WorldWideScience

Sample records for biogeochemical process evaluation

  1. Final Progress Report: Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Cometabolism

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Ronald L; Paszczynski, Andrzej J

    2010-02-19

    Our goal within the overall project is to demonstrate the presence and abundance of methane monooxygenases (MMOs) enzymes and their genes within the microbial community of the Idaho National Laboratory (INL) Test Area North (TAN) site. MMOs are thought to be the primary catalysts of natural attenuation of trichloroethylene (TCE) in contaminated groundwater at this location. The actual presence of the proteins making up MMO complexes would provide direct evidence for its participation in TCE degradation. The quantitative estimation of MMO genes and their translation products (sMMO and pMMO proteins) and the knowledge about kinetics and substrate specificity of MMOs will be used to develop mathematical models of the natural attenuation process in the TAN aquifer. The model will be particularly useful in prediction of TCE degradation rate in TAN and possibly in the other DOE sites. Bacteria known as methanotrophs produce a set of proteins that assemble to form methane monooxygenase complexes (MMOs), enzymes that oxidize methane as their natural substrate, thereby providing a carbon and energy source for the organisms. MMOs are also capable of co-metabolically transforming chlorinated solvents like TCE into nontoxic end products such as carbon dioxide and chloride. There are two known forms of methane monooxygenase, a membrane-bound particulate form (pMMO) and a cytoplasmic soluble form (sMMO). pMMO consists of two components, pMMOH (a hydroxylase comprised of 47-, 27-, and 24-kDa subunits) and pMMOR (a reductase comprised of 63 and 8-kDa subunits). sMMO consists of three components: a hydroxylase (protein A-250 kDa), a dimer of three subunits (α2β2γ2), a regulatory protein (protein B-15.8 kDa), and a reductase (protein C-38.6 kDa). All methanotrophs will produce a methanol dehydrogenase to channel the product of methane oxidation (methanol) into the central metabolite formaldehyde. University of Idaho (UI) efforts focused on proteomic analyses using mass

  2. Extracellular Electron Transport Coupling Biogeochemical Processes Centimeters

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Fossing, Henrik; Christensen, Peter Bondo

    2010-01-01

    of the oxygen uptake in laboratory incubations of initially homogenized and stabilized sediment. Using microsensors and process rate measurements we further investigated the effect of the electric currents on sediment biogeochemistry. Dissolved sulfide readily donated electrons to the networks and could...... confirmed the depth range of the electric communication and indicated donation of electrons directly from organotrophic bacteria. The separation of oxidation and reduction processes created steep pH gradients eventually causing carbonate precipitation at the surface. The results indicate that electron...... exchanging organisms have major biogeochemical importance as they allow widely separated electron donors and acceptors to react with one another....

  3. Diel biogeochemical processes in terrestrial waters

    Science.gov (United States)

    Nimick, David A.; Gammons, Christopher H.

    2011-01-01

    Many biogeochemical processes in rivers and lakes respond to the solar photocycle and produce persistent patterns of measureable phenomena that exhibit a day–night, or 24-h, cycle. Despite a large body of recent literature, the mechanisms responsible for these diel fluctuations are widely debated, with a growing consensus that combinations of physical, chemical, and biological processes are involved. These processes include streamflow variation, photosynthesis and respiration, plant assimilation, and reactions involving photochemistry, adsorption and desorption, and mineral precipitation and dissolution. Diel changes in streamflow and water properties such as temperature, pH, and dissolved oxygen concentration have been widely recognized, and recently, diel studies have focused more widely by considering other constituents such as dissolved and particulate trace metals, metalloids, rare earth elements, mercury, organic matter, dissolved inorganic carbon (DIC), and nutrients. The details of many diel processes are being studied using stable isotopes, which also can exhibit diel cycles in response to microbial metabolism, photosynthesis and respiration, or changes in phase, speciation, or redox state. In addition, secondary effects that diel cycles might have, for example, on biota or in the hyporheic zone are beginning to be considered.This special issue is composed primarily of papers presented at the topical session “Diurnal Biogeochemical Processes in Rivers, Lakes, and Shallow Groundwater” held at the annual meeting of the Geological Society of America in October 2009 in Portland, Oregon. This session was organized because many of the growing number of diel studies have addressed just a small part of the full range of diel cycling phenomena found in rivers and lakes. This limited focus is understandable because (1) fundamental aspects of many diel processes are poorly understood and require detailed study, (2) the interests and expertise of individual

  4. Linking Chaotic Advection with Subsurface Biogeochemical Processes

    Science.gov (United States)

    Mays, D. C.; Freedman, V. L.; White, S. K.; Fang, Y.; Neupauer, R.

    2017-12-01

    This work investigates the extent to which groundwater flow kinematics drive subsurface biogeochemical processes. In terms of groundwater flow kinematics, we consider chaotic advection, whose essential ingredient is stretching and folding of plumes. Chaotic advection is appealing within the context of groundwater remediation because it has been shown to optimize plume spreading in the laminar flows characteristic of aquifers. In terms of subsurface biogeochemical processes, we consider an existing model for microbially-mediated reduction of relatively mobile uranium(VI) to relatively immobile uranium(IV) following injection of acetate into a floodplain aquifer beneath a former uranium mill in Rifle, Colorado. This model has been implemented in the reactive transport code eSTOMP, the massively parallel version of STOMP (Subsurface Transport Over Multiple Phases). This presentation will report preliminary numerical simulations in which the hydraulic boundary conditions in the eSTOMP model are manipulated to simulate chaotic advection resulting from engineered injection and extraction of water through a manifold of wells surrounding the plume of injected acetate. This approach provides an avenue to simulate the impact of chaotic advection within the existing framework of the eSTOMP code.

  5. Hyporheic zone as a bioreactor: sediment heterogeneity influencing biogeochemical processes

    Science.gov (United States)

    Perujo, Nuria; Romani, Anna M.; Sanchez-Vila, Xavier

    2017-04-01

    Mediterranean fluvial systems are characterized by frequent periods of low flow or even drought. During low flow periods, water from wastewater treatment plants (WWTPs) is proportionally large in fluvial systems. River water might be vertically transported through the hyporheic zone, and then porous medium acts as a complementary treatment system since, as water infiltrates, a suite of biogeochemical processes occurs. Subsurface sediment heterogeneity plays an important role since it influences the interstitial fluxes of the medium and drives biomass growing, determining biogeochemical reactions. In this study, WWTP water was continuously infiltrated for 3 months through two porous medium tanks: one consisting of 40 cm of fine sediment (homogeneous); and another comprised of two layers of different grain size sediments (heterogeneous), 20 cm of coarse sediment in the upper part and 20 cm of fine one in the bottom. Several hydrological, physicochemical and biological parameters were measured periodically (weekly at the start of the experiment and biweekly at the end). Analysed parameters include dissolved nitrogen, phosphorus, organic carbon, and oxygen all measured at the surface, and at 5, 20 and 40 cm depth. Variations in hydraulic conductivity with time were evaluated. Sediment samples were also analysed at three depths (surface, 20 and 40 cm) to determine bacterial density, chlorophyll content, extracellular polymeric substances, and biofilm function (extracellular enzyme activities and carbon substrate utilization profiles). Preliminary results suggest hydraulic conductivity to be the main driver of the differences in the biogeochemical processes occurring in the subsurface. At the heterogeneous tank, a low nutrient reduction throughout the whole medium is measured. In this medium, high hydraulic conductivity allows for a large amount of infiltrating water, but with a small residence time. Since some biological processes are largely time-dependent, small water

  6. Biogeochemical Processes Regulating the Mobility of Uranium in Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Belli, Keaton M.; Taillefert, Martial

    2016-07-01

    This book chapters reviews the latest knowledge on the biogeochemical processes regulating the mobility of uranium in sediments. It contains both data from the literature and new data from the authors.

  7. Wetland biogeochemical processes and simulation modeling

    Science.gov (United States)

    Bai, Junhong; Huang, Laibin; Gao, Haifeng; Jia, Jia; Wang, Xin

    2018-02-01

    As the important landscape with rich biodiversity and high productivity, wetlands can provide numerous ecological services including playing an important role in regulating global biogeochemical cycles, filteringpollutants from terrestrial runoff and atmospheric deposition, protecting and improving water quality, providing living habitats for plants and animals, controlling floodwaters, and retaining surface water flow during dry periods (Reddy and DeLaune, 2008; Qin and Mitsch, 2009; Zhao et al., 2016). However, more than 50% of the world's wetlands had been altered, degraded or lost through a wide range of human activities in the past 150 years, and only a small percentage of the original wetlands remained around the world after over two centuries of intensive development and urbanization (O'connell, 2003; Zhao et al., 2016).

  8. The effect of biogeochemical processes on pH

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Hofmann, A.F.; Middelburg, J.J.; Meysman, F.J.R.; Greenwood, J.E.

    2007-01-01

    The impact of biogeochemical and physical processes on aquatic chemistry is usually expressed in terms of alkalinity. Here we show how to directly calculate the effect of single processes on pH. Under the assumptions of equilibrium and electroneutrality, the rate of change of pH can be calculated as

  9. Biogeochemical processes in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Gaye-Haake, B.; Guptha, M.V.S.; Murty, V.S.N.; Ittekkot, V.

    in the northern Indian Ocean’’, and from national research programs of India and Germany con- ducted as a contribution to the international JGOFS Process Study in the Arabian Sea. Addi- tional contributions cover research carried out within India’s Polymetallic... of coccolithophorids in addition to organic carbon and carbonate con- centrations and accumulation rates for a 200ka record Prabhu and Shankar show that glacial stages 2,4 and 6 have had higher productivities in the eastern Arabian Sea at about 151N. They, moreover...

  10. Electric currents couple spatially separated biogeochemical processes in marine sediment

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik

    2010-01-01

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact 1, 2, 3, 4 . Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can...... be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...

  11. Temporal dynamics of biogeochemical processes at the Norman Landfill site

    Science.gov (United States)

    Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.

    2013-01-01

    The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.

  12. Development of interactive graphic user interfaces for modeling reaction-based biogeochemical processes in batch systems with BIOGEOCHEM

    Science.gov (United States)

    Chang, C.; Li, M.; Yeh, G.

    2010-12-01

    The BIOGEOCHEM numerical model (Yeh and Fang, 2002; Fang et al., 2003) was developed with FORTRAN for simulating reaction-based geochemical and biochemical processes with mixed equilibrium and kinetic reactions in batch systems. A complete suite of reactions including aqueous complexation, adsorption/desorption, ion-exchange, redox, precipitation/dissolution, acid-base reactions, and microbial mediated reactions were embodied in this unique modeling tool. Any reaction can be treated as fast/equilibrium or slow/kinetic reaction. An equilibrium reaction is modeled with an implicit finite rate governed by a mass action equilibrium equation or by a user-specified algebraic equation. A kinetic reaction is modeled with an explicit finite rate with an elementary rate, microbial mediated enzymatic kinetics, or a user-specified rate equation. None of the existing models has encompassed this wide array of scopes. To ease the input/output learning curve using the unique feature of BIOGEOCHEM, an interactive graphic user interface was developed with the Microsoft Visual Studio and .Net tools. Several user-friendly features, such as pop-up help windows, typo warning messages, and on-screen input hints, were implemented, which are robust. All input data can be real-time viewed and automated to conform with the input file format of BIOGEOCHEM. A post-processor for graphic visualizations of simulated results was also embedded for immediate demonstrations. By following data input windows step by step, errorless BIOGEOCHEM input files can be created even if users have little prior experiences in FORTRAN. With this user-friendly interface, the time effort to conduct simulations with BIOGEOCHEM can be greatly reduced.

  13. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    Science.gov (United States)

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  14. Preface to: Indian Ocean biogeochemical processes and ecological variability

    Digital Repository Service at National Institute of Oceanography (India)

    Hood, R.R.; Naqvi, S.W.A.; Wiggert, J.D.

    monsoonal in fluence. The biogeochemical and ecological impacts of this complex physical forcing are not yet fully understood. The Indian Ocean is truly one of the last great frontiers of ocea- nographic research. In addition, it appears... to be particularly vulnerable to climate change and anthropogenic impacts, yet it has been more than a decade since the last coordinated international study of biogeochemical and ecological proc esses was undertaken in this region. To obtain a better un...

  15. In-stream biogeochemical processes of a temporary river.

    Science.gov (United States)

    Tzoraki, Ourania; Nikolaidis, Nikolaos P; Amaxidis, Yorgos; Skoulikidis, Nikolaos Th

    2007-02-15

    A reach at the estuary of Krathis River in Greece was used to assess how in-stream processes alter its hydrologic and biogeochemical regime. Krathis River exhibited high annual flow variability and its transmission losses become significant, especially during the dry months. These transmission losses are enhanced in chemistry due to release of nutrients from river sediments. These fluxes are significant because they correspond to 11% of the dissolved inorganic nitrogen flux of the river. Release of nitrogen species was influenced by temperature, while release of phosphate was not because phosphate levels were below the equilibrium concentration. There is a significant amount of sediments with fine composition that create "hot spot" areas in the river reach. These sediments are mobilized during the first flush events in the fall carrying with them a significant load of nutrient and suspended matter to the coastal zone. The nutrient organic content of sediments was also significant and it was studied in terms of its mineralization capacity. The capacity for mineralization was influenced by soil moisture, exhibiting significant capacity even at moisture levels of 40%. Temporary rivers are sensitive ecosystems, vulnerable to climate changes. In-stream processes play a significant role in altering the hydrology and biogeochemistry of the water and its impacts to the coastal zone.

  16. Modelling of transport and biogeochemical processes in pollution plumes: Vejen landfill, Denmark

    DEFF Research Database (Denmark)

    Brun, A.; Engesgaard, Peter Knudegaard; Christensen, Thomas Højlund

    2002-01-01

    A biogeochemical transport code is used to simulate leachate attenuation. biogeochemical processes. and development of redox zones in a pollution plume downstream of the Vejen landfill in Denmark. Calibration of the degradation parameters resulted in a good agreement with the observed distribution...

  17. Final Project Report - Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloriethylene Co-Metabolism: Co-Metabolic Enzyme Activity Probes and Modeling Co-Metabolism and Attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Starr, Robert C; Orr, Brennon R; Lee, M Hope; Delwiche, Mark

    2010-02-26

    Trichloroethene (TCE) (also known as trichloroethylene) is a common contaminant in groundwater. TCE is regulated in drinking water at a concentration of 5 µg/L, and a small mass of TCE has the potential to contaminant large volumes of water. The physical and chemical characteristics of TCE allow it to migrate quickly in most subsurface environments, and thus large plumes of contaminated groundwater can form from a single release. The migration and persistence of TCE in groundwater can be limited by biodegradation. TCE can be biodegraded via different processes under either anaerobic or aerobic conditions. Anaerobic biodegradation is widely recognized, but aerobic degradation is less well recognized. Under aerobic conditions, TCE can be oxidized to non hazardous conditions via cometabolic pathways. This study applied enzyme activity probes to demonstrate that cometabolic degradation of TCE occurs in aerobic groundwater at several locations, used laboratory microcosm studies to determine aerobic degradation rates, and extrapolated lab-measured rates to in situ rates based on concentrations of microorganisms with active enzymes involved in cometabolic TCE degradation. Microcosms were constructed using basalt chips that were inoculated with microorganisms to groundwater at the Idaho National Laboratory Test Area North TCE plume by filling a set of Flow-Through In Situ Reactors (FTISRs) with chips and placing the FTISRs into the open interval of a well for several months. A parametric study was performed to evaluate predicted degradation rates and concentration trends using a competitive inhibition kinetic model, which accounts for competition for enzyme active sites by both a growth substrate and a cometabolic substrate. The competitive inhibition kinetic expression was programmed for use in the RT3D reactive transport package. Simulations of TCE plume evolution using both competitive inhibition kinetics and first order decay were performed.

  18. An evaluation of physical and biogeochemical processes regulating the oxygen minimum zone in the water column of the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.

    for transformations in redox sensitive elements of which nitrogen is an important one. Such environments are unique for biochemical reduction of nitrate ions into molecular nitrogen (denitrification) by respiratory process [Richards, 1965]. However, unlike the Arabian... Planet. Sci., 109, 452–465, 2001. United Nations Educational, Scientific, and Cultural Organization (UNES- CO), Discharge of Selected Rivers of the World, vol. 1, Paris, 1969. United Nations Educational, Scientific, and Cultural Organization (UNES- CO...

  19. Effects of physical and biogeochemical processes on aquatic ecosystems at the groundwater-surface water interface: An evaluation of a sulfate-impacted wild rice stream in Minnesota (USA)

    Science.gov (United States)

    Ng, G. H. C.; Yourd, A. R.; Myrbo, A.; Johnson, N.

    2015-12-01

    Significant uncertainty and variability in physical and biogeochemical processes at the groundwater-surface water interface complicate how surface water chemistry affects aquatic ecosystems. Questions surrounding a unique 10 mg/L sulfate standard for wild rice (Zizania sp.) waters in Minnesota are driving research to clarify conditions controlling the geochemistry of shallow sediment porewater in stream- and lake-beds. This issue raises the need and opportunity to carry out in-depth, process-based analysis into how water fluxes and coupled C, S, and Fe redox cycles interact to impact aquatic plants. Our study builds on a recent state-wide field campaign that showed that accumulation of porewater sulfide from sulfate reduction impairs wild rice, an annual grass that grows in shallow lakes and streams in the Great Lakes region of North America. Negative porewater sulfide correlations with organic C and Fe quantities also indicated that lower redox rates and greater mineral precipitation attenuate sulfide. Here, we focus on a stream in northern Minnesota that receives high sulfate loading from iron mining activity yet maintains wild rice stands. In addition to organic C and Fe effects, we evaluate the degree to which streambed hydrology, and in particular groundwater contributions, accounts for the active biogeochemistry. We collect field measurements, spanning the surrounding groundwater system to the stream, to constrain a reactive-transport model. Observations from seepage meters, temperature probes, and monitoring wells delineate upward flow that may lessen surface water impacts below the stream. Geochemical analyses of groundwater, porewater, and surface water samples and of sediment extractions reveal distinctions among the different domains and stream banks, which appear to jointly control conditions in the streambed. A model based on field conditions can be used to evaluate the relative the importance and the spatiotemporal scales of diverse flux and

  20. Deriving forest fire ignition risk with biogeochemical process modelling.

    Science.gov (United States)

    Eastaugh, C S; Hasenauer, H

    2014-05-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's 'soil water' and 'labile litter carbon' variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness.

  1. Deriving forest fire ignition risk with biogeochemical process modelling☆

    Science.gov (United States)

    Eastaugh, C.S.; Hasenauer, H.

    2014-01-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905

  2. A soil-landscape framework for understanding spatial and temporal variability in biogeochemical processes in catchments

    Science.gov (United States)

    McGuire, K. J.; Bailey, S. W.; Ross, D. S.

    2017-12-01

    Heterogeneity in biophysical properties within catchments challenges how we quantify and characterize biogeochemical processes and interpret catchment outputs. Interactions between the spatiotemporal variability of hydrological states and fluxes and soil development can spatially structure catchments, leading to a framework for understanding patterns in biogeochemical processes. In an upland, glaciated landscape at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, we are embracing the structure and organization of soils to understand the spatial relations between runoff production zones, distinct soil-biogeochemical environments, and solute retention and release. This presentation will use observations from the HBEF to demonstrate that a soil-landscape framework is essential in understanding the spatial and temporal variability of biogeochemical processes in this catchment. Specific examples will include how laterally developed soils reveal the location of active runoff production zones and lead to gradients in primary mineral dissolution and the distribution of weathering products along hillslopes. Soil development patterns also highlight potential carbon and nitrogen cycling hotspots, differentiate acidic conditions, and affect the regulation of surface water quality. Overall, this work demonstrates the importance of understanding the landscape-level structural organization of soils in characterizing the variation and extent of biogeochemical processes that occur in catchments.

  3. Biogeochemical Processes Controlling Microbial Reductive Precipitation of Radionuclides

    International Nuclear Information System (INIS)

    Fredrickson, James K.; Brooks, Scott C.

    2004-01-01

    This project is focused on elucidating the principal biogeochemical reactions that govern the concentrations, chemical speciation, and distribution of the redox sensitive contaminants uranium (U) and technetium (Tc) between the aqueous and solid phases. The research is designed to provide new insights into the under-explored areas of competing geochemical and microbiological oxidation-reduction reactions that govern the fate and transport of redox sensitive contaminants and to generate fundamental scientific understanding of the identity and stoichiometry of competing microbial reduction and geochemical oxidation reactions. These goals and objectives are met through a series of hypothesis-driven tasks that focus on (1) the use of well-characterized microorganisms and synthetic and natural mineral oxidants, (2) advanced spectroscopic and microscopic techniques to monitor redox transformations of U and Tc, and (3) the use of flow-through experiments to more closely approximate groundwater environments. The results are providing an improved understanding and predictive capability of the mechanisms that govern the redox dynamics of radionuclides in subsurface environments. For purposes of this poster, the results are divided into three sections: (1) influence of Ca on U(VI) bioreduction; (2) localization of biogenic UO 2 and TcO 2 ; and (3) reactivity of Mn(III/IV) oxides.

  4. Evidence of linked biogeochemical and hydrological processes in homogeneous and layered vadose zone systems

    Science.gov (United States)

    McGuire, J. T.; Hansen, D. J.; Mohanty, B. P.

    2010-12-01

    Understanding chemical fate and transport in the vadose zone is critical to protect groundwater resources and preserve ecosystem health. However, prediction can be challenging due to the dynamic hydrologic and biogeochemical nature of the vadose zone. Additional controls on hydrobiogeochemical processes are added by subsurface structural heterogeneity. This study uses repacked soil column experiments to quantify linkages between microbial activity, geochemical cycling and hydrologic flow. Three “short” laboratory soil columns were constructed to evaluate the effects of soil layering: a homogenized medium-grained sand, homogenized organic-rich loam, and a sand-over-loam layered column. In addition, two “long” columns were constructed using either gamma-irradiated (sterilized) or untreated sediments to evaluate the effects of both soil layers and the presence of microorganisms. The long columns were packed identically; a medium-grained sand matrix with two vertically separated and horizontally offset lenses of organic-rich loam. In all 5 columns, downward and upward infiltration of water was evaluated to simulate rainfall and rising water table events respectively. In-situ colocated probes were used to measure soil water content, matric potential, Eh, major anions, ammonium, Fe2+, and total sulfide. Enhanced biogeochemical cycling was observed in the short layered column versus the short, homogeneous columns, and enumerations of iron and sulfate reducing bacteria were 1-2 orders of magnitude greater. In the long columns, microbial activity caused mineral bands and produced insoluble gases that impeded water flow through the pores of the sediment. Capillary barriers, formed around the lenses due to soil textural differences, retarded water flow rates through the lenses. This allowed reducing conditions to develop, evidenced by the production of Fe2+ and S2-. At the fringes of the lenses, Fe2+ oxidized to form Fe(III)-oxide bands that further retarded water

  5. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School; Qian, Wei-jun [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Shi, Liang [School; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; School

    2017-09-28

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes as time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates

  6. The significance of GW-SW interactions for biogeochemical processes in sandy streambeds

    Science.gov (United States)

    Arnon, Shai; De Falco, Natalie; Fox, Aryeh; Laube, Gerrit; Schmidt, Christian; Fleckenstein, Jan; Boano, Fulvio

    2015-04-01

    Stream-groundwater interactions have a major impact on hyporheic exchange fluxes in sandy streambeds. However, the physical complexity of natural streams has limited our ability to study these types of interactions systematically, and to evaluate their importance to biogeochemical processes and nutrient cycling. In this work we were able to quantify the effect of losing and gaining fluxes on hyporheic exchange and nutrient cycling in homogeneous and heterogeneous streambeds by combining experiments in laboratory flumes and modeling. Tracer experiments for measuring hyporheic exchange were done using dyes and NaCl under various combinations of overlying water velocity and losing or gaining fluxes. Nutrient cycling experiments were conducted after growing a benthic biofilm by spiking with Sodium Benzoate (as a source of labile dissolved organic carbon, DOC) and measuring DOC and oxygen dynamics. The combination of experimental observations and modeling revealed that interfacial transport increases with the streambed hydraulic conductivity and proportional to the square of the overlying water velocity. Hyporheic exchange fluxes under losing and gaining flow conditions were similar, and became smaller when the losing or gaining flux increases. Increasing in streambed hydraulic conductivity led to higher hyporheic fluxes and reduction in the effects of losing and gaining flow conditions to constrain exchange. Despite the evident effect of flow conditions on hyporheic exchange, labile DOC uptake was positively linked to increasing overlying water velocity but was not affected by losing and gaining fluxes. This is because microbial aerobic activity was taking place at the upper few millimeters of the streambed as shown by local oxygen consumption rates, which was measured using microelectrodes. Based on modeling work, it is expected that GW-SW interaction will be more significant for less labile DOC and anaerobic processes. Our results enable us to study systematically

  7. Effects of hydrologic conditions on biogeochemical processes and organic pollutant degradation in salt marsh sediments

    Science.gov (United States)

    W. James Catallo

    2000-01-01

    This work addressed the influence of tidal vs. static hydrologic conditions on biogeochemical processes and the transformation of pollutant organic chemicals (eight representative N-, O-, and S-heterocycles (NOSHs) from coal chemicals, crude oils, and pyrogenic mixtures) in salt marsh sediments. The goals were to: (1) determine the effects of static (flooded, drained)...

  8. Reactive transport modelling of biogeochemical processes and carbon isotope geochemistry inside a landfill leachate plume.

    NARCIS (Netherlands)

    van Breukelen, B.M.; Griffioen, J.; Roling, W.F.M.; van Verseveld, H.W.

    2004-01-01

    The biogeochemical processes governing leachate attenuation inside a landfill leachate plume (Banisveld, the Netherlands) were revealed and quantified using the 1D reactive transport model PHREEQC-2. Biodegradation of dissolved organic carbon (DOC) was simulated assuming first-order oxidation of two

  9. Assessment of the GHG Reduction Potential from Energy Crops Using a Combined LCA and Biogeochemical Process Models: A Review

    Directory of Open Access Journals (Sweden)

    Dong Jiang

    2014-01-01

    Full Text Available The main purpose for developing biofuel is to reduce GHG (greenhouse gas emissions, but the comprehensive environmental impact of such fuels is not clear. Life cycle analysis (LCA, as a complete comprehensive analysis method, has been widely used in bioenergy assessment studies. Great efforts have been directed toward establishing an efficient method for comprehensively estimating the greenhouse gas (GHG emission reduction potential from the large-scale cultivation of energy plants by combining LCA with ecosystem/biogeochemical process models. LCA presents a general framework for evaluating the energy consumption and GHG emission from energy crop planting, yield acquisition, production, product use, and postprocessing. Meanwhile, ecosystem/biogeochemical process models are adopted to simulate the fluxes and storage of energy, water, carbon, and nitrogen in the soil-plant (energy crops soil continuum. Although clear progress has been made in recent years, some problems still exist in current studies and should be addressed. This paper reviews the state-of-the-art method for estimating GHG emission reduction through developing energy crops and introduces in detail a new approach for assessing GHG emission reduction by combining LCA with biogeochemical process models. The main achievements of this study along with the problems in current studies are described and discussed.

  10. Modelling of transport and biogeochemical processes in pollution plumes: Literature review of model development

    DEFF Research Database (Denmark)

    Brun, A.; Engesgaard, Peter Knudegaard

    2002-01-01

    A literature survey shows how biogeochemical (coupled organic and inorganic reaction processes) transport models are based on considering the complete biodegradation process as either a single- or as a two-step process. It is demonstrated that some two-step process models rely on the Partial...... Equilibrium Approach (PEA). The PEA assumes the organic degradation step, and not the electron acceptor consumption step, is rate limiting. This distinction is not possible in one-step process models, where consumption of both the electron donor and acceptor are treated kinetically. A three-dimensional, two......-step PEA model is developed. The model allows for Monod kinetics and biomass growth, features usually included only in one-step process models. The biogeochemical part of the model is tested for a batch system with degradation of organic matter under the consumption of a sequence of electron acceptors...

  11. Ecosystem services and biogeochemical cycles on a global scale: valuation of water, carbon and nitrogen processes

    International Nuclear Information System (INIS)

    Watanabe, Marcos D.B.; Ortega, Enrique

    2011-01-01

    Ecosystem services (ES) are provided by healthy ecosystems and are fundamental to support human life. However, natural systems have been degraded all over the world and the process of degradation is partially attributed to the lack of knowledge regarding the economic benefits associated with ES, which usually are not captured in the market. To valuate ES without using conventional approaches, such as the human's willingness-to-pay for ecosystem goods and services, this paper uses a different method based on Energy Systems Theory to estimate prices for biogeochemical flows that affect ecosystem services by considering their emergy content converted to equivalent monetary terms. Ecosystem services related to water, carbon and nitrogen biogeochemical flows were assessed since they are connected to a range of final ecosystem services including climate regulation, hydrological regulation, food production, soil formation and others. Results in this paper indicate that aquifer recharge, groundwater flow, carbon dioxide sequestration, methane emission, biological nitrogen fixation, nitrous oxide emission and nitrogen leaching/runoff are the most critical biogeochemical flows in terrestrial systems. Moreover, monetary values related to biogeochemical flows on a global scale could provide important information for policymakers concerned with payment mechanisms for ecosystem services and costs of greenhouse gas emissions.

  12. Hybrid numerical methods for multiscale simulations of subsurface biogeochemical processes

    International Nuclear Information System (INIS)

    Scheibe, T D; Tartakovsky, A M; Tartakovsky, D M; Redden, G D; Meakin, P

    2007-01-01

    Many subsurface flow and transport problems of importance today involve coupled non-linear flow, transport, and reaction in media exhibiting complex heterogeneity. In particular, problems involving biological mediation of reactions fall into this class of problems. Recent experimental research has revealed important details about the physical, chemical, and biological mechanisms involved in these processes at a variety of scales ranging from molecular to laboratory scales. However, it has not been practical or possible to translate detailed knowledge at small scales into reliable predictions of field-scale phenomena important for environmental management applications. A large assortment of numerical simulation tools have been developed, each with its own characteristic scale. Important examples include 1. molecular simulations (e.g., molecular dynamics); 2. simulation of microbial processes at the cell level (e.g., cellular automata or particle individual-based models); 3. pore-scale simulations (e.g., lattice-Boltzmann, pore network models, and discrete particle methods such as smoothed particle hydrodynamics); and 4. macroscopic continuum-scale simulations (e.g., traditional partial differential equations solved by finite difference or finite element methods). While many problems can be effectively addressed by one of these models at a single scale, some problems may require explicit integration of models across multiple scales. We are developing a hybrid multi-scale subsurface reactive transport modeling framework that integrates models with diverse representations of physics, chemistry and biology at different scales (sub-pore, pore and continuum). The modeling framework is being designed to take advantage of advanced computational technologies including parallel code components using the Common Component Architecture, parallel solvers, gridding, data and workflow management, and visualization. This paper describes the specific methods/codes being used at each

  13. Determination of dominant biogeochemical processes in a contaminated aquifer-wetland system using multivariate statistical analysis

    Science.gov (United States)

    Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.

    2008-01-01

    Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  14. Evidence of biogeochemical processes in iron duricrust formation

    Science.gov (United States)

    Levett, Alan; Gagen, Emma; Shuster, Jeremiah; Rintoul, Llew; Tobin, Mark; Vongsvivut, Jitraporn; Bambery, Keith; Vasconcelos, Paulo; Southam, Gordon

    2016-11-01

    Canga is a moderately hard iron-rich duricrust primarily composed of goethite as a result of the weathering of banded iron formations. Canga duricrusts lack a well-developed soil profile and consequently form an innate association with rupestrian plants that may become ferruginised, contributing to canga possessing macroscopic biological features. Examination of polished canga using a field emission scanning electron microscope (FE-SEM) revealed the biological textures associated with canga extended to the sub-millimetre scale in petrographic sections and polished blocks. Laminae that formed by abiotic processes and regions where goethite cements were formed in association with microorganisms were observed in canga. Biological cycling of iron within canga has resulted in two distinct forms of microbial fossilisation: permineralisation of multispecies biofilms and mineralisation of cell envelopes. Goethite permineralised biofilms frequently formed around goethite-rich kaolinite grains in close proximity to goethite bands and were composed of micrometre-scale rod-shaped, cocci and filamentous microfossils. In contrast, the cell envelopes immobilised by authigenic iron oxides were primarily of rod-shaped microorganisms, were not permineralised and occurred in pore spaces within canga. Complete mineralisation of intact rod-shaped casts and the absence of permineralisation suggested mineralised cell envelopes may represent fossilised iron-oxidising bacteria in the canga ecosystem. Replication of these iron-oxidising bacteria appeared to infill the porous regions within canga. Synchrotron-based Fourier transform infrared (FTIR) microspectroscopy demonstrated that organic biomarkers were poorly preserved with only weak bands indicative of aliphatic methylene (CH2) associated with permineralised microbial biofilms. High resolution imaging of microbial fossils in canga that had been etched with oxalic acid supported the poor preservation of organic biomarkers within canga

  15. Geo- and biogeochemical processes in a heliothermal hypersaline lake

    Science.gov (United States)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, James K.

    2016-05-01

    precipitation in the mixolimnion and metalimnion, but the absence of calcareous sediments at depth suggests dissolution and recycling during winter months. Dissolved carbon concentrations [dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC)] increased with depth, reaching ∼0.04 mol/L at the metalimnion-monimolimnion boundary. DIC concentrations were seasonally variable in the mixolimnion and metalimnion, and were influenced by calcium carbonate precipitation. DOC concentrations mimicked those of conservative salts (e.g., Na+-Cl-) in the mixolimnion and metalimnion, but decreased in the monimolimnion where mass loss by anaerobic microbial processes is implied. Biogenic reduced solutes originating in monimolimnion (H2S and CH4) were biologically oxidized in the metalimnion as they were not observed in more shallow lake waters. Multi-year solute inventory calculations indicated that Hot Lake is a stable, albeit seasonally and annually dynamic feature, with inorganic solutes cycled between lake waters and sediments depending on annual recharge, temperature, and lake water dilution state. With its extreme geochemical and thermal regime, Hot Lake functions as analog of early earth and extraterrestrial life environments.

  16. Geo- and Biogeochemical Processes in a Heliothermal Hypersaline Lake

    Energy Technology Data Exchange (ETDEWEB)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, Jim K.

    2016-03-17

    exchange, and lower winter lake temperatures. Solubility calculations indicated seasonal biogenic and thermogenic aragonite precipitation in the upper and lower mixolimnion, but the absence of calcareous sediments at depth suggested dissolution and recycling during winter months. Carbon concentrations were high in Hot Lake (e.g., 0 to 450 mg/L for both DOC and DIC) and increased with depth. DIC concentrations were variable and influenced by calcium carbonate precipitation, but DOC concentrations remained constant except in the monimolimnion where mass loss by anaerobic microbial processes was implied. Biogenic reduced solutes originating in monimolimnion (H2S and CH4) appeared to be biologically oxidized in the metalimnion as they were not observed in more shallow lake waters. Multi-year solute inventory calculations indicated that Hot Lake is a stable, albeit seasonally and annually dynamic feature, with inorganic solutes cycled between lake waters and sediments depending on annual recharge, temperature, and lake water dilution state. Hot Lake with its extreme geochemical and thermal regime functions as analogue of early earth and extraterrestrial life environments.

  17. High resolution modelling of the biogeochemical processes in the eutrophic Loire River (France)

    Science.gov (United States)

    Minaudo, Camille; Moatar, Florentina; Curie, Florence; Gassama, Nathalie; Billen, Gilles

    2016-04-01

    A biogeochemical model was developed, coupling a physically based water temperature model (T-NET) with a semi-mechanistic biogeochemical model (RIVE, used in ProSe and Riverstrahler models) in order to assess at a fine temporal and spatial resolution the biogeochemical processes in the eutrophic Middle Loire hydrosystem (≈10 000 km², 3361 river segments). The code itself allows parallelized computing, which decreased greatly the calculation time (5 hours for simulating 3 years hourly). We conducted a daily survey during the period 2012-2014 at 2 sampling stations located in the Middle Loire of nutrients, chlorophyll pigments, phytoplankton and physic-chemical variables. This database was used as both input data (upstream Loire boundary) and validation data of the model (basin outlet). Diffuse and non-point sources were assessed based on a land cover analysis and WWTP datasets. The results appeared very sensible to the coefficients governing the dynamic of suspended solids and of phosphorus (sorption/desorption processes) within the model and some parameters needed to be estimated numerically. Both the Lagrangian point of view and fluxes budgets at the seasonal and event-based scale evidenced the biogeochemical functioning of the Loire River. Low discharge levels set up favorable physical conditions for phytoplankton growth (long water travel time, limited water depth, suspended particles sedimentation). Conversely, higher discharge levels highly limited the phytoplankton biomass (dilution of the colony, washing-out, limited travel time, remobilization of suspended sediments increasing turbidity), and most biogeochemical species were basically transferred downstream. When hydrological conditions remained favorable for phytoplankton development, P-availability was the critical factor. However, the model evidenced that most of the P in summer was recycled within the water body: on one hand it was assimilated by the algae biomass, and on the other hand it was

  18. Reservoir and contaminated sediments impacts in high-Andean environments: Morphodynamic interactions with biogeochemical processes

    Science.gov (United States)

    Escauriaza, C. R.; Contreras, M. T.; Müllendorff, D. A.; Pasten, P.; Pizarro, G. E.

    2014-12-01

    Rapid changes due to anthropic interventions in high-altitude environments, such as the Altiplano region in South America, require new approaches to understand the connections between physical and biogeochemical processes. Alterations of the water quality linked to the river morphology can affect the ecosystems and human development in the long-term. The future construction of a reservoir in the Lluta river, located in northern Chile, will change the spatial distribution of arsenic-rich sediments, which can have significant effects on the lower parts of the watershed. In this investigation we develop a coupled numerical model to predict and evaluate the interactions between morphodynamic changes in the Lluta reservoir, and conditions that can potentially desorb arsenic from the sediments. Assuming that contaminants are mobilized under anaerobic conditions, we calculate the oxygen concentration within the sediments to study the interactions of the delta progradation with the potential arsenic release. This work provides a framework for future studies aimed to analyze the complex connections between morphodynamics and water quality, when contaminant-rich sediments accumulate in a reservoir. The tool can also help to design effective risk management and remediation strategies in these extreme environments. Research has been supported by Fondecyt grant 1130940 and CONICYT/FONDAP Grant 15110017

  19. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin.

    Science.gov (United States)

    O'Reilly, Andrew M; Chang, Ni-Bin; Wanielista, Martin P

    2012-05-15

    A stormwater infiltration basin in north-central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O(2) and NO(3)(-) showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O(2) and NO(3)(-) reduction concluded, Mn, Fe and SO(4)(2-) reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO(3)(-)-N less than 0.016 mg L(-1), excess N(2) up to 3 mg L(-1) progressively enriched in δ(15)N during prolonged basin flooding, and isotopically heavy δ(15)N and δ(18)O of NO(3)(-) (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO(3)(-) leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO(3)(-) leaching to groundwater by replicating the biogeochemical

  20. Cyclic biogeochemical processes and nitrogen fate beneath a subtropical stormwater infiltration basin

    Science.gov (United States)

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.

    2012-01-01

    A stormwater infiltration basin in north–central Florida, USA, was monitored from 2007 through 2008 to identify subsurface biogeochemical processes, with emphasis on N cycling, under the highly variable hydrologic conditions common in humid, subtropical climates. Cyclic variations in biogeochemical processes generally coincided with wet and dry hydrologic conditions. Oxidizing conditions in the subsurface persisted for about one month or less at the beginning of wet periods with dissolved O2 and NO3- showing similar temporal patterns. Reducing conditions in the subsurface evolved during prolonged flooding of the basin. At about the same time O2 and NO3- reduction concluded, Mn, Fe and SO42- reduction began, with the onset of methanogenesis one month later. Reducing conditions persisted up to six months, continuing into subsequent dry periods until the next major oxidizing infiltration event. Evidence of denitrification in shallow groundwater at the site is supported by median NO3-–N less than 0.016 mg L-1, excess N2 up to 3 mg L-1 progressively enriched in δ15N during prolonged basin flooding, and isotopically heavy δ15N and δ18O of NO3- (up to 25‰ and 15‰, respectively). Isotopic enrichment of newly infiltrated stormwater suggests denitrification was partially completed within two days. Soil and water chemistry data suggest that a biogeochemically active zone exists in the upper 1.4 m of soil, where organic carbon was the likely electron donor supplied by organic matter in soil solids or dissolved in infiltrating stormwater. The cyclic nature of reducing conditions effectively controlled the N cycle, switching N fate beneath the basin from NO3- leaching to reduction in the shallow saturated zone. Results can inform design of functionalized soil amendments that could replace the native soil in a stormwater infiltration basin and mitigate potential NO3- leaching to groundwater by replicating the biogeochemical conditions under the observed basin.

  1. Application of a hybrid multiscale approach to simulate hydrologic and biogeochemical processes in the river-groundwater interaction zone.

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Glenn Edward; Yang, Xiaofan; Song, Xuehang; Song, Hyun-Seob; Hou, Zhangshuan; Chen, Xingyuan; Liu, Yuanyuan; Scheibe, Tim

    2017-03-01

    The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and watershed ecosystems as the exchange of waters of variable composition and temperature (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ present challenges to incorporation of fundamental process representations and model parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical (HBGC) processes between two distinct length scales of interest.

  2. Parameter Sensitivity and Laboratory Benchmarking of a Biogeochemical Process Model for Enhanced Anaerobic Dechlorination

    Science.gov (United States)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.

    2008-12-01

    A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems

  3. Biogeochemical processes on tree islands in the greater everglades: Initiating a new paradigm

    Science.gov (United States)

    Wetzel, P.R.; Sklar, Fred H.; Coronado, C.A.; Troxler, T.G.; Krupa, S.L.; Sullivan, P.L.; Ewe, S.; Price, R.M.; Newman, S.; Orem, W.H.

    2011-01-01

    Scientists' understanding of the role of tree islands in the Everglades has evolved from a plant community of minor biogeochemical importance to a plant community recognized as the driving force for localized phosphorus accumulation within the landscape. Results from this review suggest that tree transpiration, nutrient infiltration from the soil surface, and groundwater flow create a soil zone of confluence where nutrients and salts accumulate under the head of a tree island during dry periods. Results also suggest accumulated salts and nutrients are flushed downstream by regional water flows during wet periods. That trees modulate their environment to create biogeochemical hot spots and strong nutrient gradients is a significant ecological paradigm shift in the understanding of the biogeochemical processes in the Everglades. In terms of island sustainability, this new paradigm suggests the need for distinct dry-wet cycles as well as a hydrologic regime that supports tree survival. Restoration of historic tree islands needs further investigation but the creation of functional tree islands is promising. Copyright ?? 2011 Taylor & Francis Group, LLC.

  4. Lacustrine wetland in an agricultural catchment: nitrogen removal and related biogeochemical processes

    Directory of Open Access Journals (Sweden)

    R. Balestrini

    2008-03-01

    Full Text Available The role of specific catchment areas, such as the soil-river or lake interfaces, in removing or buffering the flux of N from terrestrial to aquatic ecosystems is globally recognized but the extreme variability of microbiological and hydrological processes make it difficult to predict the extent to which different wetlands function as buffer systems. In this paper we evaluate the degree to which biogeochemical processes in a lacustrine wetland are responsible for the nitrate removal from ground waters feeding Candia Lake (Northern Italy. A transect of 18 piezometers was installed perpendicular to the shoreline, in a sub-unit formed by 80 m of poplar plantation, close to a crop field and 30 m of reed swamp. The chemical analysis revealed a drastic NO3-N ground water depletion from the crop field to the lake, with concentrations decreasing from 15–18 mg N/l to the detection limit within the reeds. Patterns of Cl, SO42–, O2, NO2-N, HCO3 and DOC suggest that the metabolic activity of bacterial communities, based on the differential use of electron donors and acceptors in redox reactions is the key function of this system. The significant inverse relationship found between NO3-N and HCO3 is a valuable indicator of the denitrification activity. The pluviometric regime, the temperature, the organic carbon availability and the hydrogeomorphic properties are the main environmental factors affecting the N transformations in the studied lacustrine ecosystem.

  5. Urban pollution of sediments: Impact on the physiology and burrowing activity of tubificid worms and consequences on biogeochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Pigneret, M., E-mail: mathilde.pigneret@univ-lyon1.fr [LEHNA, UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622 Villeurbanne (France); Mermillod-Blondin, F.; Volatier, L.; Romestaing, C. [LEHNA, UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622 Villeurbanne (France); Maire, E.; Adrien, J. [MATEIS, UMR CNRS 5510, INSA de Lyon, 25 avenue Jean Capelle, 69621 Villeurbanne (France); Guillard, L.; Roussel, D.; Hervant, F. [LEHNA, UMR CNRS 5023, Ecologie des Hydrosystèmes Naturels et Anthropisés, Université de Lyon, Université Lyon 1, ENTPE, 6 rue Raphael Dubois, 69622 Villeurbanne (France)

    2016-10-15

    In urban areas, infiltration basins are designed to manage stormwater runoff from impervious surfaces and allow the settling of associated pollutants. The sedimentary layer deposited at the surface of these structures is highly organic and multicontaminated (mainly heavy metals and hydrocarbons). Only few aquatic species are able to maintain permanent populations in such an extreme environment, including the oligochaete Limnodrilus hoffmeisteri. Nevertheless, the impact of urban pollutants on these organisms and the resulting influence on infiltration basin functioning remain poorly studied. Thus, the aim of this study was to determine how polluted sediments could impact the survival, the physiology and the bioturbation activity of L. hoffmeisteri and thereby modify biogeochemical processes occurring at the water-sediment interface. To this end, we conducted laboratory incubations of worms, in polluted sediments from infiltration basins or slightly polluted sediments from a stream. Analyses were performed to evaluate physiological state and burrowing activity (X-ray micro-tomography) of worms and their influences on biogeochemical processes (nutrient fluxes, CO{sub 2} and CH{sub 4} degassing rates) during 30-day long experiments. Our results showed that worms exhibited physiological responses to cope with high pollution levels, including a strong ability to withstand the oxidative stress linked to contamination with heavy metals. We also showed that the presence of urban pollutants significantly increased the burrowing activity of L. hoffmeisteri, demonstrating the sensitivity and the relevance of such a behavioural response as biomarker of sediment toxicity. In addition, we showed that X-ray micro-tomography was an adequate technique for accurate and non-invasive three-dimensional investigations of biogenic structures formed by bioturbators. The presence of worms induced stimulations of nutrient fluxes and organic matter recycling (between + 100% and 200% of CO

  6. Volume reduction outweighs biogeochemical processes in controlling phosphorus treatment in aged detention systems

    Science.gov (United States)

    Shukla, Asmita; Shukla, Sanjay; Annable, Michael D.; Hodges, Alan W.

    2017-08-01

    Stormwater detention areas (SDAs) play an important role in treating end-of-the-farm runoff in phosphorous (P) limited agroecosystems. Phosphorus transport from the SDAs, including those through subsurface pathways, are not well understood. The prevailing understanding of these systems assumes that biogeochemical processes play the primary treatment role and that subsurface losses can be neglected. Water and P fluxes from a SDA located in a row-crop farm were measured for two years (2009-2011) to assess the SDA's role in reducing downstream P loads. The SDA treated 55% (497 kg) and 95% (205 kg) of the incoming load during Year 1 (Y1, 09-10) and Year 2 (Y2, 10-11), respectively. These treatment efficiencies were similar to surface water volumetric retention (49% in Y1 and 84% in Y2) and varied primarily with rainfall. Similar water volume and P retentions indicate that volume retention is the main process controlling P loads. A limited role of biogeochemical processes was supported by low to no remaining soil P adsorption capacity due to long-term drainage P input. The fact that outflow P concentrations (Y1 = 368.3 μg L- 1, Y2 = 230.4 μg L- 1) could be approximated by using a simple mixing of rainfall and drainage P input further confirmed the near inert biogeochemical processes. Subsurface P losses through groundwater were 304 kg (27% of inflow P) indicating that they are an important source for downstream P. Including subsurface P losses reduces the treatment efficiency to 35% (from 61%). The aboveground biomass in the SDA contained 42% (240 kg) of the average incoming P load suggesting that biomass harvesting could be a cost-effective alternative for reviving the role of biogeochemical processes to enhance P treatment in aged, P-saturated SDAs. The 20-year present economic value of P removal through harvesting was estimated to be 341,000, which if covered through a cost share or a payment for P treatment services program could be a positive outcome for both

  7. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes: Targeted quantification of functional enzyme dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minjing [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Gao, Yuqian [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Qian, Wei-Jun [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Shi, Liang [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nelson, William C. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Nicora, Carrie D. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Resch, Charles T. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Thompson, Christopher [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Yan, Sen [School of Environmental Studies, China University of Geosciences, Wuhan 430074 People' s Republic of China; Fredrickson, James K. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Zachara, John M. [Pacific Northwest National Laboratory, Richland, WA 99354 USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland, WA 99354 USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055 People' s Republic of China

    2017-07-13

    Microbially mediated biogeochemical processes are catalyzed by enzymes that control the transformation of carbon, nitrogen, and other elements in environment. The dynamic linkage between enzymes and biogeochemical species transformation has, however, rarely been investigated because of the lack of analytical approaches to efficiently and reliably quantify enzymes and their dynamics in soils and sediments. Herein, we developed a signature peptide-based technique for sensitively quantifying dissimilatory and assimilatory enzymes using nitrate-reducing enzymes in a hyporheic zone sediment as an example. Moreover, the measured changes in enzyme concentration were found to correlate with the nitrate reduction rate in a way different from that inferred from biogeochemical models based on biomass or functional genes as surrogates for functional enzymes. This phenomenon has important implications for understanding and modeling the dynamics of microbial community functions and biogeochemical processes in environments. Our results also demonstrate the importance of enzyme quantification for the identification and interrogation of those biogeochemical processes with low metabolite concentrations as a result of faster enzyme-catalyzed consumption of metabolites than their production. The dynamic enzyme behaviors provide a basis for the development of enzyme-based models to describe the relationship between the microbial community and biogeochemical processes.

  8. Pb, Cd, Cu and Zn biogeochemical behaviour and biological transfer processes in the Northwestern Mediterranean

    International Nuclear Information System (INIS)

    Nicolas, E.; Marty, J.C.; Miquel, J.C.; Fowler, S.W.

    1999-01-01

    Cd, Pb, Cu and Zn concentrations were determined in planktonic organisms (Salps, copepods), their associated faecal pellets and in particles collected at 200 and 2000 m depth in sediment traps moored in the Ligurian Sea. Al and P were also measured and taken as tracers of lithogenic and biogenic components, respectively. The aim of this work was to determine the fluxes of trace metals in the Ligurian Sea and their variations with depth, and to to assess the biogeochemical behaviour of elements having, for some of them, an anthropogenic origin, by the study of biologically-mediated uptake and removal processes

  9. Combined effects of hydrologic alteration and cyprinid fish in mediating biogeochemical processes in a Mediterranean stream.

    Science.gov (United States)

    Rubio-Gracia, Francesc; Almeida, David; Bonet, Berta; Casals, Frederic; Espinosa, Carmen; Flecker, Alexander S; García-Berthou, Emili; Martí, Eugènia; Tuulaikhuu, Baigal-Amar; Vila-Gispert, Anna; Zamora, Lluis; Guasch, Helena

    2017-12-01

    Flow regimes are important drivers of both stream community and biogeochemical processes. However, the interplay between community and biogeochemical responses under different flow regimes in streams is less understood. In this study, we investigated the structural and functional responses of periphyton and macroinvertebrates to different densities of the Mediterranean barbel (Barbus meridionalis, Cyprinidae) in two stream reaches differing in flow regime. The study was conducted in Llémena Stream, a small calcareous Mediterranean stream with high nutrient levels. We selected a reach with permanent flow (permanent reach) and another subjected to flow regulation (regulated reach) with periods of flow intermittency. At each reach, we used in situ cages to generate 3 levels of fish density. Cages with 10 barbels were used to simulate high fish density (>7indm -2 ); cages with open sides were used as controls (i.e. exposed to actual fish densities of each stream reach) thus having low fish density; and those with no fish were used to simulate the disappearance of fish that occurs with stream drying. Differences in fish density did not cause significant changes in periphyton biomass and macroinvertebrate density. However, phosphate uptake by periphyton was enhanced in treatments lacking fish in the regulated reach with intermittent flow but not in the permanent reach, suggesting that hydrologic alteration hampers the ability of biotic communities to compensate for the absence of fish. This study indicates that fish density can mediate the effects of anthropogenic alterations such as flow intermittence derived from hydrologic regulation on stream benthic communities and associated biogeochemical processes, at least in eutrophic streams. Copyright © 2017. Published by Elsevier B.V.

  10. Upwelling events, coastal offshore exchange, links to biogeochemical processes - Highlights from the Baltic Sea Science Congress

    Directory of Open Access Journals (Sweden)

    Bogdan Ołdakowski

    2008-03-01

    Full Text Available The Baltic Sea Science Congress was held at Rostock University, Germany, from 19 to 22 March 2007. In the session entitled"Upwelling events, coastal offshore exchange, links to biogeochemical processes" 20 presentations were given,including 7 talks and 13 posters related to the theme of the session.This paper summarises new findings of the upwelling-related studies reported in the session. It deals with investigationsbased on the use of in situ and remote sensing measurements as well as numerical modelling tools. The biogeochemicalimplications of upwelling are also discussed.Our knowledge of the fine structure and dynamic considerations of upwelling has increased in recent decades with the advent ofhigh-resolution modern measurement techniques and modelling studies. The forcing and the overall structure, duration and intensity ofupwelling events are understood quite well. However, the quantification of related transports and the contribution to the overall mixingof upwelling requires further research. Furthermore, our knowledge of the links between upwelling and biogeochemical processes is stillincomplete. Numerical modelling has advanced to the extent that horizontal resolutions of c. 0.5 nautical miles can now be applied,which allows the complete spectrum of meso-scale features to be described. Even the development of filaments can be describedrealistically in comparison with high-resolution satellite data.But the effect of upwelling at a basin scale and possible changes under changing climatic conditions remain open questions.

  11. Thermodynamics at work - on the limits and potentials of biogeochemical processes

    Science.gov (United States)

    Peiffer, Stefan

    2017-04-01

    on the Fe and S side (Peiffer & Wan, 2016; Wan et al, 2014) which will allow for the occurrence of cryptic sulphur cycles, i. e. high turnover of sulphide and sulfate without the appearance of dissolved sulphide species. References Beer, J; Blodau, C (2007): Transport and thermodynamics constrain belowground carbon turover in a northern peatland, Geochim. Cosmochim. Acta, 71, 2989-3002 Blodau, C. (2002). "Carbon cycling in peatlands: A review of processes and controls." Environmental Reviews 10(2): 111-134. Blodau, C; Hoffmann, S; Peine, A; Peiffer, S (1998): Iron and sulfate reduction in the sediments of acid mine lake 116 (Brandenburg, Germany): Rates and geochemical evaluation, Water, Air and Soil Pollution, 108, 249-270 Peiffer, S., Wan M. (2016) Reductive Dissolution and Reactivity of Ferric (Hydr)oxides, in Faivre, D., Iron Oxides: From Nature to Applications, Wiley-VCH, chapter 3, 29-51 Peine, A; Küsel, K; Tritschler, A; Peiffer, S (2000): Electron flow in an iron-rich acidic sedimant - evidence for an acidity-driven iron cycle, Limnol. Oceanogr., 45(5), 1077-1087 Stumm, W.; Morgan, J. J. (1996): Aquatic Chemistry, Wiley Wan, M., Shchukarev, A., Lohmayer, R., Planer-Friedrich, B., Peiffer, S. (2014) Occurrence of surface polysulfides during the interaction between ferric (hydr)oxides and aqueous sulfide. Environmental Science and Technology, 48, 5076-5084

  12. Links between contaminant hotspots in low flow estuarine systems and altered sediment biogeochemical processes

    Science.gov (United States)

    Sutherland, Michael D.; Dafforn, Katherine A.; Scanes, Peter; Potts, Jaimie; Simpson, Stuart L.; Sim, Vivian X. Y.; Johnston, Emma L.

    2017-11-01

    The urbanisation of coastal zones is a major threat to the health of global estuaries and has been linked to increased contamination (e.g. metals) and excess organic matter. Urban stormwater networks collect and funnel contaminants into waterways at point sources (e.g. stormdrains). Under dry, low flow conditions, these stormwater contaminants can accumulate in sediments over time and result in modifications to benthic sediment biogeochemical processes. To quantify these processes, this field study measured differences in benthic metabolism (CR, GPP, NEM) and sediment-water nutrient fluxes (NH3, NOx, PO4) associated with stormdrains (0 m, 200 m and 1000 m away) and increased water-retention (embayments vs channels). Significant changes to benthic metabolism were detected with distance from stormdrains, and with differences in water-retention rates, above natural spatial and temporal variation. Oxygen consumption was ∼50% higher at stormdrains (0 m) compared to 1000 m away and >70% higher at stormdrains (0 m) located in embayments compared to channels. Oxygen production also appeared to decrease with distance from stormdrains in embayments, but patterns were variable. These changes to benthic metabolism were of a magnitude expected to influence benthic nutrient cycling, but NH3, NOx and PO4 fluxes were generally low, and highly spatially and temporally variable. Overall, metal (Cu) contamination explained most of the variation in sediment biogeochemical processes between embayments and channels, while sediment grain size explained differences in fluxes with distance from stormdrains. Importantly, although there was evidence of increased productivity associated with stormdrains, we also detected evidence of early hypoxia suggesting that systems with legacy stormwater contaminants exist on a tipping point. Future work should investigate changes to sediment processes after a major rainfall event, when large and sudden inputs of potentially toxic contaminants occur

  13. Connections between physical, optical and biogeochemical processes in the Pacific Ocean

    Science.gov (United States)

    Xiu, Peng; Chai, Fei

    2014-03-01

    A new biogeochemical model has been developed and coupled to a three-dimensional physical model in the Pacific Ocean. With the explicitly represented dissolved organic pools, this new model is able to link key biogeochemical processes with optical processes. Model validation against satellite and in situ data indicates the model is robust in reproducing general biogeochemical and optical features. Colored dissolved organic matter (CDOM) has been suggested to play an important role in regulating underwater light field. With the coupled model, physical and biological regulations of CDOM in the euphotic zone are analyzed. Model results indicate seasonal variability of CDOM is mostly determined by biological processes, while the importance of physical regulation manifests in the annual mean terms. Without CDOM attenuating light, modeled depth-integrated primary production is about 10% higher than the control run when averaged over the entire basin, while this discrepancy is highly variable in space with magnitudes reaching higher than 100% in some locations. With CDOM dynamics integrated in physical-biological interactions, a new mechanism by which physical processes affect biological processes is suggested, namely, physical transport of CDOM changes water optical properties, which can further modify underwater light field and subsequently affect the distribution of phytoplankton chlorophyll. This mechanism tends to occur in the entire Pacific basin but with strong spatial variability, implying the importance of including optical processes in the coupled physical-biogeochemical model. If ammonium uptake is sufficient to permit utilization of DOM, that is, UB∗⩾-U{U}/{U}-{(1-r_b)}/{RB}, then bacteria uptake of DOM has the form of FB=(1-r_b){U}/{RB}, bacteria respiration, SB=r_b×U, remineralization by bacteria, EB=UC{UN}/{UC}-{(1-r_b)}/{RB}. If EB > 0, then UB = 0; otherwise, UB = -EB. If there is insufficient ammonium, that is, UB∗CO2 is calculated using the

  14. Exploring the Influence of Topography on Belowground C Processes Using a Coupled Hydrologic-Biogeochemical Model

    Science.gov (United States)

    Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.

    2014-12-01

    Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.

  15. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes

    Science.gov (United States)

    Hayes, J. M.; Freeman, K. H.; Popp, B. N.; Hoham, C. H.

    1990-01-01

    Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.

  16. The effect of gold mining and processing on biogeochemical cycles in Muteh area, Isfahan province, Iran

    Science.gov (United States)

    Keshavarzi, B.; Moore, F.

    2009-04-01

    The environmental impacts of gold mining and processing on geochemical and biogeochemical cycles in Muteh region located northwest of Esfahan province and northeast of Golpaygan city is investigated. For this purpose systematic sampling was carried out in, rock, soil, water, and sediment environments along with plant, livestocks and human hair samples. Mineralogical and Petrological studies show that ore mineral such as pyrite and arsenopyrite along with fluorine-bearing minerals like tremolite, actinolite, biotite and muscovite occur in green schist, amphibolite and lucogranitic rocks in the area. The hydrochemistry of the analysed water samples indicate that As and F display the highest concentrations among the analysed elements. Indeed arsenic has the highest concentration in both topsoil and subsoil samples when compared with other potentially toxic elements. Anthropogenic activity also have it s greatest effect on increasing arsenic concentration among the analysed samples. The concentration of the majority of the analysed elements in the shoots and leaves of two local plants of the region i.e Artemesia and Penagum is higher than their concentration in the roots. Generally speaking, Artemesia has a greater tendency for bioaccumulating heavy metals. The results of cyanide analysis in soil samples show that cyanide concentration in the soils near the newly built tailing dam is much higher than that in the vicinity of the old tailing dam. The high concentration of fluorine in the drinking water of the Muteh village is the main reason of the observed dental fluorosis symptoms seen in the inhabitants. One of the two drinking water wells which is located near the metamorphic complex and supplies part of the tap water in the village, probably has the greatest impact in this regard. A decreasing trend in fluorine concentration is illustrated with increasing distance from the metamorphic complex. Measurements of As concentration in human hair specimens indicate that As

  17. Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance

    Science.gov (United States)

    Laskou, Magdalini; Economou-Eliopoulos, Maria

    2013-08-01

    The Parnassos-Ghiona bauxite deposit in Greece of karst type is the 11th largest bauxite producer in the world. The mineralogical, major and trace-element contents and δ18O, δ12C, δ34S isotopic compositions of bauxite ores from this deposit and associated limestone provide valuable evidence for their origin and biogeochemical processes resulting in the beneficiation of low grade bauxite ores. The organic matter as thin coal layers, overlying the bauxite deposits, within limestone itself (negative δ12C isotopic values) and the negative δ34S values in sulfides within bauxite ores point to the existence of the appropriate circumstances for Fe bio-leaching and bio-mineralization. Furthermore, a consortium of microorganisms of varying morphological forms (filament-like and spherical to lenticular at an average size of 2 μm), either as fossils or presently living and producing enzymes, is a powerful factor to catalyze the redox reactions, expedite the rates of metal extraction and provide alternative pathways for metal leaching processes resulting in the beneficiation of bauxite ore.

  18. What can high frequency data tell us about hydrological and biogeochemical processes in a permafrost-underlain watershed that we do not already know?

    Science.gov (United States)

    Carey, S. K.; Shatilla, N. J.; Tang, W.

    2017-12-01

    Permafrost and frozen ground play a key role in the delivery of water and solutes from the landscape to the stream, and in biogeochemical cycling by acting as a cold season or semi-permanent aquitard. Conceptual models of permafrost hydrology have been well defined for over 40 years, yet renewed interest in the face of global climate change and rapid degradation of frozen ground has provided an opportunity to revisit previous paradigms. At the same time, new instruments and techniques to understand coupled hydrological and biogeochemical processes have emerged, providing a more nuanced view of northern systems. High-frequency sub-hourly measures of flows, water quality and biogeochemical parameters such as salinity and chromophoric dissolved organic matter (CDOM), along with eddy covariance systems provide considerable data, yet using this data to reveal new process information remains challenging. In this presentation, multi-year high frequency data sets of water, solute and carbon fluxes from Granger Creek, an instrumented alpine watershed with discontinuous permafrost within the Wolf Creek Research Basin, Yukon Territory, Canada, will be shown. While several decades of hydrometric and geochemical data exist for Granger Creek, inter-annual variability is considerable and makes evaluating long-term trends difficult. Insights derived from high-frequency sub-hourly salinity, CDOM and flow over recent years reveal that hysteresis loops among variables can be used to assess changing connectivity and flow paths as both magnitude and direction of loops can be used to infer landscape-scale linkages. These patterns highlight spatial connections among landscape units not previously observed, and identify periods when hydrological and biogeochemical cycles are coupled. Evaluation of these patterns at the headwater scale provides alternate hypotheses for how permafrost landscapes will respond to a changing climate.

