WorldWideScience

Sample records for biogenic volatile organic

  1. Biogenic volatile organic compounds - small is beautiful

    Science.gov (United States)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to pollination of flowers. Although bVOC emissions from soil surfaces are small, bVOCs are exuded by roots of some plant species, and can be extracted from decaying litter. Naturally occurring monoterpenes in the rhizosphere provide a specialised carbon source for micro-organisms, helping to define the micro-organism community structure, and impacting on nutrient cycles which are partly controlled by microorganisms. Naturally occurring monoterpenes in the soil system could also affect the aboveground structure of ecosystems because of their role in plant defence strategies and as mediating chemicals in allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the degradation rate in soil of the persistant organic pollutants, likely acting as analogues for the cometabo-lism of polychlorinated biphenyls (PCBs) Flowers of a ginger species (Alpinia kwangsiensis) and a fig species

  2. Airborne flux measurements of biogenic volatile organic compounds over California

    OpenAIRE

    Misztal, P. K.; T. Karl; Weber, R.; Jonsson, H. H.; Guenther, A. B.; A. H. Goldstein

    2014-01-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight...

  3. Emission and Chemical Transformation of Biogenic Volatile Organic Compounds (echo)

    Science.gov (United States)

    Koppmann, R.; Hoffmann, T.; Kesselmeier, J.; Schatzmann, M.

    Forests are complex sources of biogenic volatile organic compounds (VOC) in the planetary boundary layer. The impact of biogenic VOC on tropospheric photochem- istry, air quality, and the formation of secondary products affects our climate on a regional and global scale but is far from being understood. A considerable lack of knowledge exists concerning a forest stand as a net source of reactive trace com- pounds, which are transported directly into the planetary boundary layer (PBL). In particular, little is known about the amounts of VOC which are processed within the canopy. The goal of ECHO, which is presented in this poster, is to investigate these questions and to improve our understanding of biosphere-atmosphere interactions and their effects on the PBL. The investigation of emissions, chemical processing and vertical transport of biogenic VOC will be carried out in and above a mixed forest stand in Jülich, Germany. A large set of trace gases, free radicals and meteorologi- cal parameters will be measured at different heights in and above the canopy, covering concentrations of VOC, CO, O3, organic nitrates und NOx as well as organic aerosols. For the first time concentration profiles of OH, HO2, RO2 und NO3 radicals will be measured as well together with the actinic UV radiation field and photolysis frequen- cies of all relevant radical precursors (O3, NO2, peroxides, oxygenated VOC). The different tasks of the field experiments will be supported by simulation experiments investigating the primary emission and the uptake of VOC by the plants in stirred tank reactors, soil parameters and soil emissions in lysimeter experiments, and the chem- ical processing of the trace gases as observed in and above the forest stand in the atmosphere simulation chamber SAPHIR. The planning and interpretation of the field experiments is supported by simulations of the field site in a wind tunnel.

  4. A biogenic volatile organic compounds emission inventory for Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-hui; BAI Yu-hua; ZHANG Shu-yu

    2005-01-01

    The first detailed inventory for volatile organic compounds(VOC) emissions from vegetation over Yunnan Province, China was presented. The spatially and temporally resolved inventory was developed based on a geographic information system (GIS), remote sensing(RS) data and field measurement data, such as digitized land-use data, normalized difference vegetation index (NDVl) and temperature data from direct real-time measurement. The inventory has a spatial resolution of 5 km × 5 km and a time resolution of 1 h.Urban, agriculture, and natural land-use distributions in Yunnan Province were combined with biomass factors for each land-use category to produce a spatially resolved biomass inventory. A biogenic emission inventory was developed by combining the biomass inventory with hourly emission rates for tree, shrub and ground cover species of the study area. Correcting for environmental factors, including light intensity and temperature, a value of 1.1 × 1012 gC for total annual biogenic VOC emissions from Yunnan Province, including 6.1 × 1011 gCfor isoprene, 2.1 × 1011 gC for monoterpenes, and 2.6 × 1011 gC for OVOC was obtained. The highest VOC emissions occurred in the northwestern, southwestern and north region of Yunnan Province. Some uncertainties were also discussed in this study.

  5. Biogenic Emissions of Volatile Organic Compounds by Urban Forests

    Institute of Scientific and Technical Information of China (English)

    CENTRITTOMauro; LIUShirong; LORETOFrancesco

    2005-01-01

    All plants emit a wide range of volatile compounds, the so-called biogenic volatile organic compounds (BVOC). BVOC emissions have received increased scientific attention in the last two decades because they may profoundly influence the chemical and physical properties of the atmosphere, and may modulate plant tolerance to heat, pollutants, oxidative stress and abiotic stresses, and affect plant-plant and plant-insect interactions. Urban forestry may have a high impact on atmospheric composition, air quality, environment,and quality of life in urban areas. However, few studies have been carried out where the emission of BVOC could have important consequence for the quality of air and contribute to pollution episodes. A screening of BVOC emission by the mixed stand constituting urban forests is therefore required if emissions are to be reliably predicted. Monitoring the emission rates simultaneously with measurements of air quality, plant physiology and micrometeorology on selected urban forests, will allow detailed quantitative information on the inventory of BVOC emissions by urban vegetation to be compiled. This information will make it possible to propose an innovative management of urban vegetation in cities characterised by heavy emissions of anthropogenic pollutants, aiming at the abatement of BVOC emissions through the introduction or selection of non-BVOC emitting species in urban areas subjected to pollution episodes and in the new afforestation areas covering peri-urban parks, green belts and green corridors between peri-urban rural areas and the conurbations.

  6. Emissions of biogenic volatile organic compounds & their photochemical transformation

    Science.gov (United States)

    Yu, Zhujun; Hohaus, Thorsten; Tillmann, Ralf; Andres, Stefanie; Kuhn, Uwe; Rohrer, Franz; Wahner, Andreas; Kiendler-Scharr, Astrid

    2015-04-01

    Natural and anthropogenic activities emit volatile organic compounds (VOC) into the atmosphere. While it is known that land vegetation accounts for 90% of the global VOC emissions, only a few molecules' emission factors are understood. Through VOCs atmospheric oxidation intermediate products are formed. The detailed chemical mechanisms involved are insufficiently known to date and need to be understood for air quality management and climate change predictions. In an experiment using a PTR-ToF-MS with the new-built plant chamber SAPHIR-PLUS in Forschungszentrum Juelich, biogenic emissions of volatile organic compounds (BVOC) from Quercus ilex trees were measured. The BVOC emissions were dominated by monoterpenes, minor emissions of isoprene and methanol were also observed with the overall emission pattern typical for Quercus ilex trees in the growing season. Monoterpenes and isoprene emissions showed to be triggered by light. Additionally, their emissions showed clear exponential temperature dependence under constant light condition as reported in literature. As a tracer for leaf growth, methanol emission showed an abrupt increase at the beginning of light exposure. This is explained as instantaneous release of methanol produced during the night once stomata of leaves open upon light exposure. Emission of methanol showed a near linear increase with temperature in the range of 10 to 35 °C. BVOC were transferred from the plant chamber PLUS to the atmospheric simulation chamber SAPHIR, where their oxidation products from O3 oxidation were measured with PTR-ToF-MS. Gas phase oxidation products such as acetone and acetaldehyde were detected. A quantitative analysis of the data will be presented, including comparison of observations to the Master Chemical Mechanism model.

  7. Secondary organic aerosol from biogenic volatile organic compound mixtures

    Science.gov (United States)

    Hatfield, Meagan L.; Huff Hartz, Kara E.

    2011-04-01

    The secondary organic aerosol (SOA) yields from the ozonolysis of a Siberian fir needle oil (SFNO), a Canadian fir needle oil (CFNO), and several SOA precursor mixtures containing reactive and non-reactive volatile organic compounds (VOCs) were investigated. The use of precursor mixtures more completely describes the atmosphere where many VOCs exist. The addition of non-reactive VOCs such as bornyl acetate, camphene, and borneol had very little to no effect on SOA yields. The oxidation of VOC mixtures with VOC mass percentages similar to the SFNO produced SOA yields that became more similar to the SOA yield from SFNO as the complexity and concentration of VOCs within the mixture became more similar to overall SFNO composition. The SOA yield produced by the oxidation of CFNO was within the error of the SOA yield produced by the oxidation of SFNO at a similar VOC concentration. The SOA yields from SFNO were modeled using the volatility basis set (VBS), which predicts the SOA yields for a given mass concentration of mixtures containing similar VOCs.

  8. Airborne flux measurements of biogenic volatile organic compounds over California

    Science.gov (United States)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  9. Airborne flux measurements of biogenic volatile organic compounds over California

    Directory of Open Access Journals (Sweden)

    P. K. Misztal

    2014-03-01

    Full Text Available Biogenic Volatile Organic Compound (BVOC fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi. Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l. altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF landcover datasets used to drive biogenic VOC (BVOC emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m−2 h−1 above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions

  10. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM A LOWLAND TROPICAL WET FOREST IN COSTA RICA

    Science.gov (United States)

    Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCS) at a lowland tropical wet forest site in Costa Rica. Ten of the species. examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total bas...

  11. Incremental Reactivity Effects of Anthropogenic and Biogenic Volatile Organic Compounds on Secondary Organic Aerosol Formation

    Science.gov (United States)

    Kacarab, M.; Li, L.; Carter, W. P. L.; Cocker, D. R., III

    2015-12-01

    Two surrogate reactive organic gas (ROG) mixtures were developed to create a controlled reactivity environment simulating different urban atmospheres with varying levels of anthropogenic (e.g. Los Angeles reactivity) and biogenic (e.g. Atlanta reactivity) influences. Traditional chamber experiments focus on the oxidation of one or two volatile organic compound (VOC) precursors, allowing the reactivity of the system to be dictated by those compounds. Surrogate ROG mixtures control the overall reactivity of the system, allowing for the incremental aerosol formation from an added VOC to be observed. The surrogate ROG mixtures were developed based on that used to determine maximum incremental reactivity (MIR) scales for O3 formation from VOC precursors in a Los Angeles smog environment. Environmental chamber experiments were designed to highlight the incremental aerosol formation in the simulated environment due to the addition of an added anthropogenic (aromatic) or biogenic (terpene) VOC. All experiments were conducted in the UC Riverside/CE-CERT dual 90m3 environmental chambers. It was found that the aerosol precursors behaved differently under the two altered reactivity conditions, with more incremental aerosol being formed in the anthropogenic ROG system than in the biogenic ROG system. Further, the biogenic reactivity condition inhibited the oxidation of added anthropogenic aerosol precursors, such as m-xylene. Data will be presented on aerosol properties (density, volatility, hygroscopicity) and bulk chemical composition in the gas and particle phases (from a SYFT Technologies selected ion flow tube mass spectrometer, SIFT-MS, and Aerodyne high resolution time of flight aerosol mass spectrometer, HR-ToF-AMS, respectively) comparing the two controlled reactivity systems and single precursor VOC/NOx studies. Incremental aerosol yield data at different controlled reactivities provide a novel and valuable insight in the attempt to extrapolate environmental chamber

  12. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    OpenAIRE

    Jokinen, T; Berndt, T; Makkonen, R.; Kerminen, V-M; Junninen, H.; Paasonen, P.; Stratmann, F.; Herrmann, H.; Guenther, AB; Worsnop, DR; M. Kulmala; M. Ehn; Sipilä, M.

    2015-01-01

    Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic comp...

  13. Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States

    Science.gov (United States)

    Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.; Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K. C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Wennberg, P. O.; Nguyen, T. B.; Teng, A.; Goldstein, A. H.; Olson, K.; Fry, J. L.

    2015-12-01

    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are correlated with increase in gas- and aerosol-organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23-44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 1 % of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO3 + BVOCs.

  14. Biogenic volatile organic compounds from the urban forest of the Metropolitan Region, Chile

    International Nuclear Information System (INIS)

    Tropospheric ozone is a secondary pollutant whose primary sources are volatile organic compounds and nitrogen oxides. The national standard is exceeded on a third of summer days in some areas of the Chilean Metropolitan Region (MR). This study reports normalized springtime experimental emissions factors (EF) for biogenic volatile organic compounds from tree species corresponding to approximately 31% of urban trees in the MR. A Photochemical Ozone Creation Index (POCI) was calculated using Photochemical Ozone Creation Potential of quantified terpenes. Ten species, natives and exotics, were analysed using static enclosure technique. Terpene quantification was performed using GC-FID, thermal desorption, cryogenic concentration and automatic injection. Observed EF and POCI values for terpenes from exotic species were 78 times greater than native values; within the same family, exotic EF and POCI values were 28 and 26 times greater than natives. These results support reforestation with native species for improved urban pollution management. -- First experimental determination of the emission factors of biogenic volatile organic compounds in the urban forest of the Metropolitan Region, Chile

  15. Tethered balloon measurements of biogenic volatile organic compounds at a Boreal forest site

    Directory of Open Access Journals (Sweden)

    C. Spirig

    2004-01-01

    Full Text Available Measurements of biogenic volatile organic compounds (VOCs were performed at Hyytiälä, a Boreal forest site in Southern Finland as part of the OSOA (origin and formation of secondary organic aerosol project in August 2001. At this site, frequent formation of new particles has been observed and the role of biogenic VOCs in this process is still unclear. Tethered balloons served as platforms to collect VOC samples within the planetary boundary layer at heights up to 1.2 km above ground during daytime. Mean mixed layer concentrations of total monoterpenes varied between 10 and 170 pptv, with a-pinene, limonene and D3-carene as major compounds, isoprene was detected at levels of 2-35 pptv. A mixed layer gradient technique and a budget approach are applied to derive surface fluxes representative for areas of tens to hundreds of square kilometres. Effects of spatial heterogeneity in surface emissions are examined with a footprint analysis. Depending on the source area considered, mean afternoon emissions of the sum of terpenes range between 180 and 300 mg m-2 h-1 for the period of 2-12 August 2001. Surface fluxes close to Hyytiälä were higher than the regional average, and agree well with mean emissions predicted by a biogenic VOC emission model. Total rates of monoterpene oxidation were calculated with a photochemical model. The rates did not correlate with the occurrence of new particle formation, but the ozone pathway was of more importance on days with particle formation. Condensable vapour production from the oxidation of monoterpenes throughout the mixed layer can only account for a fraction of the increase in aerosol mass observed at the surface.

  16. Continuous Underway Seawater Measurements of Biogenic Volatile Organic Compounds in the Western Atlantic Ocean

    Science.gov (United States)

    Zoerb, M.; Kim, M.; Bertram, T. H.

    2014-12-01

    The products of isoprene and terpene oxidation have been shown to contribute significantly to secondary aerosol production rates over continental regions, where the emission rates have been well characterized. Significantly less is known about the emission of isoprene and monoterpenes from marine sources. We discuss the development of a chemical ionization mass spectrometer (CIMS) employing benzene reagent ion chemistry for the selective detection of biogenic volatile organic compounds. The CIMS was coupled to a seawater equilibrator for the measurement of dissolved gases in surface seawater. This system was deployed aboard the R/V Knorr during the Western Atlantic Climate Study II in Spring 2014. Here, we report surface seawater (5 m depth) concentrations of dimethyl sulfide, isoprene, and alpha-pinene. The concentration measurements are discussed in terms of surface seawater temperature, nutrient availability, and primary productivity.

  17. Off-season biogenic volatile organic compound emissions from heath mesocosms

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Gierth, Diana; Bilde, Merete;

    2013-01-01

    measured in growth chambers by an enclosure method using gas chromatography-mass spectrometry. CO2 exchange, soil microbial biomass and soil carbon and nitrogen concentrations were also analyzed. Vegetation cutting increased BVOC emissions by more than 20-fold, and the induced compounds were mainly eight-carbon......Biogenic volatile organic compounds (BVOCs) affect both atmospheric processes and ecological interactions. Our primary aim was to differentiate between BVOC emissions from above- and belowground plant parts and heath soil outside the growing season. The second aim was to assess emissions from...... compounds and sesquiterpenes. In the Deschampsia heath, the overall low BVOC emissions originated mainly from soil. In the mixed heath, root and soil emissions were negligible. Net BVOC emissions from roots and soil of these well-drained heaths do not significantly contribute to ecosystem emissions...

  18. Spatio-temporal variation of biogenic volatile organic compounds emissions in China.

    Science.gov (United States)

    Li, L Y; Chen, Y; Xie, S D

    2013-11-01

    Aiming to reduce the large uncertainties of biogenic volatile organic compounds (BVOCs) emissions estimation, the emission inventory of BVOCs in China at a high spatial and temporal resolution of 36 km × 36 km and 1 h was established using MEGANv2.1 with MM5 providing high-resolution meteorological data, based on the most detailed and latest vegetation investigations. BVOC emissions from 82 plant functional types in China were computed firstly. More local species-specific emission rates were developed combining statistical analysis and category classification, and the leaf biomass was estimated based on vegetation volume and production with biomass-apportion models. The total annual BVOC emissions in 2003 were 42.5 Tg, including isoprene 23.4 Tg, monoterpene 5.6 Tg, sesquiterpene 1.0 Tg, and other VOCs (OVOCs) 12.5 Tg. Subtropical and tropical evergreen and deciduous broadleaf shrubs, Quercus, and bamboo contributed more than 45% to the total BVOC emissions. The highest biogenic emissions were found over northeastern, southeastern, and southwestern China. Strong seasonal pattern was observed with the highest BVOC emissions in July and the lowest in January and December, with daily emission peaked at approximately 13:00 or 14:00 local time. PMID:23916627

  19. Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California

    Science.gov (United States)

    Zhao, Chun; Huang, Maoyi; Fast, Jerome D.; Berg, Larry K.; Qian, Yun; Guenther, Alex; Gu, Dasa; Shrivastava, Manish; Liu, Ying; Walters, Stacy; Pfister, Gabriele; Jin, Jiming; Shilling, John E.; Warneke, Carsten

    2016-05-01

    Current climate models still have large uncertainties in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature (MEGAN v2.1) is coupled within the land surface scheme CLM4 (Community Land Model version 4.0) in the Weather Research and Forecasting model with chemistry (WRF-Chem). In this implementation, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a stand-alone vegetation map that differs from what is used by land surface schemes. This improved modeling framework is used to investigate the impact of two land surface schemes, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted in June of 2010 provided an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface schemes do influence the simulated BVOCs, but the impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover data sets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry and, consequently, secondary organic aerosol formation.

  20. Sensitivity of biogenic volatile organic compounds to land surface parameterizations and vegetation distributions in California

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chun; Huang, Maoyi; Fast, Jerome D.; Berg, Larry K.; Qian, Yun; Guenther , A.; Gu, Dasa; Shrivastava, ManishKumar B.; Liu, Ying; Walters, Stacy; Pfister, G.; Jin, Jiming; Shilling, John E.; Warneke, Carsten

    2016-05-27

    Current climate models still have large uncertainties 24 in estimating biogenic trace gases, which can significantly affect atmospheric chemistry and secondary aerosol formation that ultimately influences air quality and aerosol radiative forcing. These uncertainties result from many factors, including uncertainties in land-surface processes and specification of vegetation types, both of which can affect the simulated near-surface fluxes of biogenic volatile organic compounds (BVOCs). In this study, the latest version of Model of Emissions of Gases and Aerosols from Nature MEGAN (MEGAN v2.1) is coupled within the land surface parameterization CLM4 in the Weather Research and Forecasting model with chemistry (WRF-Chem). In this implement, MEGAN v2.1 shares a consistent vegetation map with CLM4 for estimating BVOC emissions. This is unlike MEGAN v2.0 in the public version of WRF-Chem that uses a standalone vegetation map that differs from what is used by land surface parameterizations. This improved modeling framework is used to investigate the impact of two land surface parameterizations, CLM4 and Noah, on BVOCs and examine the sensitivity of BVOCs to vegetation distributions in California. The measurements collected during the Carbonaceous Aerosol and Radiative Effects Study (CARES) and the California Nexus of Air Quality and Climate Experiment (CalNex) conducted during June of 2010 provide an opportunity to evaluate the simulated BVOCs. Sensitivity experiments show that land surface parameterizations do influence the simulated BVOCs, but that impact is much smaller than that of vegetation distributions. This study indicates that more effort is needed to obtain the most appropriate and accurate land cover datasets for climate and air quality models in terms of simulating BVOCs, oxidant chemistry, and consequently secondary organic aerosol formation.

  1. Diel and seasonal changes of Biogenic Volatile Organic Compounds within and above an Amazonian rainforest site

    Directory of Open Access Journals (Sweden)

    A. M. Yañez-Serrano

    2014-11-01

    Full Text Available The Amazonian rainforest is a large tropical ecosystem, and is one of the last pristine continental terrains. This ecosystem is ideally located for the study of diel and seasonal behaviour of Biogenic Volatile Organic Compounds (BVOC in the absence of local human interference. In this study, we report the first atmospheric BVOC measurements at the Amazonian Tall Tower Observatory (ATTO site, located in Central Amazonia. A quadrupole Proton Transfer Reaction Mass Spectrometer (PTR-MS with 7 ambient air inlets, positioned from near the ground to about 80 m (0.05, 0.5, 4, 24, 38, 53 and 79 m above the forest floor, was deployed for BVOC monitoring. We report diel and seasonal (February/March 2013 and September 2013 ambient mixing ratios for isoprene, monoterpenes, methyl vinyl ketone (MVK + methacrolein (MACR, acetaldehyde, acetone, methyl ethyl ketone (MEK, methanol and acetonitrile. Clear diel and seasonal patterns were observed for all compounds during the study. In general, lower mixing ratios were observed during night, while maximum mixing ratios were observed with the peak in solar irradiation at 12:00 LT during the wet season (February/March 2013, and with the peak in temperature at 16:00 LT during the dry season (September 2013. Isoprene mixing ratios were highest within the canopy with a median of 7.6 ppb and interquartile range (IQR of 6.1 ppb (dry season at 24 m, from 12:00–15:00. Monoterpene mixing ratios were higher than previously reported for any Amazonian rainforest ecosystem (median 1 ppb, IQR 0.38 ppb during the dry season at 24 m from 15:00–18:00. Oxygenated Volatile Organic Compound (OVOC patterns indicated a transition from dominating forest emissions during the wet season to a blend of biogenic emission, photochemical production, and advection during the dry season. This was inferred from the high mixing ratios found within the canopy, and those obtained above the canopy for the wet and dry season, respectively. Our

  2. Diel and seasonal changes of Biogenic Volatile Organic Compounds within and above an Amazonian rainforest site

    Science.gov (United States)

    Yañez-Serrano, A. M.; Nölscher, A. C.; Williams, J.; Wolff, S.; Alves, E.; Martins, G. A.; Bourtsoukidis, E.; Brito, J.; Jardine, K.; Artaxo, P.; Kesselmeier, J.

    2014-11-01

    The Amazonian rainforest is a large tropical ecosystem, and is one of the last pristine continental terrains. This ecosystem is ideally located for the study of diel and seasonal behaviour of Biogenic Volatile Organic Compounds (BVOC) in the absence of local human interference. In this study, we report the first atmospheric BVOC measurements at the Amazonian Tall Tower Observatory (ATTO) site, located in Central Amazonia. A quadrupole Proton Transfer Reaction Mass Spectrometer (PTR-MS) with 7 ambient air inlets, positioned from near the ground to about 80 m (0.05, 0.5, 4, 24, 38, 53 and 79 m above the forest floor), was deployed for BVOC monitoring. We report diel and seasonal (February/March 2013 and September 2013) ambient mixing ratios for isoprene, monoterpenes, methyl vinyl ketone (MVK) + methacrolein (MACR), acetaldehyde, acetone, methyl ethyl ketone (MEK), methanol and acetonitrile. Clear diel and seasonal patterns were observed for all compounds during the study. In general, lower mixing ratios were observed during night, while maximum mixing ratios were observed with the peak in solar irradiation at 12:00 LT during the wet season (February/March 2013), and with the peak in temperature at 16:00 LT during the dry season (September 2013). Isoprene mixing ratios were highest within the canopy with a median of 7.6 ppb and interquartile range (IQR) of 6.1 ppb (dry season at 24 m, from 12:00-15:00). Monoterpene mixing ratios were higher than previously reported for any Amazonian rainforest ecosystem (median 1 ppb, IQR 0.38 ppb during the dry season at 24 m from 15:00-18:00). Oxygenated Volatile Organic Compound (OVOC) patterns indicated a transition from dominating forest emissions during the wet season to a blend of biogenic emission, photochemical production, and advection during the dry season. This was inferred from the high mixing ratios found within the canopy, and those obtained above the canopy for the wet and dry season, respectively. Our observations

  3. A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover

    OpenAIRE

    Oderbolz, D. C.; Aksoyoglu, S.; Keller, J.; I. Barmpadimos; R. Steinbrecher; C. A. Skjøth; Plaß-Dülmer, C.; Prévôt, A. S. H.

    2013-01-01

    Biogenic volatile organic compounds (BVOC) emitted from vegetation are important for the formation of secondary pollutants such as ozone and secondary organic aerosols (SOA) in the atmosphere. Therefore, BVOC emission are an important input for air quality models. To model these emissions with high spatial resolution, the accuracy of the underlying vegetation inventory is crucial. We present a BVOC emission model that accommodates different vegetation inventories and uses satellite-based meas...

  4. A novel approach to emission modelling of biogenic volatile organic compounds in Europe: improved seasonality and land-cover

    OpenAIRE

    Oderbolz, D. C.; Aksoyoglu, S.; Keller, J.; I. Barmpadimos; R. Steinbrecher; C. A. Skjøth; Plaß-Dülmer, C.; Prévôt, A. S. H.

    2012-01-01

    Biogenic volatile organic compounds (BVOC) emitted from vegetation are important for the formation of secondary pollutants such as ozone and secondary organic aerosols (SOA) in the atmosphere. Therefore, BVOC emission are an important input for air quality models. To model these emissions with high spatial resolution, the accuracy of the underlying vegetation inventory is crucial. We present a BVOC emission model that accommodates different vegetation inventories and uses satellite-based meas...

  5. Recent Advances in the Application of Metabolomics to Studies of Biogenic Volatile Organic Compounds (BVOC) Produced by Plant

    OpenAIRE

    Yoko Iijima

    2014-01-01

    In many plants, biogenic volatile organic compounds (BVOCs) are produced as specialized metabolites that contribute to the characteristics of each plant. The varieties and composition of BVOCs are chemically diverse by plant species and the circumstances in which the plants grow, and also influenced by herbivory damage and pathogen infection. Plant-produced BVOCs are receptive to many organisms, from microorganisms to human, as both airborne attractants and repellants. In addition, it is know...

  6. Emissions of Biogenic Volatile Organic Compounds and Observations of VOC Oxidation at Harvard Forest

    Science.gov (United States)

    McKinney, K. A.; Pho, T.; Vasta, A.; Lee, B. H.

    2009-12-01

    The contribution of biogenic volatile organic compounds (BVOCs) to oxidant concentrations and secondary organic aerosol (SOA) production in forested environments depends on the emission rates of these compounds. Recent findings have suggested that the emission rates of BVOCs and the range of species emitted could be larger than previously thought. In this study, Proton Transfer Reaction Mass Spectrometry (PTR-MS) was used to obtain fast (terpene oxidation products were also measured. Isoprene is the dominant emitted species, with peak emission rates and midday mixing ratios of ca. 4 mg isoprene m-2 h-1 and ca. 5 ppbv, respectively. Isoprene emission rates are expected to vary with temperature and radiation (PAR) levels, and are compared to standard emission algorithms based on these parameters. Interannual variability in isoprene emission rates is also observed, and contributing factors are explored. In contrast to isoprene, maximum monoterpene concentrations typically were less than 1 ppbv and occurred in the early evening, with a local minimum at midday. Monoterpene fluxes are about an order of magnitude smaller than those of isoprene. The amplitude of the flux diurnal cycle suggests monoterpene emissions at Harvard Forest may exhibit light dependence as well as temperature dependence. Fluxes of oxygenated VOCs, including methanol, acetone, methyl ethyl ketone, and oxygenated terpenes that have rarely been observed previously, are also reported, and the dependence of their emission rates on factors such as time of year, temperature, radiation levels, and meteorological conditions are investigated.

  7. Historical variations of biogenic volatile organic compound emission inventories in China, 1981-2003

    Science.gov (United States)

    Li, L. Y.; Xie, S. D.

    2014-10-01

    To evaluate the variations in temporal and spatial distribution of biogenic volatile organic compound (BVOC) emissions in China, historical BVOC emission inventories at a spatial resolution of 36 km × 36 km for the period of 1981-2003 were developed firstly. Based on the time-varying statistical data and Vegetation Atlas of China (1:1,000,000), emissions of isoprene, 37 monoterpenes, 32 sesquiterpenes, and other volatile organic compounds (OVOCs) were estimated using MEGANv2.1 driven by WRF model. Results show China's BVOC emissions had increased by 28.01% at an annual average rate of 1.27% from 37.89 Tg in 1981 to 48.50 Tg in 2003. Emissions of isoprene, monoterpenes, sesquiterpenes, and OVOCs had increased by 41.60%, 34.78%, 41.05%, and 4.89%, respectively. With fixed meteorological variables, the estimated BVOC emissions would increase by 19.25%, resulting from the increasing of vegetation biomass during the last 23 years. On average, isoprene, monoterpenes, sesquiterpenes, and OVOCs were responsible for 52.40%, 12.73%, 2.58%, and 32.29% of the national BVOC emissions, respectively. β-pinene and α-pinene, farnesene and caryophyllene were the largest contributors to the total monoterpene and sesquiterpene emissions, respectively. The highest emissions were found over northeastern, southeastern, southwestern China, Qinling Mountain, and Hainan and Taiwan provinces. The regions with high emissions had been expanding over the years, especially in the Changbai Mountain, southern China, and southwestern forest regions. The lowest emissions in southern China occurred in 1984-1988. Almost all the provinces had experienced increasing emissions, but their contributions to the national emissions differed significantly over the past 23 years. Yunnan, Guangxi, Heilongjiang, Jiangxi, Fujian, Guangdong, and Sichuan provinces always dominated the national BVOC emissions, excluding in 1977-1981, when the three northeastern provinces had relatively lower emissions.

  8. Study of Biogenic Volatile Organic Compounds at the French Guiana Tropical Forest

    Science.gov (United States)

    Corain Lopes, Paula Regina; Guenther, Alex; Turnipseed, Andrew; Bonal, Damien; Serça, Dominique; Burban, Benôit; Siebicke, Lukas; Emmons, Louisa; Bustillos, José Oscar W. V.

    2013-04-01

    Biogenic volatile organic compound (BVOCs) emissions play an important role in regional air quality and global atmospheric chemistry. In addition, these natural VOC emissions serve important biological functions including attracting and repelling pollinators and herbivores. Some biological organisms use ambient air as a communication medium and the oxidation of these compounds brings about the concentration gradients sensed by insects and other organisms. Isoprene is the predominant BVOC emitted by vegetation and tropical forests are the dominant global source. This compound is very reactive in the atmosphere and contributes to the reactions that control tropospheric oxidant concentrations and thus the concentrations and lifetimes of longer-lived species. This paper presents a study on the seasonal variations in isoprene and some other significant BVOCs such as α-pinene, β-pinene, limonene, e-β ocimene and longifolene, measured at the Guyaflux Tower located in a wet tropical forest in Paracou French Guiana (5o16´54´´N, 52o54´44´´W), during the year of 2011, using the Relaxed Eddy Accumulation technique at approximately 20 meters high above the canopy. The results show a lower concentration of isoprene during the month of February and March which correspond to the wet season with an average of 0,545 μg/m3 and 0,341 μg/m3, respectively followed by a slight increase in middle April (still wet season) and a higher concentration later in mid-June. The same behavior was observed for α-pinene with higher concentrations for the same periods as isoprene however with a smaller increase. All the other compounds had concentrations below 1 μg/m3during the whole year. The monoterpene, e-β ocimene, was observed and is known as a stress compound but the vegetation at the site did not face any known severe stress condition such as excessive drought or flooding. Concerning the fluxes, the results showed that just a small amount of BVOCs were deposited by wet or dry

  9. Fluxes of biogenic volatile organic compounds measured and modelled above a Norway spruce forest

    Science.gov (United States)

    Juráň, Stanislav; Fares, Silvano; Pallozzi, Emanuele; Guidolotti, Gabriele; Savi, Flavia; Alivernini, Alessandro; Calfapietra, Carlo; Večeřová, Kristýna; Křůmal, Kamil; Večeřa, Zbyněk; Cudlín, Pavel; Urban, Otmar

    2016-04-01

    Fluxes of biogenic volatile organic compounds (BVOCs) were investigated at Norway spruce forest at Bílý Kříž in Beskydy Mountains of the Czech Republic during the summer 2014. A proton-transfer-reaction-time-of-flight mass spectrometer (PTR-TOF-MS, Ionicon Analytik, Austria) has been coupled with eddy-covariance system. Additionally, Inverse Lagrangian Transport Model has been used to derive fluxes from concentration gradient of various monoterpenes previously absorbed into n-heptane by wet effluent diffusion denuder with consequent quantification by gas chromatography with mass spectrometry detection. Modelled data cover each one day of three years with different climatic conditions and previous precipitation patterns. Model MEGAN was run to cover all dataset with monoterpene fluxes and measured basal emission factor. Highest fluxes measured by eddy-covariance were recorded during the noon hours, represented particularly by monoterpenes and isoprene. Inverse Lagrangian Transport Model suggests most abundant monoterpene fluxes being α- and β-pinene. Principal component analysis revealed dependencies of individual monoterpene fluxes on air temperature and particularly global radiation; however, these dependencies were monoterpene specific. Relationships of monoterpene fluxes with CO2 flux and relative air humidity were found to be negative. MEGAN model correlated to eddy-covariance PTR-TOF-MS measurement evince particular differences, which will be shown and discussed. Bi-directional fluxes of oxygenated short-chain volatiles (methanol, formaldehyde, acetone, acetaldehyde, formic acid, acetic acid, methyl vinyl ketone, methacrolein, and methyl ethyl ketone) were recorded by PTR-TOF-MS. Volatiles of anthropogenic origin as benzene and toluene were likely transported from the most benzene polluted region in Europe - Ostrava city and adjacent part of Poland around Katowice, where metallurgical and coal mining industries are located. Those were accumulated during

  10. Emissions of isoprenoids and oxygenated biogenic volatile organic compounds from a New England mixed forest

    Science.gov (United States)

    McKinney, K. A.; Lee, B. H.; Vasta, A.; Pho, T. V.; Munger, J. W.

    2011-05-01

    Fluxes of biogenic volatile organic compounds, including isoprene, monoterpenes, and oxygenated VOCs measured above a mixed forest canopy in central Massachusetts during the 2005 and 2007 growing seasons are reported. Mixing ratios were measured using proton transfer reaction mass spectrometry (PTR-MS) and fluxes computed by the disjunct eddy covariance technique. Isoprene was by far the predominant BVOC emitted at this site, with summer mid-day average fluxes of 5.3 and 4.4 mg m-2 hr-1 in 2005 and 2007, respectively. In comparison, mid-day average fluxes of monoterpenes were 0.21 and 0.15 mg m-2 hr-1 in each of these years. On short times scales (days), the diel pattern in emission rate compared well with a standard emission algorithm for isoprene. The general shape of the seasonal cycle and the observed decrease in isoprene emission rate in early September was, however, not well captured by the model. Monoterpene emission rates exhibited dependence on light as well as temperature, as determined from the improved fit to the observations obtained by including a light-dependent term in the model. The mid-day average flux of methanol from the canopy was 0.14 mg m-2 hr-1 in 2005 and 0.19 mg m-2 hr-1 in 2007, but the maximum flux was observed in spring (29 May 2007), when the flux reached 1.0 mg m-2 hr-1. This observation is consistent with enhanced methanol production during leaf expansion. Summer mid-day fluxes of acetone were 0.15 mg m-2 hr-1 during a short period in 2005, but only 0.03 mg m-2 h-1 averaged over 2007. Episodes of negative fluxes of oxygenated VOCs, particularly acetone, were observed periodically, especially in 2007. Thus, deposition within the canopy could help explain the low season-averaged flux of acetone in 2007. Fluxes of species of biogenic origin at mass-to-charge (m/z) ratios of 73 (0.05 mg m-2 hr-1 in 2005; 0.03 mg m-2 hr-1 in 2007) and 153 (5 μg m-2 hr-1 in 2007), possibly corresponding to methyl ethyl ketone and an oxygenated terpene or

  11. Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions

    Science.gov (United States)

    Baghi, R.; Helmig, D.; Guenther, A.; Duhl, T.; Daly, R.

    2012-10-01

    Emissions of biogenic volatile organic compounds (BVOC) from urban trees during and after blooming were measured during spring and early summer 2009 in Boulder, Colorado. Air samples were collected onto solid adsorbent cartridges from branch enclosures on the tree species crabapple (Malus sp.), horse chestnut (Aesculus carnea, "Ft. McNair"), honey locust (Gleditsia triacanthos, "Sunburst"), and hawthorn (Crataegus laevigata, "Pauls Scarlet"). These species constitute ~ 65% of the insect-pollinated fraction of the flowering tree canopy (excluding catkin-producing trees) from the street area managed by the City of Boulder. Samples were analyzed for C10-C15 BVOC by thermal desorption and gas chromatography coupled to a flame ionization detector and a mass spectrometer (GC/FID/MS). Identified emissions and emission rates from these four tree species during the flowering phase were found to vary over a wide range. Monoterpene emissions were identified for honey locust, horse chestnut and hawthorn. Sesquiterpene emissions were observed in horse chestnut and hawthorn samples. Crabapple flowers were found to emit significant amounts of benzyl alcohol and benzaldehyde. Floral BVOC emissions increased with temperature, generally exhibiting exponential temperature dependence. Changes in BVOC speciation during and after the flowering period were observed for every tree studied. Emission rates were significantly higher during the blooming compared to the post-blooming state for crabapple and honey locust. The results were scaled to the dry mass of leaves and flowers contained in the enclosure. Only flower dry mass was accounted for crabapple emission rates as leaves appeared at the end of the flowering period. Total normalized (30 °C) monoterpene emissions from honey locust were higher during flowering (5.3 μgC g-1 h-1) than after flowering (1.2 μgC g-1 h-1). The total normalized BVOC emission rate from crabapple (93 μgC g-1 h-1) during the flowering period is of the same

  12. Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions

    Directory of Open Access Journals (Sweden)

    R. Baghi

    2012-03-01

    Full Text Available Emissions of biogenic volatile organic compounds (BVOC from urban trees during and after blooming were measured during spring and early summer 2009 in Boulder, Colorado. Air samples were collected onto solid adsorbent cartridges from branch enclosures on the tree species crabapple, horse chestnut, honey locust, and hawthorn. These species constitute ~65 % of the insect-pollinated fraction of the flowering tree canopy (excluding catkin-producing trees from the street area managed by the City of Boulder. Samples were analyzed for C10–C15 BVOC by thermal desorption and gas chromatography coupled to a flame ionization detector and a mass spectrometer (GC/FID/MS. Identified emissions and emission rates from these four tree species during the flowering phase were found to vary over a wide range. Monoterpene emissions were identified for honey locust, horse chestnut and hawthorn. Sesquiterpene emissions were observed in horse chestnut and hawthorn samples. Crabapple flowers were found to emit significant amounts of benzyl alcohol and benzaldehyde. Floral BVOC emissions increased with temperature, generally exhibiting exponential temperature dependence. Changes in BVOC speciation during and after the flowering period were observed for every tree studied. Emission rates were significantly higher during the blooming compared to the vegetative state for crabapple and honey locust. Total normalized (30 °C monoterpene emissions from honey locust were higher during flowering (5.26 μg Cg−1 h−1 than after flowering (1.23 μg Cg−1 h−1. The total normalized BVOC emission rate from crabapple (93 μg Cg−1 h−1 during the flowering period is of the same order as isoprene emissions from oak trees, which are among the highest BVOC emissions observed from plants to date. These findings illustrate that during the relatively brief springtime flowering period, floral

  13. Biogenic Volatile Organic Compound Emission Rates From Urban Vegetation in Southeast China

    Science.gov (United States)

    Baker, B.; Graessli, M.; Bai, J.; Huang, A.; Li, N.; Guenther, A.

