of the estimation indicates an uneven distribution of sulfur dioxide deposition.

  3. Environmental evaluation of the forest of MT Fuji, based on multiple satellite data

    Science.gov (United States)

    Shiosaka, K.; Konta, F.; Nishikawa, H.

    1994-03-01

    Evaluation of environmental roles of the forest of Mt. Fuji and estimation of deposition of sulfur dioxide on the leaves of Japanese cypress (Chamaecyparis obtusa) weere done based on satellite data. The evaluation suggests that artificial Japanese cypress forests, which occupy the largest area among vegetations of Mt. Fuji have problems concerning environmental role of storing of soil water, and that the result of the estimation indicates an uneven distribution of sulfur dioxide deposition.

  4. Satellite-based assessment of climate controls on US burned area

    OpenAIRE

    D. C. Morton; G. J. Collatz; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

    2013-01-01

    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate–fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burne...

  5. Method for validating cloud mask obtained from satellite measurements using ground-based sky camera.

    Science.gov (United States)

    Letu, Husi; Nagao, Takashi M; Nakajima, Takashi Y; Matsumae, Yoshiaki

    2014-11-01

    Error propagation in Earth's atmospheric, oceanic, and land surface parameters of the satellite products caused by misclassification of the cloud mask is a critical issue for improving the accuracy of satellite products. Thus, characterizing the accuracy of the cloud mask is important for investigating the influence of the cloud mask on satellite products. In this study, we proposed a method for validating multiwavelength satellite data derived cloud masks using ground-based sky camera (GSC) data. First, a cloud cover algorithm for GSC data has been developed using sky index and bright index. Then, Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data derived cloud masks by two cloud-screening algorithms (i.e., MOD35 and CLAUDIA) were validated using the GSC cloud mask. The results indicate that MOD35 is likely to classify ambiguous pixels as "cloudy," whereas CLAUDIA is likely to classify them as "clear." Furthermore, the influence of error propagations caused by misclassification of the MOD35 and CLAUDIA cloud masks on MODIS derived reflectance, brightness temperature, and normalized difference vegetation index (NDVI) in clear and cloudy pixels was investigated using sky camera data. It shows that the influence of the error propagation by the MOD35 cloud mask on the MODIS derived monthly mean reflectance, brightness temperature, and NDVI for clear pixels is significantly smaller than for the CLAUDIA cloud mask; the influence of the error propagation by the CLAUDIA cloud mask on MODIS derived monthly mean cloud products for cloudy pixels is significantly smaller than that by the MOD35 cloud mask.

  6. A New Algorithm for the Satellite-Based Retrieval of Solar Surface Irradiance in Spectral Bands

    Directory of Open Access Journals (Sweden)

    Annette Hammer

    2012-03-01

    Full Text Available Accurate solar surface irradiance data is a prerequisite for an efficient planning and operation of solar energy systems. Further, it is essential for climate monitoring and analysis. Recently, the demand on information about spectrally resolved solar surface irradiance has grown. As surface measurements are rare, satellite derived information with high accuracy might fill this gap. This paper describes a new approach for the retrieval of spectrally resolved solar surface irradiance from satellite data. The method combines a eigenvector-hybrid look-up table approach for the clear sky case with satellite derived cloud transmission (Heliosat method. The eigenvector LUT approach is already used to retrieve the broadband solar surface irradiance of data sets provided by the Climate Monitoring Satellite Application Facility (CM-SAF. This paper describes the extension of this approach to wavelength bands and the combination with spectrally resolved cloud transmission values derived with radiative transfer corrections of the broadband cloud transmission. Thus, the new approach is based on radiative transfer modeling and enables the use of extended information about the atmospheric state, among others, to resolve the effect of water vapor and ozone absorption bands. The method is validated with spectrally resolved measurements from two sites in Europe and by comparison with radiative transfer calculations. The validation results demonstrate the ability of the method to retrieve accurate spectrally resolved irradiance from satellites. The accuracy is in the range of the uncertainty of surface measurements, with exception of the UV and NIR ( ≥ 1200 nm part of the spectrum, where higher deviations occur.

  7. Countryside biogeography of Neotropical reptiles and amphibians.

    Science.gov (United States)

    Mendenhall, Chase D; Frishkoff, Luke O; Santos-Barrera, Georgina; Pacheco, Jesús; Mesfun, Eyobed; Mendoza Quijano, Fernando; Ehrlich, Paul R; Ceballos, Gerardo; Daily, Gretchen C; Pringle, Robert M

    2014-04-01

    The future of biodiversity and ecosystem services depends largely on the capacity of human-dominated ecosystems to support them, yet this capacity remains largely unknown. Using the framework of countryside biogeography, and working in the Las Cruces system of Coto Brus, Costa Rica, we assessed reptile and amphibian assemblages within four habitats that typify much of the Neotropics: sun coffee plantations (12 sites), pasture (12 sites), remnant forest elements (12 sites), and a larger, contiguous protected forest (3 sites in one forest). Through analysis of 1678 captures of 67 species, we draw four primary conclusions. First, we found that the majority of reptile (60%) and amphibian (70%) species in this study used an array of habitat types, including coffee plantations and actively grazed pastures. Second, we found that coffee plantations and pastures hosted rich, albeit different and less dense, reptile and amphibian biodiversity relative to the 326-ha Las Cruces Forest Reserve and neighboring forest elements. Third, we found that the small ribbons of "countryside forest elements" weaving through farmland collectively increased the effective size of a 326-ha local forest reserve 16-fold for reptiles and 14-fold for amphibians within our 236-km2 study area. Therefore, countryside forest elements, often too small for most remote sensing techniques to identify, are contributing -95% of the available habitat for forest-dependent reptiles and amphibians in our largely human-dominated study region. Fourth, we found large and pond-reproducing amphibians to prefer human-made habitats, whereas small, stream-reproducing, and directly developing species are more dependent on forest elements. Our investigation demonstrates that tropical farming landscapes can support substantial reptile and amphibian biodiversity. Our approach provides a framework for estimating the conservation value of the complex working landscapes that constitute roughly half of the global land surface

  8. An emission source inversion model based on satellite data and its application in air quality forecasts

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper aims at constructing an emission source inversion model using a variational processing method and adaptive nudging scheme for the Community Multiscale Air Quality Model (CMAQ) based on satellite data to investigate the applicability of high resolution OMI (Ozone Monitoring Instrument) column concentration data for air quality forecasts over the North China. The results show a reasonable consistency and good correlation between the spatial distributions of NO2 from surface and OMI satellite measurements in both winter and summer. Such OMI products may be used to implement integrated variational analysis based on observation data on the ground. With linear and variational corrections made, the spatial distribution of OMI NO2 clearly revealed more localized distributing characteristics of NO2 concentration. With such information, emission sources in the southwest and southeast of North China are found to have greater impacts on air quality in Beijing. When the retrieved emission source inventory based on high-resolution OMI NO2 data was used, the coupled Weather Research Forecasting CMAQ model (WRF-CMAQ) performed significantly better in forecasting NO2 concentration level and its tendency as reflected by the more consistencies between the NO2 concentrations from surface observation and model result. In conclusion, satellite data are particularly important for simulating NO2 concentrations on urban and street-block scale. High-resolution OMI NO2 data are applicable for inversing NOx emission source inventory, assessing the regional pollution status and pollution control strategy, and improving the model forecasting results on urban scale.

  9. BIOGEOGRAPHY. The dispersal of alien species redefines biogeography in the Anthropocene.

    Science.gov (United States)

    Capinha, César; Essl, Franz; Seebens, Hanno; Moser, Dietmar; Pereira, Henrique Miguel

    2015-06-12

    It has been argued that globalization in human-mediated dispersal of species breaks down biogeographic boundaries, yet empirical tests are still missing. We used data on native and alien ranges of terrestrial gastropods to analyze dissimilarities in species composition among 56 globally distributed regions. We found that native ranges confirm the traditional biogeographic realms, reflecting natural dispersal limitations. However, the distributions of gastropods after human transport are primarily explained by the prevailing climate and, to a smaller extent, by distance and trade relationships. Our findings show that human-mediated dispersal is causing a breakdown of biogeographic barriers, and that climate and to some extent socioeconomic relationships will define biogeography in an era of global change.

  10. Hydrography shapes bacterial biogeography of the deep Arctic Ocean.

    Science.gov (United States)

    Galand, Pierre E; Potvin, Marianne; Casamayor, Emilio O; Lovejoy, Connie

    2010-04-01

    It has been long debated as to whether marine microorganisms have a ubiquitous distribution or patterns of biogeography, but recently a consensus for the existence of microbial biogeography is emerging. However, the factors controlling the distribution of marine bacteria remain poorly understood. In this study, we combine pyrosequencing and traditional Sanger sequencing of the 16S rRNA gene to describe in detail bacterial communities from the deep Arctic Ocean. We targeted three separate water masses, from three oceanic basins and show that bacteria in the Arctic Ocean have a biogeography. The biogeographical distribution of bacteria was explained by the hydrography of the Arctic Ocean and subsequent circulation of its water masses. Overall, this first taxonomic description of deep Arctic bacteria communities revealed an abundant presence of SAR11 (Alphaproteobacteria), SAR406, SAR202 (Chloroflexi) and SAR324 (Deltaproteobacteria) clusters. Within each cluster, the abundance of specific phylotypes significantly varied among water masses. Water masses probably act as physical barriers limiting the dispersal and controlling the diversity of bacteria in the ocean. Consequently, marine microbial biogeography involves more than geographical distances, as it is also dynamically associated with oceanic processes. Our ocean scale study suggests that it is essential to consider the coupling between microbial and physical oceanography to fully understand the diversity and function of marine microbes.

  11. A Theory of Island Biogeography for Exotic Species.

    Science.gov (United States)

    Burns, Kevin C

    2015-10-01

    The theory of island biogeography has played a pivotal role in the way ecologists view communities. However, it does not account for exotic species explicitly, which limits its use as a conservation tool. Here, I present the results of a long-term study of plant communities inhabiting an archipelago of small islands off the coast of New Zealand and derive a modified version of the theory of island biogeography to predict differences in the turnover and diversity of native and exotic species. Empirical results showed that, although species richness of both native and exotic plant species increased with island area, native species consistently outnumbered exotic species. Species turnover increased with species richness in both groups. However, opposite to species-area patterns, turnover increased more rapidly with species richness in exotic species. Empirical results were consistent with the modified version of the theory of island biogeography, which distinguishes exotic species from native species by decoupling extinction rates of exotic species from island area, because they are represented by only small populations at the initial stages of invasion. Overall results illustrate how the theory of island biogeography can be modified to reflect the dynamics of exotic species as they invade archipelagos, expanding its use as a conservation tool.

  12. Biogeography and ecology of southern Portuguese butterflies and burnets (Lepidoptera)

    NARCIS (Netherlands)

    Schmitt, T.

    2003-01-01

    Biogeography and ecology of southern Portuguese butterflies and burnets (Lepidoptera) During several visits to the western part of the Algarve (southern Portugal), the author mapped the butterflies and burnets of this region. In total, I observed 58 butterfly species (51 Papilionoidea, 7 Hesperiidae

  13. Evaluation of a physically-based snow model with infrared and microwave satellite-derived estimates

    Science.gov (United States)

    Wang, L.

    2013-05-01

    Snow (with high albedo, as well as low roughness and thermal conductivity) has significant influence on the land-atmosphere interactions in the cold climate and regions of high elevation. The spatial and temporal variability of the snow distribution on a basin scale greatly determines the timing and magnitude of spring snowmelt runoff. For improved water resources management, a physically-based distributed snow model has been developed and applied to the upper Yellow River Basin to provide the outputs of snow variables as well as streamflows from 2001 to 2005. Remotely-sensed infrared information from MODIS satellites has been used to evaluate the model's outputs of spatially-distributed snow cover extent (SCE) and land surface temperature (LST); while the simulated snow depth (SD) and snow water equivalent (SWE) have been compared with the microwave information from SSM/I and AMSR-E satellites. In general, the simulated streamflows (including spring snowmelt) agree fairly well with the gauge-based observations; while the modeled snow variables show acceptable accuracies through comparing to various satellite-derived estimates from infrared or microwave information.;

  14. Satellite-advection based solar forecasting: lessons learned and progress towards probabalistic solar forecasting

    Science.gov (United States)

    Rogers, M. A.

    2015-12-01

    Using satellite observations from GOES-E and GOES-W platforms in concert with GFS-derived cloud-level winds and a standalone radiative transfer model, an advection-derived forecast for surface GHI over the continental United States, with intercomparison between forecasts for four zones over the CONUS and Central Pacific with SURFRAD results. Primary sources for error in advection-based forecasts, primarily driven by false- or mistimed ramp events are discussed, with identification of error sources quantified along with techniques used to improve advection-based forecasts to approximately 10% MAE for designated surface locations. Development of a blended steering wind product utilizing NWP output combined with satellite-derived winds from AMV techniques to improve 0-1 hour advection forecasts will be discussed. Additionally, the use of two years' of solar forecast observations in the development of a prototype probablistic forecast for ramp events will be shown, with the intent of increasing the use of satellite-derived forecasts for grid operators and optimizing integration of renewable resources into the power grid. Elements of the work were developed under the 'Public-Private-Academic Partnership to Advance Solar Power Forecasting' project spearheaded by the National Center for Atmospheric Research.

  15. Pc5 Oscillation Analysis by the Satellite and Ground-Based Data

    Institute of Scientific and Technical Information of China (English)

    A. Potapov; T. Polyushkina; T. L. Zhang; H. Zhao; A. Guglielmi; J. Kultima

    2005-01-01

    Large amplitude Pc5 event was observed in the space and on ground on August 3, 2001, about three hours after contact of the strong discontinuity in the solar wind with the magnetosphere according to data from ACE and Wind satellites. The Pc5 amplitude was as high as 15 nT in the tail of magnetosphere and about 5 nT at the ground based stations. In the magnetosphere Pc5 waves were observed by Cluster and Polar satellites, which occupied positions in the morning part of the near tail at the close field lines but were parted by distance of 11.5 Re, mainly along the x-axis of the GSM coordinate system. Both compressional and transverse components of the Pc5 wave activity were observed in the space, with the transverse component having the larger amplitude. Time delay between the Cluster and Polar satellites was about 8 minutes, which could be interpreted as a wave propagation from the geomagnetic tail to the Earth with the 150km/s group velocity.The ground-based Pc5 activity was analysed by using data from the Image magnetometer network. Doubtless demonstrations of a field line resonant structure were found in variations of amplitude and polarization with latitude. Finnish chain of search coil magnetometers observed modulated Pc1 emission simultaneously with the Pc5 wave train. A possibility of non-linear impact of Pc5 wave energy on the plasma and waves in the magnetosphere is discussed.

  16. Direct radiative effect of aerosols based on PARASOL and OMI satellite observations

    Science.gov (United States)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-02-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 ± 1.5 W/m2 for cloud-free and -2.1 ± 0.7 W/m2 for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  17. Evaluation of cloud base height measurements from ceilometer CL31 and MODIS satellite over Ahmedabad, India

    Directory of Open Access Journals (Sweden)

    S. Sharma

    2015-11-01

    Full Text Available Clouds play a tangible role in the Earth's atmosphere and in particular, the cloud base height (CBH which is linked to cloud type is one of the important characteristic to describe the influence of clouds on the environment. In present study, CBH observations from ceilometer CL31 have been extensively studied during May 2013 to January 2015 over Ahmedabad (23.03° N, 72.54° E, India. A detail comparison has been performed with the use of ground-based CBH measurements from ceilometer CL31 and CBH retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer onboard Aqua and Terra satellite. Some interesting features of cloud dynamics viz. strong downdraft and updraft have been observed over Ahmedabad which revealed different cloud characteristics during monsoon and post-monsoon periods. CBH shows seasonal variation during Indian summer monsoon and post-monsoon period. Results indicate that ceilometer is one of the excellent instruments to precisely detect low and mid-level clouds and MODIS satellite provides accurate retrieval of high-level clouds over this region. The CBH algorithm used for MODIS satellite is also able to capture the low-level clouds.

  18. Direct Radiative Effect of Aerosols Based on PARASOL and OMI Satellite Observations

    Science.gov (United States)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-01-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 +/- 1.5 W/sq m for cloud-free and -2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  19. The first estimates of global nucleation mode aerosol concentrations based on satellite measurements

    Directory of Open Access Journals (Sweden)

    M. Kulmala

    2011-11-01

    Full Text Available Atmospheric aerosols play a key role in the Earth's climate system by scattering and absorbing solar radiation and by acting as cloud condensation nuclei. Satellites are increasingly used to obtain information on properties of aerosol particles with a diameter larger than about 100 nm. However, new aerosol particles formed by nucleation are initially much smaller and grow into the optically active size range on time scales of many hours. In this paper we derive proxies, based on process understanding and ground-based observations, to determine the concentrations of these new particles and their spatial distribution using satellite data. The results are applied to provide seasonal variation of nucleation mode concentration. The proxies describe the concentration of nucleation mode particles over continents. The source rates are related to both regional nucleation and nucleation associated with more restricted sources. The global pattern of nucleation mode particle number concentration predicted by satellite data using our proxies is compared qualitatively against both observations and global model simulations.

  20. Computational Research on Mobile Pastoralism Using Agent-Based Modeling and Satellite Imagery.

    Directory of Open Access Journals (Sweden)

    Takuto Sakamoto

    Full Text Available Dryland pastoralism has long attracted considerable attention from researchers in diverse fields. However, rigorous formal study is made difficult by the high level of mobility of pastoralists as well as by the sizable spatio-temporal variability of their environment. This article presents a new computational approach for studying mobile pastoralism that overcomes these issues. Combining multi-temporal satellite images and agent-based modeling allows a comprehensive examination of pastoral resource access over a realistic dryland landscape with unpredictable ecological dynamics. The article demonstrates the analytical potential of this approach through its application to mobile pastoralism in northeast Nigeria. Employing more than 100 satellite images of the area, extensive simulations are conducted under a wide array of circumstances, including different land-use constraints. The simulation results reveal complex dependencies of pastoral resource access on these circumstances along with persistent patterns of seasonal land use observed at the macro level.

  1. Motivating Students to Develop Satellites in a Problem and Project-Based Learning Environment

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Nielsen, Jens Frederik Dalsgaard; Zhou, Chunfang

    2013-01-01

    During the last decade, a total of three student satellites have been developed by engineering students in a Problem and Project-Based Learning (PBL) environment at Aalborg University (AAU), Denmark. As solving such a complex project, we emphasize that a high level of motivation is needed...... for the students. Thus some efforts have been done on project management style with this aim. However, it is necessary continuous to discuss this issue from the students’ perspective for a better PBL environment. This leads to the research question of how the students perceive their motivation in developing...... satellite projects in a PBL environment. Empirically, a total of 12 student participants were interviewed. The results show that students’ motivation is highly stimulated by the project management with a series of factors, such as the task characteristics, support of peers, help of supervisors, and openness...

  2. A university-based distributed satellite mission control network for operating professional space missions

    Science.gov (United States)

    Kitts, Christopher; Rasay, Mike

    2016-03-01

    For more than a decade, Santa Clara University's Robotic Systems Laboratory has operated a unique, distributed, internet-based command and control network for providing professional satellite mission control services for a variety of government and industry space missions. The system has been developed and is operated by students who become critical members of the mission teams throughout the development, test, and on-orbit phases of these missions. The mission control system also supports research in satellite control technology and hands-on student aerospace education. This system serves as a benchmark for its comprehensive nature, its student-centric nature, its ability to support NASA and industry space missions, and its longevity in providing a consistent level of professional services. This paper highlights the unique features of this program, reviews the network's design and the supported spacecraft missions, and describes the critical programmatic features of the program that support the control of professional space missions.

  3. An Experimental Biotelemetric Study Based on Satellite Tracking During Post-nesting Migrations of Green Turtles

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A biotelemetry experiment is conducted to study the migrant behavior of green turtles (Chelonia mydas) in South China Sea and acquire the physical environment data. The method in use is to track the post-nesting migrant routes of green turtles through the satellite linked transmitters attached on the back of turtles and the global satellite signal transmitting system of Argos. We obtained the posinestions of the post-nesting migrant routes of three green turtles and environment data, which are important in conservation of green turtles and the research of physical oceanography. Based on the test, the concept, principle and method of biotelemetry are also introduced in this paper with a discussion of the further development of this technique and its applying prospection in future.

  4. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America

    Directory of Open Access Journals (Sweden)

    D. Loyola

    2008-01-01

    Full Text Available Volcanic eruptions can emit large amounts of rock fragments and fine particles (ash into the atmosphere, as well as several gases, including sulphur dioxide (SO2. These ejecta and emissions are a major natural hazard, not only to the local population, but also to the infrastructure in the vicinity of volcanoes and to aviation. Here, we describe a methodology to retrieve quantitative information about volcanic SO2 plumes from satellite-borne measurements in the UV/Visible spectral range. The combination of a satellite-based SO2 detection scheme and a state-of-the-art 3D trajectory model enables us to confirm the volcanic origin of trace gas signals and to estimate the plume height and the effective emission height. This is demonstrated by case-studies for four selected volcanic eruptions in South and Central America, using the GOME, SCIAMACHY and GOME-2 instruments.

  5. Fusion of Pixel-based and Object-based Features for Road Centerline Extraction from High-resolution Satellite Imagery

    Directory of Open Access Journals (Sweden)

    CAO Yungang

    2016-10-01

    Full Text Available A novel approach for road centerline extraction from high spatial resolution satellite imagery is proposed by fusing both pixel-based and object-based features. Firstly, texture and shape features are extracted at the pixel level, and spectral features are extracted at the object level based on multi-scale image segmentation maps. Then, extracted multiple features are utilized in the fusion framework of Dempster-Shafer evidence theory to roughly identify the road network regions. Finally, an automatic noise removing algorithm combined with the tensor voting strategy is presented to accurately extract the road centerline. Experimental results using high-resolution satellite imageries with different scenes and spatial resolutions showed that the proposed approach compared favorably with the traditional methods, particularly in the aspect of eliminating the salt noise and conglutination phenomenon.

  6. Satellite-based Assessment of Fire Impacts on Ecosystem Changes in West Africa

    Science.gov (United States)

    Ichoku, Charles

    2008-01-01

    Fires bum many vegetated regions of the world to a variety of degrees and frequency depending on season. Extensive biomass burning occurs in most parts of sub-Saharan Africa, posing great threat to ecosystem stability among other real and potential adverse impacts. In Africa, such landscape-scale fires are used for various agricultural purposes, including land clearing and hunting, although there may be a limited number of cases of fires ignited by accident or due to arson. Satellite remote sensing provides the most practical means of mapping fires, because of their sudden and aggressive nature coupled with the tremendous heat they generate. Recent advancements in satellite technology has enabled, not only the identification of fire locations, but also the measurement of fire radiative energy (FRE) release rate or power (FRP), which has been found to have a direct linear relationship with the rate of biomass combustion. A recent study based on FRP measurements from the Moderate-resolution imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites revealed that, among all the regions of the world where fires occur, African regions rank the highest in the intensity of biomass burning per unit area of land during the peak of the burning season. In this study, we will analyze the burning patterns in West Africa during the last several years and examine the extent of their impacts on the ecosystem dynamics, using a variety of satellite data. The study introduces a unique methodology that can be used to build up the knowledge base from which decision makers can obtain scientific information in fomulating policies for regulating biomass burning in the region.

  7. Satellite Remote Sensing-Based In-Season Diagnosis of Rice Nitrogen Status in Northeast China

    Directory of Open Access Journals (Sweden)

    Shanyu Huang

    2015-08-01

    Full Text Available Rice farming in Northeast China is crucially important for China’s food security and sustainable development. A key challenge is how to optimize nitrogen (N management to ensure high yield production while improving N use efficiency and protecting the environment. Handheld chlorophyll meter (CM and active crop canopy sensors have been used to improve rice N management in this region. However, these technologies are still time consuming for large-scale applications. Satellite remote sensing provides a promising technology for large-scale crop growth monitoring and precision management. The objective of this study was to evaluate the potential of using FORMOSAT-2 satellite images to diagnose rice N status for guiding topdressing N application at the stem elongation stage in Northeast China. Five farmers’ fields (three in 2011 and two in 2012 were selected from the Qixing Farm in Heilongjiang Province of Northeast China. FORMOSAT-2 satellite images were collected in late June. Simultaneously, 92 field samples were collected and six agronomic variables, including aboveground biomass, leaf area index (LAI, plant N concentration (PNC, plant N uptake (PNU, CM readings and N nutrition index (NNI defined as the ratio of actual PNC and critical PNC, were determined. Based on the FORMOSAT-2 imagery, a total of 50 vegetation indices (VIs were computed and correlated with the field-based agronomic variables. Results indicated that 45% of NNI variability could be explained using Ratio Vegetation Index 3 (RVI3 directly across years. A more practical and promising approach was proposed by using satellite remote sensing to estimate aboveground biomass and PNU at the panicle initiation stage and then using these two variables to estimate NNI indirectly (R2 = 0.52 across years. Further, the difference between the estimated PNU and the critical PNU can be used to guide the topdressing N application rate adjustments.

  8. An evaluation of satellite and in situ based sea surface temperature datasets in the North Indian Ocean region

    Digital Repository Service at National Institute of Oceanography (India)

    Sreejith, O.P.; Shenoi, S.S.C.

    Satellite based daily fields of Pathfinder SST (PFSST) and blended-analysed fields like National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and Reynolds weekly SST data were compared with the in situ...

  9. Geo-correction Algorithm Based on Equivalent RD Model for ScanSAR of HJ-1-C Satellite

    Directory of Open Access Journals (Sweden)

    Liu Jia-yin

    2014-06-01

    Full Text Available HJ-1-C satellite is the first Synthetic Aperture Radar (SAR satellite for civilian use in China, and it has a strip and scan mode. According to the characteristics of the ScanSAR of the HJ-1-C satellite, a geo-correction algorithm based on an equivalent RD model has been outlined in this paper on the basis of an ECS image processing algorithm and a traditional Range-Doppler location method. An azimuth mosaic was presented by a time series relationship, then the different burst was stitched by range, and the equivalent parameters were fitted to locations on the RD model. Finally, the ScanSAR image was geo-corrected. The HJ-1-C satellite data results showed that the location accuracy of ScanSAR for the HJ-1-C satellite was less than 100 m, and the geo-correction algorithm was realized in 10 s in fewer than 24 parallel cores.

  10. Molecular phylogenetics and historical biogeography amid shifting continents in the cockles and giant clams (Bivalvia: Cardiidae).

    Science.gov (United States)

    Herrera, Nathanael D; Ter Poorten, Jan Johan; Bieler, Rüdiger; Mikkelsen, Paula M; Strong, Ellen E; Jablonski, David; Steppan, Scott J

    2015-12-01

    Reconstructing historical biogeography of the marine realm is complicated by indistinct barriers and, over deeper time scales, a dynamic landscape shaped by plate tectonics. Here we present the most extensive examination of model-based historical biogeography among marine invertebrates to date. We conducted the largest phylogenetic and molecular clock analyses to date for the bivalve family Cardiidae (cockles and giant clams) with three unlinked loci for 110 species representing 37 of the 50 genera. Ancestral ranges were reconstructed using the dispersal-extinction-cladogenesis (DEC) method with a time-stratified paleogeographic model wherein dispersal rates varied with shifting tectonics. Results were compared to previous classifications and the extensive paleontological record. Six of the eight prior subfamily groupings were found to be para- or polyphyletic. Cardiidae originated and subsequently diversified in the tropical Indo-Pacific starting in the Late Triassic. Eastern Atlantic species were mainly derived from the tropical Indo-Mediterranean region via the Tethys Sea. In contrast, the western Atlantic fauna was derived from Indo-Pacific clades. Our phylogenetic results demonstrated greater concordance with geography than did previous phylogenies based on morphology. Time-stratifying the DEC reconstruction improved the fit and was highly consistent with paleo-ocean currents and paleogeography. Lastly, combining molecular phylogenetics with a rich and well-documented fossil record allowed us to test the accuracy and precision of biogeographic range reconstructions.

  11. Antenna pointing system for satellite tracking based on Kalman filtering and model predictive control techniques

    Science.gov (United States)

    Souza, André L. G.; Ishihara, João Y.; Ferreira, Henrique C.; Borges, Renato A.; Borges, Geovany A.

    2016-12-01

    The present work proposes a new approach for an antenna pointing system for satellite tracking. Such a system uses the received signal to estimate the beam pointing deviation and then adjusts the antenna pointing. The present work has two contributions. First, the estimation is performed by a Kalman filter based conical scan technique. This technique uses the Kalman filter avoiding the batch estimator and applies a mathematical manipulation avoiding the linearization approximations. Secondly, a control technique based on the model predictive control together with an explicit state feedback solution are obtained in order to reduce the computational burden. Numerical examples illustrate the results.

  12. The Matsu Wheel: A Cloud-based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    OpenAIRE

    Patterson, Maria T.; Anderson, Nikolas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert; Handy, Matthew; Ly, Vuong; Mandl, Dan; Pederson, Shane; Pivarski, Jim; Powell, Ray; Spring, Jonathan; Wells, Walt

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for the cloud-based processing of Earth satellite imagery. A particular focus is the development of applications for detecting fires and floods to help support natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStac...

  13. Satellite-based detection of global urban heat-island temperature influence

    Science.gov (United States)

    Gallo, K.P.; Adegoke, Jimmy O.; Owen, T.W.; Elvidge, C.D.

    2002-01-01

    This study utilizes a satellite-based methodology to assess the urban heat-island influence during warm season months for over 4400 stations included in the Global Historical Climatology Network of climate stations. The methodology includes local and regional satellite retrievals of an indicator of the presence green photosynthetically active vegetation at and around the stations. The difference in local and regional samples of the normalized difference vegetation index (NDVI) is used to estimate differences in mean air temperature. Stations classified as urban averaged 0.90??C (N. Hemisphere) and 0.92??C (S. Hemisphere) warmer than the surrounding environment on the basis of the NDVI-derived temperature estimates. Additionally, stations classified as rural averaged 0.19??C (N. Hemisphere) and 0.16??C (S. Hemisphere) warmer than the surrounding environment. The NDVI-derived temperature estimates were found to be in reasonable agreement with temperature differences observed between climate stations. The results suggest that satellite-derived data sets can be used to estimate the urban heat-island temperature influence on a global basis and that a more detailed analysis of rural stations and their surrounding environment may be necessary to assure that temperature trends derived from assumed rural environments are not influenced by changes in land use/land cover. Copyright 2002 by the American Geophysical Union.

  14. Satellite-based enhancement of archaeological marks through data fusion techniques

    Science.gov (United States)

    Lasaponara, Rosa; Masini, Nicola; Aiazzi, Bruno; Alparone, Luciano; Baronti, Stefano

    2008-10-01

    The application of space technology to archaeological research has been paid great attention worldwide, mainly because the current availability of very high resolution (VHR) satellite imagery, such as, IKONOS (1999) and QuickBird (2001), provide valuable data for searching large areas to find potential archaeological sites. Data from VHR satellite can be very useful for the identification, management and documentation of archaeological resources. Archaeological investigation based on the use of VHR satellite images may take benefits from the integration and synergic use of both panchromatic and multispectral data. This can be achieved by using pansharpening techniques, which allow multispectral and panchromatic images to be merged. The two basic frameworks of pansharpening techniques are Component Substitution (CS), such as Intensity-Hue-Saturation (IHS) Gram-Schmidt (GS), and multiresolution analysis (MRA), such as wavelets and Laplacian pyramids (LP). In this paper, both Gram-Schmidt and Laplacian pyramids with context adaptive (CA) detail injection models were used. QB images were processed for a relevant archaeological area in Southern Italy, the ancient Siris-Heraclea, a very significant test area because it is characterized by the presence of both surface and subsurface ancient remains. Outcomes of different pansharpening techniques have been qualitatively evaluated for both surface and subsurface remains. The visual inspection clearly suggests that the quantitative evaluation of the fusion performance for archaeological applications is a critical issue, and "ad hoc" local (i.e. context-adaptive) indices need to be developed.

  15. Development and validation of satellite-based estimates of surface visibility

    Science.gov (United States)

    Brunner, J.; Pierce, R. B.; Lenzen, A.

    2016-02-01

    A satellite-based surface visibility retrieval has been developed using Moderate Resolution Imaging Spectroradiometer (MODIS) measurements as a proxy for Advanced Baseline Imager (ABI) data from the next generation of Geostationary Operational Environmental Satellites (GOES-R). The retrieval uses a multiple linear regression approach to relate satellite aerosol optical depth, fog/low cloud probability and thickness retrievals, and meteorological variables from numerical weather prediction forecasts to National Weather Service Automated Surface Observing System (ASOS) surface visibility measurements. Validation using independent ASOS measurements shows that the GOES-R ABI surface visibility retrieval (V) has an overall success rate of 64.5 % for classifying clear (V ≥ 30 km), moderate (10 km ≤ V skill during June through September, when Heidke skill scores are between 0.2 and 0.4. We demonstrate that the aerosol (clear-sky) component of the GOES-R ABI visibility retrieval can be used to augment measurements from the United States Environmental Protection Agency (EPA) and National Park Service (NPS) Interagency Monitoring of Protected Visual Environments (IMPROVE) network and provide useful information to the regional planning offices responsible for developing mitigation strategies required under the EPA's Regional Haze Rule, particularly during regional haze events associated with smoke from wildfires.