  19. Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams

    Science.gov (United States)

    Briggs, Martin A.; Lautz, Laura; Hare, Danielle K.

    2013-01-01

    Abstract. Small dams enhance the development of patchy microenvironments along stream corridors by trapping sediment and creating complex streambed morphologies. This patchiness drives intricate hyporheic flux patterns that govern the exchange of O2 and redox-sensitive solutes between the water column and the stream bed. We used multiple tracer techniques, naturally occurring and injected, to evaluate hyporheic flow dynamics and associated biogeochemical cycling and microbial reactivity around 2 beaver dams in Wyoming (USA). High-resolution fiber-optic distributed temperature sensing was used to collect temperature data over 9 vertical streambed profiles and to generate comprehensive vertical flux maps using 1-dimensional (1-D) heat-transport modeling. Coincident with these locations, vertical profiles of hyporheic water were collected every week and analyzed for dissolved O2, pH, dissolved organic C, and several conservative and redox-sensitive solutes. In addition, hyporheic and net stream aerobic microbial reactivity were analyzed with a constant-rate injection of the biologically sensitive resazurin (Raz) smart tracer. The combined results revealed a heterogeneous system with rates of downwelling hyporheic flow organized by morphologic unit and tightly coupled to the redox conditions of the subsurface. Principal component analysis was used to summarize the variability of all redox-sensitive species, and results indicated that hyporheic water varied from oxic-stream-like to anoxic-reduced in direct response to the hydrodynamic conditions and associated residence times. The anaerobic transition threshold predicted by the mean O2 Damko

  20. Biogeochemical processes controlling density stratification in an iron-meromictic lake

    Science.gov (United States)

    Nixdorf, E.; Boehrer, B.

    2015-06-01

    Biogeochemical processes and mixing regime of a lake can control each other mutually. The prominent case of iron meromixis is investigated in Waldsee near Doebern, a small lake that originated from surface mining of lignite. From a four years data set of monthly measured electrical conductivity profiles, we calculated summed conductivity as a quantitative variable reflecting the amount of electro-active substances in the entire lake. Seasonal variations followed changing chemocline height. Coinciding changes of electrical conductivities in the monimolimnion indicated that a considerable share of substances, precipitated by the advancing oxygenated epilimnion, re-dissolved in the remaining anoxic deep waters and contributed considerably to the density stratification. In addition, we constructed a lab experiment, in which aeration of monimolimnetic waters removed iron compounds and organic material. Precipitates could be identified by visual inspection. Introduced air bubbles ascended through the water column and formed a water mass similar to the mixolimnetic Waldsee water. The remaining less dense water remained floating on the nearly unchanged monimolimnetic water. In conclusion, iron meromixis as seen in Waldsee did not require two different sources of incoming waters, but the inflow of iron rich deep groundwater and the aeration through the lake surface were fully sufficient.

  1. Evaluation of the transport matrix method for simulation of ocean biogeochemical tracers

    Science.gov (United States)

    Kvale, Karin F.; Khatiwala, Samar; Dietze, Heiner; Kriest, Iris; Oschlies, Andreas

    2017-06-01

    Conventional integration of Earth system and ocean models can accrue considerable computational expenses, particularly for marine biogeochemical applications. Offline numerical schemes in which only the biogeochemical tracers are time stepped and transported using a pre-computed circulation field can substantially reduce the burden and are thus an attractive alternative. One such scheme is the transport matrix method (TMM), which represents tracer transport as a sequence of sparse matrix-vector products that can be performed efficiently on distributed-memory computers. While the TMM has been used for a variety of geochemical and biogeochemical studies, to date the resulting solutions have not been comprehensively assessed against their online counterparts. Here, we present a detailed comparison of the two. It is based on simulations of the state-of-the-art biogeochemical sub-model embedded within the widely used coarse-resolution University of Victoria Earth System Climate Model (UVic ESCM). The default, non-linear advection scheme was first replaced with a linear, third-order upwind-biased advection scheme to satisfy the linearity requirement of the TMM. Transport matrices were extracted from an equilibrium run of the physical model and subsequently used to integrate the biogeochemical model offline to equilibrium. The identical biogeochemical model was also run online. Our simulations show that offline integration introduces some bias to biogeochemical quantities through the omission of the polar filtering used in UVic ESCM and in the offline application of time-dependent forcing fields, with high latitudes showing the largest differences with respect to the online model. Differences in other regions and in the seasonality of nutrients and phytoplankton distributions are found to be relatively minor, giving confidence that the TMM is a reliable tool for offline integration of complex biogeochemical models. Moreover, while UVic ESCM is a serial code, the TMM can

  2. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    Science.gov (United States)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange

  3. Biogeochemical processes and buffering capacity concurrently affect acidification in a seasonally hypoxic coastal marine basin

    Science.gov (United States)

    Hagens, M.; Slomp, C. P.; Meysman, F. J. R.; Seitaj, D.; Harlay, J.; Borges, A. V.; Middelburg, J. J.

    2015-03-01

    Coastal areas are impacted by multiple natural and anthropogenic processes and experience stronger pH fluctuations than the open ocean. These variations can weaken or intensify the ocean acidification signal induced by increasing atmospheric pCO2. The development of eutrophication-induced hypoxia intensifies coastal acidification, since the CO2 produced during respiration decreases the buffering capacity in any hypoxic bottom water. To assess the combined ecosystem impacts of acidification and hypoxia, we quantified the seasonal variation in pH and oxygen dynamics in the water column of a seasonally stratified coastal basin (Lake Grevelingen, the Netherlands). Monthly water-column chemistry measurements were complemented with estimates of primary production and respiration using O2 light-dark incubations, in addition to sediment-water fluxes of dissolved inorganic carbon (DIC) and total alkalinity (TA). The resulting data set was used to set up a proton budget on a seasonal scale. Temperature-induced seasonal stratification combined with a high community respiration was responsible for the depletion of oxygen in the bottom water in summer. The surface water showed strong seasonal variation in process rates (primary production, CO2 air-sea exchange), but relatively small seasonal pH fluctuations (0.46 units on the total hydrogen ion scale). In contrast, the bottom water showed less seasonality in biogeochemical rates (respiration, sediment-water exchange), but stronger pH fluctuations (0.60 units). This marked difference in pH dynamics could be attributed to a substantial reduction in the acid-base buffering capacity of the hypoxic bottom water in the summer period. Our results highlight the importance of acid-base buffering in the pH dynamics of coastal systems and illustrate the increasing vulnerability of hypoxic, CO2-rich waters to any acidifying process.

  4. Understanding system disturbance and ecosystem services in restored saltmarshes: Integrating physical and biogeochemical processes

    Science.gov (United States)

    Spencer, K. L.; Harvey, G. L.

    2012-06-01

    Coastal saltmarsh ecosystems occupy only a small percentage of Earth's land surface, yet contribute a wide range of ecosystem services that have significant global economic and societal value. These environments currently face significant challenges associated with climate change, sea level rise, development and water quality deterioration and are consequently the focus of a range of management schemes. Increasingly, soft engineering techniques such as managed realignment (MR) are being employed to restore and recreate these environments, driven primarily by the need for habitat (re)creation and sustainable coastal flood defence. Such restoration schemes also have the potential to provide additional ecosystem services including climate regulation and waste processing. However, these sites have frequently been physically impacted by their previous land use and there is a lack of understanding of how this 'disturbance' impacts the delivery of ecosystem services or of the complex linkages between ecological, physical and biogeochemical processes in restored systems. Through the exploration of current data this paper determines that hydrological, geomorphological and hydrodynamic functioning of restored sites may be significantly impaired with respects to natural 'undisturbed' systems and that links between morphology, sediment structure, hydrology and solute transfer are poorly understood. This has consequences for the delivery of seeds, the provision of abiotic conditions suitable for plant growth, the development of microhabitats and the cycling of nutrients/contaminants and may impact the delivery of ecosystem services including biodiversity, climate regulation and waste processing. This calls for a change in our approach to research in these environments with a need for integrated, interdisciplinary studies over a range of spatial and temporal scales incorporating both intensive and extensive research design.

  5. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems: long-term dynamics of the migration processes

    Science.gov (United States)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey

    2013-04-01

    Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of

  6. Carbon and Nitrogen in the Lower Basin of the Paraíba do Sul River, Southeastern Brazil: Element fluxes and biogeochemical processes

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Martinelli

    2011-08-01

    Full Text Available The study was conducted in the lower basin of the Paraíba do Sul River (PSR, in which 57,000 km2 of the basin is located in the Brazilian states of São Paulo, Minas Gerais and Rio de Janeiro. We proposed to identify the main sources of C and N fluxes in the PSR waters, to evaluate biogeochemical processes in the watershed, and to estimate C and N riverine loads to the Atlantic Ocean in the context of the sugarcane plantation expansion for ethanol production. Riverine water samples were collected at seven stations along 12 months. Physicochemical and limnological parameters, as well as discharge, were measured together with organic and inorganic C and N species in the dissolved and suspended particulate material. C and N concentrations in bed fluvial sediments, and suspended particulate material were measured, and their elemental ([C:N]a and isotopic (δ13C compositions were compared with the [C:N]a and δ13C of the following sources: riparian soils, insular flooded soils, aquatic macrophytes, phytoplankton, pasture grass, sugarcane, sugarcane byproducts, and forest litterfall. Temporal patterns in the physicochemical and limnological environment were correlated to discharge. It also was observed that sugar cane production can increase riverine C and N fluxes. Riparian soils inputs were larger than insular soils, which was likely to act as a biogeochemical barrier. Effects of the macrophytes on riverine C and N were unclear, as well as urban sewage disposal effects. Although the PSR loads represented a very small percentage of the fluvial input to global biogeochemical cycles, we suggest that this and other medium sized watersheds in Eastern and Southeastern South America can be significant contributors to the continental biogeochemical riverine loads to the ocean, if their loads are considered together.

  7. Soil property control of biogeochemical processes beneath two subtropical stormwater infiltration basins.

    Science.gov (United States)

    O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Harris, Willie G; Xuan, Zhemin

    2012-01-01

    Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L and decreases in nitrate nitrogen (NO-N) from 2.7 mg L to soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0-7.8 mg L), resulting in NO-N of 1.3 to 3.3 mg L in shallow groundwater. Enrichment of δN and δO of NO combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO transport beneath the sandy basin. Soil-extractable NO-N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO impacts. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Influence of harvesting on biogeochemical exchange in sheetflow and soil processes in a eutrophic floodplain forest

    Science.gov (United States)

    B.G. Lockaby; R.G. Clawson; K. Flynn; Robert Rummer; S. Meadows; B Stokes; John A. Stanturf

    1997-01-01

    Floodplain forests contribute to the maintenance of water quality as a result of various biogeochemical transformations which occur within them. In particular, they can serve as sinks for nutrient run-off from adjacent uplands or as nutrient transformers as water moves downstream. However, little is known about the potential that land management activities may have for...

  9. Identifying biogeochemical processes beneath stormwater infiltration ponds in support of a new best management practice for groundwater protection

    Science.gov (United States)

    O'Reilly, Andrew M.; Chang, Ni-Bin; Wanielista, Martin P.; Xuan, Zhemin; Schirmer, Mario; Hoehn, Eduard; Vogt, Tobias

    2011-01-01

     When applying a stormwater infiltration pond best management practice (BMP) for protecting the quality of underlying groundwater, a common constituent of concern is nitrate. Two stormwater infiltration ponds, the SO and HT ponds, in central Florida, USA, were monitored. A temporal succession of biogeochemical processes was identified beneath the SO pond, including oxygen reduction, denitrification, manganese and iron reduction, and methanogenesis. In contrast, aerobic conditions persisted beneath the HT pond, resulting in nitrate leaching into groundwater. Biogeochemical differences likely are related to soil textural and hydraulic properties that control surface/subsurface oxygen exchange. A new infiltration BMP was developed and a full-scale application was implemented for the HT pond. Preliminary results indicate reductions in nitrate concentration exceeding 50% in soil water and shallow groundwater beneath the HT pond.

  10. Evaluating Southern Ocean Carbon Eddy-Pump From Biogeochemical-Argo Floats

    Science.gov (United States)

    Llort, Joan; Langlais, C.; Matear, R.; Moreau, S.; Lenton, A.; Strutton, Peter G.

    2018-02-01

    The vertical transport of surface water and carbon into ocean's interior, known as subduction, is one of the main mechanisms through which the ocean influences Earth's climate. New instrumental approaches have shown the occurrence of localized and intermittent subduction episodes associated with small-scale ocean circulation features. These studies also revealed the importance of such events for the export of organic matter, the so-called eddy-pump. However, the transient and localized nature of episodic subduction hindered its large-scale evaluation to date. In this work, we present an approach to detect subduction events at the scale of the Southern Ocean using measurements collected by biogeochemical autonomous floats (BGCArgo). We show how subduction events can be automatically identified as anomalies of spiciness and Apparent Oxygen Utilization (AOU) below the mixed layer. Using this methodology over more than 4,000 profiles, we detected 40 subduction events unevenly distributed across the Sothern Ocean. Events were more likely found in hot spots of eddy kinetic energy (EKE), downstream major bathymetric features. Moreover, the bio-optical measurements provided by BGCArgo allowed measuring the amount of Particulate Organic Carbon (POC) being subducted and assessing the contribution of these events to the total downward carbon flux at 100 m (EP100). We estimated that the eddy-pump represents less than 19% to the EP100 in the Southern Ocean, although we observed particularly strong events able to locally duplicate the EP100. This approach provides a novel perspective on where episodic subduction occurs that will be naturally improved as BGCArgo observations continue to increase.

  11. Biogeochemical processes and the diversity of Nhecolândia lakes, Brazil

    Directory of Open Access Journals (Sweden)

    Teodoro I. R Almeida

    2011-06-01

    Full Text Available The Pantanal of Nhecolândia, the world's largest and most diversified field of tropical lakes, comprises approximately 10,000 lakes, which cover an area of 24,000 km² and vary greatly in salinity, pH, alkalinity, colour, physiography and biological activity. The hyposaline lakes have variable pHs, low alkalinity, macrophytes and low phytoplankton densities. The saline lakes have pHs above 9 or 10, high alkalinity, a high density of phytoplankton and sand beaches. The cause of the diversity of these lakes has been an open question, which we have addressed in our research. Here we propose a hybrid process, both geochemical and biological, as the main cause, including (1 a climate with an important water deficit and poverty in Ca2+ in both superficial and phreatic waters; and (2 an elevation of pH during cyanobacteria blooms. These two aspects destabilise the general tendency of Earth's surface waters towards a neutral pH. This imbalance results in an increase in the pH and dissolution of previously precipitated amorphous silica and quartzose sand. During extreme droughts, amorphous silica precipitates in the inter-granular spaces of the lake bottom sediment, increasing the isolation of the lake from the phreatic level. This paper discusses this biogeochemical problem in the light of physicochemical, chemical, altimetric and phytoplankton data.O Pantanal da Nhecolândia é o maior e mais diversificado campo de lagos da região tropical do planeta, com cerca de 10.000 lagos de variadas salinidade, pH, alcalinidade, cor, fisiografia e atividade biológica dispostos em uma área de 24.000 km². Os lagos hipossalinos têm pH variável, baixa alcalinidade, macrófitas e baixa densidade de fitoplâncton. Os lagos salinos tem pH acima de 9 ou 10, elevada alcalinidade, alta densidade de fitoplâncton e praias de areia. A causa da diversidade desses lagos é uma questão ainda em aberto que é abordada nesta pesquisa. Propõe-se como principal causa um

  12. Structure of peat soils and implications for biogeochemical processes and hydrological flow

    Science.gov (United States)

    Rezanezhad, F.; McCarter, C. P. R.; Gharedaghloo, B.; Kleimeier, C.; Milojevic, T.; Liu, H.; Weber, T. K. D.; Price, J. S.; Quinton, W. L.; Lenartz, B.; Van Cappellen, P.

    2017-12-01

    Permafrost peatlands contain globally important amounts of soil organic carbon and play major roles in global water, nutrient and biogeochemical cycles. The structure of peatland soils (i.e., peat) are highly complex with unique physical and hydraulic properties; where significant, and only partially reversible, shrinkage occurs during dewatering (including water table fluctuations), compression and/or decomposition. These distinct physical and hydraulic properties controls water flow, which in turn affect reactive and non-reactive solute transport (such as, sorption or degradation) and biogeochemical functions. Additionally, peat further attenuates solute migration through molecular diffusion into the inactive pores of Sphagnum dominated peat. These slow, diffusion-limited solute exchanges between the pore regions may give rise to pore-scale chemical gradients and heterogeneous distributions of microbial habitats and activity in peat soils. Permafrost peat plateaus have the same essential subsurface characteristics as other widely organic soil-covered peatlands, where the hydraulic conductivity is related to the degree of decomposition and soil compression. Increasing levels of decomposition correspond with a reduction of effective pore diameter and consequently restrict water and solute flow (by several orders of magnitude in hydraulic conductivity between the ground surface and a depth of 50 cm). In this presentation, we present the current knowledge of key physical and hydraulic properties related to the structure of globally available peat soils and discuss their implications for water storage, flow and the migration of solutes.

  13. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system

    Science.gov (United States)

    Anantharaman, Karthik; Brown, Christopher T.; Hug, Laura A.; Sharon, Itai; Castelle, Cindy J.; Probst, Alexander J.; Thomas, Brian C.; Singh, Andrea; Wilkins, Michael J.; Karaoz, Ulas; Brodie, Eoin L.; Williams, Kenneth H.; Hubbard, Susan S.; Banfield, Jillian F.

    2016-01-01

    The subterranean world hosts up to one-fifth of all biomass, including microbial communities that drive transformations central to Earth's biogeochemical cycles. However, little is known about how complex microbial communities in such environments are structured, and how inter-organism interactions shape ecosystem function. Here we apply terabase-scale cultivation-independent metagenomics to aquifer sediments and groundwater, and reconstruct 2,540 draft-quality, near-complete and complete strain-resolved genomes that represent the majority of known bacterial phyla as well as 47 newly discovered phylum-level lineages. Metabolic analyses spanning this vast phylogenetic diversity and representing up to 36% of organisms detected in the system are used to document the distribution of pathways in coexisting organisms. Consistent with prior findings indicating metabolic handoffs in simple consortia, we find that few organisms within the community can conduct multiple sequential redox transformations. As environmental conditions change, different assemblages of organisms are selected for, altering linkages among the major biogeochemical cycles. PMID:27774985

  14. The roles of resuspension, diffusion and biogeochemical processes on oxygen dynamics offshore of the Rhône River, France: a numerical modeling study

    Science.gov (United States)

    Moriarty, Julia M.; Harris, Courtney K.; Fennel, Katja; Friedrichs, Marjorie A. M.; Xu, Kehui; Rabouille, Christophe

    2017-04-01

    Observations indicate that resuspension and associated fluxes of organic material and porewater between the seabed and overlying water can alter biogeochemical dynamics in some environments, but measuring the role of sediment processes on oxygen and nutrient dynamics is challenging. A modeling approach offers a means of quantifying these fluxes for a range of conditions, but models have typically relied on simplifying assumptions regarding seabed-water-column interactions. Thus, to evaluate the role of resuspension on biogeochemical dynamics, we developed a coupled hydrodynamic, sediment transport, and biogeochemical model (HydroBioSed) within the Regional Ocean Modeling System (ROMS). This coupled model accounts for processes including the storage of particulate organic matter (POM) and dissolved nutrients within the seabed; fluxes of this material between the seabed and the water column via erosion, deposition, and diffusion at the sediment-water interface; and biogeochemical reactions within the seabed. A one-dimensional version of HydroBioSed was then implemented for the Rhône subaqueous delta in France. To isolate the role of resuspension on biogeochemical dynamics, this model implementation was run for a 2-month period that included three resuspension events; also, the supply of organic matter, oxygen, and nutrients to the model was held constant in time. Consistent with time series observations from the Rhône Delta, model results showed that erosion increased the diffusive flux of oxygen into the seabed by increasing the vertical gradient of oxygen at the seabed-water interface. This enhanced supply of oxygen to the seabed, as well as resuspension-induced increases in ammonium availability in surficial sediments, allowed seabed oxygen consumption to increase via nitrification. This increase in nitrification compensated for the decrease in seabed oxygen consumption due to aerobic remineralization that occurred as organic matter was entrained into the water

  15. Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes

    Science.gov (United States)

    Alexander, Richard B.; Böhlke, John Karl; Boyer, Elizabeth W.; David, Mark B.; Harvey, Judson W.; Mulholland, Patrick J.; Seitzinger, Sybil P.; Tobias, Craig R.; Tonitto, Christina; Wollheim, Wilfred M.

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  16. Using Stable Isotopes to Link Nutrient Sources in the Everglades and Biological Sinks in Florida Bay: A Biogeochemical Approach to Evaluate Ecosystem Response to Changing Nutrient Regimes

    Science.gov (United States)

    Hoare, A. M.; Hollander, D. J.; Heil, C.; Glibert, P.; Murasko, S.; Revilla, M.; Alexander, J.

    2005-05-01

    stable isotopic measurements are important tools in determining nutrient source and biogeochemical processing in these ecosystems and can be used to evaluate future ecological responses to hydrologic restoration.

  17. The two-layer geochemical structure of modern biogeochemical provinces and its significance for spatially adequate ecological evaluations and decisions

    Science.gov (United States)

    Korobova, Elena; Romanov, Sergey

    2014-05-01

    Contamination of the environment has reached such a scale that ecogeochemical situation in any area can be interpreted now as a result of the combined effect of natural and anthropogenic factors. The areas that appear uncomfortable for a long stay can have natural and anthropogenic genesis, but the spatial structure of such biogeochemical provinces is in any case formed of a combination of natural and technogenic fields of chemical elements. Features of structural organization and the difference in factors and specific time of their formation allow their separation on one hand and help in identification of areas with different ecological risks due to overlay of the two structures on the other. Geochemistry of soil cover reflects the long-term result of the naturally balanced biogeochemical cycles, therefore the soil geochemical maps of the undisturbed areas may serve the basis for evaluation of the natural geochemical background with due regard to the main factors of geochemical differentiation in biosphere. Purposeful and incidental technogenic concentrations and dispersions of chemical elements of specific (mainly mono- or polycentric) structure are also fixed in soils that serve as secondary sources of contamination of the vegetation cover and local food chains. Overlay of the two structures forms specific heterogeneity of modern biogeochemical provinces with different risk for particular groups of people, animals and plants adapted to specific natural geochemical background within particular concentration interval. The developed approach is believed to be helpful for biogeochemical regionalizing of modern biosphere (noosphere) and for spatially adequate ecogeochemical evaluation of the environment and landuse decisions. It allows production of a set of applied geochemical maps such as: 1) health risk due to chemical elements deficiency and technogenic contamination accounting of possible additive effects; 2) adequate soil fertilization and melioration with due

  18. CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4: model development, evaluation, and application

    Directory of Open Access Journals (Sweden)

    J. Y. Tang

    2013-01-01

    Full Text Available To improve regional and global biogeochemistry modeling and climate predictability, we have developed a generic reactive transport module for the land model CLM4 (called CLM4-BeTR (Biogeochemical Transport and Reactions. CLM4-BeTR represents the transport, interactions, and biotic and abiotic transformations of an arbitrary number of tracers (aka chemical species in an arbitrary number of phases (e.g., dissolved, gaseous, sorbed, aggregate. An operator splitting approach was employed and consistent boundary conditions were derived for each modeled sub-process. Aqueous tracer fluxes, associated with hydrological processes such as surface run-on and run-off, belowground drainage, and ice to liquid conversion were also computed consistently with the bulk water fluxes calculated by the soil physics module in CLM4. The transport code was evaluated and found in good agreement with several analytical test cases using a time step of 30 min. The model was then applied at the Harvard Forest site with a representation of depth-dependent belowground biogeochemistry. The results indicated that, at this site, (1 CLM4-BeTR was able to simulate soil–surface CO2 effluxes and soil CO2 profiles accurately; (2 the transient surface CO2 effluxes calculated based on the tracer transport mechanism were in general not equal to the belowground CO2 production rates with the magnitude of the difference being a function of averaging timescale and site conditions: differences were large (−20 ~ 20% on hourly, smaller (−5 ~ 5% at daily timescales, and persisted to the monthly timescales with a smaller magnitude (<4%; (3 losses of CO2 through processes other than surface gas efflux were less than 1% of the overall soil respiration; and (4 the contributions of root respiration and heterotrophic respiration have distinct temporal signals in surface CO2 effluxes and soil CO2 concentrations. The

  19. A positive and multi-element conserving time stepping scheme for biogeochemical processes in marine ecosystem models

    Science.gov (United States)

    Radtke, H.; Burchard, H.

    2015-01-01

    In this paper, an unconditionally positive and multi-element conserving time stepping scheme for systems of non-linearly coupled ODE's is presented. These systems of ODE's are used to describe biogeochemical transformation processes in marine ecosystem models. The numerical scheme is a positive-definite modification of the Runge-Kutta method, it can have arbitrarily high order of accuracy and does not require time step adaption. If the scheme is combined with a modified Patankar-Runge-Kutta method from Burchard et al. (2003), it also gets the ability to solve a certain class of stiff numerical problems, but the accuracy is restricted to second-order then. The performance of the new scheme on two test case problems is shown.

  20. Observationally-based Metrics of Ocean Carbon and Biogeochemical Variables are Essential for Evaluating Earth System Model Projections

    Science.gov (United States)

    Russell, J. L.; Sarmiento, J. L.

    2017-12-01

    The Southern Ocean is central to the climate's response to increasing levels of atmospheric greenhouse gases as it ventilates a large fraction of the global ocean volume. Global coupled climate models and earth system models, however, vary widely in their simulations of the Southern Ocean and its role in, and response to, the ongoing anthropogenic forcing. Due to its complex water-mass structure and dynamics, Southern Ocean carbon and heat uptake depend on a combination of winds, eddies, mixing, buoyancy fluxes and topography. Understanding how the ocean carries heat and carbon into its interior and how the observed wind changes are affecting this uptake is essential to accurately projecting transient climate sensitivity. Observationally-based metrics are critical for discerning processes and mechanisms, and for validating and comparing climate models. As the community shifts toward Earth system models with explicit carbon simulations, more direct observations of important biogeochemical parameters, like those obtained from the biogeochemically-sensored floats that are part of the Southern Ocean Carbon and Climate Observations and Modeling project, are essential. One goal of future observing systems should be to create observationally-based benchmarks that will lead to reducing uncertainties in climate projections, and especially uncertainties related to oceanic heat and carbon uptake.

  1. Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark)

    DEFF Research Database (Denmark)

    Zopfi, J.; Ferdelman, TG; Jørgensen, BB

    2001-01-01

    Major electron donors (H2S, NH4+, Mn2+, Fe2+) and accepters (O-2, NO3-, Mn(IV), Fe(III)), process rates ((SO42-)-S-35 reduction, dark (CO2)-C-14 fixation) and vertical fluxes were investigated to quantify the dominant biogeochemical processes at the chemocline of a shallow brackish fjord. Under...... steady-stare conditions, the upward fluxes of reductants and downward fluxes of oxidants in the water column were balanced. However, changes in the hydrographical conditions caused a transient nonsteady-state at the chemocline and had a great impact on process rates and the distribution of chemical...... species. Maxima of S-0 (17.8 mu mol l(-1)), thiosulfate (5.2 mu mol l(-1)) and sulfite (1.1 mu mol l(-1)) occurred at the chemocline, but were hardly detectable in the sulfidic deep water. The distribution of S-0 suggested that the high concentration of S-0 was (a) more likely due to a low turnover than...

  2. OUTPACE long duration stations: physical variability, context of biogeochemical sampling, and evaluation of sampling strategy

    Directory of Open Access Journals (Sweden)

    A. de Verneil

    2018-04-01

    Full Text Available Research cruises to quantify biogeochemical fluxes in the ocean require taking measurements at stations lasting at least several days. A popular experimental design is the quasi-Lagrangian drifter, often mounted with in situ incubations or sediment traps that follow the flow of water over time. After initial drifter deployment, the ship tracks the drifter for continuing measurements that are supposed to represent the same water environment. An outstanding question is how to best determine whether this is true. During the Oligotrophy to UlTra-oligotrophy PACific Experiment (OUTPACE cruise, from 18 February to 3 April 2015 in the western tropical South Pacific, three separate stations of long duration (five days over the upper 500 m were conducted in this quasi-Lagrangian sampling scheme. Here we present physical data to provide context for these three stations and to assess whether the sampling strategy worked, i.e., that a single body of water was sampled. After analyzing tracer variability and local water circulation at each station, we identify water layers and times where the drifter risks encountering another body of water. While almost no realization of this sampling scheme will be truly Lagrangian, due to the presence of vertical shear, the depth-resolved observations during the three stations show most layers sampled sufficiently homogeneous physical environments during OUTPACE. By directly addressing the concerns raised by these quasi-Lagrangian sampling platforms, a protocol of best practices can begin to be formulated so that future research campaigns include the complementary datasets and analyses presented here to verify the appropriate use of the drifter platform.

  3. Benthic flux of dissolved organic matter from lake sediment at different redox conditions and the possible effects of biogeochemical processes.

    Science.gov (United States)

    Yang, Liyang; Choi, Jung Hyun; Hur, Jin

    2014-09-15

    The benthic fluxes of dissolved organic carbon (DOC), chromophoric and fluorescent dissolved organic matter (CDOM and FDOM) were studied for the sediment from an artificial lake, based on laboratory benthic chamber experiments. Conservative estimates for the benthic flux of DOC were 71 ± 142 and 51 ± 101 mg m(-2) day(-1) at hypoxic and oxic conditions, respectively. Two humic-like (C1 and C2), one tryptophan-like (C3), and one microbial humic-like (C4) components were identified from the samples using fluorescence excitation emission matrices and parallel factor analysis (EEM-PARAFAC). During the incubation period, C3 was removed while C4 was accumulated in the overlying water with no significant difference in the trends between the redox conditions. The humification index (HIX) increased with time. The combined results for C3, C4 and HIX suggested that microbial transformation may be an important process affecting the flux behaviors of DOM. In contrast, the overall accumulations of CDOM, C1, and C2 in the overlying water occurred only for the hypoxic condition, which was possibly explained by their enhanced photo-degradation and sorption to redox-sensitive minerals under the oxic condition. Our study demonstrated significant benthic flux of DOM in lake sediment and also the possible involvement of biogeochemical transformation in the processes, providing insight into carbon cycling in inland waters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Coastal biogeochemical processes in the north Indian Ocean (14, S-W)

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; Narvekar, P.V.; Desa, E.

    of the region are also shown with the numbers denoting the annual runoff in 10" m3. Due to the proximity to landmasses, the North Indian Ocean is probably af- fected by processes originating at the land-ocean boundary more than any other region. Lndeed... IN TIiE NORTH INDIAN OCEAN tion of contributions by the Indian oceanographic community, most of this infor- mation has been generated by scientists from countries outside this region under international efforts that started with the John Murray...

  5. Environmental Transport of Plutonium: Biogeochemical Processes at Femtomolar Concentrations and Nanometer Scales

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-10-05

    The major challenge in predicting the mobility and transport of plutonium (Pu) is determining the dominant geochemical processes that control its behavior in the subsurface. The reaction chemistry of Pu (i.e., aqueous speciation, solubility, sorptivity, redox chemistry, and affinity for colloidal particles, both abiotic and microbially mediated) is particularly complicated. It is generally thought that due to its low solubility and high sorptivity, Pu migration in the environment occurs only when facilitated by transport on particulate matter (i.e., colloidal particles). Despite the recognized importance of colloid-facilitated transport of Pu, very little is known about the geochemical and biochemical mechanisms controlling Pu-colloid formation and association, particularly at femtomolar Pu concentrations observed at DOE sites.

  6. Biogeochemical processes controlling authigenic carbonate formation within the sediment column from the Okinawa Trough

    Science.gov (United States)

    Li, Jiwei; Peng, Xiaotong; Bai, Shijie; Chen, Zhiyan; Van Nostrand, Joy D.

    2018-02-01

    Authigenic carbonates are one type of conspicuous manifestation in seep environments that can provide long-term archives of past seepage activity and methane cycling in the oceans. Comprehensive investigations of the microbial community functional structure and their roles in the process of carbonate formation are, however, lacking. In this study, the mineralogical, geochemical, and microbial functional composition were examined in seep carbonate deposits collected from the west slope of the northern section of the Okinawa Trough (OT). The aim of this work was to explore the correspondence between the mineralogical phases and microbial metabolism during carbonate deposit formation. The mineralogical analyses indicated that authigenic carbonate minerals (aragonite, magnesium-rich calcite, dolomite, ankerite and siderite) and iron-bearing minerals (limonite, chlorite, and biotite) were present in these carbonate samples. The carbon and oxygen isotopic values of the carbonate samples varied between -51.1‰ to -4.7‰ and -4.8‰ to 3.7‰, respectively. A negative linear correlation between carbon and oxygen isotopic compositions was found, indicating a mixture of methane-derived diagenetic (low δ13C/high 18O) carbonates and detrital origin (high δ13C/low 18O) carbonates at the OT. GeoChip analyses suggested that various metabolic activities of microorganisms, including methanogenesis, methane oxidation, sulfite oxidation, sulfate reduction, and metal biotransformations, all occurred during the formation process. On the basis of these findings, the following model for the methane cycle and seep carbonate deposit formation in the sediment column at the OT is proposed: (1) in the upper oxidizing zone, aerobic methane oxidation was the main way of methane consumption; (2) in the sulfate methane transition zone, sulfate-dependent AOM (anaerobic oxidation of methane) consumes methane, and authigenic minerals such as aragonite, magnesium-calcite, and sulfide minerals

  7. Microbial Analysis of Australian Dry Lake Cores; Analogs For Biogeochemical Processes

    Science.gov (United States)

    Nguyen, A. V.; Baldridge, A. M.; Thomson, B. J.

    2014-12-01

    Lake Gilmore in Western Australia is an acidic ephemeral lake that is analogous to Martian geochemical processes represented by interbedded phyllosilicates and sulfates. These areas demonstrate remnants of a global-scale change on Mars during the late Noachian era from a neutral to alkaline pH to relatively lower pH in the Hesperian era that continues to persist today. The geochemistry of these areas could possibly be caused by small-scale changes such as microbial metabolism. Two approaches were used to determine the presence of microbes in the Australian dry lake cores: DNA analysis and lipid analysis. Detecting DNA or lipids in the cores will provide evidence of living or deceased organisms since they provide distinct markers for life. Basic DNA analysis consists of extraction, amplification through PCR, plasmid cloning, and DNA sequencing. Once the sequence of unknown DNA is known, an online program, BLAST, will be used to identify the microbes for further analysis. The lipid analysis approach consists of phospholipid fatty acid analysis that is done by Microbial ID, which will provide direct identification any microbes from the presence of lipids. Identified microbes are then compared to mineralogy results from the x-ray diffraction of the core samples to determine if the types of metabolic reactions are consistent with the variation in composition in these analog deposits. If so, it provides intriguing implications for the presence of life in similar Martian deposits.

  8. Biogeochemical processes in a clay formation in situ experiment: Part F - Reactive transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Tournassat, Christophe, E-mail: c.tournassat@brgm.fr [BRGM, French Geological Survey, Orleans (France); Alt-Epping, Peter [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland); Gaucher, Eric C. [BRGM, French Geological Survey, Orleans (France); Gimmi, Thomas [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland)] [Laboratory for Waste Management, Paul Scherrer Institut, Villigen (Switzerland); Leupin, Olivier X. [NAGRA, CH-5430 Wettingen (Switzerland); Wersin, Paul [Gruner Ltd., CH-4020 Basel (Switzerland)

    2011-06-15

    Highlights: > Reactive transport modelling was used to simulate simultaneously solute transport, thermodynamic reactions, ion exchange and biodegradation during an in-situ experiment in a clay-rock formation. > Opalinus clay formation has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. > Buffering capacity is mainly attributed to the carbonate system and to the reactivity of clay surfaces (cation exchange, pH buffering). - Abstract: Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C, dissolved inorganic C and SO{sub 4} concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of

  9. Evaluation of heavy metal pollution in bogs of Tomsk region on change in biogeochemical activity of ericaceous shrubs

    Science.gov (United States)

    Gaskova, L. P.

    2018-01-01

    The article discusses the change in biogeochemical activity of plant species in bogs under the influence of various types of human impact (roads, cities, drainage of mires, fire). It has been established that ericaceous shrubs, depending on the species, react with varying degrees of intensity to anthropogenic influences. The biogeochemical activity of species increased by 2.5 to 4.8 times in polluted sites.

  10. Investigating the Role of Biogeochemical Processes in the Northern High Latitudes on Global Climate Feedbacks Using an Efficient Scalable Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Atul K. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-09-14

    The overall objectives of this DOE funded project is to combine scientific and computational challenges in climate modeling by expanding our understanding of the biogeophysical-biogeochemical processes and their interactions in the northern high latitudes (NHLs) using an earth system modeling (ESM) approach, and by adopting an adaptive parallel runtime system in an ESM to achieve efficient and scalable climate simulations through improved load balancing algorithms.

  11. MOPS-1.0: towards a model for the regulation of the global oceanic nitrogen budget by marine biogeochemical processes

    Directory of Open Access Journals (Sweden)

    I. Kriest

    2015-09-01

    Analysis of the model misfit with respect to observed biogeochemical tracer distributions and fluxes suggests a particle flux profile close to the one suggested by Martin et al. (1987. Simulated pelagic denitrification best agrees with the lower values between 59 and 84 Tg N yr−1 recently estimated by other authors.

  12. Study of the seasonal cycle of the biogeochemical processes in the Ligurian Sea using a 1D interdisciplinary model

    NARCIS (Netherlands)

    Raick, C.; Delhez, E.J.M.; Soetaert, K.E.R.; Grégoire, M.

    2005-01-01

    A one-dimensional coupled physical–biogeochemical model has been built to study the pelagic food web of the Ligurian Sea (NW Mediterranean Sea). The physical model is the turbulent closure model (version 1D) developed at the GeoHydrodynamics and Environmental Laboratory (GHER) of the University of

  13. Emergy Evaluations of the Global Biogeochemical Cycles of Six Biologically Active Elements and Two Compounds

    Science.gov (United States)

    Estimates of the emergy carried by the flows of biologically active elements (BAE) and compounds are needed to accurately evaluate the near and far field effects of anthropogenic wastes. The transformities and specific emergies of these elements and of their different chemical sp...

  14. Process evaluation distributed system

    Science.gov (United States)

    Moffatt, Christopher L. (Inventor)

    2006-01-01

    The distributed system includes a database server, an administration module, a process evaluation module, and a data display module. The administration module is in communication with the database server for providing observation criteria information to the database server. The process evaluation module is in communication with the database server for obtaining the observation criteria information from the database server and collecting process data based on the observation criteria information. The process evaluation module utilizes a personal digital assistant (PDA). A data display module in communication with the database server, including a website for viewing collected process data in a desired metrics form, the data display module also for providing desired editing and modification of the collected process data. The connectivity established by the database server to the administration module, the process evaluation module, and the data display module, minimizes the requirement for manual input of the collected process data.

  15. Biogeochemical processes in a clay formation in situ experiment: Part G - Key interpretations and conclusions. Implications for repository safety

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, P., E-mail: paul.wersin@gruner.ch [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)] [Gruner Ltd., Gellertstrasse 55, 4020 Basel (Switzerland); Stroes-Gascoyne, S. [Atomic Energy of Canada Limited (AECL), Whiteshell Laboratories, Pinawa, Manitoba, Canada R0E 1L0 (Canada); Pearson, F.J. [Ground-Water Geochemistry, 5108 Trent Woods Drive, New Bern, NC 28562 (United States); Tournassat, C. [BRGM, French Geological Survey, 3 Avenue Claude Guillemin, B.P. 36009, 45060 Orleans Cedex 2 (France); Leupin, O.X.; Schwyn, B. [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)

    2011-06-15

    Highlights: > From the results of the PC experiment it can be inferred that degradation of organic compounds may induce. > Changes in pH and Eh which may affect the mobility of radionuclides eventually released from the waste. > Such changes will be limited in space and time because of large buffering capacity and low permeability of clay. > Nevertheless, amount of organic material in high level waste repositories should be kept small. > This will ensure achievement of background concentrations within short time period after repository closure. - Abstract: The in situ porewater chemistry (PC) experiment carried out in the Opalinus Clay formation at the Mont Terri Rock Laboratory, Switzerland for a period of 5 a allowed the identification and quantification of the biogeochemical processes resulting from and affected by an anaerobic microbial disturbance. The unintentional release of degradable organic compounds (mainly glycerol) induced microbially-mediated SO{sub 4} reduction in the borehole with concomitant significant geochemical changes in the circulating water and the adjacent porewater. These changes included a decrease in SO{sub 4}{sup 2-} concentration and pH and an increase in pCO{sub 2} and alkalinity relative to the non-affected formation water. However, the cation composition of the water and the mineralogy of the clay close to the borehole wall showed very little change. This is explained by (1) the strong chemical buffering processes in the clay and (2) by the diffusion-limited flux of solutes. With the aid of a reactive transport model with a minimum set of kinetic parameters for the hypothesised degradation reactions, the evolution of solutes in the borehole could be modelled adequately. The model was also applied to the prediction of restoration times upon depletion of the C source and results indicated restoration times to undisturbed conditions of about 15 a, but also highlighted the rather large uncertainties inherent in the geochemical model

  16. Simulating temporal variations of nitrogen losses in river networks with a dynamic transport model unravels the coupled effects of hydrological and biogeochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, Patrick J [ORNL; Alexander, Richard [U.S. Geological Survey; Bohlke, John [U.S. Geological Survey; Boyer, Elizabeth [Pennsylvania State University; Harvey, Judson [U.S. Geological Survey; Seitzinger, Sybil [Rutgers University; Tobias, Craig [University of North Carolina, Wilmington; Tonitto, Christina [Cornell University; Wollheim, Wilfred [University of New Hampshire

    2009-01-01

    The importance of lotic systems as sinks for nitrogen inputs is well recognized. A fraction of nitrogen in streamflow is removed to the atmosphere via denitrification with the remainder exported in streamflow as nitrogen loads. At the watershed scale, there is a keen interest in understanding the factors that control the fate of nitrogen throughout the stream channel network, with particular attention to the processes that deliver large nitrogen loads to sensitive coastal ecosystems. We use a dynamic stream transport model to assess biogeochemical (nitrate loadings, concentration, temperature) and hydrological (discharge, depth, velocity) effects on reach-scale denitrification and nitrate removal in the river networks of two watersheds having widely differing levels of nitrate enrichment but nearly identical discharges. Stream denitrification is estimated by regression as a nonlinear function of nitrate concentration, streamflow, and temperature, using more than 300 published measurements from a variety of US streams. These relations are used in the stream transport model to characterize nitrate dynamics related to denitrification at a monthly time scale in the stream reaches of the two watersheds. Results indicate that the nitrate removal efficiency of streams, as measured by the percentage of the stream nitrate flux removed via denitrification per unit length of channel, is appreciably reduced during months with high discharge and nitrate flux and increases during months of low-discharge and flux. Biogeochemical factors, including land use, nitrate inputs, and stream concentrations, are a major control on reach-scale denitrification, evidenced by the disproportionately lower nitrate removal efficiency in streams of the highly nitrate-enriched watershed as compared with that in similarly sized streams in the less nitrate-enriched watershed. Sensitivity analyses reveal that these important biogeochemical factors and physical hydrological factors contribute nearly

  17. Isoprenoid quinones resolve the stratification of microbial redox processes in a biogeochemical continuum from the photic zone to deep anoxic sediments of the Black Sea.

    Science.gov (United States)

    Becker, Kevin W; Elling, Felix J; Schröder, Jan M; Lipp, Julius S; Goldhammer, Tobias; Zabel, Matthias; Elvert, Marcus; Overmann, Jörg; Hinrichs, Kai-Uwe

    2018-03-09

    The stratified water column of the Black Sea serves as a model ecosystem for studying the interactions of microorganisms with major biogeochemical cycles. Here we provide detailed analysis of isoprenoid quinones to study microbial redox processes in the ocean. In a continuum from the photic zone through the chemocline into deep anoxic sediments of the southern Black Sea, diagnostic quinones and inorganic geochemical parameters indicate niche segregation between redox processes and corresponding shifts in microbial community composition. Quinones specific for oxygenic photosynthesis and aerobic respiration dominate oxic waters, while quinones associated with thaumarchaeal ammonia-oxidation and bacterial methanotrophy, respectively, dominate a narrow interval in suboxic waters. Quinone distributions indicate highest metabolic diversity within the anoxic zone, with anoxygenic photosynthesis being a major process in its photic layer. In the dark anoxic layer, quinone profiles indicate occurrence of bacterial sulfur and nitrogen cycling, archaeal methanogenesis, and archaeal methanotrophy. Multiple novel ubiquinone isomers, possibly originating from unidentified intra-aerobic anaerobes, occur in this zone. The respiration modes found in the anoxic zone continue into shallow subsurface sediments, but quinone abundances rapidly decrease within the upper 50 cm below sea floor, reflecting the transition to lower energy availability. In the deep subseafloor sediments, quinone distributions and geochemical profiles indicate archaeal methanogenesis/methanotrophy and potentially bacterial fermentative metabolisms. We observed that sedimentary quinone distributions track lithology, which supports prior hypotheses that deep biosphere community composition and metabolisms are determined by environmental conditions during sediment deposition. Importance Microorganisms play crucial roles in global biogeochemical cycles. Yet, we have only a fragmentary understanding of the diversity

  18. Final Report DE-SC0006997; PI Sharp; Coupled Biological and Micro-XAS/XRF Analysis of In Situ Uranium Biogeochemical Processes

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Jonathan O. [Colorado School of Mines, Golden, CO (United States)

    2016-03-30

    Project Overview: The impact of the original seed award was substantially increased by leveraging a postdoctoral fellowship (Marie Curie Postdoctoral Fellowship) and parallel funds from (A) synergistic project supported by NSF and (B) with DOE collaborators (PI’s Ranville and Williams) as well as no-cost extension that greatly increased the impact and publications associated with the project. In aligning with SBR priorities, the project’s focus was extended more broadly to explore coupled biogeochemical analysis of metal (im)mobilization processes beyond uranium with a foundation in integrating microbial ecology with geochemical analyses. This included investigations of arsenic and zinc during sulfate reducing conditions in addition to direct microbial reduction of metals. Complimentary work with NSF funding and collaborative DOE interactions further increased the project scope to investigate metal (im)mobilization coupled to biogeochemical perturbations in forest ecosystems with an emphasis on coupled carbon and metal biogeochemistry. In total, the project was highly impactful and resulted in 9 publications and directly supported salary/tuition for 3 graduate students at various stages of their academic careers as well as my promotion to Associate Professor. In going forward, findings provided inspiration for a two subsequent proposals with collaborators at Lawrence Berkeley Laboratory and others that are currently in review (as of March 2016).

  19. Coupled hydrological and biogeochemical processes controlling variability of nitrogen species in streamflow during autumn in an upland forest

    Science.gov (United States)

    Sebestyen, Stephen D.; Shanley, James B.; Boyer, Elizabeth W.; Kendall, Carol; Doctor, Daniel H.

    2014-01-01

    Autumn is a season of dynamic change in forest streams of the northeastern United States due to effects of leaf fall on both hydrology and biogeochemistry. Few studies have explored how interactions of biogeochemical transformations, various nitrogen sources, and catchment flow paths affect stream nitrogen variation during autumn. To provide more information on this critical period, we studied (1) the timing, duration, and magnitude of changes to stream nitrate, dissolved organic nitrogen (DON), and ammonium concentrations; (2) changes in nitrate sources and cycling; and (3) source areas of the landscape that most influence stream nitrogen. We collected samples at higher temporal resolution for a longer duration than typical studies of stream nitrogen during autumn. This sampling scheme encompassed the patterns and extremes that occurred during base flow and stormflow events of autumn. Base flow nitrate concentrations decreased by an order of magnitude from 5.4 to 0.7 µmol L−1 during the week when most leaves fell from deciduous trees. Changes to rates of biogeochemical transformations during autumn base flow explained the low nitrate concentrations; in-stream transformations retained up to 72% of the nitrate that entered a stream reach. A decrease of in-stream nitrification coupled with heterotrophic nitrate cycling were primary factors in the seasonal nitrate decline. The period of low nitrate concentrations ended with a storm event in which stream nitrate concentrations increased by 25-fold. In the ensuing weeks, peak stormflow nitrate concentrations progressively decreased over closely spaced, yet similarly sized events. Most stormflow nitrate originated from nitrification in near-stream areas with occasional, large inputs of unprocessed atmospheric nitrate, which has rarely been reported for nonsnowmelt events. A maximum input of 33% unprocessed atmospheric nitrate to the stream occurred during one event. Large inputs of unprocessed atmospheric nitrate

  20. Reappraisal of soil C storage processes. The controversy on structural diversity of humic substances as biogeochemical driver for soil C fluxes

    Science.gov (United States)

    Almendros, Gonzalo; Gonzalez-Vila, Francisco J.; Gonzalez-Perez, Jose Antonio; Knicker, Heike

    2016-04-01

    The functional relationships between the macromolecular structure of the humic substances (HS) and a series of biogeochemical processes related with the C sequestration performance in soils have been recently questioned. In this communication we collect recent data from a wide array of different ecosystems where the C storage in soils has been studied and explained as a possible cause-to-effect relationship or has been found significantly correlated (multivariate statistical models) with a series of structural characteristics of humic materials. The study of humic materials has methodological analytical limitations that are derived from its complex, chaotic and not completely understood structure, that reflects its manifold precursors as well as the local impact of environmental/depositional factors. In this work we attempt to design an exploratory, multiomic approach based on the information provided by the molecular characterization of the soil organic matter (SOM). Massive data harvesting was carried out of statistical variables, to infer biogeochemical proxies (spectroscopic, chromatographic, mass spectrometric quantitative descriptors). The experimental data were acquired from advanced instrumental methodologies, viz, analytical pyrolysis, compound-specific stable isotope analysis (CSIA), derivative infrared (FTIR) spectroscopy, solid-state C-13 and N-15 nuclear magnetic resonance (NMR) and mass spectrometry (MS) data after direct injection (thermoevaporation), previous pyrolysis, or ion averaging of specific m/z ranges from classical GC/MS chromatograms. In the transversal exploratory analysis of the multianalytical information, the data were coded for on-line processing in a stage in which there is no need for interpretation, in molecular or structural terms, of the quantitative data consisting of e.g., peak intensities, signal areas, chromatographic (GC) total abundances, etc. A series of forecasting chemometric approaches (aiming to express SOM

  1. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    Science.gov (United States)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we

  2. Evaluation of innovation processes

    Directory of Open Access Journals (Sweden)

    Jakub Tabas

    2012-01-01

    Full Text Available In present, innovations are spoken as an engine of the world economy because the innovations are transforming not only business entities but the whole industries. The innovations have become a necessity for business entities in order to survive on floating challenging markets. This way, innovations are driving force of companies’ performance. The problem which arises here is a question of measurement innovation’s effect on the financial performance of company or selection between two or more possible variants of innovation’s realization. Various authors which are focused on innovations processes are divided into two groups in their attitudes towards the question of influence of innovations on financial performance of companies. One group of the authors present the idea that any reliable measurement is not possible or efficient. The second group of authors present some methods theoretically applicable on this measurement but they base their approaches mostly on the methods of measurement of investments effectiveness or they suggest employment of indicators or ratios which wouldn’t be clearly connected with the outcome of innovation process. The aim of submitted article is to compare different approaches to evaluation of the innovation processes. The authors compare various approaches here and by use of analysis and synthesis, they determine their own method how to measure outcome of innovation process.

  3. Modelling biogeochemical processes in sediments from the north-western Adriatic Sea: response to enhanced particulate organic carbon fluxes

    Science.gov (United States)

    Brigolin, Daniele; Rabouille, Christophe; Bombled, Bruno; Colla, Silvia; Vizzini, Salvatrice; Pastres, Roberto; Pranovi, Fabio

    2018-03-01

    This work presents the result of a study carried out in the north-western Adriatic Sea, by combining two different types of biogeochemical models with field sampling efforts. A longline mussel farm was taken as a local source of perturbation to the natural particulate organic carbon (POC) downward flux. This flux was first quantified by means of a pelagic model of POC deposition coupled to sediment trap data, and its effects on sediment bioirrigation capacity and organic matter (OM) degradation pathways were investigated constraining an early diagenesis model by using original data collected in sediment porewater. The measurements were performed at stations located inside and outside the area affected by mussel farm deposition. Model-predicted POC fluxes showed marked spatial and temporal variability, which was mostly associated with the dynamics of the farming cycle. Sediment trap data at the two sampled stations (inside and outside of the mussel farm) showed average POC background flux of 20.0-24.2 mmol C m-2 d-1. The difference of organic carbon (OC) fluxes between the two stations was in agreement with model results, ranging between 3.3 and 14.2 mmol C m-2 d-1, and was primarily associated with mussel physiological conditions. Although restricted, these changes in POC fluxes induced visible effects on sediment biogeochemistry. Observed oxygen microprofiles presented a 50 % decrease in oxygen penetration depth (from 2.3 to 1.4 mm), accompanied by an increase in the O2 influx at the station below the mussel farm (19-31 versus 10-12 mmol O2 m-2 d-1) characterised by higher POC flux. Dissolved inorganic carbon (DIC) and NH4+ concentrations showed similar behaviour, with a more evident effect of bioirrigation underneath the farm. This was confirmed through constraining the early diagenesis model, of which calibration leads to an estimation of enhanced and shallower bioirrigation underneath the farm: bioirrigation rates of 40 yr-1 and irrigation depth of 15 cm were

  4. Impact of urban effluents on summer hypoxia in the highly turbid Gironde Estuary, applying a 3D model coupling hydrodynamics, sediment transport and biogeochemical processes

    Science.gov (United States)

    Lajaunie-Salla, Katixa; Wild-Allen, Karen; Sottolichio, Aldo; Thouvenin, Bénédicte; Litrico, Xavier; Abril, Gwenaël

    2017-10-01

    Estuaries are increasingly degraded due to coastal urban development and are prone to hypoxia problems. The macro-tidal Gironde Estuary is characterized by a highly concentrated turbidity maximum zone (TMZ). Field observations show that hypoxia occurs in summer in the TMZ at low river flow and a few days after the spring tide peak. In situ data highlight lower dissolved oxygen (DO) concentrations around the city of Bordeaux, located in the upper estuary. Interactions between multiple factors limit the understanding of the processes controlling the dynamics of hypoxia. A 3D biogeochemical model was developed, coupled with hydrodynamics and a sediment transport model, to assess the contribution of the TMZ and the impact of urban effluents through wastewater treatment plants (WWTPs) and sewage overflows (SOs) on hypoxia. Our model describes the transport of solutes and suspended material and the biogeochemical mechanisms impacting oxygen: primary production, degradation of all organic matter (i.e. including phytoplankton respiration, degradation of river and urban watershed matter), nitrification and gas exchange. The composition and the degradation rates of each variable were characterized by in situ measurements and experimental data from the study area. The DO model was validated against observations in Bordeaux City. The simulated DO concentrations show good agreement with field observations and satisfactorily reproduce the seasonal and neap-spring time scale variations around the city of Bordeaux. Simulations show a spatial and temporal correlation between the formation of summer hypoxia and the location of the TMZ, with minimum DO centered in the vicinity of Bordeaux. To understand the contribution of the urban watershed forcing, different simulations with the presence or absence of urban effluents were compared. Our results show that in summer, a reduction of POC from SO would increase the DO minimum in the vicinity of Bordeaux by 3% of saturation. Omitting

  5. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    Science.gov (United States)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  6. Incorporating nitrogen fixing cyanobacteria in the global biogeochemical model HAMOCC

    Science.gov (United States)

    Paulsen, Hanna; Ilyina, Tatiana; Six, Katharina

    2015-04-01

    Nitrogen fixation by marine diazotrophs plays a fundamental role in the oceanic nitrogen and carbon cycle as it provides a major source of 'new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Since most global biogeochemical models include nitrogen fixation only diagnostically, they are not able to capture its spatial pattern sufficiently. Here we present the incorporation of an explicit, dynamic representation of diazotrophic cyanobacteria and the corresponding nitrogen fixation in the global ocean biogeochemical model HAMOCC (Hamburg Ocean Carbon Cycle model), which is part of the Max Planck Institute for Meteorology Earth system model (MPI-ESM). The parameterization of the diazotrophic growth is thereby based on available knowledge about the cyanobacterium Trichodesmium spp., which is considered as the most significant pelagic nitrogen fixer. Evaluation against observations shows that the model successfully reproduces the main spatial distribution of cyanobacteria and nitrogen fixation, covering large parts of the tropical and subtropical oceans. Besides the role of cyanobacteria in marine biogeochemical cycles, their capacity to form extensive surface blooms induces a number of bio-physical feedback mechanisms in the Earth system. The processes driving these interactions, which are related to the alteration of heat absorption, surface albedo and momentum input by wind, are incorporated in the biogeochemical and physical model of the MPI-ESM in order to investigate their impacts on a global scale. First preliminary results will be shown.

  7. Modelling biogeochemical processes in sediments from the north-western Adriatic Sea: response to enhanced particulate organic carbon fluxes

    Directory of Open Access Journals (Sweden)

    D. Brigolin

    2018-03-01

    Full Text Available This work presents the result of a study carried out in the north-western Adriatic Sea, by combining two different types of biogeochemical models with field sampling efforts. A longline mussel farm was taken as a local source of perturbation to the natural particulate organic carbon (POC downward flux. This flux was first quantified by means of a pelagic model of POC deposition coupled to sediment trap data, and its effects on sediment bioirrigation capacity and organic matter (OM degradation pathways were investigated constraining an early diagenesis model by using original data collected in sediment porewater. The measurements were performed at stations located inside and outside the area affected by mussel farm deposition. Model-predicted POC fluxes showed marked spatial and temporal variability, which was mostly associated with the dynamics of the farming cycle. Sediment trap data at the two sampled stations (inside and outside of the mussel farm showed average POC background flux of 20.0–24.2 mmol C m−2 d−1. The difference of organic carbon (OC fluxes between the two stations was in agreement with model results, ranging between 3.3 and 14.2 mmol C m−2 d−1, and was primarily associated with mussel physiological conditions. Although restricted, these changes in POC fluxes induced visible effects on sediment biogeochemistry. Observed oxygen microprofiles presented a 50 % decrease in oxygen penetration depth (from 2.3 to 1.4 mm, accompanied by an increase in the O2 influx at the station below the mussel farm (19–31 versus 10–12 mmol O2 m−2 d−1 characterised by higher POC flux. Dissolved inorganic carbon (DIC and NH4+ concentrations showed similar behaviour, with a more evident effect of bioirrigation underneath the farm. This was confirmed through constraining the early diagenesis model, of which calibration leads to an estimation of enhanced and shallower bioirrigation underneath the farm

  8. Linking the Modern and Recent Record of Cabo Frio Upwelling with Local Climate and Biogeochemical Processes in Hypersaline Coastal Lagoons, Região dos Lagos, Rio de Janeiro, Brazil

    Science.gov (United States)

    McKenzie, J. A.; Nascimento, G. S.; Albuquerque, A. L.; Belem, A. L.; Carreira, R.; Eglinton, T. I.; Vasconcelos, C.

    2015-12-01

    A unique marine and lagoonal system along the coast east of Rio de Janeiro is being investigated to understand the impact of climatic variability on the South Atlantic carbon cycle and biomineralisation processes involved in carbonate precipitation in the hypersaline coastal lagoons. The region is dominated by a semi-arid microclimate attributed to the local coastal upwelling phenomenon near Cabo Frio. The intensity of the upwelling affects the hydrology of the annual water and biogeochemical cycles in the lagoons, as well as biogeochemical signals of environmental change recorded in both onshore and offshore sediments. Preliminary results of δ18O and δD values of water samples collected monthly in Lagoa Vermelha and Brejo do Espinho from 2011 to 2014 show lower values for waters corresponding to the wet season, reflecting increased input of meteoric water. The higher values for waters collected during the dry season reflect the greater amount of evaporation with increased seasonal aridity. Radiocarbon dating of Holocene marine and lagoonal cores indicates that Mg-carbonate precipitation in the lagoons is associated with high evaporation. Modern field observations for the last 3 years suggest that the amount of carbonate precipitation is correlated with evaporitic conditions associated with the upwelling phenomenon. A calibration study of hydrogen isotopic fractionation in the modern lagoons is underway to define a relationship between δDlipid of suspended particles and δDwater of associated water. This isotopic relationship will be applied to material obtained in cores from the lagoons. Offshore cores will be studied using well-tested paleotemperature proxies to evaluate the intensity of the upwelling during the Holocene. In summary, linking the coastal upwelling with the lagoonal hydrology has the potential to furnish important insights about the relationship between the local climate and paleoceanographic circulation associated with the regional carbon cycle.

  9. Spatial Patterns in Biogeochemical Processes During Peak Growing Season in Oiled and Unoiled Louisiana Salt Marshes: A Multi-Year Analysis

    Science.gov (United States)

    Chelsky, A.; Marton, J. M.; Bernhard, A. E.; Giblin, A. E.; Setta, S. P.; Hill, T. D.; Roberts, B. J.

    2016-02-01

    Louisiana salt marshes are important sites for carbon and nitrogen cycling because they can mitigate fluxes of nutrients and carbon to the Gulf of Mexico where a large hypoxic zone develops annually. The aim of this study was to investigate spatial and temporal patterns of biogeochemical processes in Louisiana coastal wetlands during peak growing season, and to investigate whether the Deepwater Horizon oil spill resulted in persistent changes to these rates. We measured nitrification potential and sediment characteristics at two pairs of oiled/unoiled marshes in three regions across the Louisiana coast (Terrebonne and east and west Barataria Bay) in July from 2012 to 2015, with plots along a gradient from the salt marsh edge to the interior. Rates of nitrification potential across the coast (overall mean of 901 ± 115 nmol gdw-1 d-1 from 2012-2014) were high compared to other published rates for salt marshes but displayed high variability at the plot level (4 orders of magnitude). Within each region interannual means varied by factors of 2-5. Nitrification potential did not differ with oiling history, but did display consistent spatial patterns within each region that corresponded to changes in relative elevation and inundation, which influence patterns of soil properties and microbial communities. In 2015, we also measured greenhouse gas (CO2, N2O and CH4) production and denitrification enzyme activity rates in addition to nitrification potential across the region to investigate spatial relationships between these processes.

  10. Wastewater engineering applications of BioIronTech process based on the biogeochemical cycle of iron bioreduction and (biooxidation

    Directory of Open Access Journals (Sweden)

    Volodymyr Ivanov

    2014-12-01

    Full Text Available Bioreduction of Fe(III and biooxidation of Fe(II can be used in wastewater engineering as an innovative biotechnology BioIronTech, which is protected for commercial applications by US patent 7393452 and Singapore patent 106658 “Compositions and methods for the treatment of wastewater and other waste”. The BioIronTech process comprises the following steps: 1 anoxic bacterial reduction of Fe(III, for example in iron ore powder; 2 surface renovation of iron ore particles due to the formation of dissolved Fe2+ ions; 3 precipitation of insoluble ferrous salts of inorganic anions (phosphate or organic anions (phenols and organic acids; 4 (biooxidation of ferrous compunds with the formation of negatively, positively, or neutrally charged ferric hydroxides, which are good adsorbents of many pollutants; 5 disposal or thermal regeration of ferric (hydroxide. Different organic substances can be used as electron donors in bioreduction of Fe(III. Ferrous ions and fresh ferrous or ferric hydroxides that are produced after iron bioreduction and (biooxidation adsorb and precipitate diferent negatively charged molecules, for example chlorinated compounds of sucralose production wastewater or other halogenated organics, as well as phenols, organic acids, phosphate, and sulphide. Reject water (return liquor from the stage of sewage sludge dewatering on municipal wastewater treatment plants represents from 10 to 50% of phosphorus load when being recycled to the aeration tank. BioIronTech process can remove/recover more than 90% of phosphorous from this reject water thus replacing the conventional process of phosphate precipitation by ferric/ferrous salts, which are 20–100 times more expensive than iron ore, which is used in BioIronTech process. BioIronTech process can remarkably improve the aerobic and anaerobic treatments of municipal and industrial wastewaters, especially anaerobic digestion of lipid- and sulphate-containing food-processing wastewater. It

  11. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model

    Science.gov (United States)

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-01

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model—GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  12. Mapping pan-Arctic CH4 emissions using an adjoint method by integrating process-based wetland and lake biogeochemical models and atmospheric CH4 concentrations

    Science.gov (United States)

    Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E. J.; Sweeney, C.; Turner, A. J.