    2005-12-01

    Currently, the country of China is growing economically at an extraordinary pace. With this growth comes an increase in emissions of anthropogenic pollutants such as hydrocarbons and nitrogen oxides from factories and vehicles. To accurately determine the effects of these pollutants on regional ozone production, and to best determine mitigation strategies, biogenic volatile organic compound (BVOC) emissions must be considered in regional atmospheric chemistry models. To date, few studies have been carried out to determine BVOC emission factors for plant species that occur in China. Considering that approximately 20% of the world's population resides in this region, it is important to develop accurate databases for BVOC emissions for the country of China. This experiment took place during May and June of 2005 and was based in the Fairy Lake Botanical Gardens (FLBG) located to the northeast of the city of Shenzhen. The city of Shenzhen is located in southeast China in Guangdong province. The city was designated a 'special economic zone' in 1980 and has experienced intense population and economic growth ever since. The dense city is surrounded by hilly rural areas of forest on three sides, and Hong Kong to the south. The purpose of the experiment was to evaluate emissions of BVOC from plants that are important to the Shenzhen region as well as to southeastern China. Over 150 species of plants were screened for emissions of isoprene and monoterpenes. These species include most of the dominant trees and shrubs planted in the Shenzhen area. Samples were collected at the FLBG as well as at various locations around the city of Shenzhen. BVOC emission samples were collected and analyzed in one of two ways. First, a Teflon enclosure was placed over a plant's branch with a constant flow of ambient air passing through the enclosure. Samples were then pumped into a Teflon bag for analysis. Samples were analyzed within 30 minutes by gas chromatography (GC) with either a photo

  14. Concentrations and fluxes of biogenic volatile organic compounds above a Mediterranean macchia ecosystem in Western Italy

    Directory of Open Access Journals (Sweden)

    B. Davison

    2009-02-01

    Full Text Available Emission rates and concentrations of biogenic volatile organic compounds (BVOCs were measured at a Mediterranean coastal site at Castelporziano, approximately 25 km south-west of Rome, between 7 May and 3 June 2007, as part of the ACCENT-VOCBAS field campaign on biosphere-atmosphere interactions. Concentrations and emission rates were measured using the disjunct eddy covariance method utilizing three different proton transfer reaction mass spectrometers (PTR-MS for BVOC mixing ratio measurements and sonic anemometers for three-dimensional high-frequency wind measurements. Depending on the measurement period and the instrument, the median volume mixing ratios were 1.6–3.5 ppbv for methanol, 0.4–1.5 ppbv for acetaldehyde, 1.0–2.5 ppbv for acetone, 0.10–0.17 ppbv for isoprene, and 0.18–0.30 ppbv for monoterpenes. A diurnal cycle in mixing ratios was apparent with daytime maxima for methanol, acetaldehyde, acetone, and isoprene. The median fluxes were 370–440 μg m−2 h−1 for methanol, 180–360 μg m−2 h−1 for acetaldehyde, 180–450 μg m−2 h−1 for acetone, 71–290 μg m−2 h−1 for isoprene, and 240–860 μg m−2 h−1 for monoterpenes.

  15. Biogenic volatile organic compound emissions from the Eurasian taiga: current knowledge and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, J. (Dept. of Physics, Univ. of Helsinki (Finland)); Baeck, J. (Dept. of Forest Ecology, Univ. of Helsinki (Finland)); Hakola, H. (Finnish Meteorological Institute, Air Quality Research, Helsinki (Finland))

    2009-07-01

    n this paper, the research conducted on the emissions of the biogenic volatile organic compounds (BVOCs) from the European boreal zone, or taiga, is reviewed. We highlight the main findings and the key gaps in our knowledge. Ecosystem scale BVOC emissions from the Eurasian taiga are observed to be relatively low as compared with those from some forest ecosystems in warmer climates. One of the distinctive features of the Eurasian taiga is the predominance of monoterpene emitting coniferous trees. Recent research indicates that in addition to evaporation from storage structures, part of the monoterpene emission of conifers originates directly from synthesis. Monoterpene emission from boreal deciduous trees originates mainly directly from synthesis. The boreal trees exhibit distinct intra-species variation in the monoterpene mixtures they emit. Important sources of isoprene in the Eurasian taiga include Norway spruce, open wetland ecosystems and some non-dominant woody species, such as European aspen and willows. Many boreal tree species also emit non-terpenoid compounds and highly reactive sesquiterpenes. The future challenges in the research on BVOC emissions from the Eurasian taiga include (i) quantification and understanding the non-terpenoid VOC emissions from the taiga ecosystems, (ii) bringing ecosystems in the eastern Eurasian taiga into the sphere of BVOC emission studies, (iii) establishing long-term ecosystem flux studies combined with plant physiological measurements, and (iv) integrating knowledge and research skills on BVOC synthesis, storages and emissions, land cover changes and atmospheric processes in different spatial and temporal scales in order to better understand the impact of biosphere on atmospheric chemistry and composition in changing climate. (orig.)

  16. Determination of biogenic volatile organic compound fluxes from Harvard Forest using PTR-TOF-MS (Invited)

    Science.gov (United States)

    McKinney, K. A.; Munger, J. W.; Liu, Y.

    2013-12-01

    Forest emissions of biogenic volatile organic compounds (BVOCs) are the largest source of reactive non-methane hydrocarbons to the atmosphere, yet studies suggest that the understanding of the nature and quantity of emitted compounds remains incomplete. Recent findings have indicated the presence of reactive BVOCs within and above forest canopies that have not been quantified previously. Here we report new measurements of BVOC emissions from and concentrations above Harvard Forest, a mixed forest in the Eastern U.S., from June 8 to September 30, 2012 using Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). PTR-TOF-MS represents an advance over previous quadrupole-based PTR-MS measurements in that it captures a full, high-resolution (m/Δm ca. 4000) mass spectrum on every scan, resulting in positive identification of molecular formulas. In addition, scans are recorded at high time resolution (5 Hz), allowing true (non-disjunct) eddy covariance fluxes to be determined for each mass-to-charge ratio. Concentration and flux measurements were made simultaneously using a high-sensitivity quadrupole PTR-MS, and results from the two techniques are compared. Measured concentrations of most species agree to within 5%. As in past seasons, isoprene is the major BVOC emitted at Harvard Forest, reaching average midday mixing ratios of ca. 4 ppbv, and its emissions are closely tied to local temperature and light levels. Diurnal and seasonal patterns in emissions of isoprene, monoterpenes, methanol, acetone, and MEK are reported and compared with past measurements at the site. In addition, eddy covariance fluxes are calculated for all mass peaks to assess emissions of previously unidentified BVOCs from Harvard Forest.

  17. Ozonolysis of a series of biogenic organic volatile compounds and secondary organic aerosol formation

    Science.gov (United States)

    Bernard, François; Quilgars, Alain; Cazaunau, Mathieu; Grosselin, Benoît.; Daele, Véronique; Mellouki, Abdelwahid; Winterhalter, Richard; Moortgat, Geert K.

    2010-05-01

    obtained will be compared with those from the literature when available and discussed in terms of their atmospheric impact. Berndt, T., O. Böge and F. Stratmann (2003). Gas-phase ozonolysis of a-pinene: gaseous products and particle formation. Atmospheric Environment, 37: 3933-3945. Bonn, B. and G.K. Moortgat (2003). Sesquiterpene ozonolysis: Origin of atmospheric new particle formation from biogenic hydrocarbons. Journal of Geophysical Research, 30(11). Kavouras, I. and E.G. Stephanou (2002). Direct evidence of atmospheric secondary organic aerosol formation in forest atmosphere through heteromolecular nucleation. Environmental Science and Technology, 36: 5083-5091. Koch, S., R. Winterhalter, E. Uherek, A. Kolloff, P. Neeb and G.K. Moortagt (2000). Formation of new particles in the gas-phase ozonolysis of monoterpenes. Atmospheric Environment, 34: 4031-4042. Kulmala, M., V.-M. Kerminen, T. Anttila, A. Laaksonen and C.D. O'Dowd (2004b). Organic aerosol formation via sulphate cluster activation. Journal of Geophysical Research, 109(D04205): 1-7. Kulmala, M., H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri, V.-M. Kerminen, W. Birmili and P.H. McMurry (2004a). Formation and growth rates of ultra-fine atmospheric particles: a review of observations. Journal of Aerosol Science, 35: 143-176. Lee, S. and R.M. Kamens (2005). Particle nucleation from the reaction of a-pinene and O3. Atmospheric Environment, 39: 6822-6832.

  18. Contribution of flowering trees to urban atmospheric biogenic volatile organic compound emissions

    Directory of Open Access Journals (Sweden)

    R. Baghi

    2012-10-01

    Full Text Available Emissions of biogenic volatile organic compounds (BVOC from urban trees during and after blooming were measured during spring and early summer 2009 in Boulder, Colorado. Air samples were collected onto solid adsorbent cartridges from branch enclosures on the tree species crabapple (Malus sp., horse chestnut (Aesculus carnea, "Ft. McNair", honey locust (Gleditsia triacanthos, "Sunburst", and hawthorn (Crataegus laevigata, "Pauls Scarlet". These species constitute ~ 65% of the insect-pollinated fraction of the flowering tree canopy (excluding catkin-producing trees from the street area managed by the City of Boulder. Samples were analyzed for C10–C15 BVOC by thermal desorption and gas chromatography coupled to a flame ionization detector and a mass spectrometer (GC/FID/MS. Identified emissions and emission rates from these four tree species during the flowering phase were found to vary over a wide range. Monoterpene emissions were identified for honey locust, horse chestnut and hawthorn. Sesquiterpene emissions were observed in horse chestnut and hawthorn samples. Crabapple flowers were found to emit significant amounts of benzyl alcohol and benzaldehyde. Floral BVOC emissions increased with temperature, generally exhibiting exponential temperature dependence. Changes in BVOC speciation during and after the flowering period were observed for every tree studied. Emission rates were significantly higher during the blooming compared to the post-blooming state for crabapple and honey locust. The results were scaled to the dry mass of leaves and flowers contained in the enclosure. Only flower dry mass was accounted for crabapple emission rates as leaves appeared at the end of the flowering period. Total normalized (30 °C monoterpene emissions from honey locust were higher during flowering (5.3 μgC g−1 h−1 than after flowering (1.2 μgC g−1 h−1. The total normalized BVOC

  19. Emissions of isoprenoids and oxygenated biogenic volatile organic compounds from a New England mixed forest

    Directory of Open Access Journals (Sweden)

    K. A. McKinney

    2010-11-01

    Full Text Available Fluxes of biogenic volatile organic compounds, including isoprene, monoterpenes, and oxygenated VOCs measured above a mixed forest canopy in western Massachusetts during the 2005 and 2007 growing seasons are reported. Measurements were made using proton transfer reaction mass spectrometry (PTR-MS and converted to fluxes using the disjunct eddy covariance technique. Isoprene was by far the predominant BVOC emitted at this site, with summer mid-day average fluxes of 5.3 and 4.4 mg m−2 h−1 in 2005 and 2007, respectively. In comparison, mid-day average fluxes of monoterpenes were 0.21 and 0.15 mg m−2 h−1 in each of these years. On short times scales (days, the diel pattern in emission rate compared well with a standard emission algorithm for isoprene. The general shape of the seasonal cycle and the observed decrease in isoprene emission rate in early September was, however, not well captured by the model. Monoterpene emission rates exhibited dependence on light as well as temperature, as determined from the improved fit to the observations obtained by including a light-dependent term in the model. The mid-day average flux of methanol from the canopy was 0.14 mg m−2 h−1 in 2005 and 0.19 mg m−2 h−1 in 2007, but the maximum flux was observed in spring (29 May 2007, when the flux reached 1.0 mg m−2 h−1. This observation is consistent with enhanced methanol production during leaf expansion. Summer mid-day fluxes of acetone were 0.15 mg m−2 h−1 during a short period in 2005, but only 0.03 mg m−2 h−1 averaged over 2007. Episodes of negative fluxes of oxygenated VOCs, particularly acetone, were observed periodically, especially in 2007. Thus, deposition within the canopy could help explain the low season-averaged flux of acetone in 2007. Fluxes of species of biogenic origin at

  20. Emissions of isoprenoids and oxygenated biogenic volatile organic compounds from a New England mixed forest

    Directory of Open Access Journals (Sweden)

    K. A. McKinney

    2011-05-01

    Full Text Available Fluxes of biogenic volatile organic compounds, including isoprene, monoterpenes, and oxygenated VOCs measured above a mixed forest canopy in central Massachusetts during the 2005 and 2007 growing seasons are reported. Mixing ratios were measured using proton transfer reaction mass spectrometry (PTR-MS and fluxes computed by the disjunct eddy covariance technique. Isoprene was by far the predominant BVOC emitted at this site, with summer mid-day average fluxes of 5.3 and 4.4 mg m−2 hr−1 in 2005 and 2007, respectively. In comparison, mid-day average fluxes of monoterpenes were 0.21 and 0.15 mg m−2 hr−1 in each of these years. On short times scales (days, the diel pattern in emission rate compared well with a standard emission algorithm for isoprene. The general shape of the seasonal cycle and the observed decrease in isoprene emission rate in early September was, however, not well captured by the model. Monoterpene emission rates exhibited dependence on light as well as temperature, as determined from the improved fit to the observations obtained by including a light-dependent term in the model. The mid-day average flux of methanol from the canopy was 0.14 mg m−2 hr−1 in 2005 and 0.19 mg m−2 hr−1 in 2007, but the maximum flux was observed in spring (29 May 2007, when the flux reached 1.0 mg m−2 hr−1. This observation is consistent with enhanced methanol production during leaf expansion. Summer mid-day fluxes of acetone were 0.15 mg m−2 hr−1 during a short period in 2005, but only 0.03 mg m−2 h−1 averaged over 2007. Episodes of negative fluxes of oxygenated VOCs, particularly acetone, were observed periodically, especially in 2007. Thus, deposition within the canopy could help explain the low season-averaged flux of acetone in 2007. Fluxes of species of biogenic origin

  1. biogenic aerosol precursors: volatile amines from agriculture

    Science.gov (United States)

    Kuhn, Uwe; Sintermann, Jörg; Spirig, Christoph; Ammann, Christof; Neftel, Albrecht

    2010-05-01

    Information on the occurrence of volatile biogenic amines in the atmosphere is marginal. This group of N-bearing organic compounds are assumed to be a small, though significant component of the atmospheric N-cycle, but are not accounted for in global assessments due to the scarceness of available data. There is increasing evidence for an important role of biogenic amines in the formation of new particulate matter, as well as for aerosol secondary growth. Volatile amines are ubiquitously formed by biodegradation of organic matter, and agriculture is assumed to dominantly contribute to their atmospheric burden. Here we show that the mixing ratios of volatile amines within livestock buildings scale about 2 orders of magnitude lower than NH3, confirming the few literature data available (e.g., Schade and Crutzen, J. Atm. Chem. 22, 319-346, 1995). Flux measurements after manure application in the field, mixing ratios in the headspace of manure storage pools, and concentrations in distilled manure all indicate major depletion of amines relative to NH3 during manure processing. We conclude that the agricultural source distribution of NH3 and amines is not similar. While for NH3 the spreading of manure in the field dominates agricultural emissions, the direct release from livestock buildings dominates the budget of volatile biogenic amines.

  2. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions

    DEFF Research Database (Denmark)

    Valolahti, Hanna Maritta; Kivimäenpää, Minna; Faubert, Patrick;

    2015-01-01

    Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensi-tive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, weaimed to investigate how warming affects the BVOC emissions in the long term...... and stimulated microbial production of BVOCs. We suggest that the changes in the subarcticvegetation composition induced by climate warming will be the major factor indirectly affecting the BVOC emissionpotentials and composition.......Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensi-tive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, weaimed to investigate how warming affects the BVOC emissions in the long term...... (up to 13 treatment years). We alsoaimed to assess whether the increased litterfall resulting from the vegetation changes in the warming subarctic wouldaffect the emissions. The study was conducted in a field experiment with factorial open-top chamber warming andannual litter addition treatments...

  3. Long-term study of biogenic volatile organic compound exchanges in a forest ecosystem

    OpenAIRE

    Laffineur, Quentin

    2012-01-01

    The terrestrial biosphere, especially forest ecosystems, emits large quantities of volatile organic compounds (VOCs) which have a significant impact on the atmosphere’s chemical and physical characteristics. In particular, VOCs are precursors in the formation of ozone and sec-ondary organic aerosols. Isoprene and monoterpenes dominate the total VOC emissions, and methanol is one of the most abundant atmospheric VOCs due to its longer half-life than the other two. The main objective of thi...

  4. Emissions of biogenic volatile organic compounds and subsequent formation of secondary organic aerosols in a Larix kaempferi forest

    Science.gov (United States)

    Mochizuki, T.; Miyazaki, Y.; Ono, K.; Wada, R.; Takahashi, Y.; Saigusa, N.; Kawamura, K.; Tani, A.

    2015-10-01

    We conducted simultaneous measurements of concentrations and above-canopy fluxes of isoprene and α-pinene, along with their oxidation products in aerosols in a Larix kaempferi (Japanese larch) forest in summer 2012. Vertical profiles of isoprene showed the maximum concentration near the forest floor with a peak around noon, whereas oxidation products of isoprene, i.e., methacrolein (MACR) and methyl vinyl ketone (MVK), showed higher concentrations near the canopy level of the forest. The vertical profile suggests large emissions of isoprene near the forest floor, likely due to Dryopteris crassirhizoma (a fern species), and the subsequent reaction within the canopy. The concentrations of α-pinene also showed highest values near the forest floor, with maximums in the early morning and late afternoon. The vertical profiles of α-pinene suggest its large emissions from soil and litter in addition to emissions from L. kaempferi leaves at the forest site. Isoprene and its oxidation products in aerosols exhibited similar diurnal variations within the forest canopy, providing evidence of secondary organic aerosol (SOA) formation via oxidation of isoprene most likely emitted from the forest floor. Although high abundance of α-pinene was observed in the morning, its oxidation products in aerosols showed peaks in daytime, due to a time lag between the emission and atmospheric reactions of α-pinene to form SOA. Positive matrix factorization (PMF) analysis indicated that anthropogenic influence is the most important factor contributing to the elevated concentrations of molecular oxidation products of isoprene- (> 64 %) and α-pinene-derived SOA (> 57 %). The combination of the measured fluxes and vertical profiles of biogenic volatile organic compounds (BVOCs) suggests that the inflow of anthropogenic precursors/aerosols likely enhanced the formation of both isoprene SOA and α-pinene SOA within the forest canopy even when the BVOC flux was relatively low. This study

  5. Non-methane biogenic volatile organic compound emissions from boreal peatland microcosms under warming and water table drawdown

    DEFF Research Database (Denmark)

    Faubert, P; Tiiva, P; Nakam, TA;

    2011-01-01

    Abstract Boreal peatlands have significant emissions of non-methane biogenic volatile organic compounds (BVOCs). Climate warming is expected to affect these ecosystems both directly, with increasing temperature, and indirectly, through water table drawdown following increased evapotranspiration. We...... of anaerobic microbial community. Our results suggest that boreal peatlands could have concomitant negative and positive radiative forcing effects on climate warming following the effect of water table drawdown. The observed decrease in CH4 emission causes a negative radiative forcing while the increase in CO2...... assessed the combined effect of warming and water table drawdown on the BVOC emissions from boreal peatland microcosms. We also assessed the treatment effects on the BVOC emissions from the peat soil after the 7-week long experiment. Emissions of isoprene, monoterpenes, sesquiterpenes, other reactive VOCs...

  6. Numerical model to quantify biogenic volatile organic compound emissions: The Pearl River Delta region as a case study.

    Science.gov (United States)

    Wang, Xuemei; Situ, Shuping; Chen, Weihua; Zheng, Junyu; Guenther, Alex; Fan, Qi; Chang, Ming

    2016-08-01

    This article compiles the actual knowledge of the biogenic volatile organic compound (BVOC) emissions estimated using model methods in the Pearl River Delta (PRD) region, one of the most developed regions in China. The developed history of BVOC emission models is presented briefly and three typical emission models are introduced and compared. The results from local studies related to BVOC emissions have been summarized. Based on this analysis, it is recommended that local researchers conduct BVOC emission studies systematically, from the assessment of model inputs, to compiling regional emission inventories to quantifying the uncertainties and evaluating the model results. Beyond that, more basic researches should be conducted in the future to close the gaps in knowledge on BVOC emission mechanisms, to develop the emission models and to refine the inventory results. This paper can provide a perspective on these aspects in the broad field of research associated with BVOC emissions in the PRD region. PMID:27521938

  7. Evaluation of adsorbent sampling tube materials and Tenax-TA for analysis of volatile biogenic organic compounds

    Science.gov (United States)

    Arnts, Robert R.

    2010-04-01

    Adsorbent tube materials, bed retainers and Tenax-TA were evaluated for their respective roles in adsorbing biogenic volatile organic compounds from air and their tendencies to cause chemical transformation of analytes upon thermal desorption. Stainless steel, Silcosteel ® and Sulfinert ® treated stainless steel tubes exhibited varying degrees of adsorption and reactivity towards some analytes. However, the typical short exposure of the sample stream to wall material before entering an adsorbent bed, minimizes the effect of these properties. Three forms of silica wool (untreated glass wool and siloxane-treated glass and fused silica wool), often used as adsorbent bed retainers, were evaluated and found to function as an adsorbent bed especially for oxygenated monoterpenes and sesquiterpenes. Tenax-TA was evaluated in stainless steel tubes (untreated and treated) with a 2 μm mesh woven wire disk (also untreated and treated) to circumvent the effects of using a silica wool bed retainer. Tenax-TA adsorbent in stainless steel, Silcosteel and Sulfinert tubes yielded equivalent results when compared with direct (cryogenic) pre-concentration analysis of a multi-component mixture of n-alkanes and selected biogenic VOC. Tenax-TA tubes that had been used for 15-20 bake out-sample-desorption cycles (field and laboratory sampling) were compared with freshly packed tubes and found to give equivalent results.

  8. The biogenic volatile organic compounds emission inventory in France: application to plant ecosystems in the Berre-Marseilles area (France).

    Science.gov (United States)

    Simon, Valérie; Dumergues, Laurent; Ponche, Jean-Luc; Torres, Liberto

    2006-12-15

    An inventory describing the fluxes of volatile organic compounds (VOCs), isoprene and monoterpenes, and other VOCs (OVOCs) from the biosphere to the atmosphere, has been constructed within the framework of the ESCOMPTE project (fiEld experimentS to COnstrain Models of atmospheric Pollution and Transport of Emissions). The area concerned, located around Berre-Marseilles, is a Mediterranean region frequently subject to high ozone concentrations. The inventory has been developed using a fine scale land use database for the year 1999, forest composition statistics, emission potentials from individual plant species, biomass distribution, temperature and light intensity. The seasonal variations in emission potentials and biomass were also taken into account. Hourly meteorological data for 1999 were calculated from ALADIN data and these were used to predict the hourly isoprene, monoterpene and OVOC fluxes for the area on a 1 kmx1 km spatial grid. Estimates of annual biogenic isoprene, monoterpene and OVOC fluxes for the reference year 1999 were 20.6, 38.9 and 13.3 kt, respectively, Quercus pubescens, Quercus ilex, Pinus halepensis and garrigue vegetation are the dominant emitting species of the area. VOC emissions from vegetation in this region contribute approximately 94% to the NMVOC (non-methane volatile organic compounds) of natural origin and are of the same order of magnitude as NMVOC emissions from anthropogenic sources. These results complete the global ESCOMPTE database needed to make an efficient strategy for tropospheric ozone reduction policy. PMID:17011024

  9. Recent Advances in the Application of Metabolomics to Studies of Biogenic Volatile Organic Compounds (BVOC Produced by Plant

    Directory of Open Access Journals (Sweden)

    Yoko Iijima

    2014-08-01

    Full Text Available In many plants, biogenic volatile organic compounds (BVOCs are produced as specialized metabolites that contribute to the characteristics of each plant. The varieties and composition of BVOCs are chemically diverse by plant species and the circumstances in which the plants grow, and also influenced by herbivory damage and pathogen infection. Plant-produced BVOCs are receptive to many organisms, from microorganisms to human, as both airborne attractants and repellants. In addition, it is known that some BVOCs act as signals to prime a plant for the defense response in plant-to-plant communications. The compositional profiles of BVOCs can, thus, have profound influences in the physiological and ecological aspects of living organisms. Apart from that, some of them are commercially valuable as aroma/flavor compounds for human. Metabolomic technologies have recently revealed new insights in biological systems through metabolic dynamics. Here, the recent advances in metabolomics technologies focusing on plant-produced BVOC analyses are overviewed. Their application markedly improves our knowledge of the role of BVOCs in chemosystematics, ecological influences, and aroma research, as well as being useful to prove the biosynthetic mechanisms of BVOCs.

  10. Fluxes and In-Canopy Gradients of Biogenic Volatile Organic Compounds Above Contrasting South East Asian Land Uses

    Science.gov (United States)

    Nemitz, E.; Misztal, P.; Langford, B.; Oram, D.; Phillips, G.; di Marco, C.; Davison, B.; Hewitt, N.; Cape, N.

    2008-12-01

    Fluxes of volatile organic compounds were measured above tropical rainforest and oil palm plantation in the Malaysian state of Sabah on the island of Borneo. During April and July 2008 an Ionikon proton transfer reaction mass spectrometer (ptrms) was operated at the 100 m Global Atmospheric Watch (GAW) tower at Bukit Atur, at the edge of the Danum Valley conservation area. An ultrasonic anemometer and air inlet were mounted at 76 m, with the ptrms housed in a laboratory building at the foot of the tower, measuring fluxes over tropical rainforest (selectively logged in 1989) with a typical canopy height of 30 to 40 m. In addition, during the July period, a second ptrms was coupled to a lift system which automatically moved an inlet to sample in-canopy gradients inside the forest canopy, between 2 and 30 m. During May 2008, the ptrms was moved to an oil palm plantation, north of the town of Lahad Datu, were fluxes were measured at a height of 15 m above the 12 m tall canopy, together with concentrations and fluxes of ozone and aerosols. These measurements formed part of two major UK projects: OP3-Danum-2008 (Oxidant and Particle Production Processes above South East Asian Rainforest) was aimed at quantifying biogenic emissions and evaluating their impact on air chemistry and the production of photo-oxidants and biogenic secondary organic aerosol, while ACES (Aerosol Coupling in the Earth System) studies the role of primary biogenic emissions, in-canopy processes and the effect of land-use change on aerosols. Initial results indicate that fluxes of isoprene above forest averaged 1.4 mg m-2 s-1 which is somewhat smaller than previous measurements in Amazonia and than previous estimates derived from leaf- level measurements, reflecting uncertainties in the assumed plant species composition. Concentrations peaked at the top of the canopy during midday. With an average of 5.5 mg m-2s-1, isoprene fluxes above the oil palm plantation were four times larger. Average fluxes

  11. Quantification of biogenic volatile organic compounds with a flame ionization detector using the effective carbon number concept

    Science.gov (United States)

    Faiola, C. L.; Erickson, M. H.; Fricaud, V. L.; Jobson, B. T.; VanReken, T. M.

    2012-08-01

    Biogenic volatile organic compounds (BVOCs) are emitted into the atmosphere by plants and include isoprene, monoterpenes, sesquiterpenes, and their oxygenated derivatives. These BVOCs are among the principal factors influencing the oxidative capacity of the atmosphere in forested regions. BVOC emission rates are often measured by collecting samples onto adsorptive cartridges in the field and then transporting these samples to the laboratory for chromatographic analysis. One of the most commonly used detectors in chromatographic analysis is the flame ionization detector (FID). For quantitative analysis with an FID, relative response factors may be estimated using the effective carbon number (ECN) concept. The purpose of this study was to determine the ECN for a variety of terpenoid compounds to enable improved quantification of BVOC measurements. A dynamic dilution system was developed to make quantitative gas standards of VOCs with mixing ratios from 20-55 ppb. For each experiment using this system, one terpene standard was co-injected with an internal reference, n-octane, and analyzed via an automated cryofocusing system interfaced to a gas chromatograph flame ionization detector and mass spectrometer (GC/MS/FID). The ECNs of 16 compounds (14 BVOCs) were evaluated with this approach, with each test compound analyzed at least three times. The difference between the actual carbon number and measured ECN ranged from -24% to -2%. The difference between theoretical ECN and measured ECN ranged from -22% to 9%. Measured ECN values were within 10% of theoretical ECN values for most terpenoid compounds.

  12. The atmospheric potential of biogenic volatile organic compounds from needles of white pine (Pinus strobus) in Northern Michigan

    Science.gov (United States)

    Toma, S.; Bertman, S.

    2012-02-01

    The key role that biogenic volatile organic compounds (BVOC) play in atmospheric chemistry requires a detailed understanding of how BVOC concentrations will be affected by environmental change. Large-scale screening of BVOC emissions from whole forest ecosystems is difficult with enclosure methods. Leaf composition of BVOC, as a surrogate for direct emissions, can more easily reflect the distribution of BVOC compounds in a forest. In this study, BVOC composition in needles of 92 white pine trees (Pinus strobus), which are becoming a large part of Midwest forests, are tracked for three summers at the University of Michigan Biological Station (UMBS). α-Pinene, the dominant terpene in all samples, accounts for 30-50% of all terpenes on a mole basis. The most abundant sesquiterpenoid was a C15 alcohol identified as germacrene D-4-ol. The relationship between limonene and total other monoterpenes shows two distinct trends in the population of these forests. About 14% (n = 13) of the trees showed high levels of limonene (up to 36% of the total BVOC) in the same trees every year. Assuming that needle concentrations scale with emission rate, we estimate that hydroxyl radical reactivity due to reaction with monoterpenes from white pine increases approximately 6% at UMBS when these elevated concentrations are included. We suggest that chemotypic variation within forests has the potential to affect atmospheric chemistry and that large-scale screening of BVOC can be used to study the importance of BVOC variation.

  13. The atmospheric potential of biogenic volatile organic compounds from needles of White Pine (Pinus strobus in Northern Michigan

    Directory of Open Access Journals (Sweden)

    S. Bertman

    2011-09-01

    Full Text Available The key role biogenic volatile organic compounds (BVOC play in atmospheric chemistry requires a detailed understanding of how BVOC concentrations will be affected by environmental change. Large-scale screening of ecosystems is difficult with enclosure methods. In this study, BVOC in needles of 71 white pine trees (Pinus strobus, which are becoming a large part of Midwest forests, are tracked for three summers at the University of Michigan Biological Station (UMBS. α-pinene, the dominant terpene in all samples, accounts for 30–50% of all terpenes on a mole basis. The most abundant sesquiterpenoid was a C15 alcohol identified as germacrene-D-4-ol. The abundance of this material and its atmospheric relevance has not been considered previously. The relationship between limonene and α-pinene clearly shows two distinct trends in the population of these forests. About 15% of the trees showed high levels of limonene (up to 36% of the total BVOC in the same trees every year. With this mixture, limonene contributes 11% of the α-pinene contribution to total gas-phase OH loss at UMBS compared to less than 2% considering the composition of the majority trees. Hence we show that chemotypic variation within forests can affect atmospheric chemistry and that large-scale screening of BVOC can be used effectively to study the importance of BVOC variation for predicting atmospheric chemistry in future forests.

  14. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars.

    Science.gov (United States)

    Rosenkranz, Maaria; Pugh, Thomas A M; Schnitzler, Jörg-Peter; Arneth, Almut

    2015-09-01

    Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment. PMID:25255900

  15. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars.

    Science.gov (United States)

    Rosenkranz, Maaria; Pugh, Thomas A M; Schnitzler, Jörg-Peter; Arneth, Almut

    2015-09-01

    Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment.

  16. Biogenic volatile organic compound analyses by PTR-TOF-MS: Calibration, humidity effect and reduced electric field dependency.

    Science.gov (United States)

    Pang, Xiaobing

    2015-06-01

    Green leaf volatiles (GLVs) emitted by plants after stress or damage induction are a major part of biogenic volatile organic compounds (BVOCs). Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) is a high-resolution and sensitive technique for in situ GLV analyses, while its performance is dramatically influenced by humidity, electric field, etc. In this study the influence of gas humidity and the effect of reduced field (E/N) were examined in addition to measuring calibration curves for the GLVs. Calibration curves measured for seven of the GLVs in dry air were linear, with sensitivities ranging from 5 to 10 ncps/ppbv (normalized counts per second/parts per billion by volume). The sensitivities for most GLV analyses were found to increase by between 20% and 35% when the humidity of the sample gas was raised from 0% to 70% relative humidity (RH) at 21°C, with the exception of (E)-2-hexenol. Product ion branching ratios were also affected by humidity, with the relative abundance of the protonated molecular ions and higher mass fragment ions increasing with humidity. The effect of reduced field (E/N) on the fragmentation of GLVs was examined in the drift tube of the PTR-TOF-MS. The structurally similar GLVs are acutely susceptible to fragmentation following ionization and the fragmentation patterns are highly dependent on E/N. Overall the measured fragmentation patterns contain sufficient information to permit at least partial separation and identification of the isomeric GLVs by looking at differences in their fragmentation patterns at high and low E/N. PMID:26040746

  17. The Study of Biogenic Volatile Organic Compounds from Needles of White Pine (Pinus Strobus) in Northern Michigan

    Science.gov (United States)

    Toma, S.; Bertman, S. B.

    2009-12-01

    Estimating emission rates of biogenic volatile organic compounds (BVOC) is important to understand the formation of photochemical smog and the contribution of their subsequent oxidized products to the formation of the secondary organic aerosols. It has been shown for some tree species that BVOC concentration within leaves is proportional to gas-phase emission rate. Measuring needle concentration is faster and easier than measuring emission rates, hence it is possible to measure a large number of samples from a wide area in a short time and to estimate with precision the BVOC content of an area of forest. Northern Michigan forests are recovering from widespread clearcutting and wildfires from about 100 years ago. In this study, needles of white pine, which was once a dominant species in many parts of Michigan and is currently growing back, were collected on the property of the University of Michigan Biological Station (UMBS) during the summers of 2008 and 2009. Two forest sites were sampled, an undisturbed forest and an experimental disturbed forest (FASET). Early successional tree species were girdled in the FASET forest in spring 2008, making way for late successional species, which will be more represented by terpene emitting pines. As a result of succession and other disturbance BVOC compositions will be different in the future, which can dramatically impact atmospheric chemistry. Around 35 trees were sampled in each forest. Organic material was extracted and analyzed using GCMS. About half of the mass of terpenes in white pine are monoterpenes with significant mass of sesquiterpenes. As expected, the major dominant compounds were α-Pinene and β-Pinene. GermacreneD was one of the major sesquiterpenes. There is evidence of derivative compounds in the needles that could contribute to atmospheric loading. Statistical differences between the two forests a year after girdling are discussed along with relationships of BVOC composition with environmental factors.

  18. Observations of BVOC (Biogenic Volatile Organic Compound) Fluxes and Vertical Gradients in a Ponderosa Pine Forest during BEARPEX 2009

    Science.gov (United States)

    Park, J.; Fares, S.; Weber, R.; Goldstein, A.