  16. H-- Filtering Algorithms Case Study GPS-Based Satellite Orbit Determination

    Science.gov (United States)

    Kuang, Jinlu; Tan, Soonhie

    In this paper the new Hfiltering algorithms for the design of navigation systems for autonomous LEO satellite is introduced. The nominal orbit (i.e., position and velocity) is computed by integrating the classical orbital differential equations of the LEO satellite by using the 7th-8th order Runge- Kutta algorithms. The perturbations due to the atmospheric drag force, the lunar-solar attraction and the solar radiation pressure are included together with the Earth gravity model (EGM-96). The spherical harmonic coefficients of the EGM-96 are considered up to 72 for the order and degree. By way of the MATLAB GPSoft software, the simulated pseudo ranges between the user LEO satellite and the visible GPS satellites are generated when given the appropriate angle of mask. The effects of the thermal noises, tropospheric refraction, ionospheric refraction, and multipath of the antenna are also compensated numerically in the simulated pseudo ranges. The dynamic Position-Velocity (PV) model is obtained by modeling the velocity as nearly constant being the white noise process. To further accommodate acceleration in the process model, the Position-Velocity-Acceleration (PVA) model is investigated by assuming the acceleration to be the Gaussian- Markov process. The state vector for the PV model becomes 8-dimensional (3-states for positions, 3-states for velocities, 1-state for range (clock) bias error, 1-state for range (clock) drift error). The state vector for the PV model becomes 11-dimensional with the addition of three more acceleration states. Three filtering approaches are used to smooth the orbit solution based upon the GPS pseudo range observables. The numerical simulation shows that the observed orbit root-mean-square errors of 60 meters by using the least squares adjustment method are improved to be less than 5 meters within 16 hours of tracking time by using the Hfiltering algorithms. The results are compared with the ones obtained by using the Extended Kalman

  17. Satellite-based estimate of aerosol direct radiative effect over the South-East Atlantic

    Directory of Open Access Journals (Sweden)

    L. Costantino

    2013-09-01

    Full Text Available The net effect of aerosol Direct Radiative Forcing (DRF is the balance between the scattering effect that reflects solar radiation back to space (cooling, and the absorption that decreases the reflected sunlight (warming. The amplitude of these two effects and their balance depends on the aerosol load, its absorptivity, the cloud fraction and the respective position of aerosol and cloud layers. In this study, we use the information provided by CALIOP (CALIPSO satellite and MODIS (AQUA satellite instruments as input data to a Rapid Radiative Transfer Model (RRTM and quantify the shortwave (SW aerosol direct atmospheric forcing, over the South-East Atlantic. The combination of the passive and active measurements allows estimates of the horizontal and vertical distributions of the aerosol and cloud parameters. We use a parametrization of the Single Scattering Albedo (SSA based on the satellite-derived Angstrom coefficient. The South East Atlantic is a particular region, where bright stratocumulus clouds are often topped by absorbing smoke particles. Results from radiative transfer simulations confirm the similar amplitude of the cooling effect, due to light scattering by the aerosols, and the warming effect, due to the absorption by the same particles. Over six years of satellite retrievals, from 2005 to 2010, the South-East Atlantic all-sky SW DRF is −0.03 W m−2, with a spatial standard deviation of 8.03 W m−2. In good agreement with previous estimates, statistics show that a cloud fraction larger than 0.5 is generally associated with positive all-sky DRF. In case of cloudy-sky and aerosol located only above the cloud top, a SSA larger than 0.91 and cloud optical thickness larger than 4 can be considered as threshold values, beyond which the resulting radiative forcing becomes positive.

  18. Online data base of satellite sounder and insitu measurements covering two solar cycles

    Science.gov (United States)

    Bilitza, D.; Reinisch, B.; Benson, R.; Grebowsky, J.; Papitashvili, N.; Huang, X.; Schar, W.; Hills, K.

    Accurate descriptions of the solar cycle variations of ionospheric parameters are an important goal of ionospheric modeling. Reliable predictions of these variations are of essential importance for almost all applications of ionospheric models. Unfortunately there are very few global data sources that cover a solar cycle or more. In an effort to expand the solar cycle coverage of data readily available for ionospheric modeling, we have processed a large number of satellite data sets from the sixties, seventies, and early eighties and have made them online accessible as part of NSSDC's ftp archive (http://nssdcftp.gsfc.nasa.gov/spacecraft data/) and it's ATMOWeb retrieval and plotting system (http://nssdc.gsfc.nasa.gov/atmoweb/). We report about two data restoration efforts supported through NASA's Applied Information Systems Research Program (AISRP). The first project deals with insitu data from a large number of US, Canadian, Japanese and German satellites that measured ionospheric densities and temperatures from 1964 to 1983. The accumulated data base includes data from the BE-B, DME-A, AE-B, Alouette 2, ISIS 1, 2, OGO-6, AEROS A, AE-C, -D, -E, Hinotori, ISS-b and DE-2 satellite missions. The second project involves the production of digital topside sounder ionograms from the ISIS 1 and 2 satellites and their subsequent inversion to produce electron-density profiles. Approximately 340,000 ionograms are available from NSSDC as of July 2002. An automatic topside ionogram scaler with true height algorithm (TOPIST) was developed as part of this project and is now being used to obtain electron density profiles from these ionograms. Providing global coverage over more than two solar cycles the database established by this two projects is a valuable asset for improvements of the International Reference Ionosphere model and for ionospheric research.

  19. Kalman Filter-based Single-baseline GNSS Data Processing without Pivot Satellite Changing

    Directory of Open Access Journals (Sweden)

    ZHANG Baocheng

    2015-09-01

    Full Text Available Single-baseline global navigation satellite system (GNSS data are able to be processed into a batch of parameters such as positions, timing information as well as atmospheric delays. The applications of relevance, therefore, consist of relative positioning, time and frequency transfer and so forth. To achieve real-time capability, these parameters are usually estimated by means of Kalman-filter. Moreover, the reliability of these parameters can be further strengthened by forming and then successfully fixing a set of independent double-differenced (DD integer ambiguities. For this purpose, the filter function model is commonly set up based on the DD observation equations (DD filter model. In order to preserve the continuity of the filter, DD filter model needs to explicitly refer to another pivot satellite once the previous one becomes invisible. This thereby implies that, before being predicted to the next epoch, the former filtered DD ambiguity vector has to be “mapped” with respect to the newly-defined pivot satellite. In addition to that, the estimated receiver phase clocks using DD filter model may soak up distinct between-receiver single-differenced (SD ambiguities belonging to different pivot satellites and would thereby be subject to apparent “integer jumps”. In this contribution, SD observation equations involving estimable DD ambiguity parameters are alternatively selected as the filter function model (SD filter model. Our analyses suggest that, both DD and SD filter models are equivalent in theory, but differ from each other as far as their implementations are concerned. Typically, for SD filter model, no effort should be made to map DD ambiguities, thus implying less intensive computational burden and better flexibility than DD filter model. At the same time, receiver phase clocks determined by SD filter model are free from “integer jumps” and thus are particularly beneficial for frequency transfer.

  20. Dust aerosol characterization and transport features based on combined ground-based, satellite and model-simulated data

    Science.gov (United States)

    Vijayakumar, K.; Devara, P. C. S.; Rao, S. Vijaya Bhaskara; Jayasankar, C. K.

    2016-06-01

    In this paper, we study aerosol characteristics over an urban station in Western India, during a dust event that occurred between 19 and 26 March 2012, with the help of ground-based and satellite measurements and model simulation data. The aerosol parameters are found to change significantly during dust events and they suggest dominance of coarse mode aerosols. The fine mode fraction, size distribution and single scattering albedo reveal that dust (natural) aerosols dominate the anthropogenic aerosols over the study region. Ground-based measurements show drastic reduction in visibility on the dust-laden day (22 March 2012). Additionally, HYSPLIT model and satellite daily data have been used to trace the source, path and spatial extent of dust storm events. Most of the dust aerosols, during the study period, travel from west-to-east pathway from source-to-sink region. Furthermore, aerosol vertical profiles from CALIPSO and synoptic meteorological parameters from ECMWF re-analysis data reveal a layer of thick dust extending from surface to an altitude of about 4 km, and decrease in temperature and increase in specific humidity, respectively. The aerosol radiative forcing calculations indicate more cooling at the surface and warming in the atmosphere during dust event. The results of satellite observations are found to have good consistency with ground-based air quality measurements. Synthesis of satellite data integrated with ground-based observations, supplemented by model analysis, is found to be a promising technique for improved understanding of dust storm phenomenon and its impact on regional climate.

  1. Global Fine Particulate Matter Concentrations and Trends Inferred from Satellite Observations, Modeling, and Ground-Based Measurements

    Science.gov (United States)

    Martin, Randall; van Donkelaar, Aaron; Boys, Brian; Philip, Sajeev; Lee, Colin; Snider, Graydon; Weagle, Crystal

    2014-05-01

    Outdoor fine particulate matter (PM2.5) is a leading environmentally-related cause of premature mortality worldwide. However, ground-level PM2.5 monitors remain sparse in many regions of the world. Satellite remote sensing from MODIS, MISR, and SeaWiFS yields a powerful global data source to address this issue. Global modeling (GEOS-Chem) plays a critical role in relating these observations to ground-level concentrations. The resultant satellite-based estimates of PM2.5 indicate dramatic variation around the world, with implications for global public health. A new ground-based aerosol network (SPARTAN) offers valuable measurements to understand the relationship between satellite observations of aerosol optical depth and ground-level PM2.5 concentrations. This talk will highlight recent advances in combining satellite remote sensing, global modeling, and ground-based measurements to improve understanding of global population exposure to outdoor fine particulate matter.

  2. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors.

    Science.gov (United States)

    Wang, Menghua; Shi, Wei; Jiang, Lide; Voss, Kenneth

    2016-09-05

    The near-infrared (NIR) and shortwave infrared (SWIR)-based atmospheric correction algorithms are used in satellite ocean color data processing, with the SWIR-based algorithm particularly useful for turbid coastal and inland waters. In this study, we describe the NIR- and two SWIR-based on-orbit vicarious calibration approaches for satellite ocean color sensors, and compare results from these three on-orbit vicarious calibrations using satellite measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). Vicarious calibration gains for VIIRS spectral bands are derived using the in situ normalized water-leaving radiance nLw(λ) spectra from the Marine Optical Buoy (MOBY) in waters off Hawaii. The SWIR vicarious gains are determined using VIIRS measurements from the South Pacific Gyre region, where waters are the clearest and generally stable. Specifically, vicarious gain sets for VIIRS spectral bands of 410, 443, 486, 551, and 671 nm derived from the NIR method using the NIR 745 and 862 nm bands, the SWIR method using the SWIR 1238 and 1601 nm bands, and the SWIR method using the SWIR 1238 and 2257 nm bands are (0.979954, 0.974892, 0.974685, 0.965832, 0.979042), (0.980344, 0.975344, 0.975357, 0.965531, 0.979518), and (0.980820, 0.975609, 0.975761, 0.965888, 0.978576), respectively. Thus, the NIR-based vicarious calibration gains are consistent with those from the two SWIR-based approaches with discrepancies mostly within ~0.05% from three data processing methods. In addition, the NIR vicarious gains (745 and 862 nm) derived from the two SWIR methods are (0.982065, 1.00001) and (0.981811, 1.00000), respectively, with the difference ~0.03% at the NIR 745 nm band. This is the fundamental basis for the NIR-SWIR combined atmospheric correction algorithm, which has been used to derive improved satellite ocean color products over open oceans and turbid coastal/inland waters. Therefore, a unified

  3. Differences in estimating terrestrial water flux from three satellite-based Priestley-Taylor algorithms

    Science.gov (United States)

    Yao, Yunjun; Liang, Shunlin; Yu, Jian; Zhao, Shaohua; Lin, Yi; Jia, Kun; Zhang, Xiaotong; Cheng, Jie; Xie, Xianhong; Sun, Liang; Wang, Xuanyu; Zhang, Lilin

    2017-04-01

    Accurate estimates of terrestrial latent heat of evaporation (LE) for different biomes are essential to assess energy, water and carbon cycles. Different satellite- based Priestley-Taylor (PT) algorithms have been developed to estimate LE in different biomes. However, there are still large uncertainties in LE estimates for different PT algorithms. In this study, we evaluated differences in estimating terrestrial water flux in different biomes from three satellite-based PT algorithms using ground-observed data from eight eddy covariance (EC) flux towers of China. The results reveal that large differences in daily LE estimates exist based on EC measurements using three PT algorithms among eight ecosystem types. At the forest (CBS) site, all algorithms demonstrate high performance with low root mean square error (RMSE) (less than 16 W/m2) and high squared correlation coefficient (R2) (more than 0.9). At the village (HHV) site, the ATI-PT algorithm has the lowest RMSE (13.9 W/m2), with bias of 2.7 W/m2 and R2 of 0.66. At the irrigated crop (HHM) site, almost all models algorithms underestimate LE, indicating these algorithms may not capture wet soil evaporation by parameterization of the soil moisture. In contrast, the SM-PT algorithm shows high values of R2 (comparable to those of ATI-PT and VPD-PT) at most other (grass, wetland, desert and Gobi) biomes. There are no obvious differences in seasonal LE estimation using MODIS NDVI and LAI at most sites. However, all meteorological or satellite-based water-related parameters used in the PT algorithm have uncertainties for optimizing water constraints. This analysis highlights the need to improve PT algorithms with regard to water constraints.

  4. Validating Microwave-Based Satellite Rain Rate Retrievals Over TRMM Ground Validation Sites

    Science.gov (United States)

    Fisher, B. L.; Wolff, D. B.

    2008-12-01

    Multi-channel, passive microwave instruments are commonly used today to probe the structure of rain systems and to estimate surface rainfall from space. Until the advent of meteorological satellites and the development of remote sensing techniques for measuring precipitation from space, there was no observational system capable of providing accurate estimates of surface precipitation on global scales. Since the early 1970s, microwave measurements from satellites have provided quantitative estimates of surface rainfall by observing the emission and scattering processes due to the existence of clouds and precipitation in the atmosphere. This study assesses the relative performance of microwave precipitation estimates from seven polar-orbiting satellites and the TRMM TMI using four years (2003-2006) of instantaneous radar rain estimates obtained from Tropical Rainfall Measuring Mission (TRMM) Ground Validation (GV) sites at Kwajalein, Republic of the Marshall Islands (KWAJ) and Melbourne, Florida (MELB). The seven polar orbiters include three different sensor types: SSM/I (F13, F14 and F15), AMSU-B (N15, N16 and N17), and AMSR-E. The TMI aboard the TRMM satellite flies in a sun asynchronous orbit between 35 S and 35 N latitudes. The rain information from these satellites are combined and used to generate several multi-satellite rain products, namely the Goddard TRMM Multi-satellite Precipitation Analysis (TMPA), NOAA's CPC Morphing Technique (CMORPH) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). Instantaneous rain rates derived from each sensor were matched to the GV estimates in time and space at a resolution of 0.25 degrees. The study evaluates the measurement and error characteristics of the various satellite estimates through inter-comparisons with GV radar estimates. The GV rain observations provided an empirical ground-based reference for assessing the relative performance of each sensor and sensor

  5. GIO-EMS and International Collaboration in Satellite based Emergency Mapping

    Science.gov (United States)

    Kucera, Jan; Lemoine, Guido; Broglia, Marco

    2013-04-01

    During the last decade, satellite based emergency mapping has developed into a mature operational stage. The European Union's GMES Initial Operations - Emergency Management Service (GIO-EMS), is operational since April 2012. It's set up differs from other mechanisms (for example from the International Charter "Space and Major Disasters"), as it extends fast satellite tasking and delivery with the value adding map production as a single service, which is available, free of charge, to the authorized users of the service. Maps and vector datasets with standard characteristics and formats ranging from post-disaster damage assessment to recovery and disaster prevention are covered by this initiative. Main users of the service are European civil protection authorities and international organizations active in humanitarian aid. All non-sensitive outputs of the service are accessible to the public. The European Commission's in-house science service Joint Research Centre (JRC) is the technical and administrative supervisor of the GIO-EMS. The EC's DG ECHO Monitoring and Information Centre acts as the service's focal point and DG ENTR is responsible for overall service governance. GIO-EMS also aims to contribute to the synergy with similar existing mechanisms at national and international level. The usage of satellite data for emergency mapping has increased during the last years and this trend is expected to continue because of easier accessibility to suitable satellite and other relevant data in the near future. Furthermore, the data and analyses coming from volunteer emergency mapping communities are expected to further enrich the content of such cartographic products. In the case of major disasters the parallel activity of more providers is likely to generate non-optimal use of resources, e.g. unnecessary duplication; whereas coordination may lead to reduced time needed to cover the disaster area. Furthermore the abundant number of geospatial products of different

  6. Geo-correction Algorithm Based on Equivalent RD Model for ScanSAR of HJ-1-C Satellite

    OpenAIRE

    Liu Jia-yin; Wen Shuang-yan; Zhang Hong-yi; Hong Wen

    2014-01-01

    HJ-1-C satellite is the first Synthetic Aperture Radar (SAR) satellite for civilian use in China, and it has a strip and scan mode. According to the characteristics of the ScanSAR of the HJ-1-C satellite, a geo-correction algorithm based on an equivalent RD model has been outlined in this paper on the basis of an ECS image processing algorithm and a traditional Range-Doppler location method. An azimuth mosaic was presented by a time series relationship, then the different burst was stitched b...

  7. Polar low climatology over the Nordic and Barents seas based on satellite passive microwave data

    OpenAIRE

    Smirnova, Julia E.; Golubkin, Pavel A.; Bobylev, Leonid P.; Zabolotskikh, Elizaveta; Chapron, Bertrand

    2015-01-01

    A new climatology of polar lows over the Nordic and Barents seas for 14 seasons (1995/1996-2008/2009) is presented. For the first time in climatological studies of polar lows an approach based on satellite passive microwave data was adopted for polar low identification. A total of 637 polar lows were found in 14 extended winter seasons by combining total atmospheric water vapor content and sea surface wind speed fields retrieved from Special Sensor Microwave/Imager data. As derived, the polar...

  8. A Novel Efficient Cluster-Based MLSE Equalizer for Satellite Communication Channels with -QAM Signaling

    Directory of Open Access Journals (Sweden)

    Dalakas Vassilis

    2006-01-01

    Full Text Available In satellites, nonlinear amplifiers used near saturation severely distort the transmitted signal and cause difficulties in its reception. Nevertheless, the nonlinearities introduced by memoryless bandpass amplifiers preserve the symmetries of the -ary quadrature amplitude modulation ( -QAM constellation. In this paper, a cluster-based sequence equalizer (CBSE that takes advantage of these symmetries is presented. The proposed equalizer exhibits enhanced performance compared to other techniques, including the conventional linear transversal equalizer, Volterra equalizers, and RBF network equalizers. Moreover, this gain in performance is obtained at a substantially lower computational cost.

  9. Analysis of Satellite-Based Navigation Signal Reflectometry: Simulations and Observations

    DEFF Research Database (Denmark)

    von Benzon, Hans-Henrik; Høeg, Per; Durgonics, Tibor

    2016-01-01

    A new wave propagator that can be used to simulate global navigation satellite systems reflected signals from ocean surfaces is presented. The wave propagator simulates the characteristics of a bistatic scattering system. Simulated GPS ocean surface reflections will be presented and discussed based...... on the Hawaiian island of Maui. The GPS receiver was during the experiments running in an open-loop configuration. The analysis of both the simulated surface-reflection signals and the measured reflection signals will in general reveal spectral structures of the reflected signals that can lead to extraction...

  10. An entropy-based approach to automatic image segmentation of satellite images

    CERN Document Server

    Barbieri, A L; Rodrigues, F A; Bruno, O M; Costa, L da F

    2009-01-01

    An entropy-based image segmentation approach is introduced and applied to color images obtained from Google Earth. Segmentation refers to the process of partitioning a digital image in order to locate different objects and regions of interest. The application to satellite images paves the way to automated monitoring of ecological catastrophes, urban growth, agricultural activity, maritime pollution, climate changing and general surveillance. Regions representing aquatic, rural and urban areas are identified and the accuracy of the proposed segmentation methodology is evaluated. The comparison with gray level images revealed that the color information is fundamental to obtain an accurate segmentation.

  11. The Matsu Wheel: A Cloud-based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    CERN Document Server

    Patterson, Maria T; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert; Handy, Matthew; Ly, Vuong; Mandl, Dan; Pederson, Shane; Pivarski, Jim; Powell, Ray; Spring, Jonathan; Wells, Walt

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for the cloud-based processing of Earth satellite imagery. A particular focus is the development of applications for detecting fires and floods to help support natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce, Storm and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework is designed to be able to support scanning queries using cloud computing applications, such as Hadoop and Accumulo. A scanning query processes all, or most of the data, in a database or data repository. We also descri...

  12. ACCORD Broadband ATM Satellite Experiment (BASE)-DS3 Ku-band channel

    Science.gov (United States)

    1997-12-01

    broadband ATM traf- fic. ATM was initially designed for fibre - optic media, i.e. a random error, low delay, and virtually error free channel...satellite links will soon be required to support broadband ATM traffic. ATM was initially designed for fibre - optic media, i.e. a random error, low...traffic generator and analyser. - Fibre Loop Converter: converts a DS-3 signal into a single-mode fibre optic signal and vice-versa. - EF Data Modem

  13. Strategies for nanoplasmonic core-satellite biomolecular sensors: Theory-based Design

    Science.gov (United States)

    Ross, Benjamin M.; Waldeisen, John R.; Wang, Tim; Lee, Luke P.

    2009-11-01

    We present a systematic theoretical study of core-satellite gold nanoparticle assemblies using the Generalized Multiparticle Mie formalism. We consider the importance of satellite number, satellite radius, the core radius, and the satellite distance, and we present approaches to optimize spectral shift due to satellite attachment or release. This provides clear strategies for improving the sensitivity and signal-to-noise ratio for molecular detection, enabling simple colorimetric assays. We quantify the performance of these strategies by introducing a figure of merit. In addition, we provide an improved understanding of the nanoplasmonic interactions that govern the optical response of core-satellite nanoassemblies.

  14. Strategies for nanoplasmonic core-satellite biomolecular sensors: Theory-based Design.

    Science.gov (United States)

    Ross, Benjamin M; Waldeisen, John R; Wang, Tim; Lee, Luke P

    2009-11-09

    We present a systematic theoretical study of core-satellite gold nanoparticle assemblies using the Generalized Multiparticle Mie formalism. We consider the importance of satellite number, satellite radius, the core radius, and the satellite distance, and we present approaches to optimize spectral shift due to satellite attachment or release. This provides clear strategies for improving the sensitivity and signal-to-noise ratio for molecular detection, enabling simple colorimetric assays. We quantify the performance of these strategies by introducing a figure of merit. In addition, we provide an improved understanding of the nanoplasmonic interactions that govern the optical response of core-satellite nanoassemblies.

  15. Development of satellite-based drought monitoring and warning system in Asian Pacific countries

    Science.gov (United States)

    Takeuchi, W.; Oyoshi, K.; Muraki, Y.

    2013-12-01

    This research focuses on a development of satellite-based drought monitoring warning system in Asian Pacific countries. Drought condition of cropland is evaluated by using Keeth-Byram Drought Index (KBDI) computed from rainfall measurements with GSMaP product, land surface temperature by MTSAT product and vegetation phenology by MODIS NDVI product at daily basis. The derived information is disseminated as a system for an application of space based technology (SBT) in the implementation of the Core Agriculture Support Program. The benefit of this system are to develop satellite-based drought monitoring and early warning system (DMEWS) for Asian Pacific counties using freely available data, and to develop capacity of policy makers in those countries to apply the developed system in policy making. A series of training program has been carried out in 2013 to officers and researchers of ministry of agriculture and relevant agencies in Greater Mekong Subregion countries including Cambodia, China, Myanmar, Laos, Thailand and Vietnam. This system is running as fully operational and can be accessed at http://webgms.iis.u-tokyo.ac.jp/DMEWS/.

  16. Eliminating Obliquity Error from the Estimation of Ionospheric Delay in a Satellite-Based Augmentation System

    Science.gov (United States)

    Sparks, Lawrence

    2013-01-01

    Current satellite-based augmentation systems estimate ionospheric delay using algorithms that assume the electron density of the ionosphere is non-negligible only in a thin shell located near the peak of the actual profile. In its initial operating capability, for example, the Wide Area Augmentation System incorporated the thin shell model into an estimation algorithm that calculates vertical delay using a planar fit. Under disturbed conditions or at low latitude where ionospheric structure is complex, however, the thin shell approximation can serve as a significant source of estimation error. A recent upgrade of the system replaced the planar fit algorithm with an algorithm based upon kriging. The upgrade owes its success, in part, to the ability of kriging to mitigate the error due to this approximation. Previously, alternative delay estimation algorithms have been proposed that eliminate the need for invoking the thin shell model altogether. Prior analyses have compared the accuracy achieved by these methods to the accuracy achieved by the planar fit algorithm. This paper extends these analyses to include a comparison with the accuracy achieved by kriging. It concludes by examining how a satellite-based augmentation system might be implemented without recourse to the thin shell approximation.

  17. Vision-based localization for on-orbit servicing of a partially cooperative satellite

    Science.gov (United States)

    Oumer, Nassir W.; Panin, Giorgio; Mülbauer, Quirin; Tseneklidou, Anastasia

    2015-12-01

    This paper proposes ground-in-the-loop, model-based visual localization system based on transmitted images to ground, to aid rendezvous and docking maneuvers between a servicer and a target satellite. In particular, we assume to deal with a partially cooperative target, i.e. passive and without fiducial markers, but supposed at least to keep a controlled attitude, up to small fluctuations, so that the approach mainly involves translational motion. For the purpose of localization, video cameras provide an effective and relatively inexpensive solution, working at a wide range of distances with an increasing accuracy and robustness during the approach. However, illumination conditions in space are especially challenging, due to the direct sunlight exposure and to the glossy surface of a satellite, that creates strong reflections and saturations and therefore a high level of background clutter and missing detections. We employ a monocular camera for mid-range tracking (20 - 5 m) and stereo camera at close-range (5 - 0.5 m), with the respective detection and tracking methods, both using intensity edges and robustly dealing with the above issues. Our tracking system has been extensively verified at the facility of the European Proximity Operations Simulator (EPOS) of DLR, which is a very realistic ground simulation able to reproduce sunlight conditions through a high power floodlight source, satellite surface properties using multilayer insulation foils, as well as orbital motion trajectories with ground-truth data, by means of two 6 DOF industrial robots. Results from this large dataset show the effectiveness and robustness of our method against the above difficulties.

  18. Graph-tree-based software control flow checking for COTS processors on pico-satellites

    Institute of Scientific and Technical Information of China (English)

    Yang Mu; Wang Hao; Zheng Yangming; Jin Zhonghe

    2013-01-01

    This paper proposes a generic high-performance and low-time-overhead software control flow checking solution,graph-tree-based control flow checking (GTCFC) for space-borne commercial-off-the-shelf (COTS) processors.A graph tree data structure with a topology similar to common trees is introduced to transform the control flow graphs of target programs.This together with design of IDs and signatures of its vertices and edges allows for an easy check of legality of actual branching during target program execution.As a result,the algorithm not only is capable of detecting all single and multiple branching errors with low latency and time overheads along with a linear-complexity space overhead,but also remains generic among arbitrary instruction sets and independent of any specific hardware.Tests of the algorithm using a COTS-processor-based on-board computer (OBC) of in-service ZDPS-1A pico-satellite products show that GTCFC can detect over 90% of the randomly injected and all-pattern-covering branching errors for different types of target programs,with performance and overheads consistent with the theoretical analysis; and beats well-established preeminent control flow checking algorithms in these dimensions.Furthermore,it is validated that GTCGC not only can be accommodated in pico-satellites conveniently with still sufficient system margins left,but also has the ability to minimize the risk of control flow errors being undetected in their space missions.Therefore,due to its effectiveness,efficiency,and compatibility,the GTCFC solution is ready for applications on COTS processors on pico-satellites in their real space missions.

  19. Validation of NH3 satellite observations by ground-based FTIR measurements

    Science.gov (United States)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem

    2016-04-01

    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  20. On the value of satellite-based river discharge and river flood data

    Science.gov (United States)

    Kettner, A. J.; Brakenridge, R.; van Praag, E.; Borrero, S.; Slayback, D. A.; Young, C.; Cohen, S.; Prades, L.; de Groeve, T.

    2015-12-01

    Flooding is the most common natural hazard worldwide. According to the World Resources Institute, floods impact 21 million people every year and affect the global GDP by $96 billion. Providing accurate flood maps in near-real time (NRT) is critical to their utility to first responders. Also, in times of flooding, river gauging stations on location, if any, are of less use to monitor stage height as an approximation for water surface area, as often the stations themselves get washed out or peak water levels reach much beyond their design measuring capacity. In a joint effort with NASA Goddard Space Flight Center, the European Commission Joint Research Centre and the University of Alabama, the Dartmouth Flood Observatory (DFO) measures NRT: 1) river discharges, and 2) water inundation extents, both with a global coverage on a daily basis. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations'. Once calibrated, daily discharge time series span from 1998 to the present. Also, the two MODIS instruments aboard the NASA Terra and Aqua satellites provide daily floodplain inundation extent with global coverage at a spatial resolution of 250m. DFO's mission is to provide easy access to NRT river and flood data products. Apart from the DFO web portal, several water extent products can be ingested by utilizing a Web Map Service (WMS), such as is established with for Latin America and the Caribbean (LAC) region through the GeoSUR program portal. This effort includes implementing over 100 satellite discharge stations showing in NRT if a river is flooding, normal, or in low flow. New collaborative efforts have resulted in flood hazard maps which display flood extent as well as exceedance probabilities. The record length of our sensors allows mapping the 1.5 year, 5 year and 25 year flood extent. These can provide key information to water management and disaster response entities.

  1. An automated fog monitoring system for the Indo-Gangetic Plains based on satellite measurements

    Science.gov (United States)

    Patil, Dinesh; Chourey, Reema; Rizvi, Sarwar; Singh, Manoj; Gautam, Ritesh

    2016-05-01

    Fog is a meteorological phenomenon that causes reduction in regional visibility and affects air quality, thus leading to various societal and economic implications, especially disrupting air and rail transportation. The persistent and widespread winter fog impacts the entire the Indo-Gangetic Plains (IGP), as frequently observed in satellite imagery. The IGP is a densely populated region in south Asia, inhabiting about 1/6th of the world's population, with a strong upward pollution trend. In this study, we have used multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for developing an automated web-based fog monitoring system over the IGP. Using our previous and existing methodologies, and ongoing algorithm development for the detection of fog and retrieval of associated microphysical properties (e.g. fog droplet effective radius), we characterize the widespread fog detection during both daytime and nighttime. Specifically, for the night time fog detection, the algorithm employs a satellite-based bi-spectral brightness temperature difference technique between two spectral channels: MODIS band-22 (3.9μm) and band-31 (10.75μm). Further, we are extending our algorithm development to geostationary satellites, for providing continuous monitoring of the spatial-temporal variation of fog. We anticipate that the ongoing and future development of a fog monitoring system would be of assistance to air, rail and vehicular transportation management, as well as for dissemination of fog information to government agencies and general public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.

  2. Earth's gravity field modelling based on satellite accelerations derived from onboard GPS phase measurements

    Science.gov (United States)

    Guo, X.; Ditmar, P.; Zhao, Q.; Klees, R.; Farahani, H. H.

    2017-02-01

    GPS data collected by satellite gravity missions can be used for extracting the long-wavelength part of the Earth's gravity field. We propose a new data processing method which makes use of the `average acceleration' approach to gravity field modelling. In this method, satellite accelerations are directly derived from GPS carrier phase measurements with an epoch-differenced scheme. As a result, no ambiguity solutions are needed and the systematic errors that do not change much from epoch to epoch are largely eliminated. The GPS data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite mission are used to demonstrate the added value of the proposed method. An analysis of the residual accelerations shows that accelerations derived in this way are more precise, with noise being reduced by about 20 and 5% at the cross-track component and the other two components, respectively, as compared to those based on kinematic orbits. The accelerations obtained in this way allow the recovery of the gravity field to a slightly higher maximum degree compared to the solution based on kinematic orbits. Furthermore, the gravity field solution has an overall better performance. Errors in spherical harmonic coefficients are smaller, especially at low degrees. The cumulative geoid height error is reduced by about 15 and 5% up to degree 50 and 150, respectively. An analysis in the spatial domain shows that large errors along the geomagnetic equator, which are caused by a high electron density coupled with large short-term variations, are substantially reduced. Finally, the new method allows for a better observation of mass transport signals. In particular, sufficiently realistic signatures of regional mass anomalies in North America and south-west Africa are obtained.

  3. LineCast: line-based distributed coding and transmission for broadcasting satellite images.

    Science.gov (United States)

    Wu, Feng; Peng, Xiulian; Xu, Jizheng

    2014-03-01

    In this paper, we propose a novel coding and transmission scheme, called LineCast, for broadcasting satellite images to a large number of receivers. The proposed LineCast matches perfectly with the line scanning cameras that are widely adopted in orbit satellites to capture high-resolution images. On the sender side, each captured line is immediately compressed by a transform-domain scalar modulo quantization. Without syndrome coding, the transmission power is directly allocated to quantized coefficients by scaling the coefficients according to their distributions. Finally, the scaled coefficients are transmitted over a dense constellation. This line-based distributed scheme features low delay, low memory cost, and low complexity. On the receiver side, our proposed line-based prediction is used to generate side information from previously decoded lines, which fully utilizes the correlation among lines. The quantized coefficients are decoded by the linear least square estimator from the received data. The image line is then reconstructed by the scalar modulo dequantization using the generated side information. Since there is neither syndrome coding nor channel coding, the proposed LineCast can make a large number of receivers reach the qualities matching their channel conditions. Our theoretical analysis shows that the proposed LineCast can achieve Shannon's optimum performance by using a high-dimensional modulo-lattice quantization. Experiments on satellite images demonstrate that it achieves up to 1.9-dB gain over the state-of-the-art 2D broadcasting scheme and a gain of more than 5 dB over JPEG 2000 with forward error correction.

  4. Visual attention based detection of signs of anthropogenic activities in satellite imagery

    Energy Technology Data Exchange (ETDEWEB)

    Skurikhin, Alexei N [Los Alamos National Laboratory

    2010-10-13

    With increasing deployment of satellite imaging systems, only a small fraction of collected data can be subject to expert scrutiny. We present and evaluate a two-tier approach to broad area search for signs of anthropogenic activities in high-resolution commercial satellite imagery. The method filters image information using semantically oriented interest points by combining Harris corner detection and spatial pyramid matching. The idea is that anthropogenic structures, such as rooftop outlines, fence corners, road junctions, are locally arranged in specific angular relations to each other. They are often oriented at approximately right angles to each other (which is known as rectilinearity relation). Detecting the rectilinearity provides an opportunity to highlight regions most likely to contain anthropogenic activity. This is followed by supervised classification of regions surrounding the detected corner points as man-made vs. natural scenes. We consider, in particular, a search for anthropogenic activities in uncluttered areas. In this paper, we proposed and evaluated a two-tier approach to broad area search for signs of anthropogenic activities. Results from experiments on high-resolution ({approx}0.6m) commercial satellite image data showed the potential applicability of this approach and its ability of achieving both high precision and recall rates. The main advantage of combining corner-based cueing with general object recognition is that the incorporation of domain specific knowledge even in its more general form, such as presence of comers, provides a useful cue to narrow the focus of search for signs of anthropogenic activities. Combination of comer based cueing with spatial pyramid matching addressed the issue of comer categorization. An important practical issue for further research is optimizing the balance between false positive and false negative rates. While the results presented in the paper are encouraging, the problem of an automated broad area

  5. Categorizing natural disaster damage assessment using satellite-based geospatial techniques

    Science.gov (United States)

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.

    2008-01-01

    Remote sensing of a natural disaster's damage offers an exciting backup and/or alternative to traditional means of on-site damage assessment. Although necessary for complete assessment of damage areas, ground-based damage surveys conducted in the aftermath of natural hazard passage can sometimes be potentially complicated due to on-site difficulties (e.g., interaction with various authorities and emergency services) and hazards (e.g., downed power lines, gas lines, etc.), the need for rapid mobilization (particularly for remote locations), and the increasing cost of rapid physical transportation of manpower and equipment. Satellite image analysis, because of its global ubiquity, its ability for repeated independent analysis, and, as we demonstrate here, its ability to verify on-site damage assessment provides an interesting new perspective and investigative aide to researchers. Using one of the strongest tornado events in US history, the 3 May 1999 Oklahoma City Tornado, as a case example, we digitized the tornado damage path and co-registered the damage path using pre- and post-Landsat Thematic Mapper image data to perform a damage assessment. We employed several geospatial approaches, specifically the Getis index, Geary's C, and two lacunarity approaches to categorize damage characteristics according to the original Fujita tornado damage scale (F-scale). Our results indicate strong relationships between spatial indices computed within a local window and tornado F-scale damage categories identified through the ground survey. Consequently, linear regression models, even incorporating just a single band, appear effective in identifying F-scale damage categories using satellite imagery. This study demonstrates that satellite-based geospatial techniques can effectively add spatial perspectives to natural disaster damages, and in particular for this case study, tornado damages.