    2015-12-01

    Understanding CH4 emissions from wetlands and lakes are critical for the estimation of Arctic carbon balance under fast warming climatic conditions. To date, our knowledge about these two CH4 sources is almost solely built on the upscaling of discontinuous measurements in limited areas to the whole region. Many studies indicated that, the controls of CH4 emissions from wetlands and lakes including soil moisture, lake morphology and substrate content and quality are notoriously heterogeneous, thus the accuracy of those simple estimates could be questionable. Here we apply a high spatial resolution atmospheric inverse model (nested-grid GEOS-Chem Adjoint) over the Arctic by integrating SCIAMACHY and NOAA/ESRL CH4 measurements to constrain the CH4 emissions estimated with process-based wetland and lake biogeochemical models. Our modeling experiments using different wetland CH4 emission schemes and satellite and surface measurements show that the total amount of CH4 emitted from the Arctic wetlands is well constrained, but the spatial distribution of CH4 emissions is sensitive to priors. For CH4 emissions from lakes, our high-resolution inversion shows that the models overestimate CH4 emissions in Alaskan costal lowlands and East Siberian lowlands. Our study also indicates that the precision and coverage of measurements need to be improved to achieve more accurate high-resolution estimates.

  13. An approach to quantify sources, seasonal change, and biogeochemical processes affecting metal loading in streams: Facilitating decisions for remediation of mine drainage

    Science.gov (United States)

    Kimball, B.A.; Runkel, R.L.; Walton-Day, K.

    2010-01-01

    Historical mining has left complex problems in catchments throughout the world. Land managers are faced with making cost-effective plans to remediate mine influences. Remediation plans are facilitated by spatial mass-loading profiles that indicate the locations of metal mass-loading, seasonal changes, and the extent of biogeochemical processes. Field-scale experiments during both low- and high-flow conditions and time-series data over diel cycles illustrate how this can be accomplished. A low-flow experiment provided spatially detailed loading profiles to indicate where loading occurred. For example, SO42 - was principally derived from sources upstream from the study reach, but three principal locations also were important for SO42 - loading within the reach. During high-flow conditions, Lagrangian sampling provided data to interpret seasonal changes and indicated locations where snowmelt runoff flushed metals to the stream. Comparison of metal concentrations between the low- and high-flow experiments indicated substantial increases in metal loading at high flow, but little change in metal concentrations, showing that toxicity at the most downstream sampling site was not substantially greater during snowmelt runoff. During high-flow conditions, a detailed temporal sampling at fixed sites indicated that Zn concentration more than doubled during the diel cycle. Monitoring programs must account for diel variation to provide meaningful results. Mass-loading studies during different flow conditions and detailed time-series over diel cycles provide useful scientific support for stream management decisions.

  14. Disturbance decouples biogeochemical cycles across forests of the southeastern US

    Science.gov (United States)

    Ashley D. Keiser; Jennifer D. Knoepp; Mark A. Bradford

    2016-01-01

    Biogeochemical cycles are inherently linked through the stoichiometric demands of the organisms that cycle the elements. Landscape disturbance can alter element availability and thus the rates of biogeochemical cycling. Nitrification is a fundamental biogeochemical process positively related to plant productivity and nitrogen loss from soils to aquatic systems, and the...

  15. Modeling biogeochemical processes in sediments from the Rhône River prodelta area (NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    L. Pastor

    2011-05-01

    Full Text Available In situ oxygen microprofiles, sediment organic carbon content, and pore-water concentrations of nitrate, ammonium, iron, manganese, and sulfides obtained in sediments from the Rhône River prodelta and its adjacent continental shelf were used to constrain a numerical diagenetic model. Results showed that (1 the organic matter from the Rhône River is composed of a fraction of fresh material associated to high first-order degradation rate constants (11–33 yr−1; (2 the burial efficiency (burial/input ratio in the Rhône prodelta (within 3 km of the river outlet can be up to 80 %, and decreases to ~20 % on the adjacent continental shelf 10–15 km further offshore; (3 there is a large contribution of anoxic processes to total mineralization in sediments near the river mouth, certainly due to large inputs of fresh organic material combined with high sedimentation rates; (4 diagenetic by-products originally produced during anoxic organic matter mineralization are almost entirely precipitated (>97 % and buried in the sediment, which leads to (5 a low contribution of the re-oxidation of reduced products to total oxygen consumption. Consequently, total carbon mineralization rates as based on oxygen consumption rates and using Redfield stoichiometry can be largely underestimated in such River-dominated Ocean Margins (RiOMar environments.

  16. Genome-Enabled Modeling of Biogeochemical Processes Predicts Metabolic Dependencies that Connect the Relative Fitness of Microbial Functional Guilds

    Science.gov (United States)

    Brodie, E.; King, E.; Molins, S.; Karaoz, U.; Steefel, C. I.; Banfield, J. F.; Beller, H. R.; Anantharaman, K.; Ligocki, T. J.; Trebotich, D.

    2015-12-01

    Pore-scale processes mediated by microorganisms underlie a range of critical ecosystem services, regulating carbon stability, nutrient flux, and the purification of water. Advances in cultivation-independent approaches now provide us with the ability to reconstruct thousands of genomes from microbial populations from which functional roles may be assigned. With this capability to reveal microbial metabolic potential, the next step is to put these microbes back where they belong to interact with their natural environment, i.e. the pore scale. At this scale, microorganisms communicate, cooperate and compete across their fitness landscapes with communities emerging that feedback on the physical and chemical properties of their environment, ultimately altering the fitness landscape and selecting for new microbial communities with new properties and so on. We have developed a trait-based model of microbial activity that simulates coupled functional guilds that are parameterized with unique combinations of traits that govern fitness under dynamic conditions. Using a reactive transport framework, we simulate the thermodynamics of coupled electron donor-acceptor reactions to predict energy available for cellular maintenance, respiration, biomass development, and enzyme production. From metagenomics, we directly estimate some trait values related to growth and identify the linkage of key traits associated with respiration and fermentation, macromolecule depolymerizing enzymes, and other key functions such as nitrogen fixation. Our simulations were carried out to explore abiotic controls on community emergence such as seasonally fluctuating water table regimes across floodplain organic matter hotspots. Simulations and metagenomic/metatranscriptomic observations highlighted the many dependencies connecting the relative fitness of functional guilds and the importance of chemolithoautotrophic lifestyles. Using an X-Ray microCT-derived soil microaggregate physical model combined

  17. DayCent-Chem Simulations of Ecological and Biogeochemical Processes of Eight Mountain Ecosystems in the United States

    Science.gov (United States)

    Hartman, Melannie D.; Baron, Jill S.; Clow, David W.; Creed, Irena F.; Driscoll, Charles T.; Ewing, Holly A.; Haines, Bruce D.; Knoepp, Jennifer; Lajtha, Kate; Ojima, Dennis S.; Parton, William J.; Renfro, Jim; Robinson, R. Bruce; Van Miegroet, Helga; Weathers, Kathleen C.; Williams, Mark W.

    2009-01-01

    deposition as a result of dry and fog inputs. The uncertainties related to weathering reactions, deposition, soil cation exchange capacity, and groundwater contributions influenced how well the simulated acid neutralizing capacity (ANC) and pH estimates compared to observed values. Daily discharge was well represented by the model for most sites. The chapters of this report describe the parameterization for each site and summarize model results for ecosystem variables, stream discharge, and stream chemistry. This intersite comparison exercise provided insight about important and possibly not well understood processes.

  18. Digging Deeper: Development and evaluation of an untargeted metabolomics approach to identify biogeochemical hotspots with depth and by vegetation type in Arctic tundra soils

    Science.gov (United States)

    Ladd, M.; Wullschleger, S.; Hettich, R.

    2017-12-01

    Elucidating the chemical composition of low molecular weight (LMW) dissolved organic matter (DOM), and monitoring how this bioavailable pool varies over space and time, is critical to understanding the controlling mechanisms that underlie carbon release and storage in Arctic systems. Due to analytical challenges however, relatively little is known about how this complex mixture of small molecules varies with soil depth or how it may be influenced by vegetation. In this study, we evaluated an untargeted metabolomics approach for the characterization of LMW DOM in water extracts, and applied this approach in soil cores (10-cm diam., 30-cm depth), obtained near Barrow, Alaska (71° 16' N) from the organic-rich active layer where the aboveground vegetation was primarily either Carex aquatilis or Eriophorum angustifolium, two species commonly found in tundra systems. We hypothesized that by using a discovery-based approach, spatial patterns of chemical diversity could be identified, enabling the detection of biogeochemical hotspots across scales. LMW DOM profiles from triplicate water extracts were characterized using dual-separation, nano-liquid chromatography (LC) coupled to an electrospray Orbitrap mass spectrometer in positive and negative ion modes. Both LC separations—reversed-phase and hydrophilic interaction chromatography—were achieved with gradient elutions in 15 minutes. Using a precursor and fragment mass measurement accuracy of nutrients) impact carbon fluxes in the Arctic at the landscape-scale.

  19. Biogeochemical speciation of Fe in ocean water

    NARCIS (Netherlands)

    Hiemstra, T.; Riemsdijk, van W.H.

    2006-01-01

    The biogeochemical speciation of Fe in seawater has been evaluated using the consistent Non-Ideal Competitive Adsorption model (NICA¿Donnan model). Two types of data sets were used, i.e. Fe-hydroxide solubility data and competitive ligand equilibration/cathodic stripping voltammetry (CLE/CSV) Fe

  20. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems

    Science.gov (United States)

    Levia, Delphis F.; Frost, Ethan E.

    2003-04-01

    Stemflow is a spatially localized point input of precipitation and solutes at the plant stem and is of hydrological and ecological significance in forested and agricultural ecosystems. The purpose of this review is to: (1) critically evaluate our current understanding of stemflow; (2) identify gaps in our present knowledge of stemflow; and (3) stimulate further research in areas where present knowledge is weak. The review begins by analyzing stemflow drainage and nutrient inputs under diverse vegetal cover. Stemflow inputs are then examined as a function of meteorological conditions, seasonality, interspecific and intraspecific differences among and within species, canopy structure, spatiality, and atmospheric pollutants in urban environments. Stemflow modeling studies are also reviewed and evaluated. Stemflow yield and chemistry are the result of the interaction of the many complex variables listed. By analyzing each separately, it may be possible to isolate their individual affects on stemflow production and chemistry. A comprehensive understanding of each influencing factor would enable the accurate modeling of stemflow water and nutrient inputs into agricultural and forest soils which may result in the optimization of timber and crop harvests. Some areas where present knowledge is particularly weak are: (1) stemflow production and nutrient transfers in northern boreal forests (aspen, birch, conifers) and desert cacti; (2) chemical enrichment of stemflow from live trees charred by forest fires; (3) stemflow yield and nutrient inputs during the winter season; (4) intraspecific variation in stemflow production and chemistry; (5) stemflow chemistry from standing dead trees; (6) influence of canopy structure on stemflow chemistry; (7) understory stemflow generation and nutrient transfer; and (8) stemflow enrichment associated with insect infestations.

  1. Biogeochemical aspects of aquifer thermal energy storage

    NARCIS (Netherlands)

    Brons, H.J.

    1992-01-01

    During the process of aquifer thermal energy storage the in situ temperature of the groundwater- sediment system may fluctuate significantly. As a result the groundwater characteristics can be considerably affected by a variety of chemical, biogeochemical and microbiological

  2. Characterization of the Oriskany and Berea Sandstones: Evaluating Biogeochemical Reactions of Potential Sandstone–Hydraulic Fracturing Fluid Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Harris, Aubrey [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2016-07-07

    The Marcellus shale, located in the mid-Atlantic Appalachian Basin, has been identified as a source for natural gas and targeted for hydraulic fracturing recovery methods. Hydraulic fracturing is a technique used by the oil and gas industry to access petroleum reserves in geologic formations that cannot be accessed with conventional drilling techniques (Capo et al., 2014). This unconventional technique fractures rock formations that have low permeability by pumping pressurized hydraulic fracturing fluids into the subsurface. Although the major components of hydraulic fracturing fluid are water and sand, chemicals, such as recalcitrant biocides and polyacrylamide, are also used (Frac Focus, 2015). There is domestic concern that the chemicals could reach groundwater or surface water during transport, storage, or the fracturing process (Chapman et al., 2012). In the event of a surface spill, understanding the natural attenuation of the chemicals in hydraulic fracturing fluid, as well as the physical and chemical properties of the aquifers surrounding the spill site, will help mitigate potential dangers to drinking water. However, reports on the degradation pathways of these chemicals are limited in existing literature. The Appalachian Basin Marcellus shale and its surrounding sandstones host diverse mineralogical suites. During the hydraulic fracturing process, the hydraulic fracturing fluids come into contact with variable mineral compositions. The reactions between the fracturing fluid chemicals and the minerals are very diverse. This report: 1) describes common minerals (e.g. quartz, clay, pyrite, and carbonates) present in the Marcellus shale, as well as the Oriskany and Berea sandstones, which are located stratigraphically below and above the Marcellus shale; 2) summarizes the existing literature of the degradation pathways for common hydraulic fracturing fluid chemicals [polyacrylamide, ethylene glycol, poly(diallyldimethylammonium chloride), glutaraldehyde

  3. Exergy Evaluation of Desalination Processes

    Directory of Open Access Journals (Sweden)

    Veera Gnaneswar Gude

    2018-06-01

    Full Text Available Desalination of sea or brackish water sources to provide clean water supplies has now become a feasible option around the world. Escalating global populations have caused the surge of desalination applications. Desalination processes are energy intensive which results in a significant energy portfolio and associated environmental pollution for many communities. Both electrical and heat energy required for desalination processes have been reduced significantly over the recent years. However, the energy demands are still high and are expected to grow sharply with increasing population. Desalination technologies utilize various forms of energy to produce freshwater. While the process efficiency can be reported by the first law of thermodynamic analysis, this is not a true measure of the process performance as it does not account for all losses of energy. Accordingly, the second law of thermodynamics has been more useful to evaluate the performance of desalination systems. The second law of thermodynamics (exergy analysis accounts for the available forms of energy in the process streams and energy sources with a reference environment and identifies the major losses of exergy destruction. This aids in developing efficient desalination processes by eliminating the hidden losses. This paper elaborates on exergy analysis of desalination processes to evaluate the thermodynamic efficiency of major components and process streams and identifies suitable operating conditions to minimize exergy destruction. Well-established MSF, MED, MED-TVC, RO, solar distillation, and membrane distillation technologies were discussed with case studies to illustrate the exergy performances.

  4. What sea-ice biogeochemical modellers need from observers

    OpenAIRE

    Steiner, Nadja; Deal, Clara; Lannuzel, Delphine; Lavoie, Diane; Massonnet, François; Miller, Lisa A.; Moreau, Sebastien; Popova, Ekaterina; Stefels, Jacqueline; Tedesco, Letizia

    2016-01-01

    Abstract Numerical models can be a powerful tool helping to understand the role biogeochemical processes play in local and global systems and how this role may be altered in a changing climate. With respect to sea-ice biogeochemical models, our knowledge is severely limited by our poor confidence in numerical model parameterisations representing those processes. Improving model parameterisations requires communication between observers and modellers to guide model development and improve the ...

  5. Biogeochemical processes in an urban, restored wetland of San Francisco Bay, California, 2007-2009; methods and data for plant, sediment and water parameters

    Science.gov (United States)

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Agee, Jennifer L.; Kieu, Le H.; Kakouros, Evangelos; Erikson, Li H.; Ward, Kristen

    2010-01-01

    The restoration of 18 acres of historic tidal marsh at Crissy Field has had great success in terms of public outreach and visibility, but less success in terms of revegetated marsh sustainability. Native cordgrass (Spartina foliosa) has experienced dieback and has failed to recolonize following extended flooding events during unintended periodic closures of its inlet channel, which inhibits daily tidal flushing. We examined the biogeochemical impacts of these impoundment events on plant physiology and on sulfur and mercury chemistry to help the National Park Service land managers determine the relative influence of these inlet closures on marsh function. In this comparative study, we examined key pools of sulfur, mercury, and carbon compounds both during and between closure events. Further, we estimated the net hydrodynamic flux of methylmercury and total mercury to and from the marsh during a 24-hour diurnal cycle. This report documents the methods used and the data generated during the study.

  6. Using Halogens (Cl, Br, F, I) and Stable Isotopes of Water (δ18O, δ2H) to Trace Hydrological and Biogeochemical Processes in Prairie Wetlands

    Science.gov (United States)

    Levy, Z. F.; Lu, Z.; Mills, C. T.; Goldhaber, M. B.; Rosenberry, D. O.; Mushet, D.; Siegel, D. I.; Fiorentino, A. J., II; Gade, M.; Spradlin, J.

    2014-12-01

    Prairie pothole wetlands are ubiquitous features of the Great Plains of North America, and important habitat for amphibians and migratory birds. The salinity of proximal wetlands varies highly due to groundwater-glacial till interactions, which influence wetland biota and associated ecosystem functions. Here we use halogens and stable isotopes of water to fingerprint hydrological and biogeochemical controls on salt cycling in a prairie wetland complex. We surveyed surface, well, and pore waters from a groundwater recharge wetland (T8) and more saline closed (P1) and open (P8) basin discharge wetlands in the Cottonwood Lake Study Area (ND) in August/October 2013 and May 2014. Halogen concentrations varied over a broad range throughout the study area (Cl = 2.2 to 170 mg/L, Br = 13 to 2000 μg/L, F = evaporation-enriched pond water (δ18O = -9.5 to -2.71 ‰) mixes with shallow groundwater in the top 0.6 m of fringing wetland soils and 1.2 m of the substrate in the center of P1. Our results suggest endogenous sources for Br and I within the prairie landscape that may be controlled by biological mechanisms or weathering of shale from glacial till.

  7. 15 CFR 286.7 - Evaluation process.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Evaluation process. 286.7 Section 286... VOLUNTARY CONFORMITY ASSESSMENT SYSTEM EVALUATION (NVCASE) PROGRAM § 286.7 Evaluation process. (a) Each applicant requesting to be evaluated under NVCASE is expected to initiate the process and assume designated...

  8. 76 FR 30696 - Technology Evaluation Process

    Science.gov (United States)

    2011-05-26

    ...-NOA-0039] Technology Evaluation Process AGENCY: Office of Energy Efficiency and Renewable Energy... (DOE) seeks comments and information related to a commercial buildings technology evaluation process... evaluation efforts. The goal of creating this standard process is to evaluate energy-saving technologies in a...

  9. Mercury behaviour and C, N, and P biogeochemical cycles during ecological restoration processes of old mining sites in French Guiana.

    Science.gov (United States)

    Couic, Ewan; Grimaldi, Michel; Alphonse, Vanessa; Balland-Bolou-Bi, Clarisse; Livet, Alexandre; Giusti-Miller, Stéphanie; Sarrazin, Max; Bousserrhine, Noureddine

    2018-04-25

    Several decades of gold mining extraction activities in the Amazonian rainforest have caused deforestation and pollution. While ecological rehabilitation is essential for restoring biodiversity and decreasing erosion on deforested lands, few studies note the behaviour or toxicity of trace elements during the rehabilitation process. Our original study focused on the potential use of microbial activity and Hg speciation and compared them with As, Cu, Zn and Cr speciation in assessing the chemical and biological quality of ecological restoration efforts. We sampled two sites in French Guyana 17 years after rehabilitation efforts began. The former site was actively regenerated (R) with the leguminous species Clitoria racemosa and Acacia mangium, and the second site was passively regenerated with spontaneous vegetation (Sv). We also sampled soil from a control site without a history of gold mining (F). We performed microcosm soil experiments for 30 days, where trace element speciation and enzyme activities (i.e., FDA, dehydrogenase, β-glucosidase, urease, alkaline and acid phosphatase) were estimated to characterise the behaviour of trace elements and the soil microbial activity. As bioindicators, the use of soil microbial carbon biomass and soil enzyme activities related to the carbon and phosphorus cycles seems to be relevant for assessing soil quality in rehabilitated and regenerated old mining sites. Our results showed that restoration with leguminous species had a positive effect on soil chemical quality and on soil microbial bioindicators, with activities that tended toward natural non-degraded soil (F). Active restoration processes also had a positive effect on Hg speciation by reducing its mobility. While in Sv we found more exchangeable and soluble mercury, in regenerated sites, Hg was mostly bound to organic matter. These results also suggested that enzyme activities and mercury cycles are sensitive to land restoration and must be considered when evaluating

  10. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    Directory of Open Access Journals (Sweden)

    M. Chen

    2011-09-01

    Full Text Available Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM, should provide a more adequate quantification of carbon dynamics of terrestrial ecosystems. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS Enhanced Vegetation Index (EVI, Land Surface Water Index (LSWI and carbon flux data of AmeriFlux to conduct such a study. We first modify the gross primary production (GPP modeling in TEM by incorporating EVI and LSWI to account for the effects of the changes of canopy photosynthetic capacity, phenology and water stress. Second, we parameterize and verify the new version of TEM with eddy flux data. We then apply the model to the conterminous United States over the period 2000–2005 at a 0.05° × 0.05° spatial resolution. We find that the new version of TEM made improvement over the previous version and generally captured the expected temporal and spatial patterns of regional carbon dynamics. We estimate that regional GPP is between 7.02 and 7.78 Pg C yr−1 and net primary production (NPP ranges from 3.81 to 4.38 Pg C yr−1 and net ecosystem production (NEP varies within 0.08–0.73 Pg C yr−1 over the period 2000–2005 for the conterminous United States. The uncertainty due to parameterization is 0.34, 0.65 and 0.18 Pg C yr−1 for the regional estimates of GPP, NPP and NEP, respectively. The effects of extreme climate and disturbances such as severe drought in 2002 and destructive Hurricane Katrina in 2005 were captured by the model. Our study provides a new independent and more adequate measure of carbon fluxes for the conterminous United States, which will benefit studies of carbon-climate feedback and facilitate policy-making of carbon management and climate.

  11. Investigation of Great Basin big sagebrush and black greasewood as biogeochemical indicators of uranium mineralization. Final report. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Diebold, F.E.; McGrath, S.

    1982-11-01

    The effects of varying phosphate concentrations in natural aqueous systems upon the uptake of uranium by big sagebrush (Artemesia tridentata subsp. tridentata) and black greasewood (Sarcobatus vermiculatus (Hook) Torr.) were investigated. Two separate growth experiments with five drip-flow hyroponic units were used and plant seedlings were grown for 60 days in solutions of varying phosphate and uranium concentrations. Successful growth experiments were obtained only for big sagebrush; black greasewood did not sustain sufficient growth. The phosphate concentration of the water did affect the uptake of uranium by the big sagebrush, and this effect is most pronounced in the region of higher concentrations of uranium in the water. The ratio of the concentration of uranium in the plant to that in the water was observed to decrease with increasing uranium concentration in solution. This is indicative of an absorption barrier in the plants. The field data shows that big sagebrush responds to uranium concentrations in the soil water and not the groundwater. The manifestation of these results is that the use of big sagebrush as a biogeochemical indicator of uranium is not recommended. Since the concentration of phosphate must also be knwon in the water supplying the uranium to the plant, one should analyze this natural aqueous phase as a hydrochemical indicator rather than the big sagebrush

  12. Engineering Pseudomonas stutzeri as a biogeochemical biosensor

    Science.gov (United States)

    Boynton, L.; Cheng, H. Y.; Del Valle, I.; Masiello, C. A.; Silberg, J. J.

    2016-12-01

    Biogeochemical cycles are being drastically altered as a result of anthropogenic activities, such as the burning of fossil fuels and the industrial production of ammonia. We know microbes play a major part in these cycles, but the extent of their biogeochemical roles remains largely uncharacterized due to inadequacies with culturing and measurement. While metagenomics and other -omics methods offer ways to reconstruct microbial communities, these approaches can only give an indication of the functional roles of microbes in a community. These -omics approaches are rapidly being expanded to the point of outpacing our knowledge of functional genes, which highlights an inherent need for analytical methods that non-invasively monitor Earth's processes in real time. Here we aim to exploit synthetic biology methods in order to engineer a ubiquitous denitrifying microbe, Pseudomonas stutzeri that can act as a biosensor in soil and marine environments. By using an easily cultivated microbe that is also common in many environments, we hope to develop a tool that allows us to zoom in on specific aspects of the nitrogen cycle. In order to monitor processes occurring at the genetic level in environments that cannot be resolved with fluorescence-based methods, such as soils, we have developed a system that instead relies on gas production by engineered microbial biosensors. P. stutzeri has been successfully engineered to release a gas, methyl bromide, which can continuously and non-invasively be measured by GC-MS. Similar to using Green Fluorescent Protein, GFP, in the biological sciences, the gene controlling gas production can be linked to those involved in denitrification, thereby creating a quantifiable gas signal that is correlated with microbial activity in the soil. Synthetically engineered microbial biosensors could reveal key aspects of metabolism in soil systems and offer a tool for characterizing the scope and degree of microbial impact on major biogeochemical cycles.

  13. Evaluation of hydrologic equilibrium in a mountainous watershed: incorporating forest canopy spatial adjustment to soil biogeochemical processes

    Science.gov (United States)

    Mackay, D. Scott

    Hydrologic equilibrium theory has been used to describe both short-term regulation of gas exchange and long-term adjustment of forest canopy density. However, by focusing on water and atmospheric conditions alone a hydrologic equilibrium may impose an oversimplification of the growth of forests adjusted to hydrology. In this study nitrogen is incorporated as a third regulation of catchment level forest dynamics and gas exchange. This was examined with an integrated distributed hydrology and forest growth model in a central Sierra Nevada watershed covered primarily by old-growth coniferous forest. Water and atmospheric conditions reasonably reproduced daily latent heat flux, and predicted the expected catenary trend of leaf area index (LAI). However, it was not until the model was provided a spatially detailed description of initial soil carbon and nitrogen pools that spatial patterns of LAI were generated. This latter problem was attributed to a lack of soil history or memory in the initialization of the simulations. Finally, by reducing stomatal sensitivity to vapor pressure deficit (VPD) the canopy density increased when water and nitrogen limitations were not present. The results support a three-control hydrologic equilibrium in the Sierra Nevada watershed. This has implications for modeling catchment level soil-vegetation-atmospheric interactions over interannual, decade, and century time-scales.

  14. An evaluation of physical and biogeochemical processes regulating perennial suboxic conditions in the water column of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.

    on the circulation pattern. More intense OMZ and reducing con- ditions prevailed during NE monsoon leading to the highest nitrate deficits (10–12 mM) in the northern Arabian Sea [de Sousa et al., 1996; Morrison et al., 1998] in comparison with other seasons... subsurface layers receive waters from the northern Arabian Sea during inter-monsoon the surface productivity is very low that results in less reducing con- ditions in the OMZ with low nitrate deficit of 6–8 mM[de Sousa et al., 1996]. [29] The oxygen budget...

  15. 76 FR 37344 - Technology Evaluation Process

    Science.gov (United States)

    2011-06-27

    ...-NOA-0039] Technology Evaluation Process AGENCY: Office of Energy Efficiency and Renewable Energy... seeks comments and information related to a commercial buildings technology evaluation process. DOE is seeking to create a process for evaluating emerging and underutilized energy efficient technologies for...

  16. Stream biogeochemical resilience in the age of Anthropocene

    Science.gov (United States)

    Dong, H.; Creed, I. F.

    2017-12-01

    Recent evidence indicates that biogeochemical cycles are being pushed beyond the tolerance limits of the earth system in the age of the Anthropocene placing terrestrial and aquatic ecosystems at risk. Here, we explored the question: Is there empirical evidence of global atmospheric changes driving losses in stream biogeochemical resilience towards a new normal? Stream biogeochemical resilience is the process of returning to equilibrium conditions after a disturbance and can be measured using three metrics: reactivity (the highest initial response after a disturbance), return rate (the rate of return to equilibrium condition after reactive changes), and variance of the stationary distribution (the signal to noise ratio). Multivariate autoregressive models were used to derive the three metrics for streams along a disturbance gradient - from natural systems where global drivers would dominate, to relatively managed or modified systems where global and local drivers would interact. We observed a loss of biogeochemical resilience in all streams. The key biogeochemical constituent(s) that may be driving loss of biogeochemical resilience were identified from the time series of the stream biogeochemical constituents. Non-stationary trends (detected by Mann-Kendall analysis) and stationary cycles (revealed through Morlet wavelet analysis) were removed, and the standard deviation (SD) of the remaining residuals were analyzed to determine if there was an increase in SD over time that would indicate a pending shift towards a new normal. We observed that nitrate-N and total phosphorus showed behaviours indicative of a pending shift in natural and managed forest systems, but not in agricultural systems. This study provides empirical support that stream ecosystems are showing signs of exceeding planetary boundary tolerance levels and shifting towards a "new normal" in response to global changes, which can be exacerbated by local management activities. Future work will consider

  17. Biogeochemical investigations on processes affecting the transport behaviour of trace elements in the tidal Elbe River; Biogeochemische Prozessuntersuchungen zum Transportverhalten von Spurenelementen in der Tide-Elbe

    Energy Technology Data Exchange (ETDEWEB)

    Hennies, K. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik

    1997-12-31

    This work concentrates on distribution and transport of micropollutants in anthropogenically affected estuary systems. Choosing the tidal Elbe River as an example, the influence of microlagae on two important partial processes of the transport regime, the remobilization (a) from undisturbed sediments and (b) from suspended particulate matter, was simulated and quantified in the laboratory. Benthic and planktonic release of Cd, Cu, Pb and Zn into the dissolved phase of the river pelagial were estimated and comparatively evaluated for summer/late summer situation. During that season natural decomposition of suspended particulate matter in the water column thus represents the quantitatively most significant mobilization pathway for particle bound heavy metals in the river section between Hamburg and Glueckstadt. Knowing the composition and heavy metal load of suspended particulate matter, rich in algae, mobilization rates can consequently be calculated for the water column with regard to conditions typical for estuaries. The prognosis of the differing transport behaviour of single heavy metals for greater sections of estuaries is also possible if these rates are implemented into transport-reaction models. (orig.) [Deutsch] Die vorliegende Arbeit befasst sich mit Verteilung und Transport von Spurenschadstoffen in anthropogen belasteten Aestuarsystemen. Am Beispiel der Tide-Elbe wurde der Einfluss von Mikroalgen auf zwei wichtige Teilprozesse des Transportregimes, die Remobilisierung (a) aus ungestoerten Sedimenten und (b) aus suspendierten Schwebstoffen, im Labor simuliert und quantifiziert. Benthische und planktische Freisetzung von Cd, Cu, Pb und Zn in die Loesungsphase des Flusspelagials der Tide-Elbe wurden fuer die Sommer-/Spaetsommer-Situation abgeschaetzt und vergleichend bewertet. Der natuerliche Schwebstoff-Abbau in der Wassersaeule stellt demnach in dieser Jahreszeit im Stromabschnitt zwischen Hamburg und Glueckstadt den quantitativ bedeutsamsten

  18. Biogeochemical investigations on processes affecting the transport behaviour of trace elements in the tidal Elbe River; Biogeochemische Prozessuntersuchungen zum Transportverhalten von Spurenelementen in der Tide-Elbe

    Energy Technology Data Exchange (ETDEWEB)

    Hennies, K [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Gewaesserphysik

    1998-12-31

    This work concentrates on distribution and transport of micropollutants in anthropogenically affected estuary systems. Choosing the tidal Elbe River as an example, the influence of microlagae on two important partial processes of the transport regime, the remobilization (a) from undisturbed sediments and (b) from suspended particulate matter, was simulated and quantified in the laboratory. Benthic and planktonic release of Cd, Cu, Pb and Zn into the dissolved phase of the river pelagial were estimated and comparatively evaluated for summer/late summer situation. During that season natural decomposition of suspended particulate matter in the water column thus represents the quantitatively most significant mobilization pathway for particle bound heavy metals in the river section between Hamburg and Glueckstadt. Knowing the composition and heavy metal load of suspended particulate matter, rich in algae, mobilization rates can consequently be calculated for the water column with regard to conditions typical for estuaries. The prognosis of the differing transport behaviour of single heavy metals for greater sections of estuaries is also possible if these rates are implemented into transport-reaction models. (orig.) [Deutsch] Die vorliegende Arbeit befasst sich mit Verteilung und Transport von Spurenschadstoffen in anthropogen belasteten Aestuarsystemen. Am Beispiel der Tide-Elbe wurde der Einfluss von Mikroalgen auf zwei wichtige Teilprozesse des Transportregimes, die Remobilisierung (a) aus ungestoerten Sedimenten und (b) aus suspendierten Schwebstoffen, im Labor simuliert und quantifiziert. Benthische und planktische Freisetzung von Cd, Cu, Pb und Zn in die Loesungsphase des Flusspelagials der Tide-Elbe wurden fuer die Sommer-/Spaetsommer-Situation abgeschaetzt und vergleichend bewertet. Der natuerliche Schwebstoff-Abbau in der Wassersaeule stellt demnach in dieser Jahreszeit im Stromabschnitt zwischen Hamburg und Glueckstadt den quantitativ bedeutsamsten

  19. Issues evaluation process at Rocky Flats Plant

    International Nuclear Information System (INIS)

    Smith, L.C.

    1992-01-01

    This report describes the issues evaluation process for Rocky Flats Plant as established in July 1990. The issues evaluation process was initiated February 27, 1990 with a Charter and Process Overview for short-term implementation. The purpose of the process was to determine the projects required for completion before the Phased Resumption of Plutonium Operations. To determine which projects were required, the issues evaluation process and emphasized risk mitigation, based on a ranking system. The purpose of this report is to document the early design of the issues evaluation process to record the methodologies used that continue as the basis for the ongoing Issues Management Program at Rocky Flats Plant

  20. Evaluating Knowledge of Business Processes

    Directory of Open Access Journals (Sweden)

    Andra TURDASAN

    2016-01-01

    Full Text Available Any organization relies on processes/procedures in order to organize the operations. Those processes can be explicit (e.g. textual descriptions of workflow steps or graphical descriptions or implicit (e.g. employees have learned by experience the steps needed to ‘get things done’. A widely acknowledged fact is that processes change due to internal and/or external factors. How can managers make sure the employees know the last version of the process? The current practice is to test employees by multiple-choice questions. This paper proposes a novel knowledge-testing approach based on graphical and interactive questions. To validate our approach, we set up a single-factor controlled experiment with novices and experts in a faculty admission process. The results show that our approach has better results in terms of correct answers.

  1. Dry Process Fuel Performance Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Myung Seung; Song, K. C.; Moon, J. S. and others

    2005-04-15

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  2. Dry Process Fuel Performance Evaluation

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Song, K. C.; Moon, J. S. and others

    2005-04-01

    The objective of the project is to establish the performance evaluation system of DUPIC fuel during the Phase II R and D. In order to fulfil this objectives, irradiation test of DUPIC fuel was carried out in HANARO using the non-instrumented and SPND-instrumented rig. Also, the analysis on the in-reactor behavior analysis of DUPIC fuel, out-pile test using simulated DUPIC fuel as well as performance and integrity assessment in a commercial reactor were performed during this Phase. The R and D results of the Phase II are summarized as follows : - Performance evaluation of DUPIC fuel via irradiation test in HANARO - Post irradiation examination of irradiated fuel and performance analysis - Development of DUPIC fuel performance code (modified ELESTRES) considering material properties of DUPIC fuel - Irradiation behavior and integrity assessment under the design power envelope of DUPIC fuel - Foundamental technology development of thermal/mechanical performance evaluation using ANSYS (FEM package)

  3. Evaluation and processing of covariance data

    International Nuclear Information System (INIS)

    Wagner, M.

    1993-01-01

    These proceedings of a specialists'meeting on evaluation and processing of covariance data is divided into 4 parts bearing on: part 1- Needs for evaluated covariance data (2 Papers), part 2- generation of covariance data (15 Papers), part 3- Processing of covariance files (2 Papers), part 4-Experience in the use of evaluated covariance data (2 Papers)

  4. 7 CFR 4284.512 - Evaluation process.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Evaluation process. 4284.512 Section 4284.512 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND....512 Evaluation process. (a) Applications will be evaluated by qualified reviewers appointed by the...

  5. 7 CFR 4284.912 - Evaluation process.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Evaluation process. 4284.912 Section 4284.912 Agriculture Regulations of the Department of Agriculture (Continued) RURAL BUSINESS-COOPERATIVE SERVICE AND... Evaluation process. (a) Applications will be evaluated by agricultural economists or other technical experts...

  6. Physical/biogeochemical coupled model : impact of an offline vs online strategy

    Science.gov (United States)

    Hameau, Angélique; Perruche, Coralie; Bricaud, Clément; Gutknecht, Elodie; Reffray, Guillaume

    2014-05-01

    Mercator-Ocean, the French ocean forecasting center, has been developing several operational forecasting systems and reanalysis of the physical and biogeochemical 3D-Ocean. Here we study the impact of an offline vs online strategy to couple the physical (OPA) and biogeochemical (PISCES) modules included in the NEMO platform. For this purpose, we perform global one-year long simulations at 1° resolution. The model was initialized with global climatologies. The spin-up involved 10 years of biogeochemical off-line simulation forced by a climatology of ocean physics. The online mode consists in running physical and biogeochemical models simultaneously whereas in the offline mode, the biogeochemical model is launched alone, forced by averaged physical forcing (1 day, 7 days,… ). The Mercator operational biogeochemical system is currently using the offline mode with a weekly physical forcing. A special treatment is applied to the vertical diffusivity coefficient (Kz): as it varies of several orders of magnitude, we compute the mean of the LOG10 of Kz. Moreover, a threshold value is applied to remove the highest values corresponding to enhanced convection. To improve this system, 2 directions are explored. First, 3 physical forcing frequencies are compared to quantify errors due to the offline mode: 1 hour (online mode), 1 day and 1 week (offline modes). Secondly, sensitivity tests to the threshold value applied to Kz are performed. The simulations are evaluated by systematically comparing model fields to observations (Globcolour product and World Ocean Atlas 2005) at global and regional scales. We show first that offline simulations are in good agreement with online simulation. As expected, the lower the physical forcing frequency is, the closer to the online solution is the offline simulation. The threshold value on the vertical diffusivity coefficient manages the mixing strength within the mixed layer. A value of 1 m2.s-1 appears to be a good compromise to approach

  7. Biogeochemical response to widespread anoxia in the past ocean

    NARCIS (Netherlands)

    Ruvalcaba Baroni, I.

    2015-01-01

    Oxygen is a key element for life on earth. Oxygen concentrations in the ocean vary greatly in space and time. These changes are regulated by various physical and biogeochemical processes, such as primary productivity, sea surface temperatures and ocean circulation. In the geological past, several

  8. Evaluation of the Acquisition Audit Process

    National Research Council Canada - National Science Library

    Smolenyak, Barbara

    1997-01-01

    The objectives were to evaluate the efficiency and effectiveness of the acquisition audit process, determine whether reductions can be achieved by improvements in prioritizing audits, and determine...

  9. Evaluation of Geo-processes

    DEFF Research Database (Denmark)

    Singh, Ashok

    2013-01-01

    and salinity counteracts this effect. Changes of rock properties observed comprise an increase in porosity, permeability, water binding capacity, rock wettability and a slight decrease in residual gas saturation. The recent stress field was determined by direct measurement of the effective primary principal...... strata, calculated from the obtained effective primary stresses, are expected to be modified with a pilot injection into the reservoir. Methods and numerical tools were developed, which are dedicated to the numerical characterisation of the nearly depleted gas reservoir as well as to the simulation...... of the processes during CO2 injection and migration storage. The only practical option for predicting the long-term behaviour of CO2 in reservoirs is numerical analysis, supported by the understanding gained from the relatively short-term laboratory and field-scale experiments. Corresponding to the real site...

  10. Building a high level sample processing and quality assessment model for biogeochemical measurements: a case study from the ocean acidification community

    Science.gov (United States)

    Thomas, R.; Connell, D.; Spears, T.; Leadbetter, A.; Burger, E. F.

    2016-12-01

    The scientific literature heavily features small-scale studies with the impact of the results extrapolated to regional/global importance. There are on-going initiatives (e.g. OA-ICC, GOA-ON, GEOTRACES, EMODNet Chemistry) aiming to assemble regional to global-scale datasets that are available for trend or meta-analyses. Assessing the quality and comparability of these data requires information about the processing chain from "sampling to spreadsheet". This provenance information needs to be captured and readily available to assess data fitness for purpose. The NOAA Ocean Acidification metadata template was designed in consultation with domain experts for this reason; the core carbonate chemistry variables have 23-37 metadata fields each and for scientists generating these datasets there could appear to be an ever increasing amount of metadata expected to accompany a dataset. While this provenance metadata should be considered essential by those generating or using the data, for those discovering data there is a sliding scale between what is considered discovery metadata (title, abstract, contacts, etc.) versus usage metadata (methodology, environmental setup, lineage, etc.), the split depending on the intended use of data. As part of the OA-ICC's activities, the metadata fields from the NOAA template relevant to the sample processing chain and QA criteria have been factored to develop profiles for, and extensions to, the OM-JSON encoding supported by the PROV ontology. While this work started focused on carbonate chemistry variable specific metadata, the factorization could be applied within the O&M model across other disciplines such as trace metals or contaminants. In a linked data world with a suitable high level model for sample processing and QA available, tools and support can be provided to link reproducible units of metadata (e.g. the standard protocol for a variable as adopted by a community) and simplify the provision of metadata and subsequent discovery.

  11. TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

  12. Oceanographic and Biogeochemical Insights from Diatom Genomes

    Science.gov (United States)

    Bowler, Chris; Vardi, Assaf; Allen, Andrew E.

    2010-01-01

    Diatoms are the most successful group of eukaryotic phytoplankton in the modern ocean and have risen to dominance relatively quickly over the last 100 million years. Recently completed whole genome sequences from two species of diatom, Thalassiosira pseudonana and Phaeodactylum tricornutum, have revealed a wealth of information about the evolutionary origins and metabolic adaptations that have led to their ecological success. A major finding is that they have incorporated genes both from their endosymbiotic ancestors and by horizontal gene transfer from marine bacteria. This unique melting pot of genes encodes novel capacities for metabolic management, for example, allowing the integration of a urea cycle into a photosynthetic cell. In this review we show how genome-enabled approaches are being leveraged to explore major phenomena of oceanographic and biogeochemical relevance, such as nutrient assimilation and life histories in diatoms. We also discuss how diatoms may be affected by climate change-induced alterations in ocean processes.

  13. Evaluation of Models of the Reading Process.

    Science.gov (United States)

    Balajthy, Ernest

    A variety of reading process models have been proposed and evaluated in reading research. Traditional approaches to model evaluation specify the workings of a system in a simplified fashion to enable organized, systematic study of the system's components. Following are several statistical methods of model evaluation: (1) empirical research on…

  14. Biogeochemical processes in a clay formation in situ experiment: Part E - Equilibrium controls on chemistry of pore water from the Opalinus Clay, Mont Terri Underground Research Laboratory, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, F.J., E-mail: fjpearson@gmail.com [Ground-Water Geochemistry, 5108 Trent Woods Dr., New Bern, NC 28562 (United States); Tournassat, Christophe; Gaucher, Eric C. [BRGM, B.P. 36009, 45060 Orleans Cedex 2 (France)

    2011-06-15

    -examination of the measured Ca/Mg activity ratios and consideration of the mineralogical composition of the Opalinus Clay suggested that Ca/Mg cation exchange rather than dolomite saturation may control the ratio of these ions in solution. This re-examination also suggests that the Ca/Mg ratio decreases with increasing pore-water salinity. Several possible reasons for this are proposed. Moreover, it is demonstrated that feldspar equilibria must not be included in Opalinus Clay modelling because feldspars are present only in very small quantities in the formation and because Na/K ratios measured in pore water samples are inconsistent with feldspar saturation. The principal need to improve future modelling is additional or better data on rock properties, in particular: (i) a more detailed identification of phases in the Opalinus Clay that include redox-sensitive elements together with evaluation of their thermodynamic properties; (ii) an improved understanding of the distribution of celestite throughout the Opalinus Clay for Sr/SO{sub 4} concentrations control; (iii) improvements in analytic and thermodynamic data for Ca-Mg rock cation exchange and mineral chemical properties and (iv) the measurement of composition and stability constants of clay minerals actually present in the formation.

  15. Traceable components of terrestrial carbon storage capacity in biogeochemical models.

    Science.gov (United States)

    Xia, Jianyang; Luo, Yiqi; Wang, Ying-Ping; Hararuk, Oleksandra

    2013-07-01

    Biogeochemical models have been developed to account for more and more processes, making their complex structures difficult to be understood and evaluated. Here, we introduce a framework to decompose a complex land model into traceable components based on mutually independent properties of modeled biogeochemical processes. The framework traces modeled ecosystem carbon storage capacity (Xss ) to (i) a product of net primary productivity (NPP) and ecosystem residence time (τE ). The latter τE can be further traced to (ii) baseline carbon residence times (τ'E ), which are usually preset in a model according to vegetation characteristics and soil types, (iii) environmental scalars (ξ), including temperature and water scalars, and (iv) environmental forcings. We applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model to help understand differences in modeled carbon processes among biomes and as influenced by nitrogen processes. With the climate forcings of 1990, modeled evergreen broadleaf forest had the highest NPP among the nine biomes and moderate residence times, leading to a relatively high carbon storage capacity (31.5 kg cm(-2) ). Deciduous needle leaf forest had the longest residence time (163.3 years) and low NPP, leading to moderate carbon storage (18.3 kg cm(-2) ). The longest τE in deciduous needle leaf forest was ascribed to its longest τ'E (43.6 years) and small ξ (0.14 on litter/soil carbon decay rates). Incorporation of nitrogen processes into the CABLE model decreased Xss in all biomes via reduced NPP (e.g., -12.1% in shrub land) or decreased τE or both. The decreases in τE resulted from nitrogen-induced changes in τ'E (e.g., -26.7% in C3 grassland) through carbon allocation among plant pools and transfers from plant to litter and soil pools. Our framework can be used to facilitate data model comparisons and model intercomparisons via tracking a few traceable components for all terrestrial carbon

  16. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  17. The tools for evaluating logistics processes

    Directory of Open Access Journals (Sweden)

    Michał Adamczak

    2013-12-01

    Full Text Available Background: The growing importance of business process approach and dynamic management is triggered by market expectations for lead time reductions and the pressure for cost cuts. An efficient process management requires measurement and assessment skills. This article is intended to present the tools used in evaluating processes and the way in which they work together under simulated conditions. Methods: The project's Authors believe that a process can be assessed by measuring its attributes: cost, time and quality. An assessment tool has been developed for each of those attributes. For costs - it could be activity based costing, for time - value stream mapping; for quality - statistical process control. Each tool allows for evaluating one of the attributes, any element in the process hierarchy. The methods presented in the paper have been supplemented with process modelling and simulation. Results: In order to show how process assessment tools are combined with process simulation the Authors show a sample process in three versions (serial, parallel and mixed. A variant simulation (using iGrafx software allows for determining the values of attributes in the entire process based on the data set for its components (activities. In the example under investigation the process variant has no impact on its quality. Process cost and time are affected. Conclusions: The tools for identifying attribute values, in combination with process modelling and simulation, can prove very beneficial when applied in business practice. In the first place they allow for evaluating a process based on the value of the attributes pertaining to its particular activities, which, on the other hand, raises the possibility of process configuration at the design stage. The solution presented in the paper can be developed further with a view to process standardization and best variant recommendation.  

  18. Searching for Biogeochemical Cycles on Mars

    Science.gov (United States)

    DesMarais, David J.

    1997-01-01

    The search for life on Mars clearly benefits from a rigorous, yet broad, definition of life that compels us to consider all possible lines of evidence for a martian biosphere. Recent studies in microbial ecology illustrate that the classic definition of life should be expanded beyond the traditional definition of a living cell. The traditional defining characteristics of life are threefold. First, life is capable of metabolism, that is, it performs chemical reactions that utilize energy and also synthesize its cellular constituents. Second, life is capable of self-replication. Third, life can evolve in order to adapt to environmental changes. An expanded, ecological definition of life also recognizes that life is a community of organisms that must interact with their nonliving environment through processes called biogeochemical cycles. This regenerative processing maintains, in an aqueous conditions, a dependable supply of nutrients and energy for growth. In turn, life can significantly affect those processes that control the exchange of materials between the atmosphere, ocean, and upper crust. Because metabolic processes interact directly with the environment, they can alter their surroundings and thus leave behind evidence of life. For example, organic matter is produced from single-carbon-atom precursors for the biosynthesis of cellular constituents. This leads to a reservoir of reduced carbon in sediments that, in turn, can affect the oxidation state of the atmosphere. The harvesting of chemical energy for metabolism often employs oxidation-reduction reactions that can alter the chemistry and oxidation state of the redox-sensitive elements carbon, sulfur, nitrogen, iron, and manganese. Have there ever been biogeochemical cycles on Mars? Certain key planetary processes can offer clues. Active volcanism provides reduced chemical species that biota can use for organic synthesis. Volcanic carbon dioxide and methane can serve as greenhouse gases. Thus the

  19. Evaluation and processing of nuclear data

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1981-01-01

    The role a nuclear data evaluator plays in obtaining evaluated nuclear data, needed for applications, from measured nuclear data is surveyed. Specific evaluation objectives, problems, and procedures are discussed. The use of nuclear systematics to complement nuclear experiment and theory is described. Using the Evaluated Nuclear Data File (ENDF) as an example the formatting, checking, and processing of nuclear data is discussed as well as the testing of evaluated nuclear data in the calculation of integral benchmark experiments. Other important topics such as the Probability Table Method and interrelation between differential and integral data are also discussed. (author)

  20. Evaluation and processing of nuclear data

    International Nuclear Information System (INIS)

    Pearlstein, S.

    1980-01-01

    The role a nuclear data evaluator plays in obtaining evaluated nuclear data, needed for applications, from measured nuclear data is surveyed. Specific evaluation objectives, problems, and procedures are discussed. The use of nuclear systematics to complement nuclear experiment and theory is described. With the Evaluated Nuclear Data File (ENDF) as an example, the formatting, checking, and processing of nuclear data are discussed as well as the testing of evaluated nuclear data in the calculation of integral benchmark experiments. Other important topics such as the Probability Table Method and interrelation between differential and integral data are also discussed. 25 figures

  1. National Security Technology Incubator Evaluation Process

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-31

    This report describes the process by which the National Security Technology Incubator (NSTI) will be evaluated. The technology incubator is being developed as part of the National Security Preparedness Project (NSPP), funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes a brief description of the components, steps, and measures of the proposed evaluation process. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. An effective evaluation process of the NSTI is an important step as it can provide qualitative and quantitative information on incubator performance over a given period. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety and security. The mission of the NSTI is to identify, incubate, and accelerate technologies with national security applications at various stages of development by providing hands-on mentoring and business assistance to small businesses and emerging or growing companies. To achieve success for both incubator businesses and the NSTI program, an evaluation process is essential to effectively measure results and implement corrective processes in the incubation design if needed. The evaluation process design will collect and analyze qualitative and quantitative data through performance evaluation system.

  2. A Process for the Evaluation of Training.

    Science.gov (United States)

    Civil Service Commission, Washington, DC. Training Leadership Div.

    The process of evaluating the training of federal civil service employees is summarized in three phases: (1) the focus--establishing the scope and objectives of the evaluation effort, (2) the plan--developing a blueprint for conducting the project, and (3) the implementation--obtaining necessary data, interpreting them, and providing conclusions…

  3. Using Analytic Hierarchy Process in Textbook Evaluation

    Science.gov (United States)

    Kato, Shigeo

    2014-01-01

    This study demonstrates the application of the analytic hierarchy process (AHP) in English language teaching materials evaluation, focusing in particular on its potential for systematically integrating different components of evaluation criteria in a variety of teaching contexts. AHP is a measurement procedure wherein pairwise comparisons are made…

  4. Self-Assessment in the Evaluation Process.

    Science.gov (United States)

    Koehler, Michael

    1990-01-01

    Describes a four-step process to involve teachers in self-evaluation that results in performance ownership. When supervisors incorporate teacher self-assessments into classroom observation reports, teachers are more willing to engage in follow-up professional growth activities and perceive supervisors as helpers in the process. (MLH)

  5. Conceptual modelling of human resource evaluation process

    Directory of Open Access Journals (Sweden)

    Negoiţă Doina Olivia

    2017-01-01

    Full Text Available Taking into account the highly diverse tasks which employees have to fulfil due to complex requirements of nowadays consumers, the human resource within an enterprise has become a strategic element for developing and exploiting products which meet the market expectations. Therefore, organizations encounter difficulties when approaching the human resource evaluation process. Hence, the aim of the current paper is to design a conceptual model of the aforementioned process, which allows the enterprises to develop a specific methodology. In order to design the conceptual model, Business Process Modelling instruments were employed - Adonis Community Edition Business Process Management Toolkit using the ADONIS BPMS Notation. The conceptual model was developed based on an in-depth secondary research regarding the human resource evaluation process. The proposed conceptual model represents a generic workflow (sequential and/ or simultaneously activities, which can be extended considering the enterprise’s needs regarding their requirements when conducting a human resource evaluation process. Enterprises can benefit from using software instruments for business process modelling as they enable process analysis and evaluation (predefined / specific queries and also model optimization (simulations.

  6. Evaluation procedure for radioactive waste treatment processes

    International Nuclear Information System (INIS)

    Whitty, W.J.

    1979-11-01

    An aspect of the Los Alamos Scientific Laboratory's nuclear waste management R and D programs has been to develop an evaluation procedure for radioactive waste treatment processes. This report describes the process evaluation method. Process worth is expressed as a numerical index called the Figure-of-Merit (FOM), which is computed using a hierarchial, linear, additive, scoring model with constant criteria weights and nonlinear value functions. A numerical example is used to demonstrate the procedure and to point out some of its strengths and weaknesses. Potential modifications and extensions are discussed, and an extensive reference list is included

  7. Evaluation of nonaqueous processes for nuclear materials

    International Nuclear Information System (INIS)

    Musgrave, B.C.; Grens, J.Z.; Knighton, J.B.; Coops, M.S.

    1983-12-01

    A working group was assigned the task of evaluating the status of nonaqueous processes for nuclear materials and the prospects for successful deployment of these technologies in the future. In the initial evaluation, the study was narrowed to the pyrochemical/pyrometallurgical processes closely related to the processes used for purification of plutonium and its conversion to metal. The status of the chemistry and process hardware were reviewed and the development needs in both chemistry and process equipment technology were evaluated. Finally, the requirements were established for successful deployment of this technology. The status of the technology was evaluated along three lines: (1) first the current applications were examined for completeness, (2) an attempt was made to construct closed-cycle flow sheets for several proposed applications, (3) and finally the status of technical development and future development needs for general applications were reviewed. By using these three evaluations, three different perspectives were constructed that together present a clear picture of how complete the technical development of these processes are

  8. Improving the Process of Student Evaluation

    Directory of Open Access Journals (Sweden)

    Gabriela Neacşu

    2013-12-01

    Full Text Available In this paper we analyzed the process of student evaluation from “Spiru Haret” University. The process under consideration occurs according to a specific Procedure – Process of student evaluation from the Manual of Quality Assurance Procedures, “Spiru Haret” University, Edition 1, 2012. The goal of this procedure, mentioned in the Manual, is to present the student evaluation procedure by using the Blackboard educational platform and other evaluation techniques of quality learning, based on materials developed by teachers of “Spiru Haret” University, as well as corresponding responsibilities, in order to increase the learning process quality and the exigency degree in the examination process, as well as students’ satisfaction measured by accumulated competences. We appreciate that the purpose of this procedure is first and foremost to ensure transparency and objectivity in exam passing decision. After identifying the weaknesses with the “cause - effect” chart, we have sought to improve student evaluation process using PDCA (Plan-Do-Check-Act method, resulting in the design of a new assessment flowchart.

  9. Study on team evaluation. Team process model for team evaluation

    International Nuclear Information System (INIS)

    Sasou Kunihide; Ebisu, Mitsuhiro; Hirose, Ayako

    2004-01-01

    Several studies have been done to evaluate or improve team performance in nuclear and aviation industries. Crew resource management is the typical example. In addition, team evaluation recently gathers interests in other teams of lawyers, medical staff, accountants, psychiatrics, executive, etc. However, the most evaluation methods focus on the results of team behavior that can be observed through training or actual business situations. What is expected team is not only resolving problems but also training younger members being destined to lead the next generation. Therefore, the authors set the final goal of this study establishing a series of methods to evaluate and improve teams inclusively such as decision making, motivation, staffing, etc. As the first step, this study develops team process model describing viewpoints for the evaluation. The team process is defined as some kinds of power that activate or inactivate competency of individuals that is the components of team's competency. To find the team process, the authors discussed the merits of team behavior with the experienced training instructors and shift supervisors of nuclear/thermal power plants. The discussion finds four team merits and many components to realize those team merits. Classifying those components into eight groups of team processes such as 'Orientation', 'Decision Making', 'Power and Responsibility', 'Workload Management', 'Professional Trust', 'Motivation', 'Training' and 'staffing', the authors propose Team Process Model with two to four sub processes in each team process. In the future, the authors will develop methods to evaluate some of the team processes for nuclear/thermal power plant operation teams. (author)

  10. Biogeochemical cycling in the Taiwan Strait

    Digital Repository Service at National Institute of Oceanography (India)

    Naik, H.; Chen, C-T.A.

    Based on repeat observations made during 2001-2003 along two transects in the Taiwan Strait this study aims at understanding factors controlling primary productivity with an emphasis on biogeochemical cycling of nitrogen, the major bio...

  11. Early Phase Process Evaluation: Industrial Practices

    Directory of Open Access Journals (Sweden)

    Zulfan Adi Putra

    2016-09-01

    Full Text Available Process route evaluation is a part of research and development (R&D works in an industrial chemical project life cycle. In this early phase, good process evaluation, including process synthesis and designs, provide guidance’s on the R&D project. The paper aimed to collect practical methods used in this early phase process route evaluation from author’s 10 years of industrial experiences.  The collected methods range from forward-backward process synthesis, functional process design, use of cost estimation, and applications of Monte Carlo simulation. Led by a good project management (e.g. via a stage-gate approach use of these methods have shown beneficial results. Some important results are strong arguments on whether or not the project will continue, as well as relevant technical and economic issues identified during this early phase process synthesis and design. Later on, these issues become guidance’s to the follow-up project, if it is continued.

  12. Student evaluations of the portfolio process.

    Science.gov (United States)

    Murphy, John E; Airey, Tatum C; Bisso, Andrea M; Slack, Marion K

    2011-09-10

    To evaluate pharmacy students' perceived benefits of the portfolio process and to gather suggestions for improving the process. A questionnaire was designed and administered to 250 first-, second-, and third-year pharmacy students at the University of Arizona College of Pharmacy. Although the objectives of the portfolio process were for students to understand the expected outcomes, understand the impact of extracurricular activities on attaining competencies, identify what should be learned, identify their strengths and weaknesses, and modify their approach to learning, overall students perceived the portfolio process as having less than moderate benefit. First-year students wanted more examples of portfolios while second- and third-year students suggested that more time with their advisor would be beneficial. The portfolio process will continue to be refined and efforts made to improve students' perceptions of the process as it is intended to develop the self-assessments skills they will need to improve their knowledge and professional skills throughout their pharmacy careers.

  13. The Southern Ocean biogeochemical divide.

    Science.gov (United States)

    Marinov, I; Gnanadesikan, A; Toggweiler, J R; Sarmiento, J L

    2006-06-22

    Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.

  14. Global biogeochemical cycle of vanadium.

    Science.gov (United States)

    Schlesinger, William H; Klein, Emily M; Vengosh, Avner

    2017-12-26

    Synthesizing published data, we provide a quantitative summary of the global biogeochemical cycle of vanadium (V), including both human-derived and natural fluxes. Through mining of V ores (130 × 10 9 g V/y) and extraction and combustion of fossil fuels (600 × 10 9 g V/y), humans are the predominant force in the geochemical cycle of V at Earth's surface. Human emissions of V to the atmosphere are now likely to exceed background emissions by as much as a factor of 1.7, and, presumably, we have altered the deposition of V from the atmosphere by a similar amount. Excessive V in air and water has potential, but poorly documented, consequences for human health. Much of the atmospheric flux probably derives from emissions from the combustion of fossil fuels, but the magnitude of this flux depends on the type of fuel, with relatively low emissions from coal and higher contributions from heavy crude oils, tar sands bitumen, and petroleum coke. Increasing interest in petroleum derived from unconventional deposits is likely to lead to greater emissions of V to the atmosphere in the near future. Our analysis further suggests that the flux of V in rivers has been incremented by about 15% from human activities. Overall, the budget of dissolved V in the oceans is remarkably well balanced-with about 40 × 10 9 g V/y to 50 × 10 9 g V/y inputs and outputs, and a mean residence time for dissolved V in seawater of about 130,000 y with respect to inputs from rivers.

  15. The Microbial Engines That Drive Earth’s Biogeochemical Cycles

    Science.gov (United States)

    Falkowski, Paul G.; Fenchel, Tom; Delong, Edward F.

    2008-05-01

    Virtually all nonequilibrium electron transfers on Earth are driven by a set of nanobiological machines composed largely of multimeric protein complexes associated with a small number of prosthetic groups. These machines evolved exclusively in microbes early in our planet’s history yet, despite their antiquity, are highly conserved. Hence, although there is enormous genetic diversity in nature, there remains a relatively stable set of core genes coding for the major redox reactions essential for life and biogeochemical cycles. These genes created and coevolved with biogeochemical cycles and were passed from microbe to microbe primarily by horizontal gene transfer. A major challenge in the coming decades is to understand how these machines evolved, how they work, and the processes that control their activity on both molecular and planetary scales.

  16. Marine and estuarine natural microbial biofilms: ecological and biogeochemical dimensions

    Directory of Open Access Journals (Sweden)

    O. Roger Anderson

    2016-08-01

    Full Text Available Marine and estuarine microbial biofilms are ubiquitously distributed worldwide and are increasingly of interest in basic and applied sciences because of their unique structural and functional features that make them remarkably different from the biota in the plankton. This is a review of some current scientific knowledge of naturally occurring microbial marine and estuarine biofilms including prokaryotic and microeukaryotic biota, but excluding research specifically on engineering and applied aspects of biofilms such as biofouling. Because the microbial communities including bacteria and protists are integral to the fundamental ecological and biogeochemical processes that support biofilm communities, particular attention is given to the structural and ecological aspects of microbial biofilm formation, succession, and maturation, as well as the dynamics of the interactions of the microbiota in biofilms. The intent is to highlight current state of scientific knowledge and possible avenues of future productive research, especially focusing on the ecological and biogeochemical dimensions.

  17. Biogeochemical sensor performance in the SOCCOM profiling float array

    Science.gov (United States)

    Johnson, Kenneth S.; Plant, Joshua N.; Coletti, Luke J.; Jannasch, Hans W.; Sakamoto, Carole M.; Riser, Stephen C.; Swift, Dana D.; Williams, Nancy L.; Boss, Emmanuel; Haëntjens, Nils; Talley, Lynne D.; Sarmiento, Jorge L.