    2010-12-01

    During summer 2009 an intensive field campaign (Biosphere Effects on AeRosols and Photochemistry EXperiment - BEARPEX) took place in Blodgett Forest, a Ponderosa pine forest in the Sierra Nevada Mountains of California. The campaign aimed to investigate biosphere-atmosphere interactions during a period of intense photochemical activity, to elucidate the fate BVOC (Biogenic Volatile Organic Compounds) in the atmosphere, and explore the processes of secondary organic aerosol formation. In this study, a PTR-MS (Proton Transfer Reaction - Mass Spectrometry) was used to measure 19 compounds (masses) including methanol, isoprene + MBO (2-Methyl-3-butene-2-ol), monoterpenes, sesquiterpenes, and some oxygenated BVOCs at 5 heights of a vertical gradient from the forest floor to above the canopy. Fluxes of the 4 dominant BVOCs were measured above the canopy with the Eddy covariance technique. In parallel with BVOC measurements, ozone fluxes and gradients, and meteorological parameters (PAR, temperature, relative humidity, wind speed, and wind direction) were recorded in order to investigate the dependence of BVOC emissions and chemistry on meteorological conditions and to test the hypothesis that BVOC remove atmospheric ozone through gas-phase reactions. BVOCs which are directly emitted from pine trees generally have the highest concentration at the lowest measurement height and the lowest concentration above the canopy. Sesquiterpenes were observed at lower concentration than monoterpenes, but with very similar vertical gradient patterns, indicating their emission patterns are similar. The observed MBO flux was approximately twice the Monoterpene flux. Measured monoterpene canopy scale flux was consistent with modeled emissions based on scaling up from branch enclosure measurements at this site (basal emission rate F30= 0.61 ±0.14 mgC m-2 hr-1 and temperature response β= 0.15 ±0.09 °C-1). We find that m/z 113, an unidentified OVOCs (oxygenated volatile organic compounds

  19. A new European plant-specific emission inventory of biogenic volatile organic compounds for use in atmospheric transport models

    Directory of Open Access Journals (Sweden)

    M. Karl

    2009-06-01

    Full Text Available We present a new European plant-specific emission inventory for isoprene, monoterpenes, sesquiterpenes and oxygenated VOC (OVOC, on a spatial resolution of 0.089×0.089 degrees, for implementation in atmospheric transport models. The inventory incorporates more accurate data on foliar biomass densities from several litterfall databases that became available in the last years for the main tree species in Europe. A bioclimatic correction factor was introduced to correct the foliar biomass densities of trees and crops for the different plant growth conditions that can be found in Pan-Europe. Long-term seasonal variability of agriculture and forest emissions was taken into account by implementing a new growing season concept. The 2004–2005 averaged annual total biogenic volatile organic compound (BVOC emissions for the Pan-European domain are estimated to be about 12 Tg with a large contribution from the OVOC class of about 4.5 Tg and from monoterpenes of about 4 Tg. Annual isoprene emissions are found to be about 3.5 Tg, insensitive to the chosen emission algorithm. Emissions of OVOC were found to originate to a large extent from agriculture. Further experiments on crop emissions should be carried out to check the validity of the applied standard emission factors. The new inventory aims at a fully transparent and verifiable aggregation of detailed land use information and at the inclusion of plant-specific emission data. Though plant-specific land use data is available with relatively high accuracy, a lack of experimental biomass densities and emission data on terpenes, sesquiterpenes and oxygenated VOC, in particular for agricultural plants, currently limits the setup of a highly accurate plant-specific emission inventory.

  20. Responses of non-methane biogenic volatile organic compound emissions to climate change in boreal and subarctic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Faubert, P.

    2010-07-01

    Non-methane biogenic volatile organic compound emissions (BVOCs) have important roles in the global atmospheric chemistry but their feedbacks to climate change are still unknown. This thesis reports one of the first estimates of BVOC emissions from boreal and subarctic ecosystems. Most importantly, this thesis assesses the BVOC emission responses to four effects of climate change in these ecosystems: (1) the direct effect of warming, and its indirect effects via (2) water table drawdown, (3) change in the vegetation composition, and (4) enhanced UV-B radiation. BVOC emissions were measured using a conventional chamber method in which the compounds were collected on adsorbent and later analyzed by gas chromatography-mass spectrometry. On a subarctic heath, warming by only 1.9-2.5 degC doubled the monoterpene and sesquiterpene emissions. Such a high increase of BVOC emissions under a conservative warming cannot be predicted by the current models, which underlines the importance of a focus on BVOC emissions from the Subarctic under climate change. On a subarctic peatland, enhanced UV-B did not affect the BVOC emissions but the water table level exerted the major effect. The water table drawdown experimentally applied on boreal peatland microcosms decreased the emissions of monoterpenes and other VOCs (BVOCs with a lifetime>1 d) for the hollows (wet microsites) and that of all BVOC groups for the lawns (moderately wet microsites). The warming treatment applied on the lawn microcosms decreased the isoprene emission. The removal of vascular plants in the hummock (dry microsites) microcosms decreased the emissions of monoterpenes while the emissions between the microcosms covered with Sphagnum moss and bare peat were not different. In conclusion, the results presented in this thesis indicate that climate change has complex effects on the BVOC emissions. These results make a significant contribution to improving the modeling of BVOC emissions for a better understanding of

  1. A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover

    Directory of Open Access Journals (Sweden)

    D. C. Oderbolz

    2013-02-01

    Full Text Available Biogenic volatile organic compounds (BVOC emitted from vegetation are important for the formation of secondary pollutants such as ozone and secondary organic aerosols (SOA in the atmosphere. Therefore, BVOC emission are an important input for air quality models. To model these emissions with high spatial resolution, the accuracy of the underlying vegetation inventory is crucial. We present a BVOC emission model that accommodates different vegetation inventories and uses satellite-based measurements of greenness instead of pre-defined vegetation periods. This approach to seasonality implicitly treats effects caused by water or nutrient availability, altitude and latitude on a plant stand. Additionally, we test the influence of proposed seasonal variability in enzyme activity on BVOC emissions. In its present setup, the emission model calculates hourly emissions of isoprene, monoterpenes, sesquiterpenes and the oxygenated volatile organic compounds (OVOC methanol, formaldehyde, formic acid, ethanol, acetaldehyde, acetone and acetic acid. In this study, emissions based on three different vegetation inventories are compared with each other and diurnal and seasonal variations in Europe are investigated for the year 2006. Two of these vegetation inventories require information on tree-cover as an input. We compare three different land-cover inventories (USGS GLCC, GLC2000 and Globcover 2.2 with respect to tree-cover. The often-used USGS GLCC land-cover inventory leads to a severe reduction of BVOC emissions due to a potential miss-attribution of broad-leaved trees and reduced tree-cover compared to the two other land-cover inventories. To account for uncertainties in the land-cover classification, we introduce land-cover correction factors for each relevant land-use category to adjust the tree-cover. The results are very sensitive to these factors within the plausible range. For June 2006, total monthly BVOC emissions decreased up to −27% with

  2. A novel approach to emission modelling of biogenic volatile organic compounds in Europe: improved seasonality and land-cover

    Directory of Open Access Journals (Sweden)

    D. C. Oderbolz

    2012-08-01

    Full Text Available Biogenic volatile organic compounds (BVOC emitted from vegetation are important for the formation of secondary pollutants such as ozone and secondary organic aerosols (SOA in the atmosphere. Therefore, BVOC emission are an important input for air quality models. To model these emissions with high spatial resolution, the accuracy of the underlying vegetation inventory is crucial. We present a BVOC emission model that accommodates different vegetation inventories and uses satellite-based measurements of greenness instead of pre-defined vegetation periods. This approach to seasonality implicitly treats effects caused by water or nutrient availability, altitude and latitude on a plant stand. Additionally, we test the influence of proposed seasonal variability in enzyme activity on BVOC emissions. In its present setup, the emission model calculates hourly emissions of isoprene, monoterpenes, sesquiterpenes and the oxygenated volatile organic compounds (OVOC methanol, formaldehyde, formic acid, ethanol, acetaldehyde, acetone and acetic acid. In this study, emissions based on three different vegetation inventories are compared with each other and diurnal and seasonal variations in Europe are investigated for the year 2006. Two of these vegetation inventories require information on tree-cover as an input. We compare three different land-cover inventories (USGS GLCC, GLC2000 and Globcover 2.2 with respect to tree-cover. The often-used USGS GLCC land-cover inventory leads to a severe reduction of BVOC emissions due to a potential miss-attribution of broad-leaved trees and reduced tree-cover compared to the two other land-cover inventories. To account for uncertainties in the land-cover classification, we introduce land-cover correction factors for each relevant land-use category to adjust the tree-cover. The results are very sensitive to these factors within the plausible range. For June 2006, total monthly BVOC emissions decreased up to −27% with

  3. Seasonal variation of nitrogen oxides, ozone and biogenic volatile organic compound concentrations and fluxes at Norway spruce forest

    Science.gov (United States)

    Juran, Stanislav; Vecerova, Kristyna; Holisova, Petra; Zapletal, Milos; Pallozzi, Emanuele; Guidolotti, Gabriele; Calfapietra, Carlo; Vecera, Zbynek; Cudlin, Pavel; Urban, Otmar

    2015-04-01

    Dynamics of nitrogen oxides (NOx) and ozone concentration and their depositions were investigated on the Norway spruce forest at Bily Kriz experimental station at the Silesian Beskydy Mountains (north-eastern part of the Czech Republic). Both NOx and ozone concentration and fluxes were modelled for the whole season and covering thus different climate conditions. Data were recorded for three consecutive years and therefore deeper analyses were performed. During the summer 2014 BVOC field campaign was carried out using proton-transfer-reaction-time-of-flight-mass-spectrometry (PTR-TOF, Ionicon Analytik GmbH, Innsbruck, Austria) and volatile organic compound of biogenic origin (BVOC) were measured at the different levels of tree canopies. By the same time BVOC were trapped into the Tenax tubes (Markes International Ltd., UK) and put afterwards for thermal desorption (Markes Unity System 2, Markes International Ltd., UK) to GS-MS analysis (TSQ Quntum XLS triple Quadrupole, Thermo Scientific, USA). Thus data of different levels of canopies together with different spectra of monoterpenes were obtained. Interesting comparison of both methods will be shown. It was the first BVOC field campaign using PTR technique at any of the forest in the Czech Republic. Highest fluxes and concentrations were recorded around the noon hours, represented particularly by monoterpenes, especially α-pinen and limonene. Other BVOCs than monoterpenes were negligible. Variation of fluxes between different canopies levels was observed, highlighting difference in shaded and sun exposed leaves. Sun leaves emitted up to 2.4 nmol m-2 s-1 of monoterpenes, while shaded leaves emitted only up to 0.6 nmol m-2 s-1 when measured under standard conditions (irradiance 1000 µmol m-2 s-1; temperature 30°C). We discuss here the importance of the most common Norway spruce tree forests in the Czech Republic in bi-directional exchanges of important secondary pollutant such as ozone and nitrogen oxides, their

  4. Biogenic volatile organic compound emissions from nine tree species used in an urban tree-planting program

    Science.gov (United States)

    Curtis, A. J.; Helmig, D.; Baroch, C.; Daly, R.; Davis, S.

    2014-10-01

    The biogenic volatile organic compound (BVOC) emissions of nine urban tree species were studied to assess the air quality impacts from planting a large quantity of these trees in the City and County of Denver, Colorado, through the Mile High Million tree-planting initiative. The deciduous tree species studied were Sugar maple, Ohio buckeye, northern hackberry, Turkish hazelnut, London planetree, American basswood, Littleleaf linden, Valley Forge elm, and Japanese zelkova. These tree species were selected using the i-Tree Species Selector (itreetools.org). BVOC emissions from the selected tree species were investigated to evaluate the Species Selector data under the Colorado climate and environmental growing conditions. Individual tree species were subjected to branch enclosure experiments in which foliar emissions of BVOC were collected onto solid adsorbent cartridges. The cartridge samples were analyzed for monoterpenes (MT), sesquiterpenes (SQT), and other C10-C15 BVOC using thermal desorption-gas chromatography-flame ionization detection/mass spectroscopy (GC-FID/MS). Individual compounds and their emission rates (ER) were identified. MT were observed in all tree species, exhibiting the following total MT basal emission rates (BER; with a 1-σ lower bound, upper bound uncertainty window): Sugar maple, 0.07 (0.02, 0.11) μg g-1 h-1; London planetree, 0.15 (0.02, 0.27) μg g-1 h-1; northern hackberry, 0.33 (0.09, 0.57) μg g-1 h-1; Japanese zelkova, 0.42 (0.26, 0.58) μg g-1 h-1; Littleleaf linden, 0.71 (0.33, 1.09) μg g-1 h-1; Valley Forge elm, 0.96 (0.01, 1.92) μg g-1 h-1; Turkish hazelnut, 1.30 (0.32, 2.23) μg g-1 h-1; American basswood, 1.50 (0.40, 2.70) μg g-1 h-1; and Ohio buckeye, 6.61 (1.76, 11.47) μg g-1 h-1. SQT emissions were seen in five tree species with total SQT BER of: London planetree, 0.11 (0.01, 0.20) μg g-1 h-1; Japanese zelkova, 0.11 (0.05, 0.16) μg g-1 h-1; Littleleaf linden, 0.13 (0.06, 0.21) μg g-1 h-1; northern hackberry, 0.20 (0

  5. Quantifying Marine Emissions of Biogenic Volatile Organic Compounds Using Laboratory Measurements of Plankton Monocultures and Field Samples

    Science.gov (United States)

    Sabolis, A. W.; Meskhidze, N.; Kamykowski, D.; Reed, R. E.

    2010-12-01

    Marine biogenic volatile organic compounds (BVOCs) have been suggested to contribute significant portion of the organic carbon present in ocean atmosphere. In this study emission rates of 40 different hydrocarbons are quantified for lab-grown non-axenic phytoplankton monocultures and ambient samples from the Pamlico-Neuse Estuary, NC. The outcome of environmental conditions on production of BVOCs was examined for different light and temperature conditions. These different regimes are considered proxies for physiological stress-induced effects observed in natural ecosystems. The samples were incubated in a climate controlled room; they were then transferred to smaller volumes (200 ml) for analysis. BVOCs accumulated in the water and headspace above the water were measured by bubbling hydrocarbon-free gas mixture through the sample and passing the gas stream through a gas chromatography/mass spectrometry system equipped with a sample pre-concentrator. Inside the pre-concentrator, the compounds were trapped on a sorbent material, heated, and flushed into the GC-MS column. The pre-concentrator/GC-MS system gave at least 1000 times magnification of the sample concentrations, allowing detection of low ppt levels of hydrocarbons. Here we report results for lab-grown diatoms Thalassiosira weissflogii and Thalassiosira pseudonana, prymnesiophyte Pleurochrysis carterae, and dinoflagellates Karina brevis and Procentrum minimum, as well as field samples. To make results widely usable, all the emissions are normalized to Chlorophyll-a (Chl-a) concentration and cell counts. Our results show that diatoms had the highest isoprene production rate of 2.8 μmol (g Chl-a)-1 h-1 with ranges between 1.4 and 3.6 μmol (g Chl-a)-1 h-1 at light levels between 90 and 900 μE m-2 s-1, respectively. The prymnesiophyte and dinoflagellate species had isoprene production rates of 1.3±0.4 μmol (g Chl-a)-1 h-1 with a similar light dependency as diatoms. Field samples had comparable isoprene

  6. Field measurements of biogenic volatile organic compounds in the atmosphere by dynamic solid-phase microextraction and portable gas chromatography-mass spectrometry

    Science.gov (United States)

    Barreira, Luís Miguel Feijó; Parshintsev, Jevgeni; Kärkkäinen, Niina; Hartonen, Kari; Jussila, Matti; Kajos, Maija; Kulmala, Markku; Riekkola, Marja-Liisa

    2015-08-01

    Biogenic volatile organic compounds (BVOCs) participate in many physicochemical processes in the atmosphere. Studies indicate that some of these volatile compounds can be photo-oxidized to non-volatile species that contribute to atmospheric formation and growth of secondary organic aerosols (SOA). In this study, the applicability of dynamic solid-phase microextraction (SPME) for the sampling of atmospheric BVOCs and their oxidation products was tested. These compounds were then analysed via portable gas chromatography-mass spectrometry (GC-MS). The measurements were performed in mid-summer 2013 at the Station for Measuring Ecosystem-Atmosphere Relations, SMEAR II in Hyytiälä, Finland. Numerous classes of compounds were efficiently sampled on PDMS/DVB coated SPME, thermally desorbed and analysed by GC-MS, including monoterpenes, their oxidation products, and amines. Results were analysed against meteorological conditions observed during the sampling campaign and the total amount of monoterpenes obtained by proton-transfer-reaction mass spectrometry (PTR-MS). The comparison of the referred data with obtained results demonstrated the capability of the dynamic SPME method for fast in-situ sampling and analysis of organic gaseous compounds in the atmosphere with minimal analytical steps.

  7. Quantifying the uncertainty in simulating global tropospheric composition due to the variability in global emission estimates of Biogenic Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    J. E. Williams

    2013-03-01

    Full Text Available The emission of organic compounds from biogenic processes acts as an important source of trace gases in remote regions away from urban conurbations, and is likely to become more important in future decades due to the further mitigation of anthropogenic emissions that affect air quality and climate forcing. In this study we examine the contribution of biogenic volatile organic compounds (BVOCs towards global tropospheric composition using the global 3-D chemistry transport model TM5 and the recently developed modified CB05 chemical mechanism. By comparing regional BVOC emission estimates we show that biogenic processes act as dominant sources for many regions and exhibit a large variability in the annually and seasonally integrated emission fluxes. By performing sensitivity studies we find that the contribution of BVOC species containing between 1 to 3 carbon atoms has an impact on the resident mixing ratios of tropospheric O3 and CO, accounting for ~2.5% and ~10.8% of the simulated global distribution, respectively. This is approximately a third of the cumulative effect introduced by isoprene and the monoterpenes. By examining an ensemble of 3-D global chemistry transport simulations which adopt different global BVOC emission inventories we determine the associated uncertainty introduced towards simulating the composition of the troposphere for the year 2000. By comparing the model ensemble values against a composite of atmospheric measurements we show that the effects on tropospheric O3 are limited to the lower troposphere (with an uncertainty between −2% to 10%, whereas that for tropospheric CO extends up to the upper troposphere (with an uncertainty of between 10 to 45%. Comparing the mixing ratios for low molecular weight alkenes in TM5 against surface measurements taken in Europe implies that the cumulative emission estimates are too low, regardless of the chosen BVOC inventory. This variability in the global distribution of CO due to

  8. Quantifying the uncertainty in simulating global tropospheric composition due to the variability in global emission estimates of Biogenic Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    J. E. Williams

    2012-11-01

    Full Text Available The emission of organic compounds from biogenic processes acts as an important source of trace gases in remote regions away from urban conurbations, and is likely to become more important in future decades due to the further mitigation of anthropogenic emissions that affect air quality and climate forcing. In this study we examine the contribution of biogenic volatile organic compounds (BVOCs towards global tropospheric composition using the global 3-D chemistry transport model TM5 and the recently developed modified CB05 chemical mechanism. By comparing regional BVOC emission estimates we show that biogenic processes act as dominant sources for many regions and exhibit a large variability in the annually and seasonally integrated emission fluxes. By performing sensitivity studies we find that the contribution of BVOC species containing between 1 to 3 carbon atoms has an impact on the resident mixing ratios of tropospheric O3 and CO, accounting for ~3% and ~11% of the simulated global distribution, respectively. This is approximately a third of the cumulative effect introduced by isoprene and the monoterpenes. By examining an ensemble of 3-D global chemistry-transport simulations which adopt different global BVOC emission inventories we determine the associated uncertainty introduced towards simulating the composition of the troposphere for the year 2000. By comparing the model ensemble values against a~composite of atmospheric measurements we show that the effects on tropospheric O3 are limited to the lower troposphere (with an uncertainty between −2% to 10%, whereas that for tropospheric CO extends up to the upper troposphere (with an uncertainty of between 10 to 45%. Comparing the mixing ratios for low molecular weight alkenes in TM5 against surface measurements taken in Europe implies that the cumulative emission estimates are too low, regardless of the chosen BVOC inventory. This variability in the global

  9. Estimation of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem in China using real-time remote sensing data

    Science.gov (United States)

    Li, M.; Huang, X.; Li, J.; Song, Y.

    2012-04-01

    Because of the high emission intensity and reactivity, biogenic volatile organic compounds (BVOCs) play a significant role in the terrestrial ecosystems, human health, secondary pollution, global climate change and the global carbon cycle. Past estimations of BVOC emissions in China were based on outdated algorithms and limited meteorological data, and there have been significant inconsistences between the land surface parameters of dynamic models and those of BVOC estimation models, leading to large inaccuracies in the estimated results. To refine BVOC emission estimations for China and to further explore the role of BVOCs in atmospheric chemical processes, we used the latest algorithms of MEGAN (Model of Emissions of Gases and Aerosols from Nature) with MM5 (the Fifth-Generation Mesoscale Model) providing highly resolved meteorological data, to estimate the biogenic emissions of isoprene (C5H8) and seven monoterpene species (C10H16) in 2006. Real-time MODIS (Moderate Resolution Imaging Spectroradiometer) data were introduced to update the land surface parameters and improve the simulation performance of MM5, and to modify the influence of leaf area index (LAI) and leaf age deviation from standard conditions. In this study, the annual BVOC emissions for the whole country totaled 12.97 Tg C, a relevant value much lower than that given in global estimations but higher than the past estimations in China. Therein, the most important individual contributor was isoprene (9.36 Tg C), followed by α-pinene (1.24 Tg C yr-1) and β-pinene (0.84 Tg C yr-1). Due to the considerable regional disparity in plant distributions and meteorological conditions across China, BVOC emissions presented significant spatial-temporal variations. Spatially, isoprene emission was concentrated in South China, which is covered by large areas of broadleaf forests and shrubs. On the other hand, Southeast China was the top-ranking contributor of monoterpenes, in which the dominant vegetation

  10. Computational and Experimental Assessment of Benzene Cation Chemistry for the Measurement of Marine Derived Biogenic Volatile Organic Compounds with Chemical Ionization Mass Spectrometry

    Science.gov (United States)

    Zoerb, M.; Kim, M.; Zimmermann, K.; Bertram, T. H.

    2013-12-01

    Chemical ionization mass spectrometry (CIMS) is a highly selective and sensitive technique for the measurement of trace gases in the atmosphere. However, competing side reactions and dependence on relative humidity (RH) can make the transition from the laboratory to the field challenging. Effective implementation of chemical ionization requires a thorough knowledge of the elementary steps leading to ionization of the analyte. We have recently investigated benzene cations for the detection of marine derived biogenic volatile organic compounds (BVOCs), such isoprene and terpene compounds, from algal bloom events. Our experimental results indicate that benzene ion chemistry is an attractive candidate for field measurements, and the RH dependence is weak. To further understand the advantages and limitations of this approach, we have also used electronic structure theory calculations to compliment the experimental work. These theoretical methods can provide valuable insight into the physical chemistry of ion molecule reactions including thermodynamical information, the stability of ions to fragmentation, and potential sources of interference such as dehydration to form isobaric ions. The combined experimental and computational approach also allows validation of the theoretical methods and will provide useful information towards gaining predictive power for the selection of appropriate reagent ions for future experiments.

  11. Diel Variation of Biogenic Volatile Organic Compound Emissions- A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light

    Science.gov (United States)

    Lindwall, Frida; Faubert, Patrick; Rinnan, Riikka

    2015-01-01

    Many hours of sunlight in the midnight sun period suggest that significant amounts of biogenic volatile organic compounds (BVOCs) may be released from arctic ecosystems during night-time. However, the emissions from these ecosystems are rarely studied and limited to point measurements during daytime. We measured BVOC emissions during 24-hour periods in the field using a push-pull chamber technique and collection of volatiles in adsorbent cartridges followed by analysis with gas chromatography- mass spectrometry. Five different arctic vegetation communities were examined: high arctic heaths dominated by Salix arctica and Cassiope tetragona, low arctic heaths dominated by Salix glauca and Betula nana and a subarctic peatland dominated by the moss Warnstorfia exannulata and the sedge Eriophorum russeolum. We also addressed how climate warming affects the 24-hour emission and how the daytime emissions respond to sudden darkness. The emissions from the high arctic sites were lowest and had a strong diel variation with almost no emissions during night-time. The low arctic sites as well as the subarctic site had a more stable release of BVOCs during the 24-hour period with night-time emissions in the same range as those during the day. These results warn against overlooking the night period when considering arctic emissions. During the day, the quantity of BVOCs and the number of different compounds emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene, α -phellandrene, 3-carene and α-terpinene as well as isoprene were absent in dark measurements during the day. Warming by open top chambers increased the emission rates both in the high and low arctic sites, forewarning higher emissions in a future warmer climate in the Arctic. PMID:25897519

  12. Estimation of biogenic volatile organic compound (BVOC emissions from the terrestrial ecosystem in China using real-time remote sensing data

    Directory of Open Access Journals (Sweden)

    M. Li

    2012-03-01

    Full Text Available Because of the high emission rate and reactivity, biogenic volatile organic compounds (BVOCs play a significant role in the terrestrial ecosystems, human health, secondary pollution, global climate change and the global carbon cycle. Past estimations of BVOC emissions in China were based on outdated algorithms and coarsely resolved meteorological data, and there have been significant inconsistences between the land surface parameters of dynamic models and those of BVOC estimation models, leading to large inaccuracies in the estimated results. To refine BVOC emission estimations for China and to further explore the role of BVOCs in the atmosphere, we used the latest algorithms of MEGAN (Model of Emissions of Gases and Aerosols from Nature, with MM5 (the Fifth-Generation Mesoscale Model providing highly resolved meteorological data, to estimate the biogenic emissions of isoprene (C5H8 and seven monoterpene species (C10H16 in 2006. Real-time MODIS (Moderate Resolution Imaging Spectroradiometer data were introduced to update the land surface parameters and to improve the simulation performance of MM5, and to determine the influence of leaf area index (LAI and leaf age deviation from standard conditions. In this study, the annual BVOC emissions for the whole country totaled 12.97 Tg C, a relevant value compared with past studies. Therein, the most important individual contributor was isoprene (9.36 Tg C yr−1, followed by α-pinene (1.24 Tg C yr−1 and β-pinene (0.84 Tg C yr−1. Due to the considerable regional disparity in plant distributions and meteorological conditions across China, BVOC emissions presented significant spatial and temporal variations. Spatially, isoprene emission was concentrated in South China, which is covered by large areas of broadleaf forests and shrubs. While Southeast China was the top-ranking contributor of monoterpenes, in which the dominant

  13. Biogenic Volatile Organic Compound (BVOC) emissions from agricultural crop species: is guttation a possible source for methanol emissions following light/dark transition ?

    Science.gov (United States)

    Mozaffar, Ahsan; Amelynck, Crist; Bachy, Aurélie; Digrado, Anthony; Delaplace, Pierre; du Jardin, Patrick; Fauconnier, Marie-Laure; Schoon, Niels; Aubinet, Marc; Heinesch, Bernard

    2015-04-01

    In the framework of the CROSTVOC (CROp STress VOC) project, the exchange of biogenic volatile organic compounds (BVOCs) between two important agricultural crop species, maize and winter wheat, and the atmosphere has recently been measured during an entire growing season by using the eddy covariance technique. Because of the co-variation of BVOC emission drivers in field conditions, laboratory studies were initiated in an environmental chamber in order to disentangle the responses of the emissions to variations of the individual environmental parameters (such as PPFD and temperature) and to diverse abiotic stress factors. Young plants were enclosed in transparent all-Teflon dynamic enclosures (cuvettes) through which BVOC-free and RH-controlled air was sent. BVOC enriched air was subsequently sampled from the plant cuvettes and an empty cuvette (background) and analyzed for BVOCs in a high sensitivity Proton Transfer Reaction Mass Spectrometer (hs-PTR-MS) and for CO2 in a LI-7000 non-dispersive IR gas analyzer. Emissions were monitored at constant temperature (25 °C) and at a stepwise varying PPFD pattern (0-650 µmol m-2 s-1). For maize plants, sudden light/dark transitions at the end of the photoperiod were accompanied by prompt and considerable increases in methanol (m/z 33) and water vapor (m/z 39) emissions. Moreover, guttation droplets appeared on the sides and the tips of the leaves within a few minutes after light/dark transition. Therefore the assumption has been raised that methanol is also coming out with guttation fluid from the leaves. Consequently, guttation fluid was collected from young maize and wheat plants, injected in an empty enclosure and sampled by PTR-MS. Methanol and a large number of other compounds were observed from guttation fluid. Recent studies have shown that guttation from agricultural crops frequently occurs in field conditions. Further research is required to find out the source strength of methanol emissions by this guttation

  14. A source-orientated approach for estimating daytime concentrations of biogenic volatile organic compounds in an upper layer of a boreal forest canopy

    Energy Technology Data Exchange (ETDEWEB)

    Lappalainen, H.K. [Finnish Meteorological Inst., Helsinki (Finland); Sevanto, S.; Dal Maso, M.; Taipale, R.; Kajos, M. [Helsinki Univ. (Finland). Dept. of Physics; Kolari, P.; Back, J. [Helsinki Univ. (Finland). Dept. of Forest Ecology Sciences

    2013-06-01

    Biologically justified statistical models for daytime atmospheric concentrations of methanol, acetaldehyde, acetone, isoprene and monoterpene were tested using measurements at a boreal forest stand in southern Finland in 2006-2007 and in summer 2008. The canopy-scale concentrations of all compounds except monotepene were closely correlated with shoot-scale concentrations indicating a strong link to biological emission source. All the models were based on the exponential relationship between air temperature and atmospheric concentration of biogenic volatile organic compounds (BVOCs). The first model - an exponential function of air temperature (T model) - could explain 27%-64% of the variation in BVOC daytime concentrations in the test data. The second model - a Temperature-State of Development model (T-S model) having two explaining variables (air temperature and seasonal photosynthetic efficiency) - was derived from an empirical adjustment of seasonality. This model slightly increased the fraction of explained variation but it still could not explain the high concentration peaks, which accounted for most of the unexplained variation. To better analyse these peaks we tested the Trigger model including two potential environmental triggers, a PAR index (high photosynthetically active photon flux density (PAR) and high ozone concentration, that could increase the concentrations momentarily. However, the Trigger model described the peak concentrations only somewhat better than the T or T-S model. It seems that it is very difficult to explain more than 32%-67% of variation in BVOC concentrations by a straightforward source-oriented modelling without deep understanding of biological and physical processes. In order to improve the models profound studies on specific stress factors and events inducing BVOC emissions are needed. (orig.)

  15. Biogenic volatile organic compounds (BVOCs) emission of Scots pine under drought stress - a 13CO2 labeling study to determine de novo and pool emissions under different treatments

    Science.gov (United States)

    Lüpke, M.

    2015-12-01

    Plants emit biogenic volatile organic compounds (BVOCs) to e.g. communicate and to defend herbivores. Yet BVOCs also impact atmospheric chemistry processes, and lead to e.g. the built up of secondary organic aerosols. Abiotic stresses, such as drought, however highly influence plant physiology and subsequently BVOCs emission rates. In this study, we investigated the effect of drought stress on BVOCs emission rates of Scots pine trees, a de novo and pool emitter, under controlled climate chamber conditions within a dynamic enclosure system consisting of four plant chambers. Isotopic labeling with 13CO2 was used to detect which ratio of emissions of BVOCs derives from actual synthesis and from storage organs under different treatments. Additionally, the synthesis rate of the BVOCs synthesis can be determined. The experiment consisted of two campaigns (July 2015 and August 2015) of two control and two treated trees respectively in four controlled dynamic chambers simultaneously. Each campaign lasted for around 21 days and can be split into five phases: adaptation, control, dry-out, drought- and re-watering phase. The actual drought phase lasted around five days. During the campaigns two samples of BVOCs emissions were sampled per day and night on thermal desorption tubes and analyzed by a gas chromatograph coupled with a mass spectrometer and a flame ionization detector. Additionally, gas exchange of water and CO2, soil moisture, as well as leaf and chamber temperature was monitored continuously. 13CO2 labeling was performed simultaneously in all chambers during the phases control, drought and re-watering for five hours respectively. During the 13CO2 labeling four BVOCs emission samples per chamber were taken to identify the labeling rate on emitted BVOCs. First results show a decrease of BVOCs emissions during the drought phase and a recovery of emission after re-watering, as well as different strength of reduction of single compounds. The degree of labeling with 13

  16. Volatile Organic Compounds (VOCs)

    Science.gov (United States)

    ... Organic Compounds' Impact on Indoor Air Quality Volatile Organic Compounds' Impact on Indoor Air Quality On this page: ... Exposure Standards or Guidelines Additional Resources Introduction Volatile organic compounds (VOCs) are emitted as gases from certain solids ...

  17. Fluxes of ozone and Biogenic Volatile Organic Compounds in a mixed Mediterranean forest over a transition period between summer and fall

    Science.gov (United States)

    Fares, S.; Schnitzhofer, R.; Hansel, A.; Petersson, F.; Matteucci, G.; Scarascia Mugnozza, G.; Jiang, X.; Guenther, A. B.; Loreto, F.

    2012-12-01

    Mediterranean plant ecosystems are exposed to abiotic stressors that may be exacerbated by climate change dynamics. Moreover, plants need now to cope with increasing anthropogenic pressures, often associated with expanding impacts of urbanization. Anthropogenic stressors include harmful gases (e.g. ozone,) that are transported from anthropogenic pollution sources to the vegetation. They may alter ecophysiology and compromise metabolism of Mediterranean plants. A disproportionate number of Mediterranean ecosystems, many dominated by forest trees, are being transformed into "urban or pre-urban forests". This is in particular the case for Castelporziano Estate, a 6,000 ha Mediterranean forest located just 25 km from Rome downtown at the coast of the Mediterranean Sea. In September 2011 an intensive field campaign was performed in Castelporziano to investigate ozone deposition and biogenic emissions of volatile organic compounds (BVOC) from a mixed Mediterranean forest, mainly composed by Quercus suber, Quercus ilex, Pinus pinea. Measurements were performed at canopy level with fast real-time instruments (a fast ozone analyzer and a Proton Transfer Reaction-Time of Flight Mass Spectrometer) that allowed eddy covariant flux measurements of ozone and BVOC. In the transitional period from a warm and dry summer to a wet and moderately cool fall we typically observed tropospheric ozone volume mixing ratios (VMR) of 60 ppb at around noon, with high deposition fluxes (up to -10 nmol m-2 s-1) into the forest canopy. Canopy models were used to to calculate that up to 90% of ozone uptake can be attributed to non-stomatal sinks, suggesting that chemical reactions between ozone and reactive BVOC may have played an important role. The concentrations of reactive isoprenoids (e.g. sesquiterpenes) were indeed observed to decrease during the central hours of the day, in coincidence with increased ozone concentrations. Concentrations and fluxes of isoprenoid

  18. Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants.

    Directory of Open Access Journals (Sweden)

    Andrea Ghirardo

    Full Text Available BACKGROUND: Globally plants are the primary sink of atmospheric CO(2, but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene and other biogenic volatile organic compounds (BVOC. The prediction of plant carbon (C uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important. METHODOLOGY: We combined tunable diode laser absorption spectrometry (TDLAS and proton transfer reaction mass spectrometry (PTR-MS for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens saplings. This was achieved by feeding either (13CO(2 to leaves or (13C-glucose to shoots via xylem uptake. The translocation of (13CO(2 from the source to other plant parts could be traced by (13C-labeled isoprene and respiratory (13CO(2 emission. PRINCIPAL FINDING: In intact plants, assimilated (13CO(2 was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h(-1. (13C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76-78% from recently fixed CO(2, to a minor extent from xylem-transported sugars (7-11% and from photosynthetic intermediates with slower turnover rates (8-11%. CONCLUSION: We quantified the plants' C loss as respiratory CO(2 and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux.

  19. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey); Tolunay, Doganay [Department of Soil Science and Ecology, Faculty of Forestry, Istanbul University, Bahcekoy, Istanbul (Turkey); Odabasi, Mustafa [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey); Elbir, Tolga, E-mail: tolga.elbir@deu.edu.tr [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey)

    2014-08-15

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO{sub 2}) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m{sup 2} s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/g h was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/g h. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta

  20. Emission and Chemical Transformation of Biogenic Volatile Organic Compounds(ECHO)- Investigation in and above a Mixed Forest Stand: An Overview

    Science.gov (United States)

    Koppmann, R.; FZJ Echo Team; Kesselmeier, J.; Meixner, F. X.; MPI Echo Team; Warnke, J.; Hoffmann, T.; Aubrun, S.; Leitl, B.; Schatzmann, M.; Dlugi, R.; Zelger, M.; Kleffmann, J.; Neftel, A.; Hansel, A.; Thomas, C.; Neininger, B.

    2003-12-01

    The objective of the ECHO project is to provide a better understanding of forest stands as a complex source of reactive trace gases into the troposphere. This will be achieved by a unique combination of field, laboratory, and simulation experiments investigating chemical and dynamical processes within the canopy and thus the forest stand as a net source of reactive trace compounds into the planetary boundary layer. The field experiments were carried out in the Stetternicher Forest on the area of the Research Center J\\x81lich. The area has been a deciduous forest for more than 300 years and is surrounded by farmland. Dominating tree species are oaks, beech, and birch. Prevailing wind direction is from the south west, more seldom from the south east. The site is only weakly influenced by urban air masses. At the site three towers were set up, which were equipped with a large set of instruments to measure micrometeorological parameters, biogenic and anthropogenic volatile organic compounds, ozone, nitrogen oxides, and CO, as well as radiation in and above the forest. Additionally, measurements of meteorological parameters were done at the meteorological tower up to a height of 120 m and with a SODAR-RASS system up to 300 m. The first field study took place between June 3 and July 12, 2002, the second field campaign between June 23 and August 1, 2003. As a speciality of the ECHO project, important aspects of the different processes determining the net emission from forest stands into the atmosphere are investigated in laboratory and simulation experiments. The chemical processing of the trace gas mixtures observed in the forest stand is investigated in the atmosphere simulation chamber SAPHIR under controlled conditions. This enables a detailed study of the chemical processes under exclusion of transport processes and sensitivity studies by direct modification of individual chemical parameters. Emission and uptake of VOC by plants are investigated in plant chambers

  1. Emissions and ambient distributions of Biogenic Volatile Organic Compounds (BVOC in a ponderosa pine ecosystem: interpretation of PTR-MS mass spectra

    Directory of Open Access Journals (Sweden)

    S. Kim

    2010-02-01

    Full Text Available Two proton-transfer-reaction mass spectrometry systems were deployed at the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen-Southern Rocky Mountain 2008 field campaign (BEACHON-SRM08; July to September, 2008 at the Manitou Forest Observatory in a ponderosa pine woodland near Woodland Park, Colorado USA. The two PTR-MS systems simultaneously measured BVOC emissions and ambient distributions of their oxidation products. Here, we present mass spectral analysis in a wide range of masses (m/z 40+ to 210+ to assess our understanding of BVOC emissions and their photochemical processing inside of the forest canopy. The biogenic terpenoids, 2-methyl-3-butene-2-ol (MBO, 50.2% and several monoterpenes (MT, 33.5% were identified as the dominant BVOC emissions from a transmission corrected mass spectrum (PTR-MS, averaged over the daytime (11 a.m. to 3 p.m., local time of three days. To assess contributions of oxidation products of local BVOC, we calculate an oxidation product spectrum with the OH- and ozone-initiated oxidation product distribution mass spectra of two major BVOC emissions at the ecosystem (MBO and β-pinene that were observed from laboratory oxidation experiments. The majority (~76% of the total signal in the transmission corrected PTR-MS spectra could be explained by identified compounds. The remainder are attributed to oxidation products of BVOC emitted from nearby ecosystems and transported to the site, and oxidation products of unidentified BVOC emitted from the ponderosa pine ecosystem.