  6. Bias reduction for Satellite Based Precipitation Estimates using statistical transformations in Guiana Shield

    Science.gov (United States)

    Ringard, Justine; Becker, Melanie; Seyler, Frederique; Linguet, Laurent

    2016-04-01

    Currently satellite-based precipitation estimates exhibit considerable biases, and there have been many efforts to reduce these biases by merging surface gauge measurements with satellite-based estimates. In Guiana Shield all products exhibited better performances during the dry season (August- December). All products greatly overestimate very low intensities (50 mm). Moreover the responses of each product are different according to hydro climatic regimes. The aim of this study is to correct spatially the bias of precipitation, and compare various correction methods to define the best methods depending on the rainfall characteristic correcting (intensity, frequency). Four satellites products are used: Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product (3B42V7) and real time product (3B42RT), the Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Network (PERSIANN) and the NOAA Climate Prediction Center (CPC) Morphing technique (CMORPH), for six hydro climatic regimes between 2001 and 2012. Several statistical transformations are used to correct the bias. Statistical transformations attempt to find a function h that maps a simulated variable Ps such that its new distribution equals the distribution of the observed variable Po. The first is the use of a distribution derived transformations which is a mixture of the Bernoulli and the Gamma distribution, where the Bernoulli distribution is used to model the probability of precipitation occurrence and the Gamma distribution used to model precipitation intensities. The second a quantile-quantile relation using parametric transformation, and the last one is a common approach using the empirical CDF of observed and modelled values instead of assuming parametric distributions. For each correction 30% of both, simulated and observed data sets, are used to calibrate and the other part used to validate. The validation are test with statistical

  7. Suborbital Reusable Launch Vehicles as an Opportunity to Consolidate and Calibrate Ground Based and Satellite Instruments

    Science.gov (United States)

    Papadopoulos, K.

    2014-12-01

    XCOR Aerospace, a commercial space company, is planning to provide frequent, low cost access to near-Earth space on the Lynx suborbital Reusable Launch Vehicle (sRLV). Measurements in the external vacuum environment can be made and can launch from most runways on a limited lead time. Lynx can operate as a platform to perform suborbital in situ measurements and remote sensing to supplement models and simulations with new data points. These measurements can serve as a quantitative link to existing instruments and be used as a basis to calibrate detectors on spacecraft. Easier access to suborbital data can improve the longevity and cohesiveness of spacecraft and ground-based resources. A study of how these measurements can be made on Lynx sRLV will be presented. At the boundary between terrestrial and space weather, measurements from instruments on Lynx can help develop algorithms to optimize the consolidation of ground and satellite based data as well as assimilate global models with new data points. For example, current tides and the equatorial electrojet, essential to understanding the Thermosphere-Ionosphere system, can be measured in situ frequently and on short notice. Furthermore, a negative-ion spectrometer and a Faraday cup, can take measurements of the D-region ion composition. A differential GPS receiver can infer the spatial gradient of ionospheric electron density. Instruments and optics on spacecraft degrade over time, leading to calibration drift. Lynx can be a cost effective platform for deploying a reference instrument to calibrate satellites with a frequent and fast turnaround and a successful return of the instrument. A calibrated reference instrument on Lynx can make collocated observations as another instrument and corrections are made for the latter, thus ensuring data consistency and mission longevity. Aboard a sRLV, atmospheric conditions that distort remotely sensed data (ground and spacecraft based) can be measured in situ. Moreover, an

  8. Advanced Deployable Shell-Based Composite Booms for Small Satellite Structural Applications Including Solar Sails

    Science.gov (United States)

    Fernandez, Juan M.

    2017-01-01

    State of the art deployable structures are mainly being designed for medium to large size satellites. The lack of reliable deployable structural systems for low cost, small volume, rideshare-class spacecraft severely constrains the potential for using small satellite platforms for affordable deep space science and exploration precursor missions that could be realized with solar sails. There is thus a need for reliable, lightweight, high packaging efficiency deployable booms that can serve as the supporting structure for a wide range of small satellite systems including solar sails for propulsion. The National Air and Space Administration (NASA) is currently investing in the development of a new class of advanced deployable shell-based composite booms to support future deep space small satellite missions using solar sails. The concepts are being designed to: meet the unique requirements of small satellites, maximize ground testability, permit the use of low-cost manufacturing processes that will benefit scalability, be scalable for use as elements of hierarchical structures (e.g. trusses), allow long duration storage, have high deployment reliability, and have controlled deployment behavior and predictable deployed dynamics. This paper will present the various rollable boom concepts that are being developed for 5-20 m class size deployable structures that include solar sails with the so-called High Strain Composites (HSC) materials. The deployable composite booms to be presented are being developed to expand the portfolio of available rollable booms for small satellites and maximize their length for a given packaged volume. Given that solar sails are a great example of volume and mass optimization, the booms were designed to comply with nominal solar sail system requirements for 6U CubeSats, which are a good compromise between those of smaller form factors (1U, 2U and 3U CubeSats) and larger ones (12 U and 27 U future CubeSats, and ESPA-class microsatellites). Solar

  9. Using historical biogeography to test for community saturation.

    Science.gov (United States)

    Pinto-Sánchez, Nelsy Rocío; Crawford, Andrew J; Wiens, John J

    2014-09-01

    Saturation is the idea that a community is effectively filled with species, such that no more can be added without extinctions. This concept has important implications for many areas of ecology, such as species richness, community assembly, invasive species and climate change. Here, we illustrate how biogeography can be used to test for community saturation, when combined with data on local species richness, phylogeny and climate. We focus on a clade of frogs (Terrarana) and the impact of the Great American Biotic Interchange on patterns of local richness in Lower Middle America and adjacent regions. We analyse data on species richness at 83 sites and a time-calibrated phylogeny for 363 species. We find no evidence for saturation, and show instead that biotic interchange dramatically increased local richness in the region. We suggest that historical biogeography offers thousands of similar long-term natural experiments that can be used to test for saturation.

  10. Biogeography of photoautotrophs in the high polar biome

    Directory of Open Access Journals (Sweden)

    Stephen Brian Pointing

    2015-09-01

    Full Text Available The global latitudinal gradient in biodiversity weakens in the high polar biome and so an alternative explanation for distribution of Arctic and Antarctic photoautotrophs is required. Here we identify how temporal, microclimate and evolutionary drivers of biogeography are important, rather than the macroclimate features that drive plant diversity patterns elsewhere. High polar ecosystems are biologically unique, with a more central role for bryophytes, lichens and microbial photoautotrophs over that of vascular plants. Constraints on vascular plants arise mainly due to stature and ontogenetic barriers. Conversely non-vascular plant and microbial photoautotroph distribution is correlated with favourable microclimates and the capacity for poikilohydric dormancy. Contemporary distribution also depends on evolutionary history, with adaptive and dispersal traits as well as legacy influencing biogeography. We highlight the relevance of these findings to predicting future impacts on polar plant diversity and to the current status of plants in Arctic and Antarctic conservation policy frameworks.

  11. Satellite-Delivered Learning.

    Science.gov (United States)

    Arnall, Gail C.

    1987-01-01

    Discusses the application of satellite information delivery to training. Describes a new trend, horizontal programming. Also discusses vertical programming and in-house production of training materials. Lists vendors of satellite-based training. (CH)

  12. Spikemoss patterns : Systematics and historical biogeography of Selaginellaceae

    OpenAIRE

    Weststrand, Stina

    2016-01-01

    Selaginellaceae, spikemosses, is a heterosporous plant family belonging to the lycophytes. With an estimated age of some 350 million years, the family is historically important as one of the oldest known groups of vascular plants. Selaginellaceae is herbaceous with a worldwide distribution. However, the majority of the ca. 750 species in the single genus Selaginella are found in the tropics and subtropics. This thesis aims at elucidating the systematics and historical biogeography of Selagine...

  13. Can satellite-based monitoring techniques be used to quantify volcanic CO2 emissions?

    Science.gov (United States)

    Schwandner, Florian M.; Carn, Simon A.; Kuze, Akihiko; Kataoka, Fumie; Shiomi, Kei; Goto, Naoki; Popp, Christoph; Ajiro, Masataka; Suto, Hiroshi; Takeda, Toru; Kanekon, Sayaka; Sealing, Christine; Flower, Verity

    2014-05-01

    Since 2010, we investigate and improve possible methods to regularly target volcanic centers from space in order to detect volcanic carbon dioxide (CO2) point source anomalies, using the Japanese Greenhouse gas Observing SATellite (GOSAT). Our long-term goals are: (a) better spatial and temporal coverage of volcano monitoring techniques; (b) improvement of the currently highly uncertain global CO2 emission inventory for volcanoes, and (c) use of volcanic CO2 emissions for high altitude, strong point source emission and dispersion studies in atmospheric science. The difficulties posed by strong relief, orogenic clouds, and aerosols are minimized by a small field of view, enhanced spectral resolving power, by employing repeat target mode observation strategies, and by comparison to continuous ground based sensor network validation data. GOSAT is a single-instrument Earth observing greenhouse gas mission aboard JAXA's IBUKI satellite in sun-synchronous polar orbit. GOSAT's Fourier-Transform Spectrometer (TANSO-FTS) has been producing total column XCO2 data since January 2009, at a repeat cycle of 3 days, offering great opportunities for temporal monitoring of point sources. GOSAT's 10 km field of view can spatially integrate entire volcanic edifices within one 'shot' in precise target mode. While it doesn't have any spatial scanning or mapping capability, it does have strong spectral resolving power and agile pointing capability to focus on several targets of interest per orbit. Sufficient uncertainty reduction is achieved through comprehensive in-flight vicarious calibration, in close collaboration between NASA and JAXA. Challenges with the on-board pointing mirror system have been compensated for employing custom observation planning strategies, including repeat sacrificial upstream reference points to control pointing mirror motion, empirical individualized target offset compensation, observation pattern simulations to minimize view angle azimuth. Since summer 2010

  14. PlumeSat: A Micro-Satellite Based Plume Imagery Collection Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A.G.; Ng, L.C.

    2002-06-30

    This paper describes a technical approach to cost-effectively collect plume imagery of boosting targets using a novel micro-satellite based platform operating in low earth orbit (LEO). The plume collection Micro-satellite or PlueSat for short, will be capable of carrying an array of multi-spectral (UV through LWIR) passive and active (Imaging LADAR) sensors and maneuvering with a lateral divert propulsion system to different observation altitudes (100 to 300 km) and different closing geometries to achieve a range of aspect angles (15 to 60 degrees) in order to simulate a variety of boost phase intercept missions. The PlumeSat will be a cost effective platform to collect boost phase plume imagery from within 1 to 10 km ranges, resulting in 0.1 to 1 meter resolution imagery of a variety of potential target missiles with a goal of demonstrating reliable plume-to-hardbody handover algorithms for future boost phase intercept missions. Once deployed on orbit, the PlumeSat would perform a series phenomenology collection experiments until expends its on-board propellants. The baseline PlumeSat concept is sized to provide from 5 to 7 separate fly by data collects of boosting targets. The total number of data collects will depend on the orbital basing altitude and the accuracy in delivering the boosting target vehicle to the nominal PlumeSat fly-by volume.

  15. Vehicle detection in WorldView-2 satellite imagery based on Gaussian modeling and contextual learning

    Science.gov (United States)

    Shen, Bichuan; Chen, Chi-Hau; Marchisio, Giovanni B.

    2012-06-01

    In this paper, we aim to study the detection of vehicles from WorldView-2 satellite imagery. For this purpose, accurate modeling of vehicle features and signatures and efficient learning of vehicle hypotheses are critical. We present a joint Gaussian and maximum likelihood based modeling and machine learning approach using SVM and neural network algorithms to describe the local appearance densities and classify vehicles from non-vehicle buildings, objects, and backgrounds. Vehicle hypotheses are fitted by elliptical Gaussians and the bottom-up features are grouped by Gabor orientation filtering based on multi-scale analysis and distance transform. Global contextual information such as road networks and vehicle distributions can be used to enhance the recognition. In consideration of the problem complexity the practical vehicle detection task faces due to dense and overlapping vehicle distributions, partial occlusion and clutters by building, shadows, and trees, we employ a spectral clustering strategy jointly combined with bootstrapped learning to estimate the parameters of centroid, orientation, and extents for local densities. We demonstrate a high detection rate 94.8%,with a missing rate 5.2% and a false alarm rate 5.3% on the WorldView-2 satellite imagery. Experimental results show that our method is quite effective to model and detect vehicles.

  16. Estimating Reliability of Disturbances in Satellite Time Series Data Based on Statistical Analysis

    Science.gov (United States)

    Zhou, Z.-G.; Tang, P.; Zhou, M.

    2016-06-01

    Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite image time series. However, the detection results were only labelled with "Change/ No change" by most of the present methods, while few methods focus on estimating reliability (or confidence level) of the detected disturbances in image time series. To this end, this paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, through analysis of full temporal information laid in time series data. The method consists of three main steps. (1) Segmenting and modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST). (2) Forecasting and detecting disturbances in new time series data. (3) Estimating reliability of each detected disturbance using statistical analysis based on Confidence Interval (CI) and Confidence Levels (CL). The method was validated by estimating reliability of disturbance regions caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%.

  17. Validation of a satellite-based cyclogenesis technique over the North Indian Ocean

    Indian Academy of Sciences (India)

    Suman Goyal; M Mohapatra; Ashish Kumar; S K Dube; Kushagra Rajendra; P Goswami

    2016-10-01

    Indian region is severely affected by the tropical cyclones (TCs) due to the long coast line of about 7500 km. Hence, whenever any low level circulation (LLC) forms over the Indian Seas, the prediction of its intensification into a TC is very essential for the management of TC disaster. Satellite Application Centre (SAC) of Indian Space Research Organization (ISRO), Ahmedabad, has developed a techniqueto predict TCs based on scatterometer-derived winds from the polar orbiting satellite, QuikSCAT and Oceansat-II. The India Meteorological Department (IMD) has acquired the technique and verified it for the years 2010–2013 for operational use. The model is based on the concept of analogs of the sea surfacewind distribution at the stage of LLC or vortex (T1.0) as per Dvorak’s classifications, which eventually leads to cyclogenesis (T2.5). The results indicate that the developed model could predict cyclogenesis with a probability of detection of 61% and critical success index of 0.29. However, it shows high overpredictionof the model is better over the Bay of Bengal than over Arabian Sea and during post-monsoon season (September–December) than in pre-monsoon season (March–June).

  18. Intrusion of coastal waters into the pelagic Eastern Mediterranean: in situ and satellite-based characterization

    Directory of Open Access Journals (Sweden)

    S. Efrati

    2012-12-01

    Full Text Available A combined dataset of near real time multi-satellite observations and in situ measurements from a high-resolution survey, is used for characterizing physical-biogeochemical properties of a patch stretching from the coast to the open sea in the Levantine basin of the Eastern Mediterranean. Spatial analysis of the combined dataset indicates that the patch is a semi-enclosed system, bounded within the mixed layer and separated from ambient waters by transport barriers induced by horizontal stirring. As such, the patch is characterized by physical-biogeochemical properties that significantly differ from those of the waters surrounding it, with lower salinity, higher temperatures, higher concentrations of silicic acid and chlorophyll a, and higher abundance of Synechococcus and Picoeukaryotes cells. Based on estimates of patch dimensions (~ 40 km width and ~ 25 m depth and propagation speed (~ 0.09 m s−1, the volume flux associated with the patch is found to be in the order of 0.1 Sv. Our observations suggest that horizontal stirring by surface currents is likely to have an important impact on the ultra-oligotrophic Levantine basin ecosystem, through (1 transport of nutrients and coastal derived material, and (2 formation of local, dynamically isolated, niches. In addition, this work provides a satellite-based framework for planning and executing high resolution sampling strategies in the interface between coast and the open sea.

  19. Intrusion of coastal waters into the pelagic eastern Mediterranean: in situ and satellite-based characterization

    Directory of Open Access Journals (Sweden)

    S. Efrati

    2013-05-01

    Full Text Available A combined dataset of near-real-time multi-satellite observations and in situ measurements from a high-resolution survey is used for characterizing physical-biogeochemical properties of a patch stretching from the coast to the open sea in the Levantine Basin (LB of the eastern Mediterranean (EM. Spatial analysis of the combined dataset indicates that the patch is a semi-enclosed system, bounded within the mixed layer and separated from ambient waters by transport barriers induced by horizontal stirring. As such, the patch is characterized by physical-biogeochemical properties that significantly differ from those of the waters surrounding it, with lower salinity and higher temperatures, concentrations of silicic acid and chlorophyll a, and abundance of Synechococcus and picoeukaryote cells. Based on estimates of patch dimensions (∼40 km width and ∼25 m depth and propagation speed (∼0.09 m s−1, the volume flux associated with the patch is found to be on the order of 0.1 Sv. Our observations suggest that horizontal stirring by surface currents is likely to have an important impact on the ultra-oligotrophic Levantine Basin ecosystem, through (1 transport of nutrients and coastally derived material, and (2 formation of local, dynamically isolated niches. In addition, this work provides a satellite-based framework for planning and executing high-resolution sampling strategies in the interface between the coast and the open sea.

  20. Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment

    Science.gov (United States)

    Bibi, Samina; Alam, Khan; Chishtie, Farrukh; Bibi, Humera

    2017-02-01

    In this paper, for the first time, an effort has been made to seasonally characterize the absorbing aerosols into different types using ground and satellite based observations. For this purpose, optical properties of aerosol retrieved from AErosol RObotic NETwork (AERONET) and Ozone Monitoring Instrument (OMI) were utilized over Karachi for the period 2012 to 2014. Firstly, OMI AODabs was validated with AERONET AODabs and found to have a high degree of correlation. Then, based on this validation, characterization was conducted by analyzing aerosol Fine Mode Fraction (FMF), Angstrom Exponent (AE), Absorption Angstrom Exponent (AAE), Single Scattering Albedo (SSA) and Aerosol Index (AI) and their mutual correlation, to identify the absorbing aerosol types and also to examine the variability in seasonal distribution. The absorbing aerosols were characterized into Mostly Black Carbon (BC), Mostly Dust and Mixed BC & Dust. The results revealed that Mostly BC aerosols contributed dominantly during winter and postmonsoon whereas, Mostly Dust were dominant during summer and premonsoon. These types of absorbing aerosol were also confirmed with MODerate resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations.

  1. Evaluation of methods to derive green-up dates based on daily NDVI satellite observations

    Science.gov (United States)

    Doktor, Daniel

    2010-05-01

    Bridging the gap between satellite derived green-up dates and in situ phenological observations has been the purpose of many studies over the last decades. Despite substantial advancements in satellite technology and data quality checks there is as yet no universally accepted method for extracting phenological metrics based on satellite derived vegetation indices. Dependent on the respective method derived green-up dates can vary up to serveral weeks using identical data sets. Consequently, it is difficult to compare various studies and to accurately determine an increased vegetation length due to changing temperature patterns as observed by ground phenological networks. Here, I compared how the characteristic NDVI increase over temperate deciduous forests in Germany in spring relates to respective budburst events observed on the ground. MODIS Terra daily surface reflectances with a 250 m resolution (2000-2008) were gathered to compute daily NDVI values. As ground truth, observations of the extensive phenological network of the German Weather Service were used. About 1500 observations per year and species (Beech, Oak and Birch) were available evenly distributed all over Germany. Two filtering methods were tested to reduce the noisy raw data. The first method only keeps NDVI values which are classified as ‚ideal global quality' and applies on those a temporal moving window where values are removed which differ more than 20% of the mean. The second method uses an adaptation of the BISE (Best Index Slope Extraction) algorithm. Subsequently, three functions were fitted to the selected observations: a simple linear interpolation, a sigmoidal function and a double logistic sigmoidal function allowing to approximate two temporally separated green-up signals. The green-up date was then determined at halfway between minimum and maximum (linear interpolation) or at the inflexion point of the sigmoidal curve. A number of global threshold values (NDVI 0.4,0.5,0.6) and

  2. OLFAR a radio telescope based on nano satellites in moon orbit

    NARCIS (Netherlands)

    Engelen, S.; Verhoeven, C.J.M.; Bentum, M.J.

    2010-01-01

    It seems very likely that missions with nano-satellites in professional scientific or commercial applications will not be single-satellite missions. Well structured formations or less structured swarms of nano-satellites will be able to perform tasks that cannot be done in the “traditional” way. The

  3. Passivity Based Nonlinear Attitude Control of the Rømer Satellite

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt; Krogh-Sørensen, J.; Wisniewski, Rafal

    2001-01-01

    This paper suggests nonlinear attitude control of the Danish satellite Rømer. This satellite will be designed to fulfil two scientific objectives: The observation of stellar oscillations and the detection and localisation of gamma-ray bursts. The satellite will be equipped with a tetrahedron...

  4. Passivity based nonlinear attitude control of the Rømer satellite

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt; Krogh-Sørensen, J.; Wisniewski, Rafal

    This paper suggests nonlinear attitude control of the Danish satellite Rømer. This satellite will be designed to fulfil two scientific objectives: The observation of stellar oscillations and the detection and localisation of gamma-ray bursts. The satellite will be equipped with a tetrahedron...

  5. Reconstruction of incomplete satellite SST data sets based on EOF method

    Institute of Scientific and Technical Information of China (English)

    DING Youzhuan; WEI Zhihui; MAO Zhihua; WANG Xiaofei; PAN Delu

    2009-01-01

    As for the satellite remote sensing data obtained by the visible and infrared bands inversion, the clouds coverage in the sky over the ocean often results in missing data of inversion products on a large scale, and thin clouds difficult to be detected would cause the data of the inversion products to be abnormal. Alvera et al.(2005) proposed a method for the reconstruction of missing data based on an Empirical Orthogonal Functions (EOF) decomposition, but his method couldn't process these images presenting extreme cloud coverage(more than 95%), and required a long time for reconstruction. Besides, the abnormal data in the images had a great effect on the reconstruction result.Therefore, this paper tries to improve the study result. It has reconstructed missing data sets by twice applying EOF decomposition method. Firstly, the abnormity time has been detected by analyzing the temporal modes of EOF decomposition, and the abnormal data have been eliminated.Secondly, the data sets, excluding the abnormal data, are analyzed by using EOF decomposition,and then the temporal modes undergo a filtering process so as to enhance the ability of reconstructing the images which are of no or just a little data, by using EOF. At last, this method has been applied to a large data set, i.e. 43 Sea Surface Temperature (SST) satellite images of the Changjiang River (Yangtze River) estuary and its adjacent areas, and the total reconstruction root mean square error (RMSE) is 0.82℃. And it has been proved that this improved EOF reconstruction method is robust for reconstructing satellite missing data and unreliable data.

  6. Magnetic resonance imaging research in sub-Saharan Africa: challenges and satellite-based networking implementation.

    Science.gov (United States)

    Latourette, Matthew T; Siebert, James E; Barto, Robert J; Marable, Kenneth L; Muyepa, Anthony; Hammond, Colleen A; Potchen, Michael J; Kampondeni, Samuel D; Taylor, Terrie E

    2011-08-01

    As part of an NIH-funded study of malaria pathogenesis, a magnetic resonance (MR) imaging research facility was established in Blantyre, Malaŵi to enhance the clinical characterization of pediatric patients with cerebral malaria through application of neurological MR methods. The research program requires daily transmission of MR studies to Michigan State University (MSU) for clinical research interpretation and quantitative post-processing. An intercontinental satellite-based network was implemented for transmission of MR image data in Digital Imaging and Communications in Medicine (DICOM) format, research data collection, project communications, and remote systems administration. Satellite Internet service costs limited the bandwidth to symmetrical 384 kbit/s. DICOM routers deployed at both the Malaŵi MRI facility and MSU manage the end-to-end encrypted compressed data transmission. Network performance between DICOM routers was measured while transmitting both mixed clinical MR studies and synthetic studies. Effective network latency averaged 715 ms. Within a mix of clinical MR studies, the average transmission time for a 256 × 256 image was ~2.25 and ~6.25 s for a 512 × 512 image. Using synthetic studies of 1,000 duplicate images, the interquartile range for 256 × 256 images was [2.30, 2.36] s and [5.94, 6.05] s for 512 × 512 images. Transmission of clinical MRI studies between the DICOM routers averaged 9.35 images per minute, representing an effective channel utilization of ~137% of the 384-kbit/s satellite service as computed using uncompressed image file sizes (including the effects of image compression, protocol overhead, channel latency, etc.). Power unreliability was the primary cause of interrupted operations in the first year, including an outage exceeding 10 days.

  7. Preliminary study on migration pattern of the Tibetan antelope ( Pantholops hodgsonii) based on satellite tracking

    Science.gov (United States)

    Buho, Hoshino; Jiang, Z.; Liu, C.; Yoshida, T.; Mahamut, Halik; Kaneko, M.; Asakawa, M.; Motokawa, M.; Kaji, K.; Wu, X.; Otaishi, N.; Ganzorig, Sumiya; Masuda, R.

    2011-07-01

    The spatial and temporal patterns of the endangered Tibetan antelope or chiru ( Pantholops hodgsonii) have been studied using satellite-based ARGOS platform transmitter terminal (PTT) tracking data. The data was obtained from the satellite tracking of two female Tibetan antelopes that were collared with satellite transmitters and have been tracked from August 2007 to April 2009. Analysis of the locality data (LC) obtained, shows that both antelopes were migrant individuals, they shared the same calving ground surrounding lake Huiten (or Zhuonai lake), but different wintering pastures. Each antelope covered 250-300 km from the wintering to summer pastures. Annual range consisted of a core area that was used for at least 9 months; a calving ground used for a short time (from 8-20 days); and temporal pastures used during migration to and from the calving ground. Seasonal migration cycle was about 3 months, 27-30 days to reach the calving ground; 8-20 days staying there; and 36-40 days returning to the core area. Examination of the spatial distribution during migration showed that both chiru crossed the Qinghai-Tibetan railway (QTR) and the Golmud-Lhasa highway (GLH) at least two times, and reached calving ground (118-120 km from there) in 8 days, maintaining an average speed of 15 km per day. However, the return migration took twice as long (from 14 to 16 days). Each time, after reaching the QTR and GLH, the antelopes spent 20-40 days in that area, probably looking for passages and waiting. So far, we suppose that the QTR and the GLH have become a hindrance to the migration of the Tibetan antelopes and seriously delay their movement to and from the calving area. Extended aggregation of the herds of Tibetan antelopes along the QTR and the GLH may impact negatively with increased mortality among offspring, the spread of various diseases and overgrazing of pastures.

  8. Severe thunderstorm activity over Bihar on 21st April, 2015: a simulation study by satellite based Nowcasting technique

    Science.gov (United States)

    Goyal, Suman; Kumar, Ashish; Sangar, Ghansham; Mohapatra, M.

    2016-05-01

    Satellite based Nowcasting technique is customized version of Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC), it uses the extrapolation technique that allows for the tracking of Mesoscale convective systems (MCS) radiative and morphological properties and forecasts the evolution of these properties (based on cloud-top brightness temperature and area of the cloud cluster) up to 360 minutes, using infrared satellite imagery. The Thermal Infrared (TIR) channel of the weather satellite has been broadly used to study the behaviour of the cloud systems associated with deep convection. The main advantage of this approach is that for most of the globe the best statistics can only be obtained from satellite observations. Such a satellite survey would provide the statistics of MCSs covering the range of meteorological conditions needed to generalize the result and on the other hand only satellite observations can cover the very large range of space and time scale. The algorithm script is taken from Brazilian Scientist Dr. Danial Vila and implemented it into the Indian environment and made compatible with INSAT-3D hdf5 data format. For Indian region it utilizes the INSAT-3D satellite data of TIR1 (10.8 μm) channel and creates nowcast. The output is made compatible with GUI based software MIAS by generating the output in hdf5 format for better understanding and analysis of forecast. The main features of this algorithm are detection of Cloud Cluster based on Cloud Top Brightness Temperature (CTBT) and area i.e. ≤235 ºK and ≥2400 km2 respectively. The tracking technique based on MCS overlapping areas in successive images. The script has been automized in Auxiliary Data Processing System (ADPS) and generating the forecast file in every half an hour and convert the output file in geotiff format. The geotiff file is easily converted into KMZ file format using ArcGIS software to overlay it on google map and hosted on the web server.

  9. Object-based Evaluation of Satellite Precipitation Retrievals: A Case Study of the Summer Season over CONUS

    Science.gov (United States)

    Li, J.; Xu, P.

    2015-12-01

    Satellite precipitation retrievals that have high spatial and temporal resolutions are suitable for various applications, such as hydrologic modeling and watershed management. Many validation studies have been established to understand the strengths and limitations of these satellite precipitation retrievals. In this study, an object-based validation approach is adopted to evaluate several satellite precipitation retrievals focusing on the spatial and geometric patterns of precipitation. This object-based validation approach identifies precipitation objects using an image processing technique referred to as watershed transform. Several object attributes are diagnosed and analyzed based on the distance measurement. Three object-based verification scores are summarized to determine the overall performances of satellite precipitation retrievals. The Integrated Multi-satellitE Retrievals for GPM (IMERG) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) were evaluated using the object-based approach. The NOAA stage IV MPE multi-sensor composite rain analysis was utilized as the ground observations. The comparative assessments were conducted at 0.25° by 0.25° on a daily scale in the summer season of 2014 over the continental United States (CONUS). The results suggest that IMERG possesses the similar spatial pattern of local-scale precipitation areas against stage IV observations. In addition, IMERG depicts the sizes and locations of precipitation areas more accurately against stage IV.

  10. A mission-oriented orbit design method of remote sensing satellite for region monitoring mission based on evolutionary algorithm

    Science.gov (United States)

    Shen, Xin; Zhang, Jing; Yao, Huang

    2015-12-01

    Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.

  11. Handbook of satellite applications

    CERN Document Server

    Madry, Scott; Camacho-Lara, Sergio

    2017-01-01

    The first edition of this ground breaking reference work was the most comprehensive reference source available about the key aspects of the satellite applications field. This updated second edition covers the technology, the markets, applications and regulations related to satellite telecommunications, broadcasting and networking—including civilian and military systems; precise satellite navigation and timing networks (i.e. GPS and others); remote sensing and meteorological satellite systems. Created under the auspices of the International Space University based in France, this brand new edition is now expanded to cover new innovative small satellite constellations, new commercial launching systems, innovation in military application satellites and their acquisition, updated appendices, a useful glossary and more.

  12. A Novel Probability-Based Handoff Strategy for Multimedia LEO Satellite Communications

    Institute of Scientific and Technical Information of China (English)

    HUANG Fei; ZHU Li-dong; WU Shi-qi

    2007-01-01

    A novel bandwidth allocation strategy and a connection admission control technique are proposed to improve the utilization of network resource and provide the network with better quality of service (QoS) guarantees in multimedia low earth orbit (LEO) satellite networks. Our connection admission control scheme, we call the probability based dynamic channel reservation strategy (PDR), dynamically reserves bandwidth for real-time services based on their handoff probability. And the reserved bandwidth for real-time handoff connection can also be used by new connections under a certain probability determined by the mobility characteristics and bandwidth usage of the system. Simulation results show that our scheme not only lowers the call dropping probability (CDP) for Class I real-time service but also maintains the call blocking probability (CBP) to certain degree. Consequently, the scheme can offer very low CDP for real-time connections while keeping resource utilization high.

  13. Nonlinear Diffusion Filtering of the GOCE-Based Satellite-Only Mean Dynamic Topography

    Science.gov (United States)

    Cunderlik, Robert; Mikula, Karol

    2015-03-01

    The paper presents nonlinear diffusion filtering of the GOCE-based satellite-only mean dynamic topography (MDT). Our approach is based on a numerical solution to the nonlinear diffusion equation defined on the discretized Earth’s surface using the regularized surface Perona-Malik Model. For its numerical discretization we use a surface finite volume method. A key idea is that the diffusivity coefficient depends on the edge detector. It allows effectively reduce the stripping noise while preserve important gradients in filtered data. Numerical experiments present nonlinear filtering of the geopotential evaluated from the GO_CONS_GCF_2_ DIR_R5 model on the DTU13 mean sea surface. After filtering the geopotential is transformed into the MDT.

  14. Developing a Satellite Based Automatic System for Crop Monitoring: Kenya's Great Rift Valley, A Case Study

    Science.gov (United States)

    Lucciani, Roberto; Laneve, Giovanni; Jahjah, Munzer; Mito, Collins

    2016-08-01

    The crop growth stage represents essential information for agricultural areas management. In this study we investigate the feasibility of a tool based on remotely sensed satellite (Landsat 8) imagery, capable of automatically classify crop fields and how much resolution enhancement based on pan-sharpening techniques and phenological information extraction, useful to create decision rules that allow to identify semantic class to assign to an object, can effectively support the classification process. Moreover we investigate the opportunity to extract vegetation health status information from remotely sensed assessment of the equivalent water thickness (EWT). Our case study is the Kenya's Great Rift valley, in this area a ground truth campaign was conducted during August 2015 in order to collect crop fields GPS measurements, leaf area index (LAI) and chlorophyll samples.

  15. Object-Based Forest Cover Monitoring Using GAOFEN-2 High Resolution Satellite Images

    Science.gov (United States)

    Li, S. M.; Li, Z. Y.; Chen, E. X.; Liu, Q. W.

    2016-10-01

    Forest cover monitoring is an important part of forest management in local or regional area. The structure and tones of forest can be identified in high spatial remote sensing images. When forests cover change, the spectral characteristics of forests is also changed. In this paper a method on object-based forest cover monitoring with data transformation from time series of high resolution images is put forward. First the NDVI difference image and the composite of PC3,PC4, PC5 of the stacked 8 layers of time series of high resolution satellites are segmented into homogeneous objects. With development of the object-based ruleset classification system, the spatial extent of deforestation and afforestation can be identified over time across the landscape. Finally the change accuracy is achieved with reference data.

  16. Study on Cell Error Rate of a Satellite ATM System Based on CDMA

    Institute of Scientific and Technical Information of China (English)

    赵彤宇; 张乃通

    2003-01-01

    In this paper, the cell error rate (CER) of a CDMA-based satellite ATM system is analyzed. Two fading models, i.e. the partial fading model and the total fading model are presented according to multi-path propagation fading and shadow effect. Based on the total shadow model, the relation of CER vs. the number of subscribers at various elevations under 2D-RAKE receiving and non-diversity receiving is got. The impact on cell error rate with pseudo noise (PN) code length is also considered. The result that the maximum likelihood combination of multi-path signal would not improve the system performance when multiple access interference (MAI) is small, on the contrary the performance may be even worse is abtained.