    2017-08-01

    The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) program has begun deploying a large array of biogeochemical sensors on profiling floats in the Southern Ocean. As of February 2016, 86 floats have been deployed. Here the focus is on 56 floats with quality-controlled and adjusted data that have been in the water at least 6 months. The floats carry oxygen, nitrate, pH, chlorophyll fluorescence, and optical backscatter sensors. The raw data generated by these sensors can suffer from inaccurate initial calibrations and from sensor drift over time. Procedures to correct the data are defined. The initial accuracy of the adjusted concentrations is assessed by comparing the corrected data to laboratory measurements made on samples collected by a hydrographic cast with a rosette sampler at the float deployment station. The long-term accuracy of the corrected data is compared to the GLODAPv2 data set whenever a float made a profile within 20 km of a GLODAPv2 station. Based on these assessments, the fleet average oxygen data are accurate to 1 ± 1%, nitrate to within 0.5 ± 0.5 µmol kg-1, and pH to 0.005 ± 0.007, where the error limit is 1 standard deviation of the fleet data. The bio-optical measurements of chlorophyll fluorescence and optical backscatter are used to estimate chlorophyll a and particulate organic carbon concentration. The particulate organic carbon concentrations inferred from optical backscatter appear accurate to with 35 mg C m-3 or 20%, whichever is larger. Factors affecting the accuracy of the estimated chlorophyll a concentrations are evaluated.Plain Language SummaryThe ocean science community must move toward greater use of autonomous platforms and sensors if we are to extend our knowledge of the effects of climate driven change within the ocean. Essential to this shift in observing strategies is an understanding of the performance that can be obtained from biogeochemical sensors on platforms deployed for years and the

  18. An evaluation approach for alarm processing improvement

    International Nuclear Information System (INIS)

    Kim, Jung-Taek; Lee, Dong-Young; Hwang, In-Koo; Park, Jae-Chang

    1997-01-01

    In light of the need to improve MMIS of NPPs, the advanced I and C research team of KAERI has embarked on developing an Alarm and Diagnosis-Integrated Operator Support System, called ADIOS, to filter or suppress unnecessary or nuisance alarms and diagnose abnormality of the plant process. ADIOS has been built in an object-oriented AI environment of G-2 expert system software tool, as presented in a companion paper. ADIOS then is evaluated according to the plan in three steps; (1) preliminary tests to refine the knowledge base and inference structure of ADIOS in such a dynamic environment, and also to evaluate the appropriateness of alarm-processing algorithms; (2) to ensure correctness, consistency, and completeness in the knowledge base using COKEP (Checker Of Knowledge base using Extended Petri net); and (3) the cognitive performance evaluation using the Simulation Analyzer with a Cognitive Operator Model (SACOM) in the KAERI's Integrated Test Facility (ITF). (author). 5 figs, 1 tab

  19. Clinicoradiologic evaluation of styloid process calcification

    International Nuclear Information System (INIS)

    Bagga, Mun Bhawni; Kumar, C. Anand; Yeluri, Garima

    2012-01-01

    This study was performed to investigate the prevalence, morphology, and calcification pattern of the elongated styloid process in the Mathura population and its relation to gender, age, and mandibular movements. The study analyzed digital panoramic radiographs of 2,706 adults. The elongated styloid process was classified with the radiographic appearance based on the morphology and calcification pattern. The limits of mandibular protrusion were evaluated for each subject. The data were analyzed by using a Student's t-test and chi-squared test with significance set at p=0.05. Bilateral elongation having an 'elongated' type styloid process with a 'partially mineralized' pattern was the most frequent type of styloid process. No correlation was found between styloid process type and calcification pattern on the one hand and gender on the other, although elongated styloid was more prevalent in older and male populations (p 0.05). Dentists should recognize the existence of morphological variation in elongated styloid process or Eagle syndrome apparent on panoramic radiographs. We found higher prevalence of elongated styloid process in the population of the Mathura region when compared with other Indian populations. The calcification of the styloid process was more common in the older age group with no correlation to gender, mandibular movement and site. 'Type I' with a 'partially calcified' styloid process was observed more frequently in the population studied.

  20. Materials evaluation for a transuranic processing facility

    International Nuclear Information System (INIS)

    Barker, S.A.; Schwenk, E.B.; Divine, J.R.

    1990-11-01

    The Westinghouse Hanford Company, with the assistance of the Pacific Northwest Laboratory, is developing a transuranium extraction process for preheating double-shell tank wastes at the Hanford Site to reduce the volume of transuranic waste being sent to a repository. The bench- scale transuranium extraction process development is reaching a stage where a pilot plant design has begun for the construction of a facility in the existing B Plant. Because of the potential corrosivity of neutralized cladding removal waste process streams, existing embedded piping alloys in B Plant are being evaluated and ''new'' alloys are being selected for the full-scale plant screening corrosion tests. Once the waste is acidified with HNO 3 , some of the process streams that are high in F - and low in Al and zr can produce corrosion rates exceeding 30,000 mil/yr in austenitic alloys. Initial results results are reported concerning the applicability of existing plant materials to withstand expected process solutions and conditions to help determine the feasibility of locating the plant at the selected facility. In addition, process changes are presented that should make the process solutions less corrosive to the existing materials. Experimental work confirms that Hastelloy B is unsatisfactory for the expected process solutions; type 304L, 347 and 309S stainless steels are satisfactory for service at room temperature and 60 degrees C, if process stream complexing is performed. Inconel 625 was satisfactory for all solutions. 17 refs., 5 figs., 8 tabs

  1. Biotic and Biogeochemical Feedbacks to Climate Change

    Science.gov (United States)

    Torn, M. S.; Harte, J.

    2002-12-01

    Feedbacks to paleoclimate change are evident in ice core records showing correlations of temperature with carbon dioxide, nitrous oxide, and methane. Such feedbacks may be explained by plant and microbial responses to climate change, and are likely to occur under impending climate warming, as evidenced by results of ecosystem climate manipulation experiments and biometeorological observations along ecological and climate gradients. Ecosystems exert considerable influence on climate, by controlling the energy and water balance of the land surface as well as being sinks and sources of greenhouse gases. This presentation will focus on biotic and biogeochemical climate feedbacks on decadal to century time scales, emphasizing carbon storage and energy exchange. In addition to the direct effects of climate on decomposition rates and of climate and CO2 on plant productivity, climate change can alter species composition; because plant species differ in their surface properties, productivity, phenology, and chemistry, climate-induced changes in plant species composition can exert a large influence on the magnitude and sign of climate feedbacks. We discuss the effects of plant species on ecosystem carbon storage that result from characteristic differences in plant biomass and lifetime, allocation to roots vs. leaves, litter quality, microclimate for decomposition and the ultimate stabilization of soil organic matter. We compare the effect of species transitions on transpiration, albedo, and other surface properties, with the effect of elevated CO2 and warming on single species' surface exchange. Global change models and experiments that investigate the effect of climate only on existing vegetation may miss the biggest impacts of climate change on biogeochemical cycling and feedbacks. Quantification of feedbacks will require understanding how species composition and long-term soil processes will change under global warming. Although no single approach, be it experimental

  2. Evaluation of control strategies in forming processes

    Directory of Open Access Journals (Sweden)

    Calmano Stefan

    2015-01-01

    Full Text Available Products of forming processes are subject to quality fluctuations due to uncertainty in semi-finished part properties as well as process conditions and environment. An approach to cope with these uncertainties is the implementation of a closed-loop control taking into account the actual product properties measured by sensors or estimated by a mathematical process model. Both methods of uncertainty control trade off with a financial effort. In case of sensor integration the effort is the cost of the sensor including signal processing as well as the design and manufacturing effort for integration. In case of an estimation model the effort is mainly determined by the time and knowledge needed to derive the model, identify the parameters and implement the model into the PLC. The risk of mismatch between model and reality as well as the risk of wrong parameter identification can be assumed as additional uncertainty (model uncertainty. This paper evaluates controlled and additional uncertainty by taking into account process boundary conditions like the degree of fluctuations in semi-finished part properties. The proposed evaluation is demonstrated by the analysis of exemplary processes.

  3. Preliminary evaluation of alternative waste form solidification processes. Volume II. Evaluation of the processes

    International Nuclear Information System (INIS)

    1980-08-01

    This Volume II presents engineering feasibility evaluations of the eleven processes for solidification of nuclear high-level liquid wastes (HHLW) described in Volume I of this report. Each evaluation was based in a systematic assessment of the process in respect to six principal evaluation criteria: complexity of process; state of development; safety; process requirements; development work required; and facility requirements. The principal criteria were further subdivided into a total of 22 subcriteria, each of which was assigned a weight. Each process was then assigned a figure of merit, on a scale of 1 to 10, for each of the subcriteria. A total rating was obtained for each process by summing the products of the subcriteria ratings and the subcriteria weights. The evaluations were based on the process descriptions presented in Volume I of this report, supplemented by information obtained from the literature, including publications by the originators of the various processes. Waste form properties were, in general, not evaluated. This document describes the approach which was taken, the developent and application of the rating criteria and subcriteria, and the evaluation results. A series of appendices set forth summary descriptions of the processes and the ratings, together with the complete numerical ratings assigned; two appendices present further technical details on the rating process

  4. Process perspective on image quality evaluation

    Science.gov (United States)

    Leisti, Tuomas; Halonen, Raisa; Kokkonen, Anna; Weckman, Hanna; Mettänen, Marja; Lensu, Lasse; Ritala, Risto; Oittinen, Pirkko; Nyman, Göte

    2008-01-01

    The psychological complexity of multivariate image quality evaluation makes it difficult to develop general image quality metrics. Quality evaluation includes several mental processes and ignoring these processes and the use of a few test images can lead to biased results. By using a qualitative/quantitative (Interpretation Based Quality, IBQ) methodology, we examined the process of pair-wise comparison in a setting, where the quality of the images printed by laser printer on different paper grades was evaluated. Test image consisted of a picture of a table covered with several objects. Three other images were also used, photographs of a woman, cityscape and countryside. In addition to the pair-wise comparisons, observers (N=10) were interviewed about the subjective quality attributes they used in making their quality decisions. An examination of the individual pair-wise comparisons revealed serious inconsistencies in observers' evaluations on the test image content, but not on other contexts. The qualitative analysis showed that this inconsistency was due to the observers' focus of attention. The lack of easily recognizable context in the test image may have contributed to this inconsistency. To obtain reliable knowledge of the effect of image context or attention on subjective image quality, a qualitative methodology is needed.

  5. Does supplier evaluation impact process improvement?

    Directory of Open Access Journals (Sweden)

    Shiva Prasad h c

    2016-09-01

    Full Text Available Purpose: The research explores and examines factors for supplier evaluation and its impact on process improvement particularly aiming on a steel pipe manufacturing firm in Gujarat, India. Design/Methodology/approach: The conceptual research framework was developed and hypotheses were stated considering the analysis of literature and discussions with the managers and engineers of a steel pipe manufacturing company in Gujarat, India. Data was collected using in-depth interview. The questionnaire primarily involves the perception of evaluation of supplier. Factors influencing supplier evaluation and its influence on process improvement is also examined in this study. The model testing and validation was done using partial least square method. Outcomes signified that the factors that influence evaluation of the supplier are quality, cost, delivery and supplier relationship management. Findings: The study depicted that quality and cost factors for supplier evaluation are insignificant. The delivery and supplier relationship management have significant influence on evaluation of the supplier. The research also depicted that supplier evaluation has significant influence on process improvement. Research limitations/implications: The study has been made specifically for ABC steel pipe manufacturing industry in Gujarat, India and may not be appropriate to the other industries or any parts of the world. There is a possibility of response bias as the conclusions of this research was interpreted on survey responses taken from the employees of case study company, so it is suggested that future research can overcome this problem by employing various methodologies in addition to surveys like carrying out focus group and in-depth interviews, brainstorming sessions with the experts etc. Originality/value: Many researchers have considered quality, cost and delivery as the factors for evaluating the suppliers. But for a company it is quintessential to have good

  6. Factors Influencing Divergent Patterns of Phosphorus Availability in NY and PA Biogeochemical `Hotspots'

    Science.gov (United States)

    Saia, S. M.; Hofmeister, K.; Regan, J. M.; Buda, A. R.; Carrick, H. J.; Walter, M. T.

    2016-12-01

    Anthropogenic alteration of the soil phosphorus (P) cycle leads to subsequent water quality issues in agricultural dominated watersheds. In the humid Northeastern United States (NE US), variably saturated areas can generate surface runoff that transports P and stimulates biogeochemical processes; these hydrologically dynamic locations are often called biogeochemical `hotspots'. Many studies have evaluated nitrogen and carbon cycling in biogeochemical hot spots but few have focused on P. We hypothesized seasonally wet parts of the landscape (i.e., hotspots) have smaller biologically available P pools because runoff events frequently carry away nutrients like P. To test this hypothesis, we generated soil wetness index (SWI) maps from soil (SURRGO) and elevation (LiDAR rescaled to 3 m) data and used these maps to direct seasonal soil sampling near Klingerstown, Pennsylvania (PA) and Ithaca, New York (NY). We collected 5cm deep soil samples in PA (bimonthly) and NY (monthly) along soil moisture gradients for a range of land cover types (forest, fallow, and cropped) from May through October. We measured soil moisture in the field and percent organic matter (OM), pH, and three increasingly strong soil P extractions (dilute-salt-extractable P, oxalate-extractable P, and total-extractable P) in the laboratory. Our results indicated a negative relationship between dilute-salt-extractable P concentrations and SWI in PA and no relationship between these same variables in NY. We also found positive relationships between each of the three P extractions in PA but only a positive relationship between oxalate-extractable P and total-extractable P in NY. Our findings in PA support our hypothesis; namely, less biologically available P (i.e. dilute-salt-extractable P) is found in wetter areas of the landscape. However, divergent P availability patterns in NY point to further complexities and confounding variables in our understanding in soil P processes. Further studies will look

  7. Biogeochemical processes in a clay formation in situ experiment: Part A - Overview, experimental design and water data of an experiment in the Opalinus Clay at the Mont Terri Underground Research Laboratory, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, P., E-mail: paul.wersin@gruner.ch [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)] [Gruner Ltd., Gellertstrasse 55, 4020 Basel (Switzerland); Leupin, O.X. [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland); Mettler, S. [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)] [Solexperts Ltd., Mettlenbachstrasse 25, 8617 Moenchaltorf (Switzerland); Gaucher, E.C. [BRGM, 3 avenue Claude Guillemin, B.P. 36009, 45060 Orleans Cedex 2 (France); Maeder, U. [University of Bern, Institute of Geological Sciences, Baltzerstrasse 3, CH-3012 Bern (Switzerland); De Canniere, P. [SCK.CEN, Waste and Disposal Project, Boeretang 200, 2400 Mol (Belgium); Vinsot, A. [ANDRA, Laboratoire de Recherche Souterrain de Meuse/Haute-Marne, RD960 BP9, 55290 Bure (France); Gaebler, H.E. [BGR, Stilleweg 2, 30655 Hannover (Germany); Kunimaro, T. [JAEA, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kiho, K. [CRIEPI, 1646 Abiko, Abiko-city Chiba 270-1194 (Japan); Eichinger, L. [Hydroisotop, 85301 Schweitenkirchen (Germany)

    2011-06-15

    Highlights: > The composition was affected by the complex interplay of diffusion, mineral and surface reactions. > The {sup 13}C signals for carbon species showed significant variations which could only be partly explained. > The main cations remained remarkably constant during the experiment. > This underlines the strong buffering via cation exchange and carbonate dissolution/precipitation. - Abstract: An in situ test in the Opalinus Clay formation, termed porewater chemistry (PC) experiment, was carried out for a period of 5 years. It was based on the concept of diffusive equilibration whereby a traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed-off borehole. The main original focus was to obtain reliable data on the pH/pCO{sub 2} conditions of the porewater, but because of unexpected microbiologically-induced redox reactions, the objective was extended to elucidate the biogeochemical processes occurring in the borehole and to understand their impact on pH/pCO{sub 2} and porewater chemistry in the low permeability clay formation. The behaviour of the conservative tracers {sup 2}H and Br{sup -} could be explained by diffusive dilution in the clay and moreover the results showed that diffusive equilibration between the borehole water and the formation occurred within about 3 year's time. However, the composition and pH/pCO{sub 2} conditions differed considerably from those of the in situ porewater. Thus, pH was lower and pCO{sub 2} was higher than indicated by complementary laboratory investigations. The noted differences are explained by microbiologically-induced redox reactions occurring in the borehole and in the interfacial wall area which were caused by an organic source released from the equipment material. The degradation of this source was accompanied by sulfate reduction and - to a lesser extent - by methane generation, which induced a high rate of acetogenic reactions

  8. Biogeochemical processes in a clay formation in situ experiment: Part A - Overview, experimental design and water data of an experiment in the Opalinus Clay at the Mont Terri Underground Research Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Wersin, P.; Leupin, O.X.; Mettler, S.; Gaucher, E.C.; Maeder, U.; De Canniere, P.; Vinsot, A.; Gaebler, H.E.; Kunimaro, T.; Kiho, K.; Eichinger, L.

    2011-01-01

    Highlights: → The composition was affected by the complex interplay of diffusion, mineral and surface reactions. → The 13 C signals for carbon species showed significant variations which could only be partly explained. → The main cations remained remarkably constant during the experiment. → This underlines the strong buffering via cation exchange and carbonate dissolution/precipitation. - Abstract: An in situ test in the Opalinus Clay formation, termed porewater chemistry (PC) experiment, was carried out for a period of 5 years. It was based on the concept of diffusive equilibration whereby a traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed-off borehole. The main original focus was to obtain reliable data on the pH/pCO 2 conditions of the porewater, but because of unexpected microbiologically-induced redox reactions, the objective was extended to elucidate the biogeochemical processes occurring in the borehole and to understand their impact on pH/pCO 2 and porewater chemistry in the low permeability clay formation. The behaviour of the conservative tracers 2 H and Br - could be explained by diffusive dilution in the clay and moreover the results showed that diffusive equilibration between the borehole water and the formation occurred within about 3 year's time. However, the composition and pH/pCO 2 conditions differed considerably from those of the in situ porewater. Thus, pH was lower and pCO 2 was higher than indicated by complementary laboratory investigations. The noted differences are explained by microbiologically-induced redox reactions occurring in the borehole and in the interfacial wall area which were caused by an organic source released from the equipment material. The degradation of this source was accompanied by sulfate reduction and - to a lesser extent - by methane generation, which induced a high rate of acetogenic reactions corresponding to very high acetate

  9. Natural and drought scenarios in an east central Amazon forest: Fidelity of the Community Land Model 3.5 with three biogeochemical models

    Science.gov (United States)

    Sakaguchi, Koichi; Zeng, Xubin; Christoffersen, Bradley J.; Restrepo-Coupe, Natalia; Saleska, Scott R.; Brando, Paulo M.

    2011-03-01

    Recent development of general circulation models involves biogeochemical cycles: flows of carbon and other chemical species that circulate through the Earth system. Such models are valuable tools for future projections of climate, but still bear large uncertainties in the model simulations. One of the regions with especially high uncertainty is the Amazon forest where large-scale dieback associated with the changing climate is predicted by several models. In order to better understand the capability and weakness of global-scale land-biogeochemical models in simulating a tropical ecosystem under the present day as well as significantly drier climates, we analyzed the off-line simulations for an east central Amazon forest by the Community Land Model version 3.5 of the National Center for Atmospheric Research and its three independent biogeochemical submodels (CASA', CN, and DGVM). Intense field measurements carried out under Large Scale Biosphere-Atmosphere Experiment in Amazonia, including forest response to drought from a throughfall exclusion experiment, are utilized to evaluate the whole spectrum of biogeophysical and biogeochemical aspects of the models. Our analysis shows reasonable correspondence in momentum and energy turbulent fluxes, but it highlights three processes that are not in agreement with observations: (1) inconsistent seasonality in carbon fluxes, (2) biased biomass size and allocation, and (3) overestimation of vegetation stress to short-term drought but underestimation of biomass loss from long-term drought. Without resolving these issues the modeled feedbacks from the biosphere in future climate projections would be questionable. We suggest possible directions for model improvements and also emphasize the necessity of more studies using a variety of in situ data for both driving and evaluating land-biogeochemical models.

  10. Clinicoradiologic evaluation of styloid process calcification

    Energy Technology Data Exchange (ETDEWEB)

    Bagga, Mun Bhawni [Dept. of Oral Medicine Diagnosis and Radiology, M.N. D.A.V. Dental College and Hospital, Solan (Korea, Republic of); Kumar, C. Anand; Yeluri, Garima [Dept. of Oral Medicine Diagnosis and Radiology, KD Dental College and Hospital, Mathura (Korea, Republic of)

    2012-09-15

    This study was performed to investigate the prevalence, morphology, and calcification pattern of the elongated styloid process in the Mathura population and its relation to gender, age, and mandibular movements. The study analyzed digital panoramic radiographs of 2,706 adults. The elongated styloid process was classified with the radiographic appearance based on the morphology and calcification pattern. The limits of mandibular protrusion were evaluated for each subject. The data were analyzed by using a Student's t-test and chi-squared test with significance set at p=0.05. Bilateral elongation having an 'elongated' type styloid process with a 'partially mineralized' pattern was the most frequent type of styloid process. No correlation was found between styloid process type and calcification pattern on the one hand and gender on the other, although elongated styloid was more prevalent in older and male populations (p<0.05). Further styloid process elongation showed no effect on mandibular protrusive movement (p>0.05). Dentists should recognize the existence of morphological variation in elongated styloid process or Eagle syndrome apparent on panoramic radiographs. We found higher prevalence of elongated styloid process in the population of the Mathura region when compared with other Indian populations. The calcification of the styloid process was more common in the older age group with no correlation to gender, mandibular movement and site. 'Type I' with a 'partially calcified' styloid process was observed more frequently in the population studied.

  11. Hanford phosphate precipitation filtration process evaluation

    International Nuclear Information System (INIS)

    Walker, B.W.; McCabe, D.J.

    1997-01-01

    The purpose of this filter study was to evaluate cross-flow filtration as effective solid-liquid separation technology for treating Hanford wastes, outline operating conditions for equipment, examine the expected filter flow rates, and determine proper cleaning. A proposed Hanford waste pre-treatment process uses sodium hydroxide at high temperature to remove aluminum from sludge. This process also dissolves phosphates. Upon cooling to 40 degrees centigrade the phosphates form a Na7(PO4)2F9H2O precipitate which must be removed prior to further treatment. Filter studies were conducted with a phosphate slurry simulant to evaluate whether 0.5 micron cross-flow sintered metal Mott filters can separate the phosphate precipitate from the wash solutions. The simulant was recirculated through the filters at room temperature and filtration performance data was collected

  12. Sustainability evaluation of nanotechnology processing and production

    OpenAIRE

    Teresa M. Mata; Nídia de Sá Caetano; António A. Martins

    2015-01-01

    This article discusses the current situation and challenges posed by nanotechnology from a sustainability point of view. It presents an objective methodology to evaluate the sustainability of nanotechnology products, based on a life cycle thinking approach, a framework particularly suited to assess all current and future relevant economic, societal and environmental impacts products and processes. It is grounded on a hierarchical definition of indicators, starting from 3D indicators that take...

  13. Deep learning evaluation using deep linguistic processing

    OpenAIRE

    Kuhnle, Alexander; Copestake, Ann

    2017-01-01

    We discuss problems with the standard approaches to evaluation for tasks like visual question answering, and argue that artificial data can be used to address these as a complement to current practice. We demonstrate that with the help of existing 'deep' linguistic processing technology we are able to create challenging abstract datasets, which enable us to investigate the language understanding abilities of multimodal deep learning models in detail, as compared to a single performance value ...

  14. Thermal processes evaluation for RWMC wastes

    International Nuclear Information System (INIS)

    1991-01-01

    The objective of this activity was to provide a white paper that identifies, collects information, and presents a preliminary evaluation of ''core'' thermal technologies that could be applied to RWMC stored and buried mixed waste. This paper presents the results of the following activities: General thermal technology identification, collection of technical and cost information on each technology, identification of thermal technologies applicable to RWMC waste, evaluation of each technology as applied to RWMC waste in seven process attributes, scoring each technology on a one to five scale (five highest) in each process attribute. Reaching conclusions about the superiority of one technology over others is not advised based on this preliminary study alone. However, the highly rated technologies (i.e., overall score of 2.9 or better) are worthy of a more detailed evaluation. The next step should be a more detailed evaluation of the technologies that includes onsite visits with operational facilities, preconceptual treatment facility design analysis, and visits with developers for emerging technologies. 2 figs., 6 tabs

  15. Processing multilevel secure test and evaluation information

    Science.gov (United States)

    Hurlburt, George; Hildreth, Bradley; Acevedo, Teresa

    1994-07-01

    The Test and Evaluation Community Network (TECNET) is building a Multilevel Secure (MLS) system. This system features simultaneous access to classified and unclassified information and easy access through widely available communications channels. It provides the necessary separation of classification levels, assured through the use of trusted system design techniques, security assessments and evaluations. This system enables cleared T&E users to view and manipulate classified and unclassified information resources either using a single terminal interface or multiple windows in a graphical user interface. TECNET is in direct partnership with the National Security Agency (NSA) to develop and field the MLS TECNET capability in the near term. The centerpiece of this partnership is a state-of-the-art Concurrent Systems Security Engineering (CSSE) process. In developing the MLS TECNET capability, TECNET and NSA are providing members, with various expertise and diverse backgrounds, to participate in the CSSE process. The CSSE process is founded on the concepts of both Systems Engineering and Concurrent Engineering. Systems Engineering is an interdisciplinary approach to evolve and verify an integrated and life cycle balanced set of system product and process solutions that satisfy customer needs (ASD/ENS-MIL STD 499B 1992). Concurrent Engineering is design and development using the simultaneous, applied talents of a diverse group of people with the appropriate skills. Harnessing diverse talents to support CSSE requires active participation by team members in an environment that both respects and encourages diversity.

  16. Evaluating Process Effectiveness to Reduce Risk

    Science.gov (United States)

    Shepherd, Christena C.

    2017-01-01

    security; loss of confidence in government; failure of publicly funded projects; damage to the environment; ethics violations, and the list goes on; with local, national and even international consequences. The Plan-Do-Check-Act process, also known as the "process approach" can be used at any time to establish and standardize a process, and it can also be used to check periodically for "process creep" (i.e., informal, unauthorized changes that have occurred over time), any necessary updates and improvements. While ISO 9001 compliance is not mandated for all government agencies, if interpreted correctly, it can be useful in establishing a framework and implementing effective management systems and processes.4 Another method that can be used to evaluate effectiveness is the scorecard definitions in Mallory's Process Management Standard5 as a basis for evaluating work on the process level on effective, and continuously improved and improving processes. With processes on the lower end of the scale, agencies are vulnerable to a great many risks, with employees and managers making up many of the rules as they go, leading to the above listed negative results. Without clear guidance for nominal operations, off-nominal situations can, and do, increase the likelihood of chaos. In an increasingly technical environment, with inter-agency communication and collaboration becoming the norm, agencies need to come to grips with the fact that processes can become rapidly outdated, and that the technical community should take on an increased role in the maturation of the agency's processes. Industry has long known that effective processes are also efficient, and process improvement methods such as Kaizen, Lean, Six Sigma, 5S, and mistake proofing lead to increased productivity, improved quality, and decreased cost. Again, government agencies have different concerns, but inefficiencies and mistakes can have dire and wide reaching consequences for the public that they serve. While no one goes

  17. How to `Elk-test' biogeochemical models in a data rich world? (Invited)

    Science.gov (United States)

    Reichstein, M.; Ciais, P.; Seneviratne, S. I.; Carvalhais, N.; Dalmonech, D.; Jung, M.; Luo, Y.; Mahecha, M. D.; Moffat, A. M.; Tomelleri, E.; Zaehle, S.

    2010-12-01

    Process-oriented biogeochemical models are a primary tool that has been used to project future states of climate and ecosystems in the earth system in response to anthropogenic and other forcing, and receive tremendous attention also in the context us the planned assessment report AR5 by the IPCC. However, model intercomparison and data-model comparison studies indicate large uncertainties regarding predictions of global interactions between atmosphere and biosphere. Rigorous scientific testing of these models is essential but very challenging, largely because neither it is technically and ethically possible to perform global earth-scale experiments, nor do we have replicate Earths for hypothesis testing. Hence, model evaluations have to rely on monitoring data such as ecological observation networks, global remote sensing or short-term and small-scale experiments. Here, we critically examine strategies of how model evaluations have been performed with a particular emphasis on terrestrial ecosystems. Often weak ‘validations’ are being presented which do not take advantage of all the relevant information in the observed data, but also apparent falsifications are made, that are hampered by a confusion of system processes with system behavior. We propose that a stronger integration of recent advances in pattern-oriented and system-oriented methodologies will lead to more satisfying earth system model evaluation and development, and show a few enlightening examples from terrestrial biogeochemical modeling and other disciplines. Moreover it is crucial to take advantage of the multidimensional nature of arising earth observation data sets which should be matched by models simultaneously, instead of relying on univariate simple comparisons. A new critical model evaluation is needed to improve future IPCC assessments in order to reduce uncertainties by distinguishing plausible simulation trajectories from fairy tales.

  18. Evaluating Translational Research: A Process Marker Model

    Science.gov (United States)

    Trochim, William; Kane, Cathleen; Graham, Mark J.; Pincus, Harold A.

    2011-01-01

    Abstract Objective: We examine the concept of translational research from the perspective of evaluators charged with assessing translational efforts. One of the major tasks for evaluators involved in translational research is to help assess efforts that aim to reduce the time it takes to move research to practice and health impacts. Another is to assess efforts that are intended to increase the rate and volume of translation. Methods: We offer an alternative to the dominant contemporary tendency to define translational research in terms of a series of discrete “phases.”Results: We contend that this phased approach has been confusing and that it is insufficient as a basis for evaluation. Instead, we argue for the identification of key operational and measurable markers along a generalized process pathway from research to practice. Conclusions: This model provides a foundation for the evaluation of interventions designed to improve translational research and the integration of these findings into a field of translational studies. Clin Trans Sci 2011; Volume 4: 153–162 PMID:21707944

  19. Modelling coupled microbial processes in the subsurface: Model development, verification, evaluation and application

    Science.gov (United States)

    Masum, Shakil A.; Thomas, Hywel R.

    2018-06-01

    To study subsurface microbial processes, a coupled model which has been developed within a Thermal-Hydraulic-Chemical-Mechanical (THCM) framework is presented. The work presented here, focuses on microbial transport, growth and decay mechanisms under the influence of multiphase flow and bio-geochemical reactions. In this paper, theoretical formulations and numerical implementations of the microbial model are presented. The model has been verified and also evaluated against relevant experimental results. Simulated results show that the microbial processes have been accurately implemented and their impacts on porous media properties can be predicted either qualitatively or quantitatively or both. The model has been applied to investigate biofilm growth in a sandstone core that is subjected to a two-phase flow and variable pH conditions. The results indicate that biofilm growth (if not limited by substrates) in a multiphase system largely depends on the hydraulic properties of the medium. When the change in porewater pH which occurred due to dissolution of carbon dioxide gas is considered, growth processes are affected. For the given parameter regime, it has been shown that the net biofilm growth is favoured by higher pH; whilst the processes are considerably retarded at lower pH values. The capabilities of the model to predict microbial respiration in a fully coupled multiphase flow condition and microbial fermentation leading to production of a gas phase are also demonstrated.

  20. Minimally processed vegetable salads: microbial quality evaluation.

    Science.gov (United States)

    Fröder, Hans; Martins, Cecília Geraldes; De Souza, Katia Leani Oliveira; Landgraf, Mariza; Franco, Bernadette D G M; Destro, Maria Teresa

    2007-05-01

    The increasing demand for fresh fruits and vegetables and for convenience foods is causing an expansion of the market share for minimally processed vegetables. Among the more common pathogenic microorganisms that can be transmitted to humans by these products are Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella. The aim of this study was to evaluate the microbial quality of a selection of minimally processed vegetables. A total of 181 samples of minimally processed leafy salads were collected from retailers in the city of Sao Paulo, Brazil. Counts of total coliforms, fecal coliforms, Enterobacteriaceae, psychrotrophic microorganisms, and Salmonella were conducted for 133 samples. L. monocytogenes was assessed in 181 samples using the BAX System and by plating the enrichment broth onto Palcam and Oxford agars. Suspected Listeria colonies were submitted to classical biochemical tests. Populations of psychrotrophic microorganisms >10(6) CFU/g were found in 51% of the 133 samples, and Enterobacteriaceae populations between 10(5) and 106 CFU/g were found in 42% of the samples. Fecal coliform concentrations higher than 10(2) CFU/g (Brazilian standard) were found in 97 (73%) of the samples, and Salmonella was detected in 4 (3%) of the samples. Two of the Salmonella-positive samples had minimally processed vegetables had poor microbiological quality, and these products could be a vehicle for pathogens such as Salmonella and L. monocytogenes.

  1. Super Efficient Refrigerator Program (SERP) evaluation. Volume 1: Process evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sandahl, L.J.; Ledbetter, M.R.; Chin, R.I.; Lewis, K.S.; Norling, J.M.

    1996-01-01

    The Pacific Northwest National Laboratory (PNNL) conducted this study for the US Department of Energy (DOE) as part of the Super Efficient Refrigerator Program (SERP) Evaluation. This report documents the SERP formation and implementation process, and identifies preliminary program administration and implementation issues. The findings are based primarily on interviews with those familiar with the program, such as utilities, appliance manufacturers, and SERP administrators. These interviews occurred primarily between March and April 1995, when SERP was in the early stages of program implementation. A forthcoming report will estimate the preliminary impacts of SERP within the industry and marketplace. Both studies were funded by DOE at the request of SERP Inc., which sought a third-party evaluation of its program.

  2. Restoration of biogeochemical function in mangrove forests

    Science.gov (United States)

    McKee, K.L.; Faulkner, P.L.

    2000-01-01

    Forest structure of mangrove restoration sites (6 and 14 years old) at two locations (Henderson Creek [HC] and Windstar [WS]) in southwest Florida differed from that of mixed-basin forests (>50 years old) with which they were once contiguous. However, the younger site (HC) was typical of natural, developing forests, whereas the older site (WS) was less well developed with low structural complexity. More stressful physicochemical conditions resulting from incomplete tidal flushing (elevated salinity) and variable topography (waterlogging) apparently affected plant survival and growth at the WS restoration site. Lower leaf fall and root production rates at the WS restoration site, compared with that at HC were partly attributable to differences in hydroedaphic conditions and structural development. However, leaf and root inputs at each restoration site were not significantly different from that in reference forests within the same physiographic setting. Macrofaunal consumption of tethered leaves also did not differ with site history, but was dramatically higher at HC compared with WS, reflecting local variation in leaf litter processing rates, primarily by snails (Melampus coffeus). Degradation of leaves and roots in mesh bags was slow overall at restoration sites, however, particularly at WS where aerobic decomposition may have been more limited. These findings indicate that local or regional factors such as salinity regime act together with site history to control primary production and turnover rates of organic matter in restoration sites. Species differences in senescent leaf nitrogen content and degradation rates further suggest that restoration sites dominated by Laguncularia racemosa and Rhizophora mangle should exhibit slower recycling of nutrients compared with natural basin forests where Avicennia germinans is more abundant. Structural development and biogeochemical functioning of restored mangrove forests thus depend on a number of factors, but site

  3. Biogeochemical cycling of radionuclides in the environment

    International Nuclear Information System (INIS)

    Livens, F.R.

    1990-01-01

    The biogeochemical cycling of radionuclides with other components such as nutrients around ecosystems is discussed. In particular the behaviour of cesium in freshwater ecosystems since the Chernobyl accident and the behaviour of technetium in the form of pertechnetate anions, TcO 4 , in marine ecosystems is considered. (UK)

  4. The evaluation process of short training sessions in organizations

    NARCIS (Netherlands)

    Overschie, M.G.F.; Lukosch, H.K.; De Vries, P.

    This paper presents a critical reflection of the evaluation of learning processes in organizations. Based on learning and evaluation theories and concepts we discuss qualitative and quantitative evaluation processes, and its relationship to short training sessions to foster sustainable development.

  5. Biogeochemical gradients above a coal tar DNAPL

    Energy Technology Data Exchange (ETDEWEB)

    Scherr, Kerstin E., E-mail: kerstin.brandstaetter-scherr@boku.ac.at [University of Natural Resources and Life Sciences Vienna (BOKU), Department IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria); Backes, Diana [University of Natural Resources and Life Sciences Vienna (BOKU), Department IFA-Tulln, Institute for Environmental Biotechnology, Konrad Lorenz Strasse 20, 3430 Tulln (Austria); Scarlett, Alan G. [University of Plymouth, Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, Drake Circus, Plymouth, Devon PL4 8AA (United Kingdom); Lantschbauer, Wolfgang [Government of Upper Austria, Directorate for Environment and Water Management, Division for Environmental Protection, Kärntner Strasse 10-12, 4021 Linz (Austria); Nahold, Manfred [GUT Gruppe Umwelt und Technik GmbH, Ingenieurbüro für Technischen Umweltschutz, Plesching 15, 4040 Linz (Austria)

    2016-09-01

    Naturally occurring distribution and attenuation processes can keep hydrocarbon emissions from dense non aqueous phase liquids (DNAPL) into the adjacent groundwater at a minimum. In a historically coal tar DNAPL-impacted site, the de facto absence of a plume sparked investigations regarding the character of natural attenuation and DNAPL resolubilization processes at the site. Steep vertical gradients of polycyclic aromatic hydrocarbons, microbial community composition, secondary water quality and redox-parameters were found to occur between the DNAPL-proximal and shallow waters. While methanogenic and mixed-electron acceptor conditions prevailed close to the DNAPL, aerobic conditions and very low dissolved contaminant concentrations were identified in three meters vertical distance from the phase. Comprehensive two-dimensional gas chromatography–mass spectrometry (GC × GC–MS) proved to be an efficient tool to characterize the behavior of the present complex contaminant mixture. Medium to low bioavailability of ferric iron and manganese oxides of aquifer samples was detected via incubation with Shewanella alga and evidence for iron and manganese reduction was collected. In contrast, 16S rDNA phylogenetic analysis revealed the absence of common iron reducing bacteria. Aerobic hydrocarbon degraders were abundant in shallow horizons, while nitrate reducers were dominating in deeper aquifer regions, in addition to a low relative abundance of methanogenic archaea. Partial Least Squares – Canonical Correspondence Analysis (PLS-CCA) suggested that nitrate and oxygen concentrations had the greatest impact on aquifer community structure in on- and offsite wells, which had a similarly high biodiversity (H’ and Chao1). Overall, slow hydrocarbon dissolution from the DNAPL appears to dominate natural attenuation processes. This site may serve as a model for developing legal and technical strategies for the treatment of DNAPL-impacted sites where contaminant plumes are

  6. Process improvement : the creation and evaluation of process alternatives

    NARCIS (Netherlands)

    Netjes, M.

    2010-01-01

    Companies continuously strive to improve their processes to increase productivity and delivered quality against lower costs. With Business Process Redesign (BPR) projects such improvement goals can be achieved. BPR involves the restructuring of business processes, stimulated by the application of

  7. Modelling benthic biophysical drivers of ecosystem structure and biogeochemical response

    Science.gov (United States)

    Stephens, Nicholas; Bruggeman, Jorn; Lessin, Gennadi; Allen, Icarus

    2016-04-01

    The fate of carbon deposited at the sea floor is ultimately decided by biophysical drivers that control the efficiency of remineralisation and timescale of carbon burial in sediments. Specifically, these drivers include bioturbation through ingestion and movement, burrow-flushing and sediment reworking, which enhance vertical particulate transport and solute diffusion. Unfortunately, these processes are rarely satisfactorily resolved in models. To address this, a benthic model that explicitly describes the vertical position of biology (e.g., habitats) and biogeochemical processes is presented that includes biological functionality and biogeochemical response capturing changes in ecosystem structure, benthic-pelagic fluxes and biodiversity on inter-annual timescales. This is demonstrated by the model's ability to reproduce temporal variability in benthic infauna, vertical pore water nutrients and pelagic-benthic solute fluxes compared to in-situ data. A key advance is the replacement of bulk parameterisation of bioturbation by explicit description of the bio-physical processes responsible. This permits direct comparison with observations and determination of key parameters in experiments. Crucially, the model resolves the two-way interaction between sediment biogeochemistry and ecology, allowing exploration of the benthic response to changing environmental conditions, the importance of infaunal functional traits in shaping benthic ecological structure and the feedback the resulting bio-physical processes exert on pore water nutrient profiles. The model is actively being used to understand shelf sea carbon cycling, the response of the benthos to climatic change, food provision and other societal benefits.

  8. Evaluation of Grape Pomace Composting Process

    Directory of Open Access Journals (Sweden)

    Patrik Burg

    2014-01-01

    Full Text Available The paper deals with the problems of composting of grape pomace in strip compost piles. The three variants of compost piles formed from grape pomace and vegetables waste, wood chips and mature in varying proportions were tested. Turning of piles was performed using windrow turner PKS 2.8, in which the achieved performance was monitored. On the performance of windrow turner has a significant influence also cross section or width and height of turning piles and the bulk density of ingredients including their moisture. In evaluating, attention has been paid to assessment of selected parameters (temperature, moisture content of the composting process. From the viewpoint of temperature course, the highest temperature reached at the piles in Var. I (64.1 °C and Var. II (55.3 °C. Moisture of compost piles in the individual variants did not differ significantly and ranged between 25–35%.

  9. Process to identify and evaluate restoration options

    International Nuclear Information System (INIS)

    Strand, J.; Senner, S.; Weiner, A.; Rabinowitch, S.; Brodersen, M.; Rice, K.; Klinge, K.; MacMullin, S.; Yender, R.; Thompson, R.

    1993-01-01

    The restoration planning process has yielded a number of possible alternatives for restoring resources and services injured by the Exxon Valdez oil spill. They were developed by resource managers, scientists, and the public, taking into consideration the results of damage assessment and restoration studies and information from the scientific literature. The alternatives thus far identified include no action natural recovery, management of human uses, manipulation of resources, habitat protection and acquisition, acquisition of equivalent resources, and combinations of the above. Each alternative consists of a different mix of resource- or service-specific restoration options. To decide whether it was appropriate to spend restoration funds on a particular resource or service, first criteria had to be developed that evaluated available evidence for consequential injury and the adequacy and rate of natural recovery. Then, recognizing the range of effective restoration options, a second set of criteria was applied to determine which restoration options were the most beneficial. These criteria included technical feasibility, potential to improve the rate or degree of recovery, the relationship of expected costs to benefits, cost effectiveness, and the potential to restore the ecosystem as a whole. The restoration options considered to be most beneficial will be grouped together in several or more of the above alternatives and presented in a draft restoration plan. They will be further evaluated in a companion draft environmental impact statement

  10. Econometric Methodology of Monopolization Process Evaluation

    Directory of Open Access Journals (Sweden)

    Dmitrijs Skoruks

    2014-06-01

    Full Text Available The research “Econometric Methodology of Monopolization Process Evaluation” gives a perspective description of monopolization process’ nature, occurrence source, development procedure and internal conjuncture specifics, as well as providing an example of modern econometrical method application within a unified framework of market competition analysis for the purpose of conducting a quantitative competition evaluation on an industry level for practical use in both private and public sectors. The main question of the aforementioned research is the definition and quantitative analysis of monopolization effects in modern day globalized markets, while con- structing an empirical model of the econometric analysis, based on the use of in- ternational historical experience of monopoly formations standings, with the goal of introducing a further development scheme for the use of both econometrical and statistical instruments in line with the forecasting and business research need of enterprises and regulatory functions of the public sector. The current research uses a vast variety of monopolization evaluation ratios and their econometrical updates on companies that are involved in the study procedure in order to detect and scallar measure their market monopolizing potential, based on the implemented acquired market positions, turnover shares and competition policies.

  11. Quality evaluation of processed clay soil samples.

    Science.gov (United States)

    Steiner-Asiedu, Matilda; Harrison, Obed Akwaa; Vuvor, Frederick; Tano-Debrah, Kwaku

    2016-01-01

    This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was processed clay soil samples. Staphylococcus spp and fecal coliforms including Klebsiella, Escherichia, and Shigella and Enterobacterspp were isolated from the clay samples. Samples from the Kaneshie market in Accra recorded the highest total viable counts 6.5 Log cfu/g and Staphylococcal count 5.8 Log cfu/g. For fecal coliforms, Madina market samples had the highest count 6.5 Log cfu/g and also recorded the highest levels of yeast and mould. For Koforidua, total viable count was highest in the samples from the Zongo market 6.3 Log cfu/g. Central market samples had the highest count of fecal coliforms 4.6 Log cfu/g and yeasts and moulds 6.5 Log cfu/g. "Small" market recorded the highest staphylococcal count 6.2 Log cfu/g. The water activity of the clay samples were low, and ranged between 0.65±0.01 and 0.66±0.00 for samples collected from Koforidua and Accra respectively. The clay samples were found to contain Klebsiella spp. Escherichia, Enterobacter, Shigella spp. staphylococcus spp., yeast and mould. These have health implications when consumed.

  12. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates

    Science.gov (United States)

    Yan, Zhifeng; Liu, Chongxuan; Liu, Yuanyuan; Bailey, Vanessa L.

    2017-11-01

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.

  13. Biogeochemical reactive-diffusive transport of heavy metals in Lake Coeur d'Alene sediments

    International Nuclear Information System (INIS)

    Sevinc Sengoer, S.; Spycher, Nicolas F.; Ginn, Timothy R.; Sani, Rajesh K.; Peyton, Brent

    2007-01-01

    Decades of runoff from precious-metal mining operations in the Lake Coeur d'Alene Basin, Idaho, have left the sediments in this lake heavily enriched with toxic metals, most notably Zn, Pb and Cu, together with As. The bioavailability, fate and transport of these metals in the sediments are governed by complex biogeochemical processes. In particular, indigenous microbes are capable of catalyzing reactions that detoxify their environments, and thus constitute an important driving component in the biogeochemical cycling of these metals. Here, the development of a quantitative model to evaluate the transport and fate of Zn, Pb and Cu in Lake Coeur d'Alene sediments is reported. The current focus is on the investigation and understanding of local-scale processes, rather than the larger-scale dynamics of sedimentation and diagenesis, with particular emphasis on metal transport through reductive dissolution of Fe hydroxides. The model includes 1-D inorganic diffusive transport coupled to a biotic reaction network including consortium biodegradation kinetics with multiple terminal electron acceptors and syntrophic consortium biotransformation dynamics of redox front. The model captures the mobilization of metals initially sorbed onto hydrous ferric oxides, through bacterial reduction of Fe(III) near the top of the sediment column, coupled with the precipitation of metal sulfides at depth due to biogenic sulfide production. Key chemical reactions involve the dissolution of ferrihydrite and precipitation of siderite and Fe sulfide. The relative rates of these reactions play an important role in the evolution of the sediment pore-water chemistry, notably pH, and directly depend on the relative activity of Fe and SO 4 reducers. The model captures fairly well the observed trends of increased alkalinity, sulfide, Fe and heavy metal concentrations below the sediment-water interface, together with decreasing terminal electron acceptor concentrations with depth, including the

  14. Investigation of In-situ Biogeochemical Reduction of Chlorinated Solvents in Groundwater by Reduced Iron Minerals

    Science.gov (United States)

    Biogeochemical transformation is a process in which chlorinated solvents are degraded abiotically by reactive minerals formed by, at least in part or indirectly from, anaerobic biological processes. Five mulch biowall and/or vegetable oil-based bioremediation applications for tr...

  15. Probabilistic evaluation of process model matching techniques

    NARCIS (Netherlands)

    Kuss, Elena; Leopold, Henrik; van der Aa, Han; Stuckenschmidt, Heiner; Reijers, Hajo A.

    2016-01-01

    Process model matching refers to the automatic identification of corresponding activities between two process models. It represents the basis for many advanced process model analysis techniques such as the identification of similar process parts or process model search. A central problem is how to

  16. The Anthropogenic Effects of Hydrocarbon Inputs to Coastal Seas: Are There Potential Biogeochemical Impacts?

    Science.gov (United States)

    Anderson, M. R.; Rivkin, R. B.

    2016-02-01

    Petroleum hydrocarbon discharges related to fossil fuel exploitation have the potential to alter microbial processes in the upper ocean. While the ecotoxicological effects of such inputs are commonly evaluated, the potential for eutrophication from the constituent organic and inorganic nutrients has been largely ignored. Hydrocarbons from natural seeps and anthropogenic sources represent a measurable source of organic carbon for surface waters. The most recent (1989-1997) estimate of average world-wide input of hydrocarbons to the sea is 1.250 x 1012 g/yr ≈ 1.0 x 1012g C/year. Produced water from offshore platforms is the largest waste stream from oil and gas exploitation and contributes significant quantities of inorganic nutrients such as N, P and Fe. In coastal areas where such inputs are a significant source of these nutrients, model studies show the potential to shift production toward smaller cells and net heterotrophy. The consequences of these nutrient sources for coastal systems and semi enclosed seas are complex and difficult to predict, because (1) there is a lack of comprehensive data on inputs and in situ concentrations and (2) the is no conceptual or quantitative framework to consider their effects on ocean biogeochemical processes. Here we use examples from the North Sea (produced water discharges 1% total riverine input and NH4 3% of the annual riverine nitrogen load), the South China Sea (total petroleum hydrocarbons = 10-1750 μg/l in offshore waters), and the Gulf of Mexico (seeps = 76-106 x 109 gC/yr, Macondo blowout 545 x 109 gC) to demonstrate how hydrocarbon and produced water inputs can influence basin scale biogeochemical and ecosystem processes and to propose a framework to consider these effects on larger scales.

  17. Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling

    Science.gov (United States)

    Krause, Stefan; Lewandowski, Joerg; Hannah, David; McDonald, Karlie; Folegot, Silvia; Baranov, Victor

    2016-04-01

    Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale laboratory microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces

  18. Design and performance of subgrade biogeochemical reactors.

    Science.gov (United States)

    Gamlin, Jeff; Downey, Doug; Shearer, Brad; Favara, Paul

    2017-12-15

    Subgrade biogeochemical reactors (SBGRs), also commonly referred to as in situ bioreactors, are a unique technology for treatment of contaminant source areas and groundwater plume hot spots. SBGRs have most commonly been configured for enhanced reductive dechlorination (ERD) applications for chlorinated solvent treatment. However, they have also been designed for other contaminant classes using alternative treatment media. The SBGR technology typically consists of removal of contaminated soil via excavation or large-diameter augers, and backfill of the soil void with gravel and treatment amendments tailored to the target contaminant(s). In most cases SBGRs include installation of infiltration piping and a low-flow pumping system (typically solar-powered) to recirculate contaminated groundwater through the SBGR for treatment. SBGRs have been constructed in multiple configurations, including designs capable of meeting limited access restrictions at heavily industrialized sites, and at sites with restrictions on surface disturbance due to sensitive species or habitat issues. Typical performance results for ERD applications include 85 to 90 percent total molar reduction of chlorinated volatile organic compounds (CVOCs) near the SBGR and rapid clean-up of adjacent dissolved contaminant source areas. Based on a review of the literature and CH2M's field-scale results from over a dozen SBGRs with a least one year of performance data, important site-specific design considerations include: 1) hydraulic residence time should be long enough for sufficient treatment but not too long to create depressed pH and stagnant conditions (e.g., typically between 10 and 60 days), 2) reactor material should balance appropriate organic mulch as optimal bacterial growth media along with other organic additives that provide bioavailable organic carbon, 3) a variety of native bacteria are important to the treatment process, and 4) biologically mediated generation of iron sulfides along with

  19. SEAM PUCKERING EVALUATION METHOD FOR SEWING PROCESS

    Directory of Open Access Journals (Sweden)

    BRAD Raluca

    2014-07-01

    Full Text Available The paper presents an automated method for the assessment and classification of puckering defects detected during the preproduction control stage of the sewing machine or product inspection. In this respect, we have presented the possible causes and remedies of the wrinkle nonconformities. Subjective factors related to the control environment and operators during the seams evaluation can be reduced using an automated system whose operation is based on image processing. Our implementation involves spectral image analysis using Fourier transform and an unsupervised neural network, the Kohonen Map, employed to classify material specimens, the input images, into five discrete degrees of quality, from grade 5 (best to grade 1 (the worst. The puckering features presented in the learning and test images have been pre-classified using the seam puckering quality standard. The network training stage will consist in presenting five input vectors (derived from the down-sampled arrays, representing the puckering grades. The puckering classification consists in providing an input vector derived from the image supposed to be classified. A scalar product between the input values vectors and the weighted training images is computed. The result will be assigned to one of the five classes of which the input image belongs. Using the Kohonen network the puckering defects were correctly classified in proportion of 71.42%.

  20. Subsurface Biogeochemical Research FY11 Second Quarter Performance Measure

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Timothy D.

    2011-03-31

    The Subsurface Biogeochemical Research (SBR) Long Term Measure for 2011 under the Performance Assessment Rating Tool (PART) measure is to "Refine subsurface transport models by developing computational methods to link important processes impacting contaminant transport at smaller scales to the field scale." The second quarter performance measure is to "Provide a report on computational methods linking genome-enabled understanding of microbial metabolism with reactive transport models to describe processes impacting contaminant transport in the subsurface." Microorganisms such as bacteria are by definition small (typically on the order of a micron in size), and their behavior is controlled by their local biogeochemical environment (typically within a single pore or a biofilm on a grain surface, on the order of tens of microns in size). However, their metabolic activity exerts strong influence on the transport and fate of groundwater contaminants of significant concern at DOE sites, in contaminant plumes with spatial extents of meters to kilometers. This report describes progress and key findings from research aimed at integrating models of microbial metabolism based on genomic information (small scale) with models of contaminant fate and transport in aquifers (field scale).

  1. Sorption of organic chemicals at biogeochemical interfaces - calorimetric measurements

    Science.gov (United States)

    Krüger, J.; Lang, F.; Siemens, J.; Kaupenjohann, M.

    2009-04-01

    Biogeochemical interfaces in soil act as sorbents for organic chemicals, thereby controlling the degradation and mobility of these substances in terrestrial environments. Physicochemical properties of the organic chemicals and the sorbent determine sorptive interactions. We hypothesize that the sorption of hydrophobic organic chemicals ("R-determined" chemicals) is an entropy-driven partitioning process between the bulk aqueous phase and biogeochemical interface and that the attachment of more polar organic chemicals ("F-determined" chemicals) to mineral surfaces is due to electrostatic interactions and ligand exchange involving functional groups. In order to determine thermodynamic parameters of sorbate/sorbent interactions calorimetric titration experiments have been conducted at 20˚ C using a Nanocalorimeter (TAM III, Thermometric). Solutions of different organic substances ("R-determined" chemicals: phenanthrene, bisphenol A, "F-determined" chemicals: MCPA, bentazone) with concentrations of 100 mol l-1 were added to suspensions of pure minerals (goethite, muscovite, and kaolinite and to polygalacturonic acid (PGA) as model substance for biofilms in soil. Specific surface, porosity, N and C content, particle size and point of zero charge of the mineral were analyzed to characterize the sorbents. The obtained heat quantities for the initial injection of the organic chemicals to the goethite were 55 and 71 J for bisphenol A and phenanthrene ("R-determined representatives") and 92 and 105 J for MCPA and bentazone ("F-determined" representatives). Further experiments with muscovite, kaolinite and PGA are in progress to determine G and H of the adsorption process.

  2. Biogeochemical ecology of aquaculture ponds

    International Nuclear Information System (INIS)

    Weisburd, R.S.J.

    1988-01-01

    Two methods to determine rates of organic matter production and consumption were applied in shrimp aquaculture ponds. Several questions were posed: can net rates of organic matter production and consumption be determined accurately through application of dissolved inorganic carbon (DIC) mass balance in a pond with high advective through-put? Are organically loaded aquaculture ponds autotrophic? How do rates of organic production vary temporally? Are there diurnal changes in respiration rates? Four marine ponds in Hawaii have been evaluated for a 53 day period through the use of geochemical mass balances. All fluxes of DIC into and out of the ponds were considered. DIC was calculated from hourly pH measurements and weekly alkalinity measurements. Average uptake of DIC from the pond water, equivalent to net community production, revealed net autotrophy in all cases. Hourly and longer period variations in organic matter production rates were examined. The daily cycle dominated the variation in rates of net community production. Maximal rates of net community production were maintained for four to six hours starting in mid-morning. Respiration rates decreased rapidly during the night in two of the ponds and remained essentially constant in the others. A similar pattern of decreasing respiration at night was seen in freshwater shrimp ponds which were studied with incubations. A new method involving isotope dilution of 14 C-labeled DIC was used to measure respiration rates in light and dark bottles. This method is an inexpensive and convenient procedure which should also be useful in other environments. The incubations demonstrated that plankton respiration rates peak at or soon after solar noon and vary over the course of the day by about a factor of two

  3. Genetic process mining : an experimental evaluation

    NARCIS (Netherlands)

    Alves De Medeiros, A.K.; Weijters, A.J.M.M.; Aalst, van der W.M.P.

    2007-01-01

    One of the aims of process mining is to retrieve a process model from an event log. The discovered models can be used as objective starting points during the deployment of process-aware information systems (Dumas et al., eds., Process-Aware Information Systems: Bridging People and Software Through

  4. Enhanced biogeochemical cycling and subsequent reduction of hydraulic conductivity associated with soil-layer interfaces in the vadose zone

    Science.gov (United States)

    Hansen, David J.; McGuire, Jennifer T.; Mohanty, Binayak P.

    2013-01-01

    Biogeochemical dynamics in the vadose zone are poorly understood due to the transient nature of chemical and hydrologic conditions, but are nonetheless critical to understanding chemical fate and transport. This study explored the effects of a soil layer on linked geochemical, hydrological, and microbiological processes. Three laboratory soil columns were constructed: a homogenized medium-grained sand, a homogenized organic-rich loam, and a sand-over-loam layered column. Upward and downward infiltration of water was evaluated during experiments to simulate rising water table and rainfall events respectively. In-situ collocated probes measured soil water content, matric potential, and Eh while water samples collected from the same locations were analyzed for Br−, Cl−, NO3−, SO42−, NH4+, Fe2+, and total sulfide. Compared to homogenous columns, the presence of a soil layer altered the biogeochemistry and water flow of the system considerably. Enhanced biogeochemical cycling was observed in the layered column over the texturally homogeneous soil columns. Enumerations of iron and sulfate reducing bacteria showed 1-2 orders of magnitude greater community numbers in the layered column. Mineral and soil aggregate composites were most abundant near the soil-layer interface; the presence of which, likely contributed to an observed order-of-magnitude decrease in hydraulic conductivity. These findings show that quantifying coupled hydrologic-biogeochemical processes occurring at small-scale soil interfaces is critical to accurately describing and predicting chemical changes at the larger system scale. Findings also provide justification for considering soil layering in contaminant fate and transport models because of its potential to increase biodegradation and/or slow the rate of transport of contaminants. PMID:22031578

  5. Tracking Water, C, N, and P by Linking Local Scale Soil Hydrologic and Biogeochemical Features to Watershed Scale

    Science.gov (United States)

    Sedaghatdoost, A.; Mohanty, B.; Huang, Y.

    2017-12-01

    The biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P) have many contemporary significance due to their critical roles in determining the structure and function of ecosystems. The objectives of our study is to find out temporal dynamics and spatial distribution of soil physical, chemical, and biological properties and their interaction with C, N, and P cycles in the soil for different land covers and weather conditions. The study is being conducted at three locations within Texas Water Observatory (TWO), including Riesel (USDA-ARS experimental watersheds), Texas A&M Agrilife Research Farm, and Danciger forest in Texas. Soil physical, hydraulic, chemical (total C, total N, total P, pH, EC, redox potential, N-NO3-, N-NH4+, PO42-, K, Ca, Mg, Na, Mn, and Alox and Feox), and microbiological (Microbial biomass C, N, and P, PLFA analysis, enzymatic activity) properties are being measured in the top 30 cm of the soil profile. Our preliminary data shows that biogeochemical processes would be more profound in the areas with higher temperature and precipitation as these factors stimulate microbial activity and thus influence C, N, and P cycles. Also concentrations of C and N are greater in woodlands relative to remnant grasslands as a consequence of the greater above- and below-ground productivity of woodlands relative to remnant grasslands. We hypothesize that finer soil textures have more organic matter, microbial population, and reactive surfaces for chemicals than coarse soils, as described in some recent literature. However, the microbial activity may not be active in fine textured soils as organic materials may be sorbed to clay surfaces or protected from decomposing organisms. We also expect reduced condition in saturated soils which will decrease carbon mineralization while increase denitrification and alkalinity in the soil. Spatio-temporal data with initial evaluation of biogeochemical factors/processes for different land covers will be presented.

  6. Molecular biogeochemical provinces in the Atlantic Surface Ocean

    Science.gov (United States)

    Koch, B. P.; Flerus, R.; Schmitt-Kopplin, P.; Lechtenfeld, O. J.; Bracher, A.; Cooper, W.; Frka, S.; Gašparović, B.; Gonsior, M.; Hertkorn, N.; Jaffe, R.; Jenkins, A.; Kuss, J.; Lara, R. J.; Lucio, M.; McCallister, S. L.; Neogi, S. B.; Pohl, C.; Roettgers, R.; Rohardt, G.; Schmitt, B. B.; Stuart, A.; Theis, A.; Ying, W.; Witt, M.; Xie, Z.; Yamashita, Y.; Zhang, L.; Zhu, Z. Y.; Kattner, G.

    2010-12-01

    One of the most important aspects to understand marine organic carbon fluxes is to resolve the molecular mechanisms which convert fresh, labile biomolecules into semi-labile and refractory dissolved and particulate organic compounds in the ocean. In this interdisciplinary project, which was performed on a cruise with RV Polarstern, we carried out a detailed molecular characterisation of dissolved organic matter (DOM) on a North-South transect in the Atlantic surface ocean in order to relate the data to different biological, climatic, oceanographic, and meteorological regimes as well as to terrestrial input from riverine and atmospheric sources. Our goal was to achieve a high resolution data set for the biogeochemical characterisation of the sources and reactivity of DOM. We applied ultrahigh resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS), nutrient, trace element, amino acid, and lipid analyses and other biogeochemical measurements for 220 samples from the upper water column (0-200m) and eight deep profiles. Various spectroscopic techniques were applied continuously in a constant sample water flow supplied by a fish system and the moon pool. Radiocarbon dating enabled assessing DOC residence time. Bacterial abundance and production provided a metabolic context for the DOM characterization work and pCO2 concentrations. Combining molecular organic techniques and inductively coupled plasma mass spectrometry (ICP-MS) established an important link between organic and inorganic biogeochemical studies. Multivariate statistics, primarily based on FT-ICR-MS data for 220 samples, allowed identifying geographical clusters which matched ecological provinces proposed previously by Longhurst (2007). Our study demonstrated that marine DOM carries molecular information reflecting the “history” of ocean water masses. This information can be used to define molecular biogeochemical provinces and to improve our understanding of element fluxes in

  7. Contractor evaluations in the contractor selection process.

    Science.gov (United States)

    2014-04-01

    The current contractor evaluation system in use within the Kentucky Transportation Cabinet is based on the contractor evaluation system developed as part of SPR 212-00 "Quality Based Prequalification of Contractors." This system relies on average per...

  8. Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis

    Directory of Open Access Journals (Sweden)

    D. Béal

    2010-02-01

    Full Text Available In biogeochemical models coupled to ocean circulation models, vertical mixing is an important physical process which governs the nutrient supply and the plankton residence in the euphotic layer. However, vertical mixing is often poorly represented in numerical simulations because of approximate parameterizations of sub-grid scale turbulence, wind forcing errors and other mis-represented processes such as restratification by mesoscale eddies. Getting a sufficient knowledge of the nature and structure of these errors is necessary to implement appropriate data assimilation methods and to evaluate if they can be controlled by a given observation system.

    In this paper, Monte Carlo simulations are conducted to study mixing errors induced by approximate wind forcings in a three-dimensional coupled physical-biogeochemical model of the North Atlantic with a 1/4° horizontal resolution. An ensemble forecast involving 200 members is performed during the 1998 spring bloom, by prescribing perturbations of the wind forcing to generate mixing errors. The biogeochemical response is shown to be rather complex because of nonlinearities and threshold effects in the coupled model. The response of the surface phytoplankton depends on the region of interest and is particularly sensitive to the local stratification. In addition, the statistical relationships computed between the various physical and biogeochemical variables reflect the signature of the non-Gaussian behaviour of the system. It is shown that significant information on the ecosystem can be retrieved from observations of chlorophyll concentration or sea surface temperature if a simple nonlinear change of variables (anamorphosis is performed by mapping separately and locally the ensemble percentiles of the distributions of each state variable on the Gaussian percentiles. The results of idealized observational updates (performed with perfect observations and neglecting horizontal correlations

  9. Surrogate-Based Optimization of Biogeochemical Transport Models

    Science.gov (United States)

    Prieß, Malte; Slawig, Thomas

    2010-09-01

    First approaches towards a surrogate-based optimization method for a one-dimensional marine biogeochemical model of NPZD type are presented. The model, developed by Oschlies and Garcon [1], simulates the distribution of nitrogen, phytoplankton, zooplankton and detritus in a water column and is driven by ocean circulation data. A key issue is to minimize the misfit between the model output and given observational data. Our aim is to reduce the overall optimization cost avoiding expensive function and derivative evaluations by using a surrogate model replacing the high-fidelity model in focus. This in particular becomes important for more complex three-dimensional models. We analyse a coarsening in the discretization of the model equations as one way to create such a surrogate. Here the numerical stability crucially depends upon the discrete stepsize in time and space and the biochemical terms. We show that for given model parameters the level of grid coarsening can be choosen accordingly yielding a stable and satisfactory surrogate. As one example of a surrogate-based optimization method we present results of the Aggressive Space Mapping technique (developed by John W. Bandler [2, 3]) applied to the optimization of this one-dimensional biogeochemical transport model.