  2. Monitoring biogenic volatile compounds emitted by Eucalyptus citriodora using SPME.

    Science.gov (United States)

    Zini, C A; Augusto, F; Christensen, T E; Smith, B P; Caramão, E B; Pawliszy, J

    2001-10-01

    A procedure to monitor BVOC emitted by living plants using SPME technique is presented. For this purpose, a glass sampling chamber was designed. This device was employed for the characterization of biogenic volatile compounds emitted by leaves of Eucalyptus citriodora. After extraction with SPME fibers coated with PDMS/ DVB, it was possible to identify or detect 33 compounds emitted by this plant. A semiquantitative approach was applied to monitor the behavior of the emitted BVOC during 9 days. Circadian profiles of the variation in the concentration of isoprene were plotted. Using diffusion-based SPME quantitation, a recently introduced analytical approach, with extraction times as short as 15 s, it was possible to quantify subparts-per-billion amounts of isoprene emitted by this plant. PMID:11605854

  3. Assessment of a relaxed eddy accumulation for measurements of fluxes of biogenic volatile organic compounds: Study over arable crops and a mature beech forest

    DEFF Research Database (Denmark)

    Gallagher, M.W.; Clayborough, R.; Beswick, K.M.;

    2000-01-01

    (Fagus Sylvatica) during the FOREXNOX program. Measurements from a site where winter wheat and barley (Hordeum Vulgare ann Triticum Aestivum) were being harvested are also presented. The system was inter-compared with two different eddy correlation systems for measuring CO2 fluxes. Good results were...... obtained with correlation coefficients for the REA system ranging from 0.71 to 0.82, lending further confidence in the use of this technique, Daily averaged biogenic emissions from the wheat and barley canopies were significantly larger than expected, likely a result of harvesting. Fluxes measured over...... the beech canopy were also larger than might be expected from northern latitude deciduous forests. (C) 2000 Elsevier Science Ltd. All rights reserved....

  4. Fungal spores overwhelm biogenic organic aerosols in a midlatitudinal forest

    Science.gov (United States)

    Zhu, Chunmao; Kawamura, Kimitaka; Fukuda, Yasuro; Mochida, Michihiro; Iwamoto, Yoko

    2016-06-01

    Both primary biological aerosol particles (PBAPs) and oxidation products of biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosols (OAs) in forested regions. However, little is known about their relative importance in diurnal timescales. Here, we report biomarkers of PBAP and secondary organic aerosols (SOAs) for their diurnal variability in a temperate coniferous forest in Wakayama, Japan. Tracers of fungal spores, trehalose, arabitol and mannitol, showed significantly higher levels in nighttime than daytime (p levels in daytime than nighttime, indicating substantial photochemical SOA formation. Using tracer-based methods, we estimated that fungal spores account for 45 % of organic carbon (OC) in nighttime and 22 % in daytime, whereas BVOC oxidation products account for 15 and 19 %, respectively. To our knowledge, we present for the first time highly time-resolved results that fungal spores overwhelmed BVOC oxidation products in contributing to OA especially in nighttime. This study emphasizes the importance of both PBAPs and SOAs in forming forest organic aerosols.

  5. Large increases in Arctic biogenic volatile emissions are a direct effect of warming

    Science.gov (United States)

    Kramshøj, Magnus; Vedel-Petersen, Ida; Schollert, Michelle; Rinnan, Åsmund; Nymand, Josephine; Ro-Poulsen, Helge; Rinnan, Riikka

    2016-05-01

    Biogenic volatile organic compounds are reactive gases that can contribute to atmospheric aerosol formation. Their emission from vegetation is dependent on temperature and light availability. Increasing temperature, changing cloud cover and shifting composition of vegetation communities can be expected to affect emissions in the Arctic, where the ongoing climate changes are particularly severe. Here we present biogenic volatile organic compound emission data from Arctic tundra exposed to six years of experimental warming or reduced sunlight treatment in a randomized block design. By separately assessing the emission response of the whole ecosystem, plant shoots and soil in four measurements covering the growing season, we have identified that warming increased the emissions directly rather than via a change in the plant biomass and species composition. Warming caused a 260% increase in total emission rate for the ecosystem and a 90% increase in emission rates for plants, while having no effect on soil emissions. Compared to the control, reduced sunlight decreased emissions by 69% for the ecosystem, 61-65% for plants and 78% for soil. The detected strong emission response is considerably higher than observed at more southern latitudes, emphasizing the high temperature sensitivity of ecosystem processes in the changing Arctic.

  6. Composition Spectrum of Biogenic Volatile Organic Compounds Released by Typical Flowers in Beijing%北京市典型绿地花卉植物BVOCs释放成分谱研究

    Institute of Scientific and Technical Information of China (English)

    武利玉; 孙迎雪; 田媛; 苏德荣

    2014-01-01

    采用静态箱式采样-固体吸附-热脱附-气相色谱/质谱联用技术(TDS-GC/MS),于2011年3月到2012年12月期间对夹竹桃(Allemanda cathartica)、变叶木(Codiaeum variegatum var.pictum)、广东万年青(Aglaonema modestum)3种典型花卉的生物挥发性有机物(biogenic volatile organic compounds,BVOCs)的释放成分进行了测定研究.结果表明:3种花卉所释放的BVOCs都以烷烃、烯类、芳香烃类和酯类物质为主,含有少量的醇类、醛类、卤代烃和含氮类化合物;进入夏季后3种花卉烷烃、烯烃、芳香烃和酯类的释放都有明显的增加.3种花卉释放出的3种代表性有毒有害物质邻苯二甲酸二丁酯、乙苯和苯乙烯的释放量均为夏季最高,3种花卉有害物质释放量由高到低分别为广东万年青、变叶木和夹竹桃.研究结果对于实施对流层臭氧控制和城市绿地植物的合理选择和搭配具有重要的指导意义.

  7. Volatile organic compounds

    International Nuclear Information System (INIS)

    The goal is: Not more emission of volatile organic compounds (VOCs) than necessary. The items discussed in this presentation are the VOCs, how to calculate emission of VOCs, how to reduce or avoid them, and different recovery processes. The largest source of Norwegian emissions of non methane VOCs (NMVOCs) is offshore loading of raw petroleum. Emissions of VOCs should be reduced mainly for two reasons: (1) on sunny days NMVOCs may react with NOx to form ozon and smog close to the surface, (2) ozone and smog close to the surface may be harmful to plants and animals, and they are hazardous to human health. As for the calculation of VOC emissions, the VOCON project will release the calculation program HCGASS in 1999. This project is a cooperative project headed by SINTEF/Marintek

  8. 植物源挥发性有机物对氮沉降响应研究展望%Research perspective for the effects of nitrogen deposition on biogenic volatile organic compounds

    Institute of Scientific and Technical Information of China (English)

    黄娟; 莫江明; 孔国辉; 鲁显楷; 张炜

    2011-01-01

    Biogenic volatile organic compounds (BVOCs) are volatile hydrocarbons emitted by plants with boiling point in the range of 50-260℃ and saturated vapor pressure at room temperature beyond 133. 322 Pa. Because these compounds have high reactive activities and participate in atmospheric chemistry process of troposphere, they potentially affect atmospheric environmental quality, global change and the cycling of carbon(C) and nitrogen ( N). BVOCs belong to plant secondary metabolites and are considered to be plant defensive matters. Some species among BVOCs even take important ecological roles, such as resisting environmental changes, stresses and mechanical injuries, being transferred as signals among plants or between plants and insects. As a result, the functions of BVOCs and the relationship between BVOCs and global change are increasingly concerned. Nowadays, N deposition is globalizing and has become one of the new global change phenomena, and is projected to increase rapidly with development of industry, agriculture and urbanization. Elevated N deposition has been known to seriously disturb the pattern of ecosystem C and N cycles, threat the ecosystem health and services, such as inducing forest soil acidification, reducing forest plant biodiversity, ecosystem N saturation, and so on. Increasing N deposition, as a new environmental factor, is stealthily and rapidly affecting BVOCs emission rates and species, and their functions in ecosystems. However, there have been so far few reports related to the effects of N deposition on BVOCs. In this paper, based on the available information from the literature, we firstly reviewed the affecting factors of BVOCs, secondly discussed the effects of N availability on BVOCs, and then proposed a model of possible impacts of N deposition on BVOCs. The proposed model showed that, in an N-deficient ecosystem, if N deposition offseted N deficiency and favored plant growth, huge BVOCs release would be happened; while in an N

  9. Characterization of Highly Oxidized Molecules in Fresh and Aged Biogenic Secondary Organic Aerosol.

    Science.gov (United States)

    Tu, Peijun; Hall, Wiley A; Johnston, Murray V

    2016-04-19

    In this work, highly oxidized multifunctional molecules (HOMs) in fresh and aged secondary organic aerosol (SOA) derived from biogenic precursors are characterized with high-resolution mass spectrometry. Fresh SOA was generated by mixing ozone with a biogenic precursor (β-pinene, limonene, α-pinene) in a flow tube reactor. Aging was performed by passing the fresh SOA through a photochemical reactor where it reacted with hydroxyl radicals. Although these aerosols were as a whole not highly oxidized, molecular analysis identified a significant number of HOMs embedded within it. HOMs in fresh SOA consisted mostly of monomers and dimers, which is consistent with condensation of extremely low-volatility organic compounds (ELVOCs) that have been detected in the gas phase in previous studies and linked to SOA particle formation. Aging caused an increase in the average number of carbon atoms per molecule of the HOMs, which is consistent with particle phase oxidation of (less oxidized) oligomers already existing in fresh SOA. HOMs having different combinations of oxygen-to-carbon ratio, hydrogen-to-carbon ratio and average carbon oxidation state are discussed and compared to low volatility oxygenated organic aerosol (LVOOA), which has been identified in ambient aerosol based on average elemental composition but not fully understood at a molecular level. For the biogenic precursors and experimental conditions studied, HOMs in fresh biogenic SOA have molecular formulas more closely resembling LVOOA than HOMs in aged SOA, suggesting that aging of biogenic SOA is not a good surrogate for ambient LVOOA. PMID:27000653

  10. Organosulfate formation in biogenic secondary organic aerosol.

    Science.gov (United States)

    Surratt, Jason D; Gómez-González, Yadian; Chan, Arthur W H; Vermeylen, Reinhilde; Shahgholi, Mona; Kleindienst, Tadeusz E; Edney, Edward O; Offenberg, John H; Lewandowski, Michael; Jaoui, Mohammed; Maenhaut, Willy; Claeys, Magda; Flagan, Richard C; Seinfeld, John H

    2008-09-11

    Organosulfates of isoprene, alpha-pinene, and beta-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive series of laboratory photooxidation (i.e., OH-initiated oxidation) and nighttime oxidation (i.e., NO3-initiated oxidation under dark conditions) experiments using nine monoterpenes (alpha-pinene, beta-pinene, d-limonene, l-limonene, alpha-terpinene, gamma-terpinene, terpinolene, Delta(3)-carene, and beta-phellandrene) and three monoterpenes (alpha-pinene, d-limonene, and l-limonene), respectively. Organosulfates were characterized using liquid chromatographic techniques coupled to electrospray ionization combined with both linear ion trap and high-resolution time-of-flight mass spectrometry. Organosulfates are formed only when monoterpenes are oxidized in the presence of acidified sulfate seed aerosol, a result consistent with prior work. Archived laboratory-generated isoprene SOA and ambient filter samples collected from the southeastern U.S. were reexamined for organosulfates. By comparing the tandem mass spectrometric and accurate mass measurements collected for both the laboratory-generated and ambient aerosol, previously uncharacterized ambient organic aerosol components are found to be organosulfates of isoprene, alpha-pinene, beta-pinene, and limonene-like monoterpenes (e.g., myrcene), demonstrating the ubiquity of organosulfate formation in ambient SOA. Several of the organosulfates of isoprene and of the monoterpenes characterized in this study are ambient tracer compounds for the occurrence of biogenic SOA formation under acidic conditions. Furthermore, the nighttime oxidation experiments conducted under highly acidic conditions reveal a viable mechanism for the formation of previously identified nitrooxy organosulfates found in ambient nighttime aerosol samples. We estimate

  11. A large source of low-volatility secondary organic aerosol

    Science.gov (United States)

    Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B.; Jørgensen, Solvejg; Kjaergaard, Henrik G.; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R.; Wildt, Jürgen; Mentel, Thomas F.

    2014-02-01

    Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

  12. Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations

    Science.gov (United States)

    Lihavainen, H.; Asmi, E.; Aaltonen, V.; Makkonen, U.; Kerminen, V. M.

    2015-12-01

    Biogenic secondary organic aerosol (BSOA) originating from the emissions of volatile organic compounds from terrestrial vegetation constitutes an important part of the natural aerosol system. According to large-scale model simulations, the direct and indirect radiative effects of the BSOA are potentially large, yet poorly quantified. We used more than 5 years of continuous aerosol measurements to estimate the direct radiative feedback associated with the formation of biogenic secondary organic aerosol at a remote continental site at the edge of the boreal forest zone in Northern Finland. Our upper-limit estimate for this feedback during the summer period (ambient temperatures above 10 °C) was -97±66 mW m-2 K-1 (mean ± STD) when using measurements of the aerosol optical depth (fAOD) and -63±40 mW m-2 K-1 when using measurements of the "dry" aerosol scattering coefficient at the ground level (fσ). Here STD represents the variability in f caused by the observed variability in the quantities used to derive the value of f. Compared with our measurement site, the magnitude of this direct radiative feedback is expected to be larger in warmer continental regions with more abundant biogenic emissions, and even larger in regions where biogenic emissions are mixed with anthropogenic pollution.

  13. atmospheric volatile organic compounds

    Directory of Open Access Journals (Sweden)

    A. R. Koss

    2016-07-01

    organic compounds (VOCs that cannot be ionized with H3O+ ions (e.g., in a PTR-MS or H3O+ CIMS instrument. Here we describe the adaptation of a high-resolution time-of-flight H3O+ CIMS instrument to use NO+ primary ion chemistry. We evaluate the NO+ technique with respect to compound specificity, sensitivity, and VOC species measured compared to H3O+. The evaluation is established by a series of experiments including laboratory investigation using a gas-chromatography (GC interface, in situ measurement of urban air using a GC interface, and direct in situ measurement of urban air. The main findings are that (1 NO+ is useful for isomerically resolved measurements of carbonyl species; (2 NO+ can achieve sensitive detection of small (C4–C8 branched alkanes but is not unambiguous for most; and (3 compound-specific measurement of some alkanes, especially isopentane, methylpentane, and high-mass (C12–C15 n-alkanes, is possible with NO+. We also demonstrate fast in situ chemically specific measurements of C12 to C15 alkanes in ambient air.

  14. Incremental Reactivity Effects on Secondary Organic Aerosol Formation in Urban Atmospheres with and without Biogenic Influence

    Science.gov (United States)

    Kacarab, Mary; Li, Lijie; Carter, William P. L.; Cocker, David R., III

    2016-04-01

    Two different surrogate mixtures of anthropogenic and biogenic volatile organic compounds (VOCs) were developed to study secondary organic aerosol (SOA) formation at atmospheric reactivities similar to urban regions with varying biogenic influence levels. Environmental chamber simulations were designed to enable the study of the incremental aerosol formation from select anthropogenic (m-Xylene, 1,2,4-Trimethylbenzene, and 1-Methylnaphthalene) and biogenic (α-pinene) precursors under the chemical reactivity set by the two different surrogate mixtures. The surrogate reactive organic gas (ROG) mixtures were based on that used to develop the maximum incremental reactivity (MIR) factors for evaluation of O3 forming potential. Multiple incremental aerosol formation experiments were performed in the University of California Riverside (UCR) College of Engineering Center for Environmental Research and Technology (CE-CERT) dual 90m3 environmental chambers. Incremental aerosol yields were determined for each of the VOCs studied and compared to yields found from single precursor studies. Aerosol physical properties of density, volatility, and hygroscopicity were monitored throughout experiments. Bulk elemental chemical composition from high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) data will also be presented. Incremental yields and SOA chemical and physical characteristics will be compared with data from previous single VOC studies conducted for these aerosol precursors following traditional VOC/NOx chamber experiments. Evaluation of the incremental effects of VOCs on SOA formation and properties are paramount in evaluating how to best extrapolate environmental chamber observations to the ambient atmosphere and provides useful insights into current SOA formation models. Further, the comparison of incremental SOA from VOCs in varying surrogate urban atmospheres (with and without strong biogenic influence) allows for a unique perspective on the impacts

  15. Incremental Reactivity Effects on Secondary Organic Aerosol Formation in Urban Atmospheres with and without Biogenic Influence

    Science.gov (United States)

    Kacarab, Mary; Li, Lijie; Carter, William P. L.; Cocker, David R., III

    2016-04-01

    Two different surrogate mixtures of anthropogenic and biogenic volatile organic compounds (VOCs) were developed to study secondary organic aerosol (SOA) formation at atmospheric reactivities similar to urban regions with varying biogenic influence levels. Environmental chamber simulations were designed to enable the study of the incremental aerosol formation from select anthropogenic (m‑Xylene, 1,2,4-Trimethylbenzene, and 1-Methylnaphthalene) and biogenic (α-pinene) precursors under the chemical reactivity set by the two different surrogate mixtures. The surrogate reactive organic gas (ROG) mixtures were based on that used to develop the maximum incremental reactivity (MIR) factors for evaluation of O3 forming potential. Multiple incremental aerosol formation experiments were performed in the University of California Riverside (UCR) College of Engineering Center for Environmental Research and Technology (CE-CERT) dual 90m3 environmental chambers. Incremental aerosol yields were determined for each of the VOCs studied and compared to yields found from single precursor studies. Aerosol physical properties of density, volatility, and hygroscopicity were monitored throughout experiments. Bulk elemental chemical composition from high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) data will also be presented. Incremental yields and SOA chemical and physical characteristics will be compared with data from previous single VOC studies conducted for these aerosol precursors following traditional VOC/NOx chamber experiments. Evaluation of the incremental effects of VOCs on SOA formation and properties are paramount in evaluating how to best extrapolate environmental chamber observations to the ambient atmosphere and provides useful insights into current SOA formation models. Further, the comparison of incremental SOA from VOCs in varying surrogate urban atmospheres (with and without strong biogenic influence) allows for a unique perspective on the impacts

  16. A large source of low-volatility secondary organic aerosol

    DEFF Research Database (Denmark)

    Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard;

    2014-01-01

    particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate......Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar...... radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed...

  17. Volatile organic compound emission profiles of four common arctic plants

    DEFF Research Database (Denmark)

    Vedel-Petersen, Ida; Schollert, Michelle; Nymand, Josephine;

    2015-01-01

    The biogenic volatile organic compound (BVOC) emissions from plants impact atmosphere and climate. The species-specific emissions, and thereby the atmospheric impact, of many plant species are still unknown. Knowledge of BVOC emission from arctic plants is particularly limited. The vast area...... and relatively high leaf temperature give the Arctic potential for emissions that cannot be neglected. This field study aimed to elucidate the BVOC emission profiles for four common arctic plant species in their natural environment during the growing season. BVOCs were sampled from aboveground parts of Empetrum...

  18. Volatile organic compound emissions in relation to plant carbon fixation and the terrestrial carbon budget

    NARCIS (Netherlands)

    Kesselmeier, J.; Ciccioli, P.; Kuhn, U.; Stefani, P.; Biesenthal, T.; Rottenberger, S.; Wolf, A.; Vitullo, M.; Valentini, R.; Nobre, A.; Kabat, P.; Andreae, M.O.

    2002-01-01

    A substantial amount of carbon is emitted by terrestrial vegetation as biogenic volatile organic compounds (VOC), which contributes to the oxidative capacity of the atmosphere, to particle production and to the carbon cycle. With regard to the carbon budget of the terrestrial biosphere, a release of

  19. Evidence of Aqueous Secondary Organic Aerosol Formation from Biogenic Emissions in the North American Sonoran Desert

    Science.gov (United States)

    Sorooshian, A.; Youn, J.; Wang, Z.; Wonaschuetz, A.; Arellano, A. F.; Betterton, E. A.

    2013-12-01

    This study examines the role of aqueous secondary organic aerosol (SOA) formation in the North American Sonoran Desert as a result of intense solar radiation, enhanced moisture, and biogenic volatile organic compounds (BVOCs). The ratio of water-soluble organic carbon (WSOC) to organic carbon (OC) nearly doubles during the monsoon season relative to other seasons of the year. When normalized by mixing height, the WSOC enhancement during monsoon months relative to preceding dry months (May - June) exceeds that of sulfate by nearly a factor of ten. WSOC:OC and WSOC are most strongly correlated with moisture parameters, temperature, and concentrations of ozone and BVOCs. No positive relationship was identified between WSOC or WSOC:OC and anthropogenic tracers such as carbon monoxide over a full year. These results are especially of significance as recent modeling studies suggest that aqueous SOA formation is geographically concentrated in the eastern United States and likely unimportant in other areas such as the Southwest.

  20. Secondary Organic Aerosol from biogenic VOCs over West Africa during AMMA

    Directory of Open Access Journals (Sweden)

    G. Capes

    2009-01-01

    Full Text Available This paper presents measurements of organic aerosols above subtropical West Africa during the wet season using data from the UK Facility for Airborne Atmospheric Measurements (FAAM aircraft. Measurements of biogenic volatile organic compounds (BVOC at low altitudes over these subtropical forests were made during the African Monsoon Multidisciplinary Analysis (AMMA field experiment during July and August 2006 mainly above Benin, Nigeria and Niger. Data from an Aerodyne Quadrupole Aerosol Mass Spectrometer show a median organic aerosol loading of 1.08 μg m−3 over tropical West Africa, which represents the first regionally averaged assessment of organic aerosol mass (OM in this region during the wet season. This is in good agreement with predictions based on aerosol yields from isoprene and monoterpenes during chamber studies and model predictions based on partitioning schemes, contrasting markedly with the large under representations of OM in similar models when compared with data from mid latitudes.

  1. Formation of anthropogenic secondary organic aerosol (SOA and its influence on biogenic SOA properties

    Directory of Open Access Journals (Sweden)

    E. U. Emanuelsson

    2013-03-01

    Full Text Available Secondary organic aerosol (SOA formation from mixed anthropogenic and biogenic precursors has been studied exposing reaction mixtures to natural sunlight in the SAPHIR chamber in Jülich, Germany. In this study aromatic compounds served as examples of anthropogenic volatile organic compound (VOC and a mixture of α-pinene and limonene as an example for biogenic VOC. Several experiments with exclusively aromatic precursors were performed to establish a relationship between yield and organic aerosol mass loading for the atmospheric relevant range of aerosol loads of 0.01 to 10 μg m−3. The yields (0.5 to 9% were comparable to previous data and further used for the detailed evaluation of the mixed biogenic and anthropogenic experiments. For the mixed experiments a number of different oxidation schemes were addressed. The reactivity, the sequence of addition, and the amount of the precursors influenced the SOA properties. Monoterpene oxidation products, including carboxylic acids and dimer esters were identified in the aged aerosol at levels comparable to ambient air. OH radicals were measured by Laser Induced Fluorescence, which allowed for establishing relations of aerosol properties and composition to the experimental OH dose. Furthermore, the OH measurements in combination with the derived yields for aromatic SOA enabled application of a simplified model to calculate the chemical turnover of the aromatic precursor and corresponding anthropogenic contribution to the mixed aerosol. The estimated anthropogenic contributions were ranging from small (≈8% up to significant fraction (>50% providing a suitable range to study the effect of aerosol composition on the aerosol volatility (volume fraction remaining (VFR at 343 K: 0.86–0.94. The aromatic aerosol had higher oxygen to carbon ratio O/C and was less volatile than the biogenic fraction. However, in order to produce significant amount of aromatic SOA the reaction mixtures needed a higher

  2. Characterization of biogenic secondary organic aerosols using statistical methods; Charakterisierung Biogener Sekundaerer Organischer Aerosole mit Statistischen Methoden

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Christian

    2010-07-01

    Atmospheric aerosols have important influence on the radiation balance of the Earth, on visibility and human health. Secondary organic aerosol is formed from gas-to-particle conversion of oxidized volatile organic compounds. A dominant fraction of the gases originates from plant emissions, making biogenic secondary organic aerosol (BSOA) an especially important constituent of the atmosphere. Knowing the chemical composition of BSOA particles is crucial for a thorough understanding of aerosol processes in the environment. In this work, the chemical composition of BSOA particles was measured with aerosol mass spectrometry and analyzed with statistical methods. The experimental part of the work comprises process studies of the formation and aging of biogenic aerosols in simulation chambers. Using a plant chamber, real tree emissions were used to produce particles in a way close to conditions in forest environments. In the outdoor chamber SAPHIR, OH-radicals were produced from the photooxidation of ozone under illumination with natural sunlight. Here, BSOA was produced from defined mixtures of mono- and sesquiterpenes that represent boreal forest emissions. A third kind of experiments was performed in the indoor chamber AIDA. Here, particles were produced from ozonolysis of single monoterpenes and aged by condensing OH-oxidation products. Two aerosol mass spectrometers (AMS) were used to measure the chemical composition of the particles. One of the instruments is equipped with a quadrupole mass spectrometer providing unit mass resolution. The second instrument contains a time-of-flight mass spectrometer and provides mass resolution sufficient to distinguish different fragments with the same nominal mass. Aerosol mass spectra obtained with these instruments are strongly fragmented due to electron impact ionization of the evaporated molecules. In addition, typical BSOA mass spectra are very similar to each other. In order to get a more detailed knowledge about the mass

  3. Diurnally resolved particulate and VOC measurements at a rural site: indication of significant biogenic secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    S. J. Sjostedt

    2010-11-01

    Full Text Available We report simultaneous measurements of volatile organic compound (VOC mixing ratios including C6 to C8 aromatics, isoprene, monoterpenes, acetone and organic aerosol mass loadings at a rural location in Southwestern Ontario, Canada by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS and Aerosol Mass Spectrometry (AMS, respectively. During the three-week-long Border Air Quality and Meteorology Study in June–July 2007, air was sampled from a range of sources, including aged air from the polluted US Midwest, direct outflow from Detroit 50 km away, and clean air with higher biogenic input. After normalization to the diurnal profile of CO, a long-lived tracer, diurnal analyses show clear photochemical loss of reactive aromatics and production of oxygenated VOCs and secondary organic aerosol (SOA during the daytime. Biogenic VOC mixing ratios increase during the daytime in accord with their light- and temperature-dependent sources. Long-lived species, such as hydrocarbon-like organic aerosol and benzene show little to no photochemical reactivity on this timescale. From the normalized diurnal profiles of VOCs, an estimate of OH concentrations during the daytime, measured O3 concentrations, and laboratory SOA yields, we calculate integrated organic aerosol production amounts associated with each measured SOA precursor. Depending on whether the SOA formation is occurring in a low- or high-NOx regime, we estimate that the biogenic gases contribute between 10 to 36 times as much SOA as do the aromatic precursors, making this a highly biogenically dominated region for SOA formation. The conclusion that biogenic SOA formation is of significance to air quality in this region is supported by detailed air quality modeling during this period (Stroud et al., 2010.

  4. Factors affecting the volatilization of volatile organic compounds from wastewater

    Directory of Open Access Journals (Sweden)

    Junya Intamanee

    2006-09-01

    Full Text Available This study aimed to understand the influence of the wind speed (U10cm, water depth (h and suspended solids (SS on mass transfer coefficient (KOLa of volatile organic compounds (VOCs volatilized from wastewater. The novelty of this work is not the method used to determine KOLa but rather the use of actual wastewater instead of pure water as previously reported. The influence of U10cm, h, and SS on KOLa was performed using a volatilization tank with the volume of 100-350 L. Methyl Ethyl Ketone (MEK was selected as a representative of VOCs investigated here in. The results revealed that the relationship between KOLa and the wind speeds falls into two regimes with a break at the wind speed of 2.4 m/s. At U10cm 2.4 m/s, KOLa increased more rapidly. The relationship between KOLa and U10cm was also linear but has a distinctly higher slope. For the KOLa dependency on water depth, the KOLa decreased significantly with increasing water depth up to a certain water depth after that the increase in water depth had small effect on KOLa. The suspended solids in wastewater also played an important role on KOLa. Increased SS resulted in a significant reduction of KOLa over the investigated range of SS. Finally, the comparison between KOLa obtained from wastewater and that of pure water revealed that KOLa from wastewater were much lower than that of pure water which was pronounced at high wind speed and at small water depth. This was due the presence of organic mass in wastewater which provided a barrier to mass transfer and reduced the degree of turbulence in the water body resulting in low volatilization rate and thus KOLa. From these results, the mass transfer model for predicting VOCs emission from wastewater should be developed based on the volatilization of VOCs from wastewater rather than that from pure water.

  5. Are Some Fungal Volatile Organic Compounds (VOCs Mycotoxins?

    Directory of Open Access Journals (Sweden)

    Joan W. Bennett

    2015-09-01

    Full Text Available Volatile organic compounds (VOCs are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that “volatoxin” might be a useful term to describe biogenic volatile compounds with toxigenic properties.

  6. Are Some Fungal Volatile Organic Compounds (VOCs) Mycotoxins?

    Science.gov (United States)

    Bennett, Joan W; Inamdar, Arati A

    2015-09-22

    Volatile organic compounds (VOCs) are carbon-compounds that easily evaporate at room temperature. Toxins are biologically produced poisons; mycotoxins are those toxins produced by microscopic fungi. All fungi emit blends of VOCs; the qualitative and quantitative composition of these volatile blends varies with the species of fungus and the environmental situation in which the fungus is grown. These fungal VOCs, produced as mixtures of alcohols, aldehydes, acids, ethers, esters, ketones, terpenes, thiols and their derivatives, are responsible for the characteristic moldy odors associated with damp indoor spaces. There is increasing experimental evidence that some of these VOCs have toxic properties. Laboratory tests in mammalian tissue culture and Drosophila melanogaster have shown that many single VOCs, as well as mixtures of VOCs emitted by growing fungi, have toxic effects. This paper describes the pros and cons of categorizing toxigenic fungal VOCs as mycotoxins, uses genomic data to expand on the definition of mycotoxin, and summarizes some of the linguistic and other conventions that can create barriers to communication between the scientists who study VOCs and those who study toxins. We propose that "volatoxin" might be a useful term to describe biogenic volatile compounds with toxigenic properties.

  7. Seasonal variations of biogenic secondary organic aerosol tracers in Cape Hedo, Okinawa

    Science.gov (United States)

    Zhu, Chunmao; Kawamura, Kimitaka; Fu, Pingqing

    2016-04-01

    Secondary organic aerosol (SOA) substantially contributes to particulate organic matter affecting the regional and global air quality and the climate. Total suspended particle (TSP) samples were collected in October 2009 to February 2012 on a weekly basis at Cape Hedo, Okinawa, Japan in the western North Pacific Rim, an outflow region of Asian aerosols and precursors. The TSP samples were analyzed for SOA tracers derived from biogenic volatile organic compounds (BVOCs). Total isoprene-SOA tracers showed a maximum in summer (2.12 ± 2.02 ng m-3) and minimum in winter (1.16 ± 0.92 ng m-3). This seasonality is mainly controlled by isoprene emission from the local subtropical forest, followed by regional scale emission of isoprene from the surrounding seas and long-range transported air masses. Total monoterpene-SOA tracers peaked in March (3.38 ± 2.03 ng m-3) followed by October (2.95 ± 1.62 ng m-3). In contrast, sesquiterpene-SOA tracer, β-caryophyllinic acid, showed winter maximum (1.63 ± 1.18 ng m-3) and summer minimum (0.20 ± 0.46 ng m-3). The variations of the monoterpene- and sesquiterpene-SOA tracers are likely related to the continental outflow of oxidation products of BVOC. Using a tracer-based method, we estimated the total biogenic SOC of 0.25-157 ng m-3 (mean 35.8 ng m-3) that accounts for 0.01-9.8% (mean 2.7%) of aerosol organic carbon. Our study suggests that SOA formation in the western North Pacific Rim is involved with not only local but also regional emissions followed by long-range atmospheric transport.

  8. Emission of Biogenic Volatile Organic Compounds in the Arctic

    DEFF Research Database (Denmark)

    Lindwall, Frida

    , emitted in order to communicate within and between trophic levels and as protection against biotic and abiotic stresses, or as byproducts. Some BVOCs are very reactive, and when entering the atmosphere they rapidly react with for example hydroxyl radicals and ozone, affecting the oxidative capacity...... growing seasons, low temperatures and low statured plants, occurs at twice the speed of the global average. Changes in temperature and precipitation patterns have consequences for soil, plant species distribution, plant biomass and reproductive success. Emission and production of BVOCs are temperature...... that canopy surfaces temperatures should be used in BVOC models instead of air temperatures obtained from weather stations. BVOC emissions will likely increase significantly in a future warmer climate due to the direct effect of temperature, but also due to the indirect effect of more plants biomass. Thus...

  9. Characterization of polar organosulfates in secondary organic aerosol from the green leaf volatile 3-Z-hexenal

    Science.gov (United States)

    Evidence is provided that the green leaf volatile 3-Z-hexenal serves as a precursor for biogenic secondary organic aerosol through formation of polar organosulfates (OSs) with molecular weights (MW) 226 and 214. The MW 226 C6-OSs and MW 214 C5M-OSs were che...

  10. Volatility dependence of Henry's law constants of condensable organics: Application to estimate depositional loss of secondary organic aerosols

    Science.gov (United States)

    Hodzic, A.; Aumont, B.; Knote, C.; Lee-Taylor, J.; Madronich, S.; Tyndall, G.

    2014-07-01

    The water solubility of oxidation intermediates of volatile organic compounds that can condense to form secondary organic aerosol (SOA) is largely unconstrained in current chemistry-climate models. We apply the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere to calculate Henry's law constants for these intermediate species. Results show a strong negative correlation between Henry's law constants and saturation vapor pressures. Details depend on precursor species, extent of photochemical processing, and NOx levels. Henry's law constants as a function of volatility are made available over a wide range of vapor pressures for use in 3-D models. In an application using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) over the U.S. in summer, we find that dry (and wet) deposition of condensable organic vapors leads to major reductions in SOA, decreasing surface concentrations by ~50% (10%) for biogenic and ~40% (6%) for short chain anthropogenic precursors under the considered volatility conditions.

  11. Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions

    DEFF Research Database (Denmark)

    Donahue, Neil M.; Henry, Kaytlin M.; Mentel, Thomas F.;

    2012-01-01

    The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental...

  12. Quantifying the contribution of natural volatile organic compounds to ozone and total PM concentrations

    Science.gov (United States)

    Zare, A.; Christensen, J. H.; Irannejad, P.; Gross, A.; Brandt, J.

    2012-12-01

    Natural contributions to air pollution are important to take into account, when determining emission control strategies in order to achieve the ambient standards. The objective of this study is to assess the contribution from biogenic volatile organic compound (VOC) emissions to the formation of secondary compounds such as ozone and organic aerosol against anthropogenic sources. The contribution of the secondary organic aerosol (SOA) concentrations to fine particulate matter is subsequently investigated using a large scale air quality model. Danish Eulerian Hemispheric Model (DEHM) is a three-dimensional long-range atmospheric chemistry-transport model with a horizontal domain covering the Northern Hemisphere. In this study, DEHM has been updated with a chemical scheme for simulation of SOA from both anthropogenic and biogenic VOCs. The biogenic VOCs emissions are simulated by implementation of the Model of Emissions of Gases and Aerosols from Nature (MEGAN) into the DEHM model. Performance of the MEGAN model coupled in DEHM is validated against available measurements of biogenic VOCs (isoprene and mono-terpenes) both in Europe and North America for the year 2006. In the model, VOCs react with the hydroxyl radicals, nitrate radicals and ozone to produce one or two semi-volatile products, which are partitioned between the gas and aerosol phase based upon equilibrium partition coefficients. The results from the DEHM simulations are compared to determine the contribution from anthropogenic and biogenic sources to ozone and SOA in the modeling domain. Furthermore, simulations of ozone and organic aerosol concentrations by DEHM are evaluated using surface measurements from EMEP measuring network and the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, respectively.