  17. Land cover classification of Landsat 8 satellite data based on Fuzzy Logic approach

    Science.gov (United States)

    Taufik, Afirah; Sakinah Syed Ahmad, Sharifah

    2016-06-01

    The aim of this paper is to propose a method to classify the land covers of a satellite image based on fuzzy rule-based system approach. The study uses bands in Landsat 8 and other indices, such as Normalized Difference Water Index (NDWI), Normalized difference built-up index (NDBI) and Normalized Difference Vegetation Index (NDVI) as input for the fuzzy inference system. The selected three indices represent our main three classes called water, built- up land, and vegetation. The combination of the original multispectral bands and selected indices provide more information about the image. The parameter selection of fuzzy membership is performed by using a supervised method known as ANFIS (Adaptive neuro fuzzy inference system) training. The fuzzy system is tested for the classification on the land cover image that covers Klang Valley area. The results showed that the fuzzy system approach is effective and can be explored and implemented for other areas of Landsat data.

  18. Towards a protocol for validating satellite-based Land Surface Temperature: Application to AATSR data

    Science.gov (United States)

    Ghent, Darren; Schneider, Philipp; Remedios, John

    2013-04-01

    Land surface temperature (LST) retrieval accuracy can be challenging as a result of emissivity variability and atmospheric effects. Surface emissivities can be highly variable owing to the heterogeneity of the land; a problem which is amplified in regions of high topographic variance or for larger viewing angles. Atmospheric effects caused by the presence of aerosols and by water vapour absorption can give a bias to the underlying LST. Combined, atmospheric effects and emissivity variability can result in retrieval errors of several degrees. If though these are appropriately handled satellite-derived LST products can be used to improve our ability to monitor and to understand land surface and climate change processes, such as desertification, urbanization, deforestation and land/atmosphere coupling. Here we present validation of an improved LST data record from the Advanced Along-Track Scanning Radiometer (AATSR) and illustrate the improvements in accuracy and precision compared with the standard ESA LST product. Validation is a critical part of developing any satellite product, although over the land heterogeneity ensures this is a challenging undertaking. A substantial amount of previous effort has gone into the area of structuring and standardizing calibration and validation approaches within the field of Earth Observation. However, no unified approach for accomplishing this for LST has yet to be practised by the LST community. Recent work has attempted to address this situation with the development of a protocol for validating LST (Schneider et al., 2012) under the auspices of ESA and the support of the wider LST community. We report here on a first application of this protocol to satellite LST data. The approach can briefly be summarised thus: in situ validation is performed where ground-based observations are available - being predominantly homogeneous sites; heterogeneous pixels are validated by way of established radiometric-based techniques (Wan and Li

  19. Estimation of Satellite PCO Offsets for BeiDou based on MGEX Net Solution

    Science.gov (United States)

    Yize, Zhang; Junping, Chen; Bin, Wu; Jiexian, Wang

    2015-04-01

    BeiDou Satellite Navigation System currently has a total 14 satellites including GEO/IGSO/MEO satellites and providing a regional PNT service. Due to a lack of publicly available antenna phase center offsets (PCO) for the BeiDou satellites, conventional values of (+0.6 m, 0.0 m, +1.1 m) are recommended for orbit and clock determination of the GEO/IGSO/MEO satellites, which needs to be further estimation and refinement. In this paper, we propose a multi-GNSS network solution for the estimation of BeiDou satellite PCO. More than 35 ground stations of International GNSS MGEX tracking network are used to determine the BeiDou satellite PCO. In this strategy, the GPS and BeiDou satellite orbits and clocks are derived from IGS final products, and GPS satellite PCO and PCV are fixed according to igs08.atx. The BeiDou satellites PCO are estimated together with the station clock, troposphere delay and LC combination ambiguity parameter. Result shows that the RMS of phase residuals for all stations is 1.8cm and is 1.6m for code residual, respectively. The estimated PCO is different for each satellite. Appling the new PCO for precise point positioning, we found that the positioning error improves from 6cm to 2cm in height.

  20. Optimization design of satellite separation systems based on Multi-Island Genetic Algorithm

    Science.gov (United States)

    Hu, Xingzhi; Chen, Xiaoqian; Zhao, Yong; Yao, Wen

    2014-03-01

    The separation systems are crucial for the launch of satellites. With respect to the existing design issues of satellite separation systems, an optimization design approach based on Multi-Island Genetic Algorithm is proposed, and a hierarchical optimization of system mass and separation angular velocity is designed. Multi-Island Genetic Algorithm is studied for the problem and the optimization parameters are discussed. Dynamic analysis of ADAMS used to validate the designs is integrated with iSIGHT. Then the optimization method is employed for a typical problem using the helical compression spring mechanism, and the corresponding objective functions are derived. It turns out that the mass of compression spring catapult is decreased by 30.7% after optimization and the angular velocity can be minimized considering spring stiffness errors. Moreover, ground tests and on-orbit flight indicate that the error of separation speed is controlled within 1% and the angular velocity is reduced by nearly 90%, which proves the design result and the optimization approach.

  1. Heavy rainfall prediction applying satellite-based cloud data assimilation over land

    Science.gov (United States)

    Seto, Rie; Koike, Toshio; Rasmy, Mohamed

    2016-08-01

    To optimize flood management, it is crucial to determine whether rain will fall within a river basin. This requires very fine precision in prediction of rainfall areas. Cloud data assimilation has great potential to improve the prediction of precipitation area because it can directly obtain information on locations of rain systems. Clouds can be observed globally by satellite-based microwave remote sensing. Microwave observation also includes information of latent heat and water vapor associated with cloud amount, which enables the assimilation of not only cloud itself but also the cloud-affected atmosphere. However, it is difficult to observe clouds over land using satellite microwave remote sensing, because their emissivity is much lower than that of the land surface. To overcome this challenge, we need appropriate representation of heterogeneous land emissivity. We developed a coupled atmosphere and land data assimilation system with the Weather Research and Forecasting Model (CALDAS-WRF), which can assimilate soil moisture, vertically integrated cloud water content over land, and heat and moisture within clouds simultaneously. We applied this system to heavy rain events in Japan. Results show that the system effectively assimilated cloud signals and produced very accurate cloud and precipitation distributions. The system also accurately formed a consistent atmospheric field around the cloud. Precipitation intensity was also substantially improved by appropriately representing the local atmospheric field. Furthermore, combination of the method and operationally analyzed dynamical and moisture fields improved prediction of precipitation duration. The results demonstrate the method's promise in dramatically improving predictions of heavy rain and consequent flooding.

  2. Satellite-based Studies on Large-Scale Vegetation Changes in China

    Institute of Scientific and Technical Information of China (English)

    Xia Zhao; Daojing Zhou; Jingyun Fang

    2012-01-01

    Remotely-sensed vegetation indices,which indicate the density and photosynthetic capacity of vegetation,have been widely used to monitor vegetation dynamics over broad areas.In this paper,we reviewed satellite-based studies on vegetation cover changes,biomass and productivity variations,phenological dynamics,desertification,and grassland degradation in China that occurred over the past 2-3 decades.Our review shows that the satellite-derived index (Normalized Difference Vegetation Index,NDVI) during growing season and the vegetation net primary productivity in major terrestrial ecosystems (for example forests,grasslands,shrubs,and croplands) have significantly increased,while the number of fresh lakes and vegetation coverage in urban regions have experienced a substantial decline.The start of the growing season continually advanced in China's temperate regions until the 1990s,with a large spatial heterogeneity.We also found that the coverage of sparsely-vegetated areas declined,and the NDVI per unit in vegetated areas increased in arid and semi-arid regions because of increased vegetation activity in grassland and oasis areas.However,these results depend strongly not only on the periods chosen for investigation,but also on factors such as data sources,changes in detection methods,and geospatial heterogeneity.Therefore,we should be cautious when applying remote sensing techniques to monitor vegetation structures,functions,and changes.

  3. Satellite-Based Derivation of High-Resolution Forest Information Layers for Operational Forest Management

    Directory of Open Access Journals (Sweden)

    Johannes Stoffels

    2015-06-01

    Full Text Available A key factor for operational forest management and forest monitoring is the availability of up-to-date spatial information on the state of forest resources. Earth observation can provide valuable contributions to these information needs. The German federal state of Rhineland-Palatinate transferred its inherited forest information system to a new architecture that is better able to serve the needs of centralized inventory and planning services, down to the level of forest districts. During this process, a spatially adaptive classification approach was developed to derive high-resolution forest information layers (e.g., forest type, tree species distribution, development stages based on multi-temporal satellite data. This study covers the application of the developed approach to a regional scale (federal state level and the further adaptation of the design to meet the information needs of the state forest service. The results confirm that the operational requirements for mapping accuracy can, in principle, be fulfilled. However, the state-wide mapping experiment also revealed that the ability to meet the required level of accuracy is largely dependent on the availability of satellite observations within the optimum phenological time-windows.

  4. Very High Resolution Satellite Image Classification Using Fuzzy Rule-Based Systems

    Directory of Open Access Journals (Sweden)

    Yun Zhang

    2013-11-01

    Full Text Available The aim of this research is to present a detailed step-by-step method for classification of very high resolution urban satellite images (VHRSI into specific classes such as road, building, vegetation, etc., using fuzzy logic. In this study, object-based image analysis is used for image classification. The main problems in high resolution image classification are the uncertainties in the position of object borders in satellite images and also multiplex resemblance of the segments to different classes. In order to solve this problem, fuzzy logic is used for image classification, since it provides the possibility of image analysis using multiple parameters without requiring inclusion of certain thresholds in the class assignment process. In this study, an inclusive semi-automatic method for image classification is offered, which presents the configuration of the related fuzzy functions as well as fuzzy rules. The produced results are compared to the results of a normal classification using the same parameters, but with crisp rules. The overall accuracies and kappa coefficients of the presented method stand higher than the check projects.

  5. A satellite based study of tropospheric bromine explosion events and their linkages to polar cyclone development

    Science.gov (United States)

    Blechschmidt, Anne-Marlene; Richter, Andreas; Burrows, John P.; Kaleschke, Lars; Strong, Kimberly; Theys, Nicolas; Weber, Mark; Zhao, Xiaoyi; Zien, Achim; Hodges, Kevin I.

    2016-04-01

    Intense, cyclone-like shaped plumes of tropospheric bromine monoxide (BrO) are regularly observed by the UV-vis satellite instruments GOME-2/MetOp-A and SCIAMACHY/Envisat over Arctic and Antarctic sea ice in polar spring. The plumes are associated with an autocatalytic chemical chain reaction involving tropospheric ozone depletion and initiated by the release of bromine from cold brine-covered ice or snow to the atmosphere. This influences atmospheric chemistry as it affects the oxidising capacity of the troposphere through OH production and may also influence the local weather/temperature of the polar atmosphere, as ozone is a major greenhouse gas. Here, we make combined use of satellite retrievals and numerical model simulations to study individual BrO plume cases in the polar atmosphere. In agreement with previous studies, our analysis shows that the plumes are often transported by high latitude cyclones, sometimes over several days despite the short atmospheric lifetime of BrO. Moreover, general characteristics of bromine explosion events linked to transport by polar weather systems, such as frequency, spatial distribution and favourable weather conditions are derived based on a new detection method. Our results show that BrO cyclone transport events are by far more common in the Antarctic than in the Arctic.

  6. Monitoring and remote failure detection of grid-connected PV systems based on satellite observations

    Energy Technology Data Exchange (ETDEWEB)

    Drews, A.; Lorenz, E.; Betcke, J.; Heinemann, D. [Oldenburg University, Institute of Physics, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg (Germany); de Keizer, A.C.; van Sark, W.G.J.H.M. [University of Utrecht, Copernicus Institute, Department of Science, Technology, and Society, Heidelberglaan 2, 3584 CH Utrecht (Netherlands); Beyer, H.G. [University of Applied Sciences Magdeburg-Stendal (FH), Institute of Electrical Engineering, Breitscheidstr. 2, 39114 Magdeburg (Germany); Heydenreich, W.; Wiemken, E. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstr. 2, 79110 Freiburg (Germany); Stettler, S.; Toggweiler, P. [Enecolo AG, Lindhofstr. 52, 8617 Moenchaltorf (Switzerland); Bofinger, S.; Schneider, M.; Heilscher, G. [Meteocontrol GmbH, Spicherer Strasse 48, 86157 Augsburg (Germany)

    2007-04-15

    Small grid-connected photovoltaic systems up to 5 kW{sub p} are often not monitored because advanced surveillance systems are not economical. Hence, some system failures which lead to partial energy losses stay unnoticed for a long time. Even a failure that results in a larger energy deficit can be difficult to detect by PV laymen due to the fluctuating energy yields. Within the EU project PVSAT-2, a fully automated performance check has been developed to assure maximum energy yields and to optimize system maintenance for small grid-connected PV systems. The aim is the early detection of system malfunctions and changing operating conditions to prevent energy and subsequent financial losses for the operator. The developed procedure is based on satellite-derived solar irradiance information that replaces on-site measurements. In conjunction with a simulation model the expected energy yield of a PV system is calculated. In case of the occurrence of a defined difference between the simulated and actual energy yield, an automated failure detection routine searches for the most probable failure sources and notifies the operator. This paper describes the individual components of the developed procedure - the satellite-derived irradiance, the used PV simulation model, and the principles of the automated failure detection routine. Moreover, it presents results of an 8-months test phase with 100 PV systems in three European countries. (author)

  7. A data mining based approach to predict spatiotemporal changes in satellite images

    Science.gov (United States)

    Boulila, W.; Farah, I. R.; Ettabaa, K. Saheb; Solaiman, B.; Ghézala, H. Ben

    2011-06-01

    The interpretation of remotely sensed images in a spatiotemporal context is becoming a valuable research topic. However, the constant growth of data volume in remote sensing imaging makes reaching conclusions based on collected data a challenging task. Recently, data mining appears to be a promising research field leading to several interesting discoveries in various areas such as marketing, surveillance, fraud detection and scientific discovery. By integrating data mining and image interpretation techniques, accurate and relevant information (i.e. functional relation between observed parcels and a set of informational contents) can be automatically elicited. This study presents a new approach to predict spatiotemporal changes in satellite image databases. The proposed method exploits fuzzy sets and data mining concepts to build predictions and decisions for several remote sensing fields. It takes into account imperfections related to the spatiotemporal mining process in order to provide more accurate and reliable information about land cover changes in satellite images. The proposed approach is validated using SPOT images representing the Saint-Denis region, capital of Reunion Island. Results show good performances of the proposed framework in predicting change for the urban zone.

  8. Comparison of Orbit-Based and Time-Offset-Based Geometric Correction Models for SAR Satellite Imagery Based on Error Simulation

    Science.gov (United States)

    Hong, Seunghwan; Choi, Yoonjo; Park, Ilsuk; Sohn, Hong-Gyoo

    2017-01-01

    Geometric correction of SAR satellite imagery is the process to adjust the model parameters that define the relationship between ground and image coordinates. To achieve sub-pixel geolocation accuracy, the adoption of the appropriate geometric correction model and parameters is important. Until now, various geometric correction models have been developed and applied. However, it is still difficult for general users to adopt a suitable geometric correction models having sufficient precision. In this regard, this paper evaluated the orbit-based and time-offset-based models with an error simulation. To evaluate the geometric correction models, Radarsat-1 images that have large errors in satellite orbit information and TerraSAR-X images that have a reportedly high accuracy in satellite orbit and sensor information were utilized. For Radarsat-1 imagery, the geometric correction model based on the satellite position parameters has a better performance than the model based on time-offset parameters. In the case of the TerraSAR-X imagery, two geometric correction models had similar performance and could ensure sub-pixel geolocation accuracy. PMID:28106729

  9. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends

    Directory of Open Access Journals (Sweden)

    Schmitt Thomas

    2007-04-01

    Full Text Available Abstract The climatic cycles with subsequent glacial and intergalcial periods have had a great impact on the distribution and evolution of species. Using genetic analytical tools considerably increased our understanding of these processes. In this review I therefore give an overview of the molecular biogeography of Europe. For means of simplification, I distinguish between three major biogeographical entities: (i "Mediterranean" with Mediterranean differentiation and dispersal centres, (ii "Continental" with extra-Mediterranean centres and (iii "Alpine" and/or "Arctic" with recent alpine and/or arctic distribution patterns. These different molecular biogeographical patterns are presented using actual examples. Many "Mediterranean" species are differentiated into three major European genetic lineages, which are due to glacial isolation in the three major Mediterranean peninsulas. Postglacial expansion in this group of species is mostly influenced by the barriers of the Pyrenees and the Alps with four resulting main patterns of postglacial range expansions. However, some cases are known with less than one genetic lineage per Mediterranean peninsula on the one hand, and others with a considerable genetic substructure within each of the Mediterranean peninsulas, Asia Minor and the Maghreb. These structures within the Mediterranean sub-centres are often rather strong and in several cases even predate the Pleistocene. For the "Continental" species, it could be shown that the formerly supposed postglacial spread from eastern Palearctic expansion centres is mostly not applicable. Quite the contrary, most of these species apparently had extra-Mediterranean centres of survival in Europe with special importance of the perialpine regions, the Carpathian Basin and parts of the Balkan Peninsula. In the group of "Alpine" and/or "Arctic" species, several molecular biogeographical patterns have been found, which support and improve the postulates based on

  10. New ERP predictions based on (sub-)daily ocean tides from satellite altimetry data

    Science.gov (United States)

    Madzak, Matthias; Böhm, Sigrid; Böhm, Johannes; Bosch, Wolfgang; Schuh, Harald

    2013-04-01

    A new model for Earth rotation variations based on ocean tide models is highly desirable in order to close the gap between geophysical Earth rotation models and geodetic observations. We have started a project, SPOT (Short Period Ocean Tidal variations in Earth Rotation), with the goal to develop a new model of short period Earth rotation variations based on one of the best currently available empirical ocean tide models obtained from satellite altimetry. We employ the EOT11a model which is an upgrade of EOT08a, developed at DGFI, Munich. As EOT11a does not provide the tidal current velocities which are fundamental contributors to Earth rotation excitation, the calculation of current velocities from the tidal elevations is one of three main areas of research in project SPOT. The second key aspect is the conversion from ocean tidal angular momentum to the corresponding ERP variations using state-of-the-art transfer functions. A peculiar innovation at this step will be to consider the Earth's response to ocean tidal loading based on a realistic Earth model, including an anelastic mantle. The third part of the project deals with the introduction of the effect of minor tides. Ocean tide models usually only provide major semi-diurnal and diurnal tidal terms and the minor tides have to be inferred through admittance assumptions. Within the proposed project, selected minor tidal terms and the corresponding ERP variations shall be derived directly from satellite altimetry data. We determine ocean tidal angular momentum of four diurnal and five sub-daily tides from EOT11a and apply the angular momentum approach to derive a new model of ocean tidal Earth rotation variations. This poster gives a detailed description of project SPOT as well as the status of work progress. First results are presented as well.

  11. Validity and feasibility of a satellite imagery-based method for rapid estimation of displaced populations

    Directory of Open Access Journals (Sweden)

    Checchi Francesco

    2013-01-01

    Full Text Available Abstract Background Estimating the size of forcibly displaced populations is key to documenting their plight and allocating sufficient resources to their assistance, but is often not done, particularly during the acute phase of displacement, due to methodological challenges and inaccessibility. In this study, we explored the potential use of very high resolution satellite imagery to remotely estimate forcibly displaced populations. Methods Our method consisted of multiplying (i manual counts of assumed residential structures on a satellite image and (ii estimates of the mean number of people per structure (structure occupancy obtained from publicly available reports. We computed population estimates for 11 sites in Bangladesh, Chad, Democratic Republic of Congo, Ethiopia, Haiti, Kenya and Mozambique (six refugee camps, three internally displaced persons’ camps and two urban neighbourhoods with a mixture of residents and displaced ranging in population from 1,969 to 90,547, and compared these to “gold standard” reference population figures from census or other robust methods. Results Structure counts by independent analysts were reasonably consistent. Between one and 11 occupancy reports were available per site and most of these reported people per household rather than per structure. The imagery-based method had a precision relative to reference population figures of Conclusions In settings with clearly distinguishable individual structures, the remote, imagery-based method had reasonable accuracy for the purposes of rapid estimation, was simple and quick to implement, and would likely perform better in more current application. However, it may have insurmountable limitations in settings featuring connected buildings or shelters, a complex pattern of roofs and multi-level buildings. Based on these results, we discuss possible ways forward for the method’s development.

  12. Core-based Shared Tree Multicast Routing Algorithms for LEO Satellite IP Networks

    Institute of Scientific and Technical Information of China (English)

    Cheng Lianzhen; Zhang Jun; Liu Kai

    2007-01-01

    A new core-based shared tree algorithm, viz core-cluster combination-based shared tree (CCST) algorithm and the weighted version (i.e. w-CCST algorithm) are proposed in order to resolve the channel resources waste problem in typical source-based multicast routing algorithms in low earth orbit (LEO) satellite IP networks. The CCST algorithm includes the dynamic approximate center (DAC)core selection method and the core-cluster combination multicast route construction scheme. Without complicated onboard computation,the DAC method is uniquely developed for highly dynamic networks of periodical and regular movement. The core-cluster combination method takes core node as the initial core-cluster, and expands it stepwise to construct an entire multicast tree at the lowest tree cost by a shortest path scheme between the newly-generated core-cluster and surplus group members, which results in great bandwidth utilization.Moreover, the w-CCST algorithm is able to strike a balance between performance of tree cost and that of end-to-end propagation delay by adjusting the weighted factor to meet strict end-to-end delay requirements of some real-time multicast services at the expense of a slight increase in tree cost. Finally, performance comparison is conducted between the proposed algorithms and typical algorithms in LEO satellite IP networks. Simulation results show that the CCST algorithm significantly decreases the average tree cost against to the others, and also the average end-to-end propagation delay of w-CCST algorithm is lower than that of the CCST algorithm.

  13. Taiyuan Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    There are three major space launch bases in China, the Jiuquan Satellite Launch Center,the Taiyuan Satellite Launch Center and the Xichang Satellite Launch Center. All the three launch centers are located in sparsely populated areas where the terrain is even and the field of vision is broad. Security, transport conditions and the influence of the axial rotation

  14. Hydrological Modelling using Satellite-Based Crop Coefficients: A Comparison of Methods at the Basin Scale

    Directory of Open Access Journals (Sweden)

    Johannes E. Hunink

    2017-02-01

    Full Text Available The parameterization of crop coefficients (kc is critical for determining a water balance. We used satellite-based and literature-based methods to derive kc values for a distributed hydrologic model. We evaluated the impact of different kc parametrization methods on the water balance and simulated hydrologic response at the basin and sub-basin scale. The hydrological model SPHY was calibrated and validated for a period of 15 years for the upper Segura basin (~2500 km2 in Spain, which is characterized by a wide range of terrain, soil, and ecosystem conditions. The model was then applied, using six kc parameterization methods, to determine their spatial and temporal impacts on actual evapotranspiration, streamflow, and soil moisture. The parameterization methods used include: (i Normalized Difference Vegetation Index (NDVI observations from MODIS; (ii seasonally-averaged NDVI patterns, cell-based and landuse-based; and (iii literature-based tabular values per land use type. The analysis shows that the influence of different kc parametrization methods on basin-level streamflow is relatively small and constant throughout the year, but it has a bigger effect on seasonal evapotranspiration and soil moisture. In the autumn especially, deviations can go up to about 15% of monthly streamflow. At smaller, sub-basin scale, deviations from the NDVI-based reference run can be more than 30%. Overall, the study shows that modeling of future hydrological changes can be improved by using remote sensing information for the parameterization of crop coefficients.

  15. Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

    Directory of Open Access Journals (Sweden)

    M. Ashrafi

    2005-01-01

    Full Text Available Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

  16. Recognization of Satellite Images of Large Scale Data Based on Map- Reduce Framework

    Directory of Open Access Journals (Sweden)

    Vidya Jadhav,

    2014-03-01

    Full Text Available Today in the world of cloud and grid computing integration of data from heterogeneous databases is inevitable.This will become complex when size of the database is very large. M-R is a new framework specifically designed for processing huge datasets on distributed sources. Apache’s Hadoop is an implementation of M-R.Currently Hadoop has been applied successfully for file based datasets. This project proposes to utilize the parallel and distributed processing capability of Hadoop M-R for handling Images on large datasets.The presented methodology of land-cover recognition provides a scalable solution for automatic satellite imagery analysis, especially when GIS data is not readily available, or surface change may occur due to catastrophic events such as flooding, hurricane, and snow storm, etc.Here,we are using algorithms such as Image Differentiation,Image Duplication,Zoom-In,Gray-Scale.

  17. Cuckoo search algorithm based satellite image contrast and brightness enhancement using DWT-SVD.

    Science.gov (United States)

    Bhandari, A K; Soni, V; Kumar, A; Singh, G K

    2014-07-01

    This paper presents a new contrast enhancement approach which is based on Cuckoo Search (CS) algorithm and DWT-SVD for quality improvement of the low contrast satellite images. The input image is decomposed into the four frequency subbands through Discrete Wavelet Transform (DWT), and CS algorithm used to optimize each subband of DWT and then obtains the singular value matrix of the low-low thresholded subband image and finally, it reconstructs the enhanced image by applying IDWT. The singular value matrix employed intensity information of the particular image, and any modification in the singular values changes the intensity of the given image. The experimental results show superiority of the proposed method performance in terms of PSNR, MSE, Mean and Standard Deviation over conventional and state-of-the-art techniques.

  18. Adaptive sliding mode controller based on super-twist observer for tethered satellite system

    Science.gov (United States)

    Keshtkar, Sajjad; Poznyak, Alexander

    2016-09-01

    In this work, the sliding mode control based on the super-twist observer is presented. The parameters of the controller as well as the observer are admitted to be time-varying and depending on available current measurements. In view of that, the considered controller is referred to as an adaptive one. It is shown that the deviations of the generated state estimates from real state values together with a distance of the closed-loop system trajectories to a desired sliding surface reach a μ-zone around the origin in finite time. The application of the suggested controller is illustrated for the orientation of a tethered satellite system in a required position.

  19. Trellis coding with Continuous Phase Modulation (CPM) for satellite-based land-mobile communications

    Science.gov (United States)

    1989-01-01

    This volume of the final report summarizes the results of our studies on the satellite-based mobile communications project. It includes: a detailed analysis, design, and simulations of trellis coded, full/partial response CPM signals with/without interleaving over various Rician fading channels; analysis and simulation of computational cutoff rates for coherent, noncoherent, and differential detection of CPM signals; optimization of the complete transmission system; analysis and simulation of power spectrum of the CPM signals; design and development of a class of Doppler frequency shift estimators; design and development of a symbol timing recovery circuit; and breadboard implementation of the transmission system. Studies prove the suitability of the CPM system for mobile communications.

  20. The Application of GeoRSC Based on Domestic Satellite in Field Remote Sensing Anomaly Verification

    Science.gov (United States)

    Gao, Ting; Yang, Min; Han, Haihui; Li, Jianqiang; Yi, Huan

    2016-11-01

    The Geo REC is the digital remote sensing survey system which based on domestic satellites, and by means of it, the thesis carriedy out a remote sensing anomaly verification field application test in Nachitai area of Qinghai. Field test checks the system installation, the stability of the system operation, the efficiency of reading and show the romoate image or vector data, the security of the data management system and the accuracy of BeiDou navigation; through the test data, the author indicated that the hardware and software system could satisfy the remote sensing anomaly verification work in field, which could also could make it convenient forconvenient the workflow of remote sense survey and, improve the work efficiency,. Aat the same time, in the course of the experiment, we also found some shortcomings of the system, and give some suggestions for improvement combineding with the practical work for the system.

  1. CAPS satellite spread spectrum communication blind multi-user detecting system based on chaotic sequences

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Multiple Path Interference (MPI) and Multiple Access Interference (MAI) are important factors that affect the performance of Chinese Area Positioning System (CAPS). These problems can be solved by using spreading sequences with ideal properties and multi-user detectors. Chaotic sequences based on Chebyshev map are studied and the satellite communication system model is set up to investigate the application of chaotic sequences for CAPS in this paper. Simulation results show that chaotic sequences have desirable correlation properties and it is easy to generate a large number of chaotic sequences with good security. It has great practical value to apply chaotic sequences to CAPS together with multi-user detecting technology and the system performance can be improved greatly.

  2. A new predistortion based on the double-mode adaptive technique for satellite communications

    Science.gov (United States)

    Wang, Henghui; Zhang, Hao; Ye, Wu; Feng, Suili

    2005-11-01

    Satellite communication channels are equipped with the Traveling Wave Tube (TWT) amplifiers which cause severe nonlinear distortions when they work near saturation. In this paper, a new predistorter is designed based on the double-mode adaptive technique. Firstly, a neural network is used to design the amplitude predistorter, and the error-filtering scheme is applied to improve the classical structure of adaptive control, hence the convergent process turns to be rapid by using the LMS algorithm. Secondly, a real polynomial is applied to identify the phase character of TWT, and then the negative polynomial is copied to the transmitted path. Simulation results show that the compensated system is characterized by the approximately ideal amplifier within the range of saturated input value.

  3. A new strategy of counterattacking anti-satellite based on motion camouflage

    Institute of Scientific and Technical Information of China (English)

    RADICE; Gianmarco

    2010-01-01

    Motion Camouflage (MC) is illuminated as a novel strategy in counterattacking anti-satellite by way of stealth trajectory scheduling. The dynamics model of MC in space is developed and a quadratic function with three boundary constraints is employed for trajectory determination. Based on the model a scenario is set to run the simulation. The results indicate given the designed acceleration input, the predator will be moved following a prescribed route, which precisely locates the predator between two objects at each time instant. In the last approaching phase, the motion is achieved with a big bumping rate which guarantees the power of this striking. Methods for deriving minimum fuel cost in the fixed approaching duration and the minimum approaching duration in limited acceleration input are proposed and are verified in the simulation. At last, camouflage is recognized as a multi-faceted affair, in which stealth trajectory design is considered an effective technique in stealth cooperation.

  4. CAPS satellite spread spectrum communication blind multi-user detecting system based on chaotic sequences

    Institute of Scientific and Technical Information of China (English)

    LEI LiHua; SHI HuLi; MA GuanYi

    2009-01-01

    Multiple Path Interference (MPI) and Multiple Access Interference (MAI) are Important factors that affect the performance of Chinese Area Positioning System (CAPS),These problems can be solved by using spreading sequences with ideal properties and multi-user detectors.Chaotic sequences based on Chebyshev map are studied and the satellite communication system model is set up to investigate the application of chaotic sequences for CAPS in this paper,Simulation results show that chaotic sequences have desirable correlation properties and it is easy to generate a large number of chaotic sequences with good security.It has great practical value to apply chaotic sequences to CAPS together with multi-user detecting technology and the system performance can be improved greatly.

  5. Addressing and Presenting Quality of Satellite Data via Web-Based Services

    Science.gov (United States)

    Leptoukh, Gregory; Lynnes, C.; Ahmad, S.; Fox, P.; Zednik, S.; West, P.

    2011-01-01

    With the recent attention to climate change and proliferation of remote-sensing data utilization, climate model and various environmental monitoring and protection applications have begun to increasingly rely on satellite measurements. Research application users seek good quality satellite data, with uncertainties and biases provided for each data point. However, different communities address remote sensing quality issues rather inconsistently and differently. We describe our attempt to systematically characterize, capture, and provision quality and uncertainty information as it applies to the NASA MODIS Aerosol Optical Depth data product. In particular, we note the semantic differences in quality/bias/uncertainty at the pixel, granule, product, and record levels. We outline various factors contributing to uncertainty or error budget; errors. Web-based science analysis and processing tools allow users to access, analyze, and generate visualizations of data while alleviating users from having directly managing complex data processing operations. These tools provide value by streamlining the data analysis process, but usually shield users from details of the data processing steps, algorithm assumptions, caveats, etc. Correct interpretation of the final analysis requires user understanding of how data has been generated and processed and what potential biases, anomalies, or errors may have been introduced. By providing services that leverage data lineage provenance and domain-expertise, expert systems can be built to aid the user in understanding data sources, processing, and the suitability for use of products generated by the tools. We describe our experiences developing a semantic, provenance-aware, expert-knowledge advisory system applied to NASA Giovanni web-based Earth science data analysis tool as part of the ESTO AIST-funded Multi-sensor Data Synergy Advisor project.

  6. ESTIMATING RELIABILITY OF DISTURBANCES IN SATELLITE TIME SERIES DATA BASED ON STATISTICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Z.-G. Zhou

    2016-06-01

    Full Text Available Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite image time series. However, the detection results were only labelled with “Change/ No change” by most of the present methods, while few methods focus on estimating reliability (or confidence level of the detected disturbances in image time series. To this end, this paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, through analysis of full temporal information laid in time series data. The method consists of three main steps. (1 Segmenting and modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST. (2 Forecasting and detecting disturbances in new time series data. (3 Estimating reliability of each detected disturbance using statistical analysis based on Confidence Interval (CI and Confidence Levels (CL. The method was validated by estimating reliability of disturbance regions caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%.

  7. Merged dust climatology in Phoenix, Arizona based on satellite and station data

    Science.gov (United States)

    Lei, Hang; Wang, Julian X. L.; Tong, Daniel Q.; Lee, Pius

    2016-11-01

    In order to construct climate quality long-term dust storm dataset, merged dust storm climatology in Phoenix is developed based on three data sources: regular meteorological records, in situ air quality measurements, and satellite remote sensing observations. The result presented in this paper takes into account the advantages of each dataset and integrates individual analyses demonstrated and presented in previous studies that laid foundation to reconstruct a consistent and continuous time series of dust frequency. A key for the merging procedure is to determine analysis criteria suitable for each individual data source. A practical application to historic records of dust storm activities over the Phoenix area is presented to illustrate detailed steps, advantages, and limitations of the newly developed process. Three datasets are meteorological records from the Sky Harbor station, satellite observed aerosol optical depth data from moderate resolution imaging spectroradiometer, and the U.S. Environmental Protection Agency Air Quality System particulate matter data of eight sites surrounding Phoenix. Our purpose is to construct dust climatology over the Phoenix region for the period 1948-2012. Data qualities of the reconstructed dust climatology are assessed based on the availability and quality of the input data. The period during 2000-2012 has the best quality since all datasets are well archived. The reconstructed climatology shows that dust storm activities over the Phoenix region have large interannual variability. However, seasonal variations show a skewed distribution with higher frequency of dust storm activities in July and August and relatively quiet during the rest of months. Combining advantages of all the available datasets, this study presents a merged product that provides a consistent and continuous time series of dust storm activities suitable for climate studies.