  10. [Ammonia-oxidizing archaea and their important roles in nitrogen biogeochemical cycling: a review].

    Science.gov (United States)

    Liu, Jing-Jing; Wu, Wei-Xiang; Ding, Ying; Shi, De-Zhi; Chen, Ying-Xu

    2010-08-01

    As the first step of nitrification, ammonia oxidation is the key process in global nitrogen biogeochemical cycling. So far, the autotrophic ammonia-oxidizing bacteria (AOB) in the beta- and gamma-subgroups of proteobacteria have been considered as the most important contributors to ammonia oxidation, but the recent researches indicated that ammonia-oxidizing archaea (AOA) are widely distributed in various kinds of ecosystems and quantitatively predominant, playing important roles in the global nitrogen biogeochemical cycling. This paper reviewed the morphological, physiological, and ecological characteristics and the molecular phylogenies of AOA, and compared and analyzed the differences and similarities of the ammonia monooxygenase (AMO) and its encoding genes between AOA and AOB. In addition, the potential significant roles of AOA in nitrogen biogeochemical cycling in aquatic and terrestrial ecosystems were summarized, and the future research directions of AOA in applied ecology and environmental protection were put forward.

  11. Preliminary economic evaluation of the Alkox process

    International Nuclear Information System (INIS)

    Silva, L.J.; Lilga, M.A.; Camaioni, D.M.; Snowden, L.J.

    1991-09-01

    A new chemical process has been invented at Battelle Pacific Northwest Laboratories for converting alkanes to alcohols. This new chemistry has been named the ''Alkox Process.'' Pacific Northwest Laboratory prepared a preliminary economic analysis for converting cyclohexane to cyclohexanol, which may be one of the most attractive applications of the Alkox process. A process flow scheme and a material balance were prepared to support rough equipment sizing and costing. The results from the economic analysis are presented in the non-proprietary section of this report. The process details, including the flow diagram and material balance, are contained in separate section of this report that is proprietary to Battelle. 7 refs., 4 tabs

  12. Evaluation of the separation by pyrochemical processes

    International Nuclear Information System (INIS)

    2004-01-01

    This report takes stock on the studies conducted by the CEA since the years 90 in the domain of the pyrochemical process, applied to the nuclear fuels reprocessing. After a presentation of the transmutation targets and fuels, the document presents the pyrochemical processes concepts and studies. In this part the author details the process developed foreign, the studies realized at the CEA, the fuel reprocessing of the molten salts reactors and the ionic liquids at ambient temperature. (A.L.B.)

  13. Numerical modeling of watershed-scale radiocesium transport coupled with biogeochemical cycling in forests

    Science.gov (United States)

    Mori, K.; Tada, K.; Tawara, Y.; Tosaka, H.; Ohno, K.; Asami, M.; Kosaka, K.

    2015-12-01

    Since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, intensive monitoring and modeling works on radionuclide transfer in environment have been carried out. Although Cesium (Cs) concentration has been attenuating due to both physical and environmental half-life (i.e., wash-off by water and sediment), the attenuation rate depends clearly on the type of land use and land cover. In the Fukushima case, studying the migration in forest land use is important for predicting the long-term behavior of Cs because most of the contaminated region is covered by forests. Atmospheric fallout is characterized by complicated behavior in biogeochemical cycle in forests which can be described by biotic/abiotic interactions between many components. In developing conceptual and mathematical model on Cs transfer in forest ecosystem, defining the dominant components and their interactions are crucial issues (BIOMASS, 1997-2001). However, the modeling of fate and transport in geosphere after Cs exports from the forest ecosystem is often ignored. An integrated watershed modeling for simulating spatiotemporal redistribution of Cs that includes the entire region from source to mouth and surface to subsurface, has been recently developed. Since the deposited Cs can migrate due to water and sediment movement, the different species (i.e., dissolved and suspended) and their interactions are key issues in the modeling. However, the initial inventory as source-term was simplified to be homogeneous and time-independent, and biogeochemical cycle in forests was not explicitly considered. Consequently, it was difficult to evaluate the regionally-inherent characteristics which differ according to land uses, even if the model was well calibrated. In this study, we combine the different advantages in modeling of forest ecosystem and watershed. This enable to include more realistic Cs deposition and time series of inventory can be forced over the land surface. These processes are integrated

  14. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Science.gov (United States)

    Hero T. Gollany; Brian D. Titus; D. Andrew Scott; Heidi Asbjornsen; Sigrid C. Resh; Rodney A. Chimner; Donald J. Kaczmarek; Luiz F.C. Leite; Ana C.C. Ferreira; Kenton A. Rod; Jorge Hilbert; Marcelo V. Galdos; Michelle E. Cisz

    2015-01-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems...

  15. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils

    NARCIS (Netherlands)

    Smith, Pete; Cotrufo, M.F.; Rumpel, C.; Paustian, K.; Kuikman, P.J.

    2015-01-01

    Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient, and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can

  16. Model visualization for evaluation of biocatalytic processes

    DEFF Research Database (Denmark)

    Law, HEM; Lewis, DJ; McRobbie, I

    2008-01-01

    Biocatalysis offers great potential as an additional, and in some cases as an alternative, synthetic tool for organic chemists, especially as a route to introduce chirality. However, the implementation of scalable biocatalytic processes nearly always requires the introduction of process and/or bi......,S-EDDS), a biodegradable chelant, and is characterised by the use of model visualization using `windows of operation"....

  17. ASME Evaluation on Grid Mobile E-Commerce Process

    OpenAIRE

    Dan Chang; Wei Liao

    2012-01-01

    With the development of E-commerce, more scholars have paid attention to research on Mobile E-commerce and mostly focus on the optimization and evaluation of existing process. This paper researches the evaluation of Mobile E-commerce process with a method called ASME. Based on combing and analyzing current mobile business process and utilizing the grid management theory, mobile business process based on grid are constructed. Firstly, the existing process, namely Non-grid Mobile E-commerce, an...

  18. Biogeochemical Controls on Technetium Mobility in Biogeochemical Controls on Technetium Mobility in FRC Sediments

    International Nuclear Information System (INIS)

    Lloyd, J.R.; McBeth, J.M.; Livens, F.R.; Bryan, N.D.; Ellis, B.; Sharma, H.; Burke, I.T.; Morris, K.

    2004-01-01

    Technetium-99 is a priority pollutant at numerous DOE sites, due to its long half-life (2.1 x 10 5 years), high mobility as Tc(VII) in oxic waters, and bioavailability as a sulfate analog. 99 Tc is far less mobile under anaerobic conditions, forming insoluble Tc(IV) precipitates. As anaerobic microorganisms can reduce soluble Tc(VII) to insoluble Tc(IV), microbial metabolism may have the potential to treat sediments and waters contaminated with Tc. Baseline studies of fundamental mechanisms of Tc(VII) bioreduction and precipitation (reviewed by Lloyd et al, 2002) have generally used pure cultures of metal-reducing bacteria, in order to develop conceptual models for the biogeochemical cycling of Tc. There is, however, comparatively little known about interactions of metal-reducing bacteria with environmentally relevant trace concentrations of Tc, against a more complex biogeochemical background provided by mixed microbial communities in the subsurface. The objective of this new NABIR project is to probe the site specific biogeochemical conditions that control the mobility of Tc at the FRC (Oak Ridge, TN). This information is required for the rational design of in situ bioremediation strategies for technetium-contaminated subsurface environments. We will use a combination of geochemical, mineralogical, microbiological and spectroscopic techniques to determine the solubility and phase associations of Tc in FRC sediments, and characterize the underpinning biogeochemical controls. A key strength of this project is that many of the techniques we are using have already been optimized by our research team, who are also studying the biogeochemical controls on Tc mobility in marine and freshwater sediments in the UK in a NERC funded companion study.

  19. Evaluation of pretreatment processes for supercritical water oxidation

    International Nuclear Information System (INIS)

    Barnes, C.M.

    1994-01-01

    This report evaluates processes to chemically treat US Department of Energy wastes to remove organic halogens, phosphorus, and sulfur. Chemical equilibrium calculations, process simulations, and responses from developers and licensors form the basis for comparisons. Gas-phase catalytic hydrogenation processes, strong base and base catalyzed processes, high pressure hydrolysis, and other emerging or commercial dehalogenation processes (both liquid and mixed phase) were considered. Cost estimates for full-scale processes and demonstration testing are given. Based on the evaluation, testing of a hydrogenation process and a strong base process are recommended

  20. Evaluation of pretreatment processes for supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C.M.

    1994-01-01

    This report evaluates processes to chemically treat US Department of Energy wastes to remove organic halogens, phosphorus, and sulfur. Chemical equilibrium calculations, process simulations, and responses from developers and licensors form the basis for comparisons. Gas-phase catalytic hydrogenation processes, strong base and base catalyzed processes, high pressure hydrolysis, and other emerging or commercial dehalogenation processes (both liquid and mixed phase) were considered. Cost estimates for full-scale processes and demonstration testing are given. Based on the evaluation, testing of a hydrogenation process and a strong base process are recommended.

  1. Administrator Evaluation--Planning and Process.

    Science.gov (United States)

    Sweeney, Jim

    1981-01-01

    Discusses five tasks basic to effective administrator evaluation: development of district philosophy; identification of activities crucial to school success; determination of operational procedures; utilization of forms and records which reflect district philosophy; and examination of the components of the system during a trial period. (JD)

  2. Evaluating Students' Beliefs in Problem Solving Process: A Case Study

    Science.gov (United States)

    Ozturk, Tugba; Guven, Bulent

    2016-01-01

    Problem solving is not simply a process that ends when an answer is found; it is a scientific process that evolves from understanding the problem to evaluating the solution. This process is affected by several factors. Among these, one of the most substantial is belief. The purpose of this study was to evaluate the beliefs of high school students…

  3. Radionuclide release from simulated waste material after biogeochemical leaching of uraniferous mineral samples

    International Nuclear Information System (INIS)

    Williamson, Aimee Lynn; Caron, François; Spiers, Graeme

    2014-01-01

    Biogeochemical mineral dissolution is a promising method for the released of metals in low-grade host mineralization that contain sulphidic minerals. The application of biogeochemical mineral dissolution to engineered leach heap piles in the Elliot Lake region may be considered as a promising passive technology for the economic recovery of low grade Uranium-bearing ores. In the current investigation, the decrease of radiological activity of uraniferous mineral material after biogeochemical mineral dissolution is quantified by gamma spectroscopy and compared to the results from digestion/ICP-MS analysis of the ore materials to determine if gamma spectroscopy is a simple, viable alternative quantification method for heavy nuclides. The potential release of Uranium (U) and Radium-226 ( 226 Ra) to the aqueous environment from samples that have been treated to represent various stages of leaching and passive closure processes are assessed. Dissolution of U from the solid phase has occurred during biogeochemical mineral dissolution in the presence of Acidithiobacillus ferrooxidans, with gamma spectroscopy indicating an 84% decrease in Uranium-235 ( 235 U) content, a value in accordance with the data obtained by dissolution chemistry. Gamma spectroscopy data indicate that only 30% of the 226 Ra was removed during the biogeochemical mineral dissolution. Chemical inhibition and passivation treatments of waste materials following the biogeochemical mineral dissolution offer greater protection against residual U and 226 Ra leaching. Pacified samples resist the release of 226 Ra contained in the mineral phase and may offer more protection to the aqueous environment for the long term, compared to untreated or inhibited residues, and should be taken into account for future decommissioning. - Highlights: • Gamma counting showed an 84% decrease in 235 U after biogeochemical mineral leaching. • Chemical digestion/ICP-MS analysis also showed an 84% decrease in total U. • Over

  4. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly...... for the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol processes....... Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  5. Seismic re-evaluation process in Medzamor-2 NPP

    International Nuclear Information System (INIS)

    Zadoyan, P.

    2000-01-01

    Seismic re-evaluation process for Medzamor-2 NPP describes the following topics: program implementation status; re-evaluation program structure; regulatory procedure and review plan; current tasks and practice; and regulatory assessment and research programs

  6. Process evaluation of a worksite social and physical environmental intervention

    NARCIS (Netherlands)

    Coffeng, J.K.; Hendriksen, I.J.M.; Mechelen, W. van; Boot, C.R.L.

    2013-01-01

    OBJECTIVE:: To evaluate the process of implementation of a social and physical environmental intervention and to explore differences regarding this process between both interventions. METHODS:: Context, recruitment, dose delivered, fidelity, reach, dose received, satisfaction, and implementation

  7. Biogeochemical Reactions Under Simulated Europa Ocean Conditions

    Science.gov (United States)

    Amashukeli, X.; Connon, S. A.; Gleeson, D. F.; Kowalczyk, R. S.; Pappalardo, R. T.

    2007-12-01

    Galileo data have demonstrated the probable presence of a liquid water ocean on Europa, and existence of salts and carbon dioxide in the satellite's surface ice (e.g., Carr et al., 1998; McCord et al., 1999, Pappalardo et al., 1999; Kivelson et al., 2000). Subsequently, the discovery of chemical signatures of extinct or extant life in Europa's ocean and on its surface became a distinct possibility. Moreover, understanding of Europa's potential habitability is now one of the major goals of the Europa Orbiter Flagship mission. It is likely, that in the early stages of Europa's ocean formation, moderately alkaline oceanic sulfate-carbonate species and a magnetite-silicate mantel could have participated in low-temperature biogeochemical sulfur, iron and carbon cycles facilitated by primitive organisms (Zolotov and Shock, 2004). If periodic supplies of fresh rock and sulfate-carbonate ions are available in Europa's ocean, then an exciting prospect exists that life may be present in Europa's ocean today. In our laboratory, we began the study of the plausible biogeochemical reactions under conditions appropriate to Europa's ocean using barophilic psychrophilic organisms that thrive under anaerobic conditions. In the near absence of abiotic synthetic pathways due to low Europa's temperatures, the biotic synthesis may present a viable opportunity for the formation of the organic and inorganic compounds under these extreme conditions. This work is independent of assumptions regarding hydrothermal vents at Europa's ocean floor or surface-derived oxidant sources. For our studies, we have fabricated a high-pressure (5,000 psi) reaction vessel that simulates aqueous conditions on Europa. We were also successful at reviving barophilic psychrophilic strains of Shewanella bacterium, which serve as test organisms in this investigation. Currently, facultative barophilic psychrophilic stains of Shewanella are grown in the presence of ferric food source; the strains exhibiting iron

  8. Communication processes, public administration and performance evaluation

    Directory of Open Access Journals (Sweden)

    Arta Musaraj

    2011-01-01

    In order to shed further light for our readers, we analyze by emphasizing the significant differences between the civil law and common law system on one side and the legal families that are part of the same legal system, either “Civil” or “Common,” on the other side. The Europeanization of law refers to the communization of the law by EU institutions and to a process that aims at creating a common Europe legal system. In the end, either in medium or long term, the Europeanization is contributing to the so-called non-mandatory or soft harmonization of private law. It is in the best interest of the EU to seek adequate judicial instruments to accommodate the massive numbers of laws deriving from different Civil Law and the Common law systems.

  9. Supplier Evaluation Process by Pairwise Comparisons

    Directory of Open Access Journals (Sweden)

    Arkadiusz Kawa

    2015-01-01

    Full Text Available We propose to assess suppliers by using consistency-driven pairwise comparisons for tangible and intangible criteria. The tangible criteria are simpler to compare (e.g., the price of a service is lower than that of another service with identical characteristics. Intangible criteria are more difficult to assess. The proposed model combines assessments of both types of criteria. The main contribution of this paper is the presentation of an extension framework for the selection of suppliers in a procurement process. The final weights are computed from relative pairwise comparisons. For the needs of the paper, surveys were conducted among Polish managers dealing with cooperation with suppliers in their enterprises. The Polish practice and restricted bidding are discussed, too.

  10. Global biogeochemical provinces of the mesopelagic zone

    DEFF Research Database (Denmark)

    Reygondeau, Gabriel; Guidi, Lionel; Beaugrand, Gregory

    2018-01-01

    Aim: Following the biogeographical approach implemented by Longhurst for the epipelagic layer, we propose here to identify a biogeochemical 3-D partition for the mesopelagic layer. The resulting partition characterizes the main deep environmental biotopes and their vertical boundaries on a global...... scale, which can be used as a geographical and ecological framework for conservation biology, ecosystem-based management and for the design of oceanographic investigations. Location: The global ocean. Methods: Based on the most comprehensive environmental climatology available to date, which is both...... of the mesopelagic layer. Results: First, we show via numerical interpretation that the vertical division of the pelagic zone varies and, hence, is not constant throughout the global ocean. Indeed, a latitudinal gradient is found between the epipelagic-mesopelagic and mesopelagic-bathypelagic vertical limits. Second...

  11. EVALUATION OF PRODUCT DEVELOPMENT PROCESS USING EMVS

    Directory of Open Access Journals (Sweden)

    Iara Tonissi Moroni Cutovoi

    2014-12-01

    Full Text Available This paper evaluates a PDP model application in an auto parts company, leader in its segment. From the application of lean thinking in the supply chain and the EMVS performance analysis methodology for PDP, a check list is created to avoid waste in project management. In this paper, we show that EMVS can be positively impacted through active management of knowledge within a project. This paper suggests that the value-enabling portion of a project manager's role requires aligning knowledge across these three key domains regarding PDP Gates (Phases at company manufacturers of auto parts, Lean Thinking and Value Stream, and methodology for managing projects through performance-term rates and costs. The results show that the methodology has positive aspects, but its implementation takes time and has repercussions throughout the supply chain. Further this research try to explain the types of wastes and view of new products' development is enhanced and associates a manufacturing strategy focus on EMVS performance analysis and lean thinking, PDP and value stream mapping  showing the important of contribution this tools at reduction of waste.

  12. EVALUATION OF ALTERNATIVE STRONIUM AND TRANSURANIC SEPARATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    SMALLEY CS

    2011-04-25

    In order to meet contract requirements on the concentrations of strontium-90 and transuranic isotopes in the immobilized low-activity waste, strontium-90 and transuranics must be removed from the supernate of tanks 241-AN-102 and 241-AN-107. The process currently proposed for this application is an in-tank precipitation process using strontium nitrate and sodium permanganate. Development work on the process has not proceeded since 2005. The purpose of the evaluation is to identify whether any promising alternative processes have been developed since this issue was last examined, evaluate the alternatives and the baseline process, and recommend which process should be carried forward.

  13. Process Evaluation in Corrections-Based Substance Abuse Treatment.

    Science.gov (United States)

    Wolk, James L.; Hartmann, David J.

    1996-01-01

    Argues that process evaluation is needed to validate prison-based substance abuse treatment effectiveness. Five groups--inmates, treatment staff, prison staff, prison administration, and the parole board--should be a part of this process evaluation. Discusses these five groups relative to three stages of development of substance abuse treatment in…

  14. Demand-side management process evaluations - the management perspective

    International Nuclear Information System (INIS)

    Perrault, G.A.; Barrett, L.B.

    1993-01-01

    A demand-side management (DSM) process evaluation is a qualitative, expert assessment of how a utility marketing program is being conducted. It reviews the efficiency and effectiveness in which a utility plans, manages, executes, and monitors the delivery of DSM programs to its marketplace. Process evaluations,which includes load impact, customer satisfaction and cost-effectiveness analysis, are becoming an increasingly significant component. The process evaluation focus is on the program planning and delivery process as opposed to the energy impacts resulting from the specific measures or products of the program. Because of this process-oriented focus, such evaluations can identify important opportunities for improving the cost-effectiveness of a program without significantly changing product lines. The evaluation may identify administrative or delivery process improvements. In addition, the evaluation may identify ways of improving the degree to which the customer is satisfied with the program or the utility. Since process evaluations are usually conducted as part of a utility's mandated DSM measurement and evaluation plan, they tend to focus mainly on the stated needs of the regulator as opposed to company management. This can be a problem. Although the regulatory perspective is important, in an increasingly competitive business environment, utilities must not overlook management's business and operational needs for specific information regarding DSM program planning, control, execution, and evaluation. This paper discusses some of the conflicts that exist between the regulator's and management's needs for DSM program evaluation results and presents some approaches for assuring that both needs are met. It is organized to first discuss the scope of a process evaluation, then the evaluation issues, the management concerns, and finally reporting of results

  15. The Role of Evaluation in the School Improvement Process

    Science.gov (United States)

    Lindahl, Ronald A.; Beach, Robert H.

    2013-01-01

    Although evaluation serves many purposes in education, there is virtually unanimous agreement that evaluation is a critical component of all school improvement processes. Hamilton et al. (2003) asserted that "assessment and evaluation should be built into reform programs from the outset" (p. 26). Kimball, Lander, and Thorn (2010)…

  16. Evaluation and Modification of Processes for Bioethanol Separation and Production

    Directory of Open Access Journals (Sweden)

    Johnner P Sitompul

    2012-04-01

    Full Text Available This paper concerns on process evaluation and modification for bioethanol separation and production by applying pinch technology. Further, the paper is also focused on obtaining a most energy-efficient process among several processes. Three basic process configurations of bioethanol separation and production were selected for this study. The three separations and production systems are Othmer process, Barbet process and a separation process that operates under vacuum condition. Basically, each process is combination of Danish Distilleries process with a separation system yielding 95% (v/v bioethanol. The production capacity of the plant is estimated about 4 x 107 litre of bioethanol 95% (v/v per year. The result of the studies shows that the most energy efficient process among the three processes evaluated is the Othmer process, followed by the Barbet process and the process involving vacuum operation. The evaluation also shows that further energy saving can be carried for Barbet and Othmer process configuration when Tmin = 10oC for heat exchange possible.

  17. Methodology of evaluation of value created in the productive processes

    OpenAIRE

    M.T. Roszak

    2008-01-01

    Purpose: Of this paper was to present the methodology of analysis of the productive processes with applicationof value analysis and multi-criterion-analysis which allow to evaluate the technology and organization of theproductive processes.Design/methodology/approach: Presented in the paper methodology of evaluation of the productive processesis based on analysis of activities in the productive processes and their characteristics with reference to createdvalue in the productive chain.Findings...

  18. Technical evaluation of thermodynamics processes; Avaliacao tecnica dos processos termodinamicos

    Energy Technology Data Exchange (ETDEWEB)

    Petracco, Fulvio Celso

    1986-05-01

    An evaluation of thermodynamic processes, energy losses the origin of energy losses on thermodynamic process, where are the points or sources of those losses and variation of process when compared in relation of thermodynamic performance are discussed. The concept of energy losses and its origin, energy and work capacity, performance rates and examples of thermodynamic efficiency are also debated 3 figs.

  19. Integrating Usability Evaluations into the Software Development Process

    DEFF Research Database (Denmark)

    Lizano, Fulvio

    as relevant and strategic human–computer interaction (HCI) activities in the software development process, there are obstacles that limit the complete, effective and efficient integration of this kind of testing into the software development process. Two main obstacles are the cost of usability evaluations...... and the software developers' resistance to accepting users’ opinions regarding the lack of usability in their software systems. The ‘cost obstacle’ refers to the constraint of conducting usability evaluations in the software process due to the significant amount of resources required by this type of testing. Some......This thesis addresses the integration of usability evaluations into the software development process. The integration here is contextualized in terms of how to include usability evaluation as an activity in the software development lifecycle. Even though usability evaluations are considered...

  20. Biogeochemical processes of incorporation and transformation of 14C labelled fulvic acid, humic acid and simple organic molecules at the sediment-water interface (submarine canyon of the NW Mediterranean)

    International Nuclear Information System (INIS)

    Buscail, R.; Gadel, F.

    1987-01-01

    The input of organic compounds at the marine water-sediment interface was simulated by the injection of 14 C labelled raygrass fulvic and humic acids and glutamic acid in the overlying water of three identically preserved interfaces. After incubations of 6 days under in situ conditions (13 0 C, oxidizing conditions), separation of the resulting products are carried out by successive chemical extractions. They correspond to the relative importance of biological (respiration, assimilation) and geochemical (condensation in geopolymers and adsorption) processes. Two experiments have showed predominance of biological processes (with 14 C fulvic and glutamic acids), while in the case of 14 C humic acid, incorporation in sediment and geochemical processes are more important. (Auth.)

  1. Focusing on the Interfaces, Estuaries and Redox Transition Zones, for Understanding the Microbial Processes and Biogeochemical Cycling of Carbon under the Looming Influence of Global Warming and Anthropogenic Perturbations

    Science.gov (United States)

    Dang, H.; Jiao, N.

    2013-12-01

    Estuaries are the natural interface between terrestrial and marine ecosystems. These are also the zones where human activities exert the strongest impact on the earth and ocean environments. Due to high pressure from the effects of global warming and anthropogenic activities, many estuaries are deteriorating and experiencing significant change of the ecological processes and environmental functions. Certain fundamental microbial processes, including carbon fixation and respiration, have been changing as responses to and consequences of the altered estuarine environment and geochemistry. Increased inputs of terrigenous and anthropogenic organic materials and nutrients and elevated temperature make estuaries easy to be subjected to harmful algal blooms and hypoxic and even anoxic events. The change of the redox status of the estuarine and coastal waters and the increased nutrient loads such as that from terrestrial nitrate stimulate anaerobic respiration processes, such as nitrate reduction and denitrification. This may have strong negative impact on the marine environment, ecosystem and even climate, such as those caused by greenhouse gas production (N2O, CH4) by anaerobic microbial processes. In addition, some nutrients may be consumed by anaerobically respiring heterotrophic microorganisms, instead of being utilized by phytoplankton for carbon fixation. In this regard, the ecological function of the estuarine ecosystem may be altered and the ecological efficiency may be lowered, as less energy is produced by the microbial respiration process and less carbon is fixed by phytoplankton. However, on the other side, in hypoxic and anoxic waters, inorganic carbon fixation by anaerobic microorganisms may happen, such as those via the chemolithoautotrophic denitrifying sulfur oxidizing process and the anaerobic ammonium oxidation (anammox) process. Global warming and anthropogenic perturbations may have lowered the diversity, complexity, stability and sustainability of

  2. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates: BIOFILM DISTRIBUTION AND RATE SCALING

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng [Institute of Surface-Earth System Science, Tianjin University, Tianjin China; Pacific Northwest National Laboratory, Richland WA USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland WA USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen China; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland WA USA; School of Earth Science and Engineering, Nanjing University, Nanjing China; Bailey, Vanessa L. [Pacific Northwest National Laboratory, Richland WA USA

    2017-11-01

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models, and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.

  3. Green Infrastructure Increases Biogeochemical Responsiveness, Vegetation Growth and Decreases Runoff in a Semi-Arid City, Tucson, AZ, USA

    Science.gov (United States)

    Meixner, T.; Papuga, S. A.; Luketich, A. M.; Rockhill, T.; Gallo, E. L.; Anderson, J.; Salgado, L.; Pope, K.; Gupta, N.; Korgaonkar, Y.; Guertin, D. P.

    2017-12-01

    Green Infrastructure (GI) is often viewed as a mechanism to minimize the effects of urbanization on hydrology, water quality, and other ecosystem services (including the urban heat island). Quantifying the effects of GI requires field measurements of the dimensions of biogeochemical, ecosystem, and hydrologic function that we expect GI to impact. Here we investigated the effect of GI features in Tucson, Arizona which has a low intensity winter precipitation regime and a high intensity summer regime. We focused on understanding the effect of GI on soil hydraulic and biogeochemical properties as well as the effect on vegetation and canopy temperature. Our results demonstrate profound changes in biogeochemical and hydrologic properties and vegetation growth between GI systems and nearby control sites. In terms of hydrologic properties GI soils had increased water holding capacity and hydraulic conductivity. GI soils also have higher total carbon, total nitrogen, and organic matter in general than control soils. Furthermore, we tested the sampled soils (control and GI) for differences in biogeochemical response upon wetting. GI soils had larger respiration responses indicating greater biogeochemical activity overall. Long-term Lidar surveys were used to investigate the differential canopy growth of GI systems versus control sites. The results of this analysis indicate that while a significant amount of time is needed to observe differences in canopy growth GI features due increase tree size and thus likely impact street scale ambient temperatures. Additionally monitoring of transpiration, soil moisture, and canopy temperature demonstrates that GI features increase vegetation growth and transpiration and reduce canopy temperatures. These biogeochemical and ecohydrologic results indicate that GI can increase the biogeochemical processing of soils and increase tree growth and thus reduce urban ambient temperatures.

  4. Dynamic biogeochemical provinces in the global ocean

    Science.gov (United States)

    Reygondeau, Gabriel; Longhurst, Alan; Martinez, Elodie; Beaugrand, Gregory; Antoine, David; Maury, Olivier

    2013-12-01

    In recent decades, it has been found useful to partition the pelagic environment using the concept of biogeochemical provinces, or BGCPs, within each of which it is assumed that environmental conditions are distinguishable and unique at global scale. The boundaries between provinces respond to features of physical oceanography and, ideally, should follow seasonal and interannual changes in ocean dynamics. But this ideal has not been fulfilled except for small regions of the oceans. Moreover, BGCPs have been used only as static entities having boundaries that were originally established to compute global primary production. In the present study, a new statistical methodology based on non-parametric procedures is implemented to capture the environmental characteristics within 56 BGCPs. Four main environmental parameters (bathymetry, chlorophyll a concentration, surface temperature, and salinity) are used to infer the spatial distribution of each BGCP over 1997-2007. The resulting dynamic partition allows us to integrate changes in the distribution of BGCPs at seasonal and interannual timescales, and so introduces the possibility of detecting spatial shifts in environmental conditions.

  5. Understanding oceanic migrations with intrinsic biogeochemical markers.

    Directory of Open Access Journals (Sweden)

    Raül Ramos

    2009-07-01

    Full Text Available Migratory marine vertebrates move annually across remote oceanic water masses crossing international borders. Many anthropogenic threats such as overfishing, bycatch, pollution or global warming put millions of marine migrants at risk especially during their long-distance movements. Therefore, precise knowledge about these migratory movements to understand where and when these animals are more exposed to human impacts is vital for addressing marine conservation issues. Because electronic tracking devices suffer from several constraints, mainly logistical and financial, there is emerging interest in finding appropriate intrinsic markers, such as the chemical composition of inert tissues, to study long-distance migrations and identify wintering sites. Here, using tracked pelagic seabirds and some of their own feathers which were known to be grown at different places and times within the annual cycle, we proved the value of biogeochemical analyses of inert tissue as tracers of marine movements and habitat use. Analyses of feathers grown in summer showed that both stable isotope signatures and element concentrations can signal the origin of breeding birds feeding in distinct water masses. However, only stable isotopes signalled water masses used during winter because elements mainly accumulated during the long breeding period are incorporated into feathers grown in both summer and winter. Our findings shed new light on the simple and effective assignment of marine organisms to distinct oceanic areas, providing new opportunities to study unknown migration patterns of secretive species, including in relation to human-induced mortality on specific populations in the marine environment.

  6. Evaluation of Control Parameters for the Activated Sludge Process

    Science.gov (United States)

    Stall, T. Ray; Sherrard, Josephy H.

    1978-01-01

    An evaluation of the use of the parameters currently being used to design and operate the activated sludge process is presented. The advantages and disadvantages for the use of each parameter are discussed. (MR)

  7. Landscape, Process and Power: Re-evaluating Traditional Environmental Knowledge

    Directory of Open Access Journals (Sweden)

    Colleen Marie O'Brien

    2010-09-01

    Full Text Available Review of Landscape, Process and Power: Re-evaluating Traditional Environmental Knowledge. Serena Heckler, ed. 2009. Berghahn Books, New York. Pp. 304, 21 illustrations, bibliography, index. $95.00 (hardback. ISBN 978-1-84545-549-1

  8. Process Evaluation of a Workers' Health Surveillance Program for Meat Processing Workers

    NARCIS (Netherlands)

    van Holland, Berry J; Brouwer, Sandra; de Boer, Michiel R; Reneman, Michiel F; Soer, Remko

    2017-01-01

    Objective To evaluate the implementation process of a workers' health surveillance (WHS) program in a Dutch meat processing company. Methods Workers from five plants were eligible to participate in the WHS program. The program consisted of four evaluative components and an intervention component.

  9. Process Evaluation of a Workers' Health Surveillance Program for Meat Processing Workers

    NARCIS (Netherlands)

    van Holland, Berry; Brouwer, Sandra; de Boer, Michiel R; Reneman, Michiel F; Soer, Remko

    Objective To evaluate the implementation process of a workers' health surveillance (WHS) program in a Dutch meat processing company. Methods Workers from five plants were eligible to participate in the WHS program. The program consisted of four evaluative components and an intervention component.

  10. Students’ views on the block evaluation process: A descriptive analysis

    Directory of Open Access Journals (Sweden)

    Ntefeleng E. Pakkies

    2016-03-01

    Full Text Available Background: Higher education institutions have executed policies and practices intended to determine and promote good teaching. Students’ evaluation of the teaching and learning process is seen as one measure of evaluating quality and effectiveness of instruction and courses. Policies and procedures guiding this process are discernible in universities, but it isoften not the case for nursing colleges. Objective: To analyse and describe the views of nursing students on block evaluation, and how feedback obtained from this process was managed.Method: A quantitative descriptive study was conducted amongst nursing students (n = 177 in their second to fourth year of training from one nursing college in KwaZulu-Natal. A questionnaire was administered by the researcher and data were analysed using the Statistical Package of Social Sciences Version 19.0. Results: The response rate was 145 (81.9%. The participants perceived the aim of block evaluation as improving the quality of teaching and enhancing their experiences as students.They questioned the significance of their input as stakeholders given that they had never been consulted about the development or review of the evaluation tool, or the administration process; and they often did not receive feedback from the evaluation they participated in. Conclusion: The college management should develop a clear organisational structure with supporting policies and operational guidelines for administering the evaluation process. The administration, implementation procedures, reporting of results and follow-up mechanisms should be made transparent and communicated to all concerned. Reports and actions related to these evaluations should provide feedback into relevant courses or programmes. Keywords: Student evaluation of teaching; perceptions; undergraduate nursing students; evaluation process

  11. Expert evaluation in NPP safety important systems licensing process

    International Nuclear Information System (INIS)

    Mikhail, A Yastrebenetsky; Vasilchenko, V.N.

    2001-01-01

    Expert evaluation of nuclear power plant safety important systems modernization is an integral part of these systems licensing process. The paper contains some aspects of this evaluation which are based on Ukrainian experience of VVER-1000 and VVER-440 modernization. (authors)

  12. Statistical Process Control in the Practice of Program Evaluation.

    Science.gov (United States)

    Posavac, Emil J.

    1995-01-01

    A technique developed to monitor the quality of manufactured products, statistical process control (SPC), incorporates several features that may prove attractive to evaluators. This paper reviews the history of SPC, suggests how the approach can enrich program evaluation, and illustrates its use in a hospital-based example. (SLD)

  13. Expert evaluation in NPP safety important systems licensing process

    Energy Technology Data Exchange (ETDEWEB)

    Mikhail, A Yastrebenetsky; Vasilchenko, V.N. [Ukrainian State Scientific Technical Center of Nuclear and Radiation Safety (Ukraine)

    2001-07-01

    Expert evaluation of nuclear power plant safety important systems modernization is an integral part of these systems licensing process. The paper contains some aspects of this evaluation which are based on Ukrainian experience of VVER-1000 and VVER-440 modernization. (authors)

  14. Spring-summer net community production, new production, particle export and related water column biogeochemical processes in the marginal sea ice zone of the Western Antarctic Peninsula 2012-2014.

    Science.gov (United States)

    Ducklow, Hugh W; Stukel, Michael R; Eveleth, Rachel; Doney, Scott C; Jickells, Tim; Schofield, Oscar; Baker, Alex R; Brindle, John; Chance, Rosie; Cassar, Nicolas

    2018-06-28

    New production (New P, the rate of net primary production (NPP) supported by exogenously supplied limiting nutrients) and net community production (NCP, gross primary production not consumed by community respiration) are closely related but mechanistically distinct processes. They set the carbon balance in the upper ocean and define an upper limit for export from the system. The relationships, relative magnitudes and variability of New P (from 15 NO 3 - uptake), O 2  : argon-based NCP and sinking particle export (based on the 238 U :  234 Th disequilibrium) are increasingly well documented but still not clearly understood. This is especially true in remote regions such as polar marginal ice zones. Here we present a 3-year dataset of simultaneous measurements made at approximately 50 stations along the Western Antarctic Peninsula (WAP) continental shelf in midsummer (January) 2012-2014. Net seasonal-scale changes in water column inventories (0-150 m) of nitrate and iodide were also estimated at the same stations. The average daily rates based on inventory changes exceeded the shorter-term rate measurements. A major uncertainty in the relative magnitude of the inventory estimates is specifying the start of the growing season following sea-ice retreat. New P and NCP(O 2 ) did not differ significantly. New P and NCP(O 2 ) were significantly greater than sinking particle export from thorium-234. We suggest this is a persistent and systematic imbalance and that other processes such as vertical mixing and advection of suspended particles are important export pathways.This article is part of the theme issue 'The marine system of the west Antarctic Peninsula: status and strategy for progress in a region of rapid change'. © 2018 The Author(s).

  15. A Process For Performance Evaluation Of Real-Time Systems

    Directory of Open Access Journals (Sweden)

    Andrew J. Kornecki

    2003-12-01

    Full Text Available Real-time developers and engineers must not only meet the system functional requirements, but also the stringent timing requirements. One of the critical decisions leading to meeting these timing requirements is the selection of an operating system under which the software will be developed and run. Although there is ample documentation on real-time systems performance and evaluation, little can be found that combines such information into an efficient process for use by developers. As the software industry moves towards clearly defined processes, creation of appropriate guidelines describing a process for performance evaluation of real-time system would greatly benefit real-time developers. This technology transition research focuses on developing such a process. PROPERT (PROcess for Performance Evaluation of Real Time systems - the process described in this paper - is based upon established techniques for evaluating real-time systems. It organizes already existing real-time performance criteria and assessment techniques in a manner consistent with a well-formed process, based on the Personal Software Process concepts.

  16. The Judicial Process as a Form of Program Evaluation.

    Science.gov (United States)

    Ellsberry, James

    1980-01-01

    Maintaining that the judicial process is particularly effective as a form of program evaluation, this article details organizational procedures and lists the following advantages for use of the judicial process: issues are investigated in an open forum, the community can participate, and exciting opportunities for teaching and learning are…

  17. Towards an evaluation framework for process mining systems

    NARCIS (Netherlands)

    Ailenei, I.; Rozinat, A.; Eckert, A.; Aalst, van der W.M.P.

    2011-01-01

    Process mining is an emerging topic in the BPM marketplace. Recently, several (commercial) software solutions have become available. Due to the lack of an evaluation framework, it is very dif¿cult for potential users to assess the strengths and weaknesses of these process mining tools. As the ¿rst

  18. Evaluation criteria for dialogue processes: key findings from RISCOM II

    International Nuclear Information System (INIS)

    Atherton, Elizabeth

    2003-01-01

    As part of Work Package 4 (undertaken by a consortium of partners from the United Kingdom) in the joint European project RISCOM II, work was undertaken on evaluation criteria for determining the success of dialogue processes; this note outlines its key findings as, in order to continue the development of dialogue processes, it is important to evaluate and learn from the experience of engaging with stakeholders. Criteria can be developed to evaluate how successful a process has been, these can range from very practical criteria relating to how well the process worked or be linked to more subjective criteria developed from the aims of the dialogue process itself. Some criteria are particularly relevant to dialogue processes that aim to encourage deliberation and the development of stakeholders' views through participation in the dialogue process: transparency, legitimacy, equality of access, 'being able to speak', a deliberative environment, openness of framing, developing insight into range of issues (new meanings are generated), inclusive and 'best' knowledge elicited, producing acceptable/tolerable and usable outcomes/decisions, improvement of trust and understanding between participants, developing a sense of shared responsibility and common good. Evaluation will incur a cost in terms of time and money, but will help practitioners to be able to develop processes that meet the needs of those who participate and improve the way that we try to engage people in the debate

  19. Evaluation of mercury retention during the lyophilization process

    International Nuclear Information System (INIS)

    Monteiro, Lucilena R.; Costa, Manuel Q. da

    1997-01-01

    Shrimp and fish samples were studied by comparing the mercury retention during the freeze drying process. Advantages and disadvantages of this technique, a preview procedure, were identified. The food response concerning water mass los and stability on storage are evaluated after freeze drying process. (author). 10 refs., 4 figs., 2 tabs

  20. Evaluating the Sustainability of Manufacturing: Process and Life Cycle Assessments

    Science.gov (United States)

    The Circular Economy is a popular term in environmental studies, but methods are needed to quickly and accurately evaluate recycling opportunities rather than assuming that recycling is appropriate. Through the study of recycling processes (i.e., processes that turn wastes into ...

  1. Image processing system performance prediction and product quality evaluation

    Science.gov (United States)

    Stein, E. K.; Hammill, H. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A new technique for image processing system performance prediction and product quality evaluation was developed. It was entirely objective, quantitative, and general, and should prove useful in system design and quality control. The technique and its application to determination of quality control procedures for the Earth Resources Technology Satellite NASA Data Processing Facility are described.

  2. Effects of increased solar ultraviolet radiation on biogeochemical cycles

    International Nuclear Information System (INIS)

    Zepp, R.G.; Callaghan, T.V.; Erickson, D.J.

    1995-01-01

    Increases in solar UV radiation could affect terrestrial and aquatic biogeochemical cycles thus altering both sources and sinks of greenhouse and chemically important trace gases (e.g., carbon dioxide (CO2), carbon monoxide (CO), carbonyl sulfide (COS). In terrestrial ecosystems, increased UV-B could modify both the production and decomposition of plant matter with concomitant changes in the uptake and release of atmospherically important trace gases. Decomposition processes can be accelerated when UV-B photodegrades surface litter, or retarded when the dominant effect involves changes in the chemical composition of living tissues that reduce the biodegradability of buried litter. These changes in decomposition can affect microbial production of CO2 and other trace gases and also may affect the availability of nutrients essential for plant growth. Primary production can be reduced by enhanced UV-B, but the effect is variable between species and even cultivars of some crops. Likewise, the effects of enhanced UV-B on photoproduction of CO from plant matter is species-dependent and occurs more efficiently from dead than from living matter. Aquatic ecosystems studies in several different locations have shown that reductions in current levels of solar UV-B result in enhanced primary production, and Antarctic experiments under the ozone hole demonstrated that primary production is inhibited by enhanced UV-B. In addition to its effects on primary production, solar UV radiation can reduce bacterioplankton growth in the upper ocean with potentially important effects on marine biogeochemical cycles. Decomposition processes can be retarded when bacterial activity is suppressed by enhanced UV-B radiation or stimulated when solar UV radiation photodegrades aquatic dissolved organic matter. Photodegradation of DOM results in loss of UV absorption and formation of dissolved inorganic carbon, CO, and organic substrates that are readily mineralized or taken up by aquatic

  3. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia

    International Nuclear Information System (INIS)

    Guo Huaming; Zhang Bo; Li Yuan; Berner, Zsolt; Tang Xiaohui; Norra, Stefan; Stueben, Doris

    2011-01-01

    Little is known about the importance of drainage/irrigation channels and biogeochemical processes in arsenic distribution of shallow groundwaters from the Hetao basin. This investigation shows that although As concentrations are primarily dependent on reducing conditions, evaporation increases As concentration in the centre of palaeo-lake sedimentation. Near drainage channels, groundwater As concentrations are the lowest in suboxic-weakly reducing conditions. Results demonstrate that both drainage and irrigation channels produce oxygen-rich water that recharges shallow groundwaters and therefore immobilize As. Groundwater As concentration increases with a progressive decrease in redox potential along the flow path in an alluvial fan. A negative correlation between SO 4 2- concentrations and δ 34 S values indicates that bacterial reduction of SO 4 2- occurs in reducing aquifers. Due to high concentrations of Fe (>0.5 mg L -1 ), reductive dissolution of Fe oxides is believed to cause As release from aquifer sediments. Target aquifers for safe drinking water resources are available in alluvial fans and near irrigation channels. - Research highlights: → Low As groundwaters occur in alluvial fans. → We find low As groundwaters near irrigation and drainage channels. → Both hydrogeologic conditions and biogeochemical processes control As distribution. - Both hydrogeologic conditions and biogeochemical processes control As distribution of shallow groundwaters, which results in the occurrence of low As groundwater in alluvial fans and near irrigation channels and drainage channels.

  4. The "Process" of Process Use: Methods for Longitudinal Assessment in a Multisite Evaluation

    Science.gov (United States)

    Shaw, Jessica; Campbell, Rebecca

    2014-01-01

    Process use refers to the ways in which stakeholders and/or evaluands change as a function of participating in evaluation activities. Although the concept of process use has been well discussed in the literature, exploration of methodological strategies for the measurement and assessment of process use has been limited. Typically, empirical…

  5. [Situational diagnostic of an evaluation process of professional perfomance].

    Science.gov (United States)

    Gonçalves, Vera Lúcia Mira; Leite, Maria Madalena Januário

    2004-01-01

    The aim of this study was to realize a diagnostic situational about the evaluation process of the nursing team performance of USP Hospital. Based in two guiding questions, it was carried out 9 interviews with nurses of this hospital. These interviews were analyzed according Analyze of Contend. The most frequent themes were: The meaning of evaluation; the feelings; the difficulties and facilities concerning the instrument and the capacitacion. This experience brought about many feelings, as well as aspects that either favor or make the execution of the evaluation difficult, showing the principal points of vulnerability of the process and, therefore, deserving better attention and short-term intervention.

  6. A Comprehensive Plan for the Long-Term Calibration and Validation of Oceanic Biogeochemical Satellite Data

    Science.gov (United States)

    Hooker, Stanford B.; McClain, Charles R.; Mannino, Antonio

    2007-01-01

    The primary objective of this planning document is to establish a long-term capability and validating oceanic biogeochemical satellite data. It is a pragmatic solution to a practical problem based primarily o the lessons learned from prior satellite missions. All of the plan's elements are seen to be interdependent, so a horizontal organizational scheme is anticipated wherein the overall leadership comes from the NASA Ocean Biology and Biogeochemistry (OBB) Program Manager and the entire enterprise is split into two components of equal sature: calibration and validation plus satellite data processing. The detailed elements of the activity are based on the basic tasks of the two main components plus the current objectives of the Carbon Cycle and Ecosystems Roadmap. The former is distinguished by an internal core set of responsibilities and the latter is facilitated through an external connecting-core ring of competed or contracted activities. The core elements for the calibration and validation component include a) publish protocols and performance metrics; b) verify uncertainty budgets; c) manage the development and evaluation of instrumentation; and d) coordinate international partnerships. The core elements for the satellite data processing component are e) process and reprocess multisensor data; f) acquire, distribute, and archive data products; and g) implement new data products. Both components have shared responsibilities for initializing and temporally monitoring satellite calibration. Connecting-core elements include (but are not restricted to) atmospheric correction and characterization, standards and traceability, instrument and analysis round robins, field campaigns and vicarious calibration sites, in situ database, bio-optical algorithm (and product) validation, satellite characterization and vicarious calibration, and image processing software. The plan also includes an accountability process, creating a Calibration and Validation Team (to help manage

  7. Evaluation of the Suitability of Alluxio for Hadoop Processing Frameworks

    CERN Document Server

    Lawrie, Christopher; CERN. Geneva. IT Department

    2016-01-01

    Alluxio is an open source memory speed virtual distributed storage platform. It sits between the storage and processing framework layers for big data processing and claims to heavily improve performance when data is required to be written/read at a high throughput; for example when a dataset is used by many jobs simultaneously. This report evaluates the viability of using Alluxio at CERN for Hadoop processing frameworks.

  8. Ethnographic methods for process evaluations of complex health behaviour interventions.

    Science.gov (United States)

    Morgan-Trimmer, Sarah; Wood, Fiona

    2016-05-04

    This article outlines the contribution that ethnography could make to process evaluations for trials of complex health-behaviour interventions. Process evaluations are increasingly used to examine how health-behaviour interventions operate to produce outcomes and often employ qualitative methods to do this. Ethnography shares commonalities with the qualitative methods currently used in health-behaviour evaluations but has a distinctive approach over and above these methods. It is an overlooked methodology in trials of complex health-behaviour interventions that has much to contribute to the understanding of how interventions work. These benefits are discussed here with respect to three strengths of ethnographic methodology: (1) producing valid data, (2) understanding data within social contexts, and (3) building theory productively. The limitations of ethnography within the context of process evaluations are also discussed.

  9. Biogeochemical tracers of the marine cyanobacterium Trichodesmium

    Science.gov (United States)

    Carpenter, Edward J.; Harvey, H. Rodger; Fry, Brian; Capone, Douglas G.

    1997-01-01

    We examined the utility of several biogeochemical tracers for following the fate of the planktonic diazotrophic cyanobacterium Trichodesmium in the sea. The presence of a (CIO) fatty acid previously reported was observed in a culture of Trichodesmium but was not found in natural samples. This cyanobacterium had high concentrations of C 14 and C 16 acids, with lesser amounts of several saturated and unsaturated C 18 fatty acids. This composition was similar to that of other marine cyanobacteria. The major hydrocarbon identified was the C 17n-alkane, which was present in all samples from the five stations examined. Sterols common to algae and copepods were observed in many samples along with hopanoids representative of bacteria, suggesting a varied community structure in colonies collected from different stations. We found no unique taxonomic marker of Trichodesmium among the sterols. Measurements of the σ 15N and σ 13C in Trichodesmium samples from the SW Sargasso and NW Caribbean Seas averaged -0.4960 (range from -0.7 to -0.25960) and -12.9%0 (range from -15.2 to -11.9960), respectively, thus confirming previous observations that this cyanobacterial diazotroph has both the lowest σ 15N and highest σ 13C of any marine phytoplankter observed to date. A culture of Trichodesmium grown under diazotrophic conditions had a σ 15N between -1.3 and -3.6960. Our results support the supposition that the relatively low σ 15N and high σ 13C values observed in suspended and sediment-trapped material from some tropical and subtropical seas result from substantial input of C and N by Trichodesmium.

  10. Optical Remote Sensing Algorithm Validation using High-Frequency Underway Biogeochemical Measurements in Three Large Global River Systems

    Science.gov (United States)

    Kuhn, C.; Richey, J. E.; Striegl, R. G.; Ward, N.; Sawakuchi, H. O.; Crawford, J.; Loken, L. C.; Stadler, P.; Dornblaser, M.; Butman, D. E.

    2017-12-01

    More than 93% of the world's river-water volume occurs in basins impacted by large dams and about 43% of river water discharge is impacted by flow regulation. Human land use also alters nutrient and carbon cycling and the emission of carbon dioxide from inland reservoirs. Increased water residence times and warmer temperatures in reservoirs fundamentally alter the physical settings for biogeochemical processing in large rivers, yet river biogeochemistry for many large systems remains undersampled. Satellite remote sensing holds promise as a methodology for responsive regional and global water resources management. Decades of ocean optics research has laid the foundation for the use of remote sensing reflectance in optical wavelengths (400 - 700 nm) to produce satellite-derived, near-surface estimates of phytoplankton chlorophyll concentration. Significant improvements between successive generations of ocean color sensors have enabled the scientific community to document changes in global ocean productivity (NPP) and estimate ocean biomass with increasing accuracy. Despite large advances in ocean optics, application of optical methods to inland waters has been limited to date due to their optical complexity and small spatial scale. To test this frontier, we present a study evaluating the accuracy and suitability of empirical inversion approaches for estimating chlorophyll-a, turbidity and temperature for the Amazon, Columbia and Mississippi rivers using satellite remote sensing. We demonstrate how riverine biogeochemical measurements collected at high frequencies from underway vessels can be used as in situ matchups to evaluate remotely-sensed, near-surface temperature, turbidity, chlorophyll-a derived from the Landsat 8 (NASA) and Sentinel 2 (ESA) satellites. We investigate the use of remote sensing water reflectance to infer trophic status as well as tributary influences on the optical characteristics of the Amazon, Mississippi and Columbia rivers.

  11. Evaluating sources and processing of nonpoint source nitrate in a small suburban watershed in China

    Science.gov (United States)

    Han, Li; Huang, Minsheng; Ma, Minghai; Wei, Jinbao; Hu, Wei; Chouhan, Seema

    2018-04-01

    Identifying nonpoint sources of nitrate has been a long-term challenge in mixed land-use watershed. In the present study, we combine dual nitrate isotope, runoff and stream water monitoring to elucidate the nonpoint nitrate sources across land use, and determine the relative importance of biogeochemical processes for nitrate export in a small suburban watershed, Longhongjian watershed, China. Our study suggested that NH4+ fertilizer, soil NH4+, litter fall and groundwater were the main nitrate sources in Longhongjian Stream. There were large changes in nitrate sources in response to season and land use. Runoff analysis illustrated that the tea plantation and forest areas contributed to a dominated proportion of the TN export. Spatial analysis illustrated that NO3- concentration was high in the tea plantation and forest areas, and δ15N-NO3 and δ18O-NO3 were enriched in the step ponds. Temporal analysis showed high NO3- level in spring, and nitrate isotopes were enriched in summer. Study as well showed that the step ponds played an important role in mitigating nitrate pollution. Nitrification and plant uptake were the significant biogeochemical processes contributing to the nitrogen transformation, and denitrification hardly occurred in the stream.

  12. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for sea-air CO2 fluxes

    Science.gov (United States)

    Fransson, Agneta; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot K.; Spreen, Gunnar; Ward, Brian

    2017-07-01

    We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic sea ice from January to June 2015 during the Norwegian young sea ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged between 315 µatm in winter and 153 µatm in spring, hence was undersaturated relative to the atmospheric fCO2. Although the sea ice partly prevented direct CO2 exchange between ocean and atmosphere, frequently occurring leads and breakup of the ice sheet promoted sea-air CO2 fluxes. The CO2 sink varied between 0.3 and 86 mmol C m-2 d-1, depending strongly on the open-water fractions (OW) and storm events. The maximum sea-air CO2 fluxes occurred during storm events in February and June. In winter, the main drivers of the change in under-ice water fCO2 were dissolution of CaCO3 (ikaite) and vertical mixing. In June, in addition to these processes, primary production and sea-air CO2 fluxes were important. The cumulative loss due to CaCO3 dissolution of 0.7 mol C m-2 in the upper 10 m played a major role in sustaining the undersaturation of fCO2 during the entire study. The relative effects of the total fCO2 change due to CaCO3 dissolution was 38%, primary production 26%, vertical mixing 16%, sea-air CO2 fluxes 16%, and temperature and salinity insignificant.

  13. Methods for the Evaluation of Waste Treatment Processes

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Gehrmann

    2017-01-01

    Full Text Available Decision makers for waste management are confronted with the problem of selecting the most economic, environmental, and socially acceptable waste treatment process. This paper elucidates evaluation methods for waste treatment processes for the comparison of ecological and economic aspects such as material flow analysis, statistical entropy analysis, energetic and exergetic assessment, cumulative energy demand, and life cycle assessment. The work is based on the VDI guideline 3925. A comparison of two thermal waste treatment plants with different process designs and energy recovery systems was performed with the described evaluation methods. The results are mainly influenced by the type of energy recovery, where the waste-to-energy plant providing district heat and process steam emerged to be beneficial in most aspects. Material recovery options from waste incineration were evaluated according to sustainability targets, such as saving of resources and environmental protection.

  14. Evaluating evaluation as a communication process. What role for formative evaluation in ICT-based knowledge acquisition?

    Directory of Open Access Journals (Sweden)

    USEILLE Philippe

    2005-10-01

    Full Text Available This article examines how formative evaluation as a communication process contributes to knowledge acquisition in using ICT (Information and Communication Technologies. Previous studies, especially in the field of education and training, have shown that formative evaluation plays a crucial part in the learning process because it contributes to learning to learn. Through formative evaluation, the learner becomes aware of errors and can adjust learning strategies to the situation. In addition, formative evaluation provides the teaching side with significant and useful information. Consequently, ICT researches have developed a wide range of solutions for this specific purpose. It is however difficult to check the efficiency of these tools by considering the effects of ICT in the knowledge acquisition process. I suggest that formative evaluation includes also a communication system that has an effect on the learning process. This study tackles the issue by proposing an alternative approach to formative evaluation that considers it as both a learning and a communication process. The study is based on SADT (Structure Analysis and Design Technique that provides a suitable description for the whole complex communication process. It allows a rigorous understanding and identification of the variables of evaluation as a communication process in order to take care of an ICT frame. Finally, this article outlines a multidisciplinary method to evaluate formative evaluation by focusing on the validity facets of the communication process. Keywords: formative evaluation, communication process, validity criteria, ICT training context.

  15. Evaluation of EMG processing techniques using Information Theory.

    Science.gov (United States)

    Farfán, Fernando D; Politti, Julio C; Felice, Carmelo J

    2010-11-12

    Electromyographic signals can be used in biomedical engineering and/or rehabilitation field, as potential sources of control for prosthetics and orthotics. In such applications, digital processing techniques are necessary to follow efficient and effectively the changes in the physiological characteristics produced by a muscular contraction. In this paper, two methods based on information theory are proposed to evaluate the processing techniques. These methods determine the amount of information that a processing technique is able to extract from EMG signals. The processing techniques evaluated with these methods were: absolute mean value (AMV), RMS values, variance values (VAR) and difference absolute mean value (DAMV). EMG signals from the middle deltoid during abduction and adduction movement of the arm in the scapular plane was registered, for static and dynamic contractions. The optimal window length (segmentation), abduction and adduction movements and inter-electrode distance were also analyzed. Using the optimal segmentation (200 ms and 300 ms in static and dynamic contractions, respectively) the best processing techniques were: RMS, AMV and VAR in static contractions, and only the RMS in dynamic contractions. Using the RMS of EMG signal, variations in the amount of information between the abduction and adduction movements were observed. Although the evaluation methods proposed here were applied to standard processing techniques, these methods can also be considered as alternatives tools to evaluate new processing techniques in different areas of electrophysiology.

  16. Evaluation of EMG processing techniques using Information Theory

    Directory of Open Access Journals (Sweden)

    Felice Carmelo J

    2010-11-01

    Full Text Available Abstract Background Electromyographic signals can be used in biomedical engineering and/or rehabilitation field, as potential sources of control for prosthetics and orthotics. In such applications, digital processing techniques are necessary to follow efficient and effectively the changes in the physiological characteristics produced by a muscular contraction. In this paper, two methods based on information theory are proposed to evaluate the processing techniques. Methods These methods determine the amount of information that a processing technique is able to extract from EMG signals. The processing techniques evaluated with these methods were: absolute mean value (AMV, RMS values, variance values (VAR and difference absolute mean value (DAMV. EMG signals from the middle deltoid during abduction and adduction movement of the arm in the scapular plane was registered, for static and dynamic contractions. The optimal window length (segmentation, abduction and adduction movements and inter-electrode distance were also analyzed. Results Using the optimal segmentation (200 ms and 300 ms in static and dynamic contractions, respectively the best processing techniques were: RMS, AMV and VAR in static contractions, and only the RMS in dynamic contractions. Using the RMS of EMG signal, variations in the amount of information between the abduction and adduction movements were observed. Conclusions Although the evaluation methods proposed here were applied to standard processing techniques, these methods can also be considered as alternatives tools to evaluate new processing techniques in different areas of electrophysiology.

  17. Subsurface low pH and carbonate saturation state of aragonite on China side of the North Yellow Sea: combined effects of global atmospheric CO2 increase, regional environmental changes, and local biogeochemical processes

    Science.gov (United States)

    Zhai, W.-D.; Zheng, N.; Huo, C.; Xu, Y.; Zhao, H.-D.; Li, Y.-W.; Zang, K.-P.; Wang, J.-Y.; Xu, X.-M.

    2013-02-01

    Based upon seven field surveys conducted between May 2011 and January 2012, we investigated pH, carbonate saturation state of aragonite (Ωarag), and ancillary parameters on the Chinese side of the North Yellow Sea, a western North Pacific continental margin of major economic importance. Subsurface waters were nearly in equilibrium with air in May and June. From July to October, the fugacity of CO2 (fCO2) of bottom water gradually increased to 697 ± 103 μatm and pH decreased to 7.83 ± 0.07 due to respiration/remineralization processes of primary production induced biogenic particles. In November and January, bottom water fCO2 decreased and pH gradually returned to an air-equilibrated level due to cooling enhanced vertical mixing. The corresponding bottom water Ωarag was 1.74 ± 0.17 (May), 1.77 ± 0.26 (June), 1.70 ± 0.26 (July), 1.72 ± 0.33 (August), 1.32 ± 0.31 (October), 1.50 ± 0.28 (November), and 1.41 ± 0.12 (January). Critically low Ωarag values of 1.0 to 1.2 were mainly observed in subsurface waters in a salinity range of 31.5-32.5 psu in October and November, accounting for ~ 10% of the North Yellow Sea area. Water mass derived from the adjacent Bohai Sea had a typical water salinity of 30.5-31.5 psu, and bottom water Ωarag values ranged mostly between 1.6 and 2.4. This study showed that the carbonate system in the North Yellow Sea was substantially influenced by global atmospheric CO2 increase. The community respiration/remineralization rates in typical North Yellow Sea bottom water mass were estimated at 0.55-1.0 μmol O2 kg-1 d-1 in warm seasons, leading to seasonal drops in subsurface pH and Ωarag. Outflow of the Bohai Sea water mass counteracted the subsurface Ωarag reduction in the North Yellow Sea.

  18. Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Special Session C06 on: “Physical, biological and biogeochemical processes associated with young thin ice types”

    Science.gov (United States)

    Prinsenberg, S. J.

    2009-12-01

    Formation and ridging of flaw leads in the eastern Canadian Beaufort Sea. Simon Prinsenberg1 and Yves Graton2 1Bedford Inst. of Oceanography, Fisheries and Oceans Canada P.O. Box1006, Dartmouth, Nova Scotia, B2Y 4A2, Canada prinsenbergs@mar.dfo-mpo.gc.ca 2Inst. National de la Recherche Scientifique-Eau, INRS-ETE University of Quebec at Quebec City, Quebec yvesgratton@eteinrs.ca During the winter of 2008, the flaw lead south of Banks Island repeatedly opened and closed representing an elongated region where periodically the large ice growth stimulates the densification of the surface layer due to salt rejection and instigates a local circulation pattern that will affect the biological processes of the region. Helicopter-borne sensors were available to monitor the aftermath of one of the rapid closing of the flaw lead into extensive elongated rubble field using a Canadian Ice breaker, CCGS Amundsen, as a logistic base. After the wind reversed a new open flaw lead 20km wide restarting a new flaw lead formation cycle. Ice thickness and surface roughness data were collected from the rubble field and adjacent open flaw lead with an Electromagnetic-Laser system. The strong wind event of April 4-5 2009 generated a large linear 1.5km wide ice rubble field up to 8-10m thick when the 60cm thick, 18km wide flaw lead was crunched into land-fast by the 1.5m thick offshore pack ice. It is expected that during rapid ice growth in a flaw lead, salt rejection increase the density of the surface water layer producing a surface depression (Low) and cyclonic circulation. In contrast at depth, the extra surface dense water produces a high in the horizontal pressure field and anti-cyclonic circulation which remains after the rapid ice growth within the flaw lead stops. One of such remnants may have been observed during the CFL-IPY winter survey.

  19. Process evaluations for uranium recovery from scrap material

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1992-01-01

    The integral Fast Reactor (IFR) concept being developed by Argonne National Laboratory is based on pyrometallurgical processing of spent nuclear metallic fuel with subsequent fabrication into new reactor fuel by an injection casting sequence. During fabrication, a dilute scrap stream containing uranium alloy fines and broken quartz (Vycor) molds in produced. Waste characterization of this stream, developed by using present operating data and chemical analysis was used to evaluate different uranium recovery methods and possible process variations for the return of the recovered metal. Two methods, comminution with size separation and electrostatic separation, have been tested and can recover over 95% of the metal. Recycling the metal to either the electrochemical process or the injection casting was evaluated for the different economic and process impacts. The physical waste parameters and the important separation process variables are discussed with their effects on the viability of recycling the material. In this paper criteria used to establish the acceptable operating limits is discussed

  20. Soil bioremediation at CFB Trenton: evaluation of bioremediation processes

    International Nuclear Information System (INIS)

    Ouellette, L.; Cathum, S.; Avotins, J.; Kokars, V.; Cooper, D.