  13. Secondary organic aerosol origin in an urban environment: influence of biogenic and fuel combustion precursors.

    Science.gov (United States)

    Minguillón, M C; Pérez, N; Marchand, N; Bertrand, A; Temime-Roussel, B; Agrios, K; Szidat, S; van Drooge, B; Sylvestre, A; Alastuey, A; Reche, C; Ripoll, A; Marco, E; Grimalt, J O; Querol, X

    2016-07-18

    Source contributions of organic aerosol (OA) are still not fully understood, especially in terms of quantitative distinction between secondary OA formed from anthropogenic precursors vs. that formed from natural precursors. In order to investigate the OA origin, a field campaign was carried out in Barcelona in summer 2013, including two periods characterized by low and high traffic conditions. Volatile organic compound (VOC) concentrations were higher during the second period, especially aromatic hydrocarbons related to traffic emissions, which showed a marked daily cycle peaking during traffic rush hours, similarly to black carbon (BC) concentrations. Biogenic VOC (BVOC) concentrations showed only minor changes from the low to the high traffic period, and their intra-day variability was related to temperature and solar radiation cycles, although a decrease was observed for monoterpenes during the day. The organic carbon (OC) concentrations increased from the first to the second period, and the fraction of non-fossil OC as determined by (14)C analysis increased from 43% to 54% of the total OC. The combination of (14)C analysis and Aerosol Chemical Speciation Monitor (ACSM) OA source apportionment showed that the fossil OC was mainly secondary (>70%) except for the last sample, when the fossil secondary OC only represented 51% of the total fossil OC. The fraction of non-fossil secondary OC increased from 37% of total secondary OC for the first sample to 60% for the last sample. This enhanced formation of non-fossil secondary OA (SOA) could be attributed to the reaction of BVOC precursors with NOx emitted from road traffic (or from its nocturnal derivative nitrate that enhances night-time semi-volatile oxygenated OA (SV-OOA)), since NO2 concentrations increased from 19 to 42 μg m(-3) from the first to the last sample. PMID:27119273

  14. Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products

    Directory of Open Access Journals (Sweden)

    R. E. Schwartz

    2010-06-01

    Full Text Available Submicron particles collected at Whistler, British Columbia, at 1020 m a.s.l. during May and June 2008 on Teflon filters were analyzed by Fourier transform infrared (FTIR and X-ray fluorescence (XRF techniques for organic functional groups (OFG and elemental composition. Organic mass (OM concentrations ranged from less than 0.5 to 3.1 μg m−3, with a project mean and standard deviation of 1.3±1.0 μg m−3 and 0.21±0.16 μg m−3 for OM and sulfate, respectively. On average, organic hydroxyl, alkane, and carboxylic acid groups represented 34%, 33%, and 23% of OM, respectively. Ketone, amine and organosulfate groups constituted 6%, 5%, and <1% of the average organic aerosol composition, respectively. Measurements of volatile organic compounds (VOC, including isoprene and monoterpenes from biogenic VOC (BVOC emissions and their oxidation products (methyl-vinylketone / methacrolein, MVK/MACR, were made using co-located proton transfer reaction mass spectrometry (PTR-MS. We present chemically-specific evidence of OFG associated with BVOC emissions. Positive matrix factorization (PMF analysis attributed 65% of the campaign OM to biogenic sources, based on the correlations of one factor to monoterpenes and MVK/MACR. The remaining fraction was attributed to anthropogenic sources based on a correlation to sulfate. The functional group composition of the biogenic factor (consisting of 32% alkane, 25% carboxylic acid, 21% organic hydroxyl, 16% ketone, and 6% amine groups was similar to that of secondary organic aerosol (SOA reported from the oxidation of BVOCs in laboratory chamber studies, providing evidence that the magnitude and chemical composition of biogenic SOA simulated in the laboratory is similar to that found in actual atmospheric conditions. The biogenic factor OM is also correlated to dust elements, indicating that dust may act as a non-acidic SOA sink. This role is supported by the organic functional

  15. Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products

    Directory of Open Access Journals (Sweden)

    R. E. Schwartz

    2010-02-01

    Full Text Available Submicron particles collected at Whistler, British Columbia, at 1020 masl during May and June 2008 on Teflon filters were analyzed by Fourier transform infrared (FTIR and X-ray fluorescence (XRF techniques for organic functional groups (OFG and elemental composition. Organic mass (OM ranged from less than 0.5 to 3.1μg m−3, with a project mean and standard deviation of 1.3±1.0 μg m−3 and 0.21±0.16 μg m−3 for OM and sulfate, respectively. On average, organic hydroxyl, alkane, and carboxylic acid groups represented 34%, 33%, and 23% of OM, respectively. Ketone, amine and organosulfate groups constituted 6%, 5%, and <1% of the average organic aerosol composition, respectively. Measurements of volatile organic compounds (VOC, including isoprene and monoterpenes from biogenic VOC (BVOC emissions and their oxidation products (methyl-vinylketone/methacrolein, MVK/MACR, were made using co-located proton transfer reaction mass spectrometry (PTR-MS. We present chemically-specific evidence of OFG associated with BVOC emissions. Positive matrix factorization (PMF analysis attributed 65% of the campaign OM to biogenic sources, based on the correlations of one factor to monoterpenes and MVK/MACR. The remaining fraction was attributed to anthropogenic sources based on a correlation to sulfate. The functional group composition of the biogenic factor (consisting of 32% alkane, 25% carboxylic acid, 2% organic hydroxyl, 16% ketone, and 6% amine groups was similar to that of secondary organic aerosol (SOA reported from the oxidation of BVOCs in laboratory chamber studies, providing evidence that the magnitude and chemical composition of biogenic SOA simulated in the laboratory is similar to that found in actual atmospheric conditions. The biogenic factor OM is also correlated to dust elements, indicating that dust may act as a non-acidic SOA sink. This role is supported by the organic functional group composition and

  16. Seasonal variations of biogenic secondary organic aerosol tracers in ambient aerosols from Alaska

    Science.gov (United States)

    Haque, Md. Mozammel; Kawamura, Kimitaka; Kim, Yongwon

    2016-04-01

    We investigated total suspended particles (TSP) collected from central Alaska, USA for molecular compositions of secondary organic aerosol (SOA) derived from the oxidation of biogenic volatile organic compounds (BVOCs). Isoprene-, α-/β-pinene- and β-caryophyllene-SOA tracers were determined using gas chromatography-mass spectrometry. The concentration ranges of isoprene, α-/β-pinene and β-caryophyllene oxidation products were 0.02-18.6 ng m-3 (ave. 4.14 ng m-3), 0.42-8.24 ng m-3 (2.01 ng m-3) and 0.10-9 ng m-3 (1.53 ng m-3), respectively. Isoprene-SOA tracers showed higher concentrations in summer (ave. 8.77 ng m-3), whereas α-/β-pinene- and β-caryophyllene-SOA tracers exhibited highest levels in spring (3.55 ng m-3) and winter (4.04 ng m-3), respectively. β-Caryophyllinic acid and levoglucosan showed a positive correlation, indicating that biomass burning may be a major source for β-caryophyllene. We found that mean contributions of isoprene oxidation products to organic carbon (OC) and water-soluble organic (WSOC) (0.56% and 1.2%, respectively) were higher than those of α-/β-pinene (0.31% and 0.55%) and β-caryophyllene (0.08% and 0.13%). Using a tracer-based method, we estimated the concentrations of secondary organic carbon (SOC) produced from isoprene, α-/β-pinene and β-caryophyllene to be 0.66-718 ngC m-3 (ave. 159 ngC m-3), 7.4-143 ngC m-3 (35 ngC m-3) and 4.5-391 ngC m-3 (66.3 ngC m-3), respectively. Based on SOA tracers, this study suggests that isoprene is a more important precursor for the production of biogenic SOA than α-/β-pinene and β-caryophyllene in subarctic Alaska.

  17. Emissions of volatile organic compounds from wood

    OpenAIRE

    Granström, Karin

    2005-01-01

    The central aim of this thesis is to support the efforts to counteract certain environmental problems caused by emissions of volatile organic compounds. The purpose of this work was (1) to develop a method to establish the amount of emitted substances from dryers, (2) to determine the effect of drying medium temperature and end moisture content of the processed material on emissions of monoterpenes and other hydrocarbons, (3) to examine the emissions of monoterpenes during production of pelle...

  18. Potential Organic Aerosol Formation from Biogenic Compounds: Model and Measurement analysis of the BEACHON-RoMBAS 2011 field data

    Science.gov (United States)

    Hodzic, A.; Lee-Taylor, J.; Aumont, B.; Madronich, S.; Palm, B. B.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Karl, T.; Apel, E. C.; Kaser, L.; Hansel, A.

    2012-12-01

    The scientific understanding of the formation of organic aerosols (OA) from biogenic precursors and their ageing, especially in the presence of anthropogenic pollution, is still limited. The Rocky Mountain Biogenic Aerosol field Study (RoMBAS) took place in summer 2011 at the Manitou Forest Observatory in the Colorado Front Range as part of the NCAR Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen (BEACHON) project with the specific objective of characterizing the formation and growth of biogenic particles in the forest canopy that is dominated by terpene and MBO biogenic emissions. Here we present the results of the box model Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) that was applied at the measurement site to study local production of secondary OA (SOA), as well as the results of the 3D regional Weather Research and Forecasting model with chemistry (WRF/Chem) that was run at 4km horizontal resolution to simulate the regional transport and chemistry. First, we quantify the relative contribution of various biogenic and anthropogenic precursors to SOA levels that were measured by the Aerosol Mass Spectrometer (AMS). The GECKO-A model is initialized from measured VOC concentrations, and uses MEGAN biogenic emissions and WRF/Chem meteorological forcing. The predicted SOA daytime levels at the site of ~0.7-1.0 microg/m3 are consistent with the observations. The SOA production in GECKO from individual VOC precursors is estimated and compared with WRF/Chem predictions which are based on simplified two-product parameterizations as commonly used in regional models. The sensitivity of the SOA formation to the deposition of semi-volatile vapors, and to an increase in NOx and NO3 levels is also discussed for this site that is frequently influenced by advection of the anthropogenic plumes from Denver. Second, we examine how the organic vapors age after several days of atmospheric processing by

  19. Development and application of an analytical method for the determination of total atmospheric biogenic non-methane organic carbon

    Science.gov (United States)

    Regnery, J.; Dindorf, T.; Hacker, L.; Andres, S.; Kleist, E.; Wildt, J.; Kesselmeier, J.

    2012-04-01

    Most of the organic carbon which is present in the atmosphere is found as volatile organic compounds (VOCs) dominantly emitted by the biosphere. This biogenic emission has a major impact on the chemical and physical properties of the atmosphere by contributing to the formation of tropospheric ozone and secondary organic aerosol (SOA). One major limitation in advancing the understanding of this ozone and aerosol generation is the technical ability to accurately measure the sum of these volatile organics. Frequently used methods focus on the detection of a defined set of non-methane organic compounds (NMOC). However, adding these single compound concentrations might only represent a lower limit of atmospheric carbon concentrations, since no available method is able to analyze all organic compounds present in the atmosphere. A few studies are known that report on total NMOC concentration measurements in ambient air but measurements of the total NMOC exchange between vegetation and the atmosphere are missing. Therefore, we investigated the analysis of the total NMOC concentration by collecting these compounds on a solid adsorbent material for subsequent total carbon analysis. This first step is necessary to separate the stable gases CO, CO2 and CH4 from the volatile NMOC fraction. NMOC was desorbed and converted to CO2 by passing an oxidation unit. The CO2 is collected on a second preconcentration unit followed by thermal desorption and detection by an infrared gas analyzer. As major difficulties we identified the separation of CO2 from the NMOC compounds on the solid adsorbent unit and the choice of the catalytic material. The measurements were accompanied by GC analysis of single calibrated VOC species from permeation devices and measurements by a PTR-MS. Plant chamber measurements with Quercus ilex showed an expected diurnal course which was confirmed by the NMOC analyzer though with a discrepancy during the day of up to 40 %.

  20. SPATIAL VARIATIONS IN BIOGENIC EMISSIONS FOR LITHUANIA

    OpenAIRE

    Ulevičius, Vidmantas; Byčenkien, Svetlana; Senuta, Kestas

    2008-01-01

    Abstract: The numerical modelling of biogenic volatile organic compounds (BVOCs) monoterpene and isoprene was carried out using three-dimensional (3D) mesoscale meteorological and photochemical atmospheric models. Emission factors, combined with land cover data represented by the appropriate 11 Biogenic Emission Inventory System (BEIS) vegetation categories, along with environmental correction factors were used to derive emission fluxes of isoprene, monoterpene and other VOCs for Lit...

  1. 40 CFR 60.542 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  2. VOLATILE ORGANIC COMPOUNDS REMOVAL METHODS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Aydin Berenjian

    2012-01-01

    Full Text Available Volatile Organic Compounds (VOCs are among the most toxic chemicals which are detrimental to humans and environment. There is a significant need of fully satisfactory method for removal of VOCs. There are several methods including physical, chemical and biological treatments available to remove VOCs by either recovery or destruction. The aim of the present study is to summarize the available methods for VOC removal; trying to find a promising method among the available techniques. A wide range of VOCs can be treated biologically in which it offers advantages over more traditional processes including lower operating and capital costs and a smaller carbon footprint. However, due to a complex nature and diversity of VOCs it is hard to find a simple and promising method. Treatment still requires more research to solve the associate problems with available VOC elimination techniques.

  3. Temperature-dependent Henry's law constants of atmospheric organics of biogenic origin.

    Science.gov (United States)

    Leng, Chunbo; Kish, J Duncan; Kelley, Judas; Mach, Mindy; Hiltner, Joseph; Zhang, Yunhong; Liu, Yong

    2013-10-10

    There have been growing interests in modeling studies to understand oxidation of volatile organic compounds in the gas phase and their mass transfer to the aqueous phase for their potential roles in cloud chemistry, formation of secondary organic aerosols, and fate of atmospheric organics. Temperature-dependent Henry's law constants, key parameters in the atmospheric models to account for mass transfer, are often unavailable. In the present work, we investigated gas-liquid equilibriums of isoprene, limonene, α-pinene, and linalool using a bubble column technique. These compounds, originating from biogenic sources, were selected for their implications in atmospheric cloud chemistry and secondary organic aerosol formation. We reported Henry's law constants (K(H)), first order loss rates (k), and gas phase diffusion coefficients over a range of temperatures relevant to the lower atmosphere (278-298 K) for the first time. The measurement results of K(H) values for isoprene, limonene, α-pinene, and linalool at 298 K were 0.036 ± 0.003; 0.048 ± 0.004; 0.029 ± 0.004; and 21.20 ± 0.30 mol L(-1) atm(-1), respectively. The fraction for these compounds in stratocumulus and cumulonimbus clouds at 278 K were also estimated in this work (isoprene, 1.0 × 10(-6), 6.8 × 10(-6); limonene, 1.5 × 10(-6), 1.0 × 10(-5); α-pinene, 4.5 × 10(-7), 3.1 × 10(-6); and linalool, 6.2 × 10(-4), 4.2 × 10(-3)). Our measurements in combination with literature results indicated that noncyclic alkenes could have smaller K(H) values than those of cyclic terpenes and that K(H) values may increase with an increasing number of double bonds. It was also shown that estimated Henry's law constants and their temperature dependence based on model prediction can differ from experimental results considerably and that direct measurements of temperature-dependent Henry's law constants of atmospheric organics are necessary for future work.

  4. Modeling organic aerosols during MILAGRO: importance of biogenic secondary organic aerosols

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2009-09-01

    Full Text Available The meso-scale chemistry-transport model CHIMERE is used to assess our understanding of major sources and formation processes leading to a fairly large amount of organic aerosols – OA, including primary OA (POA and secondary OA (SOA – observed in Mexico City during the MILAGRO field project (March 2006. Chemical analyses of submicron aerosols from aerosol mass spectrometers (AMS indicate that organic particles found in the Mexico City basin contain a large fraction of oxygenated organic species (OOA which have strong correspondence with SOA, and that their production actively continues downwind of the city. The SOA formation is modeled here by the one-step oxidation of anthropogenic (i.e. aromatics, alkanes, biogenic (i.e. monoterpenes and isoprene, and biomass-burning SOA precursors and their partitioning into both organic and aqueous phases. Conservative assumptions are made for uncertain parameters to maximize the amount of SOA produced by the model. The near-surface model evaluation shows that predicted OA correlates reasonably well with measurements during the campaign, however it remains a factor of 2 lower than the measured total OA. Fairly good agreement is found between predicted and observed POA within the city suggesting that anthropogenic and biomass burning emissions are reasonably captured. Consistent with previous studies in Mexico City, large discrepancies are encountered for SOA, with a factor of 2–10 model underestimate. When only anthropogenic SOA precursors were considered, the model was able to reproduce within a factor of two the sharp increase in OOA concentrations during the late morning at both urban and near-urban locations but the discrepancy increases rapidly later in the day, consistent with previous results, and is especially obvious when the column-integrated SOA mass is considered instead of the surface concentration. The increase in the missing SOA mass in the afternoon coincides with the sharp drop in POA

  5. Biogenic and anthropogenic organic compounds in rain and snow samples collected in southern california

    Science.gov (United States)

    Kawamura, K.; Kaplan, I. R.

    Ten rainwater and snow samples were collected from the Los Angeles area and its vicinity (semirural and rural areas) in S California. The samples were studied for various types of solvent-extractable organic compounds, including n-alkanes, UCM hydrocarbons, PAHs, FAs, benzoic acids and phenols. (See Table 1 for definition of acronyms.) In rural (mountain) snow samples, the major identifiable species are odd-carbon-numbered n-alkanesin the C 17-C 35 range and even-carbon-numbered FAs in the C 12-C 30 range, which are both of biogenic origin. On the other hand, Los Angeles urban rain samples contain abundant phenols, benzoic acids and UCM, which are considered to originate from incomplete combustion of fossil fuels mostly in automobile, as well as biogenic FAs. The results indicate that in urban areas, anthropogenic sources are the most important factor controlling the organic chemistry of rainwater, whereas biogenic sources are a minor contributor. Several indices are discussed for evaluating the anthropogenic/biogenic contribution to organic matter in wet deposition. The CPI of n-alkanes, UCM/ n-alkanes ratio, phenols/C 12-C 30 FA ratio, benzoic acids/C 12-C 30 FA ratio, UCM/C 12-C 30FA ratio and PAH/C 12-C 30 FA ratio change drastically from rural to urban areas, indicating that they are useful indicators.

  6. Basic biogenic aerosol precursors: Agricultural source attribution of volatile amines revised

    Science.gov (United States)

    Kuhn, U.; Sintermann, J.; Spirig, C.; Jocher, M.; Ammann, C.; Neftel, A.

    2011-08-01

    Despite recent evidence on an important role of volatile amines in the nucleation of particulate matter, very scarce information is available on their atmospheric abundance and source distribution. Previous measurements in animal housings had identified livestock husbandry as the main amine source, with trimethylamine (TMA) being the key component. This has led to the assumption that the agricultural sources for amines are similar as for ammonia, emitted throughout the cascade of animal excretion, storage and application in the field. In this study, we present the first micrometeorological flux measurements as well as dynamic enclosure experiments showing that the amine source strength from stored slurry is negligible, implying significant consequences for the global amine emission inventory. In the case of cattle, amine production is attributed to the animal's rumination activity and exhalation is suggested to be an important emission pathway, similar to the greenhouse gas methane. Fodder like hay and silage also emits volatile amines, potentially assigning these alkaloid compounds a key function in enhancing particle formation in remote areas.

  7. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    Science.gov (United States)

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-10-01

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.

  8. 40 CFR 60.712 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  9. 40 CFR 60.742 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  10. 40 CFR 60.452 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  11. 40 CFR 60.602 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  12. 40 CFR 60.462 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  13. 40 CFR 60.722 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  14. 40 CFR 60.432 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  15. 40 CFR 60.582 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  16. 40 CFR 60.622 - Standards for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  17. 40 CFR 60.392 - Standards for volatile organic compounds

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  18. Investigating Sources and Emissions of Volatile Organic Compounds in California's San Joaquin Valley

    Science.gov (United States)

    Gentner, D. R.; Harley, R. A.; Weber, R.; Karlik, J. F.; Goldstein, A. H.

    2011-12-01

    Emissions of Volatile Organic Compounds (VOCs) are regulated both as primary air pollutants and as precursors to the formation of secondary organic aerosol and tropospheric ozone. The San Joaquin Valley, a non-attainment area for ozone and PM2.5, contains a variety of point, area, and mobile VOC sources that contribute to both primary and secondary pollution. Using ambient measurements of over 100 different VOCs and Intermediate Volatility Organic Compounds (IVOCs) made at multiple field sites, we assess the magnitude and importance of various VOC sources in the San Joaquin Valley. Hourly measurements were made during the spring and summer of 2010 via in-situ gas chromatography in Bakersfield, CA as part of the CalNex experiment and also at a rural site located 100 km north of Bakersfield. Additionally, in-situ measurements of fresh motor vehicle exhaust were made in Oakland's Caldecott tunnel during the summer of 2010. Measurements include a broad array of anthropogenic and biogenic VOCs ranging in size from 1 to 17 carbon atoms, including many compounds with functional groups or substituents (e.g. aldehydes, ketones, alcohols, halogens, sulfur, & nitrogen). Using statistical methods of source apportionment, covariance, source receptor modeling, and air parcel back trajectories, we assess the impact of various sources on observed VOC concentrations at our field sites in the San Joaquin Valley. Prevalent sources include gasoline and diesel-vehicle exhaust, petroleum extraction/refining, biogenic emissions from agricultural crops and natural vegetation, and emissions from dairy operations and animal husbandry. We use measurements of fresh motor vehicle emissions from the Caldecott tunnel to constrain apportionment of gasoline and diesel-related VOCs and IVOCs in the San Joaquin Valley. Initial results from Bakersfield show substantial influence from local anthropogenic VOC sources, but there is evidence for transport of emissions from both anthropogenic and biogenic

  19. Assessment of volatile organic compound emissions from ecosystems of China

    Science.gov (United States)

    Klinger, L. F.; Li, Q.-J.; Guenther, A. B.; Greenberg, J. P.; Baker, B.; Bai, J.-H.

    2002-11-01

    Isoprene, monoterpene, and other volatile organic compound (VOC) emissions from grasslands, shrublands, forests, and peatlands in China were characterized to estimate their regional magnitudes and to compare these emissions with those from landscapes of North America, Europe, and Africa. Ecological and VOC emission sampling was conducted at 52 sites centered in and around major research stations located in seven different regions of China: Inner Mongolia (temperate), Changbai Mountain (boreal-temperate), Beijing Mountain (temperate), Dinghu Mountain (subtropical), Ailao Mountain (subtropical), Kunming (subtropical), and Xishuangbanna (tropical). Transects were used to sample plant species and growth form composition, leafy (green) biomass, and leaf area in forests representing nearly all the major forest types of China. Leafy biomass was determined using generic algorithms based on tree diameter, canopy structure, and absolute cover. Measurements of VOC emissions were made on 386 of the 541 recorded species using a portable photo-ionization detector method. For 105 species, VOC emissions were also measured using a flow-through leaf cuvette sampling/gas chromatography analysis method. Results indicate that isoprene and monoterpene emissions, as well as leafy biomass, vary systematically along gradients of ecological succession in the same manner found in previous studies in the United States, Canada, and Africa. Applying these results to a regional VOC emissions model, we arrive at a value of 21 Tg C for total annual biogenic VOC emissions from China, compared to 5 Tg C of VOCs released annually from anthropogenic sources there. The isoprene and monoterpene emissions are nearly the same as those reported for Europe, which is comparable in size to China.

  20. Contribution of non methane organic volatiles exchange to the carbon budget of isoprene and monoterpene emitting plant species

    Science.gov (United States)

    Dindorf, T.; Kuhn, U.; Ammann, C.; Neftel, A.; Tritsch, C.; Ciccioli, P.; Koppmann, R.; Kesselmeier, J.

    2003-04-01

    Compared to the aerosol fraction, most of the organic carbon present in the atmosphere is found in form of volatile or semivolatile compounds. Vegetation was identified being the major source of these organic volatiles, releasing carbon at the same order of magnitude as the global net biome productivity (NBP). To achieve an estimate of plants carbon exchange, including the emission and deposition of volatile organics, the exchange activity of the two isoprene and monoterpene emitting plant species Quercus robur and Fagus sylvatica was observed under field conditions during the ECHO campaign (Emission and CHemical Transformation of Biogenic Volatile Organic Compounds) in summer 2002 in Jülich, Germany. Primary productivity and VOC exchange was investigated on the branch level by means of a dynamic cuvette system. Organic volatiles were collected on adsorbent tubes and analysed later on by GC-FID and GC-MS for species composition and quantification. Short chain carbonyls were sampled on DNPH coated cartridges and analysed by HPLC-UV. For identification of a broader spectrum of volatile compounds, both methods were complemented by PTR-MS measurements for the isoprene emitting species. Isoprenoid and methanol emissions accounted for the majority of the VOC release, which was partly compensated by the deposition of other oxygenated organic compounds.

  1. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Madronich, Sasha [Univ. Corporation for Atmospheric Research, Boulder, CO (United States)

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  2. Formation of organic nanoparticles from volatile microemulsions.

    Science.gov (United States)

    Margulis-Goshen, Katrin; Netivi, Hadas Donio; Major, Dan T; Gradzielski, Michael; Raviv, Uri; Magdassi, Shlomo

    2010-02-15

    A method for preparation of nanoparticles of poorly water-soluble organic materials is presented. By this method, an oil-in-water microemulsion containing a volatile solvent with dissolved model material, propylparaben, undergoes solvent evaporation and conversion into nanoparticles by spray drying. The resulting powder can be easily dispersed in water to give a clear, stable dispersion of nanoparticles with a high loading of propylparaben. By filtration of this dispersion it was found that more than 95wt.% of the dispersed propylparaben is in particles of less than 450nm. X-ray diffraction revealed that propylparaben is present as nanocrystals of 40-70nm. After dispersion of the powder in water, formation of large crystals rapidly occurs. Addition of polyvinylpyrrolidone (PVP) prevented crystal growth during dispersion of the powder in water. The inhibition of propylparaben crystal growth by PVP was studied by molecular dynamic simulations that addressed the binding of PVP to the propylparaben crystal. A comparison was made between PVP and polyvinylalcohol, which did not display crystal inhibition properties. PMID:19919861

  3. The Burial of Biogenic Silica, Organic Carbon and Organic Nitrogen in the Sediments of the East China Sea

    Institute of Scientific and Technical Information of China (English)

    WANG Lisha; ZHANG Chuansong; SHI Xiaoyong

    2015-01-01

    We sampled the sediments of the East China Sea during 2005 and 2006, and analysed the contents of the biogenic mat-ters: biogenic silica, organic carbon, and organic nitrogen. From the surface distribution we found the contents of these substances to be in the ranges of 0.72%-1.64%, 0.043%-0.82%, and 0.006%-0.11%, respectively. Their distributions were similar to each other, being high inside the Hangzhou Bay and low outside the bay. The vertical variations of the contents were also similar. In order to discuss the relation between them we analysed the variations of content with depth. They increased in the first 7cm and then de-creased with depth. The peaks were found at depths between 20 to 25cm. The distribution of carbonate showed an opposite trend to that of biogenic matters. The content of total carbon was relatively stable with respect to depth, and the ratio of high organic carbon to carbonate showed a low burial efficiency of carbonate, which means that the main burial of carbon is organic carbon. In order to discuss the source of organic matters, the ratio of organic carbon to organic nitrogen was calculated, which was 8.01 to 9.65, indicat-ing that the organic matter in the sediments was derived mainly from phytoplankton in the seawater.

  4. 40 CFR 60.442 - Standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Pressure Sensitive Tape and Label Surface Coating Operations § 60.442 Standard for volatile...

  5. Organic aerosol formation from biogenic compounds over the Ponderosa pine forest in Colorado

    Science.gov (United States)

    Roux, Alma Hodzic; Lee-Taylor, Julia; Cui, Yuyan; Madronich, Sasha

    2013-05-01

    The secondary organic aerosol (SOA) formation and regional growth from biogenic precursors is of particular interest given their abundance in the atmosphere, and has been investigated during the Rocky Mountain Biogenic Aerosol field Study in 2011 in the pine forest canopy (dominated by terpene emissions) using both WRF/Chem 4km simulations and the GECKO-A explicit chemistry box-model runs. We have quantified the relative contribution of different biogenic precursors to SOA levels that were measured by the aerosol mass spectrometer at the site, and investigated the relative contribution of OH, O3 and NO3 chemistry to the formed SOA mass during day-and nighttime. Although, the local production and mass concentrations of submicron organic aerosols at the site seem relatively modest ˜1-2 ug/m3, we show that the optically active regional mass is increased as the SOA formation continues for several days in the background forest air. We investigate whether the simplified SOA parameterizations used in 3D models can capture this growth. In addition, preliminary comparisons of the number concentrations and the composition of ultrafine particles (8 - 30nm) from WRF/Chem simulations and TD-CIMS measurements are also discussed, and the contribution of organic aerosols to CCN formation is quantified.

  6. Understanding the formation of biogenic secondary organic aerosol from ?-pinene in smog chamber studies: role of organic peroxy radicals

    OpenAIRE

    Bonn, B.; Korhonen, H.; Petäjä, T.; M. Boy; Kulmala, M.

    2007-01-01

    International audience This study focusses on the description of the nucleation process observed during the ozone reaction of the biogenic monoterpene ?-pinene in smog chambers. Therefore, a detailed aerosol dynamics model (UHMA) was extended by a tropospheric chemistry module and a detailed description of the first steps of organic nucleation. We assume secondary ozonides to act as nucleation initiating molecules, which are subsequently activated by reactions with organic peroxy radicals ...

  7. Senescing grass crops as regional sources of reactive volatile organic compounds

    Science.gov (United States)

    Karl, T.; Harren, F.; Warneke, C.; de Gouw, J.; Grayless, C.; Fall, R.

    2005-08-01

    Grass crop species, rice and sorghum, that are widely grown in the southeastern Texas region were analyzed for release of biogenic volatile organic compounds (VOCs) in simulated leaf-drying/senescence experiments. VOC release was measured by both online proton transfer reaction mass spectrometry (PTR-MS) and proton transfer ion trap mass spectrometry (PIT-MS) methods, and it was demonstrated that these two grass crops release a large variety of oxygenated VOCs upon drying under laboratory conditions primarily from leaves and not from stems. VOC release from paddy rice varieties was much greater than from sorghum, and major VOCs identified by gas chromatography PTR-MS included methanol, acetaldehyde, acetone, n-pentanal, methyl propanal, hexenol, hexanal, cis-3-hexenal, and trans-2-hexenal. The latter four VOCs, all C6 compounds known to be formed in wounded leaves, were the major volatiles released from drying rice leaves; smaller but substantial amounts of acetaldehyde were observed in all drying experiments. Online detection of VOCs using PIT-MS gave results comparable to those obtained with PTR-MS, and use of PIT-MS with collision-induced dissociation of trapped ions allowed unambiguous determination of the ratios of cis- and trans-hexenals during different phases of drying. As rice is one of the largest harvested crops on a global scale, it is conceivable that during rice senescence releases of biogenic VOCs, especially the reactive C6 wound VOCs, may contribute to an imbalance in regional atmospheric oxidant formation during peak summer/fall ozone formation periods. A county-by-county estimate of the integrated emissions of reactive biogenic VOCs from sorghum and rice production in Texas suggests that these releases are orders of magnitude lower than anthropogenic VOCs in urban areas but also that VOC emissions from rice in southeastern coastal Texas may need to be included in regional air quality assessments during periods of extensive harvesting.

  8. Comparing Organic Aerosol Composition from Marine Biogenic Sources to Seawater and to Physical Sea Spray Models

    Science.gov (United States)

    Russell, L. M.; Frossard, A. A.; Sanchez, K.; Massoli, P.; Elliott, S.; Burrows, S. M.; Bates, T. S.; Quinn, P.

    2015-12-01

    In much of the marine atmosphere, organic components in aerosol particles have many sources other than sea spray that contribute organic constituents. For this reason, physical sea spray models provide an important technique for studying the organic composition of particles from marine biogenic sources. The organic composition of particles produced by two different physical sea spray models were measured in three open ocean seawater types: (i) Coastal California in the northeastern Pacific, which is influenced by wind-driven, large-scale upwelling leading to productive or eutrophic (nutrient-rich) seawater and high chl-a concentrations, (ii) George's Bank in the northwestern Atlantic, which is also influenced by nutrient upwelling and eutrophic seawater with phytoplankton productivity and high chl-a concentrations, and (iii) the Sargasso Sea in the subtropical western Atlantic, which is oligotrophic and nutrient-limited, reflected in low phytoplankton productivity and low chl-a concentrations. Fourier transform infrared spectroscopy provides information about the functional group composition that represents the marine organic fraction more completely than is possible with techniques that measure non-refractory mass (vaporizable at 650°C). After separating biogenic marine particles from those from other sources, the measured compositions of atmospheric marine aerosol particles from three ocean regions is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. The organic composition of atmospheric primary marine (ocean-derived) aerosol particles is nearly identical to model generated primary marine aerosol particles from bubbled seawater. Variability in productive and non-productive seawater may be caused by the presence of surfactants that can stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components without substantial changes in overall group composition

  9. Total volatile organic compounds (TVOC) in indoor air quality investigations

    DEFF Research Database (Denmark)

    Mølhave, L.; Clausen, Geo; Berglund, B.;

    1997-01-01

    The amount of volatile organic compounds (VOCs) in indoor air, usually called TVOC (total volatile organic compounds), has been measured using different definitions and techniques which yield different results. This report recommends a definition of TVOC referring to a specified range of VOCs...... for characterizing indoor pollution and for improving source control as required from the points of view of health, comfort, energy efficiency and sustainability. (C) Indoor Air (1997)....

  10. Gas chromatography of volatile organic compounds

    Science.gov (United States)

    Zlatkis, A.

    1973-01-01

    System has been used for problems such as analysis of volatile metabolities in human blood and urine, analysis of air pollutants, and in tobacco smoke chemistry. Since adsorbent is reusable after porper reconditioning, method is both convenient and economical. System could be used for large scale on-site sampling programs in which sample is shipped to central location for analysis.

  11. Biodiversity of volatile organic compounds from five French ferns.

    Science.gov (United States)

    Fons, Françoise; Froissard, Didier; Bessière, Jean-Marie; Buatois, Bruno; Rapior, Sylvie

    2010-10-01

    Five French ferns belonging to different families were investigated for volatile organic compounds (VOC) by GC-MS using organic solvent extraction. Fifty-five VOC biosynthesized from the shikimic, lipidic and terpenic pathways including monoterpenes, sesquiterpenes and carotenoid-type compounds were identified. The main volatile compound of Adiantum capillus-veneris L. (Pteridaceae) was (E)-2-decenal with a plastic or "stink bug" odor. The volatile profiles of Athyrium filix-femina (L.) Roth (Woodsiaceae) and Blechnum spicant (L.) Roth (Blechnaceae) showed similarities, with small amounts of isoprenoids and the same main volatile compounds, i.e., 2-phenylethanal (odor of lilac and hyacinth) and 1-octen-3-ol (mushroom-like odor). The main volatile compound of Dryopteris filix-mas (L.) Schott (Dryopteridaceae) was (E)-nerolidol with a woody or fresh bark note. Polyketides, as acylfilicinic acids, were mainly identified in this fern. Oreopteris limbosperma (Bellardi ex. All.) J. Holub (Thelypteridaceae), well-known for its lemon smell, contained the highest biodiversity of VOC. Eighty percent of the volatiles was issued from the terpenic pathway. The main volatiles were (E)-nerolidol, alpha-terpineol, beta-caryophyllene and other minor monoterpenes (for example, linalool, pinenes, limonene, and gamma-terpinen-7-al). It was also the fern with the highest number of carotenoid-type derivatives, which were identified in large amounts. Our results were of great interest underlying new industrial valorisation for ferns based on their broad spectrum of volatiles. PMID:21121267

  12. Direct radiative feedback due to biogenic secondary organic aerosol estimated from boreal forest site observations

    International Nuclear Information System (INIS)

    We used more than five years of continuous aerosol measurements to estimate the direct radiative feedback parameter associated with the formation of biogenic secondary organic aerosol (BSOA) at a remote continental site at the edge of the boreal forest zone in Northern Finland. Our upper-limit estimate for this feedback parameter during the summer period (ambient temperatures above 10 °C) was −97 ± 66 mW m−2 K−1 (mean ± STD) when using measurements of the aerosol optical depth (fAOD) and −63 ± 40 mW m−2 K−1 when using measurements of the ‘dry’ aerosol scattering coefficient at the ground level (fσ). Here STD represents the variability in f caused by the observed variability in the quantities used to derive the value of f. Compared with our measurement site, the magnitude of the direct radiative feedback associated with BSOA is expected to be larger in warmer continental regions with more abundant biogenic emissions, and even larger in regions where biogenic emissions are mixed with anthropogenic pollution. (letter)

  13. Volatile and intermediate-volatility organic compounds in sub-urban Paris: variability, origin and importance for SOA formation

    Science.gov (United States)

    Ait-Helal, W.; Borbon, A.; Sauvage, S.; de Gouw, J. A.; Colomb, A.; Gros, V.; Freutel, F.; Crippa, M.; Afif, C.; Baltensperger, U.; Beekmann, M.; Doussin, J.-F.; Durand-Jolibois, R.; Fronval, I.; Grand, N.; Leonardis, T.; Lopez, M.; Michoud, V.; Miet, K.; Perrier, S.; Prévôt, A. S. H.; Schneider, J.; Siour, G.; Zapf, P.; Locoge, N.

    2014-02-01

    Measurements of gaseous and particulate organic carbon were performed during the MEGAPOLI experiments, in July 2009 and January-February 2010, at the SIRTA observatory in sub-urban Paris. Measurements of primary and secondary volatile organic compounds (VOCs), of both anthropogenic and biogenic origins, including for the first time C12-C16 n-alkanes of intermediate volatility (IVOCs), suspected to be efficient precursors of secondary organic aerosol (SOA). The time series of gaseous carbon are generally consistent with times series of particulate organic carbon at regional scales and are clearly affected by meteorology and air mass origin. Concentration levels of anthropogenic VOCs in urban and sub-urban Paris were surprisingly low (2-963 ppt) compared to other megacities worldwide and to rural continental sites. Urban enhancement ratios of anthropogenic VOC pairs agree well between the urban and sub-urban Paris sites, showing the regional extent of anthropogenic sources of similar composition. Contrary to other primary anthropogenic VOCs (aromatics and alkanes), IVOCs showed lower concentrations in winter (agreement with a gas-particle partitioning in favor of their transfer to the particle phase in winter. Higher concentrations of most oxygenated VOCs in winter (18-5984 ppt) suggest their dominant primary anthropogenic origin. The respective role of primary anthropogenic gaseous compounds in regional SOA formation was investigated by estimating the SOA mass concentration expected from the anthropogenic VOCs and IVOCs (I / VOCs) measured at SIRTA. From an approach based on emissions inferred from the I / VOC concentrations times the SOA formation yields', the so-called integrated approach conducted in this study, 46% of the SOA measured at SIRTA is explained by our measured concentrations of I / VOC, with 10% explained by only C12-C16 IVOCs. From results of an alternative time-resolved approach, the explained variability of the SOA concentrations is improved when

  14. Contribution of First- versus Second-Generation Products to Secondary Organic Aerosols Formed in the Oxidation of Biogenic Hydrocarbons

    OpenAIRE

    Ng, Nga L.; Kroll, Jesse H.; Keywood, Melita D.; Bahreini, Roya; Varutbangkul, Varuntida; Flagan, Richard C.; Seinfeld, John H.; Lee, Anita; Goldstein, Allen H.

    2006-01-01

    Biogenic hydrocarbons emitted by vegetation are important contributors to secondary organic aerosol (SOA), but the aerosol formation mechanisms are incompletely understood. In this study, the formation of aerosols and gas-phase products from the ozonolysis and photooxidation of a series of biogenic hydrocarbons (isoprene, 8 monoterpenes, 4 sesquiterpenes, and 3 oxygenated terpenes) are examined. By comparing aerosol growth (measured by Differential Mobility Analyzers, DMAs) and gas-phase conc...