  8. Phylogeny and Biogeography of Thuja L. (Cupressaceae), an Eastern Asian and North American Disjunct Genus

    Institute of Scientific and Technical Information of China (English)

    Jian-Hua LI; Qiao-Ping XIANG

    2005-01-01

    In order to develop better insights into biogeographic patterns of eastern Asian and North American disjunct plant genera, sequences of nuclear ribosomal DNA internal transcribed spacer (nr DNA ITS) region were used to estimate interspecific relationships of Thuja L. (Cupressaceae) and infer its biogeography based on the phylogeny. According to the phylogenetic analysis, two clades were recognized. The first clade included Thuja plicata D. Don (western North America) and T. koraiensis Nakai (northeastern Asia), and the second one contained T. occidentalis (Gord.) Carr. (Japan). The ancestral area of Thuja was inferred to be eastern Asia, and two dispersal events were responsible for the modern distribution of Thuja in North America. Both the North Atlantic land bridge and Bering land bridge were possible routes for the migration of ancestral populations to North America.

  9. Satellite and ground-based sensors for the Urban Heat Island analysis in the city of Rome

    DEFF Research Database (Denmark)

    Fabrizi, Roberto; Bonafoni, Stefania; Biondi, Riccardo

    2010-01-01

    In this work, the trend of the Urban Heat Island (UHI) of Rome is analyzed by both ground-based weather stations and a satellite-based infrared sensor. First, we have developed a suitable algorithm employing satellite brightness temperatures for the estimation of the air temperature belonging...... to the layer of air closest to the surface. UHI spatial characteristics have been assessed using air temperatures measured by both weather stations and brightness temperature maps from the Advanced Along Track Scanning Radiometer (AATSR) on board ENVISAT polar-orbiting satellite. In total, 634 daytime...... and nighttime scenes taken between 2003 and 2006 have been processed. Analysis of the Canopy Layer Heat Island (CLHI) during summer months reveals a mean growth in magnitude of 3-4 K during nighttime and a negative or almost zero CLHI intensity during daytime, confirmed by the weather stations. © 2010...

  10. Human artificial chromosome assembly by transposon-based retrofitting of genomic BACs with synthetic alpha-satellite arrays.

    Science.gov (United States)

    Basu, Joydeep; Willard, Huntington F; Stromberg, Gregory

    2007-01-01

    The development of methodologies for the rapid assembly of synthetic alpha-satellite arrays recapitulating the higher-order periodic organization of native human centromeres permits the systematic investigation of the significance of primary sequence and sequence organization in centromere function. Synthetic arrays with defined mutations affecting sequence and/or organization may be evaluated in a de novo human artificial chromosome assay. This unit describes strategies for the assembly of custom built alpha-satellite arrays containing any desired mutation as well as strategies for the construction and manipulation of alpha satellite-based transposons. Transposons permit the rapid and reliable retrofitting of any genomic bacterial artificial chromosome (BAC) with synthetic alpha-satellite arrays and other functional components, thereby facilitating conversion into BAC-based human artificial chromosome vectors. These techniques permit identification and optimization of the critical parameters underlying the unique ability of alpha-satellite DNA to facilitate de novo centromere assembly, and they will establish the foundation for the next generation of human artificial chromosome vectors.

  11. A proposal to use satellite-based air pollution mapping for standardising the siting of bioindicators

    Energy Technology Data Exchange (ETDEWEB)

    Sifakis, N.I. [National Observatory of Athens, Pendeli (Greece). Inst. for Space Applications and Remote Sensing

    2002-07-01

    Satellite Earth observation (EO) data, providing synoptic and repetitive views of environmental phenomena, can be used to detect pollution palls, assess the pollution load and map its dispersion around urban areas. The pollution assessment by EO is carried out in terms of 'optical thickness' quantifiable by optical atmospheric effects on the satellite imagery. Visual photointerpretation and digital processing of satellite images of the Greater Athens Area allowed obtaining, for the first time, synoptic views of the pollution dispersion in an around the Athens basin. These 'satellite pollution maps' matched very well with the results from bioindication studies carried out in the same area. (orig.)

  12. Biogeografía de la Zona de Transición Mexicana con base en un análisis de árboles reconciliados Biogeography of the Mexican Transition Zone based on a reconciled trees analysis

    Directory of Open Access Journals (Sweden)

    Alejandra Miguez-Gutiérrez

    2013-03-01

    of the Mexican Transition Zone through 3 hypotheses of regionalization. We used a reconciled trees method based on the phylogenies of 10 genera of beetles, gymnosperms, lizards and snakes. Seven general area cladograms were generated using assumptions 0 and 1 and the Nelson and majority consensus. They showed 2 groups of areas, 1 with Neotropical affinities and the other with Nearctic affinities. The Sierra Madre del Sur resulted as the sister area of the Trans-Mexican Volcanic Belt. Other constant patterns were the area that involves Tamaulipas and Texas as sister area of the Chihuahuan and Sonoran deserts, and the highlands of Chiapas and Guatemala were always recovered as the sister area of the Talamanca ridge. Our results suggest that the most important vicariant events within the Mexican Transition Zone are the Trans-Mexican Volcanic Belt, which divides the majority of the endemism areas with Neartic affinities (north to this from those endemism areas of Neotropical affinities (south to this and the Tehuantepec Isthmus; which together with the Nicaraguan depression isolates Nuclear Central America. Other patterns appear in either regionalization proposal, but not within the 3, and require future studies in order to find well supported explanations. Even though our results have appeared in previous hypotheses, there are worth due to the fact that we include phylogenetic information of different taxa, we employed reconciled trees, an insufficiently used method, and we searched for congruence between results using 3 regionalization proposals.

  13. 基于生物地理算法的地铁时间优化方案研究%Research on Timetable Optimization of Metro based on Biogeography-Based Optimization

    Institute of Scientific and Technical Information of China (English)

    梁枫; 秦斌; 王欣; 张凯; 曹成琦

    2016-01-01

    随着地铁的快速发展,在给人们带来便利的同时,运营成本和能源的消耗也大幅度提升。而根据研究表明,电网能耗的大部分消耗都是由地铁系统引起的。因此,在满足地铁正常运行和人们正常出行的前提下,实现地铁系统的节能减排具有重要意义。本文在分析列车运行过程和已有优化方法的基础上,采用生物地理算法对地铁列车的停站时间方案进行优化研究。首先建立时间方案的数学模型和多列车运行仿真模型。在多列车运行过程中,在同一供电区同一时间内,有更多的列车同时进出站,将制动产生的能量被同一时间启动的列车吸收利用,这样就得到了多列车运行的最小能耗。利用生物地理算法对停站时间增量表进行优化,在保证安全运行的前提下,更改列车的运行和停站时间,使列车改变原有的时间运行方案运行,使更多的列车在同一时间进出站,最终得到最小能耗。采用生物地理算法对武汉地铁二号线数据进行优化,验证了此算法的可行性,同时得到优化结果。结果表明,本文采用的生物地理算法对时刻表的制定与优化具有良好效果。%Abctract:Metro system has rapidly developed these years, it brings great convenience to people's life living, but at the same time, its operation cost and energy consumption has increased signiifcantly. according to the researches, most of the en-ergy consumption of the power grid is caused by the metro system. Therefore, it is of great signiifcance to realize metro system’s energy saving and emission reduction under the premise of meeting the normal operation of the subway and people's normal travel.Based on the analysis of the train running process and the existing optimization methods, this paper is aimed at using Bio-geography-Baed Optimization to achieve timetable optimization of Metro system.the mathematical model of

  14. South African Weather Service operational satellite based precipitation estimation technique: applications and improvements

    Directory of Open Access Journals (Sweden)

    E. de Coning

    2010-11-01

    Full Text Available Extreme weather related to heavy or more frequent precipitation events seem to be a likely possibility for the future of our planet. While precipitation measurements can be done by means of rain gauges, the obvious disadvantages of point measurements are driving meteorologists towards remotely sensed precipitation methods. In South Africa more sophisticated and expensive nowcasting technology such as radar and lightning networks are available, supported by a fairly dense rain gauge network of about 1500 gauges. In the rest of southern Africa rainfall measurements are more difficult to obtain. The availability of the local version of the Unified Model and the Meteosat Second Generation satellite data make these products ideal components of precipitation measurement in data sparse regions such as Africa. In this article the local version of the Hydroestimator (originally from NOAA/NESDIS is discussed as well as its applications for precipitation measurement in this region. Hourly accumulations of the Hydroestimator are currently used as a satellite based precipitation estimator for the South African Flash Flood Guidance system. However, the Hydroestimator is by no means a perfect representation of the real rainfall. In this study the Hydroestimator and the stratiform rainfall field from the Unified Model are both bias corrected and then combined into a new precipitation field which can feed into the South African Flash Flood Guidance system. This new product should provide a more accurate and comprehensive input to the Flash Flood Guidance systems in South Africa as well as southern Africa. In this way the southern African region where data is sparse and very few radars are available can have access to more accurate flash flood guidance.

  15. Satellite Altimetry-Based Sea Level at Global and Regional Scales

    Science.gov (United States)

    Ablain, M.; Legeais, J. F.; Prandi, P.; Marcos, M.; Fenoglio-Marc, L.; Dieng, H. B.; Benveniste, J.; Cazenave, A.

    2017-01-01

    Since the beginning of the 1990s, sea level is routinely measured using high-precision satellite altimetry. Over the past 25 years, several groups worldwide involved in processing the satellite altimetry data regularly provide updates of sea level time series at global and regional scales. Here we present an ongoing effort supported by the European Space Agency (ESA) Climate Change Initiative Programme for improving the altimetry-based sea level products. Two main objectives characterize this enterprise: (1) to make use of ESA missions (ERS-1 and 2 and Envisat) in addition to the so-called `reference' missions like TOPEX/Poseidon and the Jason series in the computation of the sea level time series, and (2) to improve all processing steps in order to meet the Global Climate Observing System (GCOS) accuracy requirements defined for a set of 50 Essential Climate Variables, sea level being one of them. We show that improved geophysical corrections, dedicated processing algorithms, reduction of instrumental bias and drifts, and careful linkage between missions led to improved sea level products. Regarding the long-term trend, the new global mean sea level record accuracy now approaches the GCOS requirements (of 0.3 mm/year). Regional trend uncertainty has been reduced by a factor of 2, but orbital and wet tropospheric corrections errors still prevent fully reaching the GCOS accuracy requirement. Similarly at the interannual time scale, the global mean sea level still displays 2-4 mm errors that are not yet fully understood. The recent launch of new altimetry missions (Sentinel-3, Jason-3) and the inclusion of data from currently flying missions (e.g., CryoSat, SARAL/AltiKa) may provide further improvements to this important climate record.

  16. Long-term change analysis of satellite-based evapotranspiration over Indian vegetated surface

    Science.gov (United States)

    Gupta, Shweta; Bhattacharya, Bimal K.; Krishna, Akhouri P.

    2016-05-01

    In the present study, trend of satellite based annual evapotranspiration (ET) and natural forcing factors responsible for this were analyzed. Thirty years (1981-2010) of ET data at 0.08° grid resolution, generated over Indian region from opticalthermal observations from NOAA PAL and MODIS AQUA satellites, were used. Long-term data on gridded (0.5° x 0.5°) annual rainfall (RF), annual mean surface soil moisture (SSM) ERS scatterometer at 25 km resolution and annual mean incoming shortwave radiation from MERRA-2D reanalysis were also analyzed. Mann-Kendall tests were performed with time series data for trend analysis. Mean annual ET loss from Indian ago-ecosystem was found to be almost double (1100 Cubic Km) than Indian forest ecosystem (550 Cubic Km). Rainfed vegetation systems such as forest, rainfed cropland, grassland showed declining ET trend @ - 4.8, -0.6 &-0.4 Cubic Kmyr-1, respectively during 30 years. Irrigated cropland initially showed ET decline upto 1995 @ -0.8 cubic Kmyr-1 which could possibly be due to solar dimming followed by increasing ET @ 0.9 cubic Kmyr-1 after 1995. A cross-over point was detected between forest ET decline and ET increase in irrigated cropland during 2008. During 2001-2010, the four agriculturally important Indian states eastern, central, western and southern showed significantly increasing ET trend with S-score of 15-25 and Z-score of 1.09-2.9. Increasing ET in western and southern states was found to be coupled with increase in annual rainfall and SSM. But in eastern and central states no significant trend in rainfall was observed though significant increase in ET was noticed. The study recommended to investigate the influence of anthropogenic factors such as increase in area under irrigation, increased use of water for irrigation through ground water pumping, change in cropping pattern and cultivars on increasing ET.

  17. Internet-Based Laboratory Activities Designed for Studying the Sun with Satellites

    Science.gov (United States)

    Slater, T. F.

    1998-12-01

    Yohkoh Public Outreach Project (YPOP) is a collaborative industry, university, and K-16 project bringing fascinating and dynamic images of the Sun to the public in real-time. Partners have developed an extensive public access and educational WWW site containing more than 100 pages of vibrant images with current information that focuses on movies of the X-ray output of our Sun taken by the Yohkoh Satellite. More than 5 Gb of images and movies are available on the WWW site from the Yohkoh satellite, a joint project of the Institute for Space and Astronautical Sciences (ISAS) and NASA. Using a movie theater motif, the site was created by teams working at Lockheed Martin Advanced Technology Center, Palo Alto, CA in the Solar and Astrophysics Research Group, the Montana State University Solar Physics Research Group, and the Montana State University Conceptual Astronomy and Physics Education Research Group with funding from the NASA Learning Technology Project (LTP) program (NASA LTP SK30G4410R). The Yohkoh Movie Theater Internet Site is found at URL: http://www.lmsal.com/YPOP/ and mirrored at URL: http://solar.physics.montana.edu/YPOP/. In addition to being able to request automated movies for any dates in a 5 Gb on-line database, the user can view automatically updated daily images and movies of our Sun over the last 72 hours. Master science teachers working with the NASA funded Yohkoh Public Outreach Project have developed nine technology-based on-line lessons for K-16 classrooms. These interdisciplinary science, mathematics, and technology lessons integrate Internet resources, real-time images of the Sun, and extensive NASA image databases. Instructors are able to freely access each of the classroom-ready activities. The activities require students to use scientific inquiry skills and manage electronic information to solve problems consistent with the emphasis of the NRC National Science Education Standards.

  18. Lightning climatology over Jakarta, Indonesia, based on long-term surface operational, satellite, and campaign observations

    Science.gov (United States)

    Mori, Shuichi; Wu, Peiming; Yamanaka, Manabu D.; Hattori, Miki; Hamada, Jun-Ichi; Arbain, Ardhi A.; Lestari, Sopia; Sulistyowati, Reni; Syamsudin, Fadli

    2016-04-01

    Lightning frequency over Indonesian Maritime Continent (MC) is quite high (Petersen and Rutledge 2001, Christian et al. 2003, Takayabu 2006, etc). In particular, Bogor (south of Jakarta, west Jawa) had 322 days of lightning in one year (Guinness Book in 1988). Lightning causes serious damage on nature and society over the MC; forest fore, power outage, inrush/surge currents on many kinds of electronics. Lightning climatology and meso-scale characteristics of thunderstorm over the MC, in particular over Jakarta, where social damage is quite serious, were examined. We made Statistical analysis of lightning and thunderstorm based on TRMM Lightning Image Sensor (LIS) and Global Satellite Mapping of Precipitation (GSMaP) together with long-term operational surface observation data (SYNOP) in terms of diurnal, intraseasonal, monsoonal, and interannual variations. In addition, we carried out a campaign observation in February 2015 in Bogor to obtain meso-scale structure and dynamics of thunderstorm over Jakarta to focus on graupel and other ice phase particles inside by using an X-band dual-polarimetric (DP) radar. Recently, Virts et al. (2013a, b) showed comprehensive lightning climatology based on the World Wide Lightning Location Network (WWLLN). However, they also reported problems with its detection efficiency (< 10%) and small sampling frequency (< 0.1% of the time fly over tropics) by satellites. Therefore, we firstly examine in situ lightning data based on SYNOP observed by the Indonesian Agency for Meteorology, Climatology, and Geophysics (BMKG) because lightning is quite local and sporadic phenomena. We've started to analyze lightning characteristics over Jakarta region based on SYNOP as the ground truth data and GSMaP. Variability of lightning frequency around Jakarta was affected much by local conditions, e.g., topography (elevation) and proximity to the coastline. We confirmed the lightning frequency and its diurnal variation around Jakarta were much

  19. Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods

    Science.gov (United States)

    Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo

    2004-01-01

    In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression

  20. Assimilation of Satellite Based Soil Moisture Data in the National Weather Service's Flash Flood Guidance System

    Science.gov (United States)

    Seo, D.; Lakhankar, T.; Cosgrove, B.; Khanbilvardi, R.

    2012-12-01

    Climate change and variability increases the probability of frequency, timing, intensity, and duration of flood events. After rainfall, soil moisture is the most important factor dictating flash flooding, since rainfall infiltration and runoff are based on the saturation of the soil. It is difficult to conduct ground-based measurements of soil moisture consistently and regionally. As such, soil moisture is often derived from models and agencies such as the National Oceanic and Atmospheric Administration's National Weather Service (NOAA/NWS) use proxy estimates of soil moisture at the surface in order support operational flood forecasting. In particular, a daily national map of Flash Flood Guidance (FFG) is produced that is based on surface soil moisture deficit and threshold runoff estimates. Flash flood warnings are issued by Weather Forecast Offices (WFOs) and are underpinned by information from the Flash Flood Guidance (FFG) system operated by the River Forecast Centers (RFCs). This study analyzes the accuracy and limitations of the FFG system using reported flash flood cases in 2010 and 2011. The flash flood reports were obtained from the NWS Storm Event database for the Arkansas-Red Basin RFC (ABRFC). The current FFG system at the ABRFC provides gridded flash flood guidance (GFFG) System using the NWS Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) to translate the upper zone soil moisture to estimates of Soil Conservation Service Curve Numbers. Comparison of the GFFG and real-time Multi-sensor Precipitation Estimator derived Quantitative Precipitation Estimate (QPE) for the same duration and location were used to analyze the success of the system. Improved flash flood forecasting requires accurate and high resolution soil surface information. The remote sensing observations of soil moisture can improve the flood forecasting accuracy. The Soil Moisture Active and Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellites are two

  1. A Highly Secure Identity-Based Authenticated Key-Exchange Protocol for Satellite Communication

    NARCIS (Netherlands)

    Zhong Yantao, [No Value; Ma Jianfeng, [No Value

    2010-01-01

    In recent years, significant improvements have been made to the techniques used for analyzing satellite communication and attacking satellite systems. In 2003, a research team at Los Alamos National Laboratory, USA, demonstrated the ease with which civilian global positioning system (GPS) spoofing a

  2. High Resolution Imaging of Satellites with Ground-Based 10-m Astronomical Telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C

    2007-01-04

    High resolution imaging of artificial satellites can play an important role in current and future space endeavors. One such use is acquiring detailed images that can be used to identify or confirm damage and aid repair plans. It is shown that a 10-m astronomical telescope equipped with an adaptive optics system (AO) to correct for atmospheric turbulence using a natural guide star can acquire high resolution images of satellites in low-orbits using a fast shutter and a near-infrared camera even if the telescope is not capable of tracking satellites. With the telescope pointing towards the satellite projected orbit and less than 30 arcsec away from a guide star, multiple images of the satellite are acquired on the detector using the fast shutter. Images can then be shifted and coadded by post processing to increase the satellite signal to noise ratio. Using the Keck telescope typical Strehl ratio and anisoplanatism angle as well as a simple diffusion/reflection model for a satellite 400 km away observed near Zenith at sunset or sunrise, it is expected that such system will produced > 10{sigma} K-band images at a resolution of 10 cm inside a 60 arcsec diameter field of view. If implemented, such camera could deliver the highest resolution satellite images ever acquired from the ground.

  3. Attitude Model of a Reaction Wheel/Fixed Thruster Based Satellite Using Telemetry Data

    Science.gov (United States)

    2005-03-01

    with an in-depth discussion on the model that provides satellite orientation from received telemetry data. 3.1 Hardware This first section talks about... satellite orientation from 5-1 attitude controllers, but a lot of work remains to be done in improving the fidelity of the model in order to achieve more

  4. Small satellite attitude determination based on GPS/IMU data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Golovan, Andrey [Navigation and Control Laboratory, M.V. Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow (Russian Federation); Cepe, Ali [Department of Applied Mechanics and Control, M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2014-12-10

    In this paper, we present the mathematical models and algorithms that describe the problem of attitude determination for a small satellite using measurements from three angular rate sensors (ARS) and aiding measurements from multiple GPS receivers/antennas rigidly attached to the platform of the satellite.

  5. Optimised collision avoidance for an ultra-close rendezvous with a failed satellite based on the Gauss pseudospectral method

    Science.gov (United States)

    Chu, Xiaoyu; Zhang, Jingrui; Lu, Shan; Zhang, Yao; Sun, Yue

    2016-11-01

    This paper presents a trajectory planning algorithm to optimise the collision avoidance of a chasing spacecraft operating in an ultra-close proximity to a failed satellite. The complex configuration and the tumbling motion of the failed satellite are considered. The two-spacecraft rendezvous dynamics are formulated based on the target body frame, and the collision avoidance constraints are detailed, particularly concerning the uncertainties. An optimisation solution of the approaching problem is generated using the Gauss pseudospectral method. A closed-loop control is used to track the optimised trajectory. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms.

  6. Analysis of rain fade duration models for Earth-to-satellite path based on data measured in Malaysia

    Science.gov (United States)

    Dao, Hassan; Rafiqul, Islam Md; Al-Khateeb, Khalid A. S.

    2013-12-01

    Statistical analysis of rain fade duration is crucial information for system engineer to design and plan a fade mitigation technique (FMT) for the satellite communication system. An investigation is carried out based on data measured of one year period in Kuala Lumpur, Malaysia from satellite path of MEASAT3. This paper presents statistical analysis of measured fade duration on high elevation angle (77.4°) in Ku-band compared to three prediction models of fade duration. It is found that none of the models could predict measured fade duration distribution accurately.

  7. Use of satellite-based aerosol optical depth and spatial clustering to predict ambient PM2.5 concentrations

    OpenAIRE

    2012-01-01

    Satellite-based PM2.5 monitoring has the potential to complement ground PM2.5 monitoring networks, especially for regions with sparsely distributed monitors. Satellite remote sensing provides data on aerosol optical depth (AOD), which reflects particle abundance in the atmospheric column. Thus AOD has been used in statistical models to predict ground-level PM2.5 concentrations. However, previous studies have shown that AOD may not be a strong predictor of PM2.5 ground levels. Another shortcom...

  8. Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration

    NARCIS (Netherlands)

    Rientjes, T.H.M.; Muthuwatta, L.P.; Bos, M.G.; Booij, M.J.; Bhatti, H.A.

    2013-01-01

    In this study, streamflow (Qs) and satellite-based actual evapotranspiration (ETa) are used in a multi-variable calibration framework to reproduce the catchment water balance. The application is for the HBV rainfall–runoff model at daily time-step for the Karkheh River Basin (51,000 km2) in Iran. Mo

  9. Satellite based radar interferometry to estimate large-scale soil water depletion from clay shrinkage: possibilities and limitations

    NARCIS (Netherlands)

    Brake, te B.; Hanssen, R.F.; Ploeg, van der M.J.; Rooij, de G.H.

    2013-01-01

    Satellite-based radar interferometry is a technique capable of measuring small surface elevation changes at large scales and with a high resolution. In vadose zone hydrology, it has been recognized for a long time that surface elevation changes due to swell and shrinkage of clayey soils can serve as

  10. Comparison of ground based indices (API and AQI) with satellite based aerosol products.

    Science.gov (United States)

    Zheng, Sheng; Cao, Chun-Xiang; Singh, Ramesh P

    2014-08-01

    Air quality in mega cities is one of the major concerns due to serious health issues and its indirect impact to the climate. Among mega cities, Beijing city is considered as one of the densely populated cities with extremely poor air quality. The meteorological parameters (wind, surface temperature, air temperature and relative humidity) control the dynamics and dispersion of air pollution. China National Environmental Monitoring Centre (CNEMC) started air pollution index (API) as of 2000 to evaluate air quality, but over the years, it was felt that the air quality is not well represented by API. Recently, the Ministry of Environmental Protection (MEP) of the People's Republic of China (PRC) started using a new index "air quality index (AQI)" from January 2013. We have compared API and AQI with three different MODIS (MODIS - Moderate Resolution Imaging SpectroRadiometer, onboard the Terra/Aqua satellites) AOD (aerosol optical depth) products for ten months, January-October, 2013. The correlation between AQI and Aqua Deep Blue AOD was found to be reasonably good as compared with API, mainly due to inclusion of PM2.5 in the calculation of AQI. In addition, for every month, the correlation coefficient between AQI and Aqua Deep Blue AOD was found to be relatively higher in the month of February to May. According to the monthly average distribution of precipitation, temperature, and PM10, the air quality in the months of June-September was better as compared to those in the months of February-May. AQI and Aqua Deep Blue AOD show highly polluted days associated with dust event, representing true air quality of Beijing.

  11. Wave height possibility distribution characteristics of significant wave height in China Sea based on multi-satellite grid data

    Science.gov (United States)

    Han, W.; Yang, J.

    2016-11-01

    This paper discusses the group of wave height possibility distribution characteristics of significant wave height in China Sea based on multi-satellite grid data, the grid SWH data merges six satellites (TOPEX/Poseidon, Jason-1/2, ENVISAT, Cryosat-2, HY-2A) corrected satellite altimeter data into the global SWH grid data in 2000∼2015 using Inverse Distance Weighting Method. Comparing the difference of wave height possibility distribution of two schemes that scheme two includes all of 6 satellite data and scheme one includes all of other 5 satellite data except HY-2A in two wave height interval, the first interval is [0,25) m, the second interval is [4,25) m, finding that two schemes have close wave height probability distribution and the probability change trend, there are difference only in interval [0.4, 1.8) m and the possibility in this interval occupies over 70%; then mainly discussing scheme two, finding that the interval of greatest wave height possibility is [0.6, 3) m, and the wave height possibility that the SWH is greater than 4m is less than 0.18%.

  12. Projected impacts of climate change and ocean acidification on the global biogeography of planktonic foraminifera

    Directory of Open Access Journals (Sweden)

    T. Roy

    2014-06-01

    Full Text Available Planktonic foraminifera are a major contributor to the deep carbonate-flux and the planktonic biomass of the global ocean. Their microfossil deposits form one of the richest databases for reconstructing paleoenvironments, particularly through changes in their taxonomic and shell composition. Using an empirically-based foraminifer model that incorporates three known major physiological drivers of foraminifer biogeography – temperature, food and light – we investigate (i the global redistribution of planktonic foraminifera under anthropogenic climate change, and (ii the alteration of the carbonate chemistry of foraminifer habitat with ocean acidification. The present-day and future (2090–2100 3-D distributions of foraminifera are simulated using temperature, plankton biomass, and light from an Earth system model forced with historical and a future (IPCC A2 high CO2 emission scenario. The broadscale patterns of present day foraminifer biogeography are well reproduced. Foraminifer abundance and diversity are projected to decrease in the tropics and subpolar regions and increase in the subtropics and around the poles. In the tropics, the geographical shifts are driven by temperature, while the vertical shifts are driven by both temperature and food availability. In the high-latitudes, vertical shifts are driven by food availability, while geographical shifts are driven by both food availability and temperature. Changes in the marine carbon cycle would be expected in response to (i the large-scale rearrangements in foraminifer abundance, and (ii the reduction of the carbonate concentration in the habitat range of planktonic foraminifers: from 10–30 μmol kg−1 in the polar/subpolar regions to 30–70 μmol kg−1 in the subtropical/tropical regions. High-latitude species are most vulnerable to anthropogenic change: their abundance and available habitat decrease and up to 10% of their habitat drops below the calcite saturation horizon.

  13. Molecular systematic and historical biogeography of the armored Neotropical catfishes Hypoptopomatinae and Neoplecostominae (Siluriformes: Loricariidae).

    Science.gov (United States)

    Chiachio, Márcio Cesar; Oliveira, Claudio; Montoya-Burgos, Juan I

    2008-11-01

    The Neotropics possess the greatest freshwater fish diversity of the world, rendering the study of their evolutionary history extremely challenging. Loricariidae catfishes are one of the most diverse components of the Neotropical ichthyofauna and despite a long history of classification, major issues still need elucidation. Based on a nuclear gene, we present a robust phylogeny of two former loricariid subfamilies: Hypoptopomatinae and Neoplecostominae. Our results show that Neoplecostominae is nested within Hypoptopomatinae, and is the sister group to the former Otothyrini tribe. According to our results, supplemented by morphological observations, we erect two new subfamilies, the Otothyrinae and a new Hypoptopomatinae, and modify the Neoplecostominae by including the genus Pseudotocinclus. The uncovered evolutionary relationships allow a detailed analysis of their historical biogeography. We tested two Dispersal-Extinction-Cladogenesis models for inferring the distribution range evolution of the new subfamilies, and show that the model having no constrains performs better than a model constraining long-range dispersal. The Maximum Likelihood reconstructions of ancestral ranges showed a marked division between the Amazonian origin of the Hypoptopomatinae and the eastern coastal Brazil+Upper Paraná origin of the Neoplecostominae and Otothyrinae. Markedly few instances of dispersal across the border separating the Amazon basin and the Paraná-Paraguay+eastern coastal Brazil+Uruguay were reconstructed. This result is in clear contrast with the historical biogeography of many Neotropical fishes, including other Loricariidae. Part of the dispersal limitation may be explained by divergent ecological specialization: lowland rivers versus mountain streams habitats. Moreover, because most species of the new subfamilies are small, we hypothesize that body size-related effects might limit their dispersal, like predation and energetic cost to migration. Finally

  14. Transferring and implementing the general dynamic model of oceanic island biogeography at the scale of island fragments: the role of geological age and topography in plant diversification in the Canaries

    DEFF Research Database (Denmark)

    Otto, Rüdiger; Whittaker, Robert J.; von Gaisberg, Markus;

    2016-01-01

    Aim The general dynamic model (GDM) of oceanic island biogeography integrates rates of immigration, speciation and extinction in relation to a humped trajectory of island area and topographic complexity through time, based on a simplified island ontogeny. In practice, many islands have more compl...

  15. The Satellite Based Hydrological Model (SHM): Routing Scheme and its Evaluation

    Science.gov (United States)

    kumari, Nikul; Paul, Pranesh Kumar; Singh, Rajendra; Panigrahy, Niranjan; Mishra, Ashok; Gupta, Praveen Kumar; Singh, Raghavendra P.

    2016-04-01

    The collection of spatially extensive data by using the traditional methods of data acquisition is a challenging task for a large territory like India. To overcome such problems, the Satellite based Hydrological Model (SHM), a large scale conceptual hydrological model for the Indian Territory, is being developed under the PRACRITI-2 program of the Space Applications Centre (SAC), Ahmedabad. The model aims at preparing sustainable water management scenarios using remote sensing data from Indian satellites to handle the fresh water crisis in India. There are five modules namely, Surface Water (SW), Forest (F), Snow (S), Groundwater (GW) and Routing (ROU) in the SHM. The SW, F and S modules convert rainfall into surface runoff and generate input (infiltration and percolation) for the GW module, and GW generates baseflow using that input. In this study, a cell-to-cell routing (ROU) module has been developed for SHM. It is based on the principle of Time Variant Spatially Distributed Direct Hydrograph (SDDH) to route the generated runoff and baseflow generated by various modules upto the outlet. The entire India is divided into 5km x 5km grid cells and properties at the center of the cell are assumed to represent the property of the cell. In the routing scheme, for each cell a single downstream cell is defined in the direction of steepest descent, to create the flow network. These grid cells are classified into overland cells and channel cells based on the threshold value taken into consideration. The overland flow travel time of each overland cell is estimated by combining a steady state kinematic wave approximation with Manning's equation and the channel flow travel time of each channel cell is estimated using Manning's equation and the steady state continuity equation. The travel time for each cell is computed by dividing the travel distance through that cell with cell velocity. The cumulative travel time from each grid cell to the watershed outlet is the sum of

  16. Exploring the uncertainty associated with satellite-based estimates of premature mortality due to exposure to fine particulate matter

    Science.gov (United States)

    Ford, Bonne; Heald, Colette L.

    2016-03-01

    The negative impacts of fine particulate matter (PM2.5) exposure on human health are a primary motivator for air quality research. However, estimates of the air pollution health burden vary considerably and strongly depend on the data sets and methodology. Satellite observations of aerosol optical depth (AOD) have been widely used to overcome limited coverage from surface monitoring and to assess the global population exposure to PM2.5 and the associated premature mortality. Here we quantify the uncertainty in determining the burden of disease using this approach, discuss different methods and data sets, and explain sources of discrepancies among values in the literature. For this purpose we primarily use the MODIS satellite observations in concert with the GEOS-Chem chemical transport model. We contrast results in the United States and China for the years 2004-2011. Using the Burnett et al. (2014) integrated exposure response function, we estimate that in the United States, exposure to PM2.5 accounts for approximately 2 % of total deaths compared to 14 % in China (using satellite-based exposure), which falls within the range of previous estimates. The difference in estimated mortality burden based solely on a global model vs. that derived from satellite is approximately 14 % for the US and 2 % for China on a nationwide basis, although regionally the differences can be much greater. This difference is overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we quantify to be on the order of 20 % due to uncertainties in the AOD-to-surface-PM2.5 relationship, 10 % due to the satellite observational uncertainty, and 30 % or greater uncertainty associated with the application of concentration response functions to estimated exposure.

  17. Exploring the uncertainty associated with satellite-based estimates of premature mortality due to exposure to fine particulate matter

    Directory of Open Access Journals (Sweden)

    B. Ford

    2015-09-01

    Full Text Available The negative impacts of fine particulate matter (PM2.5 exposure on human health are a primary motivator for air quality research. However, estimates of the air pollution health burden vary considerably and strongly depend on the datasets and methodology. Satellite observations of aerosol optical depth (AOD have been widely used to overcome limited coverage from surface monitoring and to assess the global population exposure to PM2.5 and the associated premature mortality. Here we quantify the uncertainty in determining the burden of disease using this approach, discuss different methods and datasets, and explain sources of discrepancies among values in the literature. For this purpose we primarily use the MODIS satellite observations in concert with the GEOS-Chem chemical transport model. We contrast results in the United States and China for the years 2004–2011. We estimate that in the United States, exposure to PM2.5 accounts for approximately 4 % of total deaths compared to 22 % in China (using satellite-based exposure, which falls within the range of previous estimates. The difference in estimated mortality burden based solely on a global model vs. that derived from satellite is approximately 9 % for the US and 4 % for China on a nationwide basis, although regionally the differences can be much greater. This difference is overshadowed by the uncertainty in the methodology for deriving PM2.5 burden from satellite observations, which we quantify to be on order of 20 % due to uncertainties in the AOD-to-surface-PM2.5 relationship, 10 % due to the satellite observational uncertainty, and 30 % or greater uncertainty associated with the application of concentration response functions to estimated exposure.