    1996-01-01

    Bioremediation processes and their application in the cleanup of contaminated soil, were discussed. The petroleum contaminated soil at CFB Trenton, was evaluated to determine which bioremediation process or combination of processes would be most effective. The following processes were considered: (1) white hot fungus, (2) Daramend proprietary process, (3) composting, (4) bioquest proprietary bioremediation processes, (5) Hobbs and Millar proprietary bioremediation process, and (6) farming. A brief summary of each of these options was included. The project was also used as an opportunity to train Latvian and Ukrainian specialists in Canadian field techniques and laboratory analyses. Preliminary data indicated that bioremediation is a viable method for treatment of contaminated soil. 18 refs., 3 figs

  1. Evaluating supplier quality performance using fuzzy analytical hierarchy process

    Science.gov (United States)

    Ahmad, Nazihah; Kasim, Maznah Mat; Rajoo, Shanmugam Sundram Kalimuthu

    2014-12-01

    Evaluating supplier quality performance is vital in ensuring continuous supply chain improvement, reducing the operational costs and risks towards meeting customer's expectation. This paper aims to illustrate an application of Fuzzy Analytical Hierarchy Process to prioritize the evaluation criteria in a context of automotive manufacturing in Malaysia. Five main criteria were identified which were quality, cost, delivery, customer serviceand technology support. These criteria had been arranged into hierarchical structure and evaluated by an expert. The relative importance of each criteria was determined by using linguistic variables which were represented as triangular fuzzy numbers. The Center of Gravity defuzzification method was used to convert the fuzzy evaluations into their corresponding crisps values. Such fuzzy evaluation can be used as a systematic tool to overcome the uncertainty evaluation of suppliers' performance which usually associated with human being subjective judgments.

  2. Automated Plasma Spray (APS) process feasibility study: Plasma spray process development and evaluation

    Science.gov (United States)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1979-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.

  3. Chemical-cleaning process evaluation: Westinghouse steam generators. Final report

    International Nuclear Information System (INIS)

    Cleary, W.F.; Gockley, G.B.

    1983-04-01

    The Steam Generator Owners Group (SGOG)/Electric Power Research Institute (EPRI) Steam Generator Secondary Side Chemical Cleaning Program, under develpment since 1978, has resulted in a generic process for the removal of accumulated corrosion products and tube deposits in the tube support plate crevices. The SGOG/EPRI Project S150-3 was established to obtain an evaluation of the generic process in regard to its applicability to Westinghouse steam generators. The results of the evaluation form the basis for recommendations for transferring the generic process to a plant specific application and identify chemical cleaning corrosion guidelines for the materials in Westinghouse Steam Generators. The results of the evaluation, recommendations for plant-specific applications and corrosion guidelines for chemical cleaning are presented in this report

  4. School nurse evaluations: making the process meaningful and motivational.

    Science.gov (United States)

    McDaniel, Kathryn H; Overman, Muriel; Guttu, Martha; Engelke, Martha Keehner

    2013-02-01

    The professional standards of school nursing practice provide a framework to help school nurses focus on their unique mission of promoting health and academic achievement for all students. Without the standards, the nurse's role can become task oriented and limited in scope. By using an evaluation tool that reflects the standards, nurses not only become aware and begin to understand the standards; they also become directly accountable for meeting them. In addition, developing an evaluation process based on the standards of school nurse practice increases the visibility of school nurses and helps school administrators understand the role of the school nurse. This article describes how one school district integrated the scope and standards of school nursing into the job description and performance evaluation of the nurse. The process which is used to complete the evaluation in a manner that is meaningful and motivational to the school nurse is described.

  5. Biogeochemical generation of dissolved inorganic carbon and nitrogen in the North Branch of inner Changjiang Estuary in a dry season

    Science.gov (United States)

    Zhai, Wei-Dong; Yan, Xiu-Li; Qi, Di

    2017-10-01

    We investigated the surface water carbonate system, nutrients, and relevant hydrochemical parameters in the inner Changjiang (Yangtze River) Estuary in early spring 2009 and 2010. The two surveys were carried out shortly after spring-tide days, and covered both the channel-like South Branch and the freshwater-blocked North Branch. In the North Branch, with a water residence time of approximately one month, we detected remarkable partial pressures of CO2 (pCO2) of 930-1518 μatm with a salinity range of 4.5-17.4, which were substantially higher than the South Branch pCO2 values of 700-1100 μatm at salinities of less than 0.88. The North Branch pCO2 distribution pattern is unique compared with many other estuaries where aquatic pCO2 normally declines with salinity increase. Furthermore, the biogeochemical additions of ammonium (7.4-65.7 μmol kg-1) and alkalinity (196-695 μmol kg-1) were identified in salinities between 4 and 16 in the North Branch. Based on field data analyses and simplified stoichiometric equations, we suggest that the relatively high North Branch pCO2 values and estuarine additions of dissolved inorganic nitrogen/carbon in the mid-salinity area were strongly associated with each other. These signals were primarily controlled by biogeochemical processes in the North Branch, combining biogenic organic matter decomposition (i.e. respiration), ammonia oxidation, CaCO3 dissolution, and CO2 degassing. In the upper reach of the South Branch, notable salinity values of 0.20-0.88 were detected, indicating saltwater spillover from the North Branch. These spillover waters had minor contributions (1.5-6.9%) to the springtime nutrient, dissolved inorganic carbon, and alkalinity export fluxes from Changjiang to the adjacent East China Sea. This is the first attempt to understand the biogeochemical controls of the unique pCO2 distributions in the North Branch, and to evaluate the effects of saltwater spillover from the North Branch on dry-season export fluxes

  6. Biogeochemical consequences of vertical and lateral transport of particulate organic matter in the southern North Sea: A multiproxy approach

    NARCIS (Netherlands)

    Le Guitton, M.; Soetaert, K.; Sinninghe Damsté, J.S.; Middelburg, J.J.

    2015-01-01

    Vertical and lateral transports are of importance in continental shelf systems such as the North Sea andplay a major role in the processing of organic matter. We investigated the biogeochemical consequencesof these transports on particulate organic matter at the molecular level in the southern North

  7. Biogeochemical consequences of vertical and lateral transport of particulate organic matter in the southern North Sea: A multiproxy approach

    NARCIS (Netherlands)

    le Guitton, M.; Soetaert, K.; Sinninghe Damsté, J.S.; Middelburg, J.J.

    2015-01-01

    Vertical and lateral transports are of importance in continental shelf systems such as the North Sea and play a major role in the processing of organic matter. We investigated the biogeochemical consequences of these transports on particulate organic matter at the molecular level in the southern

  8. Evaluation of stabilization techniques for ion implant processing

    Science.gov (United States)

    Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Narcy, Mark E.; Livesay, William R.

    1999-06-01

    With the integration of high current ion implant processing into volume CMOS manufacturing, the need for photoresist stabilization to achieve a stable ion implant process is critical. This study compares electron beam stabilization, a non-thermal process, with more traditional thermal stabilization techniques such as hot plate baking and vacuum oven processing. The electron beam processing is carried out in a flood exposure system with no active heating of the wafer. These stabilization techniques are applied to typical ion implant processes that might be found in a CMOS production process flow. The stabilization processes are applied to a 1.1 micrometers thick PFI-38A i-line photoresist film prior to ion implant processing. Post stabilization CD variation is detailed with respect to wall slope and feature integrity. SEM photographs detail the effects of the stabilization technique on photoresist features. The thermal stability of the photoresist is shown for different levels of stabilization and post stabilization thermal cycling. Thermal flow stability of the photoresist is detailed via SEM photographs. A significant improvement in thermal stability is achieved with the electron beam process, such that photoresist features are stable to temperatures in excess of 200 degrees C. Ion implant processing parameters are evaluated and compared for the different stabilization methods. Ion implant system end-station chamber pressure is detailed as a function of ion implant process and stabilization condition. The ion implant process conditions are detailed for varying factors such as ion current, energy, and total dose. A reduction in the ion implant systems end-station chamber pressure is achieved with the electron beam stabilization process over the other techniques considered. This reduction in end-station chamber pressure is shown to provide a reduction in total process time for a given ion implant dose. Improvements in the ion implant process are detailed across

  9. Evaluation of STAT medication ordering process in a community hospital.

    Science.gov (United States)

    Abdelaziz, Hani; Richardson, Sandra; Walsh, Kim; Nodzon, Jessica; Schwartz, Barbara

    2016-01-01

    In most health care facilities, problems related to delays in STAT medication order processing time are of common concern. The purpose of this study was to evaluate processing time for STAT orders at Kimball Medical Center. All STAT orders were reviewed to determine processing time; order processing time was also stratified by physician order entry (physician entered (PE) orders vs. non-physician entered (NPE) orders). Collected data included medication ordered, indication, time ordered, time verified by pharmacist, time sent from pharmacy, and time charted as given to the patient. A total of 502 STAT orders were reviewed and 389 orders were included for analysis. Overall, median time was 29 minutes, IQR 16-63; porder processing time may be improved by increasing the availability of medications in ADM, and pharmacy involvement in the verification process.

  10. Process Design and Evaluation for Chemicals Based on Renewable Resources

    DEFF Research Database (Denmark)

    Fu, Wenjing

    . In addition, another characteristic of chemicals based on renewable feedstocks is that many alternative technologies and possible routes exist, resulting in many possible process flowsheets. The challenge for process engineers is then to choose between possible process routes and alternative technologies...... development of chemicals based on renewable feedstocks. As an example, this thesis especially focuses on applying the methodology in process design and evaluation of the synthesis of 5-hydroxymethylfurfural (HMF) from the renewable feedstock glucose/fructose. The selected example is part of the chemoenzymatic......One of the key steps in process design is choosing between alternative technologies, especially for processes producing bulk and commodity chemicals. Recently, driven by the increasing oil prices and diminishing reserves, the production of bulk and commodity chemicals from renewable feedstocks has...

  11. Microbial extracellular polymeric substances in marine biogeochemical processes

    Digital Repository Service at National Institute of Oceanography (India)

    Bhaskar, P.V.; Bhosle, N.B.

    and are found in free dissolved form, colloids, discreet partcles like TEP and/or associated with particulate matter, including cell aggregates, detritus, biofilms, microbial mats, etc. The chemical composition of EPS is influenced by various factors... of EPS in marine waters. Hence, various aspects of EPS di- cussed hereafter indicate bacterial and/or phyto origin unless specified. Characteristics of EPS Microorganisms grow in free planktonic state16,17 or are ata- ched to surfaces (natural...

  12. Evaluation of mercury in the liquid waste processing facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Vijay [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Shah, Hasmukh [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Occhipinti, John E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, William R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, Richard E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  13. Evaluation of learning and teaching process in Turkish courses

    Directory of Open Access Journals (Sweden)

    Eyyup Coşkun

    2010-07-01

    Full Text Available A radical educational reform occurred in Turkey in 2005; and curriculum of primary education courses was renewed. New curriculum was prepared based on constructivist approach. In this scope, curriculum of Turkish course was also renewed. This study aims at evaluating applications and opinions of teachers and students about learning and teaching process prescribed in Turkish Course (1st-5th Grades Curriculum. Within the scope of the study, semi-structured interview was made with 10 teachers and 12 students. In addition, process teaching a text was evaluated via structured observation method in 5 different classes. According to the results of the study, primary school teachers find some stages in learning – teaching process prescribed in the curriculum unnecessary and therefore do not apply them. Teachers mentioned that some texts are above the student level; and they sometimes experience time and material problems. It was seen in the present study that teachers do not have enough information about learning and teaching process in the new curriculum; they do not have high success levels in the applications; and they usually do not apply the forms for evaluating the process in the curriculum. It was found out that, in spite of these problems, courses are student-centred as prescribed in the curriculum; and students have positive opinions about stages of learning and teaching process.

  14. Comparison of alternative spatial resolutions in the application of a spatially distributed biogeochemical model over complex terrain

    Science.gov (United States)

    Turner, D.P.; Dodson, R.; Marks, D.

    1996-01-01

    Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the

  15. Ecotoxicological, ecophysiological and biogeochemical fundamentals of risk assessment

    International Nuclear Information System (INIS)

    Bashkin, V.; Evstafjeva, E.

    1995-01-01

    A quantitative risk assessment (RA) for complex influence of different factors in heavy polluted regions is possible to carry out only on a basis of determination of various links of biogeochemical trophical chains and analysis of the whole biogeochemical structure of the region under study. As an integrative assessment, the human adaptability should be chosen because the majority of trophical chains are closed by man. The given integrative criteria includes biogeochemical, ecophysiological and ecotoxicological assessment of risk factors. Consequently, ecological-biogeochemical regionalization, ecophysiological and ecotoxicological monitoring of human population health are the important approaches to RA. These criteria should be conjugated with LCA of various industrial and agricultural products. At the ultimate degree, the given approaches are needed for areas where traditional pollutants (heavy metals, POPS, pesticides, fertilizers) are enforced sharply by radioactive pollution. Due to the complex influence of pollutants, it is impossible to use individual guidelines. For RA of these complex pollutants, the methods of human adaptability assessment to a polluted environment have to be carried out. These methods include biogeochemical, ecotoxicological and ecophysiological analysis of risk factors as well as quantitative uncertainty analysis. Furthermore, the modern statistical methods such as correlative graphs etc., have to be used for quantitative assessment of human adaptability to complex influence of pollutants. The results obtained in the Chernobyl region have shown the acceptability of suggested methods

  16. Geophysical Monitoring of Hydrological and Biogeochemical Transformations associated with Cr(VI) Bioremediation

    International Nuclear Information System (INIS)

    Hubbard, Susan; Williams, Kenneth H.; Conrad, Mark E.; Faybishenko, Boris; Peterson, John; Chen, Jinsong; Long, Philip E.; Hazen, Terry C.

    2008-01-01

    Understanding how hydrological and biogeochemical properties change over space and time in response to remedial treatments is hindered by our ability to monitor these processes with sufficient resolution and over field relevant scales. Here, we explored the use of geophysical approaches for monitoring the spatiotemporal distribution of hydrological and biogeochemical transformations associated with a Cr(VI)bioremediation experiment performed at Hanford, WA. We first integrated hydrological wellbore and geophysical tomographic datasets to estimate hydrological zonation at the study site. Using results from laboratory biogeophysical experiments and constraints provided by field geochemical datasets, we then interpreted time-lapse seismic and radar tomographic datasets, collected during thirteen acquisition campaigns over a three year experimental period, in terms of hydrological and biogeochemical transformations. The geophysical monitoring datasets were used to infer: the spatial distribution of injected electron donor; the evolution of gas bubbles; variations in total dissolved solids (nitrate and sulfate) as a function of pumping activity; the formation of precipitates and dissolution of calcites; and concomitant changes in porosity. Although qualitative in nature, the integrated interpretation illustrates how geophysical techniques have the potential to provide a wealth of information about coupled hydrobiogeochemical responses to remedial treatments in high spatial resolution and in a minimally invasive manner. Particularly novel aspects of our study include the use of multiple lines of evidence to constrain the interpretation of a long-term, field-scale geophysical monitoring dataset and the interpretation of the transformations as a function of hydrological heterogeneity and pumping activity

  17. A framework to assess biogeochemical response to ecosystem disturbance using nutrient partitioning ratios

    Science.gov (United States)

    Kranabetter, J. Marty; McLauchlan, Kendra K.; Enders, Sara K.; Fraterrigo, Jennifer M.; Higuera, Philip E.; Morris, Jesse L.; Rastetter, Edward B.; Barnes, Rebecca; Buma, Brian; Gavin, Daniel G.; Gerhart, Laci M.; Gillson, Lindsey; Hietz, Peter; Mack, Michelle C.; McNeil, Brenden; Perakis, Steven

    2016-01-01

    Disturbances affect almost all terrestrial ecosystems, but it has been difficult to identify general principles regarding these influences. To improve our understanding of the long-term consequences of disturbance on terrestrial ecosystems, we present a conceptual framework that analyzes disturbances by their biogeochemical impacts. We posit that the ratio of soil and plant nutrient stocks in mature ecosystems represents a characteristic site property. Focusing on nitrogen (N), we hypothesize that this partitioning ratio (soil N: plant N) will undergo a predictable trajectory after disturbance. We investigate the nature of this partitioning ratio with three approaches: (1) nutrient stock data from forested ecosystems in North America, (2) a process-based ecosystem model, and (3) conceptual shifts in site nutrient availability with altered disturbance frequency. Partitioning ratios could be applied to a variety of ecosystems and successional states, allowing for improved temporal scaling of disturbance events. The generally short-term empirical evidence for recovery trajectories of nutrient stocks and partitioning ratios suggests two areas for future research. First, we need to recognize and quantify how disturbance effects can be accreting or depleting, depending on whether their net effect is to increase or decrease ecosystem nutrient stocks. Second, we need to test how altered disturbance frequencies from the present state may be constructive or destructive in their effects on biogeochemical cycling and nutrient availability. Long-term studies, with repeated sampling of soils and vegetation, will be essential in further developing this framework of biogeochemical response to disturbance.

  18. Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0)

    Science.gov (United States)

    Sauerland, Volkmar; Löptien, Ulrike; Leonhard, Claudine; Oschlies, Andreas; Srivastav, Anand

    2018-03-01

    Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often embedded into Earth system models which are increasingly used for decision making regarding climate policies. These models contain poorly constrained parameters (e.g., maximum phytoplankton growth rate), which are typically adjusted until the model shows reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical processes are nonlinear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose determining a preferably large lower bound for the global optimum that is relatively easy to obtain and that will help to assess the quality of an optimum, generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is typically larger than zero. We suggest deriving such lower bounds based on typical properties of biogeochemical models (e.g., a limited number of extremes and a bounded time derivative). We illustrate the applicability of the method with two real-world examples. The first example uses real-world observations of the Baltic Sea in a box model setup. The second example considers a three-dimensional coupled ocean circulation model in combination with satellite chlorophyll a.

  19. NATO Advanced Research Workshop on The Biogeochemical Cycling of Sulfur and Nitrogen in the Remote Atmosphere

    CERN Document Server

    Charlson, Robert; Andreae, Meinrat; Rodhe, Henning

    1985-01-01

    Viewed from space, the Earth appears as a globe without a beginning or an end. Encompassing the globe is the atmosphere with its three phases-­ gaseous, liquid, and solid--moving in directions influenced by sunlight, gravity, and rotation. The chemical compositions of these phases are determined by biogeochemical cycles. Over the past hundred years, the processes governing the rates and reactions in the atmospheric biogeochemical cycles have typically been studied in regions where scientists lived. Hence, as time has gone by, the advances in our knowledge of atmospheric chemical cycles in remote areas have lagged substantially behind those for more populated areas. Not only are the data less abundant, they are also scattered. Therefore, we felt a workshop would be an excellent mechanism to assess the state­ of-knowledge of the atmospheric cycles of sulfur and nitrogen in remote areas and to make recommendations for future research. Thus, a NATO Advanced Research Workshop '~he Biogeochemical Cycling of Sulfu...

  20. Error assessment of biogeochemical models by lower bound methods (NOMMA-1.0

    Directory of Open Access Journals (Sweden)

    V. Sauerland

    2018-03-01

    Full Text Available Biogeochemical models, capturing the major feedbacks of the pelagic ecosystem of the world ocean, are today often embedded into Earth system models which are increasingly used for decision making regarding climate policies. These models contain poorly constrained parameters (e.g., maximum phytoplankton growth rate, which are typically adjusted until the model shows reasonable behavior. Systematic approaches determine these parameters by minimizing the misfit between the model and observational data. In most common model approaches, however, the underlying functions mimicking the biogeochemical processes are nonlinear and non-convex. Thus, systematic optimization algorithms are likely to get trapped in local minima and might lead to non-optimal results. To judge the quality of an obtained parameter estimate, we propose determining a preferably large lower bound for the global optimum that is relatively easy to obtain and that will help to assess the quality of an optimum, generated by an optimization algorithm. Due to the unavoidable noise component in all observations, such a lower bound is typically larger than zero. We suggest deriving such lower bounds based on typical properties of biogeochemical models (e.g., a limited number of extremes and a bounded time derivative. We illustrate the applicability of the method with two real-world examples. The first example uses real-world observations of the Baltic Sea in a box model setup. The second example considers a three-dimensional coupled ocean circulation model in combination with satellite chlorophyll a.

  1. Possible impacts of global warming on tundra and boreal forest ecosystems - comparison of some biogeochemical models

    Energy Technology Data Exchange (ETDEWEB)

    Ploechl, M.; Cramer, W.

    1995-06-01

    Global warming affects the magnitude of carbon, water and nitrogen fluxes between biosphere and atmosphere as well as the distribution of vegetation types. Biogeochemical models, global as well as patch models, can be used to estimate the differences between the mean values of annual net primary production (NPP) for the present and for future climate scenarios. Both approaches rely on the prescribed pattern of vegetation types. Structural, rule based models can predict such patterns, provided that vegetation and climate are in equilibrium. The coupling of biogeochemical and structural models gives the opportunity to test the sensitivity of biogeochemical processes not only to climatic change but also to biome shifts. Whether the annual mean NPP of a vegetation type increses or decreases depends strongly on the assumptions about a CO{sub 2} fertilization effect and nitrogen cycling. Results from our coupled model show that, given that direct CO{sub 2} effects are uncertain, (i) average NPP of these northern biomes might decrease under global warming, but (ii) total NPP of the region would increase, due to the northward shift of the taiga biome. (orig.)

  2. Evaluation of poultry processing practices, related public health laws ...

    African Journals Online (AJOL)

    Evaluation of poultry processing practices, related public health laws and diseases of chickens at slaughter: A pilot study in Kaduna state. ... The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader). If you would like more ...

  3. Student Evaluation of Teaching: An Instrument and a Development Process

    Science.gov (United States)

    Alok, Kumar

    2011-01-01

    This article describes the process of faculty-led development of a student evaluation of teaching instrument at Centurion School of Rural Enterprise Management, a management institute in India. The instrument was to focus on teacher behaviors that students get an opportunity to observe. Teachers and students jointly contributed a number of…

  4. The role of schema salience in ad processing and evaluation

    NARCIS (Netherlands)

    Loef, J.; Antonides, G.; van Raaij, W.F.

    2002-01-01

    Advertising grids such as the Rossiter-Percy grid (Rossiter & Percy 1991, 1997) propose that brand-matching advertising is more effective than brand-mismatching advertising. However, for the match hypothesis to hold the brand schema needs to be salient in ad processing and evaluation. In this study

  5. Process Evaluation for a Prison-based Substance Abuse Program.

    Science.gov (United States)

    Staton, Michele; Leukefeld, Carl; Logan, T. K.; Purvis, Rick

    2000-01-01

    Presents findings from a process evaluation conducted in a prison-based substance abuse program in Kentucky. Discusses key components in the program, including a detailed program description, modifications in planned treatment strategies, program documentation, and perspectives of staff and clients. Findings suggest that prison-based programs have…

  6. Evaluating treatment process redesign by applying the EFQM Excellence Model

    NARCIS (Netherlands)

    Nabitz, Udo; Schramade, Mark; Schippers, Gerard

    2006-01-01

    OBJECTIVE: To evaluate a treatment process redesign programme implementing evidence-based treatment as part of a total quality management in a Dutch addiction treatment centre. METHOD: Quality management was monitored over a period of more than 10 years in an addiction treatment centre with 550

  7. EVALUATION OF A PROCESS TO CONVERT BIOMASS TO METHANOL FUEL

    Science.gov (United States)

    The report gives results of a review of the design of a reactor capable of gasifying approximately 50 lb/hr of biomass for a pilot-scale facility to develop, demonstrate, and evaluate the Hynol Process, a high-temperature, high-pressure method for converting biomass into methanol...

  8. Evaluation of the effect of advanced coagulation process to optimize ...

    African Journals Online (AJOL)

    Evaluation of the effect of advanced coagulation process to optimize the removal of natural organic matter in water (Case study: drinking water of Mashhad's ... and in addition to giving taste, color and odor to the water, they can intervene in the oxidization and removal of heavy metals such as arsenic, iron and manganese.

  9. Towards an evaluation framework for process mining algorithms

    NARCIS (Netherlands)

    Rozinat, A.; Alves De Medeiros, A.K.; Günther, C.W.; Weijters, A.J.M.M.; Aalst, van der W.M.P.

    2007-01-01

    Although there has been a lot of progress in developing process mining algorithms in recent years, no effort has been put in developing a common means of assessing the quality of the models discovered by these algorithms. In this paper, we outline elements of an evaluation framework that is intended

  10. Quality evaluation of processed clay soil samples | Steiner-Asiedu ...

    African Journals Online (AJOL)

    Introduction: This study assessed the microbial quality of clay samples sold on two of the major Ghanaian markets. Methods: The study was a cross-sectional assessing the evaluation of processed clay and effects it has on the nutrition of the consumers in the political capital town of Ghana. The items for the examination was ...

  11. Synthesis and evaluation of potential ligands for nuclear waste processing

    NARCIS (Netherlands)

    Iqbal, M.

    2012-01-01

    The research presented in this thesis deals with the synthesis and evaluation of new potential ligands for the complexation of actinide and lanthanide ions either for their extraction from bulk radioactive waste or their stripping from an extracted organic phase for final processing of the waste. In

  12. The Role of Schema Salience in Ad Processing and Evaluation

    NARCIS (Netherlands)

    J. Loef (Joost); G. Antonides (Gerrit); W.F. van Raaij (Fred)

    2002-01-01

    textabstractAdvertising grids such as the Rossiter-Percy grid (Rossiter & Percy 1991, 1997) propose that brand-matching advertising is more effective than brand-mismatching advertising. However, for the match hypothesis to hold the brand schema needs to be salient in ad processing and evaluation. In

  13. Improving occupational health care for construction workers: a process evaluation

    NARCIS (Netherlands)

    Boschman, Julitta S.; van der Molen, Henk F.; Sluiter, Judith K.; Frings-Dresen, Monique H. W.

    2013-01-01

    To evaluate the process of a job-specific workers' health surveillance (WHS) in improving occupational health care for construction workers. From January to July 2012 were 899 bricklayers and supervisors invited for the job-specific WHS at three locations of one occupational health service

  14. 10 CFR 709.15 - Processing counterintelligence evaluation results.

    Science.gov (United States)

    2010-01-01

    ... financial, credit, travel, and other relevant information to resolve any identified issues. Participation by... information is developed by the Office of Health, Safety and Security indicating counterintelligence issues... and Protection of National Security § 709.15 Processing counterintelligence evaluation results. (a) If...

  15. Evaluating Modeling Sessions Using the Analytic Hierarchy Process

    NARCIS (Netherlands)

    Ssebuggwawo, D.; Hoppenbrouwers, S.J.B.A.; Proper, H.A.; Persson, A.; Stirna, J.

    2008-01-01

    In this paper, which is methodological in nature, we propose to use an established method from the field of Operations Research, the Analytic Hierarchy Process (AHP), in the integrated, stakeholder- oriented evaluation of enterprise modeling sessions: their language, pro- cess, tool (medium), and

  16. Elementary Teachers' Views on the Creative Writing Process: An Evaluation

    Science.gov (United States)

    Akkaya, Nevin

    2014-01-01

    The goal of this study is to discover and evaluate both the areas of personal interest and the views of 4th and 5th grade classroom teachers regarding the creative writing process. In this study, one of the qualitative study methods, state study, and related to this, single state design which refers to the whole has been chosen. Research was…

  17. Safety Evaluation for Hull Waste Treatment Process in JNC

    International Nuclear Information System (INIS)

    Kojima, H.; Kurakata, K.

    2002-01-01

    Hull wastes and some scrapped equipment are typical radioactive wastes generated from reprocessing process in Tokai Reprocessing Plant (TRP). Because hulls are the wastes remained in the fuel shearing and dissolution, they contain high radioactivity. Japan Nuclear Cycle Development Institute (JNC) has started the project of Hull Waste Treatment Facility (HWTF) to treat these solid wastes using compaction and incineration methods since 1993. It is said that Zircaloy fines generated from compaction process might burn and explode intensely. Therefore explosive conditions of the fines generated in compaction process were measured. As these results, it was concluded that the fines generated from the compaction process were not hazardous material. This paper describes the outline of the treatment process of hulls and results of safety evaluation

  18. EVALUATION OF HOTEL SERVICE-PERFORMANCE PROCESS IN BULGARIA

    Directory of Open Access Journals (Sweden)

    Georgina Lukanova

    2010-06-01

    Full Text Available The paper analyses the hotel service-performance process in Bulgarian hotels, which is based on the results of the research about tourists’ opinion on basic moments in service process. One of the most important characteristics of hotel industry is the leading role of the human factor in service-performance process. It cannot be accomplished without the participation of the customer and without the participation of the staff.This makes the evaluation of service process strongly subjective. Because of this, customer needs satisfaction is a big challenge for the hotel management. Under the present conditions of an increased competition, satisfying customers means offering service-performance process, which not only meets, but also exceeds guests’expectations. This can be achieved by a preliminary study of their requirements and expectations.

  19. Evaluating treatment process redesign by applying the EFQM Excellence Model.

    Science.gov (United States)

    Nabitz, Udo; Schramade, Mark; Schippers, Gerard

    2006-10-01

    To evaluate a treatment process redesign programme implementing evidence-based treatment as part of a total quality management in a Dutch addiction treatment centre. Quality management was monitored over a period of more than 10 years in an addiction treatment centre with 550 professionals. Changes are evaluated, comparing the scores on the nine criteria of the European Foundation for Quality Management (EFQM) Excellence Model before and after a major redesign of treatment processes and ISO certification. In the course of 10 years, most intake, care, and cure processes were reorganized, the support processes were restructured and ISO certified, 29 evidence-based treatment protocols were developed and implemented, and patient follow-up measuring was established to make clinical outcomes transparent. Comparing the situation before and after the changes shows that the client satisfaction scores are stable, that the evaluation by personnel and society is inconsistent, and that clinical, production, and financial outcomes are positive. The overall EFQM assessment by external assessors in 2004 shows much higher scores on the nine criteria than the assessment in 1994. Evidence-based treatment can successfully be implemented in addiction treatment centres through treatment process redesign as part of a total quality management strategy, but not all results are positive.

  20. Evaluation of learning and teaching process in Turkish courses

    Directory of Open Access Journals (Sweden)

    Eyyup COŞKUN

    2010-07-01

    Full Text Available A radical educational reform occurred in Turkey in 2005; and curriculum of primary education courses was renewed. New curriculum was prepared based on constructivist approach. In this scope, curriculum of Turkish course was also renewed. This study aimsat evaluating applications and opinions of teachers and students about learning and teaching process prescribed in Turkish Course (1st-5th Grades Curriculum. Within the scope of the study, semi-structured interview was made with 10 teachers and 12 students.In addition, process teaching a text was evaluated via structured observation method in 5 different classes. According to the results of the study, primary school teachers find some stages in learning – teaching process prescribed in the curriculum unnecessary andtherefore do not apply them. Teachers mentioned that some texts are above the student level; and they sometimes experience time and material problems. It was seen in the present study that teachers do not have enough information about learning and teachingprocess in the new curriculum; they do not have high success levels in the applications; and they usually do not apply the forms for evaluating the process in the curriculum. It was found out that, in spite of these problems, courses are student-centred as prescribed inthe curriculum; and students have positive opinions about stages of learning and teaching process.

  1. The biogeochemical iron cycle and astrobiology

    Science.gov (United States)

    Schröder, Christian; Köhler, Inga; Muller, Francois L. L.; Chumakov, Aleksandr I.; Kupenko, Ilya; Rüffer, Rudolf; Kappler, Andreas

    2016-12-01

    Biogeochemistry investigates chemical cycles which influence or are influenced by biological activity. Astrobiology studies the origin, evolution and distribution of life in the universe. The biogeochemical Fe cycle has controlled major nutrient cycles such as the C cycle throughout geological time. Iron sulfide minerals may have provided energy and surfaces for the first pioneer organisms on Earth. Banded iron formations document the evolution of oxygenic photosynthesis. To assess the potential habitability of planets other than Earth one looks for water, an energy source and a C source. On Mars, for example, Fe minerals have provided evidence for the past presence of liquid water on its surface and would provide a viable energy source. Here we present Mössbauer spectroscopy investigations of Fe and C cycle interactions in both ancient and modern environments. Experiments to simulate the diagenesis of banded iron formations indicate that the formation of ferrous minerals depends on the amount of biomass buried with ferric precursors rather than on the atmospheric composition at the time of deposition. Mössbauer spectra further reveal the mutual stabilisation of Fe-organic matter complexes against mineral transformation and decay of organic matter into CO2. This corresponds to observations of a `rusty carbon sink' in modern sediments. The stabilisation of Fe-organic matter complexes may also aid transport of particulate Fe in the water column while having an adverse effect on the bioavailability of Fe. In the modern oxic ocean, Fe is insoluble and particulate Fe represents an important source. Collecting that particulate Fe yields small sample sizes that would pose a challenge for conventional Mössbauer experiments. We demonstrate that the unique properties of the beam used in synchrotron-based Mössbauer applications can be utilized for studying such samples effectively. Reactive Fe species often occur in amorphous or nanoparticulate form in the environment and

  2. The biogeochemical iron cycle and astrobiology

    International Nuclear Information System (INIS)

    Schröder, Christian; Köhler, Inga; Muller, Francois L. L.; Chumakov, Aleksandr I.; Kupenko, Ilya; Rüffer, Rudolf; Kappler, Andreas

    2016-01-01

    Biogeochemistry investigates chemical cycles which influence or are influenced by biological activity. Astrobiology studies the origin, evolution and distribution of life in the universe. The biogeochemical Fe cycle has controlled major nutrient cycles such as the C cycle throughout geological time. Iron sulfide minerals may have provided energy and surfaces for the first pioneer organisms on Earth. Banded iron formations document the evolution of oxygenic photosynthesis. To assess the potential habitability of planets other than Earth one looks for water, an energy source and a C source. On Mars, for example, Fe minerals have provided evidence for the past presence of liquid water on its surface and would provide a viable energy source. Here we present Mössbauer spectroscopy investigations of Fe and C cycle interactions in both ancient and modern environments. Experiments to simulate the diagenesis of banded iron formations indicate that the formation of ferrous minerals depends on the amount of biomass buried with ferric precursors rather than on the atmospheric composition at the time of deposition. Mössbauer spectra further reveal the mutual stabilisation of Fe-organic matter complexes against mineral transformation and decay of organic matter into CO 2 . This corresponds to observations of a ‘rusty carbon sink’ in modern sediments. The stabilisation of Fe-organic matter complexes may also aid transport of particulate Fe in the water column while having an adverse effect on the bioavailability of Fe. In the modern oxic ocean, Fe is insoluble and particulate Fe represents an important source. Collecting that particulate Fe yields small sample sizes that would pose a challenge for conventional Mössbauer experiments. We demonstrate that the unique properties of the beam used in synchrotron-based Mössbauer applications can be utilized for studying such samples effectively. Reactive Fe species often occur in amorphous or nanoparticulate form in the

  3. The biogeochemical iron cycle and astrobiology

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Christian, E-mail: christian.schroeder@stir.ac.uk [University of Stirling, Biological and Environmental Sciences, School of Natural Sciences (United Kingdom); Köhler, Inga [Eberhard Karls University of Tübingen, Geomicrobiology, Centre for Applied Geoscience (Germany); Muller, Francois L. L. [Qatar University, Department of Biological and Environmental Sciences (Qatar); Chumakov, Aleksandr I.; Kupenko, Ilya; Rüffer, Rudolf [ESRF-The European Synchrotron (France); Kappler, Andreas [Eberhard Karls University of Tübingen, Geomicrobiology, Centre for Applied Geoscience (Germany)

    2016-12-15

    Biogeochemistry investigates chemical cycles which influence or are influenced by biological activity. Astrobiology studies the origin, evolution and distribution of life in the universe. The biogeochemical Fe cycle has controlled major nutrient cycles such as the C cycle throughout geological time. Iron sulfide minerals may have provided energy and surfaces for the first pioneer organisms on Earth. Banded iron formations document the evolution of oxygenic photosynthesis. To assess the potential habitability of planets other than Earth one looks for water, an energy source and a C source. On Mars, for example, Fe minerals have provided evidence for the past presence of liquid water on its surface and would provide a viable energy source. Here we present Mössbauer spectroscopy investigations of Fe and C cycle interactions in both ancient and modern environments. Experiments to simulate the diagenesis of banded iron formations indicate that the formation of ferrous minerals depends on the amount of biomass buried with ferric precursors rather than on the atmospheric composition at the time of deposition. Mössbauer spectra further reveal the mutual stabilisation of Fe-organic matter complexes against mineral transformation and decay of organic matter into CO{sub 2}. This corresponds to observations of a ‘rusty carbon sink’ in modern sediments. The stabilisation of Fe-organic matter complexes may also aid transport of particulate Fe in the water column while having an adverse effect on the bioavailability of Fe. In the modern oxic ocean, Fe is insoluble and particulate Fe represents an important source. Collecting that particulate Fe yields small sample sizes that would pose a challenge for conventional Mössbauer experiments. We demonstrate that the unique properties of the beam used in synchrotron-based Mössbauer applications can be utilized for studying such samples effectively. Reactive Fe species often occur in amorphous or nanoparticulate form in the

  4. Methods for Process Evaluation of Work Environment Interventions

    DEFF Research Database (Denmark)

    Fredslund, Hanne; Strandgaard Pedersen, Jesper

    2004-01-01

    or management perceptions and actions in implementing any intervention and their influence on the overall result of the intervention' (Nytrø, Saksvik, Mikkelsen, Bohle, and Quinlan, 2000). Process evaluation can be used to a) provide feedback for improving interventions, b) interpret the outcomes of effect......In recent years, intervention studies have become increasingly popular within occupational health psychology. The vast majority of such studies have focused on interventions themselves and their effects on the working environment and employee health and well-being. Few studies have focused on how...... the context and processes surrounding the intervention may have influenced the outcomes (Hurrell and Murphy, 1996). Thus, there is still relatively little published research that provides us with information on how to evaluate such strategies and processes (Saksvik, Nytrø, Dahl-Jørgensen, and Mikkelsen, 2002...

  5. Anterior process calcaneal fractures: a systematic evaluation of associated conditions

    Energy Technology Data Exchange (ETDEWEB)

    Petrover, David [NYU Hospital for Joint Disease, Radiology Department, New York, NY (United States); Hopital Beaujon, Service de Radiologie, Paris (France); Schweitzer, Mark E. [NYU Hospital for Joint Disease, Radiology Department, New York, NY (United States); Laredo, J.D. [Hopital Lariboisiere, Service de Radiologie, Paris (France)

    2007-07-15

    The objective was to evaluate the association, by MRI, of anterior calcaneal process fractures with tarsal coalitions, ankle sprains, and bifurcate ligament abnormalities. A retrospective review of 1,479 foot and ankle MR images was performed, over a period of 5 years, for isolated anterior process fractures of the calcaneus. Fifteen 1.5-T MR examinations were systematically evaluated by two radiologists in consensus. Marrow edema patterns, presence of a calcaneonavicular coalition, as well as bifurcate and anterior talofibular ligaments, were evaluated. There were 15 fractures of the anterior calcaneal process with an incidence of 1%. The average patient age was 51 years (range 25-82). Twelve patients were women and 3 were men. The majority of the fractures (14 out of 15) presented as an edema pattern on T2-weighted images, either diffuse (9 out of 15), or vertical (5 out of 15). One case did not show marrow edema, but rather a hypointense line. Nine patients (60%) demonstrated calcaneonavicular coalition and anterior calcaneal process fracture. In 6 patients (50%) the anterior talofibular ligament (ATFL) was thickened. Three patients did not have axial images, and were classified as non-conclusive for the ATFL evaluation. The bifurcate ligament was thickened with hyperintense signal demonstrating a sprain in 9 out of 13 (69%). Only 2 patients (16.5%) had an anterior calcaneal process fracture without any associated abnormality. We believe that there is a probable association of anterior process fractures and calcaneonavicular coalitions. We also feel, based on our results and the prior literature that there is likely also an association with both ATFL injuries and bifurcate ligament injuries. (orig.)

  6. Anterior process calcaneal fractures: a systematic evaluation of associated conditions

    International Nuclear Information System (INIS)

    Petrover, David; Schweitzer, Mark E.; Laredo, J.D.

    2007-01-01

    The objective was to evaluate the association, by MRI, of anterior calcaneal process fractures with tarsal coalitions, ankle sprains, and bifurcate ligament abnormalities. A retrospective review of 1,479 foot and ankle MR images was performed, over a period of 5 years, for isolated anterior process fractures of the calcaneus. Fifteen 1.5-T MR examinations were systematically evaluated by two radiologists in consensus. Marrow edema patterns, presence of a calcaneonavicular coalition, as well as bifurcate and anterior talofibular ligaments, were evaluated. There were 15 fractures of the anterior calcaneal process with an incidence of 1%. The average patient age was 51 years (range 25-82). Twelve patients were women and 3 were men. The majority of the fractures (14 out of 15) presented as an edema pattern on T2-weighted images, either diffuse (9 out of 15), or vertical (5 out of 15). One case did not show marrow edema, but rather a hypointense line. Nine patients (60%) demonstrated calcaneonavicular coalition and anterior calcaneal process fracture. In 6 patients (50%) the anterior talofibular ligament (ATFL) was thickened. Three patients did not have axial images, and were classified as non-conclusive for the ATFL evaluation. The bifurcate ligament was thickened with hyperintense signal demonstrating a sprain in 9 out of 13 (69%). Only 2 patients (16.5%) had an anterior calcaneal process fracture without any associated abnormality. We believe that there is a probable association of anterior process fractures and calcaneonavicular coalitions. We also feel, based on our results and the prior literature that there is likely also an association with both ATFL injuries and bifurcate ligament injuries. (orig.)

  7. Ecotoxicological, ecophysiological, and biogeochemical fundamentals of risk assessment

    International Nuclear Information System (INIS)

    Bashkin, V.N.; Kozlov, M.Ya.; Evstafjeva, E.V.

    1993-01-01

    Risk assessment (RA) influenced by different factors in radionuclide polluted regions is carried out by determining the biogeochemical structure of a region. Consequently, ecological-biogeochemical regionalization, ecotoxicological and ecophysiological monitoring of human population health are the important approach to RA. These criteria should conjugate with LCA of various industrial and agricultural products. Given fundamentals and approaches are needed for areas where traditional pollutants (heavy metals, pesticides, fertilizers, POPs etc) are enforced sharply by radioactive pollution. For RA of these complex pollutants, the methods of human adaptability to a polluted environment have been carried out. These techniques include biogeochemical, ecotoxicological, and ecophysiological analyses of risk factors as well as quantitative analysis of uncertainties using expert-modeling systems. Furthermore, the modern statistical methods are used for quantitative assessment of human adaptability to radioactive and nonradioactive pollutants. The results obtained in Chernobyl regions show the acceptability of these methods for risk assessment

  8. Solar System Chaos and its climatic and biogeochemical consequences

    Science.gov (United States)

    Ikeda, M.; Tada, R.; Ozaki, K.; Olsen, P. E.

    2017-12-01

    Insolation changes caused by changes in Earth's orbital parameters are the main driver of climatic variations, whose pace has been used for astronomically-calibrated geologic time scales of high accuracy to understand Earth system dynamics. However, the astrophysical models beyond several tens of million years ago have large uncertainty due to chaotic behavior of the Solar System, and its impact on amplitude modulation of multi-Myr-scale orbital variations and consequent climate changes has become the subject of debate. Here we show the geologic constraints on the past chaotic behavior of orbital cycles from early Mesozoic monsoon-related records; the 30-Myr-long lake level records of the lacustrine sequence in Newark-Hartford basins (North America) and 70-Myr-long biogenic silica (BSi) burial flux record of pelagic deep-sea chert sequence in Inuyama area (Japan). BSi burial flux of chert could be considered as proportional to the dissolved Si (DSi) input from chemical weathering on timescales longer than the residence time of DSi ( 100 kyr), because chert could represent a major sink for oceanic dissolved silica (Ikeda et al., 2017).These geologic records show multi-Myr cycles with similar frequency modulations of eccentricity solution of astronomical model La2010d (Laskar et al., 2011) compared with other astronomical solutions, but not exactly same. Our geologic records provide convincing evidence for the past chaotic dynamical behaviour of the Solar System and new and challenging additional constraints for astrophysical models. In addition, we find that ˜10 Myr cycle detected in monsoon proxies and their amplitude modulation of ˜2 Myr cycle may be related to the amplitude modulation of ˜2 Myr eccentricity cycle through non-linear process(es) of Earth system dynamics, suggesting possible impact of the chaotic behavior of Solar planets on climate change. Further impact of multi-Myr orbital cycles on global biogeochemical cycles will be discussed.

  9. Social Context in Usability Evaluations: Concepts, Processes and Products

    DEFF Research Database (Denmark)

    Jensen, Janne Jul

    social context is considered important, only little research has been done to identify how it influences usability evaluations. In this thesis I explore how social context affects the process and product of a usability evaluation and explain the findings in terms of the theory of behaviour settings...... leader) and non-operatives (members, spectators, neutrals and potentials) from the theory of behaviour settings to usability evaluations generates an understanding and create an awareness of the level of power possessed by each of the participants in the social context. 2. On the operative level...... and a field experiment. Findings from these activities are presented in five published paper contributions. I furthermore introduce the theory of behaviour settings as a tool to help characterise the key concepts of social context which, together with an understanding of usability evaluations, provide...

  10. Plant operator performance evaluation based on cognitive process analysis experiment

    International Nuclear Information System (INIS)

    Ujita, H.; Fukuda, M.

    1990-01-01

    This paper reports on an experiment to clarify plant operators' cognitive processes that has been performed, to improve the man-machine interface which supports their diagnoses and decisions. The cognitive processes under abnormal conditions were evaluated by protocol analyses interviews, etc. in the experiment using a plant training simulator. A cognitive process model is represented by a stochastic network, based on Rasmussen's decision making model. Each node of the network corresponds to an element of the cognitive process, such as observation, interpretation, execution, etc. Some observations were obtained as follows, by comparison of Monte Carlo simulation results with the experiment results: A process to reconfirm the plant parameters after execution of a task and feedback paths from this process to the observation and the task definition of next task were observed. The feedback probability average and standard deviation should be determined for each incident type to explain correctly the individual differences in the cognitive processes. The tendency for the operator's cognitive level to change from skill-based to knowledge-based via rule-based behavior was observed during the feedback process

  11. An Automated, Image Processing System for Concrete Evaluation

    International Nuclear Information System (INIS)

    Baumgart, C.W.; Cave, S.P.; Linder, K.E.

    1998-01-01

    Allied Signal Federal Manufacturing ampersand Technologies (FM ampersand T) was asked to perform a proof-of-concept study for the Missouri Highway and Transportation Department (MHTD), Research Division, in June 1997. The goal of this proof-of-concept study was to ascertain if automated scanning and imaging techniques might be applied effectively to the problem of concrete evaluation. In the current evaluation process, a concrete sample core is manually scanned under a microscope. Voids (or air spaces) within the concrete are then detected visually by a human operator by incrementing the sample under the cross-hairs of a microscope and by counting the number of ''pixels'' which fall within a void. Automation of the scanning and image analysis processes is desired to improve the speed of the scanning process, to improve evaluation consistency, and to reduce operator fatigue. An initial, proof-of-concept image analysis approach was successfully developed and demonstrated using acquired black and white imagery of concrete samples. In this paper, the automated scanning and image capture system currently under development will be described and the image processing approach developed for the proof-of-concept study will be demonstrated. A development update and plans for future enhancements are also presented

  12. Bioprocesses: Modelling needs for process evaluation and sustainability assessment

    DEFF Research Database (Denmark)

    Jiménez-Gonzaléz, Concepcion; Woodley, John

    2010-01-01

    development such that they can also be used to evaluate processes against sustainability metrics, as well as economics as an integral part of assessments. Finally, property models will also be required based on compounds not currently present in existing databases. It is clear that many new opportunities......The next generation of process engineers will face a new set of challenges, with the need to devise new bioprocesses, with high selectivity for pharmaceutical manufacture, and for lower value chemicals manufacture based on renewable feedstocks. In this paper the current and predicted future roles...... of process system engineering and life cycle inventory and assessment in the design, development and improvement of sustainable bioprocesses are explored. The existing process systems engineering software tools will prove essential to assist this work. However, the existing tools will also require further...

  13. Biogeochemical controls on microbial CH4 and CO2 production in Arctic polygon tundra

    Science.gov (United States)

    Zheng, J.

    2016-12-01

    Accurately simulating methane (CH4) and carbon dioxide (CO2) emissions from high latitude soils is critically important for reducing uncertainties in soil carbon-climate feedback predictions. The signature polygonal ground of Arctic tundra generates high level of heterogeneity in soil thermal regime, hydrology and oxygen availability, which limits the application of current land surface models with simple moisture response functions. We synthesized CH4 and CO2 production measurements from soil microcosm experiments across a wet-to dry permafrost degradation gradient from low-centered (LCP) to flat-centered (FCP), and high-centered polygons (HCP) to evaluate the relative importance of biogeochemical processes and their response to warming. More degraded polygon (HCP) showed much less carbon loss as CO2 or CH4, while the total CO2 production from FCP is comparable to that from LCP. Maximum CH4 production from the active layer of LCP was nearly 10 times that of permafrost and FCP. Multivariate analyses identifies gravimetric water content and organic carbon content as key predictors for CH4 production, and iron reduction as a key regulator of pH. The synthesized data are used to validate the geochemical model PHREEQC with extended anaerobic organic substrate turnover, fermentation, iron reduction, and methanogenesis reactions. Sensitivity analyses demonstrate that better representations of anaerobic processes and their pH dependency could significantly improve estimates of CH4 and CO2 production. The synthesized data suggest local decreases in CH4 production along the polygon degradation gradient, which is consistent with previous surface flux measurements. Methane oxidation occurring through the soil column of degraded polygons contributes to their low CH4 emissions as well.

  14. Implementation evaluation of the business process services incentive programme

    Directory of Open Access Journals (Sweden)

    Nonceba Mashalaba

    2015-10-01

    Full Text Available The paper describes the implementation evaluation of the business process services (BPS incentive programme undertaken by the Department of Trade and Industry (the dti and the Department of Performance Monitoring and Evaluation (DPME as part of the 2012/2013 National Evaluation Plan. The evaluation started on 31 October 2012 and the final report was approved on 17 May 2013. The evaluation covers the period from the inception of the programme in January 2011 to December 2012. The BPS incentive programme was implemented to stimulate the business process sector which contributes to economic growth largely through employment creation. The main objectives of the programme are to attract investment and create employment opportunities through offshoring activities. Twenty-six indicators across the five Development Assistance Community (DAC evaluation criteria were developed. A multi-method approach was undertaken to collect data for each of the indicators. The key findings relate to the operation of the programme and a number of suggestions were made as to how to strengthen it. Overall 3807 jobs have been created through the BPS programme during the period under review. Estimated total investment provided by firms is approximately R2.7 billion. Amongst others, the study recommended that the design of the programme be reviewed and extended, potentially to a five-year period in order to maintain the competitiveness of South Africa as a business process off shoring destination. It is essential to address the skills shortage to ensure the growth and sustainability of the South African BPS industry and finally the uptake of the incentive programme.

  15. Morphological, hydrological, biogeochemical and ecological changes and challenges in river restoration - the Thur River case study

    Science.gov (United States)

    Schirmer, M.; Luster, J.; Linde, N.; Perona, P.; Mitchell, E. A. D.; Barry, D. A.; Hollender, J.; Cirpka, O. A.; Schneider, P.; Vogt, T.; Radny, D.; Durisch-Kaiser, E.

    2014-06-01

    River restoration can enhance river dynamics, environmental heterogeneity and biodiversity, but the underlying processes governing the dynamic changes need to be understood to ensure that restoration projects meet their goals, and adverse effects are prevented. In particular, we need to comprehend how hydromorphological variability quantitatively relates to ecosystem functioning and services, biodiversity as well as ground- and surface water quality in restored river corridors. This involves (i) physical processes and structural properties, determining erosion and sedimentation, as well as solute and heat transport behavior in surface water and within the subsurface; (ii) biogeochemical processes and characteristics, including the turnover of nutrients and natural water constituents; and (iii) ecological processes and indicators related to biodiversity and ecological functioning. All these aspects are interlinked, requiring an interdisciplinary investigation approach. Here, we present an overview of the recently completed RECORD (REstored CORridor Dynamics) project in which we combined physical, chemical, and biological observations with modeling at a restored river corridor of the perialpine Thur River in Switzerland. Our results show that river restoration, beyond inducing morphologic changes that reshape the river bed and banks, triggered complex spatial patterns of bank infiltration, and affected habitat type, biotic communities and biogeochemical processes. We adopted an interdisciplinary approach of monitoring the continuing changes due to restoration measures to address the following questions: How stable is the morphological variability established by restoration? Does morphological variability guarantee an improvement in biodiversity? How does morphological variability affect biogeochemical transformations in the river corridor? What are some potential adverse effects of river restoration? How is river restoration influenced by catchment-scale hydraulics

  16. Process Evaluation and Continuous Improvement in Community Youth Programs

    Directory of Open Access Journals (Sweden)

    Jennifer V. Trachtenberg

    2008-06-01

    Full Text Available A method of using process evaluation to provide improvement plans in order to promote community youth programs is described. The core elements of this method include the following: (1 collection and analysis of baseline data, (2 feedback provided to programs describing their strengths and limitations, (3 programs provided with assistance in preparing improvement plans in regard to their baseline data, and (4 follow-up evaluation assessed program changes based on their improvement plans and baseline data. A case study of an inner-city neighborhood youth center is used to demonstrate this method.

  17. The Sustainable Process Index. A new dimension in ecological evaluation

    International Nuclear Information System (INIS)

    Krotscheck, Christian; Narodoslawsky, Michael

    1996-01-01

    The Sustainable Process Index (SPI) is a measure developed to evaluate the viability of processes under sustainable economic conditions. Its advantages are its universal applicability, its scientific basis, the possibility of adoption in process analyses and syntheses, the high sensitivity for sustainable qualities, and the capability of aggregation to one measure. It has proved to be useful in industrial strategic planning. The concept of the SPI is based on the assumption that in a truly sustainable society the basis of economy is the sustainable flow of solar exergy. The conversion of the solar exergy to services needs area. Thus, area becomes the limiting factor of a sustainable economy. The SPI evaluates the areas needed to provide the raw materials and energy demands and to accommodate by-product flows from a process in a sustainable way. It relates these areas to the area available to a citizen in a given geographical (from regional to global) context. The data necessary to calculate the SPI are usually known at an early stage in process development. The result of the computation is the ratio between the area needed to supply a citizen with a given service and the area needed to supply a citizen with all possible services. Thus, it is a measure of the expense of this service in an economy oriented towards sustainability

  18. Comparison and Evaluation of Various Tritium Decontamination Techniques and Processes

    International Nuclear Information System (INIS)

    Gentile, C.A.; Langish, S.W.; Skinner, C.H.; Ciebiera, L.P.

    2004-01-01

    In support of fusion energy development, various techniques and processes have been developed over the past two decades for the removal and decontamination of tritium from a variety of items, surfaces, and components. Tritium decontamination, by chemical, physical, mechanical, or a combination of these methods, is driven by two underlying motivational forces. The first of these motivational forces is safety. Safety is paramount to the established culture associated with fusion energy. The second of these motivational forces is cost. In all aspects, less tritium contamination equals lower operational and disposal costs. This paper will discuss and evaluate the various processes employed for tritium removal and decontamination

  19. Comparison and Evaluation of Various Tritium Decontamination Techniques and Processes

    International Nuclear Information System (INIS)

    Gentile, C.A.; Langish, S.W.; Skinner, C.H.; Ciebiera, L.P.

    2005-01-01

    In support of fusion energy development, various techniques and processes have been developed over the past two decades for the removal and decontamination of tritium from a variety of items, surfaces, and components. The motivational force for tritium decontamination by chemical, physical, mechanical, or a combination of these methods, is driven by two underlying forces. The first of these motivational forces is safety. Safety is paramount to the established culture associated with fusion energy. The second of these motivational forces is cost. In all aspects, less tritium contamination equals lower operational and disposal costs. This paper will discuss and evaluate the various processes employed for tritium removal and decontamination

  20. How do persistent organic pollutants be coupled with biogeochemical cycles of carbon and nutrients in terrestrial ecosystems under global climate change?

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Ying [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation; Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Xu, Zhihong; Reverchon, Frederique [Griffith Univ., Nathan, QLD (Australia). Environmetnal Futures Centre and School of Biomolecular and Physical Sciences; Luo, Yongming [Chinese Academy of Sciences, Nanjing (China). Key Lab. of Soil Environment and Pollution Remediation

    2012-03-15

    Global climate change (GCC), especially global warming, has affected the material cycling (e.g., carbon, nutrients, and organic chemicals) and the energy flows of terrestrial ecosystems. Persistent organic pollutants (POPs) were regarded as anthropogenic organic carbon (OC) source, and be coupled with the natural carbon (C) and nutrient biogeochemical cycling in ecosystems. The objective of this work was to review the current literature and explore potential coupling processes and mechanisms between POPs and biogeochemical cycles of C and nutrients in terrestrial ecosystems induced by global warming. Global warming has caused many physical, chemical, and biological changes in terrestrial ecosystems. POPs environmental fate in these ecosystems is controlled mainly by temperature and biogeochemical processes. Global warming may accelerate the re-emissions and redistribution of POPs among environmental compartments via soil-air exchange. Soil-air exchange is a key process controlling the fate and transportation of POPs and terrestrial ecosystem C at regional and global scales. Soil respiration is one of the largest terrestrial C flux induced by microbe and plant metabolism, which can affect POPs biotransformation in terrestrial ecosystems. Carbon flow through food web structure also may have important consequences for the biomagnification of POPs in the ecosystems and further lead to biodiversity loss induced by climate change and POPs pollution stress. Moreover, the integrated techniques and biological adaptation strategy help to fully explore the coupling mechanisms, functioning and trends of POPs and C and nutrient biogeochemical cycling processes in terrestrial ecosystems. There is increasing evidence that the environmental fate of POPs has been linked with biogeochemical cycles of C and nutrients in terrestrial ecosystems under GCC. However, the relationships between POPs and the biogeochemical cycles of C and nutrients are still not well understood. Further

  1. Evaluation of STAT medication ordering process in a community hospital

    Directory of Open Access Journals (Sweden)

    Abdelaziz H

    2016-06-01

    Full Text Available Background: In most health care facilities, problems related to delays in STAT medication order processing time are of common concern. Objective: The purpose of this study was to evaluate processing time for STAT orders at Kimball Medical Center. Methods: All STAT orders were reviewed to determine processing time; order processing time was also stratified by physician order entry (physician entered (PE orders vs. non-physician entered (NPE orders. Collected data included medication ordered, indication, time ordered, time verified by pharmacist, time sent from pharmacy, and time charted as given to the patient. Results: A total of 502 STAT orders were reviewed and 389 orders were included for analysis. Overall, median time was 29 minutes, IQR 16–63; p<0.0001. . The time needed to process NPE orders was significantly less than that needed for PE orders (median 27 vs. 34 minutes; p=0.026. In terms of NPE orders, the median total time required to process STAT orders for medications available in the Automated Dispensing Devices (ADM was within 30 minutes, while that required to process orders for medications not available in the ADM was significantly greater than 30 minutes. For PE orders, the median total time required to process orders for medications available in the ADM (i.e., not requiring pharmacy involvement was significantly greater than 30 minutes. [Median time = 34 minutes (p<0.001]. Conclusion: We conclude that STAT order processing time may be improved by increasing the availability of medications in ADM, and pharmacy involvement in the verification process.

  2. Process evaluation of the human reliability data bank

    International Nuclear Information System (INIS)

    Miller, D.P.; Comer, K.

    1985-01-01

    The US Nuclear Regulatory Commission and Sandia National Laboratories have been developing a plan for a human reliability data bank since August 1981. This research is in response to the data need of the nuclear power industry's probabilistic risk assessment community. The three phases of the program are to: (a) develop the data bank concept, (b) develop an implementation plan and conduct a process evaluation, and (c) assist a sponsor in implementing the data bank. The program is now in Phase B. This paper describes the methods used and the results of the process evaluation. Decisions to be made in the future regarding full-scale implementation will be based, in part, on the outcome of this study

  3. Process evaluation of the human reliability data bank

    International Nuclear Information System (INIS)

    Miller, D.P.; Comer, K.

    1984-01-01

    The US Nuclear Regulatory Commission and Sandia National Laboratories have been developing a plan for a human reliability data bank since August 1981. This research is in response to the data needs of the nuclear power industry's probabilistic risk assessment community. The three phases of the program are to: (A) develop the data bank concept, (B) develop an implementation plan and conduct a process evaluation, and (C) assist a sponsor in implementing the data bank. The program is now in Phase B. This paper describes the methods used and the results of the process evaluation. Decisions to be made in the future regarding full-scale implementation will be based in part on the outcome of this study

  4. Evaluation of cephalogram using multi-objective frequency processing

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Sakae; Takizawa, Tsutomu; Osako, Miho; Kaneda, Takashi; Kasai, Kazutaka [Nihon Univ., Chiba (Japan). School of Dentistry at Matsudo

    2002-12-01

    A diagnosis with cephalogram is important for orthodontic treatment. Recently, computed radiography (CR) has been performed to the cephalogram. However, evaluation of multi-objective frequency processing (MFP) for cephalograms has been received little attention. The purpose of this study was to evaluate the cephalogram using MFP CR. At first, 450 lateral cephalograms were made, from 50 orthodontic patients, with 9 possible spatial frequency parameter combinations and a contrast scale held fixed in images processing. For each film, the clarity of radiographic images were estimated and scored with respect to landmark identification (total 26 points, 20 points of hard tissue and 6 points of soft tissue). A specific combination of spatial frequency scales (multi-frequency balance types (MRB) F-type, multi-frequency enhancement (MRE) 8) was proved to be adequate to achieve the optimal image quality in the cephalogram. (author)

  5. Evaluation of cephalogram using multi-objective frequency processing

    International Nuclear Information System (INIS)

    Hagiwara, Sakae; Takizawa, Tsutomu; Osako, Miho; Kaneda, Takashi; Kasai, Kazutaka

    2002-01-01

    A diagnosis with cephalogram is important for orthodontic treatment. Recently, computed radiography (CR) has been performed to the cephalogram. However, evaluation of multi-objective frequency processing (MFP) for cephalograms has been received little attention. The purpose of this study was to evaluate the cephalogram using MFP CR. At first, 450 lateral cephalograms were made, from 50 orthodontic patients, with 9 possible spatial frequency parameter combinations and a contrast scale held fixed in images processing. For each film, the clarity of radiographic images were estimated and scored with respect to landmark identification (total 26 points, 20 points of hard tissue and 6 points of soft tissue). A specific combination of spatial frequency scales (multi-frequency balance types (MRB) F-type, multi-frequency enhancement (MRE) 8) was proved to be adequate to achieve the optimal image quality in the cephalogram. (author)

  6. Intra- versus inter-site macroscale variation in biogeochemical properties along a paddy soil chronosequence

    Directory of Open Access Journals (Sweden)

    C. Mueller-Niggemann

    2012-03-01

    Full Text Available In order to assess the intrinsic heterogeneity of paddy soils, a set of biogeochemical soil parameters was investigated in five field replicates of seven paddy fields (50, 100, 300, 500, 700, 1000, and 2000 yr of wetland rice cultivation, one flooded paddy nursery, one tidal wetland (TW, and one freshwater site (FW from a coastal area at Hangzhou Bay, Zhejiang Province, China. All soils evolved from a marine tidal flat substrate due to land reclamation. The biogeochemical parameters based on their properties were differentiated into (i a group behaving conservatively (TC, TOC, TN, TS, magnetic susceptibility, soil lightness and colour parameters, δ13C, δ15N, lipids and n-alkanes and (ii one encompassing more labile properties or fast cycling components (Nmic, Cmic, nitrate, ammonium, DON and DOC. The macroscale heterogeneity in paddy soils was assessed by evaluating intra- versus inter-site spatial variability of biogeochemical properties using statistical data analysis (descriptive, explorative and non-parametric. Results show that the intrinsic heterogeneity of paddy soil organic and minerogenic components per field is smaller than between study sites. The coefficient of variation (CV values of conservative parameters varied in a low range (10% to 20%, decreasing from younger towards older paddy soils. This indicates a declining variability of soil biogeochemical properties in longer used cropping sites according to progress in soil evolution. A generally higher variation of CV values (>20–40% observed for labile parameters implies a need for substantially higher sampling frequency when investigating these as compared to more conservative parameters. Since the representativeness of the sampling strategy could be sufficiently demonstrated, an investigation of long-term carbon accumulation/sequestration trends in topsoils of the 2000 yr paddy chronosequence under wetland rice cultivation

  7. Biogeochemical stability and reactions of iron-organic carbon complexes

    Science.gov (United States)

    Yang, Y.; Adhikari, D.; Zhao, Q.; Dunham-Cheatham, S.; Das, K.; Mejia, J.; Huang, R.; Wang, X.; Poulson, S.; Tang, Y.; Obrist, D.; Roden, E. E.