  15. Origin and variability of volatile organic compounds observed at an eastern Mediterranean background site (Cyprus)

    Science.gov (United States)

    Debevec, Cécile; Sauvage, Stéphane; Gros, Valérie; Sciare, Jean; Pikridas, Michael; Leonardis, Thierry; Gaudion, Vincent; Depelchin, Laurence; Fronval, Isabelle; Pillet, Laetitia; Sarda-Estève, Roland; Baisnée, Dominique; Bonsang, Bernard; Locoge, Nadine

    2016-04-01

    Volatile organic compounds (VOCs) include a large number of species from various anthropic and natural sources. Their interest is linked to their toxicity and they are key players in photochemical processes leading to secondary pollutant formation such as ozone, oxygenated species and secondary organic aerosols. More than 7,000 atmospheric measurements of over eighty C2-C16 VOCs, including a wide range of tracers of different specific sources, have been conducted at a background site in Cyprus during a 29-day intensive field campaign held in March 2015 within the framework of ChArMEx and ENVI-Med "CyAr" programs. Primary anthropogenic and biogenic VOCs and oxygenated VOCs (OVOCs), including a number of secondary oxidation products, were measured on-line thanks to flame ionization detection/gas chromatography and proton transfer mass spectrometry (2 GC-FID, time resolution 30 min, 1 PTR-QMS, time resolution 5 min). Additionally, more than 400 off-line 3h-integrated air samples were collected on cartridge and analyzed by GC-FID. Recovery of the different techniques, regular quality checks and uncertainty determination approach allow insuring a good robustness of the dataset. In order to study the variability and the origin of these VOCs, their time series were first analyzed here on the basis of meteorological data and clustering of air mass trajectories. Biogenic compounds appear mainly of local origin and present specific diurnal cycles such as daily maximum for isoprene and a nighttime maximum for monoterpenes. Long-lived anthropogenic compounds as well as OVOCs display higher mixing ratios under the influence of eastern and northern sectors (i.e. Middle East and Turkey) indicating that long-range transport significantly contributes to the VOCs levels in the area. A first factor analysis performed in order to examine different species co-variations allows discerning different source types (primary/secondary, anthropogenic/biogenic, local/regional).

  16. Emissions of terpenoids, benzenoids, and other biogenic gas-phase organic compounds from agricultural crops and their potential implications for air quality

    Science.gov (United States)

    Gentner, D. R.; Ormeño, E.; Fares, S.; Ford, T. B.; Weber, R.; Park, J.-H.; Brioude, J.; Angevine, W. M.; Karlik, J. F.; Goldstein, A. H.

    2014-06-01

    Agriculture comprises a substantial, and increasing, fraction of land use in many regions of the world. Emissions from agricultural vegetation and other biogenic and anthropogenic sources react in the atmosphere to produce ozone and secondary organic aerosol, which comprises a substantial fraction of particulate matter (PM2.5). Using data from three measurement campaigns, we examine the magnitude and composition of reactive gas-phase organic carbon emissions from agricultural crops and their potential to impact regional air quality relative to anthropogenic emissions from motor vehicles in California's San Joaquin Valley, which is out of compliance with state and federal standards for tropospheric ozone PM2.5. Emission rates for a suite of terpenoid compounds were measured in a greenhouse for 25 representative crops from California in 2008. Ambient measurements of terpenoids and other biogenic compounds in the volatile and intermediate-volatility organic compound ranges were made in the urban area of Bakersfield and over an orange orchard in a rural area of the San Joaquin Valley during two 2010 seasons: summer and spring flowering. We combined measurements from the orchard site with ozone modeling methods to assess the net effect of the orange trees on regional ozone. When accounting for both emissions of reactive precursors and the deposition of ozone to the orchard, the orange trees are a net source of ozone in the springtime during flowering, and relatively neutral for most of the summer until the fall, when it becomes a sink. Flowering was a major emission event and caused a large increase in emissions including a suite of compounds that had not been measured in the atmosphere before. Such biogenic emission events need to be better parameterized in models as they have significant potential to impact regional air quality since emissions increase by several factors to over an order of magnitude. In regions like the San Joaquin Valley, the mass of biogenic

  17. Modeling organic aerosols in a megacity: potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2010-06-01

    Full Text Available It has been established that observed local and regional levels of secondary organic aerosols (SOA in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to estimate the potential contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic precursors (S/IVOC in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA, their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007 ("ROB" and Grieshop et al. (2009 ("GRI" are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements. The results show a substantial enhancement in predicted SOA concentrations (2–4 times with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009, both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal variability. The predicted production from anthropogenic and biomass burning S/IVOC represents 40–60% of the total measured SOA at the surface during the day and is somewhat larger than that from commonly measured aromatic VOCs, especially at the T1 site at the edge of the city. The SOA production from the continued multi-generation S/IVOC oxidation products continues actively

  18. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming

    DEFF Research Database (Denmark)

    Faubert, Patrick; Tiiva, Paivi; Rinnan, Åsmund;

    2010-01-01

    Biogenic volatile organic compound (BVOC) emissions from arctic ecosystems are important in view of their role in global atmospheric chemistry and unknown feedbacks to global warming. These cold ecosystems are hotspots of climate warming, which will be more severe here than averaged over...... the globe. We assess the effects of climatic warming on non-methane BVOC emissions from a subarctic heath. • We performed ecosystem-based chamber measurements and gas chromatography-mass spectrometry (GC-MS) analyses of the BVOCs collected on adsorbent over two growing seasons at a wet subarctic tundra...... of a focus on BVOC emissions during climate change. The observed changes have implications for ecological interactions and feedback effects on climate change via impacts on aerosol formation and indirect greenhouse effects....

  19. Airborne flux measurements of biogenic isoprene over California

    OpenAIRE

    Misztal, P. K.; T. Karl; Weber, R.; Jonsson, H. H.; Guenther, A. B.; A. H. Goldstein

    2014-01-01

    © Author(s) 2014. CC Attribution 3.0 License. Biogenic isoprene fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne Biogenic volatile organic compound (BVOC) Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a proton transfer reaction mass spectrometer (PTR-MS) and a wind radome probe to directly determine fluxes of isoprene over...

  20. Organic and volatile elements in the solar system

    Directory of Open Access Journals (Sweden)

    Remusat L.

    2012-01-01

    Full Text Available Chondrites and comets have accreted primitive materials from the early solar system. Those materials include organics, water and other volatile components. The most primitive chondrites and comets have undergone few modifications on their respective parent bodies and can deliver to laboratories components that were present at the origin of the protosolar nebula. Here I present a review of the organic material and volatile components that have been studied in the most primitive chondrites, and the last data from the stardust mission about the cometary record. This paper focuses on materials that can be studied in laboratories, by mass spectrometry, ion probes or organic chemistry techniques.

  1. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    Directory of Open Access Journals (Sweden)

    E. Finessi

    2012-01-01

    Full Text Available The study investigates the sources of fine organic aerosol (OA in the boreal forest, based on measurements including both filter sampling (PM1 and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions.

    The NMR results supported the AMS speciation of oxidized organic aerosol (OOA into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls. Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA, based on the comparison with spectral profiles obtained from laboratory experiments of

  2. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by NMR spectroscopy

    Science.gov (United States)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2012-01-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from laboratory experiments of terpenes photo-oxidation. The second NMR

  3. High-time resolved measurements of biogenic and anthropogenic secondary organic aerosol precursors and products in urban air

    Science.gov (United States)

    Flores, Rosa M.; Doskey, Paul V.

    2016-04-01

    Volatile organic compounds (VOCs), which are present in the atmosphere entirely in the gas phase are directly emitted by biogenic (~1089 Tg yr-1) and anthropogenic sources (~185 Tg yr-1). However, the sources and molecular speciation of intermediate VOCs (IVOCs), which are for the most part also present almost entirely in the gas phase, are not well characterized. The VOCs and IVOCs participate in reactions that form ozone and semivolatile OC (SVOC) that partition into the aerosol phase. Formation and evolution of secondary organic aerosol (SOA) are part of a complex dynamic process that depends on the molecular speciation and concentration of VOCs, IVOCs, primary organic aerosol (POA), and the level of oxidants (NO3, OH, O3). The current lack of understanding of OA properties and their impact on radiative forcing, ecosystems, and human health is partly due to limitations of models to predict SOA production on local, regional, and global scales. More accurate forecasting of SOA production requires high-temporal resolution measurement and molecular characterization of SOA precursors and products. For the subject study, the IVOCs and aerosol-phase organic matter were collected using the high-volume sampling technique and were analyzed by multidimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToFMS). The IVOCs included terpenes, terpenoids, n-alkanes, branched alkanes, isoprenoids, alkylbenzenes, cycloalkylbenzenes, PAH, alkyl PAH, and an unresolved complex mixture (UCM). Diurnal variations of OA species containing multiple oxygenated functionalities and selected SOA tracers of isorprene, α-pinene, toluene, cyclohexene, and n-dodecane oxidation were also quantified. The data for SOA precursor and oxidation products presented here will be useful for evaluating the ability of molecular-specific SOA models to forecast SOA production in and downwind of urban areas.

  4. Molecular composition of biogenic secondary organic aerosols using ultrahigh resolution mass spectrometry: linking laboratory and field studies

    Science.gov (United States)

    Kourtchev, Ivan; Fuller, Stephen; Aalto, Juho; Healy, Robert; Alfara, Rami; Ruuskanen, Taina; Wenger, John; McFiggans, Gordon; Kulmala, Markku; Kalberer, Markus

    2013-04-01

    Biogenic volatile organic compounds (BVOCs) play an important role in atmospheric chemistry and give rise to secondary organic aerosols (SOA), which have effects on climate and human health. Laboratory chamber experiments have been performed during several decades in an attempt to mimic atmospheric SOA formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. To date, most laboratory experiments have been performed using a single organic precursor (e.g., alpha- or beta-pinene, isoprene) while in the atmosphere a wide range of precursors contribute to SOA, which results most likely in a more complex SOA composition compared to the one-precursor laboratory systems. The objective of this work is to compare laboratory generated SOA from oxidation of BVOCs mixtures and remote ambient samples using ultrahigh-resolution mass spectrometry (UHR-MS) that allows detection of hundreds of individual SOA constituents. We examined aerosol samples from a boreal forest site, Hyytiälä, Finland and determined that a dominant fraction of the detected compounds are reaction products of a multi-component mixture of BVOCs. In the subsequent smog chamber experiments, SOA was generated from the ozonolysis and OH initiated reactions with BVOC mixtures containing species (alpha- and beta-pinene, delta-3-carene, and isoprene) that are most abundant in Hyytiälä's environment. The laboratory experiments were performed at conditions (e.g., RH, aerosol seed, and VOC ratios) that would resemble those at the boreal sampling site during the summer period. The elemental composition of the complex mixtures from laboratory generated SOA samples were compared with field samples using statistical data analysis methods.

  5. Inventory of volatile organic compound emissions in Finland, 1985

    International Nuclear Information System (INIS)

    The aim of the study was to compile an inventory of the emissions of volatile organic compounds in Finland for the year 1985. The report was prepared for the ECE Task Force on Emissions of Volatile Organic Compounds from Stationary Sources according to the classification given by the Task Force. It considers anthropogenic as well as natural sources. Mobile sources are excluded. The quantities as well as the main components are listed, as far as possible. The values given exclude methane which according to the present understanding is regarded as unreactive

  6. Volatile organic compounds and oxides of nitrogen. Further emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Froste, H. [comp.

    1996-12-31

    This report presents the current status in relation to achievement of the Swedish Environmental target set by Parliament to reduce emission of volatile organic compounds by 50 per cent between 1988 and 2000. It also instructed the Agency to formulate proposed measures to achieve a 50 per cent reduction of emission of nitrogen oxides between 1985 and 2005. The report presents an overall account of emission trends for volatile organic compounds (from all sectors) and nitrogen oxides (from the industry sector) and steps proposed to achieve further emission reductions. 43 refs

  7. Measurement of the ambient organic aerosol volatility distribution: application during the Finokalia Aerosol Measurement Experiment (FAME-2008

    Directory of Open Access Journals (Sweden)

    B. H. Lee

    2010-07-01

    Full Text Available A variable residence time thermodenuder (TD was combined with an Aerodyne Aerosol Mass Spectrometer (AMS and a Scanning Mobility Particle Sizer (SMPS to measure the volatility distribution of aged organic aerosol in the Eastern Mediterranean during the Finokalia Aerosol Measurement Experiment in May of 2008 (FAME-2008. A new method for the quantification of the organic aerosol volatility distribution was developed combining measurements of all three instruments together with an aerosol dynamics model.

    Challenges in the interpretation of ambient thermodenuder-AMS measurements include the potential resistances to mass transfer during particle evaporation, the effects of particle size on the evaporated mass fraction, the changes in the AMS collection efficiency and particle density as the particles evaporate partially in the TD, and finally potential losses inside the TD. Our proposed measurement and data analysis method accounts for all of these problems combining the AMS and SMPS measurements.

    The AMS collection efficiency of the aerosol that passed through the TD was found to be approximately 10% lower than the collection efficiency of the aerosol that passed through the bypass. The organic aerosol measured at Finokalia is approximately 2 orders of magnitude less volatile than fresh laboratory-generated biogenic secondary organic aerosol. This low volatility is consistent with its highly oxygenated AMS mass spectrum. The results are found to be highly sensitive to the mass accommodation coefficient of the evaporating species.

  8. Volatility of secondary organic aerosol during OH radical induced ageing

    Directory of Open Access Journals (Sweden)

    K. Salo

    2011-07-01

    Full Text Available The aim of this study was to investigate oxidation of SOA formed from ozonolysis of α-pinene and limonene by hydroxyl radicals. This paper focuses on changes of particle volatility, using a Volatility Tandem DMA (VTDMA set-up, in order to explain and elucidate the mechanism behind atmospheric ageing of the organic aerosol. The experiments were conducted at the AIDA chamber facility of KIT in Karlsruhe and at the SAPHIR chamber of FZJ in Jülich. A fresh SOA was produced from ozonolysis of α-pinene or limonene and then aged by enhanced OH exposure. As an OH-radical source in the AIDA-chamber the ozonolysis of tetramethylethylene (TME was used while in the SAPHIR-chamber the OH was produced by natural light photochemistry. A general feature is that SOA produced from ozonolysis of α-pinene and limonene initially were rather volatile and becomes less volatile with time in the ozonolysis part of the experiment. Inducing OH chemistry or adding a new portion of precursors made the SOA more volatile due to addition of new semi-volatile material to the aged aerosol. The effect of OH chemistry was less pronounced in high concentration and low temperature experiments when lower relative amounts of semi-volatile material were available in the gas phase. Conclusions drawn from the changes in volatility were confirmed by comparison with the measured and modelled chemical composition of the aerosol phase. Three quantified products from the α-pinene oxidation; pinonic acid, pinic acid and methylbutanetricarboxylic acid (MBTCA were used to probe the processes influencing aerosol volatility. A major conclusion from the work is that the OH induced ageing can be attributed to gas phase oxidation of products produced in the primary SOA formation process and that there was no indication on significant bulk or surface reactions. The presented results, thus, strongly emphasise the importance of gas phase oxidation of semi- or intermediate-volatile organic compounds

  9. Volatility of secondary organic aerosol during OH radical induced ageing

    Directory of Open Access Journals (Sweden)

    K. Salo

    2011-11-01

    Full Text Available The aim of this study was to investigate oxidation of SOA formed from ozonolysis of α-pinene and limonene by hydroxyl radicals. This paper focuses on changes of particle volatility, using a Volatility Tandem DMA (VTDMA set-up, in order to explain and elucidate the mechanism behind atmospheric ageing of the organic aerosol. The experiments were conducted at the AIDA chamber facility of Karlsruhe Institute of Technology (KIT in Karlsruhe and at the SAPHIR chamber of Forchungzentrum Jülich (FZJ in Jülich. A fresh SOA was produced from ozonolysis of α-pinene or limonene and then aged by enhanced OH exposure. As an OH radical source in the AIDA-chamber the ozonolysis of tetramethylethylene (TME was used while in the SAPHIR-chamber the OH was produced by natural light photochemistry. A general feature is that SOA produced from ozonolysis of α-pinene and limonene initially was rather volatile and becomes less volatile with time in the ozonolysis part of the experiment. Inducing OH chemistry or adding a new portion of precursors made the SOA more volatile due to addition of new semi-volatile material to the aged aerosol. The effect of OH chemistry was less pronounced in high concentration and low temperature experiments when lower relative amounts of semi-volatile material were available in the gas phase. Conclusions drawn from the changes in volatility were confirmed by comparison with the measured and modelled chemical composition of the aerosol phase. Three quantified products from the α-pinene oxidation; pinonic acid, pinic acid and methylbutanetricarboxylic acid (MBTCA were used to probe the processes influencing aerosol volatility. A major conclusion from the work is that the OH induced ageing can be attributed to gas phase oxidation of products produced in the primary SOA formation process and that there was no indication on significant bulk or surface reactions. The presented results, thus, strongly emphasise

  10. Size-dependence of volatile and semi-volatile organic carbon content in phytoplankton cells

    Directory of Open Access Journals (Sweden)

    Sergio eRuiz-Halpern

    2014-07-01

    Full Text Available The content of volatile and semivolatile organic compounds (VOC and SOC, measured as exchangeable dissolved organic carbon (EDOC, was quantified in 9 phytoplanktonic species that spanned 4 orders of magnitude in cell volume, by disrupting the cells and quantifying the gaseous organic carbon released. EDOC content varied 4 orders of magnitude, from 0.0015 to 14.12 pg C cell-1 in the species studied and increased linearly with increasing phytoplankton cell volume following the equation EDOC (pg C cell-1 = -2.35 x cellular volume (CV, µm3 cell-1 0.90 (± 0.3, with a slope (0.90 not different from 1 indicating a constant increase in volatile carbon as the cell size of phytoplankton increased. The percentage of EDOC relative to total cellular carbon was small but varied 20 fold from 0.28 % to 5.17 %, and no obvious taxonomic pattern in the content of EDOC was appreciable for the species tested. The cell release rate of EDOC is small compared to the amount of carbon in the cell and difficult to capture. Nonetheless, the results point to a potential flux of volatile and semivolatile phytoplankton-derived organic carbon to the atmosphere that has been largely underestimated and deserves further attention in the future.

  11. History of Martian volatiles - Implications for organic synthesis.

    Science.gov (United States)

    Fanale, F. P.

    1971-01-01

    A theoretical reconstruction of the history of Martian volatiles indicates that Mars probably possessed a substantial reducing atmosphere at the outset of its history, and that its present tenuous and more oxidized atmosphere is the result of extensive chemical evolution. As a consequence, it is probable that Martian atmospheric chemical conditions, now hostile with respect to abiotic organic synthesis in the gas phase, were initially favorable. Evidence indicating the chronology and degradational history of Martian surface features, surface mineralogy, bulk volatile content, internal mass distribution, and thermal history suggests that Mars catastrophically developed a substantial reducing atmosphere as the result of rapid accretion.

  12. Copper corrosion originated by volatile organic acid vapours; Corrosion del cobre por acidos organicos volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Cano, E.; Polo, J. L.; Kong, D. Y.; Mora, E. M.; Lopez-Caballero, J. A.; Bastidas, J. M.

    2004-07-01

    The corrosion of copper in the presence of volatile organic acids is frequent. Thus, for example, it is known that failures by corrosion of the copper tubes take place in the air conditioning equipment, caused by volatile organic acids emitted by oils used in their manufacturing. Another frequent case is the corrosion of copper objects caused by the acids emitted by the materials used in packing, wood and resins, amongst others. This communication presents the corrosion results of copper exposed to 100% relative humidity and different concentrations (10-300ppm) of formic (HCOOH), acetic (CH{sub 3}COOH), propionic (CH{sub 3}CH{sub 2}COOH) and butyric (CH{sub 3}(CH{sub 2}){sub 2}COOH) acid vapours, for short exposure times. the techniques used were gravimetric analysis, scanning electron microscopy (SEM) and X-ray diffraction (XRD). (Author) 9 refs.

  13. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions

    Science.gov (United States)

    Vellingiri, Kowsalya; Szulejko, Jan E.; Kumar, Pawan; Kwon, Eilhann E.; Kim, Ki-Hyun; Deep, Akash; Boukhvalov, Danil W.; Brown, Richard J. C.

    2016-06-01

    In this research, we investigated the sorptive behavior of a mixture of 14 volatile and semi-volatile organic compounds (four aromatic hydrocarbons (benzene, toluene, p-xylene, and styrene), six C2-C5 volatile fatty acids (VFAs), two phenols, and two indoles) against three metal-organic frameworks (MOFs), i.e., MOF-5, Eu-MOF, and MOF-199 at 5 to 10 mPa VOC partial pressures (25 °C). The selected MOFs exhibited the strongest affinity for semi-volatile (polar) VOC molecules (skatole), whereas the weakest affinity toward was volatile (non-polar) VOC molecules (i.e., benzene). Our experimental results were also supported through simulation analysis in which polar molecules were bound most strongly to MOF-199, reflecting the presence of strong interactions of Cu2+ with polar VOCs. In addition, the performance of selected MOFs was compared to three well-known commercial sorbents (Tenax TA, Carbopack X, and Carboxen 1000) under the same conditions. The estimated equilibrium adsorption capacity (mg.g‑1) for the all target VOCs was in the order of; MOF-199 (71.7) >Carboxen-1000 (68.4) >Eu-MOF (27.9) >Carbopack X (24.3) >MOF-5 (12.7) >Tenax TA (10.6). Hopefully, outcome of this study are expected to open a new corridor to expand the practical application of MOFs for the treatment diverse VOC mixtures.

  14. Modeling the degradation of Portland cement pastes by biogenic organic acids

    International Nuclear Information System (INIS)

    Reactive transport models can be used to assess the long-term performance of cement-based materials subjected to biodegradation. A bioleaching test (with Aspergillus niger fungi) applied to ordinary Portland cement pastes during 15 months is modeled with HYTEC. Modeling indicates that the biogenic organic acids (acetic, butyric, lactic and oxalic) strongly accelerate hydrate dissolution by acidic hydrolysis whilst their complexation of aluminum has an effect on the secondary gel stability only. The deepest degradation front corresponds to portlandite dissolution and decalcification of calcium silicate hydrates. A complex pattern of sulfate phases dissolution and precipitation takes place in an intermediate zone. The outermost degraded zone consists of alumina and silica gels. The modeling accurateness of calcium leaching, pH evolution and degradation thickness is consistently enhanced whilst considering increase of diffusivity in the degraded zones. Precipitation of calcium oxalate is predicted by modeling but was hindered in the bioleaching reactor.

  15. Can volatile organic compounds be markers of sea salt?

    Science.gov (United States)

    Silva, Isabel; Coimbra, Manuel A; Barros, António S; Marriott, Philip J; Rocha, Sílvia M

    2015-02-15

    Sea salt is a handmade food product that is obtained by evaporation of seawater in saltpans. During the crystallisation process, organic compounds from surroundings can be incorporated into sea salt crystals. The aim of this study is to search for potential volatile markers of sea salt. Thus, sea salts from seven north-east Atlantic Ocean locations (France, Portugal, Continental Spain, Canary Islands, and Cape Verde) were analysed by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. A total of 165 compounds were detected, ranging from 32 to 71 compounds per salt. The volatile composition revealed the variability and individuality of each salt, and a set of ten compounds were detected in all samples. From these, seven are carotenoid-derived compounds that can be associated with the typical natural surroundings of ocean hypersaline environment. These ten compounds are proposed as potential volatile markers of sea salt. PMID:25236204

  16. Contribution from biogenic organic compounds to particle growth during the 2010 BEACHON-ROCS campaign in a Colorado temperate needle leaf forest

    Directory of Open Access Journals (Sweden)

    L. Zhou

    2015-03-01

    Full Text Available New particle formation (NPF is an important atmospheric phenomenon. During a NPF event, molecular clusters first form by nucleation and then grow further by condensation of vapors. The growth step is crucial because it controls the number of particles that can become cloud condensation nuclei. In order to better understand the influence of biogenic emissions on particle growth, we carried out modeling studies of NPF events during the BEACHON-ROCS campaign at Manitou Experimental Forest Observatory in Colorado, USA. The site is representative of the semi-arid Western US. The implemented chemistry scheme with the latest Criegee intermediates reaction rates underestimates sulfuric acid concentration by 50%, suggesting missing atmospheric sulfuric acid sources. The results emphasize the contribution from biogenic volatile organic compound emissions to particle growth by demonstrating the effects of the oxidation products of monoterpenes and 2-Methyl-3-buten-2-ol (MBO. Monoterpene oxidation products are shown to influence the nighttime particle loadings significantly while their concentrations are insufficient to grow the particles during the day. The growth of ultrafine particles in daytime appears to be closely related to the OH oxidation products of MBO.

  17. Quantitative estimates of the volatility of ambient organic aerosol

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2010-01-01

    Full Text Available Measurements of the sensitivity of organic aerosol (OA, and its components mass to changes in temperature were recently reported by Huffman et al. (2009 using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets" are determined using several assumptions as to the enthalpy of vaporization (ΔHvap. We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions, on the order of 50–80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol and lowest for the high (ΔHvap = 150 kJ/mol assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009 has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the high and variable ΔHvap assumptions. Our

  18. Quantitative estimates of the volatility of ambient organic aerosol

    Directory of Open Access Journals (Sweden)

    C. D. Cappa

    2010-06-01

    Full Text Available Measurements of the sensitivity of organic aerosol (OA, and its components mass to changes in temperature were recently reported by Huffman et al.~(2009 using a tandem thermodenuder-aerosol mass spectrometer (TD-AMS system in Mexico City and the Los Angeles area. Here, we use these measurements to derive quantitative estimates of aerosol volatility within the framework of absorptive partitioning theory using a kinetic model of aerosol evaporation in the TD. OA volatility distributions (or "basis-sets" are determined using several assumptions as to the enthalpy of vaporization (ΔHvap. We present two definitions of "non-volatile OA," one being a global and one a local definition. Based on these definitions, our analysis indicates that a substantial fraction of the organic aerosol is comprised of non-volatile components that will not evaporate under any atmospheric conditions; on the order of 50–80% when the most realistic ΔHvap assumptions are considered. The sensitivity of the total OA mass to dilution and ambient changes in temperature has been assessed for the various ΔHvap assumptions. The temperature sensitivity is relatively independent of the particular ΔHvap assumptions whereas dilution sensitivity is found to be greatest for the low (ΔHvap = 50 kJ/mol and lowest for the high (ΔHvap = 150 kJ/mol assumptions. This difference arises from the high ΔHvap assumptions yielding volatility distributions with a greater fraction of non-volatile material than the low ΔHvap assumptions. If the observations are fit using a 1 or 2-component model the sensitivity of the OA to dilution is unrealistically high. An empirical method introduced by Faulhaber et al. (2009 has also been used to independently estimate a volatility distribution for the ambient OA and is found to give results consistent with the

  19. Aerosol from Organic Nitrogen in the Southeast United States

    Science.gov (United States)

    Biogenic volatile organic compounds (BVOCs) contribute significantly to organic aerosol in the southeastern United States. During the Southern Oxidant and Aerosol Study (SOAS), a portion of ambient organic aerosol was attributed to isoprene oxidation and organic nitrogen from BVO...

  20. Measurements of volatile organic compounds emitted from plants in the metropolitan area of São Paulo City , Brazil.

    Science.gov (United States)

    Carvalho, L.; Pisani, S.; Pool, C.; Vasconcellos, P.

    2003-04-01

    The presence of the biogenic hydrocarbons in an NO_x-containing atmosphere can enhance ozone generation and the impact of volatile organic compounds (VOCs) emitted from vegetation on atmospheric chemistry has been investigated. No study of VOC emission rates from plant species has been carried out in São Paulo City, Brazil, prior to this work. This study is part of a three-years project on biogenic volatile organic compounds emissions from species of plants found in the vegetation of the São Paulo metropolitan area. Typical plants (Alchornea sidifolia, Cupania oblongifolia, Cecropia pachystachia, Casearia sylvestris, Machaerium villosum, Croton floribundus, Myrcia rostrata, Solanum erianthum and Ficus insípida) were selected and identical species were studied in urban, sub-urban and forest regions. Biogenic hydrocarbons were determined placing branches of plants in enclosures and measuring the accumulation of emitted compounds in an all-Teflon chamber, the cuvette system. Measuring ambient VOC concentration adsorptive preconcentration, followed by GC-MS after thermal desorption of the sample, was employed to determine components heavier than C_5. Collection of carbonyl compounds on 2, 4-dinitrophenylhydrazine coated particles followed by HPLC-UV was used to analyze low molecular weight carbonyl compounds. Emissions rates of isoprene, a-pinene, camphene and limonene ranged from 0.01 to 2.16 μg C/h.g and emissions rates of aldehydes (C_1 - C_6), acrolein, methacrolein, 2-butanone and acetone ranged from 0.04 to 4.20 μg C/h.g. Ambient and chamber temperatures, relative humidity, light intensity, O_3 and NO_x were monitored during experiments.

  1. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    International Nuclear Information System (INIS)

    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl4) contamination located near the center of the Hanford Site. The movement of CCl4 and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies

  2. Volatile organic pollutants in iron and steel industry

    International Nuclear Information System (INIS)

    It is a well known fact that iron and steel units generate about 25% from total gaseous emissions, and a significant part of these are diffuse emissions, which appear during technological stages. so that, apart from other types of pollutants, appear volatile organic compounds (VOCs) that contain a considerable number of diverse and complex substances that, even in small amounts, affect all environmental factors: air, water, soil. (Author)

  3. Comprehensive Mapping of Volatile Organic Compounds in Fruits

    OpenAIRE

    Ghaste, Manoj Shahaji

    2015-01-01

    Volatile organic compounds (VOCs) are the key aroma producers in fruits and sensory quality of fruits is widely determined by qualitative and quantitative composition of VOCs. The aroma of grape is a complex of hundreds of VOCs belonging to different chemical classes like alcohols, esters, acids, terpenes, aldehydes, furanones, pyrazines, isoprenoids and many more. VOCs play important role as they determine the flavor of grapes and wine made from it. The objective of this thesis is to study o...

  4. Volatile organic compounds released by barley roots attract wireworms

    OpenAIRE

    Barsics, Fanny; Fiers, Marie; Haubruge, Eric; Verheggen, François

    2012-01-01

    Wireworms are the soil dwelling larvae of click beetles and are pests of many crops worldwide. Alternatives to insecticide treatments are needed in order to develop integrated management strategies. Our work consists in elucidating the role of barley root-emitted volatile organic compounds on the orientation behaviour of Agriotes sordidus wireworms. Using a dual choice olfactometer we have evaluated the attractiveness of a variety of baits ranging from barley roots themselves to isolated root...

  5. Potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol in the Mexico City region

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2010-01-01

    Full Text Available It has been established that observed local and regional levels of secondary organic aerosols (SOA in polluted areas cannot be explained by the oxidation and partitioning of anthropogenic and biogenic VOC precursors, at least using current mechanisms and parameterizations. In this study, the 3-D regional air quality model CHIMERE is applied to quantify the contribution to SOA formation of recently identified semi-volatile and intermediate volatility organic vapors (S/IVOC in and around Mexico City for the MILAGRO field experiment during March 2006. The model has been updated to include explicitly the volatility distribution of primary organic aerosols (POA, their gas-particle partitioning and the gas-phase oxidation of the vapors. Two recently proposed parameterizations, those of Robinson et al. (2007 ("ROB" and Grieshop et al. (2009 ("GRI" are compared and evaluated against surface and aircraft measurements. The 3-D model results are assessed by comparing with the concentrations of OA components from Positive Matrix Factorization of Aerosol Mass Spectrometer (AMS data, and for the first time also with oxygen-to-carbon ratios derived from high-resolution AMS measurements.

    The results show a substantial enhancement in predicted SOA concentrations (3–6 times with respect to the previously published base case without S/IVOCs (Hodzic et al., 2009, both within and downwind of the city leading to much reduced discrepancies with the total OA measurements. The predicted anthropogenic POA levels are found to agree within 20% with the observed HOA concentrations for both the ROB and GRI simulations, consistent with the interpretation of the emissions inventory by previous studies. The impact of biomass burning POA within the city is underestimated in comparison to the AMS BBOA, presumably due to insufficient nighttime smoldering emissions. Model improvements in OA predictions are associated with the better-captured SOA magnitude and diurnal

  6. Biogeochemistry of bulk organic matter and biogenic elements in surface sediments of the Yangtze River Estuary and adjacent sea

    International Nuclear Information System (INIS)

    Highlights: • Biogenic elements cycling in the YRE and adjacent sea surface sediments was discussed. • Factors influencing the biogenic elements distributions were examined. • Potential bioavailability of N and P was determined. • Burial fluxes of TOC, BSi, TN and TP were estimated. • Potential nutrient limitation factors were assessed. - Abstract: This study investigated the distribution and roles of total organic carbon (TOC), biogenic silicon (BSi), various forms of nitrogen (N) and phosphorus (P), and the stable carbon isotope (δ13C) in surface sediments of the Yangtze River Estuary (YRE) and adjacent sea. Terrestrial input accounted for 12–63% of total organic matter in the study area. The distribution of biogenic elements was affected by the Changjiang Diluted Water, the Jiangsu Coastal Current, human activities, marine biological processes, and the sediment grain size. Potentially bioavailable N and P accounted for an average 79.6% of the total N (TN) and 31.8% of the total P (TP), respectively. The burial fluxes for TOC, BSi, TN and TP were 39.74–2194.32, 17.34–517.48, 5.02–188.85 and 3.10–62.72 μmol cm−2 yr−1, respectively. The molar ratios of total N/P (1.2–5.0), Si/P (5.0–14.8) and Fe/P (21–61) indicated that much of the P was sequestered in sediments

  7. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Science.gov (United States)

    George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.

    2016-05-01

    In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.

  8. Assessing Emissions of Volatile Organic Componds from Landfills Gas

    OpenAIRE

    Fahime Khademi; Mohammad Reza Samaei; Kourosh Azizi; Abbas Shahsavani; Hassan Hashemi; Aida Iraji; Abdolkhalegh Miri

    2016-01-01

    Background: Biogas is obtained by anaerobic decomposition of organic wastes buried materials used to produce electricity, heat and biofuels. Biogas is at the second place for power generation after hydropower and in 2000 about 6% of the world power generation was allocated to biogas. Biogas is composed of 40–45 vol% CO2, 55–65 vol% CH4, and about 1% non-methaneVOCs, and non-methane volatile organic compounds. Emission rates are used to evaluate the compliance with landfil...

  9. [Generic method for determination of volatile organic solvents in cosmetics].

    Science.gov (United States)

    Da, Jing; Huang, Xianglu; Wang, Gangli; Cao, Jin; Zhang, Qingsheng

    2014-11-01

    A generic screening, confirmation and determination method was established based on 36 commonly used volatile organic solvents in cosmetics by headspace gas chromatography- mass spectrometry (GC-MS). This method included a database for pilot screening and identifi- cation of those solvents and their quantitative method. Pilot screening database was composed by two sections, one was household section built by two columns with opposite polarities (col- umn VF-1301 ms and DB-5 ms) using retention index in different column systems as qualitative parameter, and the other was NIST MS search version 2.0. Meanwhile, the determination method of the 36 volatile solvents was developed with GC-MS. Cosmetic samples were dissolved in water and transferred to a headspace vial. After 30 min equilibration at 60 °C, the samples were analyzed by GC-MS equipped with a capillary chromatographic column VF-1301 ms. The external calibration was used for quantification. The limits of detection were from 0.01 to 3.3 μg/g, and the recoveries were from 60.77% to 126.6%. This study provided a generic method for pilot screening, identification, and quantitation of volatile organic solvents in cosmetics, and may solve the problem that different analytical methods need to be developed for different targeted compounds and pilot screening for potential candidate solvent residues.

  10. Determination of Volatile Organic Compounds in Selected Strains of Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Ivan Milovanović

    2015-01-01

    Full Text Available Microalgal biomass can be used in creating various functional food and feed products, but certain species of microalgae and cyanobacteria are known to produce various compounds causing off-flavour. In this work, we investigated selected cyanobacterial strains of Spirulina, Anabaena, and Nostoc genera originating from Serbia, with the aim of determining the chemical profile of volatile organic compounds produced by these organisms. Additionally, the influence of nitrogen level during growth on the production of volatile compounds was investigated for Nostoc and Anabaena strains. In addition, multivariate techniques, namely, principal component analysis (PCA and hierarchical cluster analysis (HCA, were used for making distinction among different microalgal strains. The results show that the main volatile compounds in these species are medium chain length alkanes, but other odorous compounds such as 2-methylisoborneol (0.51–4.48%, 2-pentylfuran (0.72–8.98%, β-cyclocitral (0.00–1.17%, and β-ionone (1.15–2.72% were also detected in the samples. Addition of nitrogen to growth medium was shown to negatively affect the production of 2-methylisoborneol, while geosmin was not detected in any of the analyzed samples, which indicates that the manipulation of growth conditions may be useful in reducing levels of some unwanted odor-causing components.

  11. Effects of rigorous emission controls on reducing ambient volatile organic compounds in Beijing, China.

    Science.gov (United States)

    Li, Jing; Wu, Rongrong; Li, Yaqi; Hao, Yufang; Xie, Shaodong; Zeng, Liming

    2016-07-01

    102 volatile organic compound (VOC) species were measured online using a gas chromatography-mass spectrometry/flame ionization detector (GC-MS/FID) at an urban site in Beijing in 11 August to 3 September 2015, when a series of rigorous air quality control measures were implemented in Beijing city and neighbouring provinces. Positive matrix factorization (PMF) was applied to identify emission sources from 1h averaged values of VOC data. Based on the online VOC data and the PMF analysis results, the effectiveness of different control measures were investigated. The PMF results were compared with an emission inventory data. Results show that the rigorous air quality restrictions implemented were successful. The averaged ambient VOC mixing ratios during the emission control period and non-control period were 27.53 and 45.42ppbv, respectively. The mixing ratios of total VOC during the control period were reduced by 40%. Alkanes were the most abundant chemical group in the two periods, followed by oxygenated volatile organic compounds (OVOCs). Almost all quantified VOC species decreased during the control period. Tracers of industrial sources and vehicle exhaust reduced most, including some halocarbons, esters and aromatics. Eight sources were resolved by online PMF analysis for ambient VOCs in Beijing. Contributions of those sources varied significantly during the control and non-control period. Compared with the values before control, contributions of vehicle-related sources were most reduced, followed by solvent utilization. Reductions of vehicle-related sources, solvent utilization, secondary formation, fuel combustion, and biogenic were responsible for 65%, 19%, 10%, 5%, and 1% of the reductions in ambient VOCs. Both PMF results and emission inventory data indicated that the control measure on traffic was very effective in reducing ambient VOCs in Beijing, with the emission reductions of about 50%. PMID:27039059

  12. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    S. D. D'Andrea

    2014-10-01

    Full Text Available Emissions of biogenic volatile organic compounds (BVOC have changed in the past millennium due to changes in land use, temperature and CO2 concentrations. Recent model reconstructions of BVOC emissions over the past millennium predicted changes in dominant secondary organic aerosol (SOA producing BVOC classes (isoprene, monoterpenes and sesquiterpenes. The reconstructions predicted that global isoprene emissions have decreased (land-use changes to crop/grazing land dominate the reduction, while monoterpene and sesquiterpene emissions have increased (temperature increases dominate the increases; however, all three show regional variability due to competition between the various influencing factors. These BVOC changes have largely been anthropogenic in nature, and land-use change was shown to have the most dramatic effect by decreasing isoprene emissions. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on SOA formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS global aerosol microphysics model. With anthropogenic emissions (e.g. SO2, NOx, primary aerosols held at present day values and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80 of >25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in direct plus indirect aerosol radiative effect of >0.5 W m−2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and

  13. Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011

    Science.gov (United States)

    Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.; Campuzano-Jost, P.; Zhao, Y.; Day, D. A.; Kaser, L.; Karl, T.; Hansel, A.; Teng, A. P.; Ruehl, C. R.; Sueper, D. T.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.; Hering, S. V.; Goldstein, A. H.