  18. Aerosol-cloud interactions (ACI) viewed by satellite and ground-based remote sensing

    Science.gov (United States)

    Kim, Yoo-Jun; Kim, Byung-Gon

    2013-05-01

    Various aerosol and cloud microphysical properties have been compared and examined for several years using ground-based remote sensing data from Atmospheric Radiation Measurement (ARM), which showed that the clouds with strong above-cloud inversions are more immune to variations in the meteorological environment and the associated aerosol-cloud interactions appear to be more dominant in nearly adiabatic clouds by comparing different environmental conditions. Meanwhile, MODIS (Moderate-Resolution Imaging Spectroradiometer) and NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data from 2001 to 2008 have been analysed to understand long-term aerosol and cloud optical properties, and their relationships in East Asia. Specifically only relationships between aerosol optical depth (AOD) and cloud fraction (CF) for the low-level liquid-phase clouds exhibit the overall positive correlation, being consistent with cloud lifetime effect. The results imply that ground-based remote sensing is probably better for the study of aerosol-cloud microphysical interactions, whereas satellite remote sensing is more appropriate for the study of aerosol and cloud macroscopic interactions.

  19. Sandmeier model based topographic correction to lunar spectral profiler (SP) data from KAGUYA satellite.

    Science.gov (United States)

    Chen, Sheng-Bo; Wang, Jing-Ran; Guo, Peng-Ju; Wang, Ming-Chang

    2014-09-01

    The Moon may be considered as the frontier base for the deep space exploration. The spectral analysis is one of the key techniques to determine the lunar surface rock and mineral compositions. But the lunar topographic relief is more remarkable than that of the Earth. It is necessary to conduct the topographic correction for lunar spectral data before they are used to retrieve the compositions. In the present paper, a lunar Sandmeier model was proposed by considering the radiance effect from the macro and ambient topographic relief. And the reflectance correction model was also reduced based on the Sandmeier model. The Spectral Profile (SP) data from KAGUYA satellite in the Sinus Iridum quadrangle was taken as an example. And the digital elevation data from Lunar Orbiter Laser Altimeter are used to calculate the slope, aspect, incidence and emergence angles, and terrain-viewing factor for the topographic correction Thus, the lunar surface reflectance from the SP data was corrected by the proposed model after the direct component of irradiance on a horizontal surface was derived. As a result, the high spectral reflectance facing the sun is decreased and low spectral reflectance back to the sun is compensated. The statistical histogram of reflectance-corrected pixel numbers presents Gaussian distribution Therefore, the model is robust to correct lunar topographic effect and estimate lunar surface reflectance.

  20. Object-based approach to national land cover mapping using HJ satellite imagery

    Science.gov (United States)

    Zhang, Lei; Li, Xiaosong; Yuan, Quanzhi; Liu, Yu

    2014-01-01

    To meet the carbon storage estimate in ecosystems for a national carbon strategy, we introduce a consistent database of China land cover. The Chinese Huan Jing (HJ) satellite is proven efficient in the cloud-free acquisition of seasonal image series in a monsoon region and in vegetation identification for mesoscale land cover mapping. Thirty-eight classes of level II land cover are generated based on the Land Cover Classification System of the United Nations Food and Agriculture Organization that follows a standard and quantitative definition. Twenty-four layers of derivative spectral, environmental, and spatial features compose the classification database. Object-based approach characterizing additional nonspectral features is conducted through mapping, and multiscale segmentations are applied on object boundary match to target real-world conditions. This method sufficiently employs spatial information, in addition to spectral characteristics, to improve classification accuracy. The algorithm of hierarchical classification is employed to follow step-by-step procedures that effectively control classification quality. This algorithm divides the dual structures of universal and local trees. Consistent universal trees suitable to most regions are performed first, followed by local trees that depend on specific features of nine climate stratifications. The independent validation indicates the overall accuracy reaches 86%.

  1. Scale effects of leaf area index inversion based on environmental and disaster monitoring satellite data

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The spatial distribution of sub-pixel components has an impact on retrieval accuracy,and should be accounted for when inverting a three-dimensional adiative transfer model to retrieve leaf area index(LAI).To investigate this effect,we constructed three realistic scenarios with the same LAI values and other properties,except that the simulated plants had different distributions.We implemented the radiosity method to subsequently produce synthetic bidirectional reflectance factor(BRF) datasets based upon these simulated scenes.The inversion was conducted using these data,which showed that spatial distribution affects retrieval accuracy.The inversion was also conducted for LAI based on charge-coupled device(CCD) data from the Environment and Disaster Monitor Satellite(HJ-1),which depicted both forest and drought-resistant crop land cover.This showed that heterogeneity in coarse-resolution remote sensing data is the main error source in LAI inversion.The spatial distribution of global fractal dimension index,which can be used to describe the area of sub-pixel components and their spatial distribution modes,shows good consistency with the coarse resolution LAI inversion error.

  2. Demarcation of Prime Farmland Protection Areas around a Metropolis Based on High-Resolution Satellite Imagery

    Science.gov (United States)

    Xia, Nan; Wang, Yajun; Xu, Hao; Sun, Yuefan; Yuan, Yi; Cheng, Liang; Jiang, Penghui; Li, Manchun

    2016-12-01

    Prime farmland (PF) is defined as high-quality farmland and a prime farmland protection area (PFPA, including related roads, waters and facilities) is a region designated for the special protection of PF. However, rapid urbanization in China has led to a tremendous farmland loss and to the degradation of farmland quality. Based on remote sensing and geographic information system technology, this study developed a semiautomatic procedure for designating PFPAs using high-resolution satellite imagery (HRSI), which involved object-based image analysis, farmland composite evaluation, and spatial analysis. It was found that the HRSIs can provide elaborate land-use information, and the PFPA demarcation showed strong correlation with the farmland area and patch distance. For the benefit of spatial planning and management, different demarcation rules should be applied for suburban and exurban areas around a metropolis. Finally, the overall accuracy of HRSI classification was about 80% for the study area, and high-quality farmlands from evaluation results were selected as PFs. About 95% of the PFs were demarcated within the PFPAs. The results of this study will be useful for PFPA planning and the methods outlined could help in the automatic designation of PFPAs from the perspective of the spatial science.

  3. Improved Traceability of a Small Satellite Mission Concept to Requirements Using Model Based System Engineering

    Science.gov (United States)

    Reil, Robin L.

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the "traditional" document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This paper presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magic's MagicDraw modeling tool. The model incorporates mission concept and requirement information from the mission's original DBSE design efforts. Active dependency relationships are modeled to demonstrate the completeness and consistency of the requirements to the mission concept. Anecdotal information and process-duration metrics are presented for both the MBSE and original DBSE design efforts of SporeSat.

  4. Air-sea fluxes and satellite-based estimation of water masses formation

    Science.gov (United States)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  5. Satellite and Ground Based Thermal Observation of the 2014 Effusive Eruption at Stromboli Volcano

    Directory of Open Access Journals (Sweden)

    Klemen Zakšek

    2015-12-01

    Full Text Available As specifically designed platforms are still unavailable at this point in time, lava flows are usually monitored remotely with the use of meteorological satellites. Generally, meteorological satellites have a low spatial resolution, which leads to uncertain results. This paper presents the first long term satellite monitoring of active lava flows on Stromboli volcano (August–November 2014 at high spatial resolution (160 m and relatively high temporal resolution (~3 days. These data were retrieved by the small satellite Technology Experiment Carrier-1 (TET-1, which was developed and built by the German Aerospace Center (DLR. The satellite instrument is dedicated to high temperature event monitoring. The satellite observations were accompanied by field observations conducted by thermal cameras. These provided short time lava flow dynamics and validation for satellite data. TET-1 retrieved 27 datasets over Stromboli during its effusive activity. Using the radiant density approach, TET-1 data were used to calibrate the MODVOLC data and estimate the time averaged lava discharge rate. With a mean output rate of 0.87 m3/s during the three-month-long eruption, we estimate the total erupted volume to be 7.4 × 106 m3.

  6. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    Directory of Open Access Journals (Sweden)

    Tao Wang

    Full Text Available Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique improve the simulation accuracy of mean seasonal (October throughout May snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the

  7. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations.

    Science.gov (United States)

    Wang, Tao; Peng, Shushi; Krinner, Gerhard; Ryder, James; Li, Yue; Dantec-Nédélec, Sarah; Ottlé, Catherine

    2015-01-01

    Seasonal snow cover in the Northern Hemisphere is the largest component of the terrestrial cryosphere and plays a major role in the climate system through strong positive feedbacks related to albedo. The snow-albedo feedback is invoked as an important cause for the polar amplification of ongoing and projected climate change, and its parameterization across models is an important source of uncertainty in climate simulations. Here, instead of developing a physical snow albedo scheme, we use a direct insertion approach to assimilate satellite-based surface albedo during the snow season (hereafter as snow albedo assimilation) into the land surface model ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms) and assess the influences of such assimilation on offline and coupled simulations. Our results have shown that snow albedo assimilation in both ORCHIDEE and ORCHIDEE-LMDZ (a general circulation model of Laboratoire de Météorologie Dynamique) improve the simulation accuracy of mean seasonal (October throughout May) snow water equivalent over the region north of 40 degrees. The sensitivity of snow water equivalent to snow albedo assimilation is more pronounced in the coupled simulation than the offline simulation since the feedback of albedo on air temperature is allowed in ORCHIDEE-LMDZ. We have also shown that simulations of air temperature at 2 meters in ORCHIDEE-LMDZ due to snow albedo assimilation are significantly improved during the spring in particular over the eastern Siberia region. This is a result of the fact that high amounts of shortwave radiation during the spring can maximize its snow albedo feedback, which is also supported by the finding that the spatial sensitivity of temperature change to albedo change is much larger during the spring than during the autumn and winter. In addition, the radiative forcing at the top of the atmosphere induced by snow albedo assimilation during the spring is estimated to be -2.50 W m-2, the magnitude of

  8. Comparison of Satellite-based Basal and Adjusted Evapotranspiration for Several California Crops

    Science.gov (United States)

    Johnson, L.; Lund, C.; Melton, F. S.

    2013-12-01

    There is a continuing need to develop new sources of information on agricultural crop water consumption in the arid Western U.S. Pursuant to the California Water Conservation Act of 2009, for instance, the stakeholder community has developed a set of quantitative indicators involving measurement of evapotranspiration (ET) or crop consumptive use (Calif. Dept. Water Resources, 2012). Fraction of reference ET (or, crop coefficients) can be estimated from a biophysical description of the crop canopy involving green fractional cover (Fc) and height as per the FAO-56 practice standard of Allen et al. (1998). The current study involved 19 fields in California's San Joaquin Valley and Central Coast during 2011-12, growing a variety of specialty and commodity crops: lettuce, raisin, tomato, almond, melon, winegrape, garlic, peach, orange, cotton, corn and wheat. Most crops were on surface or subsurface drip, though micro-jet, sprinkler and flood were represented as well. Fc was retrospectively estimated every 8-16 days by optical satellite data and interpolated to a daily timestep. Crop height was derived as a capped linear function of Fc using published guideline maxima. These variables were used to generate daily basal crop coefficients (Kcb) per field through most or all of each respective growth cycle by the density coefficient approach of Allen & Pereira (2009). A soil water balance model for both topsoil and root zone, based on FAO-56 and using on-site measurements of applied irrigation and precipitation, was used to develop daily soil evaporation and crop water stress coefficients (Ke, Ks). Key meteorological variables (wind speed, relative humidity) were extracted from the California Irrigation Management Information System (CIMIS) for climate correction. Basal crop ET (ETcb) was then derived from Kcb using CIMIS reference ET. Adjusted crop ET (ETc_adj) was estimated by the dual coefficient approach involving Kcb, Ke, and incorporating Ks. Cumulative ETc

  9. Estimation of evapotranspiration over heterogeneous surfaces based on HJ1B satellite data in China

    Science.gov (United States)

    Xin, Xiaozhou; Jiao, Jingjun

    2014-05-01

    The HJ1B satellite of China is equipped with two CCD cameras with 30m resolution and one infrared multispectral camera with 300m resolution. And the revisit period of HJ1B satellite is 4 days. Compared to MODIS or TM, HJ1B data has the advantage of high spatial-temporal resolution. Methodology based on the one-source energy balance model was developed for net radiation (Rn), soil heat flux (G), sensible heat flux (H) and latent heat flux (LE) estimation from HI1B data. The core procedure is a scheme that was designed for correcting the spatial scale error over heterogeneous surfaces by taking advantage of the HJ1B data characteristics, i.e., high resolution CCD data (30m) along with thermal data (300m). First of all, a regression relationship between Ts and NDVI was built up at 300m resolution based on the data of Ts and NDVI of the selected "pure" pixels. And then the relationship function was applied at 30m resolution to derive Ts at high resolution, i.e., at the subpixel level. Furthermore, the 30m land class data was also used in the parameterization of surface energy balance and surface aerodynamic transfer, which is important since significant error may be resulted by using one land class type to represent the whole mixed pixel. By using high resolution NDVI and land class data, we are able to mitigate the spatial scale error of the mixed pixels at 300m resolution. At last, the 300m surface energy fluxes were obtained by aggregation of the 30m estimation. HJ1B data at Hai river basin in north China in 2010 were used to verify this method. The eddy-correlation system data were used as validation. The results of the method were compared with the results of a simple method that estimates the fluxes at 300m by aggregating all of the input parameters to 300m. It is shown that the method proposed in this study shows higher agreement with in-suit measurement, and the fluxes maps also show much more details of the spatial variation. By using this method, it can be

  10. Advancing satellite-based solar power forecasting through integration of infrared channels for automatic detection of coastal marine inversion layer

    Energy Technology Data Exchange (ETDEWEB)

    Kostylev, Vladimir; Kostylev, Andrey; Carter, Chris; Mahoney, Chad; Pavlovski, Alexandre; Daye, Tony [Green Power Labs Inc., Dartmouth, NS (Canada); Cormier, Dallas Eugene; Fotland, Lena [San Diego Gas and Electric Co., San Diego, CA (United States)

    2012-07-01

    The marine atmospheric boundary layer is a layer or cool, moist maritime air with the thickness of a few thousand feet immediately below a temperature inversion. In coastal areas as moist air rises from the ocean surface, it becomes trapped and is often compressed into fog above which a layer of stratus clouds often forms. This phenomenon is common for satellite-based solar radiation monitoring and forecasting. Hour ahead satellite-based solar radiation forecasts are commonly using visible spectrum satellite images, from which it is difficult to automatically differentiate low stratus clouds and fog from high altitude clouds. This provides a challenge for cloud motion tyracking and cloud cover forecasting. San Diego Gas and Electric {sup registered} (SDG and E {sup registered}) Marine Layer Project was undertaken to obtain information for integration with PV forecasts, and to develop a detailed understanding of long-term benefits from forecasting Marine Layer (ML) events and their effects on PV production. In order to establish climatological ML patterns, spatial extent and distribution of marine layer, we analyzed visible and IR spectrum satellite images (GOES WEST) archive for the period of eleven years (2000 - 2010). Historical boundaries of marine layers impact were established based on the cross-classification of visible spectrum (VIS) and infrared (IR) images. This approach is successfully used by us and elsewhere for evaluating cloud albedo in common satellite-based techniques for solar radiation monitoring and forecasting. The approach allows differentiation of cloud cover and helps distinguish low laying fog which is the main consequence of marine layer formation. ML occurrence probability and maximum extent inland was established for each hour and day of the analyzed period and seasonal/patterns were described. SDG and E service area is the most affected region by ML events with highest extent and probability of ML occurrence. Influence of ML was the

  11. High resolution surface solar radiation patterns over Eastern Mediterranean: Satellite, ground-based, reanalysis data and radiative transfer simulations

    Science.gov (United States)

    Alexandri, G.; Georgoulias, A.; Meleti, C.; Balis, D.

    2013-12-01

    Surface solar radiation (SSR) and its long and short term variations play a critical role in the modification of climate and by extent of the social and financial life of humans. Thus, SSR measurements are of primary importance. SSR is measured for decades from ground-based stations for specific spots around the planet. During the last decades, satellite observations allowed for the assessment of the spatial variability of SSR at a global as well as regional scale. In this study, a detailed spatiotemporal view of the SSR over Eastern Mediterranean is presented at a high spatial resolution. Eastern Mediterranean is affected by various aerosol types (continental, sea, dust and biomass burning particles) and encloses countries with significant socioeconomical changes during the last decades. For the aims of this study, SSR data from satellites (Climate Monitoring Satellite Application Facility - CM SAF) and our ground station in Thessaloniki, a coastal city of ~1 million inhabitants in northern Greece, situated in the heart of Eastern Mediterranean (Eppley Precision pyranometer and Kipp & Zonen CM-11 pyranometer) are used in conjunction with radiative transfer simulations (Santa Barbara DISORT Atmospheric Radiative Transfer - SBDART). The CM SAF dataset used here includes monthly mean SSR observations at a high spatial resolution of 0.03x0.03 degrees for the period 1983-2005. Our ground-based SSR observations span from 1983 until today. SBDART radiative transfer simulations were implemented for a number of spots in the area of study in order to calculate the SSR. High resolution (level-2) aerosol and cloud data from MODIS TERRA and AQUA satellite sensors were used as input, as well as ground-based data from the AERONET. Data from other satellites (Earth Probe TOMS, OMI, etc) and reanalysis projects (ECMWF) were used where needed. The satellite observations, the ground-based measurements and the model estimates are validated against each other. The good agreement

  12. A Predictive Model for Investigating Seagrass Paleoecology, Biogeography and Diversity

    Science.gov (United States)

    Sewall, J. O.; Clementz, M. T.

    2008-12-01

    Seagrasses are highly productive components of coastal ecosystems that play significant roles in the flow of nutrients and the modulation of physical conditions within the world's oceans. However, in spite of the significant role seagrasses play today, the fossil record contains little evidence of the distribution and abundance of seagrass species in the past and many questions about their biology, ecology, and evolutionary history remain. We have developed, and present here, a parameter driven numerical model of global seagrass biogeography and diversity appropriate for paleontological and paleoecological investigations. The global distribution of seagrasses in our model is dependent on four input parameters, water temperature, water salinity, water depth, and photosynthetically available radiation at depth. With these limited inputs, our model captures both the location and biodiversity of modern seagrass distributions well. The simplicity of our model and its robust representation of modern conditions give it tremendous flexibility for applications throughout the ~70 Ma long history of seagrasses. Paleo ocean temperatures, salinity, water depths, and incident radiation are available from paleoclimatic/proxy datasets and/or numerical simulations of past environmental/climatic conditions, thus permitting investigations into time specific seagrass biogeography and diversity throughout its evolutionary history. In addition, the simplicity of our model allows for theoretical investigations of seagrass paleoecology and response to environmental changes. Both applications will contribute significantly to furthering our understanding of seagrasses, seagrass dominated ecosystems, and the roles they have played in the earth system over the past 70 Ma.

  13. Biogeography as critical nursing pedagogy: Breathing life into nurse education.

    Science.gov (United States)

    Kyle, Richard G; Atherton, Iain M

    2016-09-01

    Insights from the social sciences, including geography, sociology, and anthropology, have long been incorporated into pre-registration nursing programmes. However, scholars have suggested that their inclusion has been sporadic and lacks clear theoretical rationale. In this paper we argue anew that the social sciences - and particularly, human geography - could be central to nurse education. Specifically, we recast the concept of 'biogeography' drawn from human geography that emphasises the interplay between life (bio) and place (geo) to propose pedagogy that theoretically justifies and practically enables the inclusion of the social sciences in nurse education. Biogeography can breathe new life into nursing curricula by animating our students through the cultivation of three 'spirits of nursing'. First, a 'spirit of empathy' that can shatter patient-professional dualisms by facilitating person-centred and place-sensitive care. Second, a 'spirit of engagement' that situates practice in social structures awakening a desire to effect change by fomenting an acute sense of social justice. Third, a 'spirit of enquiry' that holds in critical tension the theory-practice gap by fostering continual questioning and pursuit of evidence. In so doing, biogeographical pedagogy releases the latent potential of the social sciences to revitalise nurse education, reinvigorate our students, and renew ourselves as nurse educators.

  14. Phylogeny and Biogeography of Cyanobacteria and Their Produced Toxins

    Directory of Open Access Journals (Sweden)

    Agostinho Antunes

    2013-11-01

    Full Text Available Phylogeny is an evolutionary reconstruction of the past relationships of DNA or protein sequences and it can further be used as a tool to assess population structuring, genetic diversity and biogeographic patterns. In the microbial world, the concept that everything is everywhere is widely accepted. However, it is much debated whether microbes are easily dispersed globally or whether they, like many macro-organisms, have historical biogeographies. Biogeography can be defined as the science that documents the spatial and temporal distribution of a given taxa in the environment at local, regional and continental scales. Speciation, extinction and dispersal are proposed to explain the generation of biogeographic patterns. Cyanobacteria are a diverse group of microorganisms that inhabit a wide range of ecological niches and are well known for their toxic secondary metabolite production. Knowledge of the evolution and dispersal of these microorganisms is still limited, and further research to understand such topics is imperative. Here, we provide a compilation of the most relevant information regarding these issues to better understand the present state of the art as a platform for future studies, and we highlight examples of both phylogenetic and biogeographic studies in non-symbiotic cyanobacteria and cyanotoxins.

  15. Space-based visible observation strategy for beyond-LEO objects based on an equatorial LEO satellite with multi-sensors

    Science.gov (United States)

    Hu, Yun-peng; Huang, Jian-yu; Chen, Lei

    2017-04-01

    Many space-based visible observation strategies based on Low Earth Orbit (LEO) satellites for observing Geosynchronous Orbit (GEO) objects were proposed previously. However, there were few studies about other beyond-LEO objects (Geostationary Transfer Orbit (GTO) objects, Medium Earth Orbit (MEO) objects, and Molniya objects). In this paper, a space-based visible observation strategy is proposed for observing GEO objects, GTO objects, MEO objects (especially global navigation satellites), and Molniya objects simultaneously to get more orbital data, using an earth-oriented equatorial LEO satellite with three sensors. This work is focused on the pointing geometry. Brightness of observed objects and sensitivity of sensors are assumed under the relative ideal conditions. First, the distribution characteristics of these beyond-LEO objects are discussed. And in order to observe global navigation satellites efficiently, joint regions formed by the track superposition of two adjacent orbits in a constellation are proposed. To offset the influence of the earth shadow and constraint of sun-target-observer angle, two sensors pointing inside of the equatorial plane are used to observe GEO and GTO objects. The installation angle of the third sensor is optimized to obtain a relative high coverage rate for observing global navigation satellites and Molniya objects based on joint regions. Finally, the coverage rate, the number of observations, and observation duration under different sensors with different field of views (FOVs) are compared and analyzed respectively.

  16. Dynamic Neural Network-Based Pulsed Plasma Thruster (PPT) Fault Detection and Isolation for Formation Flying of Satellites

    Science.gov (United States)

    Valdes, A.; Khorasani, K.

    The main objective of this paper is to develop a dynamic neural network-based fault detection and isolation (FDI) scheme for the Pulsed Plasma Thrusters (PPTs) that are used in the Attitude Control Subsystem (ACS) of satellites that are tasked to perform a formation flying mission. By using data collected from the relative attitudes of the formation flying satellites our proposed "High Level" FDI scheme can detect the pair of thrusters which is faulty, however fault isolation cannot be accomplished. Based on the "High Level" FDI scheme and the DNN-based "Low Level" FDI scheme developed earlier by the authors, an "Integrated" DNN-based FDI scheme is then proposed. To demonstrate the FDI capabilities of the proposed schemes various fault scenarios are simulated.

  17. All satellites total ozone evaluation in the tropics by comparison with SAOZ-NDACC ground-based measurements

    Science.gov (United States)

    Pommereau, Jean-Pierre; Lerot, Christophe; Van Roozendael, Michel; Goutail, Florence; Pazmino, Andrea; Frihi, Aymen; Bekki, Slimane; Clerbaux, Cathy

    2016-07-01

    All satellites total ozone measurements available from SBUV, OMI-T, OMI-D, OMI-CCI, GOME-CCI, GOME2-CCI, SCIAMACHY-CCI, NPP and IASI, since 2001 until 2015 are compared to those provided by the UV-Vis SAOZ/NDACC spectrometer at the two tropical stations of Reunion Island in the Indian Ocean and Bauru in Southern Brazil. The differences between satellites and SAOZ except IASI do show systematic seasonal variations of 0-3% (0-9 DU) amplitude and sharp negative peaks in Jan-Mar in Reunion Is in the austral summer. Whereas the summer negative peaks seen particularly on IASI, OMI-T, NPP and OMI-CCI at Reunion are shown to correlate with hurricanes and those seen in Brazil with high altitude overshooting convective clouds both not properly removed, ozone minima outside these events are shown to correlate with high altitude volcanic plumes impacting all satellites as well as ground-based total ozone measurements The seasonality of the Sat-SAOZ difference of varying amplitude from 0 to 3% with the satellite is attributed to the satellite retrieval. Surprisingly and though there has been no change in either SAOZ instruments or data analysis processes, the amplitude of the seasonal cycle of the Sat-SAOZ difference reduces in 2012 and drops to less than ± 0.5% (1.5 DU) after 2013 in Reunion Island and less than ±1% in Bauru, reduction for which there is no clear explanation yet. Shown in the presentation will be the demonstration of the impact of hurricanes, high altitude convective clouds and volcanic plumes on satellites total ozone retrievals, followed by a discussion of possible causes of seasonality of Sat-SAOZ amplitude drop after 2012.

  18. Assessment of the aerosol optical depths measured by satellite-based passive remote sensors in the Alberta oil sands region

    Science.gov (United States)

    Sioris, Christopher E.; McLinden, Chris A.; Shephard, Mark W.; Fioletov, Vitali E.; Abboud, Ihab

    2017-02-01

    Several satellite aerosol optical depth (AOD) products are assessed in terms of their data quality in the Alberta oil sands region. The instruments consist of MODIS (Moderate Resolution Imaging Spectroradiometer), POLDER (Polarization and Directionality of Earth Reflectances), MISR (Multi-angle Imaging SpectroRadiometer), and AATSR (Advanced Along-Track Scanning Radiometer). The AOD data products are examined in terms of multiplicative and additive biases determined using local Aerosol Robotic Network (AERONET) (AEROCAN) stations. Correlation with ground-based data is used to assess whether the satellite-based AODs capture day-to-day, month-to-month, and spatial variability. The ability of the satellite AOD products to capture interannual variability is assessed at Albian mine and Shell Muskeg River, two neighbouring sites in the northern mining region where a statistically significant positive trend (2002-2015) in PM2.5 mass density exists. An increasing trend of similar amplitude (˜ 5 % year-1) is observed in this northern mining region using some of the satellite AOD products.

  19. Inversion of Aerosol Optical Depth Based on the CCD and IRS Sensors on the HJ-1 Satellites

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2014-09-01

    Full Text Available To perform a high-resolution aerosol optical depth (AOD inversion from the HJ-1 satellites, a dark pixel algorithm utilizing the HJ-1 satellite data was developed based on the Moderate-Resolution Imaging Spectroradiometer (MODIS algorithm. By analyzing the relationship between the apparent reflectance from the 1.65 μm and 2.1 μm channels of MODIS, a method for estimating albedo using the 1.65 μm channel data of the HJ-1 satellites was established, and a high-resolution AOD inversion in the Chengdu region based on the HJ-1 satellite was completed. A comparison of the inversion results with CE318 measured data produced a correlation of 0.957, respectively, with an absolute error of 0.106. An analysis of the AOD inversion results from different aerosol models showed that the rural aerosol model was suitable as a general model for establishing an aerosol inversion look-up table for the Chengdu region.

  20. Prediction of bathymetry from satellite altimeter based gravity in the Arabian Sea: Mapping of two unnamed deep seamounts

    Science.gov (United States)

    Jena, B.; Kurian, P. J.; Swain, D.; Tyagi, A.; Ravindra, R.

    2012-06-01

    This work attempts to predict bathymetry from satellite altimeter based gravity in the Arabian Sea. A collocated match-up database (n = 17,016) was created on Multibeam Echosounder (MBES) bathymetry and satellite gravity values (˜1 min spatial resolution) derived from remote sensing satellites. A Radial Basis Function (RBF) based Artificial Neural Network (ANN) model was developed to predict bathymetry from satellite gravity values. The ANN model was trained with variable undersea features such as seamount, knoll, abyssal plain, hill, etc. to familiarize the network with all possible geomorphic features as inputs through learning and the corresponding target outputs. The performance of the predictive model was evaluated by comparing bathymetric values with MBES datasets that were not used during the training and verification steps of the ANN model formulation. The model was then compared with MBES surveyed seamount observations (those were not used during ANN analysis) and global model bathymetry products. Results demonstrate better performance of ANN model compared to global model products for mapping of two unnamed seamounts in the Arabian Sea. These two unnamed seamounts have been predicted, mapped and their morphology is reported for the first time through this work.

  1. [In-Flight Radiometric Calibration for ZY-3 Satellite Multispectral Sensor by Modified Reflectance-Based Method].

    Science.gov (United States)

    Han, Jie; Xie, Yong; Gu, Xing-fa; Yu, Tao; Liu, Qi-yue; Gao, Rong-jun

    2015-03-01

    Through integrating multi-spectral sensor characteristics of ZY-3 satellite, a modified reflectance-based method is proposed and used to achieve ZY-3 satellite multispectral sensor in-flight radiometric calibration. This method chooses level 1A image as data source and establishes geometric model to get an accurate observation geometric parameters at calibration site according to the information provided in image auxiliary documentation, which can reduce the influences on the calibration accuracy from image resampling and observation geometry errors. We use two-point and multi-points methods to calculate the absolute radiometric calibration coefficients of ZY-3 satellite multispectral sensor based on the large campaign at Dongying city, Shan Dong province. Compared with ZY-3 official calibration coefficients, multi-points method has higher accuracy than two-point method. Through analyzing the dispersion between each calibration point and the fitting line, we find that the residual error of water calibration site is larger than others, which of green band is approximately 67.39%. Treating water calibration site as an error, we filter it out using 95.4% confidence level as standard and recalculate the calibration coefficients with multi-points method. The final calibration coefficients show that the relative differences of the first three bands are less than 2% and the last band is less than 5%, which manifests that the proposed radiometric calibration method can obtain accurate and reliable calibration coefficients and is useful for other similar satellites in future.

  2. Industry leading satellite based GNSS (Global Navigation Satellite System) positioning and monitoring solutions with real-time CORS (Continuously Operating Reference Station) networks

    Science.gov (United States)

    Janousek, Martin

    2010-05-01

    Real-Time CORS (Continuously Operating Reference Station Networks) today are typically GNSS networks for positioning and monitoring purposes. Real-Time networks can consist of a few stations for a local network up to nation- or continental wide networks with several hundred CORS stations. Such networks use wide area modeling of GNSS error sources including ionospheric, tropospheric and satellite orbit correction parameters to produce highest precision and efficiency method of positioning using GNSS. In 1998 Trimble Navigation Ltd. introduced a method of surveying with a non-physical or computed base station, called VRS (Virtual Reference Station). It is the most widely supported method of producing a network solution for precise carrier phase positioning in the industry. Surveying historically required one base as the fixed point of reference, and one or multiple rovers using that point of reference to compute their location by processing a vector result, either in real-time or in a postprocessed sense. Real-time survey is often referred to as RTK, short for real-time kinematic, and as the name suggests the results are in real time and you can move. The power of VRS is in the ability to compute a real-time wide-area solution to the factors that cause single base methods to degrade with distance. Namely, ionospheric and tropospheric modeling, and satellite orbit corrections. This is achieved by the reference network of CORS. A wide scattering of CORS across a state, typically 50-70km in mid-latitudes, creates a ground based sampling which significantly reduces the distance dependent errors that accumulate in the single base-rover relationship described early. Furthermore, GNSS networks can be used for real-time monitoring purposes at various distance range. Trimble Integrity Manager software provides a suite of motion engines designed to detect and quantify any movement in a range of scales from slow, creeping movement like subsidence, through sudden events such as

  3. Asteroseismology with the WIRE satellite. I. Combining Ground- and Space-based Photometry of the Delta Scuti Star Epsilon Cephei

    CERN Document Server

    Bruntt, H; Bedding, T R; Buzasi, D L; Moya, A; Amado, P J; Martin-Ruiz, S; Garrido, R; De Coca, P L; Rolland, A; Costa, V; Olivares, I; Garcia-Pelayo, J M

    2006-01-01

    We have analysed ground-based multi-colour Stromgren photometry and single-filter photometry from the star tracker on the WIRE satellite of the delta scuti star Epsilon Cephei. The ground-based data set consists of 16 nights of data collected over 164 days, while the satellite data are nearly continuous coverage of the star during 14 days. The spectral window and noise level of the satellite data are superior to the ground-based data and this data set is used to locate the frequencies. However, we can use the ground-based data to improve the accuracy of the frequencies due to the much longer time baseline. We detect 26 oscillation frequencies in the WIRE data set, but only some of these can be seen clearly in the ground-based data. We have used the multi-colour ground-based photometry to determine amplitude and phase differences in the Stromgren b-y colour and the y filter in an attempt to identify the radial degree of the oscillation frequencies. We conclude that the accuracies of the amplitudes and phases a...

  4. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    Science.gov (United States)

    Logalbo, P.; Benedicto, J.; Viola, R.

    1993-01-01

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  5. A Synthetic Aperture System Based on Backscattering Signals of Compass Navigation Satellite: Concept and Feasibility

    Directory of Open Access Journals (Sweden)

    Wang Hai-yang

    2012-06-01

    Full Text Available A concept of a bi-static geosynchronous synthetic aperture system, which is formed by reusing backscattered signals of Compass Navigation Satellite System (CNSS, is proposed. The geometric relations of a geostationary satellite of CNSS, located on a geosynchronous satellite receiver, which is illuminated by the backscattered energy of a satellite of CNSS, and a ground station is built up, and following the relations as well as principle of synthetic aperture radar, we expatiate the feasibility of the system by considering parameters such as imaging resolution, ratio of signal to noise and link budget, etc.. Besides, the potential remote sensing applications for measurement of terrain humidity, characteristics of space-time dynamics of changing of terrain surface and atmospheric characteristic, etc..

  6. Global solar radiation: comparison of satellite-based climatology with station records

    Science.gov (United States)

    Skalak, Petr; Zahradnicek, Pavel; Stepanek, Petr; Farda, Ales

    2016-04-01

    We analyze surface incoming shortwave radiation (SIS) from the SARAH dataset prepared by the EUMETSAT Climate Monitoring Satellite Applications Facility from satellite observations of the visible channels of the MVIRI and SEVIRI instruments onboard the geostationary Meteosat satellites. The satellite SIS data are evaluated within the period 1984-2014 on various time scales: from individual months and years to long-term climate means. The validation is performed using the ground measurements of global solar radiation (GLBR) carried out on 11 meteorological stations of the Czech Hydrometeorological Institute in the Czech Republic with at least 30 years long data series. Our aim is to explore whether the SIS data could potentially serve as an alternative source of information on GLBR outside of a relatively sparse network of meteorological stations recording GLBR. Acknowledgement: Supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Program I (NPU I), grant number LO1415.

  7. ESA personal communications and digital audio broadcasting systems based on non-geostationary satellites

    Science.gov (United States)

    Logalbo, P.; Benedicto, J.; Viola, R.