    2017-12-01

    Our core hypothesis is that the degradation rate of soil organic carbon (OC) is governed by the amount of iron (Fe)-bound OC, and the ability of microbial communities to utilize OC as an energy source and electron shuttle for Fe reduction that in turn stimulates reductive release of Fe-bound labile dissolved OC. This hypothesis is being systematically evaluated using model Fe-OC complexes, natural soils, and microcosm system. We found that hematite-bound aliphatic C was more resistant to reduction release, although hematite preferred to sorb more aromatic C. Resistance to reductive release represents a new mechanism that aliphatic soil OC was stabilized by association with Fe oxide. In other studies, pyrogenic OC was found to facilitate the reduction of hematite, by enhancing extracellular electron transport and sorbing Fe(II). For ferrihydrite-OC co-precipitates, the reduction of Fe and release of OC was closely governed by the C/Fe ratio in the system. Based on the XPS, XANES and XAFS analysis, the transformation of Fe speciation was heterogeneous, depending on the conformation and composition of Fe-OC complexes. For natural soils, we investigated the quantity, characteristics, and reactivity of Fe-bound OC in soils collected from 14 forests in the United States. Fe-bound OC contributed up to 57.8% of total OC in the forest soils. Under the anaerobic conditions, the reduction of Fe was positively correlated to the electron accepting capacity of OC. Our findings highlight the closely coupled dynamics of Fe and OC, with broad implications on the turnover of OC and biogeochemical cycles of Fe.

  8. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination.

    Science.gov (United States)

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as

  9. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination

    Science.gov (United States)

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as

  10. Biogeochemical cycling in terrestrial ecosystems of the Caatinga Biome.

    Science.gov (United States)

    Menezes, R S C; Sampaio, E V S B; Giongo, V; Pérez-Marin, A M

    2012-08-01

    The biogeochemical cycles of C, N, P and water, the impacts of land use in the stocks and flows of these elements and how they can affect the structure and functioning of Caatinga were reviewed. About half of this biome is still covered by native secondary vegetation. Soils are deficient in nutrients, especially N and P. Average concentrations of total soil P and C in the top layer (0-20 cm) are 196 mg kg(-1) and 9.3 g kg(-1), corresponding to C stocks around 23 Mg ha(-1). Aboveground biomass of native vegetation varies from 30 to 50 Mg ha(-1), and average root biomass from 3 to 12 Mg ha(-1). Average annual productivities and biomass accumulation in different land use systems vary from 1 to 7 Mg ha(-1) year(-1). Biological atmospheric N2 fixation is estimated to vary from 3 to 11 kg N ha(-1) year-1 and 21 to 26 kg N ha(-1) year(-1) in mature and secondary Caatinga, respectively. The main processes responsible for nutrient and water losses are fire, soil erosion, runoff and harvest of crops and animal products. Projected climate changes in the future point to higher temperatures and rainfall decreases. In face of the high intrinsic variability, actions to increase sustainability should improve resilience and stability of the ecosystems. Land use systems based on perennial species, as opposed to annual species, may be more stable and resilient, thus more adequate to face future potential increases in climate variability. Long-term studies to investigate the potential of the native biodiversity or adapted exotic species to design sustainable land use systems should be encouraged.

  11. The process of clinical assessment: cognitions of the evaluator

    Directory of Open Access Journals (Sweden)

    Carmelo Ibáñez Aguirre

    2013-08-01

    Full Text Available The cognitive paradigm of the past few decades opens several new possibilities for psychological evaluation.  The objective of this essay is to emphasize the possibilities related to the quality of self-evaluation, specifically professional self-assessment, meaning a critical analysis of one’s own evaluation process. In this essay, metacognition activities and strategies are examined, as are the ways in which these activities and strategies relate to metacognition and cognitive skills. The intent of this theoretical essay is to offer answers to the clinical evaluator’s professional experience. The results indicate that the clinical professional must consider strategies to improve metacognition and cognitive skills through reflection, self-analysis and self-criticism to improve the quality and efficiency of their work.

  12. A technical and economic evaluation of wood conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, L J

    1990-08-08

    A technical and economic evaluation of the Iogen wood-to-ethanol bioconversion process was carried out using a computer simulation model based on an engineering analysis of the process. The model was used to run sensitivity analyses for the process and to estimate the parameters with significant economic impact and promise for future improvement to process economics. The most important parameters were then used in Monte Carlo simulations to estimate the potential for future improvements and to assess the commercial potential of the process. Finally, the process was subjected to second-law analysis, in which its thermodynamic efficiency was assessed in terms of lost work potential. The Iogen process is a highly optimized process using state-of-the-art enzymatic hydrolysis with steam explosion pretreatment; lactose sugar from cheese whey is used as the carbon source for enzyme production. The base case design would use 1000 tonnes/d of aspen wood and would produce 91 Ml/y of ethanol. Assuming no value for byproducts, the break-even price for ethanol would be 45-70{cents}/l, depending on the financing method employed. If byproduct credit is added for lignin and molasses, the required ethanol selling price would drop to 30-50{cents}/l. Forecasts for future technology improvements show that it is possible to construct scenarios where the ethanol price could be as low as 10-20{cents}/l including byproduct credits. Potential improvements to the process include reduced enzyme production cost; xylose fermentation to ethanol; lower-cost feedstock; and substitution of wood sugars for lactose. 48 refs., 39 figs., 21 tabs.

  13. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    International Nuclear Information System (INIS)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes

  14. Online processing of moral transgressions: ERP evidence for spontaneous evaluation.

    Science.gov (United States)

    Leuthold, Hartmut; Kunkel, Angelika; Mackenzie, Ian G; Filik, Ruth

    2015-08-01

    Experimental studies using fictional moral dilemmas indicate that both automatic emotional processes and controlled cognitive processes contribute to moral judgments. However, not much is known about how people process socio-normative violations that are more common to their everyday life nor the time-course of these processes. Thus, we recorded participants' electrical brain activity while they were reading vignettes that either contained morally acceptable vs unacceptable information or text materials that contained information which was either consistent or inconsistent with their general world knowledge. A first event-related brain potential (ERP) positivity peaking at ∼200 ms after critical word onset (P200) was larger when this word involved a socio-normative or knowledge-based violation. Subsequently, knowledge-inconsistent words triggered a larger centroparietal ERP negativity at ∼320 ms (N400), indicating an influence on meaning construction. In contrast, a larger ERP positivity (larger late positivity), which also started at ∼320 ms after critical word onset, was elicited by morally unacceptable compared with acceptable words. We take this ERP positivity to reflect an implicit evaluative (good-bad) categorization process that is engaged during the online processing of moral transgressions. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  15. Hanford underground storage tank waste filtration process evaluation

    International Nuclear Information System (INIS)

    Walker, B.W.; McCabe, D.J.

    1997-01-01

    The purpose of this filter study was to evaluate cross-flow filtration as effective solid-liquid separation technology for treating Hanford wastes, outline operating conditions for equipment, examine the expected filter flow rates, and determine proper cleaning. Two Hanford waste processing applications have been identified as candidates for the use of cross-flow filtration. The first of the Hanford applications involves filtration of the decanted supernate from sludge leaching and washing operations. This process involves the concentration and removal of dilute (0.05 wt percent) fines from the bulk of the supernate. The second application involves filtration to wash and concentrate the sludge during out-of-tank processing. This process employs a relatively concentrated (8 wt percent) solids feed stream. Filter studies were conducted with simulants to evaluate whether 0.5 micron cross-flow sintered metal Mott filters and 0.1 micron cross-flow Graver filters can perform solid-liquid separation of the solid/liquid waste streams effectively. In cross-flow filtration the fluid to be filtered flows in parallel to the membrane surface and generates shearing forces and/or turbulence across the filter medium. This shearing influences formation of filter cake stabilizing the filtrate flow rate

  16. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  17. Evaluation of the Central Hearing Process in Parkinson Patients

    Directory of Open Access Journals (Sweden)

    Santos, Rosane Sampaio

    2011-04-01

    Full Text Available Introduction: Parkinson disease (PD is a degenerating disease with a deceitful character, impairing the central nervous system and causing biological, psychological and social changes. It shows motor signs and symptoms characterized by trembling, postural instability, rigidity and bradykinesia. Objective: To evaluate the central hearing function in PD patients. Method: A descriptive, prospect and transversal study, in which 10 individuals diagnosed of PD named study group (SG and 10 normally hearing individuals named control group (CG were evaluated, age average of 63.8 and (SD 5.96. Both groups went through otorhinolaryngological and ordinary audiological evaluations, and dichotic test of alternate disyllables (SSW. Results: In the quantitative analysis, CG showed 80% normality on competitive right-ear hearing (RC and 60% on the competitive left-ear hearing (LC in comparison with the SG that presented 70% on RC and 40% on LC. In the qualitative analysis, the biggest percentage of errors was evident in the SG in the order effect. The results showed a difficulty in identifying a sound when there is another competitive sound and in the memory ability. Conclusion: A qualitative and quantitative difference was observed in the SSW test between the evaluated groups, although statistical data does not show significant differences. The importance to evaluate the central hearing process is emphasized when contributing to the procedures to be taken at the therapeutic follow-up.

  18. H Scan/AHP advanced technology proposal evaluation process

    Energy Technology Data Exchange (ETDEWEB)

    Mack, S. [Energetics, Inc., Columbia, MD (United States); Valladares, M.R.S. de [National Renewable Energy Lab., Washington, DC (United States)

    1996-10-01

    It is anticipated that a family of high value/impact projects will be funded by the Hydrogen Program to field test hydrogen technologies that are at advanced stages of development. These projects will add substantial value to the Program in several ways, by: demonstrating successful integration of multiple advanced technologies, providing critical insight on issues of larger scale equipment design, construction and operations management, yielding cost and performance data for competitive analysis, refining and deploying enhanced safety measures. These projects will be selected through a competitive proposal evaluation process. Because of the significant scope and funding levels of projects at these development phases, Program management has indicated the need for an augmented proposal evaluation strategy to ensure that supported projects are implemented by capable investigative teams and that their successful completion will optimally advance programmatic objectives. These objectives comprise a complex set of both quantitative and qualitative factors, many of which can only be estimated using expert judgment and opinion. To meet the above need, the National Renewable Energy Laboratory (NREL) and Energetics Inc. have jointly developed a proposal evaluation methodology called H Scan/AHP. The H Scan component of the process was developed by NREL. It is a two-part survey instrument that substantially augments the type and scope of information collected in a traditional proposal package. The AHP (Analytic Hierarchy Process) component was developed by Energetics. The AHP is an established decision support methodology that allows the Program decision makers to evaluate proposals relatively based on a unique set of weighted criteria that they have determined.

  19. Biogeochemical Modeling of the Second Rise of Oxygen

    Science.gov (United States)

    Smith, M. L.; Catling, D.; Claire, M.; Zahnle, K.

    2014-03-01

    cycles). To determine how fluxes of sulfur, carbon, and oxygen define oxygen levels before, during, and after the NOE, we add a sulfur cycle to the biogeochemical model of Claire et al. (2006). Understanding processes that impact the evolution of atmospheric oxygen on Earth is key to diagnosing the habitability of other planets because it is possible that other planets undergo a similar evolution. If a sulfidic deep ocean was instrumental in driving oxygen levels to modern values, then it would be valuable to remotely detect a sulfide-rich ocean on another planet. One such remotely-detectable signature could be the color of a sulfide-rich ocean. For example, Gallardo and Espinoza (2008) have hypothesized that a sulfidic ocean may be have been blacker in color. Even if a sulfidic ocean is not key to oxygenation, detecting a planet in transition--that is, a planet with intermediate levels of oxygen co-existing with higher levels of reduced gases - would be important for diagnosing habitability.

  20. Investigating the biogeochemical interactions involved in simultaneous TCE and Arsenic in situ bioremediation

    Science.gov (United States)

    Cook, E.; Troyer, E.; Keren, R.; Liu, T.; Alvarez-Cohen, L.

    2016-12-01

    The in situ bioremediation of contaminated sediment and groundwater is often focused on one toxin, even though many of these sites contain multiple contaminants. This reductionist approach neglects how other toxins may affect the biological and chemical conditions, or vice versa. Therefore, it is of high value to investigate the concurrent bioremediation of multiple contaminants while studying the microbial activities affected by biogeochemical factors. A prevalent example is the bioremediation of arsenic at sites co-contaminated with trichloroethene (TCE). The conditions used to promote a microbial community to dechlorinate TCE often has the adverse effect of inducing the release of previously sequestered arsenic. The overarching goal of our study is to simultaneously evaluate the bioremediation of arsenic and TCE. Although TCE bioremediation is a well-understood process, there is still a lack of thorough understanding of the conditions necessary for effective and stable arsenic bioremediation in the presence of TCE. The objective of this study is to promote bacterial activity that stimulates the precipitation of stable arsenic-bearing minerals while providing anaerobic, non-extreme conditions necessary for TCE dechlorination. To that end, endemic microbial communities were examined under various conditions to attempt successful sequestration of arsenic in addition to complete TCE dechlorination. Tested conditions included variations of substrates, carbon source, arsenate and sulfate concentrations, and the presence or absence of TCE. Initial arsenic-reducing enrichments were unable to achieve TCE dechlorination, probably due to low abundance of dechlorinating bacteria in the culture. However, favorable conditions for arsenic precipitation in the presence of TCE were eventually discovered. This study will contribute to the understanding of the key species in arsenic cycling, how they are affected by various concentrations of TCE, and how they interact with the key

  1. Evaluation of alternative drying techniques for the earthworm flour processing

    Directory of Open Access Journals (Sweden)

    Laura Suárez Hernández

    2016-01-01

    Full Text Available Production of earthworm flour includes several steps, among which the most critical is the drying process due to factors such as time and energ y requirements. In addition, the information available about this process is relquite limited. Thus, this work evaluated four drying techniques likely to be implemented by lombricultores: sun drying, oven drying, drying tunnel and microwave assisted drying. Drying kinetics values were obtained for all drying techniques, and specific parameters as the following were evaluated: drying tray material (stainless and ceramic steel for sun drying, microwave power (30 %, 50 % and 80 % and amount of material to be dried (72 and 100 g for microwave assisted drying, temperature (50, 65, 90 and 100 °C for oven drying, and temperature (50 and 63 °C and air speed (2.9 to 3.6 m/s for tunnel drying. It was determined that the most efficient technique is the drying tunnel, because this allows the combination of heat transfer by conduction and convection, and enables controlling the operating parameters. Finally, nutritional analyzes were performed in samples obtained by each drying technique evaluated. The crude protein content for sun drying, microwave assisted drying, oven drying and tunnel drying were 66.36 %, 67.91 %, 60.35 % and 62.33 % respectively, indicating that the drying method and operating parameters do not significantly affect the crude protein content.

  2. Processing and validation of intermediate energy evaluated data files

    International Nuclear Information System (INIS)

    2000-01-01

    Current accelerator-driven and other intermediate energy technologies require accurate nuclear data to model the performance of the target/blanket assembly, neutron production, activation, heating and damage. In a previous WPEC subgroup, SG13 on intermediate energy nuclear data, various aspects of intermediate energy data, such as nuclear data needs, experiments, model calculations and file formatting issues were investigated and categorized to come to a joint evaluation effort. The successor of SG13, SG14 on the processing and validation of intermediate energy evaluated data files, goes one step further. The nuclear data files that have been created with the aforementioned information need to be processed and validated in order to be applicable in realistic intermediate energy simulations. We emphasize that the work of SG14 excludes the 0-20 MeV data part of the neutron evaluations, which is supposed to be covered elsewhere. This final report contains the following sections: section 2: a survey of the data files above 20 MeV that have been considered for validation in SG14; section 3: a summary of the review of the 150 MeV intermediate energy data files for ENDF/B-VI and, more briefly, the other libraries; section 4: validation of the data library against an integral experiment with MCNPX; section 5: conclusions. (author)

  3. Process evaluation of discharge planning implementation in healthcare using normalization process theory.

    Science.gov (United States)

    Nordmark, Sofi; Zingmark, Karin; Lindberg, Inger

    2016-04-27

    Discharge planning is a care process that aims to secure the transfer of care for the patient at transition from home to the hospital and back home. Information exchange and collaboration between care providers are essential, but deficits are common. A wide range of initiatives to improve the discharge planning process have been developed and implemented for the past three decades. However, there are still high rates of reported medical errors and adverse events related to failures in the discharge planning. Using theoretical frameworks such as Normalization Process Theory (NPT) can support evaluations of complex interventions and processes in healthcare. The aim of this study was to explore the embedding and integration of the DPP from the perspective of registered nurses, district nurses and homecare organizers. The study design was explorative, using the NPT as a framework to explore the embedding and integration of the DPP. Data consisted of written documentation from; workshops with staff, registered adverse events and system failures, web based survey and individual interviews with staff. Using the NPT as a framework to explore the embedding and integration of discharge planning after 10 years in use showed that the staff had reached a consensus of opinion of what the process was (coherence) and how they evaluated the process (reflexive monitoring). However, they had not reached a consensus of opinion of who performed the process (cognitive participation) and how it was performed (collective action). This could be interpreted as the process had not become normalized in daily practice. The result shows necessity to observe the implementation of old practices to better understand the needs of new ones before developing and implementing new practices or supportive tools within healthcare to reach the aim of development and to accomplish sustainable implementation. The NPT offers a generalizable framework for analysis, which can explain and shape the

  4. Evaluation of peach palm (Bactris gasipaes Kunth) processed by radiation

    International Nuclear Information System (INIS)

    Silva, Priscila Vieira da

    2009-01-01

    The peach palm can be obtained from several species of palms, but the peach palm has attracted great interest by producers, as has characteristics of precocity, rusticity and tillering, producing a palm-quality differentiating it from other palmettos for their sweet flavor and yellowish . The food irradiation has been used as a treatment to ensure microbiological food safety of products to avoid infection. Its use combined with minimal processing could increase the safety and quality of minimally processed vegetables. We aimed at evaluating the effect of gamma radiation and electron beams to control bacteria; assess the physical characteristics through analysis of color and texture in peach palm in natura minimally processed and subjected to ionizing radiation stored at 8 deg C as well as evaluating the sensory characteristics. The results in the microbiological analysis showed that ionizing radiation promotes reduction of microbial load in both treatments. In the analysis of color we can conclude that among all the treatments the sample irradiated with 1.5 kGy showed more differences when compared with the other samples. Observing texture characteristics we could conclude that irradiation changed the texture of the palm, unlike the treatment by electron beams that showed no difference between samples. For the sensory analysis, the gamma radiation with dose of 1.5 kGy, induced changes in sensory properties to the attributes and overall appearance. The dose of 1 kGy caused no significant difference, so a recommended dose for the irradiation of the studied product. (author)

  5. Evaluation of the styloid process on digital panoramic radiographs

    International Nuclear Information System (INIS)

    More, Chandramani B; Asrani, Mukesh K

    2010-01-01

    The styloid process is an anatomical structure, whose clinical importance is not well understood. Proper clinical and radiographic evaluation can detect an elongated styloid process and calcification of the stylohyoid ligament. It has been reported that 2 – 28% of the general population show radiographic evidence of mineralization of a portion of the stylohyoid chain. The elongated styloid process may be symptomatic in many cases. Panoramic radiography is the best imaging modality to view the styloid process bilaterally. To assess the styloid process on digital panoramic radiographs. The study was conducted on 500 digital panoramic radiographs available in the archives of our department as soft copies. These radiographs were taken using a digital panoramic system. The radiographic length of the styloid process was measured on both sides using the measurement toolbars on the accompanying analysis software. For statistical analysis we used the unpaired t test, Chi-square test, and one-way ANOVA test, as necessary. The average length of the left styloid was 25.41 ± 6.32 mm and that of the right styloid was 25.53 ± 6.62 mm. The length of both styloids increased with age and males had longer styloids than females. Elongated styloids were present in 19.4% of the panoramic radiographs. Langlais type I elongated styloids and a partial calcification pattern were more common than others. Panoramic radiography is useful for detection of an elongated styloid process and / or ossification of the stylohyoid ligament in patients with or without symptoms, and helps avoid a misdiagnosis of tonsillar pain or pain of dental, pharyngeal, or muscular origin

  6. Evaluation of the styloid process on digital panoramic radiographs

    Directory of Open Access Journals (Sweden)

    More Chandramani

    2010-01-01

    Full Text Available Background: The styloid process is an anatomical structure, whose clinical importance is not well understood. Proper clinical and radiographic evaluation can detect an elongated styloid process and calcification of the stylohyoid ligament. It has been reported that 2 - 28% of the general population show radiographic evidence of mineralization of a portion of the stylohyoid chain. The elongated styloid process may be symptomatic in many cases. Panoramic radiography is the best imaging modality to view the styloid process bilaterally. Aim: To assess the styloid process on digital panoramic radiographs. Materials and Methods: The study was conducted on 500 digital panoramic radiographs available in the archives of our department as soft copies. These radiographs were taken using a digital panoramic system. The radiographic length of the styloid process was measured on both sides using the measurement toolbars on the accompanying analysis software. For statistical analysis we used the unpaired t test, Chi-square test, and one-way ANOVA test, as necessary. Results: The average length of the left styloid was 25.41 ± 6.32 mm and that of the right styloid was 25.53 ± 6.62 mm. The length of both styloids increased with age and males had longer styloids than females. Elongated styloids were present in 19.4% of the panoramic radiographs. Langlais type I elongated styloids and a partial calcification pattern were more common than others. Conclusion: Panoramic radiography is useful for detection of an elongated styloid process and / or ossification of the stylohyoid ligament in patients with or without symptoms, and helps avoid a misdiagnosis of tonsillar pain or pain of dental, pharyngeal, or muscular origin.

  7. SELECTION AND PRELIMINARY EVALUATION OF ALTERNATIVE REDUCTANTS FOR SRAT PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M.; Pickenheim, B.; Peeler, D.

    2009-06-30

    Defense Waste Processing Facility - Engineering (DWPF-E) has requested the Savannah River National Laboratory (SRNL) to perform scoping evaluations of alternative flowsheets with the primary focus on alternatives to formic acid during Chemical Process Cell (CPC) processing. The reductants shown below were selected for testing during the evaluation of alternative reductants for Sludge Receipt and Adjustment Tank (SRAT) processing. The reductants fall into two general categories: reducing acids and non-acidic reducing agents. Reducing acids were selected as direct replacements for formic acid to reduce mercury in the SRAT, to acidify the sludge, and to balance the melter REDuction/OXidation potential (REDOX). Non-acidic reductants were selected as melter reductants and would not be able to reduce mercury in the SRAT. Sugar was not tested during this scoping evaluation as previous work has already been conducted on the use of sugar with DWPF feeds. Based on the testing performed, the only viable short-term path to mitigating hydrogen generation in the CPC is replacement of formic acid with a mixture of glycolic and formic acids. An experiment using glycolic acid blended with formic on an 80:20 molar basis was able to reduce mercury, while also targeting a predicted REDuction/OXidation (REDOX) of 0.2 expressed as Fe{sup 2+}/{Sigma}Fe. Based on this result, SRNL recommends performing a complete CPC demonstration of the glycolic/formic acid flowsheet followed by a design basis development and documentation. Of the options tested recently and in the past, nitric/glycolic/formic blended acids has the potential for near term implementation in the existing CPC equipment providing rapid throughput improvement. Use of a non-acidic reductant is recommended only if the processing constraints to remove mercury and acidify the sludge acidification are eliminated. The non-acidic reductants (e.g. sugar) will not reduce mercury during CPC processing and sludge acidification would

  8. Past and present of sediment and carbon biogeochemical cycling models

    Directory of Open Access Journals (Sweden)

    F. T. Mackenzie

    2004-01-01

    Full Text Available The global carbon cycle is part of the much more extensive sedimentary cycle that involves large masses of carbon in the Earth's inner and outer spheres. Studies of the carbon cycle generally followed a progression in knowledge of the natural biological, then chemical, and finally geological processes involved, culminating in a more or less integrated picture of the biogeochemical carbon cycle by the 1920s. However, knowledge of the ocean's carbon cycle behavior has only within the last few decades progressed to a stage where meaningful discussion of carbon processes on an annual to millennial time scale can take place. In geologically older and pre-industrial time, the ocean was generally a net source of CO2 emissions to the atmosphere owing to the mineralization of land-derived organic matter in addition to that produced in situ and to the process of CaCO3 precipitation. Due to rising atmospheric CO2 concentrations because of fossil fuel combustion and land use changes, the direction of the air-sea CO2 flux has reversed, leading to the ocean as a whole being a net sink of anthropogenic CO2. The present thickness of the surface ocean layer, where part of the anthropogenic CO2 emissions are stored, is estimated as of the order of a few hundred meters. The oceanic coastal zone net air-sea CO2 exchange flux has also probably changed during industrial time. Model projections indicate that in pre-industrial times, the coastal zone may have been net heterotrophic, releasing CO2 to the atmosphere from the imbalance between gross photosynthesis and total respiration. This, coupled with extensive CaCO3 precipitation in coastal zone environments, led to a net flux of CO2 out of the system. During industrial time the coastal zone ocean has tended to reverse its trophic status toward a non-steady state situation of net autotrophy, resulting in net uptake of anthropogenic CO2 and storage of carbon in the coastal ocean, despite the significant calcification

  9. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation

    Science.gov (United States)

    Campbell, Kate M.; Gallegos, Tanya J.; Landa, Edward R.

    2015-01-01

    Natural uranium (U) occurs as a mixture of three radioactive isotopes: 238U, 235U, and 234U. Only 235U is fissionable and makes up about 0.7% of natural U, while 238U is overwhelmingly the most abundant at greater than 99% of the total mass of U. Prior to the 1940s, U was predominantly used as a coloring agent, and U-bearing ores were mined mainly for their radium (Ra) and/or vanadium (V) content; the bulk of the U was discarded with the tailings (Finch et al., 1972). Once nuclear fission was discovered, the economic importance of U increased greatly. The mining and milling of U-bearing ores is the first step in the nuclear fuel cycle, and the contact of residual waste with natural water is a potential source of contamination of U and associated elements to the environment. Uranium is mined by three basic methods: surface (open pit), underground, and solution mining (in situ leaching or in situ recovery), depending on the deposit grade, size, location, geology and economic considerations (Abdelouas, 2006). Solid wastes at U mill tailings (UMT) sites can include both standard tailings (i.e., leached ore rock residues) and solids generated on site by waste treatment processes. The latter can include sludge or “mud” from neutralization of acidic mine/mill effluents, containing Fe and a range of coprecipitated constituents, or barium sulfate precipitates that selectively remove Ra (e.g., Carvalho et al., 2007). In this chapter, we review the hydrometallurgical processes by which U is extracted from ore, the biogeochemical processes that can affect the fate and transport of U and associated elements in the environment, and possible remediation strategies for site closure and aquifer restoration.This paper represents the fourth in a series of review papers from the U.S. Geological Survey (USGS) on geochemical aspects of UMT management that span more than three decades. The first paper (Landa, 1980) in this series is a primer on the nature of tailings and radionuclide

  10. Evaluating supplier quality performance using analytical hierarchy process

    Science.gov (United States)

    Kalimuthu Rajoo, Shanmugam Sundram; Kasim, Maznah Mat; Ahmad, Nazihah

    2013-09-01

    This paper elaborates the importance of evaluating supplier quality performance to an organization. Supplier quality performance evaluation reflects the actual performance of the supplier exhibited at customer's end. It is critical in enabling the organization to determine the area of improvement and thereafter works with supplier to close the gaps. Success of the customer partly depends on supplier's quality performance. Key criteria as quality, cost, delivery, technology support and customer service are categorized as main factors in contributing to supplier's quality performance. 18 suppliers' who were manufacturing automotive application parts evaluated in year 2010 using weight point system. There were few suppliers with common rating which led to common ranking observed by few suppliers'. Analytical Hierarchy Process (AHP), a user friendly decision making tool for complex and multi criteria problems was used to evaluate the supplier's quality performance challenging the weight point system that was used for 18 suppliers'. The consistency ratio was checked for criteria and sub-criteria. Final results of AHP obtained with no overlap ratings, therefore yielded a better decision making methodology as compared to weight point rating system.

  11. Psychological evaluation of asylum seekers as a therapeutic process.

    Science.gov (United States)

    Gangsei, David; Deutsch, Anna C

    2007-01-01

    Torture survivors are often reluctant to tell their stories. They typically make every effort to forget this painful, traumatic experience. Often they do not share with family, friends or healthcare professionals the fact that they have been beaten, raped or subjected to electrical shocks and other terrors. Talking means retrieving memories, triggering the feelings and emotions that accompanied the torture itself. Furthermore, refugee torture survivors feel that people won't understand or believe their experiences. However, survivors who escape their country may need to reveal their torture experience as they apply for asylum in the host country. When they prepare for the asylum process, it may well be the first time that they talk about the torture. Mental health professionals are often called upon to evaluate survivors and prepare affidavits for the asylum process, documenting the effects of torture. This creates a unique and priviliged opportunity to help survivors to address the devastating consequences of torture. Winning asylum is essential to recovery for a torture survivor in a country of refuge. Psychological evaluations of the consequences of torture can present information and evidence to asylum adjudicators which significantly increases understanding of the survivors' background and experiences as well as their manner of self-presentation in the courtroom or interview. They can empower the torture survivor to present his/her experiences more fully and confidently. Even apart from winning asylum, the process of the evaluation has many potential benefits for the survivor's emotional well-being. This includes helping the survivor understand the necessity of telling the story, illuminating the often poorly perceived link between current emotional suffering and past torture, facilitating the development of cognitive and emotional control, and healing the wounds of mistrust, humiliation, marginalization and fear.

  12. Evaluation process of global environmental impact: assessment guidelines

    International Nuclear Information System (INIS)

    Memon, A.R.; Mahar, R.B.

    2001-01-01

    In developed and developing countries, the EIA (Environmental Impact Assessment) is becoming mandatory for the approval of Industrial projects and projects of Environmental hazards. The approving authority of each country has its own guidelines to get projects approved and make project proponents responsible to submit Environmental Impact Statement for the its detailed assessment. In this paper authors have studied an existing EIA Global guidelines and its evaluation process of altogether 40 countries from four continents, Asia, Pacific/Middle East, Europe, Australia and America/Canada. This evaluation process is recorded in the tabulation form and it has been formulated stage wise in which stage one highlights the inception of EIA guidelines of each country and stage two and three gives implementation process. The inception stage of guidelines gives an idea that when EIA was started and an implementation stages provide all information that when EIA become a part of legislation that provide an opportunity to the reader to understand the decision making process for project approvals. The main objective of writing EIA guidelines is to monitor the sustain ability of various types of the projects under different sectoral guidelines, therefore Projects related with different Sectors have been chosen and a detailed record in tabulation form gives an idea to understand the interaction of these guidelines. To make this paper more comprehensive, authors have gone thorough the sectoral guidelines of altogether 64 countries and studied 21 sector oriented project fields. These are of Agriculture/Irrigation, Biodiversity, Coastal/Marine, Community Participation, Extractive industries, Fisheries, Forestry, Hazard Risk, Health, Human settlement, Industry, Multi sectorial, Ports and Harbors, Power, refugees/resettlement, Social, Strategies/Planning, Tourism/Recreational, transportation, Waste Pollution and Wetlands/Water resources. (author)

  13. An experimental evaluation of alarm processing and display characteristics

    International Nuclear Information System (INIS)

    O'Hara, J.; Brown, W.; Hallbert, B.; Skraaning, G.Jr.; Persensky, J.; Wachtel, J.

    1998-01-01

    This paper describes a research program sponsored by the U.S. Nuclear Regulatory Commission to address the human factors engineering (HFE) aspects of nuclear power plant alarm systems. The overall objective of the program is to develop HFE review guidance for advanced alarm systems. As part of this program, guidance has been developed based on a broad base of technical and research literature. In the course of guidance development, aspects of alarm system design for which the technical basis was insufficient to support complete guidance development were identified. The primary purpose of the research reported in this paper was to evaluate the effects of three of these alarm system design characteristics on operator performance in order to contribute to the understanding of potential safety issues and to provide data to support the development of design review guidance in these areas. Three alarm system design characteristics studied were (1) alarm processing (degree of alarm reduction), (2) alarm availability (dynamic prioritization and suppression), and (3) alarm display (a dedicated tile format, a mixed tile and message list format, and a format in which alarm information is integrated into the process displays). A secondary purpose was to provide confirmatory evidence of selected alarm system guidance developed in an earlier phase of the project. The alarm characteristics were combined into eight separate experimental conditions. Six, two-person crews of professional nuclear power plant operators participated in the study. Following training, each crew completed 16 test trials which consisted of two trials in each of the eight experimental conditions (one with a low-complexity scenario and one with a high-complexity scenario). Measures of process performance. operator task performance, situation awareness, and workload were obtained. In addition. operator opinions and evaluations of the alarm processing and display conditions were collected. Numerous strengths

  14. The Biogeochemical Response to Inter-decadal Atmospheric Forcing Across Watershed Scales in Canada's Subarctic

    Science.gov (United States)

    Spence, C.

    2016-12-01

    Rapid landscape changes in the circumpolar north have been documented, including degradation of permafrost and alteration of vegetation communities. These are widely expected to have profound impacts on the freshwater fluxes of solutes, carbon and nitrogen across the Arctic domain. However, there have been few attempts to document trends across the diversity of landscapes in the circumpolar north, mostly due to a dearth of long term data. Some of the fastest rates of warming over the last thirty years have occurred in Canada's Northwest Territories, so this region should already exhibit changes in aquatic chemistry. Observations of chemical loads in streams draining the ice-poor discontinuous permafrost subarctic Canadian Shield region were analyzed with the goal of determining how basins across scales have responded to changes in atmospheric forcing. Smaller streams, with much closer linkages to terrestrial processes, experienced a synchrony among hydrological and biogeochemical processes that enhanced chemical flux above that in their larger counterparts. This demonstrates that there are differences in resiliency and resistance across scales to climate change. These results highlight the importance of biogeochemical process understanding to properly explain and predict how chemical loading scales from headwaters to river mouths. This is important information if society is to properly adapt policies for effluent discharge, nearshore marine management, among others.

  15. Identifying and Evaluating Chaotic Behavior in Hydro-Meteorological Processes

    Directory of Open Access Journals (Sweden)

    Soojun Kim

    2015-01-01

    Full Text Available The aim of this study is to identify and evaluate chaotic behavior in hydro-meteorological processes. This study poses the two hypotheses to identify chaotic behavior of the processes. First, assume that the input data is the significant factor to provide chaotic characteristics to output data. Second, assume that the system itself is the significant factor to provide chaotic characteristics to output data. For solving this issue, hydro-meteorological time series such as precipitation, air temperature, discharge, and storage volume were collected in the Great Salt Lake and Bear River Basin, USA. The time series in the period of approximately one year were extracted from the original series using the wavelet transform. The generated time series from summation of sine functions were fitted to each series and used for investigating the hypotheses. Then artificial neural networks had been built for modeling the reservoir system and the correlation dimension was analyzed for the evaluation of chaotic behavior between inputs and outputs. From the results, we found that the chaotic characteristic of the storage volume which is output is likely a byproduct of the chaotic behavior of the reservoir system itself rather than that of the input data.

  16. Automating the Human Factors Engineering and Evaluation Processes

    International Nuclear Information System (INIS)

    Mastromonico, C.

    2002-01-01

    The Westinghouse Savannah River Company (WSRC) has developed a software tool for automating the Human Factors Engineering (HFE) design review, analysis, and evaluation processes. The tool provides a consistent, cost effective, graded, user-friendly approach for evaluating process control system Human System Interface (HSI) specifications, designs, and existing implementations. The initial set of HFE design guidelines, used in the tool, was obtained from NUREG- 0700. Each guideline was analyzed and classified according to its significance (general concept vs. supporting detail), the HSI technology (computer based vs. non-computer based), and the HSI safety function (safety vs. non-safety). Approximately 10 percent of the guidelines were determined to be redundant or obsolete and were discarded. The remaining guidelines were arranged in a Microsoft Access relational database, and a Microsoft Visual Basic user interface was provided to facilitate the HFE design review. The tool also provides the capability to add new criteria to accommodate advances in HSI technology and incorporate lessons learned. Summary reports produced by the tool can be easily ported to Microsoft Word and other popular PC office applications. An IBM compatible PC with Microsoft Windows 95 or higher is required to run the application

  17. Physical activity across the curriculum: year one process evaluation results

    Directory of Open Access Journals (Sweden)

    Sullivan Debra K

    2008-07-01

    Full Text Available Abstract Background Physical Activity Across the Curriculum (PAAC is a 3-year elementary school-based intervention to determine if increased amounts of moderate intensity physical activity performed in the classroom will diminish gains in body mass index (BMI. It is a cluster-randomized, controlled trial, involving 4905 children (2505 intervention, 2400 control. Methods We collected both qualitative and quantitative process evaluation data from 24 schools (14 intervention and 10 control, which included tracking teacher training issues, challenges and barriers to effective implementation of PAAC lessons, initial and continual use of program specified activities, and potential competing factors, which might contaminate or lessen program effects. Results Overall teacher attendance at training sessions showed exceptional reach. Teachers incorporated active lessons on most days, resulting in significantly greater student physical activity levels compared to controls (p Conclusion In the first year of the PAAC intervention, process evaluation results were instrumental in identifying successes and challenges faced by teachers when trying to modify existing academic lessons to incorporate physical activity.

  18. Economic evaluation of radiation processing in urban solid wastes treatment

    Science.gov (United States)

    Carassiti, F.; Lacquaniti, L.; Liuzzo, G.

    During the last few years, quite a number of studies have been done, or are still in course, on disinfection of urban liquid wastes by means of ionizing radiations. The experience gained by SANDIA pilot plant of irradiation on dried sewage sludge, together with the recently presented conceptual design of another plant handling granular solids, characterized by high efficiency and simple running, have shown the possibility of extending this process to the treatment of urban solid wastes. As a matter of fact, the problems connected to the pathogenic aspects of sludge handling are often similar to those met during the disposal of urban solid wastes. This is even more so in the case of their reuse in agriculture and zootechny. The present paper introduces the results of an analysis carried out in order to evaluate the economical advantage of inserting irradiation treatment in some process scheme for management of urban solid wastes. Taking as an example a comprehensive pattern of urban solid wastes management which has been analysed and estimated economically in previous works, we first evaluated the extra capital and operational costs due to the irradiation and then analysed economical justification, taking into account the increasing commercial value of the by-products.

  19. Process Evaluation of a Workers' Health Surveillance Program for Meat Processing Workers.

    Science.gov (United States)

    van Holland, Berry J; Brouwer, Sandra; de Boer, Michiel R; Reneman, Michiel F; Soer, Remko

    2017-09-01

    Objective To evaluate the implementation process of a workers' health surveillance (WHS) program in a Dutch meat processing company. Methods Workers from five plants were eligible to participate in the WHS program. The program consisted of four evaluative components and an intervention component. Qualitative and quantitative methods were used to evaluate seven process aspects. Data were gathered by interviews with stakeholders, participant questionnaires, and from registries of the company and occupational health service. Results Two recruitment strategies were used: open invitation or automatic participation. Of the 986 eligible workers, 305 participated in the program. Average reach was 53 %. Two out of five program components could not be assessed on dose delivered, dose received and fidelity. If components were assessable, 85-100 % of the components was delivered, 66-100 % of the components was received by participants, and fidelity was 100 %. Participants were satisfied with the WHS program (mean score 7.6). Contextual factors that facilitated implementation were among others societal developments and management support. Factors that formed barriers were program novelty and delayed follow-up. Conclusion The WHS program was well received by participants. Not all participants were offered the same number of program components, and not all components were performed according to protocol. Deviation from protocol is an indication of program failure and may affect program effectiveness.

  20. Classification and Quality Evaluation of Tobacco Leaves Based on Image Processing and Fuzzy Comprehensive Evaluation

    Science.gov (United States)

    Zhang, Fan; Zhang, Xinhong

    2011-01-01

    Most of classification, quality evaluation or grading of the flue-cured tobacco leaves are manually operated, which relies on the judgmental experience of experts, and inevitably limited by personal, physical and environmental factors. The classification and the quality evaluation are therefore subjective and experientially based. In this paper, an automatic classification method of tobacco leaves based on the digital image processing and the fuzzy sets theory is presented. A grading system based on image processing techniques was developed for automatically inspecting and grading flue-cured tobacco leaves. This system uses machine vision for the extraction and analysis of color, size, shape and surface texture. Fuzzy comprehensive evaluation provides a high level of confidence in decision making based on the fuzzy logic. The neural network is used to estimate and forecast the membership function of the features of tobacco leaves in the fuzzy sets. The experimental results of the two-level fuzzy comprehensive evaluation (FCE) show that the accuracy rate of classification is about 94% for the trained tobacco leaves, and the accuracy rate of the non-trained tobacco leaves is about 72%. We believe that the fuzzy comprehensive evaluation is a viable way for the automatic classification and quality evaluation of the tobacco leaves. PMID:22163744

  1. Process evaluation of treatment times in a large radiotherapy department

    International Nuclear Information System (INIS)

    Beech, R.; Burgess, K.; Stratford, J.

    2016-01-01

    Purpose/objective: The Department of Health (DH) recognises access to appropriate and timely radiotherapy (RT) services as crucial in improving cancer patient outcomes, especially when facing a predicted increase in cancer diagnosis. There is a lack of ‘real-time’ data regarding daily demand of a linear accelerator, the impact of increasingly complex techniques on treatment times, and whether current scheduling reflects time needed for RT delivery, which would be valuable in highlighting current RT provision. Material/methods: A systematic quantitative process evaluation was undertaken in a large regional cancer centre, including a satellite centre, between January and April 2014. Data collected included treatment room-occupancy time, RT site, RT and verification technique and patient mobility status. Data was analysed descriptively; average room-occupancy times were calculated for RT techniques and compared to historical standardised treatment times within the department. Results: Room-occupancy was recorded for over 1300 fractions, over 50% of which overran their allotted treatment time. In a focused sample of 16 common techniques, 10 overran their allocated timeslots. Verification increased room-occupancy by six minutes (50%) over non-imaging. Treatments for patients requiring mobility assistance took four minutes (29%) longer. Conclusion: The majority of treatments overran their standardised timeslots. Although technique advancement has reduced RT delivery time, room-occupancy has not necessarily decreased. Verification increases room-occupancy and needs to be considered when moving towards adaptive techniques. Mobility affects room-occupancy and will become increasingly significant in an ageing population. This evaluation assesses validity of current treatment times in this department, and can be modified and repeated as necessary. - Highlights: • A process evaluation examined room-occupancy for various radiotherapy techniques. • Appointment lengths

  2. Process evaluation of health fairs promoting cancer screenings.

    Science.gov (United States)

    Escoffery, Cam; Liang, Shuting; Rodgers, Kirsten; Haardoerfer, Regine; Hennessy, Grace; Gilbertson, Kendra; Heredia, Natalia I; Gatus, Leticia A; Fernandez, Maria E

    2017-12-18

    Low income and uninsured individuals often have lower adherence to cancer screening for breast, cervical and colorectal cancer. Health fairs are a common community outreach strategy used to provide cancer-related health education and services. This study was a process evaluation of seven health fairs focused on cancer screening across the U.S. We conducted key-informant interviews with the fair coordinator and conducted baseline and follow-up surveys with fair participants to describe characteristics of participants as well as their experiences. We collected baseline data with participants at the health fairs and telephone follow-up surveys 6 months following the fair. Attendance across the seven health fairs ranged from 41 to 212 participants. Most fairs provided group or individual education, print materials and cancer screening during the event. Overall, participants rated health fairs as very good and participants reported that the staff was knowledgeable and that they liked the materials distributed. After the fairs, about 60% of participants, who were reached at follow-up, had read the materials provided and had conversations with others about cancer screening, and 41% talked to their doctors about screening. Based on findings from evaluation including participant data and coordinator interviews, we describe 6 areas in planning for health fairs that may increase their effectiveness. These include: 1) use of a theoretical framework for health promotion to guide educational content and activities provided, 2) considering the community characteristics, 3) choosing a relevant setting, 4) promotion of the event, 5) considerations of the types of services to deliver, and 6) evaluation of the health fair. The events reported varied in reach and the participants represented diverse races and lower income populations overall. Most health fairs offered education, print materials and onsite cancer screening. Participants reported general satisfaction with these events

  3. Evaluation of Brine Processing Technologies for Spacecraft Wastewater

    Science.gov (United States)

    Shaw, Hali L.; Flynn, Michael; Wisniewski, Richard; Lee, Jeffery; Jones, Harry; Delzeit, Lance; Shull, Sarah; Sargusingh, Miriam; Beeler, David; Howard, Jeanie; hide

    2015-01-01

    Brine drying systems may be used in spaceflight. There are several advantages to using brine processing technologies for long-duration human missions including a reduction in resupply requirements and achieving high water recovery ratios. The objective of this project was to evaluate four technologies for the drying of spacecraft water recycling system brine byproducts. The technologies tested were NASA's Forward Osmosis Brine Drying (FOBD), Paragon's Ionomer Water Processor (IWP), NASA's Brine Evaporation Bag (BEB) System, and UMPQUA's Ultrasonic Brine Dewatering System (UBDS). The purpose of this work was to evaluate the hardware using feed streams composed of brines similar to those generated on board the International Space Station (ISS) and future exploration missions. The brine formulations used for testing were the ISS Alternate Pretreatment and Solution 2 (Alt Pretreat). The brines were generated using the Wiped-film Rotating-disk (WFRD) evaporator, which is a vapor compression distillation system that is used to simulate the function of the ISS Urine Processor Assembly (UPA). Each system was evaluated based on the results from testing and Equivalent System Mass (ESM) calculations. A Quality Function Deployment (QFD) matrix was also developed as a method to compare the different technologies based on customer and engineering requirements.

  4. Evaluation of feeds for melt and dilute process using an analytical hierarchy process

    International Nuclear Information System (INIS)

    Krupa, J.F.

    2000-01-01

    Westinghouse Savannah River Company was requested to evaluate whether nuclear materials other than aluminum-clad spent nuclear fuel should be considered for treatment to prepare them for disposal in the melt and dilute facility as part of the Treatment and Storage Facility currently projected for construction in the L-Reactor process area. The decision analysis process used to develop this analysis considered many variables and uncertainties, including repository requirements that are not yet finalized. The Analytical Hierarchy Process using a ratings methodology was used to rank potential feed candidates for disposition through the Melt and Dilute facility proposed for disposition of Savannah River Site aluminum-clad spent nuclear fuel. Because of the scoping nature of this analysis, the expert team convened for this purpose concentrated on technical feasibility and potential cost impacts associated with using melt and dilute versus the current disposition option. This report documents results of the decision analysis

  5. Evaluation of feeds for melt and dilute process using an analytical hierarchy process

    Energy Technology Data Exchange (ETDEWEB)

    Krupa, J.F.

    2000-03-22

    Westinghouse Savannah River Company was requested to evaluate whether nuclear materials other than aluminum-clad spent nuclear fuel should be considered for treatment to prepare them for disposal in the melt and dilute facility as part of the Treatment and Storage Facility currently projected for construction in the L-Reactor process area. The decision analysis process used to develop this analysis considered many variables and uncertainties, including repository requirements that are not yet finalized. The Analytical Hierarchy Process using a ratings methodology was used to rank potential feed candidates for disposition through the Melt and Dilute facility proposed for disposition of Savannah River Site aluminum-clad spent nuclear fuel. Because of the scoping nature of this analysis, the expert team convened for this purpose concentrated on technical feasibility and potential cost impacts associated with using melt and dilute versus the current disposition option. This report documents results of the decision analysis.

  6. The evaluation framework for business process management methodologies

    Directory of Open Access Journals (Sweden)

    Sebastian Lahajnar

    2016-06-01

    Full Text Available In an intense competition in the global market, organisations seek to take advantage of all their internal and external potentials, advantages, and resources. It has been found that, in addition to competitive products and services, a good business also requires an effective management of business processes, which is the discipline of the business process management (BPM. The introduction of the BPM in the organisation requires a thoughtful selection of an appropriate methodological approach, since the latter will formalize activities, products, applications and other efforts of the organisation in this field. Despite many technology-driven solutions of software companies, recommendations of consulting companies, techniques, good practices and tools, the decision on what methodology to choose is anything but simple. The aim of this article is to simplify the adoption of such decisions by building a framework for the evaluation of BPM methodologies according to a qualitative multi-attribute decision-making method. The framework defines a hierarchical decision-making model, formalizes the decision-making process and thus contributes significantly to an independent, credible final decision that is the most appropriate for a specific organisation.

  7. Deep-Sea Microbes: Linking Biogeochemical Rates to -Omics Approaches

    Science.gov (United States)

    Herndl, G. J.; Sintes, E.; Bayer, B.; Bergauer, K.; Amano, C.; Hansman, R.; Garcia, J.; Reinthaler, T.

    2016-02-01

    Over the past decade substantial progress has been made in determining deep ocean microbial activity and resolving some of the enigmas in understanding the deep ocean carbon flux. Also, metagenomics approaches have shed light onto the dark ocean's microbes but linking -omics approaches to biogeochemical rate measurements are generally rare in microbial oceanography and even more so for the deep ocean. In this presentation, we will show by combining metagenomics, -proteomics and biogeochemical rate measurements on the bulk and single-cell level that deep-sea microbes exhibit characteristics of generalists with a large genome repertoire, versatile in utilizing substrate as revealed by metaproteomics. This is in striking contrast with the apparently rather uniform dissolved organic matter pool in the deep ocean. Combining the different -omics approaches with metabolic rate measurements, we will highlight some major inconsistencies and enigmas in our understanding of the carbon cycling and microbial food web structure in the dark ocean.

  8. Lagrangian numerical methods for ocean biogeochemical simulations

    Science.gov (United States)

    Paparella, Francesco; Popolizio, Marina

    2018-05-01

    We propose two closely-related Lagrangian numerical methods for the simulation of physical processes involving advection, reaction and diffusion. The methods are intended to be used in settings where the flow is nearly incompressible and the Péclet numbers are so high that resolving all the scales of motion is unfeasible. This is commonplace in ocean flows. Our methods consist in augmenting the method of characteristics, which is suitable for advection-reaction problems, with couplings among nearby particles, producing fluxes that mimic diffusion, or unresolved small-scale transport. The methods conserve mass, obey the maximum principle, and allow to tune the strength of the diffusive terms down to zero, while avoiding unwanted numerical dissipation effects.

  9. Natural environment and the biogeochemical cycle s. Pt. A

    Energy Technology Data Exchange (ETDEWEB)

    Hutzinger, O [ed.

    1980-01-01

    At the moment three volumes of the handbook are planned. Volume 1 deals with the natural environment and the biogeochemical cycles therein, including some background information such as energetics and ecology. The individual chapters are dealing with the atmosphere, the hydrosphere, chemical oceanography, chemical aspects of soil, the cycle of oxygen, sulfur, and phosphorus, metal cycles and biological methylation, and natural organohalogen compounds. Separate abstracts are prepared for 5 chapters of this book.

  10. Evaluating the implementation process of a participatory organizational level occupational health intervention in schools

    NARCIS (Netherlands)

    Schelvis, R.M.C.; Wiezer, N.M.; Blatter, B.M.; Genabeek, J.A.G.M. van; Oude Hengel, K.M.; Bohlneijer, E.T.; Beek, A.J. van der

    2016-01-01

    Background The importance of process evaluations in examining how and why interventions are (un) successful is increasingly recognized. Process evaluations mainly studied the implementation process and the quality of the implementation (fidelity). However, in adopting this approach for participatory

  11. Evaluating the implementation process of a participatory organization level occupational health intervention in schools

    NARCIS (Netherlands)

    Schelvis, Roosmarijn M.C.; Wiezer, Noortje M.; Blatter, Birgit M.; van Genabeek, Joost A.G.M.; Oude Hengel, Karen M.; Bohlmeijer, Ernst T.; van der Beek, Allard J.

    2016-01-01

    Background: The importance of process evaluations in examining how and why interventions are (un) successful is increasingly recognized. Process evaluations mainly studied the implementation process and the quality of the implementation (fidelity). However, in adopting this approach for

  12. The prioritization and categorization method (PCM) process evaluation at Ericsson : a case study

    NARCIS (Netherlands)

    Ohlsson, Jens; Han, Shengnan; Bouwman, W.A.G.A.

    2017-01-01

    Purpose: The purpose of this paper is to demonstrate and evaluate the prioritization and categorization method (PCM), which facilitates the active participation of process stakeholders (managers, owners, customers) in process assessments. Stakeholders evaluate processes in terms of effectiveness,

  13. Earth's Early Biosphere and the Biogeochemical Carbon Cycle

    Science.gov (United States)

    DesMarais, David

    2004-01-01

    Our biosphere has altered the global environment principally by influencing the chemistry of those elements most important for life, e g., C, N, S, O, P and transition metals (e.g., Fe and Mn). The coupling of oxygenic photosynthesis with the burial in sediments of photosynthetic organic matter, and with the escape of H2 to space, has increased the state of oxidation of the Oceans and atmosphere. It has also created highly reduced conditions within sedimentary rocks that have also extensively affected the geochemistry of several elements. The decline of volcanism during Earth's history reduced the flow of reduced chemical species that reacted with photosynthetically produced O2. The long-term net accumulation of photosynthetic O2 via biogeochemical processes has profoundly influenced our atmosphere and biosphere, as evidenced by the O2 levels required for algae, multicellular life and certain modem aerobic bacteria to exist. When our biosphere developed photosynthesis, it tapped into an energy resource that was much larger than the energy available from oxidation-reduction reactions associated with weathering and hydrothermal activity. Today, hydrothermal sources deliver globally (0.13-1.1)x10(exp l2) mol yr(sup -1) of reduced S, Fe(2+), Mn(2+), H2 and CH4; this is estimated to sustain at most about (0.2-2)xl0(exp 12)mol C yr(sup -1) of organic carbon production by chemautotrophic microorganisms. In contrast, global photosynthetic productivity is estimated to be 9000x10(exp 12) mol C yr(sup -1). Thus, even though global thermal fluxes were greater in the distant geologic past than today, the onset of oxygenic photosynthesis probably increased global organic productivity by some two or more orders of magnitude. This enormous productivity materialized principally because oxygenic photosynthesizers unleashed a virtually unlimited supply of reduced H that forever freed life from its sole dependence upon abiotic sources of reducing power such as hydrothermal emanations

  14. A marine biogeochemical perspective on black shale deposition

    Science.gov (United States)

    Piper, D. Z.; Calvert, S. E.

    2009-06-01

    Deposition of marine black shales has commonly been interpreted as having involved a high level of marine phytoplankton production that promoted high settling rates of organic matter through the water column and high burial fluxes on the seafloor or anoxic (sulfidic) water-column conditions that led to high levels of preservation of deposited organic matter, or a combination of the two processes. Here we review the hydrography and the budgets of trace metals and phytoplankton nutrients in two modern marine basins that have permanently anoxic bottom waters. This information is then used to hindcast the hydrography and biogeochemical conditions of deposition of a black shale of Late Jurassic age (the Kimmeridge Clay Formation, Yorkshire, England) from its trace metal and organic carbon content. Comparison of the modern and Jurassic sediment compositions reveals that the rate of photic zone primary productivity in the Kimmeridge Sea, based on the accumulation rate of the marine fraction of Ni, was as high as 840 g organic carbon m - 2 yr -1. This high level was possibly tied to the maximum rise of sea level during the Late Jurassic that flooded this and other continents sufficiently to allow major open-ocean boundary currents to penetrate into epeiric seas. Sites of intense upwelling of nutrient-enriched seawater would have been transferred from the continental margins, their present location, onto the continents. This global flooding event was likely responsible for deposition of organic matter-enriched sediments in other marine basins of this age, several of which today host major petroleum source rocks. Bottom-water redox conditions in the Kimmeridge Sea, deduced from the V:Mo ratio in the marine fraction of the Kimmeridge Clay Formation, varied from oxic to anoxic, but were predominantly suboxic, or denitrifying. A high settling flux of organic matter, a result of the high primary productivity, supported a high rate of bacterial respiration that led to the

  15. Developing biogeochemical tracers of apatite weathering by ectomycorrhizal fungi

    Science.gov (United States)

    Vadeboncoeur, M. A.; Bryce, J. G.; Hobbie, E. A.; Meana-Prado, M. F.; Blichert-Toft, J.

    2012-12-01

    Chronic acid deposition has depleted calcium (Ca) from many New England forest soils, and intensive harvesting may reduce phosphorus (P) available to future rotations. Thin glacial till soils contain trace amounts of apatite, a primary calcium phosphate mineral, which may be an important long-term source of both P and Ca to ecosystems. The extent to which ECM fungi enhance the weathering rate of primary minerals in soil which contain growth-limiting nutrients remains poorly quantified, in part due to biogeochemical tracers which are subsequently masked by within-plant fractionation. Rare earth elements (REEs) and Pb isotope ratios show some potential for revealing differences in soil apatite weathering rates across forest stands and silvicultural treatments. To test the utility of these tracers, we grew birch seedlings semi-hydroponically under controlled P-limited conditions, supplemented with mesh bags containing granite chips. Our experimental design included nonmycorrhizal (NM) as well as ectomycorrhizal cultures (Cortinarius or Leccinum). Resulting mycorrhizal roots and leachates of granite chips were analyzed for these tracers. REE concentrations in roots were greatly elevated in treatments with granite relative to those without granite, demonstrating uptake of apatite weathering products. Roots with different mycorrhizal fungi accumulated similar concentrations of REEs and were generally elevated compared to the NM cultures. Ammonium chloride leaches of granite chips grown in contact with mycorrhizal hyphae show elevated REE concentrations and significantly radiogenic Pb isotope signatures relative to bulk rock, also supporting enhanced apatite dissolution. Our results in culture are consistent with data from field-collected sporocarps from hardwood stands in the Bartlett Experimental Forest in New Hampshire, in which Cortinarius sporocarp Pb isotope ratios were more radiogenic than those of other ectomycorrhizal sporocarps. Taken together, the experimental

  16. Implementation ambiguity: The fifth element long lost in uncertainty budgets for land biogeochemical modeling

    Science.gov (United States)

    Tang, J.; Riley, W. J.

    2015-12-01

    Previous studies have identified four major sources of predictive uncertainty in modeling land biogeochemical (BGC) processes: (1) imperfect initial conditions (e.g., assumption of preindustrial equilibrium); (2) imperfect boundary conditions (e.g., climate forcing data); (3) parameterization (type I equifinality); and (4) model structure (type II equifinality). As if that were not enough to cause substantial sleep loss in modelers, we propose here a fifth element of uncertainty that results from implementation ambiguity that occurs when the model's mathematical description is translated into computational code. We demonstrate the implementation ambiguity using the example of nitrogen down regulation, a necessary process in modeling carbon-climate feedbacks. We show that, depending on common land BGC model interpretations of the governing equations for mineral nitrogen, there are three different implementations of nitrogen down regulation. We coded these three implementations in the ACME land model (ALM), and explored how they lead to different preindustrial and contemporary land biogeochemical states and fluxes. We also show how this implementation ambiguity can lead to different carbon-climate feedback estimates across the RCP scenarios. We conclude by suggesting how to avoid such implementation ambiguity in ESM BGC models.

  17. GEOTRACES – An international study of the global marine biogeochemical cycles of trace elements and their isotopes

    OpenAIRE

    Henderson, G.M.; Anderson, R.F.; Adkins, J.; Andersson, P.; Boyle, E.A.; Cutter, Greg; Baar, H. de; Eisenhauer, Anton; Frank, Martin; Francois, R.; Orians, Kristin; Gamo, T.; German, C.; Jenkins, W.; Moffett, J.

    2007-01-01

    Trace elements serve important roles as regulators of ocean processes including marine ecosystem dynamics and carbon cycling. The role of iron, for instance, is well known as a limiting micronutrient in the surface ocean. Several other trace elements also play crucial roles in ecosystem function and their supply therefore controls the structure, and possibly the productivity, of marine ecosystems. Understanding the biogeochemical cycling of these micronutrients requires knowledge of their div...

  18. Improving National Capability in Biogeochemical Flux Modelling: the UK Environmental Virtual Observatory (EVOp)

    Science.gov (United States)

    Johnes, P.; Greene, S.; Freer, J. E.; Bloomfield, J.; Macleod, K.; Reaney, S. M.; Odoni, N. A.

    2012-12-01

    The best outcomes from watershed management arise where policy and mitigation efforts are underpinned by strong science evidence, but there are major resourcing problems associated with the scale of monitoring needed to effectively characterise the sources rates and impacts of nutrient enrichment nationally. The challenge is to increase national capability in predictive modelling of nutrient flux to waters, securing an effective mechanism for transferring knowledge and management tools from data-rich to data-poor regions. The inadequacy of existing tools and approaches to address these challenges provided the motivation for the Environmental Virtual Observatory programme (EVOp), an innovation from the UK Natural Environment Research Council (NERC). EVOp is exploring the use of a cloud-based infrastructure in catchment science, developing an exemplar to explore N and P fluxes to inland and coastal waters in the UK from grid to catchment and national scale. EVOp is bringing together for the first time national data sets, models and uncertainty analysis into cloud computing environments to explore and benchmark current predictive capability for national scale biogeochemical modelling. The objective is to develop national biogeochemical modelling capability, capitalising on extensive national investment in the development of science understanding and modelling tools to support integrated catchment management, and supporting knowledge transfer from data rich to data poor regions, The AERC export coefficient model (Johnes et al., 2007) has been adapted to function within the EVOp cloud environment, and on a geoclimatic basis, using a range of high resolution, geo-referenced digital datasets as an initial demonstration of the enhanced national capacity for N and P flux modelling using cloud computing infrastructure. Geoclimatic regions are landscape units displaying homogenous or quasi-homogenous functional behaviour in terms of process controls on N and P cycling

  19. Process evaluation of the Regional Biomass Energy Program

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C.R.; Brown, M.A.; Perlack, R.D.

    1994-03-01

    The U.S. Department of Energy (DOE) established the Regional Biomass Energy Program (RBEP) in 1983 to increase the production and use of biomass energy resources. Through the creation of five regional program (the Great Lakes, Northeast, Pacific Northwest, Southeast, and West), the RBEP focuses on regionally specific needs and opportunities. In 1992, Oak Ridge National (ORNL) conducted a process evaluation of the RBEP Program designed to document and explain the development of the goals and strategies of the five regional programs; describe the economic and market context surrounding commercialization of bioenergy systems; assess the criteria used to select projects; describe experiences with cost sharing; identify program accomplishments in the transfer of information and technology; and offer recommendations for program improvement.

  20. Evaluation of Cooking Oil as Processing Addtive for Natural Rubber

    Directory of Open Access Journals (Sweden)

    Y. M. SYAMIN

    2017-08-01

    Full Text Available It was reported recently that high amount of aromatic ring  or number of polycyclic aromatic hydrocarbon compounds found in aromatic oil are carcinogenic. This paper discusses the work to evaluate the Malaysian cooking oil as an alternative option to be used as process oil since cooking oil is safe to use and non-toxic. The performance of cooking oil is compared againstaromatic and paraffinioils. The results showed that rubber compounds containing cooking oil produced almostsimilar cure characteristicsas those produced by aromatic and paraffinioils indicating that it did not interfere with the vulcanization reaction. The physical properties of the vulcanizates containing cooking oil were almostsimilar to those of vulcanizates containing aromatic and paraffinioils, except the rebound resilience. The vulcanizates containing cooking oil gave higher resilience than vulcanizates containing aromatic and paraffinioils. High resilience is one of the desired features for a low rolling resistance tyre. Cooking oil provided this extra advantage.