    2016-02-01

    Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range are complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C15H24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C15H22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m-3 and their volatility distributions are estimated for modeling aerosol formation chemistry.

  14. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  15. Determination of biogenic amine profiles in conventional and organic cocoa-based products.

    Science.gov (United States)

    Restuccia, Donatella; Spizzirri, U Gianfranco; Puoci, Francesco; Picci, Nevio

    2015-01-01

    Cocoa contains many compounds such as biogenic amines (BAs), known to influence consumer health. Spermidine, spermidine, putrescine, histamine, tyramine, β-phenylethylamine, cadaverine and serotonine have been found in several cocoa-based products using HPLC with UV detection after derivatisation with dansyl-chloride. Once optimised in terms of linearity, percentage recovery, LOD, LOQ and repeatability, this method was applied to real samples. Total concentrations of BAs ranged from 5.7 to 79.0 µg g(-)(1) with wide variations depending on the type of sample. BAs present in all samples were in decreasing order: histamine (1.9-38.1 µg g(-)(1)) and tyramine (1.7-31.7 µg g(-)(1)), while putrescine (0.9-32.7 µg g(-)(1)), spermidine (1.0-9.7 µg g(-)(1)) and spermidine (0.6-9.3 µg g(-)(1)) were present in most of the samples. Cadaverine, serotonine and β-phenylethylamine were present in a few samples at much lower concentrations. Organic samples always contained much lower levels of BAs than their conventional counterparts and, generally speaking, the highest amounts of BAs were found in the most processed products. PMID:25833003

  16. Biogenic silica and organic carbon in sediments from the Pacific sector of the Southern Ocean

    International Nuclear Information System (INIS)

    Four cores, collected during the 1995/96 Italian Antarctic cruise and located north and south of the Polar Front, provided both qualitative and quantitative information about changes of the sediment settings driven by climate changes. Biogenic silica and organic carbon flux variations and sedimentological analyses allow us to make inferences about the fluctuation of the Polar Front during the last climate cycles: the records of our cores Anta96-1 and Anta96-16 account for fluctuations of the Polar Front of at least 5 degrees with respect to the present position, with a concomitant movement of the Marginal Ice Zone. The very low accumulation rates at the study sites are probably due to the scarce availability of micronutrients. In the area south of the Polar Front, sediment accumulation, after a decrease, appears constant during the last 250,000 yr. A subdivision in glacial/interglacial stages has been proposed, which permits the identification of the warm stage 11, which is particularly important in the Southern Ocean. (author). 13 refs., 5 figs

  17. Development of sensitive and selective food sensors using new Re(I)-Pt(II) bimetallic complexes to detect volatile biogenic sulfides formed by meat spoilage.

    Science.gov (United States)

    Chow, Cheuk-Fai; Ho, Pui-Yu; Sun, Dong; Lu, Yu-Jing; Wong, Wing-Leung; Tang, Qian; Gong, Cheng-Bin

    2017-02-01

    Detection of volatile biogenic sulfides (VBS) plays a crucial role in food safety because the amounts of these compounds can reflect the freshness of meat. A new indicator-displacement assay with Re(I)-Pt(II) complexes, [Re(Lig)(CO)3(bridge)]-[Pt(DMSO)(Cl)2] (1: Lig=5-phenyl-1,10-phenanthroline and bridge=NCS(-); 2: Lig=5-phenyl-1,10-phenanthroline and bridge=CN(-); 3: Lig=2,2'-biquinoline and bridge=NCS(-)), was demonstrated to be a very effective sensing method to VBS. The results indicated that the control of Re(I)-bridge-Pt(II) and Re(I)-ligand combination are able to regulate their sensing selectivity and sensitivity. This system was successfully applied to detect CH3SCH3 in real rotten pork with a linear luminometric response up to 20.0mgkg(-1) (R=0.997) with the detection limit as 0.05 mgkg(-1). Complex 1 also gave comparable results on the detection of VBS with respect to those determined by GCMS with recovery range from 76% to 102% (RSD%=13.8).

  18. Review on Volatile Organic Compounds Emission from Wood Composites

    Institute of Scientific and Technical Information of China (English)

    LIU Yu; YU Yaoming; SHEN Jun; LIU Ming

    2006-01-01

    The problem of indoor air quality (IAQ) is mainly caused by the volatile organic compounds (VOC) emission from the wood-based composites. As a material for decoration, furniture manufacturing or building, wood-based composite is one of the sources of VOC emissions. Most of them are formaldehyde, terpene, ketone and benzene. The paper reviews on VOC emission of wood-based composites at home and abroad, including the source of the VOC, its impacts on IAQ, its emission during processing and using, the usual sampling and analyse methods of VOC in different conditions. Meanwhile, main problems existed in the past researches are summarized and some suggestions are put forward.

  19. The sampling apparatus of volatile organic compounds for wood composites

    Institute of Scientific and Technical Information of China (English)

    SHENJun; ZHAOLin-bo; LIUYu

    2005-01-01

    Terpenes, aldehydes, ketones, benzene, and toluene are the important volatile organic compounds (VOCs) emitted from wood composites. A sampling apparatus of VOCs for wood composites was designed and manufactured by Northeast Forestry University in China.The concentration of VOCs derived from wood based materials, such as flooring, panel wall, finishing, and furniture can be sampled in a small stainless steel chambers. A protocol is also developed in this study to sample and measure the new and representative specimens. Preliminary research showed that the properties of the equipment have good stability. The sort and the amount of different components can be detected from it. The apparatus is practicable.

  20. Synthesis of Carbon Nanotubes and Volatile Organic Compounds Detection

    Directory of Open Access Journals (Sweden)

    Sobri S.

    2016-01-01

    Full Text Available In this work, the adsorption effect of volatile organic compounds (chloroacetophenone, acetonitrile and hexane towards the change of resistance of CNTs pellet as sensor signal was investigated. CNTs used in this research were synthesized using Floating Catalyst – Chemical Vapor Deposition (FC-CVD method in optimum condition. The synthesized CNTs were characterized using Scanning Electron Microscopy (SEM, Transmission Electron Microscopy (TEM and Raman Spectroscopy. The variation of resistance changes towards the tested gases were recorded using a multimeter. CNTs sensor pellet showed good responses towards the tested gases, however, the sensitivity, response time and recovery time of sensor pellet need to be optimized.

  1. Volatile organic compound (VOC) emissions during malting and beer manufacture

    Science.gov (United States)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  2. Surface microlayer enrichment of volatile organic compounds and semivolatile organic compounds in drinking water source

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhi; ZHOU Wen; YU Ya-juan; ZHANG Ai-qian; HAN Shuo-kui; WANG Lian-sheng

    2004-01-01

    Enrichment of volatile organic compounds(VOC) and semi-volatility organic compounds(SVOC) in surface microlayer(SM) of three drinking water sources were studied. The enrichment factor(EFs) were 0.67 to 13.37 and 0. 16 to 136, respectively. The results showed some VOC and most SVOC could enrich in SM. Some EFs of SVOC was quite high. Suspension and temperature could affect EFs of SVOC, slim wind and water movement do not destroy enrichment of organic in SM.

  3. Impacts of simulated herbivory on volatile organic compound emission profiles from coniferous plants

    Science.gov (United States)

    Faiola, C. L.; Jobson, B. T.; VanReken, T. M.

    2015-01-01

    The largest global source of volatile organic compounds (VOCs) in the atmosphere is from biogenic emissions. Plant stressors associated with a changing environment can alter both the quantity and composition of the compounds that are emitted. This study investigated the effects of one global change stressor, increased herbivory, on plant emissions from five different coniferous species: bristlecone pine (Pinus aristata), blue spruce (Picea pungens), western redcedar (Thuja plicata), grand fir (Abies grandis), and Douglas-fir (Pseudotsuga menziesii). Herbivory was simulated in the laboratory via exogenous application of methyl jasmonate (MeJA), a herbivory proxy. Gas-phase species were measured continuously with a gas chromatograph coupled to a mass spectrometer and flame ionization detector (GC-MS-FID). Stress responses varied between the different plant types and even between experiments using the same set of saplings. The compounds most frequently impacted by the stress treatment were alpha-pinene, beta-pinene, 1,8-cineol, beta-myrcene, terpinolene, limonene, and the cymene isomers. Individual compounds within a single experiment often exhibited a different response to the treatment from one another.

  4. Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    Directory of Open Access Journals (Sweden)

    S. Haapanala

    2007-01-01

    Full Text Available Boundary layer concentrations of several volatile organic compounds (VOC were measured during two campaigns in springs of 2003 and 2006. The measurements were conducted over boreal landscapes near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using a light aircraft and in 2006 using a hot air balloon. Isoprene concentrations were low, usually below detection limit. This can be explained by low biogenic production due to cold weather, phenological stage of the isoprene emitting plants, and snow cover. Monoterpenes were observed frequently. The average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds such as benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using a simple mixed box budget methodology. Total monoterpene emissions varied up to 80 μg m−2 h−1, α-pinene contributing typically more than two thirds of that. These emissions were somewhat higher that those calculated using emission algorithm. The highest emissions of anthropogenic compounds were those of p/m xylene.

  5. Turbulent exchange and segregation of HOx radicals and volatile organic compounds above a deciduous forest

    Directory of Open Access Journals (Sweden)

    A. Knaps

    2009-11-01

    Full Text Available The eddy covariance method was applied for the first time to estimate fluxes of OH and HO2 together with fluxes of isoprene, the sum of methyl vinyl ketone (MVK and methacrolein (MACR and the sum of monoterpenes above a mixed deciduous forest. Highly sensitive measurements of OH and HO2 were performed by laser induced fluorescence (LIF, and biogenic volatile organic compounds (BVOCs were measured by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS at a time resolution of 5 s, each. Wind speed was measured by a sonic anemometer at 10 Hz. The one-day feasibility study was conducted at a total height of 37 m, about 7 m above forest canopy, during the ECHO 2003 intensive field study in July 2003. The daytime measurements yielded statistically significant OH fluxes that indicate downward transport of OH into the direction of the canopy and HO2 fluxes mainly upward out of the canopy. This hints towards a significant chemical sink of OH by reaction with BVOCs and conversion of OH to HO2 at the canopy. In addition, the highly time-resolved trace gas measurements were used to calculate the intensity of segregation of OH and BVOCs, demonstrating that the effective reaction rate of isoprene and OH was slowed down as much as 15% due to inhomogeneous mixing of the reactants. The paper describes the applied methods and provides a detailed analysis of possible systematic errors of the covariance products.

  6. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    Science.gov (United States)

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemic...

  7. Secondary Organic Aerosol Formation From Select Volatile Organic Compounds

    OpenAIRE

    Chen, Chia-Li

    2015-01-01

    This thesis enhances our understanding of secondary organic aerosol (SOA) formation from select anthropogenic sources including polycyclic aromatic hydrocarbons (PAHs), PAHs mixed with m-xylene and an atmospheric surrogate, and unburned whole gasoline vapors. Major SOA chemical characteristics and physical properties were explored along with SOA formation within the UCR CE-CERT environmental chamber. SOA formation was significant for all three PAHs precursors during photooxidation under high ...

  8. The role of low volatile organics on secondary organic aerosol formation

    Science.gov (United States)

    Kokkola, H.; Yli-Pirilä, P.; Vesterinen, M.; Korhonen, H.; Keskinen, H.; Romakkaniemi, S.; Hao, L.; Kortelainen, A.; Joutsensaari, J.; Worsnop, D. R.; Virtanen, A.; Lehtinen, K. E. J.

    2014-02-01

    Large-scale atmospheric models, which typically describe secondary organic aerosol (SOA) formation based on chamber experiments, tend to systematically underestimate observed organic aerosol burdens. Since SOA constitutes a significant fraction of atmospheric aerosol, this discrepancy translates into an underestimation of SOA contribution to radiative forcing of atmospheric aerosol. Here we show that the underestimation of SOA yields can be partly explained by wall losses of SOA forming compounds during chamber experiments. We present a chamber experiment where α-pinene and ozone are injected into a Teflon chamber. When these two compounds react, we observe rapid formation and growth of new particles. Theoretical analysis of this formation and growth event indicates rapid formation of oxidized volatile organic compounds (OVOC) of very low volatility in the chamber. If these oxidized organic compounds form in the gas phase, their wall losses will have significant implications on their partitioning between the gas and particle phase. Although these OVOCs of very low volatility contribute to the growth of new particles, their mass will almost completely be depleted to the chamber walls during the experiment, while the depletion of OVOCs of higher volatilities is less efficient. According to our model simulations, the volatilities of OVOC contributing to the new particle formation event can be of the order of 10-5 μg m-3.

  9. Transport, behavior, and fate of volatile organic compounds in streams

    Science.gov (United States)

    Rathbun, R.E.

    2000-01-01

    Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties that make them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution of VOCs in the environment is necessary. The transport, behavior, and fate of VOCs in streams are determined by combinations of chemical, physical, and biological processes. These processes are volatilization, absorption, wet and dry deposition, microbial degradation, sorption, hydrolysis, aquatic photolysis, oxidation, chemical reaction, biocon-centration, advection, and dispersion. The relative importance of each of these processes depends on the characteristics of the VOC and the stream. The U.S. Geological Survey National Water-Quality Assessment Program selected 55 VOCs for study. This article reviews the characteristics of the various processes that could affect the transport, behavior, and fate of these VOCs in streams.

  10. Emerging site characterization technologies for volatile organic compounds

    International Nuclear Information System (INIS)

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at Hanford Site's 200 West Area for the removal of carbon tetrachloride from the unsaturated soils. In coordination with the ERA, innovative technology demonstrations are being conducted as part of DOE's Volatile Organic Compounds -- Arid Integrated Demonstration in an effort to improve upon baseline technologies. Improved methods for accessing, sampling, and analyzing soil and soil-vapor contaminants is a high priority. Sonic drilling is being evaluated as an alternative to cable-tool drilling, while still providing the advantages of reliability, containment, and waste minimization. Applied Research Associates, Inc. used their cone penetrometer in the 200 West Area to install a permanent soil-gas monitoring probe and to collect soil-gas profile data. However, successful application of this technology will require the development of an improved ability to penetrate coarse gravel units. A Science and Engineering Associates Membrane Instrumentation and Sampling Technique (SEAMIST) system designed for collecting in situ soil samples and air permeability data in between drilling runs at variable depths is being tested in 200 West Area boreholes. Analytical technologies scheduled for testing include supercritical fluid extraction and analysis for non- and semi-volatile organic co-contaminants and an unsaturated flow apparatus developed by Washington State University for the measurement of transport parameters

  11. Cyclodextrin-based microsensors for volatile organic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, B.; Johnson, S.; Shi, J.; Yang, Xiaoguang

    1997-10-01

    Host-guest chemistry and self-assembly techniques are being explored to develop species selective thin-films for real-time sensing of volatile organic compounds (VOCs). Cyclodextrin (CD) and calixarene (CA) molecules are known to form guest-host inclusion complexes with a variety of organic molecules. Through the control of the cavity size and chemical functionality on the rims of these bucket-like molecules, the binding affinities for formation of inclusion complexes can be controlled and optimized for specific agents. Self-assembly techniques are used to covalently bond these reagent molecules to the surface of acoustic transducers to create dense, highly oriented, and stable thin films. Self-assembly techniques have also been used to fabricate multilayer thin film containing molecular recognition reagents through alternating adsorption of charged species in aqueous solutions. Self-assembly of polymeric molecules of the SAW device was also explored for fabricating species selective interfaces.

  12. Arctic Vegetation under Climate Change – Biogenic Volatile Organic Compound Emissions and Leaf Anatomy

    DEFF Research Database (Denmark)

    Schollert, Michelle

    treatment effects on BVOC emissions. Furthermore, the anatomy of arctic plants seems to respond differently to warming than species at lower latitudes. The results in this thesis demonstrate the complexity of the effects of climate change on BVOC emissions and leaf anatomy of arctic plant species...... measurements in this thesis were performed using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analyzed by gas chromatography-mass spectrometry following thermal desorption. Also modifications in leaf anatomy in response to the studied effects of climate change were assessed...... common arctic plant species, illustrating the great importance of vegetation composition for determining ecosystem BVOC emissions. Additionally, this thesis assesses the BVOC emission responses in common arctic plant species to effects of climate change: warming, shading and snow addition. Against...

  13. Methyl halide and biogenic volatile organic compound fluxes from perennial bioenergy crops and annual arable crops

    OpenAIRE

    Morrison, Eilidh Christina

    2013-01-01

    The depletion of fossil fuel resources, pollution concerns and the challenge of energy security are driving the search for renewable energy sources. The use of lignocellulosic plant biomass as an energy source is increasing in the United Kingdom and worldwide. In the UK, up to 0.35MHa (6% of total arable land) may be planted with perennial bioenergy crops by 2020 in order to meet renewable energy and CO2 reduction targets. Several plant species that produce high biomass from lo...

  14. Formation of organic aerosol in the Paris region during the MEGAPOLI summer campaign: evaluation of the Volatility-Basis-Set approach within the CHIMERE model

    Directory of Open Access Journals (Sweden)

    Q. J. Zhang

    2012-11-01

    Full Text Available Results of the chemistry transport model CHIMERE are compared with the measurements performed during the MEGAPOLI summer campaign in the Greater Paris Region in July, 2009. The Volatility-Basis-Set approach (VBS is implemented into this model, taking into account the volatility of primary organic aerosol (POA and the chemical aging of semi-volatile organic species. Organic aerosol is the main focus and is simulated with three different configurations related to the volatility of POA and the scheme of secondary organic aerosol (SOA formation. In addition, two types of emission inventories are used as model input in order to test the uncertainty related to the emissions. Predictions of basic meteorological parameters and primary and secondary pollutant concentrations are evaluated and four pollution regimes according to the air mass origin are defined. Primary pollutants are generally overestimated, while ozone is consistent with observations. Sulfate is generally overestimated, while ammonium and nitrate levels are well simulated with the refined emission data set. As expected, the simulation with non-volatile POA and a single-step SOA formation mechanism largely overestimates POA and underestimates SOA. Simulation of organic aerosol with the VBS approach taking into account the aging of semi-volatile organic compounds (SVOC shows the best correlation with measurements. All observed high concentration events are reproduced by the model mostly after long range transport, indicating that long range transport of SOA to Paris is well reproduced. Depending on the emission inventory used, simulated POA levels are either reasonable or underestimated, while SOA levels tend to be overestimated. Several uncertainties related to the VBS scheme (POA volatility, SOA yields, the aging parameterization, to emission input data, and to simulated OH levels can be responsible for this behavior. Despite these uncertainties, the implementation of the VBS scheme into

  15. Wildlife ecological screening levels for inhalation of volatile organic chemicals.

    Science.gov (United States)

    Gallegos, Patricia; Lutz, Jill; Markwiese, James; Ryti, Randall; Mirenda, Rich

    2007-06-01

    For most chemicals, evaluation of ecological risk typically does not address inhalation because ingestion dominates exposure. However, burrowing ecological receptors have an increased exposure potential from inhalation at sites contaminated with volatile chemicals in the subsurface. Evaluation of ecological risk from contaminants like volatile organic chemicals (VOCs) is constrained by a lack of relevant ecological screening levels (ESLs). To address this need, inhalation ESLs were developed for 16 VOCs: Acetone, benzene, carbon tetrachloride, chloroform, chloromethane, dichlorodifluoromethane, 1,1-dichloroethane, 1,2-dichloroethane, 1,1-dichloroethene, methylene chloride, tetrachloroethene, toluene, 1,1,1-trichloroethane, trichloroethene, trichlorofluoromethane, and total xylene. These ESLs are based on Botta's pocket gopher (Thomomys bottae) as a representative fossorial receptor. The ESLs are presented with an emphasis on the process for developing inhalation toxicity reference values to illustrate the selection of suitable toxicity data and effect levels from the literature. The resulting ESLs provide a quantitative method for evaluating ecological risk of VOCs through comparison to relevant exposure data such as direct burrow-air measurements. The toxicity reference value development and ESL calculation processes and assumptions detailed here are provided as bases from which risk assessors can use or refine to suit site-specific needs with respect to toxicity and exposure inputs.

  16. Volatile organic compound emissions from Larrea tridentata (creosotebush

    Directory of Open Access Journals (Sweden)

    J. Ortega

    2010-07-01

    Full Text Available The emission of Volatile Organic Compounds (VOCs from plants impacts both climate and air quality by fueling atmospheric chemistry and by contributing to aerosol particles. While a variety of ecosystems have been investigated for VOC emissions, deserts remain essentially unstudied, partially because of their low biomass densities and water limitations. However, during the North American monsoon, a pronounced increase in rainfall from an extremely dry June (<5 mm precipitation to a rainy July (>80 mm occurs over large areas of the Sonoran desert in the Southwestern United States and Northwestern Mexico. We present results from the CREosote ATmosphere Interactions through Volatile Emissions (CREATIVE 2009 field study in Southern Arizona aimed at quantifying emission rates of VOCs from creosotebush (Larrea tridentata during the summer 2009 monsoon season. This species was chosen because of its vast distribution in North and South American deserts and because its resins have been reported to contain a rich set of VOCs. We observed a strong diurnal pattern with branch emissions and ambient concentrations of an extensive suite of VOCs with maxima in early afternoon. These include VOCs typically observed in forest sites (oxygenated VOCs and volatile isoprenoids as well as a large number of other compounds, some of which have not been previously described from any plant including 1-chloro-2-methoxy-benzene and isobutyronitrile. Although generally considered to be derived from anthropogenic sources, we observed emissions of aromatic compounds including benzene, and a broad range of phenolics. Dimethyl sulfide emissions from creosotebush were higher than reported from any previously studied plant suggesting that terrestrial ecosystems should be reconsidered as an important source of this climatically important gas. We also present direct, primary emission measurements of isoprene and its apparent oxidation products methyl vinyl ketone, methacrolein, and 3

  17. Effective absorption cross sections and photolysis rates of anthropogenic and biogenic secondary organic aerosols

    Science.gov (United States)

    Romonosky, Dian E.; Ali, Nujhat N.; Saiduddin, Mariyah N.; Wu, Michael; Lee, Hyun Ji (Julie); Aiona, Paige K.; Nizkorodov, Sergey A.

    2016-04-01

    Mass absorption coefficient (MAC) values were measured for secondary organic aerosol (SOA) samples produced by flow tube ozonolysis and smog chamber photooxidation of a wide range of volatile organic compounds (VOC), specifically: α-pinene, β-pinene, β-myrcene, d-limonene, farnesene, guaiacol, imidazole, isoprene, linalool, ocimene, p-xylene, 1-methylpyrrole, and 2-methylpyrrole. Both low-NOx and high-NOx conditions were employed during the chamber photooxidation experiments. MAC values were converted into effective molecular absorption cross sections assuming an average molecular weight of 300 g/mol for SOA compounds. The upper limits for the effective photolysis rates of SOA compounds were calculated by assuming unity photolysis quantum yields and convoluting the absorption cross sections with a time-dependent solar spectral flux. A more realistic estimate for the photolysis rates relying on the quantum yield of acetone was also obtained. The results show that condensed-phase photolysis of SOA compounds can potentially occur with effective lifetimes ranging from minutes to days, suggesting that photolysis is an efficient and largely overlooked mechanism of SOA aging.

  18. Development and Mining of a Volatile Organic Compound Database

    Science.gov (United States)

    Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md.; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Morita, Aki Hirai; Katsuragi, Tetsuo; Muto, Ai; Nishioka, Takaaki; Kanaya, Shigehiko

    2015-01-01

    Volatile organic compounds (VOCs) are small molecules that exhibit high vapor pressure under ambient conditions and have low boiling points. Although VOCs contribute only a small proportion of the total metabolites produced by living organisms, they play an important role in chemical ecology specifically in the biological interactions between organisms and ecosystems. VOCs are also important in the health care field as they are presently used as a biomarker to detect various human diseases. Information on VOCs is scattered in the literature until now; however, there is still no available database describing VOCs and their biological activities. To attain this purpose, we have developed KNApSAcK Metabolite Ecology Database, which contains the information on the relationships between VOCs and their emitting organisms. The KNApSAcK Metabolite Ecology is also linked with the KNApSAcK Core and KNApSAcK Metabolite Activity Database to provide further information on the metabolites and their biological activities. The VOC database can be accessed online. PMID:26495281

  19. Development and mining of a volatile organic compound database.

    Science.gov (United States)

    Abdullah, Azian Azamimi; Altaf-Ul-Amin, Md; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Morita, Aki Hirai; Katsuragi, Tetsuo; Muto, Ai; Nishioka, Takaaki; Kanaya, Shigehiko

    2015-01-01

    Volatile organic compounds (VOCs) are small molecules that exhibit high vapor pressure under ambient conditions and have low boiling points. Although VOCs contribute only a small proportion of the total metabolites produced by living organisms, they play an important role in chemical ecology specifically in the biological interactions between organisms and ecosystems. VOCs are also important in the health care field as they are presently used as a biomarker to detect various human diseases. Information on VOCs is scattered in the literature until now; however, there is still no available database describing VOCs and their biological activities. To attain this purpose, we have developed KNApSAcK Metabolite Ecology Database, which contains the information on the relationships between VOCs and their emitting organisms. The KNApSAcK Metabolite Ecology is also linked with the KNApSAcK Core and KNApSAcK Metabolite Activity Database to provide further information on the metabolites and their biological activities. The VOC database can be accessed online.

  20. Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX

    Directory of Open Access Journals (Sweden)

    S. S. Brown

    2013-05-01

    Full Text Available Organic compounds are a large component of aerosol mass, but organic aerosol (OA sources remain poorly characterized. Recent model studies have suggested nighttime oxidation of biogenic hydrocarbons as a potentially large OA source, but analysis of field measurements to test these predictions is sparse. We present nighttime vertical profiles of nitrogen oxides, ozone, VOCs and aerosol composition measured during low approaches of the NOAA P-3 aircraft to airfields in Houston, TX. This region has large emissions of both biogenic hydrocarbons and nitrogen oxides. The latter serves as a source of the nitrate radical, NO3, a key nighttime oxidant. Biogenic VOCs (BVOC and urban pollutants were concentrated within the nocturnal boundary layer (NBL, which varied in depth from 100–400 m. Despite concentrated NOx at low altitude, ozone was never titrated to zero, resulting in rapid NO3 radical production rates of 0.2–2.7ppbv h-1 within the NBL. Monoterpenes and isoprene were frequently present within the NBL and underwent rapid oxidation (up to 1ppbv h−1, mainly by NO3 and to a lesser extent O3. Concurrent enhancement in organic and nitrate aerosol on several profiles was consistent with primary emissions and with secondary production from nighttime BVOC oxidation, with the latter equivalent to or slightly larger than the former. Ratios of organic aerosol to CO within the NBL ranged from 14 to 38 μg m−3 OA/ppmv CO. A box model simulation incorporating monoterpene emissions, oxidant formation rates and monoterpene SOA yields suggested overnight OA production of 0.5 to 9 μg m−3.

  1. Effects of trace volatile organic compounds on methane oxidation

    Directory of Open Access Journals (Sweden)

    Chiemchaisri Wilai

    2001-01-01

    Full Text Available The effects of volatile organic compounds (VOCs on methane oxidation in landfill cover soils were examined. The batch experiments were conducted using single and mixed VOCs, such as, dichloromethane (DCM, trichloroethylene (TCE, tetrachloroethylene (PCE, and benzene. The results from all combinations showed a decrease in methane oxidation rate with increase in VOC concentrations. Moreover, inhibition effects of TCE and DCM were found higher than benzene and PCE. The reduction of methane oxidation by benzene and PCE could be attributed to the toxicity effect, whereas TCE and DCM were found to exhibit the competitive-inhibition effect. When the soil was mixed with DCM, no methane oxidation was found. Damage to the cell's internal membrane was found in a methanotrophic culture exposed to VOC gases which is the attachment site of a key enzyme needed for methane oxidation

  2. [Binding of Volatile Organic Compounds to Edible Biopolymers].

    Science.gov (United States)

    Misharina, T A; Terenina, M B; Krikunova, N I; Medvedeva, I B

    2016-01-01

    Capillary gas chromatography was used to study the influence of the composition and structure of different edible polymers (polysaccharides, vegetable fibers, and animal protein gelatin) on the binding of essential oil components. The retention of volatile organic compounds on biopolymers was shown to depend on their molecule structure and the presence, type, and position of a functional group. The maximum extent of the binding was observed for nonpolar terpene and sesquiterpene hydrocarbons, and the minimum extent was observed for alcohols. The components of essential oils were adsorbed due mostly to hydrophobic interactions. It was shown that the composition and structure of a compound, its physico-chemical state, and the presence of functional groups influence the binding. Gum arabic and guar gum were found to bind nonpolar compounds to a maximum and minimum extent, respectively. It was demonstrated the minimum adsorption ability of locust bean gum with respect to all studied compounds.

  3. Remediation of soil and groundwater contaminated with volatile organic compounds

    International Nuclear Information System (INIS)

    Contamination of groundwater by volatile organic chemicals (VOCs) is widespread at U.S. Department of Energy (DOE) sites. This problem is also encountered at other Federal sites listed in the U.S. Environmental Protection Agency (EPA) National Priority List (NPL), and private sector sites. These sites represent a variety of geologic, geophysical, climatic, and water-quality conditions. Since DOE sites are scattered across the country, dissimilarity in climatic conditions, such as aridity, becomes significant. The remediation of these sites by conventional pump-and-treat techniques based on extraction of contaminants through vertical wells or boreholes, is a costly and time consuming process. Although a number of technologies for remediation of subsurface contamination are available, it was found that more efficient and cost-effective technologies are needed to address the widespread problem of contamination of groundwater by VOCs. (author)

  4. Detection of volatile organic compounds using surface enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A S; Maiti, A; Ileri, N; Bora, M; Larson, C C; Britten, J A; Bond, T C

    2012-03-22

    The authors present the detection of volatile organic compounds directly in their vapor phase by surface-enhanced Raman scattering (SERS) substrates based on lithographically-defined two-dimensional rectangular array of nanopillars. The type of nanopillars is known as the tapered pillars. For the tapered pillars, SERS enhancement arises from the nanofocusing effect due to the sharp tip on top. SERS experiments were carried out on these substrates using various concentrations of toluene vapor. The results show that SERS signal from a toluene vapor concentration of ppm level can be achieved, and the toluene vapor can be detected within minutes of exposing the SERS substrate to the vapor. A simple adsorption model is developed which gives results matching the experimental data. The results also show promising potential for the use of these substrates in environmental monitoring of gases and vapors.

  5. Catabolism of volatile organic compounds influences plant survival.

    Science.gov (United States)

    Oikawa, Patricia Y; Lerdau, Manuel T

    2013-12-01

    Plants emit a diverse array of phytogenic volatile organic compounds (VOCs). The production and emission of VOCs has been an important area of research for decades. However, recent research has revealed the importance of VOC catabolism by plants and VOC degradation in the atmosphere for plant growth and survival. Specifically, VOC catabolism and degradation have implications for plant C balance, tolerance to environmental stress, plant signaling, and plant-atmosphere interactions. Here we review recent advances in our understanding of VOC catabolism and degradation, propose experiments for investigating VOC catabolism, and suggest ways to incorporate catabolism into VOC emission models. Improving our knowledge of VOC catabolism and degradation is crucial for understanding plant metabolism and predicting plant survival in polluted environments.

  6. Crude glycerol combustion: Particulate, acrolein, and other volatile organic emissions

    KAUST Repository

    Steinmetz, Scott A.

    2013-01-01

    Crude glycerol is an abundant by-product of biodiesel production. As volumes of this potential waste grow, there is increasing interest in developing new value added uses. One possible use, as a boiler fuel for process heating, offers added advantages of energy integration and fossil fuel substitution. However, challenges to the use of crude glycerol as a boiler fuel include its low energy density, high viscosity, and high autoignition temperature. We have previously shown that a refractory-lined, high swirl burner can overcome challenges related to flame ignition and stability. However, critical issues related to ash behavior and the possible formation of acrolein remained. The work presented here indicates that the presence of dissolved catalysts used during the esterification and transesterification processes results in extremely large amounts of inorganic species in the crude glycerol. For the fuels examined here, the result is a submicron fly ash comprised primarily of sodium carbonates, phosphates, and sulfates. These particles report to a well-developed accumulation mode (0.3-0.7 μm diameter), indicating extensive ash vaporization and particle formation via nucleation, condensation, and coagulation. Particle mass emissions were between 2 and 4 g/m3. These results indicate that glycerol containing soluble catalyst is not suitable as a boiler fuel. Fortunately, process improvements are currently addressing this issue. Additionally, acrolein is of concern due to its toxicity, and is known to be formed from the low temperature thermal decomposition of glycerol. Currently, there is no known reliable method for measuring acrolein in sources. Acrolein and emissions of other volatile organic compounds were characterized through the use of a SUMMA canister-based sampling method followed by GC-MS analysis designed for ambient measurements. Results indicate crude glycerol combustion produces relatively small amounts of acrolein (∼15 ppbv) and other volatile organic

  7. Studies of the Atmospheric Chemsitry of Energy-Related Volatile Organic Compounds and of their Atmospheric Reaction Products

    Energy Technology Data Exchange (ETDEWEB)

    Roger Atkinson; Janet Arey

    2007-04-14

    The focus of this contract was to investigate selected aspects of the atmospheric chemistry of volatile organic compounds (VOCs) emitted into the atmosphere from energy-related sources as well as from biogenic sources. The classes of VOCs studied were polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs, the biogenic VOCs isoprene, 2-methyl-3-buten-2-ol and cis-3-hexen-1-ol, alkenes (including alkenes emitted from vegetation) and their oxygenated atmospheric reaction products, and a series of oxygenated carbonyl and hydroxycarbonyl compounds formed as atmospheric reaction products of aromatic hydrocarbons and other VOCs. Large volume reaction chambers were used to investigate the kinetics and/or products of photolysis and of the gas-phase reactions of these organic compounds with hydroxyl (OH) radicals, nitrate (NO3) radicals, and ozone (O3), using an array of analytical instrumentation to analyze the reactants and products (including gas chromatography, in situ Fourier transform infrared spectroscopy, and direct air sampling atmospheric pressure ionization tandem mass spectrometry). The following studies were carried out. The photolysis rates of 1- and 2-nitronaphthalene and of eleven isomeric methylnitronaphthalenes were measured indoors using blacklamp irradiation and outdoors using natural sunlight. Rate constants were measured for the gas-phase reactions of OH radicals, Cl atoms and NO3 radicals with naphthalene, 1- and 2-methylnaphthalene, 1- and 2-ethylnaphthalene and the ten dimethylnaphthalene isomers. Rate constants were measured for the gas-phase reactions of OH radicals with four unsaturated carbonyls and with a series of hydroxyaldehydes formed as atmospheric reaction products of other VOCs, and for the gas-phase reactions of O3 with a series of cycloalkenes. Products of the gas-phase reactions of OH radicals and O3 with a series of biogenically emitted VOCs were identified and quantified. Ambient atmospheric measurements of the concentrations of a

  8. Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France)

    Science.gov (United States)

    Baudic, Alexia; Gros, Valérie; Sauvage, Stéphane; Locoge, Nadine; Sanchez, Olivier; Sarda-Estève, Roland; Kalogridis, Cerise; Petit, Jean-Eudes; Bonnaire, Nicolas; Baisnée, Dominique; Favez, Olivier; Albinet, Alexandre; Sciare, Jean; Bonsang, Bernard

    2016-09-01

    Within the framework of air quality studies at the megacity scale, highly time-resolved volatile organic compound (C2-C8) measurements were performed in downtown Paris (urban background sites) from January to November 2010. This unique dataset included non-methane hydrocarbons (NMHCs) and aromatic/oxygenated species (OVOCs) measured by a GC-FID (gas chromatograph with a flame ionization detector) and a PTR-MS (proton transfer reaction - mass spectrometer), respectively. This study presents the seasonal variability of atmospheric VOCs being monitored in the French megacity and their various associated emission sources. Clear seasonal and diurnal patterns differed from one VOC to another as the result of their different origins and the influence of environmental parameters (solar radiation, temperature). Source apportionment (SA) was comprehensively conducted using a multivariate mathematical receptor modeling. The United States Environmental Protection Agency's positive matrix factorization tool (US EPA, PMF) was used to apportion and quantify ambient VOC concentrations into six different sources. The modeled source profiles were identified from near-field observations (measurements from three distinct emission sources: inside a highway tunnel, at a fireplace and from a domestic gas flue, hence with a specific focus on road traffic, wood-burning activities and natural gas emissions) and hydrocarbon profiles reported in the literature. The reconstructed VOC sources were cross validated using independent tracers such as inorganic gases (NO, NO2, CO), black carbon (BC) and meteorological data (temperature). The largest contributors to the predicted VOC concentrations were traffic-related activities (including motor vehicle exhaust, 15 % of the total mass on the annual average, and evaporative sources, 10 %), with the remaining emissions from natural gas and background (23 %), solvent use (20 %), wood-burning (18 %) and a biogenic source (15 %). An important finding of

  9. Volatile organic compounds in the New England troposphere: Atmospheric chemistry and measurement techniques

    Science.gov (United States)

    Ambrose, Jesse L.