    Personal Communications and Digital Audio Broadcasting are two new services that the European Space Agency (ESA) is investigating for future European and Global Mobile Satellite systems. ESA is active in promoting these services in their various mission options including non-geostationary and geostationary satellite systems. A Medium Altitude Global Satellite System (MAGSS) for global personal communications at L and S-band, and a Multiregional Highly inclined Elliptical Orbit (M-HEO) system for multiregional digital audio broadcasting at L-band are described. Both systems are being investigated by ESA in the context of future programs, such as Archimedes, which are intended to demonstrate the new services and to develop the technology for future non-geostationary mobile communication and broadcasting satellites.

  8. Evaluation of the satellite-based Global Flood Detection System for measuring river discharge: influence of local factors

    Directory of Open Access Journals (Sweden)

    B. Revilla-Romero

    2014-07-01

    Full Text Available One of the main challenges for global hydrological modelling is the limited availability of observational data for calibration and model verification. This is particularly the case for real time applications. This problem could potentially be overcome if discharge measurements based on satellite data were sufficiently accurate to substitute for ground-based measurements. The aim of this study is to test the potentials and constraints of the remote sensing signal of the Global Flood Detection System for converting the flood detection signal into river discharge values. The study uses data for 322 river measurement locations in Africa, Asia, Europe, North America and South America. Satellite discharge measurements were calibrated for these sites and a validation analysis with in situ discharge was performed. The locations with very good performance will be used in a future project where satellite discharge measurements are obtained on a daily basis to fill the gaps where real time ground observations are not available. These include several international river locations in Africa: Niger, Volta and Zambezi rivers. Analysis of the potential factors affecting the satellite signal was based on a classification decision tree (Random Forest and showed that mean discharge, climatic region, land cover and upstream catchment area are the dominant variables which determine good or poor performance of the measurement sites. In general terms, higher skill scores were obtained for locations with one or more of the following characteristics: a river width higher than 1 km; a large floodplain area and in flooded forest; with a potential flooded area greater than 40%; sparse vegetation, croplands or grasslands and closed to open and open forest; Leaf Area Index > 2; tropical climatic area; and without hydraulic infrastructures. Also, locations where river ice cover is seasonally present obtained higher skill scores. The work provides guidance on the best

  9. Launch Vehicles Based on Advanced Hybrid Rocket Motors: An Enabling Technology for the Commercial Small and Micro Satellite Planetary Science

    Science.gov (United States)

    Karabeyoglu, Arif; Tuncer, Onur; Inalhan, Gokhan

    2016-07-01

    Mankind is relient on chemical propulsion systems for space access. Nevertheless, this has been a stagnant area in terms of technological development and the technology base has not changed much almost for the past forty years. This poses a vicious circle for launch applications such that high launch costs constrain the demand and low launch freqencies drive costs higher. This also has been a key limiting factor for small and micro satellites that are geared towards planetary science. Rather this be because of the launch frequencies or the costs, the access of small and micro satellites to orbit has been limited. With today's technology it is not possible to escape this circle. However the emergence of cost effective and high performance propulsion systems such as advanced hybrid rockets can decrease launch costs by almost an order or magnitude. This paper briefly introduces the timeline and research challenges that were overcome during the development of advanced hybrid LOX/paraffin based rockets. Experimental studies demonstrated effectiveness of these advanced hybrid rockets which incorporate fast burning parafin based fuels, advanced yet simple internal balistic design and carbon composite winding/fuel casting technology that enables the rocket motor to be built from inside out. A feasibility scenario is studied using these rocket motors as building blocks for a modular launch vehicle capable of delivering micro satellites into low earth orbit. In addition, the building block rocket motor can be used further solar system missions providing the ability to do standalone small and micro satellite missions to planets within the solar system. This enabling technology therefore offers a viable alternative in order to escape the viscous that has plagued the space launch industry and that has limited the small and micro satellite delivery for planetary science.

  10. Comprehensive Spectral Signal Investigation of a Larch Forest Combining - and Satellite-Based Measurements

    Science.gov (United States)

    Landmann, J. M.; Rutzinger, M.; Bremer, M.; chmidtner, K.

    2016-06-01

    Collecting comprehensive knowledge about spectral signals in areas composed by complex structured objects is a challenging task in remote sensing. In the case of vegetation, shadow effects on reflectance are especially difficult to determine. This work analyzes a larch forest stand (Larix decidua MILL.) in Pinnis Valley (Tyrol, Austria). The main goal is extracting the larch spectral signal on Landsat 8 (LS8) Operational Land Imager (OLI) images using ground measurements with the Cropscan Multispectral Radiometer with five bands (MSR5) simultaneously to satellite overpasses in summer 2015. First, the relationship between field spectrometer and OLI data on a cultivated grassland area next to the forest stand is investigated. Median ground measurements for each of the grassland parcels serve for calculation of the mean difference between the two sensors. Differences are used as "bias correction" for field spectrometer values. In the main step, spectral unmixing of the OLI images is applied to the larch forest, specifying the larch tree spectral signal based on corrected field spectrometer measurements of the larch understory. In order to determine larch tree and shadow fractions on OLI pixels, a representative 3D tree shape is used to construct a digital forest. Benefits of this approach are the computational savings compared to a radiative transfer modeling. Remaining shortcomings are the limited capability to consider exact tree shapes and nonlinear processes. Different methods to implement shadows are tested and spectral vegetation indices like the Normalized Difference Vegetation Index (NDVI) and Greenness Index (GI) can be computed even without considering shadows.

  11. Complementing the ground-based CMB Stage-4 experiment on large scales with the PIXIE satellite

    CERN Document Server

    Calabrese, Erminia; Dunkley, Jo

    2016-01-01

    We present forecasts for cosmological parameters from future Cosmic Microwave Background (CMB) data measured by the Stage-4 (S4) generation of ground-based experiments in combination with large-scale anisotropy data from the PIXIE satellite. We demonstrate the complementarity of the two experiments and focus on science targets that benefit from their combination. We show that a cosmic-variance-limited measurement of the optical depth to reionization provided by PIXIE, with error $\\sigma(\\tau)=0.002$, is vital for enabling a 5$\\sigma$ detection of the sum of the neutrino masses when combined with a CMB-S4 lensing measurement, and with lower-redshift constraints on the growth of structure and the distance-redshift relation. Parameters characterizing the epoch of reionization will also be tightly constrained; PIXIE's $\\tau$ constraint converts into $\\sigma(\\rm{z_{re}})=0.2$ for the mean time of reionization, and a kinematic Sunyaev-Zel'dovich measurement from S4 gives $\\sigma(\\Delta \\rm{z_{re}})=0.03$ for the du...

  12. Optical frequency comb based multi-band microwave frequency conversion for satellite applications.

    Science.gov (United States)

    Yang, Xinwu; Xu, Kun; Yin, Jie; Dai, Yitang; Yin, Feifei; Li, Jianqiang; Lu, Hua; Liu, Tao; Ji, Yuefeng

    2014-01-13

    Based on optical frequency combs (OFC), we propose an efficient and flexible multi-band frequency conversion scheme for satellite repeater applications. The underlying principle is to mix dual coherent OFCs with one of which carrying the input signal. By optically channelizing the mixed OFCs, the converted signal in different bands can be obtained in different channels. Alternatively, the scheme can be configured to generate multi-band local oscillators (LO) for widely distribution. Moreover, the scheme realizes simultaneous inter- and intra-band frequency conversion just in a single structure and needs only three frequency-fixed microwave sources. We carry out a proof of concept experiment in which multiple LOs with 2 GHz, 10 GHz, 18 GHz, and 26 GHz are generated. A C-band signal of 6.1 GHz input to the proposed scheme is successfully converted to 4.1 GHz (C band), 3.9 GHz (C band) and 11.9 GHz (X band), etc. Compared with the back-to-back (B2B) case measured at 0 dBm input power, the proposed scheme shows a 9.3% error vector magnitude (EVM) degradation at each output channel. Furthermore, all channels satisfy the EVM limit in a very wide input power range.

  13. Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration

    CERN Document Server

    Noureldin, Aboelmagd; Georgy, Jacques

    2013-01-01

    Fundamentals of Inertial Navigation, Satellite-based Positioning and their Integration is an introduction to the field of Integrated Navigation Systems. It serves as an excellent reference for working engineers as well as textbook for beginners and students new to the area. The book is easy to read and understand with minimum background knowledge. The authors explain the derivations in great detail. The intermediate steps are thoroughly explained so that a beginner can easily follow the material. The book shows a step-by-step implementation of navigation algorithms and provides all the necessary details. It provides detailed illustrations for an easy comprehension. The book also demonstrates real field experiments and in-vehicle road test results with professional discussions and analysis. This work is unique in discussing the different INS/GPS integration schemes in an easy to understand and straightforward way. Those schemes include loosely vs tightly coupled, open loop vs closed loop, and many more.

  14. Application of Object Based Classification and High Resolution Satellite Imagery for Savanna Ecosystem Analysis

    Directory of Open Access Journals (Sweden)

    Jane Southworth

    2010-12-01

    Full Text Available Savanna ecosystems are an important component of dryland regions and yet are exceedingly difficult to study using satellite imagery. Savannas are composed are varying amounts of trees, shrubs and grasses and typically traditional classification schemes or vegetation indices cannot differentiate across class type. This research utilizes object based classification (OBC for a region in Namibia, using IKONOS imagery, to help differentiate tree canopies and therefore woodland savanna, from shrub or grasslands. The methodology involved the identification and isolation of tree canopies within the imagery and the creation of tree polygon layers had an overall accuracy of 84%. In addition, the results were scaled up to a corresponding Landsat image of the same region, and the OBC results compared to corresponding pixel values of NDVI. The results were not compelling, indicating once more the problems of these traditional image analysis techniques for savanna ecosystems. Overall, the use of the OBC holds great promise for this ecosystem and could be utilized more frequently in studies of vegetation structure.

  15. An Exploitation of Satellite-based Observation for Health Information: The UFOS Project

    Energy Technology Data Exchange (ETDEWEB)

    Mangin, A.; Morel, M.; Fanton d' Andon, O

    2000-07-01

    Short, medium and long-term trends of UV intensity levels are of crucial importance for either assessing effective biological impacts on human population, or implementing adequate preventive behaviours. Better information on a large spatial scale and increased public awareness of the short-term variations in UV values will help to support health agencies' goals of educating the public on UV risks. The Ultraviolet Forecast Operational Service Project (UFAS), financed in part by the European Commission/DG Information Society (TEN-TELECOM programme), aims to exploit satellite-based observations and to supply a set of UV products directly useful to health care. The short-term objective is to demonstrate the technical and economical feasibility and benefits that could be brought by such a system. UFOS is carried out by ACRI, with the support of an Advisory Group chaired by WHO and involving representation from the sectors of Health (WHO, INTERSUN collaborating centres, ZAMBON), Environment (WMO, IASB), and Telecommunications (EURECOM, IMET). (author)

  16. Calibration for CHAMP Accelerometer Data Based on Crossover Points of the Satellite

    Institute of Scientific and Technical Information of China (English)

    XU Tianhe; YANG Yuanxi

    2005-01-01

    The German CHAlleging Minisatellite Payload (CHAMP) was launched in July 2000. It is the first satellite that provides us with position and accelerometer measurements, with which the gravity field model can be determined. One of the most popular methods for geopotential recovery using the position and accelerometer measurements of CHAMP is the energy conservation method. The main aim of this paper is to determine the scale and bias parameters of CHAMP accelerometer data using the energy conservation method. The basic principle and mathematical model using the crossover points of CHAMP orbit to calibrate the accelerometer data are given based on the energy balance method. The rigorous integral formula as well as its discrete form of the observational equation is presented. This method can be used to estimate only one of the scale and bias parameters or both of them. In order to control the influence of outliers, the robust estimator for the calibration parameters is given. The results of the numerical computations and comparisons using the CHAMP accelerometer data show the validity of the method.

  17. GPU-based normalized cuts for road extraction using satellite imagery

    Indian Academy of Sciences (India)

    J Senthilnath; S Sindhu; S N Omkar

    2014-12-01

    This paper presents a GPU implementation of normalized cuts for road extraction problem using panchromatic satellite imagery. The roads have been extracted in three stages namely pre-processing, image segmentation and post-processing. Initially, the image is pre-processed to improve the tolerance by reducing the clutter (that mostly represents the buildings, vegetation, and fallow regions). The road regions are then extracted using the normalized cuts algorithm. Normalized cuts algorithm is a graph-based partitioning approach whose focus lies in extracting the global impression (perceptual grouping) of an image rather than local features. For the segmented image, post-processing is carried out using morphological operations – erosion and dilation. Finally, the road extracted image is overlaid on the original image. Here, a GPGPU (General Purpose Graphical Processing Unit) approach has been adopted to implement the same algorithm on the GPU for fast processing. A performance comparison of this proposed GPU implementation of normalized cuts algorithm with the earlier algorithm (CPU implementation) is presented. From the results, we conclude that the computational improvement in terms of time as the size of image increases for the proposed GPU implementation of normalized cuts. Also, a qualitative and quantitative assessment of the segmentation results has been projected.

  18. Characterization of aerosol pollution events in France using ground-based and POLDER-2 satellite data

    Directory of Open Access Journals (Sweden)

    M. Kacenelenbogen

    2006-01-01

    Full Text Available We analyze the relationship between daily fine particle mass concentration (PM2.5 and columnar aerosol optical thickness derived from the Polarization and Directionality of Earth's Reflectances (POLDER satellite sensor. The study is focused over France during the POLDER-2 lifetime between April and October 2003. We have first compared the POLDER derived aerosol optical thickness (AOT with integrated volume size distribution derived from ground-based Sun Photometer observations. The good correlation (R=0.72 with sub-micron volume fraction indicates that POLDER derived AOT is sensitive to the fine aerosol mass concentration. Considering 1974 match-up data points over 28 fine particle monitoring sites, the POLDER-2 derived AOT is fairly well correlated with collocated PM2.5 measurements, with a correlation coefficient of 0.55. The correlation coefficient reaches a maximum of 0.80 for particular sites. We have analyzed the probability to find an appropriate air quality category (AQC as defined by U.S. Environmental Protection Agency (EPA from POLDER-2 AOT measurements. The probability can be up to 88.8% (±3.7% for the "Good" AQC and 89.1% (±3.6% for the "Moderate" AQC.

  19. Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to PV Performance Studies

    Directory of Open Access Journals (Sweden)

    Ana Maria Gracia Amillo

    2015-04-01

    Full Text Available In recent years, satellite-based solar radiation data resolved in spectral bands have become available. This has for the first time made it possible to produce maps of the geographical variation in the solar spectrum. It also makes it possible to estimate the influence of these variations on the performance of photovoltaic (PV modules. Here, we present a study showing the magnitude of the spectral influence on PV performance over Europe and Africa. The method has been validated using measurements of a CdTe module in Ispra, Italy, showing that the method predicts the spectral influence to within ±2% on a monthly basis and 0.1% over a 19-month period. Application of the method to measured spectral responses of crystalline silicon, CdTe and single-junction amorphous silicon (a-Si modules shows that the spectral effect is smallest over desert areas for all module types, higher in temperate Europe and highest in tropical Africa, where CdTe modules would be expected to yield +6% and single- junction a-Si modules up to +10% more energy due to spectral effects. In contrast, the effect for crystalline silicon modules is less than ±1% in nearly all of Africa and Southern Europe, rising to +1% or +2% in Northern Europe.

  20. Dust forecast over North Africa: verification with satellite and ground based observations

    Science.gov (United States)

    Singh, Aditi; Kumar, Sumit; George, John P.

    2016-05-01

    Arid regions of North Africa are considered as one of the major dust source. Present study focuses on the forecast of aerosol optical depth (AOD) of dust over different regions of North Africa. NCMRWF Unified Model (NCUM) produces dust AOD forecasts at different wavelengths with lead time upto 240 hr, based on 00UTC initial conditions. Model forecast of dust AOD at 550 nm up to 72 hr forecast, based on different initial conditions are verified against satellite and ground based observations of total AOD during May-June 2014 with the assumption that except dust, presence of all other aerosols type are negligible. Location specific and geographical distribution of dust AOD forecast is verified against Aerosol Robotic Network (AERONET) station observations of total and coarse mode AOD. Moderate Resolution Imaging Spectroradiometer (MODIS) dark target and deep blue merged level 3 total aerosol optical depth (AOD) at 550 nm and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) retrieved dust AOD at 532 nm are also used for verification. CALIOP dust AOD was obtained by vertical integration of aerosol extinction coefficient at 532 nm from the aerosol profile level 2 products. It is found that at all the selected AERONET stations, the trend in dust AODs is well predicted by NCUM up to three days advance. Good correlation, with consistently low bias (~ +/-0.06) and RMSE (~ 0.2) values, is found between model forecasts and point measurements of AERONET, except over one location Cinzana (Mali). Model forecast consistently overestimated the dust AOD compared to CALIOP dust AOD, with a bias of 0.25 and RMSE of 0.40.

  1. A Neural Network MLSE Receiver Based on Natural Gradient Descent: Application to Satellite Communications

    Directory of Open Access Journals (Sweden)

    Ibnkahla Mohamed

    2004-01-01

    Full Text Available The paper proposes a maximum likelihood sequence estimator (MLSE receiver for satellite communications. The satellite channel model is composed of a nonlinear traveling wave tube (TWT amplifier followed by a multipath propagation channel. The receiver is composed of a neural network channel estimator (NNCE and a Viterbi detector. The natural gradient (NG descent is used for training. Computer simulations show that the performance of our receiver is close to the ideal MLSE receiver in which the channel is perfectly known.

  2. Assessing the Relative Performance of Microwave-Based Satellite Rain Rate Retrievals Using TRMM Ground Validation Data

    Science.gov (United States)

    Wolff, David B.; Fisher, Brad L.

    2011-01-01

    Space-borne microwave sensors provide critical rain information used in several global multi-satellite rain products, which in turn are used for a variety of important studies, including landslide forecasting, flash flood warning, data assimilation, climate studies, and validation of model forecasts of precipitation. This study employs four years (2003-2006) of satellite data to assess the relative performance and skill of SSM/I (F13, F14 and F15), AMSU-B (N15, N16 and N17), AMSR-E (Aqua) and the TRMM Microwave Imager (TMI) in estimating surface rainfall based on direct instantaneous comparisons with ground-based rain estimates from Tropical Rainfall Measuring Mission (TRMM) Ground Validation (GV) sites at Kwajalein, Republic of the Marshall Islands (KWAJ) and Melbourne, Florida (MELB). The relative performance of each of these satellite estimates is examined via comparisons with space- and time-coincident GV radar-based rain rate estimates. Because underlying surface terrain is known to affect the relative performance of the satellite algorithms, the data for MELB was further stratified into ocean, land and coast categories using a 0.25deg terrain mask. Of all the satellite estimates compared in this study, TMI and AMSR-E exhibited considerably higher correlations and skills in estimating/observing surface precipitation. While SSM/I and AMSU-B exhibited lower correlations and skills for each of the different terrain categories, the SSM/I absolute biases trended slightly lower than AMSR-E over ocean, where the observations from both emission and scattering channels were used in the retrievals. AMSU-B exhibited the least skill relative to GV in all of the relevant statistical categories, and an anomalous spike was observed in the probability distribution functions near 1.0 mm/hr. This statistical artifact appears to be related to attempts by algorithm developers to include some lighter rain rates, not easily detectable by its scatter-only frequencies. AMSU

  3. Studies on phylogeny and biogeography of damselflies (Odonata) with emphasis on the Argiolestidae

    NARCIS (Netherlands)

    Kalkman, Vincent J.

    2013-01-01

    he papers in which are part of this theses describe the global diversity and conservation status of damselflies and dragonflies, contain a moleculair revision of the damselflies and discuss the biogeography of damselflies and dragonflies in the Australasian region.

  4. Assessing regional crop water demand using a satellite-based combination equation with a land surface temperature componen

    DEFF Research Database (Denmark)

    Moyano, Carmen; Garcia, Monica; Tornos, Lucia

    2015-01-01

    consumption trends in the area. The results showed that the thermal-PT-JPL model is a suitable and simple tool requiring only air temperature and incoming solar radiation apart from standard satellites-products freely available. Our results show that in comparison with the hydrological model conceptual...... to estimate soil surface conductance based on an apparent thermal inertia index. A process-based model was applied to estimate surface energy fluxes including daily ET based on a modified version of the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model at 1km pixel resolution during a chrono......-sequence spanning for more than a decade (2002-2013). The thermal-PT-JPL model was forced with vegetation, albedo, reflectance and temperature products from the Moderate-resolution Imaging Spectroradiometer (MODIS) from both Aqua and Terra satellites. The study region, B-XII Irrigation District of the Lower...

  5. The Matsu Wheel: A Cloud-Based Framework for Efficient Analysis and Reanalysis of Earth Satellite Imagery

    Science.gov (United States)

    Patterson, Maria T.; Anderson, Nicholas; Bennett, Collin; Bruggemann, Jacob; Grossman, Robert L.; Handy, Matthew; Ly, Vuong; Mandl, Daniel J.; Pederson, Shane; Pivarski, James; Powell, Ray; Spring, Jonathan; Wells, Walt; Xia, John

    2016-01-01

    Project Matsu is a collaboration between the Open Commons Consortium and NASA focused on developing open source technology for cloud-based processing of Earth satellite imagery with practical applications to aid in natural disaster detection and relief. Project Matsu has developed an open source cloud-based infrastructure to process, analyze, and reanalyze large collections of hyperspectral satellite image data using OpenStack, Hadoop, MapReduce and related technologies. We describe a framework for efficient analysis of large amounts of data called the Matsu "Wheel." The Matsu Wheel is currently used to process incoming hyperspectral satellite data produced daily by NASA's Earth Observing-1 (EO-1) satellite. The framework allows batches of analytics, scanning for new data, to be applied to data as it flows in. In the Matsu Wheel, the data only need to be accessed and preprocessed once, regardless of the number or types of analytics, which can easily be slotted into the existing framework. The Matsu Wheel system provides a significantly more efficient use of computational resources over alternative methods when the data are large, have high-volume throughput, may require heavy preprocessing, and are typically used for many types of analysis. We also describe our preliminary Wheel analytics, including an anomaly detector for rare spectral signatures or thermal anomalies in hyperspectral data and a land cover classifier that can be used for water and flood detection. Each of these analytics can generate visual reports accessible via the web for the public and interested decision makers. The result products of the analytics are also made accessible through an Open Geospatial Compliant (OGC)-compliant Web Map Service (WMS) for further distribution. The Matsu Wheel allows many shared data services to be performed together to efficiently use resources for processing hyperspectral satellite image data and other, e.g., large environmental datasets that may be analyzed for

  6. Design Concepts for a Small Space-Based GEO Relay Satellite for Missions Between Low Earth and near Earth Orbits

    Science.gov (United States)

    Bhasin, Kul B.; Warner, Joseph D.; Oleson, Steven; Schier, James

    2014-01-01

    The main purpose of the Small Space-Based Geosynchronous Earth orbiting (GEO) satellite is to provide a space link to the user mission spacecraft for relaying data through ground networks to user Mission Control Centers. The Small Space Based Satellite (SSBS) will provide services comparable to those of a NASA Tracking Data Relay Satellite (TDRS) for the same type of links. The SSBS services will keep the user burden the same or lower than for TDRS and will support the same or higher data rates than those currently supported by TDRS. At present, TDRSS provides links and coverage below GEO; however, SSBS links and coverage capability to above GEO missions are being considered for the future, especially for Human Space Flight Missions (HSF). There is also a rising need for the capability to support high data rate links (exceeding 1 Gbps) for imaging applications. The communication payload on the SSBS will provide S/Ka-band single access links to the mission and a Ku-band link to the ground, with an optical communication payload as an option. To design the communication payload, various link budgets were analyzed and many possible operational scenarios examined. To reduce user burden, using a larger-sized antenna than is currently in use by TDRS was considered. Because of the SSBS design size, it was found that a SpaceX Falcon 9 rocket could deliver three SSBSs to GEO. This will greatly reduce the launch costs per satellite. Using electric propulsion was also evaluated versus using chemical propulsion; the power system size and time to orbit for various power systems were also considered. This paper will describe how the SSBS will meet future service requirements, concept of operations, and the design to meet NASA users' needs for below and above GEO missions. These users' needs not only address the observational mission requirements but also possible HSF missions to the year 2030. We will provide the trade-off analysis of the communication payload design in terms of

  7. Satellite Based Analysis of Carbon Monoxide Levels Over Alberta Oil Sand

    Science.gov (United States)

    Marey, H. S.; Hashisho, Z.; Fu, L.; Gille, J. C.

    2014-12-01

    The rapid expansion of oil sands activities and massive energy requirements to extract and upgrade the bitumen require a comprehensive understanding of their potential environmental impacts, particularly on air quality. In this study, satellite-based analysis of carbon monoxide (CO) levels was used to assess the magnitude and distribution of this pollutant throughout Alberta oil sands region. Measurements of Pollution in the Troposphere (MOPITT) V5 multispectral product that uses both near-infrared and the thermal-infrared radiances for CO retrieval were used. MOPITT-based climatology and inter-annual variations were examined for 12 years (2002-2013) on spatial and temporal scales. Seasonal climatological maps for CO total columns indicated conspicuous spatial variations in all seasons except in winter where the CO spatial variations are less prominent. High CO loadings are observed to extend from the North East to North West regions of Alberta, with highest values in spring. The CO mixing ratios at the surface level in winter and spring seasons exhibited dissimilar spatial distribution pattern where the enhancements are detected in south eastern rather than northern Alberta. Analyzing spatial distributions of Omega at 850 mb pressure level for four seasons implied that, conditions in northeastern Alberta are more favorable for up lofting while in southern Alberta, subsidence of CO emissions are more likely. Time altitude CO profile climatology as well as the inter-annual variability were investigated for the oil sands and main urban regions in Alberta to assess the impact of various sources on CO loading. Monthly variations over urban regions are consistent with the general seasonal cycle of CO in Northern Hemisphere which exhibits significant enhancement in winter and spring, and minimum mixing ratios in summer. The typical seasonal CO variations over the oil sands region are less prominent. This study has demonstrated the potential use of multispectral CO

  8. Evaluation of satellite based indices for gross primary production estimates in a sparse savanna in the Sudan

    Directory of Open Access Journals (Sweden)

    M. Sjöström

    2009-01-01

    Full Text Available One of the more frequently applied methods for integrating controls on primary production through satellite data is the Light Use Efficiency (LUE approach. Satellite indices such as the Normalized Difference Vegetation Index (NDVI, Enhanced Vegetation Index (EVI and the Shortwave Infrared Water Stress Index (SIWSI have previously shown promise as predictors of primary production in several different environments. In this study, we evaluate NDVI, EVI and SIWSI derived from the Moderate Resolution Imaging Spectroradiometer (MODIS satellite sensor against in-situ measurements from central Sudan in order to asses their applicability in LUE-based primary production modeling within a water limited environment. Results show a strong correlation between vegetation indices and gross primary production (GPP, demonstrating the significance of vegetation indices for deriving information on primary production with relatively high accuracy at similar areas. Evaluation of SIWSI however, reveal that the fraction of vegetation apparently is to low for the index to provide accurate information on canopy water content, indicating that the use of SIWSI as a predictor of water stress in satellite data-driven primary production modeling in similar semi-arid ecosystems is limited.

  9. An image based information system - Architecture for correlating satellite and topological data bases

    Science.gov (United States)

    Bryant, N. A.; Zobrist, A. L.

    1978-01-01

    The paper describes the development of an image based information system and its use to process a Landsat thematic map showing land use or land cover in conjunction with a census tract polygon file to produce a tabulation of land use acreages per census tract. The system permits the efficient cross-tabulation of two or more geo-coded data sets, thereby setting the stage for the practical implementation of models of diffusion processes or cellular transformation. Characteristics of geographic information systems are considered, and functional requirements, such as data management, geocoding, image data management, and data analysis are discussed. The system is described, and the potentialities of its use are examined.

  10. Using NASA's Giovanni Web Portal to Access and Visualize Satellite-Based Earth Science Data in the Classroom

    Science.gov (United States)

    Lloyd, S. A.; Acker, J. G.; Prados, A. I.; Leptoukh, G. G.

    2008-12-01

    One of the biggest obstacles for the average Earth science student today is locating and obtaining satellite- based remote sensing datasets in a format that is accessible and optimal for their data analysis needs. At the Goddard Earth Sciences Data and Information Services Center (GES-DISC) alone, on the order of hundreds of Terabytes of data are available for distribution to scientists, students and the general public. The single biggest and time-consuming hurdle for most students when they begin their study of the various datasets is how to slog through this mountain of data to arrive at a properly sub-setted and manageable dataset to answer their science question(s). The GES DISC provides a number of tools for data access and visualization, including the Google-like Mirador search engine and the powerful GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) web interface. Giovanni provides a simple way to visualize, analyze and access vast amounts of satellite-based Earth science data. Giovanni's features and practical examples of its use will be demonstrated, with an emphasis on how satellite remote sensing can help students understand recent events in the atmosphere and biosphere. Giovanni is actually a series of sixteen similar web-based data interfaces, each of which covers a single satellite dataset (such as TRMM, TOMS, OMI, AIRS, MLS, HALOE, etc.) or a group of related datasets (such as MODIS and MISR for aerosols, SeaWIFS and MODIS for ocean color, and the suite of A-Train observations co-located along the CloudSat orbital path). Recently, ground-based datasets have been included in Giovanni, including the Northern Eurasian Earth Science Partnership Initiative (NEESPI), and EPA fine particulate matter (PM2.5) for air quality. Model data such as the Goddard GOCART model and MERRA meteorological reanalyses (in process) are being increasingly incorporated into Giovanni to facilitate model- data intercomparison. A full suite of data

  11. Biogeography in Cellana (Patellogastropoda, Nacellidae) with Special Emphasis on the Relationships of Southern Hemisphere Oceanic Island Species

    Science.gov (United States)

    Nakano, Tomoyuki; Palma, Alvaro; Poulin, Elie

    2017-01-01

    Oceanic islands lacking connections to other land are extremely isolated from sources of potential colonists and have acquired their biota mainly through dispersal from geographically distant areas. Hence, isolated island biota constitutes interesting models to infer biogeographical mechanisms of dispersal, colonization, differentiation, and speciation. Limpets of the genus Cellana (Nacellidae: Patellogastropoda) show limited dispersal capacity but are broadly distributed across the Indo-Pacific including many endemic species in isolated oceanic islands. Here, we examined main distributional patterns and geographic boundaries among Cellana lineages with special emphasis in the relationships of Southern Hemisphere oceanic islands species. Phylogenetic reconstructions based on mtDNA (COI) recognized three main clades in Cellana including taxa from different provinces of the Indo-Pacific. Clear genetic discontinuities characterize the biogeography of Cellana and several lineages are associated to particular areas of the Indo-Pacific supporting the low dispersal capacity of the genus across recognized biogeographical barriers in the region. However, evolutionary relationships within Cellana suggest that long-distance dispersal processes have been common in the history of the genus and probably associated to the origin of the species in Hawaii and Juan Fernández Archipelago. Therefore, the presence of Cellana species in geographically distant Southern Hemisphere oceanic islands, such as the Juan Fernández Archipelago, suggests that long-distance dispersal mediated by rafting may have played an important role in the biogeography of the genus. PMID:28099466

  12. A method to develop mission critical data processing systems for satellite based instruments. The spinning mode case

    CERN Document Server

    Lazzarotto, Francesco; Costa, Enrico; Del Monte, Ettore; Di Persio, Giuseppe; Donnarumma, Immacolata; Evangelista, Yuri; Feroci, Marco; Pacciani, Luigi; Rubini, Alda; Soffitta, Paolo

    2011-01-01

    Modern satellite based experiments are often very complex real-time systems, composed by flight and ground segments, that have challenging resource related constraints, in terms of size, weight, power, requirements for real-time response, fault tolerance, and specialized input/output hardware-software, and they must be certified to high levels of assurance. Hardware-software data processing systems have to be responsive to system degradation and to changes in the data acquisition modes, and actions have to be taken to change the organization of the mission operations. A big research & develop effort in a team composed by scientists and technologists can lead to produce software systems able to optimize the hardware to reach very high levels of performance or to pull degraded hardware to maintain satisfactory features. We'll show real-life examples describing a system, processing the data of a X-Ray detector on satellite-based mission in spinning mode.

  13. Biogeography of circum-Antarctic springtails.

    Science.gov (United States)

    McGaughran, Angela; Stevens, Mark I; Holland, Barbara R

    2010-10-01

    We examine the effects of isolation over both ancient and contemporary timescales on evolutionary diversification and speciation patterns of springtail species in circum-Antarctica, with special focus on members of the genus Cryptopygus (Collembola, Isotomidae). We employ phylogenetic analysis of mitochondrial DNA (cox1), and ribosomal DNA (18S and 28S) genes in the programmes MrBayes and RAxML. Our aims are twofold: (1) we evaluate existing taxonomy in light of previous work which found dubious taxonomic classification in several taxa based on cox1 analysis; (2) we evaluate the biogeographic origin of our chosen suite of springtail species based on dispersal/vicariance scenarios, the magnitude of genetic divergence among lineages and the age and accessibility of potential habitat. The dubious taxonomic characterisation of Cryptopygus species highlighted previously is confirmed by our multi-gene phylogenetic analyses. Specifically, according to the current taxonomy, Cryptopygus antarcticus subspecies are not completely monophyletic and neither are Cryptopygus species in general. We show that distribution patterns among species/lineages are both dispersal- and vicariance-driven. Episodes of colonisation appear to have occurred frequently, the routes of which may have followed currents in the Southern Ocean. In several cases, the estimated divergence dates among species correspond well with the timing of terrestrial habitat availability. We conclude that these isotomid springtails have a varied and diverse evolutionary history in the circum-Antarctic that consists of both ancient and recent elements and is reflected in a dynamic contemporary fauna.

  14. Floristics and Plant Biogeography in China

    Institute of Scientific and Technical Information of China (English)

    De-Zhu Li

    2008-01-01

    In 1998, a revolutionary system of angiosperm classification, the Angiosperm Phylogeny Group system was published.Meanwhile, another new system of classification of angiosperms, the eight-class system was proposed by C.Y. Wu and colleagues based on long term work on the flora of China. The Flora Reipublicae Popularis Sinicae project was initiated in 1959 and completed by 2004. It is the largest Flora so far completed in the world, including 31 228 species of vascular plants,or one-eighth of the global plant diversity. The English-language and updated Flora of China (FOC) is an international joint effort initiated in 1988 and accelerated in 1998. Up to now, 15 of the 24 volumes of the FOC have been published. Based on the fioristic data, the composition, characteristics, floristic divisions and affinities of the flora of China have been studied by Wu and colleagues since 1965. In the past 10years, analyses of the available floristic data have been very productive.The East Asiatic Floristic Kingdom was proposed in 1998. All 346 families of angiosperms in China, according to the eightclass system of classification, were comprehensively discussed by using knowledge of current and historical distribution of seed plants in the world, together with some morphological and molecular data. A scheme of distribution patterns or areal-types of families and genera of seed plants in China was modified and elucidated, together with a proposed scheme of areal-types of the world. Molecular phylogenetic and biogeographical studies of angiosperms in China in the past 10 yearsalso witnessed a progressive development. Integration of morphological and molecular data and fossil evidence revealed some significant results. Eastern Asia, which used to be regarded as an important center of survival during the ice age, is likely an important center of diversification of angiosperms.