  1. Ergonomic evaluation of cheese production process in dairy industries

    Directory of Open Access Journals (Sweden)

    Luciano Brito Rodrigues

    2008-07-01

    Full Text Available The present work consisted of an analysis of work conditions aspects in small dairy industries from southwest region of Bahia state. The study considered the analysis of environmental variables and the organization of the work in the production process of cheeses. The analysis was performed by means of observations in loco and measurement of the environmental variables related to noise, illumination and temperature. The main problems are related to posture and inadequate illumination. The parameters were evaluated according to the norms and legislation available in order to propose suggestions for the identified problems, objectifying the comfort and safety of workers and the consequent improvement of activities developed in these industries. Keywords: Ergonomics, Dairy industries, Environmental comfort.

  2. Process Evaluation Tools for Enzymatic Cascades Welcome Message

    DEFF Research Database (Denmark)

    Abu, Rohana

    improvement and implementation. Hence, the goal of this thesis is to evaluate the process concepts in enzymatic cascades in a systematic manner, using tools such as thermodynamic and kinetic analysis. Three relevant case studies have been used to exemplify the approach. In the first case study, thermodynamic......Biocatalysis is attracting significant attention from both academic and industrial scientists due to the excellent capability of enzyme to catalyse selective reactions. Recently, much interest has been shown in the application of enzymatic cascades as a useful tool in organic synthesis......, the kinetics can be controlled in a highly efficient way to achieve a sufficiently favourable conversion to a given target product. This is exemplified in the second case study, in the kinetic modelling of the formation of 2-ketoglutarate from glucoronate, the second case study. This cascade consists of 4...

  3. Evaluation of an accelerated mineralization process for ashes - feasibility study; Evaluering av jordmaansbildande askbehandlingsprocess (EJA) - foerstudie

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Holger; Bjurstroem, Henrik

    2005-03-01

    In Japan, expenses for landfilling yield about 400 USD per ton of ash, which gives an incentive to reduce the amount of landfilled ash. At NIES (National Institute for Environmental Studies) in Tsukuba, Japan, the AMT process (Accelerated Mineralization Technology) was developed aiming at the treatment of ashes and production of soil-like material for reuse. The objective of the project EJA was to evaluate the AMT process on the basis of available information and the possibilities the process could offer with respect to the conditions present in Sweden. With support of researchers at NIES, available literature including unpublished manuscripts on the AMT process was compiled, translated and evaluated. During treatment, the ashes are washed, aged and mixed with up to 5 % by weight of biodegradable organic matter. The material is stabilized at landfill. During up to several decades, metals are demobilized through a combination of three mechanisms, viz. carbonation, clay formation, and humification. Also persistent organic pollutants (POP) are demobilized due to humification products or they are degraded anaerobically. When the treatment is completed, the reuse of the material is envisaged. Due to the long treatment period, the AMT method might not be favored by ash producers in Sweden. In the future, landfill companies could be interested in the technology, since they are experienced to handle waste at long sight. This, however, requires that the legislation does not pose any hindrance for the implementation of the method, e.g. regarding the requirement to add organic matter to the ash. Above all, it remains several years of research on the AMT process to fully understand and evaluate the underlying biological and chemical processes as well as their interaction.

  4. Empathy Modulates the Evaluation Processing of Altruistic Outcomes

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2018-04-01

    Full Text Available Empathy plays a central role in social decisions involving psychological conflict, such as whether to help another person at the cost of one’s own interests. Using the event-related potential (ERP technique, the current study explored the neural mechanisms underlying the empathic effect on the evaluation processing of outcomes in conflict-of-interest situations, in which the gain of others resulted in the performer’s loss. In the high-empathy condition, the beneficiaries were underprivileged students who were living in distress (stranger in need. In the low-empathy condition, the beneficiaries were general students without miserable information (stranger not in need. ERP results showed that the FRN was more negative-going for self no-gain than self gain, but showed reversed pattern for other’s outcome (i.e., more negative for gain than no-gain in the low-empathy condition, indicating that participants interpreted the gain of others as the loss of themselves. However, the reversed FRN pattern was not observed in the high-empathy condition, suggesting that the neural responses to one’s own loss are buffered by empathy. In addition, the P3 valence effect was observed only in the self condition, but not in the two stranger conditions, indicating that the P3 is more sensitive to self-relevant information. Moreover, the results of subjective rating showed that more empathic concern and altruistic motivation were elicited in the high-empathy condition than in the low-empathy condition, and these scores had negative linear correlations only with the FRN, but not with the P3. These findings suggest that when outcomes following altruistic decisions involve conflict of interest, the early stage of the processing of outcome evaluation could be modulated by the empathic level.

  5. Improving occupational health care for construction workers: a process evaluation.

    Science.gov (United States)

    Boschman, Julitta S; van der Molen, Henk F; Sluiter, Judith K; Frings-Dresen, Monique H W

    2013-03-11

    To evaluate the process of a job-specific workers' health surveillance (WHS) in improving occupational health care for construction workers. From January to July 2012 were 899 bricklayers and supervisors invited for the job-specific WHS at three locations of one occupational health service throughout the Netherlands. The intervention aimed at detecting signs of work-related health problems, reduced work capacity and/or reduced work functioning. Measurements were obtained using a recruitment record and questionnaires at baseline and follow-up. The process evaluation included the following: reach (attendance rate), intervention dose delivered (provision of written recommendations and follow-up appointments), intervention dose received (intention to follow-up on advice directly after WHS and remembrance of advice three months later), and fidelity (protocol adherence). The workers scored their increase in knowledge from 0-10 with regard to health status and work ability, their satisfaction with the intervention and the perceived (future) effect of such an intervention. Program implementation was defined as the mean score of reach, fidelity, and intervention dose delivered and received. Reach was 9% (77 workers participated), fidelity was 67%, the intervention dose delivered was 92 and 63%, and the intervention dose received was 68 and 49%. The total programme implementation was 58%. The increases in knowledge regarding the health status and work ability of the workers after the WHS were graded as 7.0 and 5.9, respectively. The satisfaction of the workers with the entire intervention was graded as 7.5. The perceived (future) effects on health status were graded as 6.3, and the effects on work ability were graded with a 5.2. The economic recession affected the workers as well as the occupational health service that enacted the implementation. Programme implementation was acceptable. Low reach, limited protocol adherence and modest engagement of the workers with respect

  6. Evaluation of feeds for melt and dilute process using an Analytical Hierarchy Process

    International Nuclear Information System (INIS)

    Krupa, J.F.

    2000-01-01

    WSRC was requested to evaluate whether nuclear materials other than aluminum-clad spent nuclear fuel should be considered for treatment to prepare them for disposal in the melt and dilute facility as part of the Treatment and Storage Facility (TSF) currently projected for construction in the L-Reactor process area. The Analytical Hierarchy Process using a ratings methodology was used to rank potential feed candidates for disposition through the Melt and Dilute facility proposed for disposition of Savannah River Site aluminum-clad spent nuclear fuel. Because of the scoping nature of this analysis, the expert team convened for this purpose concentrated on technical feasibility and potential cost impacts associated with using melt and dilute versus the current disposition option

  7. Response of phytoplankton and enhanced biogeochemical activity to an episodic typhoon event in the coastal waters of Japan

    Science.gov (United States)

    Tsuchiya, Kenji; Kuwahara, Victor S.; Yoshiki, Tomoko M.; Nakajima, Ryota; Shimode, Shinji; Kikuchi, Tomohiko; Toda, Tatsuki

    2017-07-01

    Daily field surveys were conducted at a coastal-shelf station in Sagami Bay, Japan after the passage of typhoon Malou in 2010 to evaluate the after-effect of a typhoon passage on the physical-chemical environment, phytoplankton bloom formation and microbial processes within and below the euphotic layer. The passage of Malou induced an abrupt decrease in salinity and increased loading of nutrients to the euphotic layer. Dinoflagellates dominated the phytoplankton community at the surface, whereas diatoms dominated below the surface just after the passage of Malou. Four days later, the dominant dinoflagellate taxa at the surface changed from Protoperidinium spp. to Prorocentrum spp. and Ceratium spp., indicating a dinoflagellate community succession from heterotrophic to autotrophic functional groups. Five days after passage, the dominant phytoplankton taxa shifted from dinoflagellates to diatom groups of Chaetoceros spp. and Cerataulina spp. throughout the water column. Below the euphotic layer, there were increases in diatom frustules, mainly composed of Chaetoceros spp. and Cerataulina spp., bacterial abundance and NH4+ concentrations. Diatom carbon biomass contributed to approximately half of particulate organic carbon (POC) below the euphotic layer, suggesting a significant contribution of diatoms to POC sinking flux after the passage of a typhoon. Bacterial abundance was positively correlated to both phaeopigment concentrations (p affect biogeochemical activities within and below the euphotic layer in temperate coastal waters.

  8. A model evaluation checklist for process-based environmental models

    Science.gov (United States)

    Jackson-Blake, Leah

    2015-04-01

    Mechanistic catchment-scale phosphorus models appear to perform poorly where diffuse sources dominate. The reasons for this were investigated for one commonly-applied model, the INtegrated model of CAtchment Phosphorus (INCA-P). Model output was compared to 18 months of daily water quality monitoring data in a small agricultural catchment in Scotland, and model structure, key model processes and internal model responses were examined. Although the model broadly reproduced dissolved phosphorus dynamics, it struggled with particulates. The reasons for poor performance were explored, together with ways in which improvements could be made. The process of critiquing and assessing model performance was then generalised to provide a broadly-applicable model evaluation checklist, incorporating: (1) Calibration challenges, relating to difficulties in thoroughly searching a high-dimensional parameter space and in selecting appropriate means of evaluating model performance. In this study, for example, model simplification was identified as a necessary improvement to reduce the number of parameters requiring calibration, whilst the traditionally-used Nash Sutcliffe model performance statistic was not able to discriminate between realistic and unrealistic model simulations, and alternative statistics were needed. (2) Data limitations, relating to a lack of (or uncertainty in) input data, data to constrain model parameters, data for model calibration and testing, and data to test internal model processes. In this study, model reliability could be improved by addressing all four kinds of data limitation. For example, there was insufficient surface water monitoring data for model testing against an independent dataset to that used in calibration, whilst additional monitoring of groundwater and effluent phosphorus inputs would help distinguish between alternative plausible model parameterisations. (3) Model structural inadequacies, whereby model structure may inadequately represent

  9. Biogeochemical dynamics of pollutants in Insitu groundwater remediation systems

    Science.gov (United States)

    Kumar, N.; Millot, R.; Rose, J.; Négrel, P.; Battaglia-Brunnet, F.; Diels, L.

    2010-12-01

    characterized at the end of experiment using synchrotron and other microscopic techniques (SEM, µXRF). Stable isotope signatures have been proved as a critical tool in understanding the redox and microbial processes. We monitored ∂34S, ∂66Zn and ∂56Fe isotope evolution with time to understand the relationship between biogeochemical process and isotope fractionation. We observed Δ34S biotic - abiotic ~6‰ and ∂56Fe variation up to 1.5‰ in our study. ZVI was very efficient in metal removal and also in enhancing sulfate reduction in column sediment. Arsenic reduction and thiarsenic species were also detected in biotic columns showing a positive correlation with sulfide production and Fe speciation. Latest results will be presented with integration of different processes. This multidisciplinary approach will help in deep understanding of contaminants behaviour and also to constrain the efficiency and longitivity of treatment system for different contaminants. “This is contribution of the AquaTrain MRTN (Contract No. MRTN-CT-2006-035420) funded under the European Commission sixth framework programme (2002-2006) Marie Curie Actions, Human Resources & Mobility Activity Area- Research Training Networks”

  10. Evaluation of processed borax as antidote for aconite poisoning.

    Science.gov (United States)

    Sarkar, Prasanta Kumar; Prajapati, Pradeep K; Shukla, Vinay J; Ravishankar, Basavaiah

    2017-06-09

    Aconite root is very poisonous; causes cardiac arrhythmias, ventricular fibrillation and ventricular tachycardia. There is no specific antidote for aconite poisoning. In Ayurveda, dehydrated borax is mentioned for management of aconite poisoning. The investigation evaluated antidotal effect of processed borax against acute and sub-acute toxicity, cardiac toxicity and neuro-muscular toxicity caused by raw aconite. For acute protection Study, single dose of toxicant (35mg/kg) and test drug (22.5mg/kg and 112.5mg/kg) was administered orally, and then 24h survival of animals was observed. The schedule was continued for 30 days in sub-acute protection Study with daily doses of toxicant (6.25mg/kg), test drug (22.5mg/kg and 112.5mg/kg) and vehicle. Hematological and biochemical tests of blood and serum, histopathology of vital organs were carried out. The cardiac activity Study was continued for 30 days with daily doses of toxicant (6.25mg/kg), test drug (22.5mg/kg), processed borax solution (22.5mg/kg) and vehicle; ECG was taken after 1h of drug administration on 1 TB , 15th and on 30th day. For neuro-muscular activity Study, the leech dorsal muscle response to 2.5µg of acetylcholine followed by response of toxicant at 25µg and 50µg doses and then response of test drug at 25µg dose were recorded. Protection index indicates that treated borax gave protection to 50% rats exposed to the lethal dose of toxicant in acute protection Study. Most of the changes in hematological, biochemical parameters and histopathological Study induced by the toxicant in sub-acute protection Study were reversed significantly by the test drug treatment. The ventricular premature beat and ventricular tachyarrhythmia caused by the toxicant were reversed by the test drug indicate reversal of toxicant induced cardio-toxicity. The acetylcholine induced contractions in leech muscle were inhibited by toxicant and it was reversed by test drug treatment. The processed borax solution is found as an

  11. Assessing the utility of frequency dependent nudging for reducing biases in biogeochemical models

    Science.gov (United States)

    Lagman, Karl B.; Fennel, Katja; Thompson, Keith R.; Bianucci, Laura

    2014-09-01

    Bias errors, resulting from inaccurate boundary and forcing conditions, incorrect model parameterization, etc. are a common problem in environmental models including biogeochemical ocean models. While it is important to correct bias errors wherever possible, it is unlikely that any environmental model will ever be entirely free of such errors. Hence, methods for bias reduction are necessary. A widely used technique for online bias reduction is nudging, where simulated fields are continuously forced toward observations or a climatology. Nudging is robust and easy to implement, but suppresses high-frequency variability and introduces artificial phase shifts. As a solution to this problem Thompson et al. (2006) introduced frequency dependent nudging where nudging occurs only in prescribed frequency bands, typically centered on the mean and the annual cycle. They showed this method to be effective for eddy resolving ocean circulation models. Here we add a stability term to the previous form of frequency dependent nudging which makes the method more robust for non-linear biological models. Then we assess the utility of frequency dependent nudging for biological models by first applying the method to a simple predator-prey model and then to a 1D ocean biogeochemical model. In both cases we only nudge in two frequency bands centered on the mean and the annual cycle, and then assess how well the variability in higher frequency bands is recovered. We evaluate the effectiveness of frequency dependent nudging in comparison to conventional nudging and find significant improvements with the former.

  12. Biogeochemical interactions between of coal mine water and gas well cement

    Science.gov (United States)

    Gulliver, D. M.; Gardiner, J. B.; Kutchko, B. G.; Hakala, A.; Spaulding, R.; Tkach, M. K.; Ross, D.

    2017-12-01

    Unconventional natural gas wells drilled in Northern Appalachia often pass through abandoned coal mines before reaching the Marcellus or Utica formations. Biogeochemical interactions between coal mine waters and gas well cements have the potential to alter the cement and compromise its sealing integrity. This study investigates the mineralogical, geochemical, and microbial changes of cement cores exposed to natural coal mine waters. Static reactors with Class H Portland cement cores and water samples from an abandoned bituminous Pittsburgh coal mine simulated the cement-fluid interactions at relevant temperature for time periods of 1, 2, 4, and 6 weeks. Fluids were analyzed for cation and anion concentrations and extracted DNA was analyzed by 16S rRNA gene sequencing and shotgun sequencing. Cement core material was evaluated via scanning electron microscope. Results suggest that the sampled coal mine water altered the permeability and matrix mineralogy of the cement cores. Scanning electron microscope images display an increase in mineral precipitates inside the cement matrix over the course of the experiment. Chemistry results from the reaction vessels' effluent waters display decreases in dissolved calcium, iron, silica, chloride, and sulfate. The microbial community decreased in diversity over the 6-week experiment, with Hydrogenophaga emerging as dominant. These results provide insight in the complex microbial-fluid-mineral interactions of these environments. This study begins to characterize the rarely documented biogeochemical impacts that coal waters may have on unconventional gas well integrity.

  13. Towards an Evaluation Framework for Business Process Integration and Management

    NARCIS (Netherlands)

    Mutschler, B.B.; Reichert, M.U.; Bumiller, J.

    2005-01-01

    Process-awareness in enterprise computing is a must in order to adequately support business processes. Particularly the interoperability of the (process-oriented) business information systems and the management of a company’s process map are difficult to handle. Process-oriented approaches (like

  14. A probabilistic evaluation procedure for process model matching techniques

    NARCIS (Netherlands)

    Kuss, Elena; Leopold, Henrik; van der Aa, Han; Stuckenschmidt, Heiner; Reijers, Hajo A.

    2018-01-01

    Process model matching refers to the automatic identification of corresponding activities between two process models. It represents the basis for many advanced process model analysis techniques such as the identification of similar process parts or process model search. A central problem is how to

  15. Evaluating and predicting overall process risk using event logs

    NARCIS (Netherlands)

    Pika, A.; Van Der Aalst, W.M.P.; Wynn, M.T.; Fidge, C.J.; Ter Hofstede, A.H.M.

    2016-01-01

    Companies standardise and automate their business processes in order to improve process efficiency and minimise operational risks. However, it is difficult to eliminate all process risks during the process design stage due to the fact that processes often run in complex and changeable environments

  16. Evaluation And Selection Process of Suppliers Through Analytical Framework: An Emprical Evidence of Evaluation Tool

    Directory of Open Access Journals (Sweden)

    Imeri Shpend

    2015-09-01

    Full Text Available The supplier selection process is very important to companies as selecting the right suppliers that fit companies strategy needs brings drastic savings. Therefore, this paper seeks to address the key area of supplies evaluation from the supplier review perspective. The purpose was to identify the most important criteria for suppliers’ evaluation and develop evaluation tool based on surveyed criteria. The research was conducted through structured questionnaire and the sample focused on small to medium sized companies (SMEs in Greece. In total eighty companies participated in the survey answering the full questionnaire which consisted of questions whether these companies utilize some suppliers’ evaluation criteria and what criteria if any is applied. The main statistical instrument used in the study is Principal Component Analysis (PCA. Thus, the research has shown that the main criteria are: the attitude of the vendor towards the customer, supplier delivery time, product quality and price. Conclusions are made on the suitability and usefulness of suppliers’ evaluation criteria and in way they are applied in enterprises.

  17. EVALUATION OF CORROSION COST OF CRUDE OIL PROCESSING INDUSTRY

    Directory of Open Access Journals (Sweden)

    ADESANYA A.O.

    2012-08-01

    Full Text Available Crude oil production industry as the hub of Nigeria Economy is not immune to the global financial meltdown being experienced world over which have resulted in a continual fall of oil price. This has necessitated the need to reduce cost of production. One of the major costs of production is corrosion cost, hence, its evaluation. This research work outlined the basic principles of corrosion prevention, monitoring and inspection and attempted to describe ways in which these measures may be adopted in the context of oil production. A wide range of facilities are used in crude oil production making it difficult to evaluate precisely the extent of corrosion and its cost implication. In this study, cost of corrosion per barrel was determined and the annualized value of corrosion cost was also determined using the principles of engineering economy and results analyzed using descriptive statistics. The results showed that among the corrosion prevention methods identified, the use of chemical treatment gave the highest cost contribution (81% of the total cost of prevention while coating added 19%. Cleaning pigging and cathodic protection gave no cost. The contribution of corrosion maintenance methods are 60% for repairs and 40% for replacement. Also among the corrosion monitoring and inspection identified, NDT gave the highest cost contribution of 41% of the total cost, followed by coating survey (34%. Cathodic protection survey and crude analysis gives the lowest cost contribution of 19% and 6% respectively. Corrosion control cost per barrel was found to be 77 cent/barrel. The significance of this cost was not much due to high price of crude oil in the international market. But the effect of corrosion in crude oil processing takes its toll on crude oil production (i.e. deferment.

  18. Biogeochemical reactive transport of carbon, nitrogen and iron in the hyporheic zone

    Science.gov (United States)

    Dwivedi, D.; Steefel, C. I.; Newcomer, M. E.; Arora, B.; Spycher, N.; Hammond, G. E.; Moulton, J. D.; Fox, P. M.; Nico, P. S.; Williams, K. H.; Dafflon, B.; Carroll, R. W. H.

    2017-12-01

    To understand how biogeochemical processes in the hyporheic zone influence carbon and nitrogen cycling as well as stream biogeochemistry, we developed a biotic and abiotic reaction network and integrated it into a reactive transport simulator - PFLOTRAN. Three-dimensional reactive flow and transport simulations were performed to describe the hyporheic exchange of fluxes from and within an intra-meander region encompassing two meanders of East River in the East Taylor watershed, Colorado. The objectives of this study were to quantify (1) the effect of transience on the export of carbon, nitrogen, and iron; and (2) the biogeochemical transformation of nitrogen and carbon species as a function of the residence time. The model was able to capture reasonably well the observed trends of nitrate and dissolved oxygen values that decreased as well as iron (Fe (II)) values that increased along the meander centerline away from the stream. Hyporheic flow paths create lateral redox zonation within intra-meander regions, which considerably impact nitrogen export into the stream system. Simulation results further demonstrated that low water conditions lead to higher levels of dissolved iron in groundwater, which (Fe (II)> 80%) is exported to the stream on the downstream side during high water conditions. An important conclusion from this study is that reactive transport models representing spatial and temporal heterogeneities are required to identify important factors that contribute to the redox gradients at riverine scales.

  19. A Thermodynamically-consistent FBA-based Approach to Biogeochemical Reaction Modeling

    Science.gov (United States)

    Shapiro, B.; Jin, Q.

    2015-12-01

    Microbial rates are critical to understanding biogeochemical processes in natural environments. Recently, flux balance analysis (FBA) has been applied to predict microbial rates in aquifers and other settings. FBA is a genome-scale constraint-based modeling approach that computes metabolic rates and other phenotypes of microorganisms. This approach requires a prior knowledge of substrate uptake rates, which is not available for most natural microbes. Here we propose to constrain substrate uptake rates on the basis of microbial kinetics. Specifically, we calculate rates of respiration (and fermentation) using a revised Monod equation; this equation accounts for both the kinetics and thermodynamics of microbial catabolism. Substrate uptake rates are then computed from the rates of respiration, and applied to FBA to predict rates of microbial growth. We implemented this method by linking two software tools, PHREEQC and COBRA Toolbox. We applied this method to acetotrophic methanogenesis by Methanosarcina barkeri, and compared the simulation results to previous laboratory observations. The new method constrains acetate uptake by accounting for the kinetics and thermodynamics of methanogenesis, and predicted well the observations of previous experiments. In comparison, traditional methods of dynamic-FBA constrain acetate uptake on the basis of enzyme kinetics, and failed to reproduce the experimental results. These results show that microbial rate laws may provide a better constraint than enzyme kinetics for applying FBA to biogeochemical reaction modeling.

  20. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils

    Science.gov (United States)

    Smith, P.; Cotrufo, M. F.; Rumpel, C.; Paustian, K.; Kuikman, P. J.; Elliott, J. A.; McDowell, R.; Griffiths, R. I.; Asakawa, S.; Bustamante, M.; House, J. I.; Sobocká, J.; Harper, R.; Pan, G.; West, P. C.; Gerber, J. S.; Clark, J. M.; Adhya, T.; Scholes, R. J.; Scholes, M. C.

    2015-06-01

    Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or can result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that although there are knowledge gaps that require further research, enough is known to start improving soils globally. The main challenge is in finding ways to share knowledge with soil managers and policy-makers, so that best-practice management can be implemented. A key element of this knowledge sharing must be in raising awareness of the multiple ecosystem services underpinned by soils, and the natural capital they provide. The International Year of Soils in 2015 presents the perfect opportunity to begin a step-change in how we harness scientific knowledge to bring about more sustainable use of soils for a secure global society.

  1. Reestablishing the Dominance of Biogeochemical Pathways for Reducing Downstream Nutrient Losses from Aged Impounded Features

    Science.gov (United States)

    Shukla, S.; Shukla, A.

    2017-12-01

    Water and phosphorus (P) dynamics and loss pathways at two stormwater impoundments (SIs) were analyzed using measured fluxes between 2008 and 2011. These SIs are a decade old. Analyses of water and P budgets along with the discernment of various P pools and characterization of the intermediary processes revealed that soil adsorption and plant uptake are secondary to volume reduction apropos of P treatment. At one site, extreme wet conditions in a year combined with soil P saturation resulted in it being a P source rather than a sink. The impoundment (SI-1) discharged 12% more P than incoming due to soil P desorption, a consequence of dilution of incoming stormwater with large water input from an extreme tropical rain event. The second impoundment (SI-2) was a consistent sink of P; 55% and 95% of the incoming total P was retained in the two years, mainly as a result of 49% and 84% volume retention, respectively. Analysis of plant available aluminum, iron, and phosphorus showed the surface soil to be P saturated and at risk of releasing P to a limit of environmental concern. These results when seen in light of more frequent extreme precipitation events under the changed climate scenario call for alternatives to revive the role of biogeochemical processes in P treatment because volume reduction may not always be the viable option, especially for wet conditions. Aboveground biomass harvesting and removal was evaluated to transform the SIs from a frequent P source to sink and maintain the long-term sink functions of the SIs. Use of harvested biomass as a source of nutrients (N and P) and carbon to agricultural soil can result in beneficial use of biomass and offset the cost of harvesting. Other avenues such as altering the hydrology of the SIs by compartmentalizing the system and increasing the storage were also explored for short-term benefits. Results provided a combination of hydraulic and biochemical options for achieving long-term water and nutrient retentions in

  2. Deep water convection and biogeochemical cycling of carbon in the Northern North Atlantic

    International Nuclear Information System (INIS)

    Buch, E.; Gissel Nielsen, T.; Lundsgaard, C.; Bendtsen, J.

    2001-01-01

    production and export of DOC (Dissolved Organic Carbon) and the role of UV radiation on biological productivity and DOC mineralization are in focus. The biogeochemical results are implemented in general circulation models in order to evaluate the role of the studied processes on the oceanic carbon cycling. (LN)

  3. Evaluation of PHI Hunter in Natural Language Processing Research.

    Science.gov (United States)

    Redd, Andrew; Pickard, Steve; Meystre, Stephane; Scehnet, Jeffrey; Bolton, Dan; Heavirland, Julia; Weaver, Allison Lynn; Hope, Carol; Garvin, Jennifer Hornung

    2015-01-01

    We introduce and evaluate a new, easily accessible tool using a common statistical analysis and business analytics software suite, SAS, which can be programmed to remove specific protected health information (PHI) from a text document. Removal of PHI is important because the quantity of text documents used for research with natural language processing (NLP) is increasing. When using existing data for research, an investigator must remove all PHI not needed for the research to comply with human subjects' right to privacy. This process is similar, but not identical, to de-identification of a given set of documents. PHI Hunter removes PHI from free-form text. It is a set of rules to identify and remove patterns in text. PHI Hunter was applied to 473 Department of Veterans Affairs (VA) text documents randomly drawn from a research corpus stored as unstructured text in VA files. PHI Hunter performed well with PHI in the form of identification numbers such as Social Security numbers, phone numbers, and medical record numbers. The most commonly missed PHI items were names and locations. Incorrect removal of information occurred with text that looked like identification numbers. PHI Hunter fills a niche role that is related to but not equal to the role of de-identification tools. It gives research staff a tool to reasonably increase patient privacy. It performs well for highly sensitive PHI categories that are rarely used in research, but still shows possible areas for improvement. More development for patterns of text and linked demographic tables from electronic health records (EHRs) would improve the program so that more precise identifiable information can be removed. PHI Hunter is an accessible tool that can flexibly remove PHI not needed for research. If it can be tailored to the specific data set via linked demographic tables, its performance will improve in each new document set.

  4. Process optimization and evaluation of novel baicalin solid nanocrystals

    Directory of Open Access Journals (Sweden)

    Yue PF

    2013-08-01

    Full Text Available Peng-Fei Yue,1,2 Yu Li,1 Jing Wan,1 Yong Wang,1 Ming Yang,1 Wei-Feng Zhu,1 Chang-Hong Wang,2 Hai-Long Yuan31Key Lab of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, 2Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 3302 Hospital of PLA Institute of Chinese Materia Medica, Beijing, People's Republic of ChinaAbstract: The objective of this study was to prepare baicalin solid nanocrystals (BCN-SNS to enhance oral bioavailability of baicalin. A Box–Behnken design approach was used for process optimization. The physicochemical properties and pharmacokinetics of the optimal BCN-SNS were investigated. Multiple linear regression analysis for process optimization revealed that the fine BCN-SNS was obtained wherein the optimal values of homogenization pressure (bar, homogenization cycles (cycles, amount of TPGS to drug (w/w, and amount of MCCS to drug (w/w were 850 bar, 25 cycles, 10%, and 10%, respectively. Transmission electron microscopy and scanning electron microscopy results indicated that no significant aggregation or crystal growth could be observed in the redispersed freeze-dried BCN-SNS. Differential scanning calorimetry and X-ray diffraction results showed that BCN remained in a crystalline state. Dissolution velocity of the freeze-dried BCN-SNS powder was distinctly superior compared to those of the crude powder and physical mixture. The bioavailability of BCN in rats was increased remarkably after oral administration of BCN-SNS (P < 0.05, compared with those of BCN or the physical mixture. The SNS might be a good choice for oral administration of poorly soluble BCN, due to an improvement of the bioavailability and dissolution velocity of BCN-SNS.Keywords: baicalin, solid nanocrystals, optimization, in vivo/vitro evaluation

  5. Using NEON Data to Test and Refine Conceptual and Numerical Models of Soil Biogeochemical and Microbial Dynamics

    Science.gov (United States)

    Weintraub, S. R.; Stanish, L.; Ayers, E.

    2017-12-01

    Recent conceptual and numerical models have proposed new mechanisms that underpin key biogeochemical phenomena, including soil organic matter storage and ecosystem response to nitrogen deposition. These models seek to explicitly capture the ecological links among biota, especially microbes, and their physical and chemical environment to represent belowground pools and fluxes and how they respond to perturbation. While these models put forth exciting new concepts, their broad predictive abilities are unclear as some have been developed and tested against only small or regional datasets. The National Ecological Observatory Network (NEON) presents new opportunities to test and validate these models with multi-site data that span wide climatic, edaphic, and ecological gradients. NEON is measuring surface soil biogeochemical pools and fluxes along with diversity, abundance, and functional potential of soil microbiota at 47 sites distributed across the United States. This includes co-located measurements of soil carbon and nitrogen concentrations and stable isotopes, net nitrogen mineralization and nitrification rates, soil moisture, pH, microbial biomass, and community composition via 16S and ITS rRNA sequencing and shotgun metagenomic analyses. Early NEON data demonstrates that these wide edaphic and climatic gradients are related to changes in microbial community structure and functional potential, as well as element pools and process rates. Going forward, NEON's suite of standardized soil data has the potential to advance our understanding of soil communities and processes by allowing us to test the predictions of new soil biogeochemical frameworks and models. Here, we highlight several recently developed models that are ripe for this kind of data validation, and discuss key insights that may result. Further, we explore synergies with other networks, such as (i)LTER and (i)CZO, which may increase our ability to advance the frontiers of soil biogeochemical modeling.

  6. Modeling biogeochemical reactive transport in a fracture zone

    International Nuclear Information System (INIS)

    Molinero, Jorge; Samper, Javier; Yang, Chan Bing; Zhang, Guoxiang; Guoxiang, Zhang

    2005-01-01

    A coupled model of groundwater flow, reactive solute transport and microbial processes for a fracture zone of the Aspo site at Sweden is presented. This is the model of the so-called Redox Zone Experiment aimed at evaluating the effects of tunnel construction on the geochemical conditions prevailing in a fracture granite. It is found that a model accounting for microbially-mediated geochemical processes is able to reproduce the unexpected measured increasing trends of dissolved sulfate and bicarbonate. The model is also useful for testing hypotheses regarding the role of microbial processes and evaluating the sensitivity of model results to changes in biochemical parameters

  7. Evaluation of inorganic sorbent treatment for LWR coolant process streams

    International Nuclear Information System (INIS)

    Roddy, J.W.

    1984-03-01

    This report presents results of a survey of the literature and of experience at selected nuclear installations to provide information on the feasibility of replacing organic ion exchangers with inorganic sorbents at light-water-cooled nuclear power plants. Radioactive contents of the various streams in boiling water reactors and pressurized water reactors were examined. In addition, the methods and performances of current methods used for controlling water quality at these plants were evaluated. The study also includes a brief review of the physical and chemical properties of selected inorganic sorbents. Some attributes of inorganic sorbents would be useful in processing light water reactor (LWR) streams. The inorganic resins are highly resistant to damage from ionizing radiation, and their exchange capacities are generally equivalent to those of organic ion exchangers. However, they are more limited in application, and there are problems with physical integrity, especially in acidic solutions. Research is also needed in the areas of selectivity and anion removal before inorganic sorbents can be considered as replacements for the synthetic organic resins presently used in LWRs. 11 figures, 14 tables

  8. Process Inherent Ultimate Safety (PIUS) reactor evaluation study: Final report

    International Nuclear Information System (INIS)

    1987-02-01

    This report presents the results of an independent study by United Engineers and Constructors (UNITED) of the SECURE-P Process Inherent Ultimate Safety (PIUS) Reactor Concept which is presently under development by the Swedish light water reactor vendor ASEA-ATOM of Vasteras, Sweden. This study was performed to investigate whether there is any realistic basis for believing that the PIUS reactor could be a viable competitor in the US energy market in the future. Assessments were limited to the technical, economic and licensing aspects of PIUS. Socio-political issues, while certainly important in answering this question, are so broad and elusive that it was considered that addressing them with the limited perspective of one small group from one company would be of questionable value and likely be misleading. Socio-political issues aside, the key issue is economics. For this reason, the specific objectives of this study were to determine if the estimated PIUS plant cost will be competitive in the US market and to identify and evaluate the technical and licensing risks that might make PIUS uneconomical or otherwise unacceptable

  9. Evaluation of signal processing for boiling noise detection

    International Nuclear Information System (INIS)

    Black, J.L.; Ledwidge, T.J.

    1989-01-01

    As part of the co-ordinated research programme on the detection of sodium boiling some further analysis has been performed on the data from the test loop in Karlsruhe and some preliminary analysis of the data from the BOR 60 experiment. The work on the Karlsruhe data is concerned with the search for a reliable method by which the quality of signal processing strategies may be compared. The results show that the three novel methods previously reported are all markedly superior to the mean square method which is used as a benchmark. The three novel methods are nth order differentiation in the frequency domain, the mean square prediction based on nth order conditional expectation and the nth order probability density function. A preliminary analysis on the data from the BOR 60 reactor shows that 4th order differentiation is adequate for the detection of signals derived from a pressure transducer and that the map of spurious trip probability (S) and the probability of missing an event (M) is consistent with the theoretical model proposed herein, and the suggested procedures for evaluating the quality of detection strategies. (author). 15 figs, 1 tab

  10. HOME COMPOSTING: IMPLEMENTATION AND EVALUATION OF THE PROCESS

    Directory of Open Access Journals (Sweden)

    Lucas Lourenço Castiglioni Guidoni

    2013-07-01

    Full Text Available : In Brazil, the Municipal Solid Waste (RSU, from Portuguese Resíduo Sólido Urbano is a growing issue that is faced both in the formal field, in regulatory laws, as well as in management practices, concerning social and environmental responsibility of individuals, businesses and municipalities. Among the several components, organic matter corresponds to more than half of the entire amount of generated waste. As a treatment and a recycling alternative, home composting can improve the use of this fraction generated by Brazilian households. Therefore, the aim of this paper is to implement and evaluate a home composting system in four households. In each residence it was set up a cylindrical reactor of 255L to store the leftovers of fruit and vegetables as it was generated, being mixed and covered with rice hull. Weekly, the temperature and volume of the filled reactors were recorded. The final composts were assessed by the macro and micronutrients contained and their maturity stage. As a result, it was possible to reduce the amount of waste allocated for public management by the recycling source. The efficiency of the process was verified by monitoring the temperature and the absence of unpleasant odors. When 90 days were elapsed after the attendance, three of the researched households have remained with the composting system, voluntarily.

  11. Evaluation of gigabit links for use in HEP trigger processing

    International Nuclear Information System (INIS)

    Anderson, C.R.

    1999-05-01

    The next generation of colliders will take experimental particle physics into energy regimes where the potential for fundamental new discoveries is overshadowed by the immense technological challenges that have to be met in building the necessary detectors. One major technological challenge is to build detectors with fine granularity that can withstand the very high levels of radiation around the interaction region. The final challenge is to build and operate the high speed electronics that can readout and process the huge volumes of data that will be generated. In particular, a key demand is that efficient triggers be built that will filter out as much of the background as possible at as early a stage as possible, without losing or biasing the tiny physics signal. These triggers must be fast and affordable. This thesis is concerned with one aspect of this scenario: how to provide a low cost but very fast switching system that can direct the streams of data coming from the detector into the computers that run the trigger algorithms. In this thesis the design and evaluation of a novel new switching chip, the RCUBE, developed in collaboration with European industry, is presented. It will be shown that such a chip could offer a solution to the data switching problems likely to be encountered in a typical future collider experiment such as the ATLAS experiment at CERN. To help with planning the use of such a chip, a simulation package is also developed based on the commercial OPNET package

  12. Evaluation of Analytical Modeling Functions for the Phonation Onset Process

    Directory of Open Access Journals (Sweden)

    Simon Petermann

    2016-01-01

    Full Text Available The human voice originates from oscillations of the vocal folds in the larynx. The duration of the voice onset (VO, called the voice onset time (VOT, is currently under investigation as a clinical indicator for correct laryngeal functionality. Different analytical approaches for computing the VOT based on endoscopic imaging were compared to determine the most reliable method to quantify automatically the transient vocal fold oscillations during VO. Transnasal endoscopic imaging in combination with a high-speed camera (8000 fps was applied to visualize the phonation onset process. Two different definitions of VO interval were investigated. Six analytical functions were tested that approximate the envelope of the filtered or unfiltered glottal area waveform (GAW during phonation onset. A total of 126 recordings from nine healthy males and 210 recordings from 15 healthy females were evaluated. Three criteria were analyzed to determine the most appropriate computation approach: (1 reliability of the fit function for a correct approximation of VO; (2 consistency represented by the standard deviation of VOT; and (3 accuracy of the approximation of VO. The results suggest the computation of VOT by a fourth-order polynomial approximation in the interval between 32.2 and 67.8% of the saturation amplitude of the filtered GAW.

  13. Toxicological evaluation of some Malaysian locally processed raw food products.

    Science.gov (United States)

    Sharif, R; Ghazali, A R; Rajab, N F; Haron, H; Osman, F

    2008-01-01

    Malaysian locally processed raw food products are widely used as main ingredients in local cooking. Previous studies showed that these food products have a positive correlation with the incidence of cancer. The cytotoxicity effect was evaluated using MTT assay (3-(4,5-dimetil-2-thiazolil)-2,5-diphenyl-2H-tetrazolium bromide) against Chang liver cells at 2000 microg/ml following 72 h incubation. Findings showed all methanol extracts caused a tremendous drop in the percentage of cell viability at 2000 microg/ml (shrimp paste - 41.69+/-3.36%, salted fish - 37.2+/-1.06%, dried shrimp - 40.32+/-1.8%, pfood showed that shrimp paste did not comply with the protein requirement (Food Act 1983. Salt was found in every sample with the highest percentage being detected in shrimp paste which exceeded 20%. Following heavy metal analysis (arsenic, cadmium, lead and mercury), arsenic was found in every sample with dried shrimps showing the highest value as compared to the other samples (6.16 mg/kg). In conclusion, several food extracts showed cytotoxic effect but did not cause DNA damage against Chang liver cells. Salt was found as the main additive and arsenic was present in every sample, which could be the probable cause of the toxicity effects observed.

  14. Analysis of the Education Program Approval Process: A Program Evaluation.

    Science.gov (United States)

    Fountaine, Charles A.; And Others

    A study of the education program approval process involving the Veterans Administration (VA) and the State Approving Agencies (SAAs) had the following objectives: to describe the present education program approval process; to determine time and costs associated with the education program approval process; to describe the approval process at…

  15. A dynamic organic soil biogeochemical model for simulating the effects of wildfire on soil environmental conditions and carbon dynamics of black spruce forests

    Science.gov (United States)

    Shuhua Yi; A. David McGuire; Eric Kasischke; Jennifer Harden; Kristen Manies; Michelle Mack; Merritt. Turetsky

    2010-01-01

    Ecosystem models have not comprehensively considered how interactions among fire disturbance, soil environmental conditions, and biogeochemical processes affect ecosystem dynamics in boreal forest ecosystems. In this study, we implemented a dynamic organic soil structure in the Terrestrial Ecosystem Model (DOS-TEM) to investigate the effects of fire on soil temperature...

  16. Greenland's glacial fjords and their role in regional biogeochemical dynamics.

    Science.gov (United States)

    Crosby, J.; Arndt, S.

    2017-12-01

    Greenland's coastal fjords serve as important pathways that connect the Greenland Ice Sheet (GrIS) and the surrounding oceans. They export seasonal glacial meltwater whilst being significant sites of primary production. These fjords are home to some of the most productive ecosystems in the world and possess high socio-economic value via fisheries. A growing number of studies have proposed the GrIS as an underappreciated yet significant source of nutrients to surrounding oceans. Acting as both transfer routes and sinks for glacial nutrient export, fjords have the potential to act as significant biogeochemical processors, yet remain underexplored. Critically, an understanding of the quantitative contribution of fjords to carbon and nutrient budgets is lacking, with large uncertainties associated with limited availability of field data and the lack of robust upscaling approaches. To close this knowledge gap we developed a coupled 2D physical-biogeochemical model of the Godthåbsfjord system, a sub-Arctic sill fjord in southwest Greenland, to quantitatively assess the impact of nutrients exported from the GrIS on fjord primary productivity and biogeochemical dynamics. Glacial meltwater is found to be a key driver of fjord-scale circulation patterns, whilst tracer simulations reveal the relative nutrient contributions from meltwater-driven upwelling and meltwater export from the GrIS. Hydrodynamic circulation patterns and freshwater transit times are explored to provide a first understanding of the glacier-fjord-ocean continuum, demonstrating the complex pattern of carbon and nutrient cycling at this critical land-ocean interface.

  17. Mangrove forests: a potent nexus of coastal biogeochemical cycling

    Science.gov (United States)

    Barr, J. G.; Fuentes, J. D.; Shoemaker, B.; O'Halloran, T. L.; Lin, G., Sr.; Engel, V. C.

    2014-12-01

    Mangrove forests cover just 0.1% of the Earth's terrestrial surface, yet they provide a disproportionate source (~10 % globally) of terrestrially derived, refractory dissolved organic carbon to the oceans. Mangrove forests are biogeochemical reactors that convert biomass into dissolved organic and inorganic carbon at unusually high rates, and many studies recognize the value of mangrove ecosystems for the substantial amounts of soil carbon storage they produce. However, questions remain as to how mangrove forest ecosystem services should be valuated and quantified. Therefore, this study addresses several objectives. First, we demonstrate that seasonal and annual net ecosystem carbon exchange in three selected mangrove forests, derived from long-term eddy covariance measurements, represent key quantities in defining the magnitude of biogeochemical cycling and together with other information on carbon cycle parameters serves as a proxy to estimate ecosystem services. Second, we model ecosystem productivity across the mangrove forests of Everglades National Park and southern China by relating net ecosystem exchange values to remote sensing data. Finally, we develop a carbon budget for the mangrove forests in the Everglades National Park for the purposes of demonstrating that these forests and adjacent estuaries are sites of intense biogeochemical cycling. One conclusion from this study is that much of the carbon entering from the atmosphere as net ecosystem exchange (~1000 g C m-2 yr-1) is not retained in the net ecosystem carbon balance. Instead, a substantial fraction of the carbon entering the system as net ecosystem exchange is ultimately exported to the oceans or outgassed as reaction products within the adjacent estuary.

  18. Investigation of Artemisia tridentata as a biogeochemical uranium indicator

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, F E; McGrath, S [Montana Coll. of Mineral Science and Technology, Butte (USA)

    1985-01-01

    Hydroponic experiments were conducted with seedlings of Artemisia tridentata subsp. tridentata (big sagebrush) to test the effect of the phosphate speciation of uranium in solution on its uptake by big sagebrush. No single complex could be identified as being preferentially taken up by the plant, but the varying aqueous phosphate concentrations did affect uranium uptake by the plants at the higher uranium concentrations in solution. The data also substantiate the tendency for uranium to behave as an essential element in this plant species. The implications for the use of Artemisia tridentata as a biogeochemical uranium indicator are discussed.

  19. Evaluation, engineering and development of advanced cyclone processes. Final separating media evaluation and test report (FSMER)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-19

    {open_quotes}Evaluation Engineering and Development of Advanced Cyclone Processes{close_quotes} is one of the DOE-PETC sponsored advanced coal cleaning projects, which share a number of specific goals. These goals are to produce a 6% ash product, reject 85% of the parent coal`s pyritic sulfur, recover 85% of the parent coal`s Btu value, and provide products that are less than 30% moisture. The process in this project, as the name implies, relies on a cyclone or cyclonic separator to achieve physical beneficiation based on the gravimetric differences between clean coal and its impurities. Just as important as the cyclonic separator, if not more so, is the selection of a parting liquid or medium for use in the separator. Selection of a separating medium is regarded as a significant portion of the project because it has a profound impact on the required unit operations, the performance of the separator, and economics of the process. The choice of medium especially influences selection of media recovery system(s), and the characteristics of clean coal and refuse products. Since medium selection is such an important aspect of the project, portions of the project are dedicated to the study, evaluation, and selection of the most desirable medium. Though separators are an important component, this project initially focused on media study, rather than the separators themselves. In coal processing, discussion of media requires description of the handling and recovery system(s), separation performance, interaction with coal, cost, and health, environmental and safety issues. In order to be effective, a candidate must perform well in all of these categories.

  20. Evaluation of economic efficiency of process improvement in food packaging

    Directory of Open Access Journals (Sweden)

    Jana Hron

    2012-01-01

    Full Text Available In general, we make gains in process by the three fundamental ways. First, we define or redefine our process in a strategic sense. Second, once defined or redefined, we commence process operations and use process control methods to target and stabilize our process. Third, we use process improvement methods, as described in this paper, along with process control to fully exploit our process management and/or technology. Process improvement is focused primarily in our subprocesses and sub-subprocesses. Process leverage is the key to process improvement initiatives. This means that small improvements of the basic manufacturing operations can have (with the assumption of mass repetition of the operation a big impact on the functioning of the whole production unit. The complexity within even small organizations, in people, products, and processes, creates significant challenges in effectively and efficiently using these initiatives tools. In this paper we are going to place process purposes in the foreground and initiatives and tools in the background as facilitator to help accomplish process purpose. Initiatives and tools are not the ends we are seeking; result/outcomes in physical, economics, timeliness, and customer service performance matter. In the paper process boundaries (in a generic sense are set by our process purpose and our process definition. Process improvement is initiated within our existing process boundaries. For example, in a fast-food restaurant, if we define our cooking process around a frying technology, then we provide process improvements within our frying technology. On the other hand, if we are considering changing to a broiling technology, then we are likely faced with extensive change, impacting our external customers, and a process redefinition may be required. The result / aim of the paper are based on the example of the process improving of a food packaging quality. Specifically, the integration of two approaches

  1. Processing and evaluation of image matching tools in radiotherapy

    International Nuclear Information System (INIS)

    Bondiau, P.Y.

    2004-11-01

    Cancer is a major problem of public health. Treatment can be done in a general or loco-regional way, in this last case medical images are important as they specify the localization of the tumour. The objective of the radiotherapy is to deliver a curative dose of radiation in the target volume while sparing the organs at risks (O.A.R.). The determination of the accurate localization of the targets volume as well as O.A.R. make it possible to define the ballistic of irradiation beams. After the description of the principles of radiotherapy and cancers treatment, we specify the clinical stakes of ocular, cerebral and prostatic tumours. We present a state of the art of image matching, the various techniques reviewed with an aim of being didactic with respect to the medical community. The results of matching are presented within the framework of the planning of the cerebral and prostatic radiotherapy in order to specify the types of applicable matching in oncology and more particularly in radiotherapy. Then, we present the prospects for this type of application according to various anatomical areas. Applications of automatic segmentation and the evaluation of the results in the framework of brain tumour are described after a review of the various segmentation methods according to anatomical localizations. We will see an original application: the digital simulation of the virtual tumoral growth and the comparison with the real growth of a cerebral tumour presented by a patient. Lastly, we will expose the future developments possible of the tools for image processing in radiotherapy as well as the tracks of research to be explored in oncology. (author)

  2. Study on process evaluation model of students' learning in practical course

    Science.gov (United States)

    Huang, Jie; Liang, Pei; Shen, Wei-min; Ye, Youxiang

    2017-08-01

    In practical course teaching based on project object method, the traditional evaluation methods include class attendance, assignments and exams fails to give incentives to undergraduate students to learn innovatively and autonomously. In this paper, the element such as creative innovation, teamwork, document and reporting were put into process evaluation methods, and a process evaluation model was set up. Educational practice shows that the evaluation model makes process evaluation of students' learning more comprehensive, accurate, and fairly.

  3. From single-substance evaluation to ecological process concept: the dilemma of processing gold with cyanide.

    Science.gov (United States)

    Korte, F; Coulston, F

    1995-10-01

    In the past decades, limit concentration values for environmentally dangerous synthetic and natural chemical substances have been established in industrialized countries. Depending on the range of application, state of aggregation, propagation velocity, specific action on living organisms, long- or short-time effect, etc., different terms are used to specify these limit concentrations (acceptable daily intakes, TLV, LD50, emission values, water quality standards, etc.). Several parameters (e.g., range of application, ethic and social valuation, environmental factors, scientific knowledge) have led to nationally and internationally varying values depending on the region and time. The accuracy of this system of evaluation cannot necessarily be improved by listing further analytical data, but rather by furnishing sufficiently secured scientific data for a serious discussion, with the public concepts influenced more and more by the mass media. The best-established scientific knowledge has been acquired by the chemical industry. National and international groups demand that ecological-chemical problems in other fields of industry be dealt with as well; this research should, without doubt, be intensified. The example of the mining industry, which must employ chemical methods to isolate small concentrations (ppm), demonstrates the environmental conflict caused by the increasing world population, requiring the adaptation of the process by industry to the modern environmental concept. This is illustrated by the evolution of the gold recovery process.

  4. Skill assessment of the coupled physical-biogeochemical operational Mediterranean Forecasting System

    Science.gov (United States)

    Cossarini, Gianpiero; Clementi, Emanuela; Salon, Stefano; Grandi, Alessandro; Bolzon, Giorgio; Solidoro, Cosimo

    2016-04-01

    at regional and sub-regional scale and along specific vertical layers (temperature and salinity); while velocity fields are daily validated against in situ coastal moorings. Since the velocity skill cannot be accurately assessed through coastal measurements due to the actual model horizontal resolution (~6.5 km), new validation metrics and procedures are under investigation. Chlorophyll is the only biogeochemical variable that can be validated routinely at the temporal and spatial scale of the weekly forecast, while nutrients and oxygen predictions can be validated locally or at sub-basin and seasonal scales. For the other biogeochemical variables (i.e. primary production, carbonate system variables) only the accuracy of the average dynamics and model consistency can be evaluated. Then, we discuss the limiting factors of the present validation framework, and the quality and extension of the observing system that would be needed for improving the reliability of the physical and biogeochemical Mediterranean forecast services.

  5. The Good, the Bad and the Ugly - Interacting Physical, Biogeochemical and Biolological Controls of Nutrient Cycling at Ecohydrological Interfaces

    Science.gov (United States)

    Krause, S.; Baranov, V. A.; Lewandowski, J.; Blaen, P. J.; Romeijn, P.

    2016-12-01

    The interfaces between streams, lakes and their bed sediments have for a long time been in the research focus of ecohydrologists, aquatic ecologists and biogeochemists. While over the past decades, critical understanding has been gained of the spatial patterns and temporal dynamics in nutrient cycling at sediment-freshwater interfaces, important question remain as to the actual drivers (physical, biogeochemical and biological) of the often observed hot spots and hot moments of nutrient cycling at these highly reactive systems. This study reports on a combination of laboratory manipulation, artificial stream and field experiments from reach to river network scales to investigate the interplay of physical, biogeochemical and biological drivers of interface nutrient cycling under the impact of and resilience to global environmental change. Our results indicate that biogeochemical hotspots at sediment-freshwater interfaces were controlled not only by reactant mixing ratios and residence time distributions, but strongly affected by patterns in streambed physical properties and bioavailability of organic carbon. Lab incubation experiments revealed that geology, and in particular organic matter content strongly controlled the magnitude of enhanced streambed greenhouse gas production caused by increasing water temperatures. While these findings help to improve our understanding of physical and biogeochemical controls on nutrient cycling, we only start to understand to what degree biological factors can enhance these processes even further. We found that for instance chironomid or brittle star facilitated bioturbation in has the potential to substantially enhance freshwater or marine sediment pore-water flow and respiration. We revealed that ignorance of these important biologically controls on physical exchange fluxes can lead to critical underestimation of whole system respiration and its increase under global environmental change.

  6. Towards an Evaluation Framework for Software Process Improvement

    OpenAIRE

    Cheng, Chow Kian; Permadi, Rahadian Bayu

    2009-01-01

    Software has gained an essential role in our daily life in the last decades. This condition demands high quality software. To produce high quality software many practitioners and researchers put more attention on the software development process. Large investments are poured to improve the software development process. Software Process Improvement (SPI) is a research area which is aimed to address the assessment and improvement issues in the software development process. One of the most impor...

  7. Didymosphenia geminata invasion in South America: Ecosystem impacts and potential biogeochemical state change in Patagonian rivers

    Science.gov (United States)

    Reid, Brian; Torres, Rodrigo

    2014-01-01

    The diatom Didymosphenia geminata has emerged as a major global concern, as both an aggressive invader of rivers and streams in the southern hemisphere, and for its ability to form nuisance blooms in oligotrophic systems in its native range. South American D. geminata blooms were first documented in Chilean Patagonia in May 2010, and have spread to over five regions and three provinces, in Chile and Argentina respectively. The Patagonian invasion represents a distinct challenge compared to other regions; not only are affected systems poorly characterized, but also a general synthesis of the nature and magnitude of ecosystem impacts is still lacking. The latter is essential in evaluating impacts to ecosystem services, forms the basis for a management response that is proportional to the potentially valid threats, or aids in the determination of whether action is warranted or feasible. Based on a revision of the recent literature, some of the most significant impacts may be mediated through physical changes: substantially increased algal biomass, trapping of fine sediment, altered hydrodynamics, and consequent effects on biogeochemical states and processes such as redox condition, pH and nutrient cycling in the benthic zone. Surveys conducted during the early invasion in Chile show a strong correlation between benthic biomass and associated fine sediments, both of which were one-two orders of magnitude higher within D. geminata blooms. Experimental phosphorous amendments showed significant abiotic uptake, while interstitial water in D. geminata mats had nearly 10-20 fold higher soluble reactive phosphorous and a pronounced pH cycle compared to the water column. A dominant and aggressive stalk-forming diatom with this combination of characteristics is in sharp contrast to the colonial cyanobacteria and bare gravel substrate that characterize many Patagonian streams. The potential displacement of native benthic algal communities with contrasting functional groups

  8. Methods utilized in evaluating the profitability of commercial space processing

    Science.gov (United States)

    Bloom, H. L.; Schmitt, P. T.

    1976-01-01

    Profitability analysis is applied to commercial space processing on the basis of business concept definition and assessment and the relationship between ground and space functions. Throughput analysis is demonstrated by analysis of the space manufacturing of surface acoustic wave devices. The paper describes a financial analysis model for space processing and provides key profitability measures for space processed isoenzymes.

  9. Biogeochemical control points in a water-limited critical zone

    Science.gov (United States)

    Chorover, J.; Brooks, P. D.; Gallery, R. E.; McIntosh, J. C.; Olshansky, Y.; Rasmussen, C.

    2017-12-01

    The routing of water and carbon through complex terrain is postulated to control structure evolution in the sub-humid critical zone of the southwestern US. By combining measurements of land-atmosphere exchange, ecohydrologic partitioning, and subsurface biogeochemistry, we seek to quantify how a heterogeneous (in time and space) distribution of "reactants" impacts both short-term (sub-)catchment response (e.g., pore and surface water chemical dynamics) and long-term landscape evolution (e.g., soil geochemistry/morphology and regolith weathering depth) in watersheds underlain by rhyolite and schist. Instrumented pedons in convergent, planar, and divergent landscape positions show distinct depth-dependent responses to precipitation events. Wetting front propagation, dissolved carbon flux and associated biogeochemical responses (e.g., pulses of CO2 production, O2 depletion, solute release) vary with topography, revealing the influence of lateral subsidies of water and carbon. The impacts of these episodes on the evolution of porous media heterogeneity is being investigated by statistical analysis of pore water chemistry, chemical/spectroscopic studies of solid phase organo-mineral products, sensor-derived water characteristic curves, and quantification of co-located microbial community activity/composition. Our results highlight the interacting effects of critical zone structure and convergent hydrologic flows in the evolution of biogeochemical control points.

  10. Are anonymous evaluations a better assessment of faculty teaching performance? A comparative analysis of open and anonymous evaluation processes.

    Science.gov (United States)

    Afonso, Nelia M; Cardozo, Lavoisier J; Mascarenhas, Oswald A J; Aranha, Anil N F; Shah, Chirag

    2005-01-01

    We compared teaching performance of medical school faculty using anonymous evaluations and open evaluations (in which the evaluator was not anonymous) and examined barriers to open evaluation. Residents and medical students evaluated faculty using an open evaluation instrument in which their identity was indicated in the evaluation. Following this, they completed anonymous evaluation on the same faculty members. Aggregate outcomes using the two evaluation systems were compared. Outcomes by group of evaluators (residents and students) were analyzed. Trainees were also asked to rate the barriers to the open evaluation process. A statistically significant difference between the open and anonymous evaluations was noted across all items, with faculty receiving lower scores on the anonymous evaluations. The mean score for all the items on the open evaluations was 4.45 +/- 0.65, compared to mean score of 4.07 +/- 0.80 on the anonymous evaluations. There was also a statistically significant difference between open and anonymous evaluations in five clinical teaching domains that were evaluated individually. Residents perceived that the three most common barriers to optimal evaluation were an apprehension of possible encounters with the same attending physician in the future, destruction of working relationships with the attending, and a feeling of frustration with the evaluation system. The evaluation of faculty teaching performance is complex. Most academic medical centers use the open evaluation format. This study supports the case for the use of the anonymous evaluation method as a more accurate reflection of teaching performance.

  11. Climate Leadership Awards Application Process, Eligibility, and Evaluation Criteria

    Science.gov (United States)

    Learn about evaluation criteria and access applications for the 2018 Climate Leadership Awards, which publicly recognizes individuals and organizations for their outstanding leadership in reducing greenhouse gas emissions.

  12. The influence of tides on biogeochemical dynamics at the mouth of the Amazon River

    Science.gov (United States)

    Ward, N. D.; Sawakuchi, H. O.; Neu, V.; de Matos Valerio, A.; Less, D.; Guedes, V.; Wood, J.; Brito, D. C.; Cunha, A. C.; Kampel, M.; Richey, J. E.

    2017-12-01

    A major barrier to computing the flux of constituents from the world's largest rivers to the ocean is understanding the dynamic processes that occur along tidally-influenced river reaches. Here, we examine the response of a suite of biogeochemical parameters to tide-induced flow reversals at the mouth of the Amazon River. Continuous measurements of pCO2, pCH4, dissolved O2, pH, turbidity, and fluorescent dissolved organic matter (FDOM) were made throughout tidal cycles while held stationary in the center of the river and during hourly transects for ADCP discharge measurements. Samples were collected hourly from the surface and 50% depth during stationary samplings and from the surface during ADCP transects for analysis of suspended sediment concentrations along with other parameters such as nutrient and mercury concentrations. Suspended sediment and specific components of the suspended phase, such as particulate mercury, concentrations were positively correlated to mean river velocity during both high and low water periods with a more pronounced response at 50% depth than the surface. Tidal variations also influenced the concentration of O2 and CO2 by altering the dynamic balance between photosynthesis, respiration, and gas transfer. CO2 was positively correlated and O2 and pH were negatively correlated with river velocity. The concentration of methane generally increased during low tide (i.e. when river water level was lowest) both in the mainstem and in small side channels. In side channels concentrations increased by several orders of magnitude during low tide with visible bubbling from the sediment, presumably due to a release of hydrostatic pressure. These results suggest that biogeochemical processes are highly dynamic in tidal rivers, and these dynamic variations need to be quantified to better constrain global and regional scale budgets. Understanding these rapid processes may also provide insight into the long-term response of aquatic systems to change.

  13. Process Evaluation of a Workplace Health Promotion Intervention Aimed at Improving Work Engagement and Energy Balance

    NARCIS (Netherlands)

    van Berkel, J.; Boot, C.R.L.; Proper, K.I.; Bongers, P.M.; van der Beek, A.J.

    2013-01-01

    OBJECTIVE:: To evaluate the process of the implementation of an intervention aimed at improving work engagement and energy balance, and to explore associations between process measures and compliance. METHODS:: Process measures were assessed using a combination of quantitative and qualitative

  14. Process evaluation of a workplace health promotion intervention aimed at improving work engagement and energy balance

    NARCIS (Netherlands)

    Berkel, J. van; Boot, C.R.L.; Proper, K.I.; Bongers, P.M.; Beek, A.J. van der

    2013-01-01

    OBJECTIVE:: To evaluate the process of the implementation of an intervention aimed at improving work engagement and energy balance, and to explore associations between process measures and compliance. METHODS:: Process measures were assessed using a combination of quantitative and qualitative

  15. Process evaluation of the Bristol girls dance project

    Directory of Open Access Journals (Sweden)

    S. J. Sebire

    2016-04-01

    Full Text Available Abstract Background The Bristol Girls Dance Project was a cluster randomised controlled trial that aimed to increase objectively measured moderate-to-vigorous physical activity (MVPA levels of Year 7 (age 11–12 girls through a dance-based after-school intervention. The intervention was delivered in nine schools and consisted of up to forty after-school dance sessions. This paper reports on the main findings from the detailed process evaluation that was conducted. Methods Quantitative and qualitative data were collected from intervention schools. Dose and fidelity were reported by dance instructors at every session. Intervention dose was defined as attending two thirds of sessions and was measured by attendance registers. Fidelity to the intervention manual was reported by dance instructors. On four randomly-selected occasions, participants reported their perceived level of exertion and enjoyment. Reasons for non-attendance were self-reported at the end of the intervention. Semi-structured interviews were conducted with all dance instructors who delivered the intervention (n = 10 and school contacts (n = 9 in intervention schools. A focus group was conducted with girls who participated in each intervention school (n = 9. Results The study did not affect girls’ MVPA. An average of 31.7 girls participated in each school, with 9.1 per school receiving the intervention dose. Mean attendance and instructors’ fidelity to the intervention manual decreased over time. The decline in attendance was largely attributed to extraneous factors common to after-school activities. Qualitative data suggest that the training and intervention manual were helpful to most instructors. Participant ratings of session enjoyment were high but perceived exertion was low, however, girls found parts of the intervention challenging. Conclusions The intervention was enjoyed by participants. Attendance at the intervention sessions was low but typical of after

  16. The Teaching Evaluation Process: Segmentation of Marketing St