  15. Floristics and plant biogeography in China.

    Science.gov (United States)

    Li, De-Zhu

    2008-07-01

    In 1998, a revolutionary system of angiosperm classification, the Angiosperm Phylogeny Group system was published. Meanwhile, another new system of classification of angiosperms, the eight-class system was proposed by C. Y. Wu and colleagues based on long term work on the flora of China. The Flora Reipublicae Popularis Sinicae project was initiated in 1959 and completed by 2004. It is the largest Flora so far completed in the world, including 31 228 species of vascular plants, or one-eighth of the global plant diversity. The English-language and updated Flora of China (FOC) is an international joint effort initiated in 1988 and accelerated in 1998. Up to now, 15 of the 24 volumes of the FOC have been published. Based on the floristic data, the composition, characteristics, floristic divisions and affinities of the flora of China have been studied by Wu and colleagues since 1965. In the past 10 years, analyses of the available floristic data have been very productive. The East Asiatic Floristic Kingdom was proposed in 1998. All 346 families of angiosperms in China, according to the eight-class system of classification, were comprehensively discussed by using knowledge of current and historical distribution of seed plants in the world, together with some morphological and molecular data. A scheme of distribution patterns or areal-types of families and genera of seed plants in China was modified and elucidated, together with a proposed scheme of areal-types of the world. Molecular phylogenetic and biogeographical studies of angiosperms in China in the past 10 years also witnessed a progressive development. Integration of morphological and molecular data and fossil evidence revealed some significant results. Eastern Asia, which used to be regarded as an important center of survival during the ice age, is likely an important center of diversification of angiosperms.

  16. Comparison of Historical Satellite-Based Estimates of Solar Radiation Resources with Recent Rotating Shadowband Radiometer Measurements: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.

    2009-03-01

    The availability of rotating shadow band radiometer measurement data at several new stations provides an opportunity to compare historical satellite-based estimates of solar resources with measurements. We compare mean monthly daily total (MMDT) solar radiation data from eight years of NSRDB and 22 years of NASA hourly global horizontal and direct beam solar estimates with measured data from three stations, collected after the end of the available resource estimates.

  17. Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    OpenAIRE

    Fei Song; Shiyin Qin

    2014-01-01

    This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywhe...

  18. Tropospheric BrO column densities in the Arctic derived from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-11-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The presented algorithm furthermore allows to estimate a realistic measurement error of the tropospheric BrO column. The sensitivity of each satellite pixel to BrO in the boundary layer is quantified using the measured UV radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement with ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary layer meteorology influences the vertical distribution.

  19. Tropospheric BrO column densities in the Arctic from satellite: retrieval and comparison to ground-based measurements

    Directory of Open Access Journals (Sweden)

    H. Sihler

    2012-05-01

    Full Text Available During polar spring, halogen radicals like bromine monoxide (BrO play an important role in the chemistry of tropospheric ozone destruction. Satellite measurements of the BrO-distribution have become a particularly useful tool to investigate this probably natural phenomenon, but the separation of stratospheric and tropospheric partial columns of BrO is challenging. In this study, an algorithm was developed to retrieve tropospheric vertical column densities of BrO from data of high-resolution spectroscopic satellite instruments such as the second Global Ozone Monitoring Experiment (GOME-2. Unlike recently published approaches, the presented algorithm is capable of separating the fraction of BrO in the activated troposphere from the total BrO column solely based on remotely measured properties. The sensitivity of each satellite pixel to BrO in the boundary-layer is quantified using the measured UV-radiance and the column density of the oxygen collision complex O4. A comparison of the sensitivities with CALIPSO LIDAR observations demonstrates that clouds shielding near-surface trace-gas columns can be reliably detected even over ice and snow. Retrieved tropospheric BrO columns are then compared to ground-based BrO measurements from two Arctic field campaigns in the Amundsen Gulf and at Barrow in 2008 and 2009, respectively. Our algorithm was found to be capable of retrieving enhanced near-surface BrO during both campaigns in good agreement to ground-based data. Some differences between ground-based and satellite measurements observed at Barrow can be explained by both, elevated and shallow surface layers of BrO. The observations strongly suggest that surface release processes are the dominating source of BrO and that boundary-layer meteorology influences the vertical distribution.

  20. Supporting a Diverse Community of Undergraduate Researchers in Satellite and Ground-Based Remote Sensing

    Science.gov (United States)

    Blake, R.; Liou-Mark, J.

    2012-12-01

    The U.S. remains in grave danger of losing its global competitive edge in STEM. To find solutions to this problem, the Obama Administration proposed two new national initiatives: the Educate to Innovate Initiative and the $100 million government/private industry initiative to train 100,000 STEM teachers and graduate 1 million additional STEM students over the next decade. To assist in ameliorating the national STEM plight, the New York City College of Technology has designed its NSF Research Experience for Undergraduate (REU) program in satellite and ground-based remote sensing to target underrepresented minority students. Since the inception of the program in 2008, a total of 45 undergraduate students of which 38 (84%) are considered underrepresented minorities in STEM have finished or are continuing with their research or are pursuing their STEM endeavors. The program is comprised of the three primary components. The first component, Structured Learning Environments: Preparation and Mentorship, provides the REU Scholars with the skill sets necessary for proficiency in satellite and ground-based remote sensing research. The students are offered mini-courses in Geographic Information Systems, MATLAB, and Remote Sensing. They also participate in workshops on the Ethics of Research. Each REU student is a member of a team that consists of faculty mentors, post doctorate/graduate students, and high school students. The second component, Student Support and Safety Nets, provides undergraduates a learning environment that supports them in becoming successful researchers. Special networking and Brown Bag sessions, and an annual picnic with research scientists are organized so that REU Scholars are provided with opportunities to expand their professional community. Graduate school support is provided by offering free Graduate Record Examination preparation courses and workshops on the graduate school application process. Additionally, students are supported by college

  1. Soil moisture on Polish territory - comparison of satellite and ground-based measurements

    Science.gov (United States)

    Rojek, Edyta; Łukowski, Mateusz; Marczewski, Wojciech; Usowicz, Bogusław

    2014-05-01

    Assessment of water resources due to changing climatic conditions in time and space is still very uncertain. The territory of Poland has a limited resource of waters, occasionally resulting in small agricultural droughts. From the other side intense rainfalls, floods or run-offs, causing soil erosion are observed. Therefore, it is important to predict and prevent of this adverse phenomena. Huge spatial variability of soil moisture does not allow for accurate estimation of its distribution using ground-based measurements. SMOS soil moisture data are quite much inherently consistent in time and space, but their validation is still a challenge for further use in the climate and hydrology studies. This is the motivation for the research: to examine soil moisture from SMOS and ground based stations of the SWEX network held over eastern Poland. The presented results are related to changes of the soil moisture on regional scales for Poland in the period 2010-2013. Some results with SMOS L2 data are extended on continental scales for Europe. Time series from ground and satellite SMOS data sources were compared by regression methods. The region of Poland indicates clearly some genetic spatial distributions in weekly averaged values. In continental scales, the country territory contrasts evidently to Lithuania and in Polesie, and indicates seasonal cycling observed in archives and well known traditional records. The central part of Poland is repeatedly susceptible on droughts with soil moisture values ranging from about 0.02 to 0.20 m3 m-3. SMOS data allows on creating systematic drought data for Poland and watching annual changes, and differences to other drought services kept on national scales for agricultural purposes. We bound that drought susceptibility to the content of sand clay components and the land use there. Lack of rainfall in the late 2011 summer, caused a significant deficit of water in soil moisture content (below 0.05 m3 m-3) throughout the entire country

  2. Floristics and biogeography of vegetation in seasonally dry tropical regions

    DEFF Research Database (Denmark)

    Dexter, K.G.; Smart, B.; Baldauf, C.

    2015-01-01

    To provide an inter-continental overview of the floristics and biogeography of drought-adapted tropical vegetation formations, we compiled a dataset of inventory plots in South America (n=93), Africa (n=84), and Asia (n=92) from savannas (subject to fire), seasonally dry tropical forests (not...... generally subject to fire), and moist forests (no fire). We analysed floristic similarity across vegetation formations within and between continents. Our dataset strongly suggests that different formations tend to be strongly clustered floristically by continent, and that among continents, superficially...... similar vegetation formations (e.g. savannas) are floristically highly dissimilar. Neotropical moist forest, savanna and seasonally dry tropical forest are floristically distinct, but elsewhere there is no clear floristic division of savanna and seasonally dry tropical forest, though moist and dry...

  3. Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes

    Institute of Scientific and Technical Information of China (English)

    Jochen HEINRICHS; J(o)rn HENTSCHEL; Kathrin FELDBERG; Andrea BOMBOSCH; Harald SCHNEIDER

    2009-01-01

    More than 200 research papers on the molecular phylogeny and phylogenetic biogeography of bryophytes have been published since the beginning of this millenium. These papers corroborated assumptions of a complex ge-netic structure of morphologically circumscribed bryophytes, and raised reservations against many morphologically justified species concepts, especially within the mosses. However, many molecular studies allowed for corrections and modifications of morphological classification schemes. Several studies reported that the phylogenetic structure of disjunctly distributed bryophyte species reflects their geographical ranges rather than morphological disparities. Molecular data led to new appraisals of distribution ranges and allowed for the reconstruction of refugia and migra-tion routes. Intercontinental ranges of bryophytes are often caused by dispersal rather than geographical vicariance. Many distribution patterns of disjunct bryophytes are likely formed by processes such as short distance dispersal, rare long distance dispersal events, extinction, recolonization and diversification.

  4. Evaluation of TRMM satellite-based precipitation indexes for flood forecasting over Riyadh City, Saudi Arabia

    Science.gov (United States)

    Tekeli, Ahmet Emre; Fouli, Hesham

    2016-10-01

    Floods are among the most common disasters harming humanity. In particular, flash floods cause hazards to life, property and any type of structures. Arid and semi-arid regions are equally prone to flash floods like regions with abundant rainfall. Despite rareness of intensive and frequent rainfall events over Kingdom of Saudi Arabia (KSA); an arid/semi-arid region, occasional flash floods occur and result in large amounts of damaging surface runoff. The flooding of 16 November, 2013 in Riyadh; the capital city of KSA, resulted in killing some people and led to much property damage. The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) Real Time (RT) data (3B42RT) are used herein for flash flood forecasting. 3B42RT detected high-intensity rainfall events matching with the distribution of observed floods over KSA. A flood early warning system based on exceedance of threshold limits on 3B42RT data is proposed for Riyadh. Three different indexes: Constant Threshold (CT), Cumulative Distribution Functions (CDF) and Riyadh Flood Precipitation Index (RFPI) are developed using 14-year 3B42RT data from 2000 to 2013. RFPI and CDF with 90% captured the three major flooding events that occurred in February 2005, May 2010 and November 2013 in Riyadh. CT with 3 mm/h intensity indicated the 2013 flooding, but missed those of 2005 and 2010. The methodology implemented herein is a first-step simple and accurate way for flash flood forecasting over Riyadh. The simplicity of the methodology enables its applicability for the TRMM follow-on missions like Global Precipitation Measurement (GPM) mission.

  5. Avalanche Debris Detection Using Satellite- and Drone Based Radar and Optical Remote Sensing

    Science.gov (United States)

    Eckerstorfer, M.; Malnes, E.; Vickers, H.; Solbø, S. A.; Tøllefsen, A.

    2014-12-01

    The mountainous fjord landscape in the county of Troms, around its capital Tromsø in Northern Norway is prone to high avalanche activity during the snow season. Large avalanches pose a hazard to infrastructure, such as buildings and roads, located between the steep mountainsides and the fjords. A prolonged cold spell during January and February 2014 was followed by rapid new-snow loading during March 2014, inducing a significant avalanche cycle with many spontaneous, size D4 avalanches that affected major transport veins. During and shortly after the avalanche cycle of March 2014, we obtained 11 Radarsat-2 Ultrafine mode scenes, chosen according to reported avalanche activity. We further collected four Radarsat-2 ScanSAR mode scenes and two Landsat-8 scenes covering the entire county of Troms. For one particular avalanche, we obtained a drone-based orthophoto, from which a DEM of the avalanche debris surface was derived, using structure-from-motion photogrammetry. This enabled us to calculate the debris volume accurately. We detected avalanche debris in the radar images visually, by applying two detection algorithms that make use of the increased backscatter in avalanche debris. This backscatter increase is a product of increased snow water equivalent and surface roughness, roughly of the order of 3 dB. In addition, we applied a multi-temporal approach by repeatedly detecting avalanche debris at different acquisition times, as well as a multi-sensor approach, covering similar areas with different sensors. This multi-temporal and multi-sensor approach enabled us to map the spatial extent and magnitude of the March 2014 avalanche cycle in the county Troms. With ESA's Sentinel-1 satellite, providing high-resolution, large swath radar images with a short repeat cycle, a complete avalanche record for a forecasting region could become feasible. In this first test season, we detected more than 550 avalanches that were released during a one-month period over an area of

  6. Satellite Based Soil Moisture Product Validation Using NOAA-CREST Ground and L-Band Observations

    Science.gov (United States)

    Norouzi, H.; Campo, C.; Temimi, M.; Lakhankar, T.; Khanbilvardi, R.

    2015-12-01

    Soil moisture content is among most important physical parameters in hydrology, climate, and environmental studies. Many microwave-based satellite observations have been utilized to estimate this parameter. The Advanced Microwave Scanning Radiometer 2 (AMSR2) is one of many remotely sensors that collects daily information of land surface soil moisture. However, many factors such as ancillary data and vegetation scattering can affect the signal and the estimation. Therefore, this information needs to be validated against some "ground-truth" observations. NOAA - Cooperative Remote Sensing and Technology (CREST) center at the City University of New York has a site located at Millbrook, NY with several insitu soil moisture probes and an L-Band radiometer similar to Soil Moisture Passive and Active (SMAP) one. This site is among SMAP Cal/Val sites. Soil moisture information was measured at seven different locations from 2012 to 2015. Hydra probes are used to measure six of these locations. This study utilizes the observations from insitu data and the L-Band radiometer close to ground (at 3 meters height) to validate and to compare soil moisture estimates from AMSR2. Analysis of the measurements and AMSR2 indicated a weak correlation with the hydra probes and a moderate correlation with Cosmic-ray Soil Moisture Observing System (COSMOS probes). Several differences including the differences between pixel size and point measurements can cause these discrepancies. Some interpolation techniques are used to expand point measurements from 6 locations to AMSR2 footprint. Finally, the effect of penetration depth in microwave signal and inconsistencies with other ancillary data such as skin temperature is investigated to provide a better understanding in the analysis. The results show that the retrieval algorithm of AMSR2 is appropriate under certain circumstances. This validation algorithm and similar study will be conducted for SMAP mission. Keywords: Remote Sensing, Soil

  7. Water Accounting Plus (WA+) - a water accounting procedure for complex river basins based on satellite measurements

    Science.gov (United States)

    Karimi, P.; Bastiaanssen, W. G. M.; Molden, D.

    2013-07-01

    Coping with water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land use and opportunities to mitigate the negative effects and increase the benefits of water depletion on society. Currently, water professionals do not have a common framework that links depletion to user groups of water and their benefits. The absence of a standard hydrological and water management summary is causing confusion and wrong decisions. The non-availability of water flow data is one of the underpinning reasons for not having operational water accounting systems for river basins in place. In this paper, we introduce Water Accounting Plus (WA+), which is a new framework designed to provide explicit spatial information on water depletion and net withdrawal processes in complex river basins. The influence of land use and landscape evapotranspiration on the water cycle is described explicitly by defining land use groups with common characteristics. WA+ presents four sheets including (i) a resource base sheet, (ii) an evapotranspiration sheet, (iii) a productivity sheet, and (iv) a withdrawal sheet. Every sheet encompasses a set of indicators that summarise the overall water resources situation. The impact of external (e.g., climate change) and internal influences (e.g., infrastructure building) can be estimated by studying the changes in these WA+ indicators. Satellite measurements can be used to acquire a vast amount of required data but is not a precondition for implementing WA+ framework. Data from hydrological models and water allocation models can also be used as inputs to WA+.

  8. Comparison of satellite-based evapotranspiration estimates over the Tibetan Plateau

    Science.gov (United States)

    Peng, Jian; Loew, Alexander; Chen, Xuelong; Ma, Yaoming; Su, Zhongbo

    2016-08-01

    The Tibetan Plateau (TP) plays a major role in regional and global climate. The understanding of latent heat (LE) flux can help to better describe the complex mechanisms and interactions between land and atmosphere. Despite its importance, accurate estimation of evapotranspiration (ET) over the TP remains challenging. Satellite observations allow for ET estimation at high temporal and spatial scales. The purpose of this paper is to provide a detailed cross-comparison of existing ET products over the TP. Six available ET products based on different approaches are included for comparison. Results show that all products capture the seasonal variability well with minimum ET in the winter and maximum ET in the summer. Regarding the spatial pattern, the High resOlution Land Atmosphere surface Parameters from Space (HOLAPS) ET demonstrator dataset is very similar to the LandFlux-EVAL dataset (a benchmark ET product from the Global Energy and Water Cycle Experiment), with decreasing ET from the south-east to north-west over the TP. Further comparison against the LandFlux-EVAL over different sub-regions that are decided by different intervals of normalised difference vegetation index (NDVI), precipitation, and elevation reveals that HOLAPS agrees best with LandFlux-EVAL having the highest correlation coefficient (R) and the lowest root mean square difference (RMSD). These results indicate the potential for the application of the HOLAPS demonstrator dataset in understanding the land-atmosphere-biosphere interactions over the TP. In order to provide more accurate ET over the TP, model calibration, high accuracy forcing dataset, appropriate in situ measurements as well as other hydrological data such as runoff measurements are still needed.

  9. Satellites Based Annual Carbon Dynamics of Africa Tropical Vegetation During the 2003-2014 Period

    Science.gov (United States)

    Baccini, A.

    2015-12-01

    Tracking terrestrial carbon fluxes and predicting how tropical forests will respond to continuous global change requires accurate estimates of annual changes in the density and distribution of carbon stocks at local to global scales. Existing evidence for tropical forests as a carbon sink is based on a limited number of repeated field measurements (Phillips et al. 1998,Lewis et al. 2009, Brienen et al. 2015), while spatially explicit estimates over large areas are limited to emissions derived from deforestation without being able to account for degradation and gain (Harris et al. 2012, Hansen et al. 2013). Here we use 12 years (2003-2014) of satellite data to quantify wall-to-wall annual net changes in aboveground carbon density, showing that Africa tropical forests are a net carbon source on the order of 72.1 ± 32.9 Tg C yr-1. This net release of carbon consists of losses of 205.0 ± 24.7 Tg C yr1 and gains of -132.9 ± 19.3 Tg C yr1. The net gains result from forest growth; net losses result from both reductions in forest area due to deforestation and in biomass density within forests due to degradation; this last accounting overall for 68.9 % of the losses. We anticipate several advantages over the traditional estimates. It measures carbon lost from forest degradation as well as from deforestation. It measures the gains of carbon in forest growth. Data are available to determine annual changes with associated uncertainty. The approach focuses directly on changes in carbon. While global emissions from fossil fuel stabilized in 2014 for the first time in the past 40 years, results from this study indicate that the annual rate of emissions from tropical forests has tended upward over the latest years of the 2003-2014 period.

  10. Modeling Bird Migration in Changing Habitats: Space-based Ornithology using Satellites and GIS

    Science.gov (United States)

    Smith, James A.; Deppe, Jill L.

    2008-01-01

    Understanding bird migration and avian biodiversity is one of the most compelling and challenging problems of modern biology with major implications for human health and conservation biology. Migration and conservation efforts cross national boundaries and are subject to numerous international agreements and treaties presenting challenges in both geographic space and time. Space based technology, coupled with geographic information systems, yields new opportunities to shed light on the distribution and movement of organisms on the planet and their sensitivity to human disturbances and environmental changes. At NASA, we are creating ecological forecasting tools for science and application users to address the consequences of loss of wetlands, flooding, drought or other natural disasters such as hurricanes on avian biodiversity and bird migration. In our work, we use individual organism biophysical models and drive these models with satellite observations and numerical weather predictions of the spatio-temporal gradients in climate and habitat. Geographic information system technology comprises one component of our overall simulation framework, especially for characterizing the changing habitats and conditions encountered by en-route migratory birds. Simulation provides a tool for studying bird migration across multiple scales and can be linked to mechanistic processes describing the time and energy budget states of migrating birds. Such models yield an understanding of how a migratory flyway and its component habitats function as a whole and link stop-over ecology with biological conservation and management. We present examples of our simulation of shorebirds, principally, pectoral sandpipers, along the central flyways of the United States and Canada from the Gulf of Mexico to Alaska.

  11. Photosynthetically active radiation retrieval based on HJ-1A/B satellite data

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Photosynthetically active radiation(PAR) is essential for plant photosynthesis and carbon cycle,and is also important for meteorological and environmental monitoring.To advance China’s disaster and environmental monitoring capabilities,the HJ-1A/B satellites have been placed in Earth orbit.One of their environmental monitoring objectives is the study of PAR.We simulated direct solar,scattered and environment radiation between 400 and 700 nm under different atmospheric parameters(solar zenith angle,atmospheric water vapor,atmospheric ozone,aerosol optical thickness,surface elevation and surface albedo),and then established a look-up table between these input parameters and PAR.Based on the look-up table,we used HJ-1A/B aerosol and surface albedo outputs to derive the corresponding PAR.Validation of inversed instantaneous and observed PAR values using HJ-1 Heihe experimental data had a root mean square error of 25.2 W m-2,with a relative error of 5.9%.The root mean square error for accumulated daily PAR and observed values was 0.49 MJ m-2,with a relative error of 3.5%.Our approach improved significantly the computational efficiency,compared with using directly radiation transfer equations.We also studied the sensitivity of various input parameters to photosynthetically active radiation,and found that solar zenith angle and atmospheric aerosols were sensitive PAR parameters.Surface albedo had some effect on PAR,but water vapor and ozone had minimal impact on PAR.

  12. A globally nonsingular quaternion-based formulation for all-electric satellite trajectory optimization

    Science.gov (United States)

    Libraro, Paola

    The general electric propulsion orbit-raising maneuver of a spacecraft must contend with four main limiting factors: the longer time of flight, multiple eclipses prohibiting continuous thrusting, long exposure to radiation from the Van Allen belt and high power requirement of the electric engines. In order to optimize a low-thrust transfer with respect to these challenges, the choice of coordinates and corresponding equations of motion used to describe the kinematical and dynamical behavior of the satellite is of critical importance. This choice can potentially affect the numerical optimization process as well as limit the set of mission scenarios that can be investigated. To increase the ability to determine the feasible set of mission scenarios able to address the challenges of an all-electric orbit-raising, a set of equations free of any singularities is required to consider a completely arbitrary injection orbit. For this purpose a new quaternion-based formulation of a spacecraft translational dynamics that is globally nonsingular has been developed. The minimum-time low-thrust problem has been solved using the new set of equations of motion inside a direct optimization scheme in order to investigate optimal low-thrust trajectories over the full range of injection orbit inclinations between 0 and 90 degrees with particular focus on high-inclinations. The numerical results consider a specific mission scenario in order to analyze three key aspects of the problem: the effect of the initial guess on the shape and duration of the transfer, the effect of Earth oblateness on transfer time and the role played by, radiation damage and power degradation in all-electric minimum-time transfers. Finally trade-offs between mass and cost savings are introduced through a test case.

  13. Analytical satellite theories based on a new set of canonical elements

    Science.gov (United States)

    Scheifele, G.; Graf, O.

    1974-01-01

    A new analytical satellite theory is presented. Instead of the 6 classical elements of Delaunay, a set of 8 canonical elements is used. Whereas the time is the independent variable in classical theory, the true anomaly is the independent variable in the new theory. The new approach has four features: (1) The amount of formulas in the solution is reduced considerably. (2) The first order results are almost as accurate as second order results in classical theory. (3) The theory is easier to understand from a didactical point of view. (4) The problems connected with the inaccuracy of the mean motion that are typical for classical satellite theory are no longer present. The new elements are applied to analytical solutions of the zonal oblateness problem and to the problem of the 24 hour satellite.

  14. Rapid Satellite-to-Site Visibility Determination Based on Self-Adaptive Interpolation Technique

    CERN Document Server

    Han, Chao; Sun, Xiucong

    2016-01-01

    Rapid satellite-to-site visibility determination is of great significance to coverage analysis of satellite constellations as well as onboard mission planning of autonomous spacecraft. This paper presents a novel self-adaptive Hermite interpolation technique for rapid satellite-to-site visibility determination. Piecewise cubic curves are utilized to approximate the waveform of the visibility function versus time. The fourth-order derivative is used to control the approximation error and to optimize the time step for interpolation. The rise and set times are analytically obtained from the roots of cubic polynomials. To further increase the computational speed, an interval shrinking strategy is adopted via investigating the geometric relationship between the ground viewing cone and the orbit trajectory. Simulation results show a 98% decrease in computation time over the brute force method. The method is suitable for all orbital types and analytical orbit propagators.

  15. A Satellite-Based Surface Radiation Climatology Derived by Combining Climate Data Records and Near-Real-Time Data

    Directory of Open Access Journals (Sweden)

    Bodo Ahrens

    2013-09-01

    Full Text Available This study presents a method for adjusting long-term climate data records (CDRs for the integrated use with near-real-time data using the example of surface incoming solar irradiance (SIS. Recently, a 23-year long (1983–2005 continuous SIS CDR has been generated based on the visible channel (0.45–1 μm of the MVIRI radiometers onboard the geostationary Meteosat First Generation Platform. The CDR is available from the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF. Here, it is assessed whether a homogeneous extension of the SIS CDR to the present is possible with operationally generated surface radiation data provided by CM SAF using the SEVIRI and GERB instruments onboard the Meteosat Second Generation satellites. Three extended CM SAF SIS CDR versions consisting of MVIRI-derived SIS (1983–2005 and three different SIS products derived from the SEVIRI and GERB instruments onboard the MSG satellites (2006 onwards were tested. A procedure to detect shift inhomogeneities in the extended data record (1983–present was applied that combines the Standard Normal Homogeneity Test (SNHT and a penalized maximal T-test with visual inspection. Shift detection was done by comparing the SIS time series with the ground stations mean, in accordance with statistical significance. Several stations of the Baseline Surface Radiation Network (BSRN and about 50 stations of the Global Energy Balance Archive (GEBA over Europe were used as the ground-based reference. The analysis indicates several breaks in the data record between 1987 and 1994 probably due to artefacts in the raw data and instrument failures. After 2005 the MVIRI radiometer was replaced by the narrow-band SEVIRI and the broadband GERB radiometers and a new retrieval algorithm was applied. This induces significant challenges for the homogenisation across the satellite generations. Homogenisation is performed by applying a mean-shift correction depending on the shift size of

  16. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, H B.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-05-01

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 10{sup 11} cmHz {sup {1/2}}W{sup {minus}1} for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 10{sup 10} cmHz{sup {1/2}}W{sup {minus}1}. KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. Si{sub x}N{sub y} membranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO{sub 3}/Pt/Ti/Si{sub x}N{sub y}/Si and SrRuO{sub 3}/Si{sub x}N{sub y}/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is {approximately}380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom electrode layers to Si{sub x}N{sub y}/Si.

  17. Performance Analysis for Regional Satellite Positioning System Based upon GEO/HEO Hybrid Constellation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Scheme of positioning constellation would greatly influence the positioning performance. In this paper, a GEO/HEO hybrid constellation with 3 HEO satellites deployed in 3 orbits and 3 GEO satellites for regional positioning is presented. Firstly, elements for 3 GEO and 3 HEO are optimized from regional visibility for the selected region of interest. Secondly, positioning performance is provided through GDOP(geometric dilution of precision) and PDOP(positional dilution of precision). Simulation results show that similar accuracy with GPS can be gained by this constellation.

  18. Atlantic reef fish biogeography and evolution

    Science.gov (United States)

    Floeter, S.R.; Rocha, L.A.; Robertson, D.R.; Joyeux, J.C.; Smith-Vaniz, W.F.; Wirtz, P.; Edwards, A.J.; Barreiros, J.P.; Ferreira, C.E.L.; Gasparini, J.L.; Brito, A.; Falcon, J.M.; Bowen, B.W.; Bernardi, G.

    2008-01-01

    Aim: To understand why and when areas of endemism (provinces) of the tropical Atlantic Ocean were formed, how they relate to each other, and what processes have contributed to faunal enrichment. Location: Atlantic Ocean. Methods: The distributions of 2605 species of reef fishes were compiled for 25 areas of the Atlantic and southern Africa. Maximum-parsimony and distance analyses were employed to investigate biogeographical relationships among those areas. A collection of 26 phylogenies of various Atlantic reef fish taxa was used to assess patterns of origin and diversification relative to evolutionary scenarios based on spatio-temporal sequences of species splitting produced by geological and palaeoceanographic events. We present data on faunal (species and genera) richness, endemism patterns, diversity buildup (i.e. speciation processes), and evaluate the operation of the main biogeographical barriers and/or filters. Results: Phylogenetic (proportion of sister species) and distributional (number of shared species) patterns are generally concordant with recognized biogeographical provinces in the Atlantic. The highly uneven distribution of species in certain genera appears to be related to their origin, with highest species richness in areas with the greatest phylogenetic depth. Diversity buildup in Atlantic reef fishes involved (1) diversification within each province, (2) isolation as a result of biogeographical barriers, and (3) stochastic accretion by means of dispersal between provinces. The timing of divergence events is not concordant among taxonomic groups. The three soft (non-terrestrial) inter-regional barriers (mid-Atlantic, Amazon, and Benguela) clearly act as 'filters' by restricting dispersal but at the same time allowing occasional crossings that apparently lead to the establishment of new populations and species. Fluctuations in the effectiveness of the filters, combined with ecological differences among provinces, apparently provide a mechanism

  19. Historical biogeography of the Isthmus of Panama.

    Science.gov (United States)

    Leigh, Egbert G; O'Dea, Aaron; Vermeij, Geerat J

    2014-02-01

    -offs between exploiting well-watered settings versus surviving droughts, exploiting fertile versus coping with poor soil, and exploiting lowland warmth versus coping with cooler altitudes. At the start of the Miocene, a common marine biota extended from Trinidad to Ecuador and western Mexico, which evolved in isolation from the Indo-Pacific until the Pleistocene. The seaway between the Americas began shoaling over 12 Ma. About 10 Ma the land bridge was briefly near-complete, allowing some interchange of land mammals between the continents. By 7 Ma, the rising sill had split deeper-water populations. Sea temperature, salinity and sedimentary carbon content had begun to increase in the Southern Caribbean, but not the Pacific. By 4 Ma, the seaway's narrowing began to extinguish Caribbean upwellings. By 2 Ma, upwellings remained only along Venezuela; Caribbean plankton, suspension-feeding molluscs and their predators had declined sharply, largely replaced by bottom-dwelling corals and calcareous algae and magnificent coral reefs. Closing the seaway extinguished the Eastern Pacific's reef corals (successors recolonized from the Indo-Pacific 6000 years ago), whereas many molluscs of productive waters that once thrived in the Caribbean now survive only in the Eastern Pacific. The present-day productive Eastern Pacific, with few, small coral reefs and a plankton-based ecosystem contrasts with the Caribbean, whose clear water favours expansive coral reefs and bottom-dwelling primary producers. These ecosystems reflect the trade-off between fast growth and effective defence with attendant longevity. Overfishing with new technologies during the last few centuries, however, has caused population crashes of ever-smaller marine animals, devastating Caribbean ecosystems.

  20. Mobile satellite communications handbook

    CERN Document Server

    Cochetti, Roger

    2014-01-01

    With a Preface by noted satellite scientist Dr. Ahmad Ghais, the Second Edition reflects the expanded user base for this technology by updating information on historic, current, and planned commercial and military satellite systems and by expanding sections that explain the technology for non-technical professionals.   The book begins with an introduction to satellite communications and goes on to provide an overview of the technologies involved in mobile satellite communications, providing basic introductions to RF Issues, power Issues, link issues and system issues. It describes

  1. Advanced Oil Spill Detection Algorithms For Satellite Based Maritime Environment Monitoring

    Science.gov (United States)

    Radius, Andrea; Azevedo, Rui; Sapage, Tania; Carmo, Paulo

    2013-12-01

    During the last years, the increasing pollution occurrence and the alarming deterioration of the environmental health conditions of the sea, lead to the need of global monitoring capabilities, namely for marine environment management in terms of oil spill detection and indication of the suspected polluter. The sensitivity of Synthetic Aperture Radar (SAR) to the different phenomena on the sea, especially for oil spill and vessel detection, makes it a key instrument for global pollution monitoring. The SAR performances in maritime pollution monitoring are being operationally explored by a set of service providers on behalf of the European Maritime Safety Agency (EMSA), which has launched in 2007 the CleanSeaNet (CSN) project - a pan-European satellite based oil monitoring service. EDISOFT, which is from the beginning a service provider for CSN, is continuously investing in R&D activities that will ultimately lead to better algorithms and better performance on oil spill detection from SAR imagery. This strategy is being pursued through EDISOFT participation in the FP7 EC Sea-U project and in the Automatic Oil Spill Detection (AOSD) ESA project. The Sea-U project has the aim to improve the current state of oil spill detection algorithms, through the informative content maximization obtained with data fusion, the exploitation of different type of data/ sensors and the development of advanced image processing, segmentation and classification techniques. The AOSD project is closely related to the operational segment, because it is focused on the automation of the oil spill detection processing chain, integrating auxiliary data, like wind information, together with image and geometry analysis techniques. The synergy between these different objectives (R&D versus operational) allowed EDISOFT to develop oil spill detection software, that combines the operational automatic aspect, obtained through dedicated integration of the processing chain in the existing open source NEST

  2. Satellite-based assessment of climate controls on US burned area

    Directory of Open Access Journals (Sweden)

    D. C. Morton

    2013-01-01

    Full Text Available Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate–fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA, the Global Fire Emissions Database (GFED, 1997–2010 and Monitoring Trends in Burn Severity (MTBS, 1984–2009 BA products. For each US National Climate Assessment (NCA region, we analyzed the relationships between monthly BA and potential evaporation (PE derived from reanalysis climate data at 0.5° resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for the entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in Alaska, while water deficit (precipitation – PE was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6–12 months. Fire season PE increased from the 1980's–2000's, enhancing climate-driven fire risk in the southern and western US where PE–BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990's–2000's highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climate-fire relationships at the national scale are complex, based on the

  3. Satellite-based assessment of climate controls on US burned area

    Directory of Open Access Journals (Sweden)

    D. C. Morton

    2012-06-01

    Full Text Available Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA, the Global Fire Emissions Database (GFED, 1997–2010 and Monitoring Trends in Burn Severity (MTBS, 1984–2009 BA products. For each US National Climate Assessment (NCA region, we analyzed the relationships between monthly BA