    Atmospheric measurements made at Appledore Island, Maine were used to investigate nighttime nitrate radical (NO3) chemistry and its significance for the nitrogen oxides (NOx = NO + NO2) budget in the Gulf of Maine region during the summer of 2004 International Consortium for Atmospheric Research on Transport and Transformation field campaign. Removal of NOx was strongly dependent on reactions of NO3 with biogenic volatile organic compounds and the fate of dinitrogen pentoxide (N 2O5). For three case studies, temporal profiles of NO 3 were calculated from measured parameters. Comparisons between measured and calculated NO3 mixing ratios highlighted significant uncertainties in the kinetic parameters governing gas-phase and heterogeneous N2O 5 hydrolysis. Removal of NOx was estimated to be ˜11 ppbv day-1, with nighttime chemical pathways contributing ˜50%. Atmospheric measurements made at the AIRMAP atmospheric monitoring station Thompson Farm (THF) during summer, 2004 were used to test the specificity of a proton transfer reaction-mass spectrometer (PTA-MS) for atmospheric toluene measurements under conditions often dominated by biogenic emissions. Quantitative estimates were made of potential interferences in the PTR-MS toluene measurements related to sampling and analysis of monoterpenes, including fragmentation of the monoterpenes and some of their primary carbonyl oxidation products in the PTR-MS drift tube. The analysis supported only minor interferences from the investigated fragmentation sources, suggesting that toluene can be reliably quantified by PTR-MS with the operating parameters used, under the ambient compositions probed. This work extends the range of field conditions under which PTR-MS validation studies have been conducted. A GC instrument was developed for measurement of hydrogen cyanide (HCN) in the lower atmosphere. Its major features include a cold temperature analyte enrichment system, a robust porous polymer stationary phase capillary

  10. Observation of biogenic secondary organic aerosols in the atmosphere of a mountain site in central China: temperature and relative humidity effects

    Directory of Open Access Journals (Sweden)

    J. J. Li

    2013-07-01

    Full Text Available Secondary organic aerosols (SOA derived from isoprene, pinene and caryophyllene were determined for PM10 and size-segregated (9-stage aerosols collected at the summit (2060 m, a.s.l. of Mt. Hua, central China during the summer of 2009. Concentrations of estimated isoprene, α-/β-pinene and β-caryophyllene derived SOC are 81± 53, 29 ± 14 and 98 ± 53 ng m−3, accounting for 2.7± 1.0%, 0.8 ± 0.2% and 2.1 ± 1.0% of OC, respectively. Concentrations of biogenic (BSOA, the isoprene/pinene/caryophyllene oxidation products and anthropogenic (ASOA, mainly aromatic acids SOA positively correlated with temperature (R=0.57–0.90. However, a decreasing trend of BSOA concentration with an increase in relative humidity (RH was observed during the sampling period, although a clear trend between ASOA and RH was not found. Based on the AIM Model calculation, we found that during the sampling period an increase in RH resulted in a decrease in the aerosol acidity and thus reduced the effect of acid-catalysis on BSOA formation. Size distribution measurement showed that most of the determined isoprene derived SOA may form in aerosol phase and enriched in the fine mode (cis-pinonic acid presents a large peak in the coarse mode (>2.1 μm due to its highly volatile nature.

  11. The role of low volatile organics on secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    H. Kokkola

    2013-06-01

    Full Text Available Large-scale atmospheric models, which typically describe secondary organic aerosol (SOA formation based on chamber experiments, tend to systematically underestimate observed organic aerosol burdens. Since SOA constitutes a significant fraction of atmospheric aerosol, this discrepancy translates to an underestimation of SOA contribution to climate. Here we show that the underestimation of SOA yields can partly be explained by wall-losses of SOA forming compounds during chamber experiments. We present a chamber experiment where α-pinene and ozone are injected in a Teflon chamber. When these two compounds react, we observe rapid formation and growth of new particles. Theoretical analysis of this formation and growth event indicates rapid formation of oxidized organic compounds (OVOC of very low volatility in the chamber. Although these OVOCs of very low volatility contribute to the growth of new particles, their mass will almost completely be depleted to the chamber walls during the experiment while the depletion of OVOCs of higher volatilities is less efficient. According to our model simulations, the volatilities of OVOC contributing to the new particle formation event are of the order of 10−5 μg m−3.

  12. Chemical oxidation of volatile and semi-volatile organic compounds in soil

    International Nuclear Information System (INIS)

    Subsurface contamination with fuel hydrocarbons or chlorinated hydrocarbons is prevalent throughout the Department of Energy (DOE) complex and in many sites managed by the Environmental Protection Agency (EPA) Superfund program. The most commonly reported chlorinated hydrocarbons (occurring > 50% of DOE contaminated sites) were trichloroethylene (TCE), 1, 1, 1,-trichloroethane (TCA), and tetrachloroethylene (PCE) with concentrations in the range of 0.2 μg/kg to 12,000 mg/kg. The fuel hydrocarbons most frequently reported as being present at DOE sites include aromatic compounds and polyaromatic compounds such as phenanthrene, pyrene, and naphthalene. The primary sources of these semi-volatile organic compounds (SVOCs) are coal waste from coal fired electric power plants used at many of these facilities in the past and gasoline spills and leaks. Dense non-aqueous phase liquids (DNAPLs) can migrate within the subsurface for long periods of time along a variety of pathways including fractures, macropores, and micropores. Diffusion of contaminants in the non-aqueous, aqueous, and vapor phase can occur from the fractures and macropores into the matrix of fine-textured media. As a result of these contamination processes, removal of contaminants from the subsurface and the delivery of treatment agents into and throughout contaminated regions are often hindered, making rapid and extensive remediation difficult

  13. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by AMS and NMR measurements

    Science.gov (United States)

    Finessi, E.; Decesari, S.; Paglione, M.; Giulianelli, L.; Carbone, C.; Gilardoni, S.; Fuzzi, S.; Saarikoski, S.; Raatikainen, T.; Hillamo, R.; Allan, J.; Mentel, Th. F.; Tiitta, P.; Laaksonen, A.; Petäjä, T.; Kulmala, M.; Worsnop, D. R.; Facchini, M. C.

    2011-08-01

    The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line air mass concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50 % of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component showed features consistent with less oxygenated aerosols and was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated to the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from

  14. Speciation of volatile organic compounds from poultry production

    Science.gov (United States)

    Trabue, Steven; Scoggin, Kenwood; Li, Hong; Burns, Robert; Xin, Hongwei; Hatfield, Jerry

    2010-09-01

    Volatile organic compounds (VOCs) emitted from poultry production are leading source of air quality problems. However, little is known about the speciation and levels of VOCs from poultry production. The objective of this study was the speciation of VOCs from a poultry facility using evacuated canisters and sorbent tubes. Samples were taken during active poultry production cycle and between production cycles. Levels of VOCs were highest in areas with birds and the compounds in those areas had a higher percentage of polar compounds (89%) compared to aliphatic hydrocarbons (2.2%). In areas without birds, levels of VOCs were 1/3 those with birds present and compounds had a higher total percentage of aliphatic hydrocarbons (25%). Of the VOCs quantified in this study, no single sampling method was capable of quantifying more than 55% of compounds and in several sections of the building each sampling method quantified less than 50% of the quantifiable VOCs. Key classes of chemicals quantified using evacuated canisters included both alcohols and ketones, while sorbent tube samples included volatile fatty acids and ketones. The top five compounds made up close to 70% of VOCs and included: 1) acetic acid (830.1 μg m -3); 2) 2,3-butanedione (680.6 μg m -3); 3) methanol (195.8 μg m -3); 4) acetone (104.6 μg m -3); and 5) ethanol (101.9 μg m -3). Location variations for top five compounds averaged 49.5% in each section of the building and averaged 87% for the entire building.

  15. Catalytic oxidation of volatile organic compounds (VOCs) - A review

    Science.gov (United States)

    Kamal, Muhammad Shahzad; Razzak, Shaikh A.; Hossain, Mohammad M.

    2016-09-01

    Emission of volatile organic compounds (VOCs) is one of the major contributors to air pollution. The main sources of VOCs are petroleum refineries, fuel combustions, chemical industries, decomposition in the biosphere and biomass, pharmaceutical plants, automobile industries, textile manufacturers, solvents processes, cleaning products, printing presses, insulating materials, office supplies, printers etc. The most common VOCs are halogenated compounds, aldehydes, alcohols, ketones, aromatic compounds, and ethers. High concentrations of these VOCs can cause irritations, nausea, dizziness, and headaches. Some VOCs are also carcinogenic for both humans and animals. Therefore, it is crucial to minimize the emission of VOCs. Among the available technologies, the catalytic oxidation of VOCs is the most popular because of its versatility of handling a range of organic emissions under mild operating conditions. Due to that fact, there are numerous research initiatives focused on developing advanced technologies for the catalytic destruction of VOCs. This review discusses recent developments in catalytic systems for the destruction of VOCs. Review also describes various VOCs and their sources of emission, mechanisms of catalytic destruction, the causes of catalyst deactivation, and catalyst regeneration methods.

  16. [Volatile organic compounds (VOCs) emitted from furniture and electrical appliances].

    Science.gov (United States)

    Tanaka-Kagawa, Toshiko; Jinno, Hideto; Furukawa, Yoko; Nishimura, Tetsuji

    2010-01-01

    Organic chemicals are widely used as ingredients in household products. Therefore, furniture and other household products as well as building products may influence the indoor air quality. This study was performed to estimate quantitatively influence of household products on indoor air quality. Volatile organic compound (VOC) emissions were investigated for 10 products including furniture (chest, desk, dining table, sofa, cupboard) and electrical appliances (refrigerator, electric heater, desktop personal computer, liquid crystal display television and audio) by the large chamber test method (JIS A 1912) under the standard conditions of 28 degrees C, 50% relative humidity and 0.5 times/h ventilation. Emission rate of total VOC (TVOC) from the sofa showed the highest; over 7900 microg toluene-equivalent/unit/h. Relatively high TVOC emissions were observed also from desk and chest. Based on the emission rates, the impacts on the indoor TVOC were estimated by the simple model with a volume of 17.4 m3 and ventilation frequency of 0.5 times/h. The estimated TVOC increment for the sofa was 911 microg/m3, accounting for almost 230% of the provisional target value, 400 microg/m3. The values of estimated increment of toluene emitted from cupboard and styrene emitted from refrigerator were 10% and 16% of guideline values, respectively. These results revealed that VOC emissions from household products may influence significantly indoor air quality. PMID:21381398

  17. 78 FR 24990 - Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound Emission...

    Science.gov (United States)

    2013-04-29

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound...), several volatile organic compound (VOC) rules that were submitted by the Ohio Environmental Protection..., 2012 (77 FR 31265), and received no comments. II. What action is EPA taking today and what is...

  18. 40 CFR 60.542a - Alternate standard for volatile organic compounds.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Alternate standard for volatile organic compounds. 60.542a Section 60.542a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Rubber Tire Manufacturing Industry § 60.542a Alternate standard for volatile organic compounds. (a)...

  19. 40 CFR 60.112a - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.112a Section 60.112a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Commenced After May 18, 1978, and Prior to July 23, 1984 § 60.112a Standard for volatile organic...

  20. 75 FR 82363 - Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound Emission...

    Science.gov (United States)

    2010-12-30

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound... printing volatile organic compound (VOC) rule for approval into the Ohio State Implementation Plan (SIP... review by the Office of Management and Budget under Executive Order 12866 (58 FR 51735, October 4,...

  1. 40 CFR 60.312 - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.312 Section 60.312 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Surface Coating of Metal Furniture § 60.312 Standard for volatile organic compounds (VOC). (a) On...

  2. 40 CFR 60.112 - Standard for volatile organic compounds (VOC).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds (VOC). 60.112 Section 60.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... After June 11, 1973, and Prior to May 19, 1978 § 60.112 Standard for volatile organic compounds...

  3. 77 FR 31265 - Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound Emission...

    Science.gov (United States)

    2012-05-25

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound... (Ohio EPA) submitted several volatile organic compound (VOC) rules for approval into its State... review by the Office of Management and Budget under Executive Order 12866 (58 FR 51735, October 4,...

  4. Patterns in volatile organic compound emissions along a savanna-rainforest gradient in central Africa

    Science.gov (United States)

    Klinger, L. F.; Greenburg, J.; Guenther, A.; Tyndall, G.; Zimmerman, P.; M'bangui, M.; Moutsamboté, J.-M.; Kenfack, D.

    1998-01-01

    In temperate regions the chemistry of the lower troposphere is known to be significantly affected by biogenic volatile organic compounds (VOCs) emitted by plants. The chemistry of the lower troposphere over the tropics, however, is poorly understood, in part because of the considerable uncertainties in VOC emissions from tropical ecosystems. Present global VOC models predict that base emissions of isoprene from tropical rainforests are considerably higher than from savannas. These global models of VOC emissions which rely mainly on species inventories are useful, but significant improvement might be made with more ecologically based models of VOC emissions by plants. Ecosystems along a successional transect from woodland savanna to primary rainforest in central Africa were characterized for species composition and vegetation abundance using ground surveys and remotely sensed data. A total of 336 species (mostly trees) at 13 sites were recorded, and 208 of these were measured for VOC emissions at near-optimal light and temperature conditions using a leaf cuvette and hand-held photoionization detector (PID). A subset of 59 species was also sampled using conventional VOC emission techniques in order to validate the PID technique. Results of ecological and VOC emission surveys indicate both phylogenetic and successional patterns along the savanna-rainforest transect. Genera and families of trees which tend to emit isoprene include Lophira, Irvingia, Albizia, Artocarpus, Ficus, Pterocarpus, Caesalpiniaceae, Arecaceae, and Moraceae. Other taxa tend to contain stored VOCs (Annonaceae and Asteraceae). Successional patterns suggest that isoprene emissions are highest in the relatively early successional Isoberlinia forest communities and progressively decrease in the later successional secondary and primary rainforest communities. Stored VOCs appear to increase along the savanna-rainforest succession, but these data are more tentative. These findings are consistent with

  5. Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest

    Directory of Open Access Journals (Sweden)

    B. Langford

    2010-09-01

    Full Text Available As part of the OP3 field study of rainforest atmospheric chemistry, above-canopy fluxes of isoprene, monoterpenes and oxygenated volatile organic compounds were made by virtual disjunct eddy covariance from a South-East Asian tropical rainforest in Malaysia. Approximately 500 hours of flux data were collected over 48 days in April–May and June–July 2008. Isoprene was the dominant non-methane hydrocarbon emitted from the forest, accounting for 80% (as carbon of the measured emission of reactive carbon fluxes. Total monoterpene emissions accounted for 18% of the measured reactive carbon flux. There was no evidence for nocturnal monoterpene emissions and during the day their flux rate was dependent on both light and temperature. The oxygenated compounds, including methanol, acetone and acetaldehyde, contributed less than 2% of the total measured reactive carbon flux. The sum of the VOC fluxes measured represents a 0.4% loss of daytime assimilated carbon by the canopy, but atmospheric chemistry box modelling suggests that most (90% of this reactive carbon is returned back to the canopy by wet and dry deposition following chemical transformation. The emission rates of isoprene and monoterpenes, normalised to 30 °C and 1000 μmol m−2 s−1 PAR, were 1.6 mg m−2 h−1 and 0.46mg m−2 h−1 respectively, which was 4 and 1.8 times lower respectively than the default value for tropical forests in the widely-used MEGAN model of biogenic VOC emissions. This highlights the need for more direct canopy-scale flux measurements of VOCs from the world's tropical forests.

  6. Seasonal trends in concentrations and fluxes of volatile organic compounds above central London

    Directory of Open Access Journals (Sweden)

    A. C. Valach

    2015-03-01

    Full Text Available Concentrations and fluxes of seven volatile organic compounds (VOCs were measured between August and December 2012 at a roof-top site in central London as part of the ClearfLo project (Clean Air for London. VOC concentrations were quantified using a proton transfer reaction-mass spectrometer and fluxes were calculated using a virtual disjunct eddy covariance technique. The median VOC fluxes, including aromatics, oxygenated compounds and isoprene, ranged from 0.07 to 0.33 mg m−2 h−1 and mixing ratios were 7.27 ppb for methanol (m / z 33 and <1 ppb for the remaining compounds. Strong relationships were observed between most VOC fluxes and concentrations with traffic density, but also with photosynthetically active radiation (PAR and temperature for the oxygenated compounds and isoprene. An estimated 50–90 % of aromatic fluxes were attributable to traffic activity, which showed little seasonal variation, suggesting boundary layer effects or possibly advected pollution may be the primary causes of increased concentrations of aromatics in winter. PAR and temperature-dependent processes accounted for the majority of isoprene, methanol and acetaldehyde fluxes and concentrations in August and September, when fluxes and concentrations were largest. Modelled biogenic isoprene fluxes using the G95 algorithm agreed well with measured fluxes in August and September, due to urban vegetation. Comparisons of estimated annual benzene emissions from the London and National Atmospheric Emissions Inventory agreed well with measured benzene fluxes. Flux footprint analysis indicated emission sources were localized and that boundary layer dynamics and source strengths were responsible for temporal and spatial VOC flux and concentration variability during the measurement period.

  7. Estimation of volatile organic compound emissions for Europe using data assimilation

    Directory of Open Access Journals (Sweden)

    M. R. Koohkan

    2013-06-01

    Full Text Available The emissions of non-methane volatile organic compounds (VOCs over western Europe for the year 2005 are estimated via inverse modelling by assimilation of in situ observations of concentration and then subsequently compared to a standard emission inventory. The study focuses on 15 VOC species: five aromatics, six alkanes, two alkenes, one alkyne and one biogenic diene. The inversion relies on a validated fast adjoint of the chemical transport model used to simulate the fate and transport of these VOCs. The assimilated ground-based measurements over Europe are provided by the European Monitoring and Evaluation Programme (EMEP network. The background emission errors and the prior observational errors are estimated by maximum-likelihood approaches. The positivity assumption on the VOC emission fluxes is pivotal for a successful inversion, and this maximum-likelihood approach consistently accounts for the positivity of the fluxes. For most species, the retrieved emissions lead to a significant reduction of the bias, which underlines the misfit between the standard inventories and the observed concentrations. The results are validated through a forecast test and a cross-validation test. An estimation of the posterior uncertainty is also provided. It is shown that the statistically consistent non-Gaussian approach based on a reliable estimation of the errors offers the best performance. The efficiency in correcting the inventory depends on the lifetime of the VOCs and the accuracy of the boundary conditions. In particular, it is shown that the use of in situ observations using a sparse monitoring network to estimate emissions of isoprene is inadequate because its short chemical lifetime significantly limits the spatial radius of influence of the monitoring data. For species with a longer lifetime (a few days, successful, albeit partial, emission corrections can reach regions hundreds of kilometres away from the stations. Domain-wide corrections of the

  8. Biodegradation of volatile organic compounds by five fungal species

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B.; Moe, W.M. [Dept. of Civil and Environmental Engineering, Louisiana State Univ., Baton Rouge, LA (United States); Kinney, K.A. [Dept. of Civil Engineering, Univ. of Texas, Austin (United States)

    2002-07-01

    Five fungal species, Cladosporium resinae (ATCC 34066), Cladosporium sphaerospermum (ATCC 200384), Exophiala lecanii-corni (CBS 102400), Mucor rouxii (ATCC 44260), and Phanerochaete chrysosporium (ATCC 24725), were tested for their ability to degrade nine compounds commonly found in industrial off-gas emissions. Fungal cultures inoculated on ceramic support media were provided with volatile organic compounds (VOCs) via the vapor phase as their sole carbon and energy sources. Compounds tested included aromatic hydrocarbons (benzene, ethylbenzene, toluene, and styrene), ketones (methyl ethyl ketone, methyl isobutyl ketone, and methyl propyl ketone), and organic acids (n-butyl acetate, ethyl 3-ethoxypropionate). Experiments were conducted using three pH values ranging from 3.5 to 6.5. Fungal ability to degrade each VOC was determined by observing the presence or absence of visible growth on the ceramic support medium during a 30-day test period. Results indicate that E. lecanii-corni and C. sphaerospermum can readily utilize each of the nine VOCs as a sole carbon and energy source. P. chrysosporium was able to degrade all VOCs tested except for styrene under the conditions imposed. C. resinae was able to degrade both organic acids, all of the ketones, and some of the aromatic compounds (ethylbenzene and toluene); however, it was not able to grow utilizing benzene or styrene under the conditions tested. With the VOCs tested, M. rouxii produced visible growth only when supplied with n-butyl acetate or ethyl 3-ethoxypropionate. Maximum growth for most fungi was observed at a pH of approximately 5.0. The experimental protocol utilized in these studies is a useful tool for assessing the ability of different fungal species to degrade gas-phase VOCs under conditions expected in a biofilter application. (orig.)

  9. Factors controlling volatile organic compounds in dwellings in Melbourne, Australia.

    Science.gov (United States)

    Cheng, M; Galbally, I E; Molloy, S B; Selleck, P W; Keywood, M D; Lawson, S J; Powell, J C; Gillett, R W; Dunne, E

    2016-04-01

    This study characterized indoor volatile organic compounds (VOCs) and investigated the effects of the dwelling characteristics, building materials, occupant activities, and environmental conditions on indoor VOC concentrations in 40 dwellings located in Melbourne, Australia, in 2008 and 2009. A total of 97 VOCs were identified. Nine VOCs, n-butane, 2-methylbutane, toluene, formaldehyde, acetaldehyde, d-limonene, ethanol, 2-propanol, and acetic acid, accounted for 68% of the sum of all VOCs. The median indoor concentrations of all VOCs were greater than those measured outdoors. The occupant density was positively associated with indoor VOC concentrations via occupant activities, including respiration and combustion. Terpenes were associated with the use of household cleaning and laundry products. A petroleum-like indoor VOC signature of alkanes and aromatics was associated with the proximity of major roads. The indoor VOC concentrations were negatively correlated (P < 0.05) with ventilation. Levels of VOCs in these Australian dwellings were lower than those from previous studies in North America and Europe, probably due to a combination of an ongoing temporal decrease in indoor VOC concentrations and the leakier nature of Australian dwellings. PMID:25788118

  10. Volatile organic compounds in the atmosphere of Mexico City

    Science.gov (United States)

    Garzón, Jessica P.; Huertas, José I.; Magaña, Miguel; Huertas, María E.; Cárdenas, Beatriz; Watanabe, Takuro; Maeda, Tsuneaki; Wakamatsu, Shinji; Blanco, Salvador

    2015-10-01

    The Mexico City Metropolitan Area (MCMA) is one of the most polluted megacities in North America. Therefore, it is an excellent benchmark city to understand atmospheric chemistry and to implement pilot countermeasures. Air quality in the MCMA is not within acceptable levels, mainly due to high ground levels of ozone (O3). Tropospheric O3 is a secondary pollutant formed from the oxidation of volatile organic compounds (VOCs) in the presence of nitrogen oxides and sunlight. To gain a better understanding of O3 formation in megacities, evaluate the effectiveness of already-implemented countermeasures, and identify new cost-effective alternatives to reduce tropospheric O3 concentrations, researchers and environmental authorities require updated concentrations for a broader range of VOCs. Moreover, in an effort to protect human health and the environment, it is important to understand which VOCs exceed reference safe values or most contribute to O3 formation, as well as to identify the most probable emission sources of those VOCs. In this work, 64 VOCs, including 36 toxic VOCs, were measured at four sites in the MCMA during 2011-2012. VOCs related to liquefied petroleum gas leakages exhibited the highest concentrations. Toxic VOCs with the highest average concentrations were acetone and ethanol. The toxic VOC benzene represented the highest risk to Mexican citizens, and toluene contributed the most to O3 formation. Correlation analysis indicated that the measured VOCs come from vehicular emissions and solvent-related industrial sources.

  11. [Ion mobility spectrometry for the isomeric volatile organic compounds].

    Science.gov (United States)

    Han, Hai-yan; Jia, Xian-de; Huang, Guo-dong; Wang, Hong-mei; Li, Jian-quan; Jin, Shun-ping; Jiang, Hai-he; Chu, Yan-nan; Zhou, Shi-kang

    2007-10-01

    Ion mobility spectrometry (IMS) is based on determining the drift velocities, which the ionized sample molecules attain in the weak electric field of a drift tube at atmospheric pressure. The drift behavior can be affected by structural differences of the analytes, so that ion mobility spectrometry has the ability to separated isomeric compounds. In the present article, an introduction to IMS is given, followed by a description of the instrument used for the experiments to differentiate isomeric compounds. Positive ion mobility spectras of three kinds of isomeric volatile organic compounds were studied in a homemade high-resolution IMS apparatus with a discharge ionization source. The study includes the differences in the structure of carbon chain, the style of function group, and the position of function group. The reduced mobility values were determined, which are in very good agreement with the previously reported theoretical values using neural network theory. The influence of the structural features of the substances and including the size and shape of the molecule has been investigated. The reduced mobility values increases in the order: alcohols ion mobility spectra of the constitutional isomers studied reflect the influence of structural features. In order to calibrate or determine the detection limits and the sensitivity of the ion mobility spectrometry, the exponential dilution flask (EDF) was used. Using this method, the detection limit of the analytes can reach the order of magnitude of ng x L(-1).

  12. Production of volatile organic compounds by cyanobacteria Synechococcus sp.

    Science.gov (United States)

    Hiraiwa, M.; Abe, M.; Hashimoto, S.

    2014-12-01

    Phytoplankton are known to produce volatile organic compounds (VOCs), which contribute to environmental problems such as global warming and decomposition of stratospheric ozone. For example, picophytoplankton, such as Prochlorococcus and Synechococcus, are distributed in freshwater and oceans worldwide, accounting for a large proportion of biomass and primary production in the open ocean. However, to date, little is known about the production of VOCs by picophytoplankton. In this study, VOCs production by cyanobacteria Synechococcus sp. (NIES-981) was investigated. Synechococcus sp. was obtained from the National Institute for Environmental Studies (NIES), Japan, and cultured at 24°C in autoclaved f/2-Si medium under 54 ± 3 µE m-2 s-1 (1 E = 1 mol of photons) with a 12-h light and 12-h dark cycle. VOCs concentrations were determined using a purge-and-trap gas chromatograph-mass spectrometer (Agilent 5973). The concentrations of chlorophyll a (Chl a) were also determined using a fluorometer (Turner TD-700). Bromomethane (CH3Br) and isoprene were produced by Synechococcus sp. Isoprene production was similar to those of other phytoplankton species reported earlier. Isoprene was produced when Chl a was increasing in the early stage of the incubation period (5-15 days of incubation time, exponential phase), but CH3Br was produced when Chl a was reduced in the late stage of the incubation period (30-40 days of incubation time, death phase).

  13. Constituents of volatile organic compounds of evaporating essential oil

    Science.gov (United States)

    Chiu, Hua-Hsien; Chiang, Hsiu-Mei; Lo, Cho-Ching; Chen, Ching-Yen; Chiang, Hung-Lung

    2009-12-01

    Essential oils containing aromatic compounds can affect air quality when used indoors. Five typical and popular essential oils—rose, lemon, rosemary, tea tree and lavender—were investigated in terms of composition, thermal characteristics, volatile organic compound (VOC) constituents, and emission factors. The activation energy was 6.3-8.6 kcal mol -1, the reaction order was in the range of 0.6-0.8, and the frequency factor was 0.01-0.24 min -1. Toluene, 1,2,3-trimethylbenzene, 1,2,4-trimethylbenzene, n-undecane, p-diethylbenzene and m-diethylbenzene were the predominant VOCs of evaporating gas of essential oils at 40 °C. In addition, n-undecane, p-diethylbenzene, 1,2,4-trimethylbenzene, m-diethylbenzene, and 1,2,3-trimethylbenzene revealed high emission factors during the thermogravimetric (TG) analysis procedures. The sequence of the emission factors of 52 VOCs (137-173 mg g -1) was rose ≈ rosemary > tea tree ≈ lemon ≈ lavender. The VOC group fraction of the emission factor of aromatics was 62-78%, paraffins were 21-37% and olefins were less than 1.5% during the TG process. Some unhealthy VOCs such as benzene and toluene were measured at low temperature; they reveal the potential effect on indoor air quality and human health.

  14. Volatile organic emissions from the distillation and pyrolysis of vegetation

    Directory of Open Access Journals (Sweden)

    J. P. Greenberg

    2006-01-01

    Full Text Available Leaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa were heated from 30 to 300°C and volatile organic compound (VOC emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 gC/kgC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC/gC(CO2 measured during the same experiments, in air and nitrogen atmospheres, respectively. The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and endothermic pyrolysis under low turbulence conditions may produce flammable concentrations near leaves and may facilitate the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions.

  15. Volatile organic compounds adsorption onto neat and hybrid bacterial cellulose

    Science.gov (United States)

    Ion, Violeta Alexandra; Pârvulescu, Oana Cristina; Dobre, Tănase

    2015-04-01

    Adsorption dynamics of VOCs (volatile organic compounds) vapour from air streams onto fixed bed adsorbent were measured and simulated under various operation conditions. Isopropanol (IPA) and n-hexane (HEX) were selected as representatives of polar and nonpolar VOCs, whereas bacterial cellulose (BC) and BC incorporated with magnetite nanoparticles (M/BC), were tested as adsorbents. An experimental study emphasizing the influence of air superficial velocity (0.7 cm/s and 1.7 cm/s), operation temperature (30 °C and 40 °C), adsorbate and adsorbent type, on fixed bed saturation curves was conducted. Optimal adsorption performances evaluated in terms of saturation adsorption capacity were obtained for the adsorption of polar compound (IPA) onto M/BC composite (0.805 g/g) and of nonpolar compound (HEX) onto neat BC (0.795 g/g), respectively, at high values of air velocity and operation temperature. A mathematical model including mass balance of VOC species, whose parameters were fitted based on experimental data, was developed in order to predict the fixed bed saturation curves. A 23 statistical model indicating a significant increase in adsorption performances with process temperature was validated under the experimental conditions.

  16. Volatile organic emissions from the distillation and pyrolysis of vegetation

    Science.gov (United States)

    Greenberg, J. P.; Friedli, H.; Guenther, A. B.; Hanson, D.; Harley, P.; Karl, T.

    2006-01-01

    Leaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa) were heated from 30 to 300°C and volatile organic compound (VOC) emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 gC/kgC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC)/gC(CO2)) measured during the same experiments, in air and nitrogen atmospheres, respectively. The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and endothermic pyrolysis under low turbulence conditions may produce flammable concentrations near leaves and may facilitate the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions.

  17. Volatile Organic Compounds in the Global Atmosphere (Invited)

    Science.gov (United States)

    Helmig, D.; Bottenheim, J. W.; Galbally, I.; Lewis, A. C.; Masarie, K.; Milton, M.; Penkett, S.; Plass-Duelmer, C.; Reimann, S.; Steinbrecher, R.; Tans, P. P.; Thiel, S.

    2010-12-01

    The World Meteorological Organization (WMO) - Global Atmospheric Watch (GAW) has been guiding the implementation of a global program for the monitoring of atmospheric volatile organic compounds (VOC). Essential features are 1. regular, in-situ, high temporal resolution measurements of VOC at surface stations, 2. VOC analyses in samples collected within flask sampling networks for wide geographical coverage, and 3. a concerted calibration and data quality control effort. A centerpiece of the flask sampling component builds upon the US NOAA Earth System Research Laboratory - Global Cooperative Air Sampling Network. Nine non-methane hydrocarbon species (NMHC; ethane, propane, iso-butane, n-butane, iso-pentane, n-pentane, isoprene, benzene, toluene) are currently analyzed by an automated gas chromatography system at the University of Colorado’s Institute of Arctic and Alpine Research (INSTAAR) in pairs of samples collected bi-weekly at 41 global background monitoring sites. Since the implementation of this program in 2004 more than 7000 measurements have been obtained. The obtained data allow elucidating the geographical and seasonal behavior of atmospheric NMHC, as well as interannual variations. Results show a wide dynamic range of mixing ratio changes. Concentration maxima and seasonal cycles are most pronounced in regions of highest emission sources and highest changes in the seasonal OH radical sink, i.e. the northern high and mid-latitudes. Seasonal southern hemisphere (SH) maxima are ~7 times and ~20 times lower for ethane and propane than in the northern hemisphere, which mainly reflects the smaller source strength of these gases in the SH. The richness of information in these data will help constraining the variability in global atmospheric oxidation chemistry and regional budgets of greenhouse gases, such as of methane and CO2, and most certainly stimulate further interests and applications in many fields of atmospheric chemistry and climate research

  18. Assessing Emissions of Volatile Organic Componds from Landfills Gas

    Directory of Open Access Journals (Sweden)

    Fahime Khademi

    2016-01-01

    Full Text Available Background: Biogas is obtained by anaerobic decomposition of organic wastes buried materials used to produce electricity, heat and biofuels. Biogas is at the second place for power generation after hydropower and in 2000 about 6% of the world power generation was allocated to biogas. Biogas is composed of 40–45 vol% CO2, 55–65 vol% CH4, and about 1% non-methaneVOCs, and non-methane volatile organic compounds. Emission rates are used to evaluate the compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA. BTEX comounds affect the air quality and may be harmful to human health. Benzene, toluene, ethylbenzene and xylene isomers that are generally called BTEX compounds are the most abundant VOCs in biogas. Methods: Sampling of VOCs in biogas vents was operated passively or with Tedlar bags. 20 samples were collected from 40 wells of old and new biogas sites of Shiraz’ landfill. Immediately after sampling, the samples were transferred to the laboratory. Analysis of the samples was performed with GC-MS. Results: The results showed that in the collection of the old and new biogas sites, the highest concentration of VOCs was observed in toluene (0.85ppm followed by benzene (0.81ppm, ethylbenzene (0.13ppm and xylene (0.08ppm. Conclusion: The results of the study showed that in all samples, most available compounds in biogas vents were aromatic hydrocarbon compounds.These compounds’ constituents originate from household hazardous waste materials deposited in the landfill or from biological/chemical decomposition processes within the landfill.

  19. Characterization of primary and secondary organic aerosols in Melbourne airshed: The influence of biogenic emissions, wood smoke and bushfires

    Science.gov (United States)

    Iinuma, Yoshiteru; Keywood, Melita; Herrmann, Hartmut

    2016-04-01

    Detailed chemical characterisation was performed for wintertime and summertime PM10 samples collected in Melbourne, Australia. The samples were analysed for marker compounds of biomass burning and biogenic secondary organic aerosol (SOA). The chemical analysis showed that the site was significantly influenced by the emissions from wintertime domestic wood combustion and summertime bushfires. Monosaccharide anhydrides were major primary biomass burning marker compounds found in the samples with the average concentrations of 439, 191, 57 and 3630 ngm-3 for winter 2004, winter 2005, summer 2005 and summer 2006, respectively. The highest concentration was determined during the summer 2006 bushfire season with the concentration of 15,400 ngm-3. Biomass burning originating SOA compounds detected in the samples include substituted nitrophenols, mainly 4-nitrocatechol (Mr 155), methyl-nitrocatechols (Mr 169) and dimethyl-nitrocatechols (Mr 183) with the sum concentrations as high as 115 ngm-3 for the wintertime samples and 770 ngm-3 for the bushfire influenced samples. In addition to this, elevated levels of biogenic SOA marker compounds were determined in the summertime samples influence by bushfire smoke. These marker compounds can be categorised into carboxylic acid marker compounds and heteroatomic organic acids containing nitrogen and sulfur. Carboxylic acid marker compounds can be largely attributed to oxidation products originating from 1,8-cineole, α-pinene and β-pinene that are main constituents of eucalyptus VOC emissions. Among those, diaterpenylic acid, terpenylic acid and daterebic acid were found at elevated levels in the bushfire influenced samples. Heteroatomic monoterpene SOA marker compounds (Mr 295, C10H17NO7S) were detected during both winter and summer periods. Especially high levels of these compounds were determined in the severe bushfire samples from summer 2006. Based on the results obtained from the chemical analysis and a macro tracer method

  20. Laboratory investigations of the hydroxyl radical-initiated oxidation of atmospheric volatile organic compounds

    Science.gov (United States)

    Vimal, Deepali

    The hydroxyl radical (OH) is one of the most important oxidants in the atmosphere, because reaction with OH is the dominant atmospheric fate of most trace atmospheric species. OH is intimately involved in a complex non-linear photochemical pathway involving anthropogenic and biogenic emissions of volatile organic compounds (VOCs) and nitrogen oxides that are emitted from vehicular exhaust and industrial emissions. This chemistry generates secondary tropospheric ozone which is an important greenhouse gas as well as a component of photochemical smog. In addition, this chemistry leads to the formation of secondary organic aerosols in the atmosphere which have implications for public health and climate change. The focus of this dissertation is to improve our understanding of this complex chemistry by investigating the rate-limiting elementary reactions which are part of the OH-initiated oxidation of important VOCs. Experimental (discharge flow technique coupled with resonance fluorescence and laser induced fluorescence) and theoretical studies (Density Functional Theory computations) of the kinetics of three atmospheric VOCs, acetic acid, 1,3-butadiene and methyl ethyl ketone are discussed. The acetic acid and OH reaction has been thought to undergo a hydrogen-bonded complex mediated pathway instead of a direct one leading to faster rate constants at lower temperature. Our results for the experimental investigation between 263-373 K and pressures of 2-5 Torr for the gas phase reaction of acetic acid with OH confirm the complex mediated reaction mechanism and indicate that acetic acid can play an important role especially in the oxidative chemistry of upper troposphere. The 1,3-butadiene and OH reaction is thought to undergo electrophilicaddition by OH which could display a complex pressure dependence similar to isoprene and 232-butenol as noted earlier in this laboratory. However, our results for the kinetics of the reaction between 273-423 K and a pressure range of 1

  1. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii

    Directory of Open Access Journals (Sweden)

    Pietro eLo Cantore

    2015-10-01

    Full Text Available Pseudomonas tolaasii is the main bacterial pathogen of several mushroom species. In this paper we report that strains of P. tolaasii produce volatile substances inducing in vitro mycelia growth inhibition of Pleurotus ostreatus and P. eryngii, and Agaricus bisporus and P. ostreatus basidiome tissue blocks brown discoloration. P. tolaasii strains produced the volatile ammonia but not hydrogen cyanide. Among the volatiles detected by GC-MS, methanethiol, dimethyl disulfide, and 1-undecene were identified. The latter, when assayed individually as pure compounds, led to similar effects noticed when P. tolaasii volatiles natural blend was used on mushrooms mycelia and basidiome tissue blocks. Furthermore, the natural volatile mixture, resulted toxic toward lettuce and broccoli seedling growth. In contrast, pure volatiles showed different activity according to their nature and/or doses applied. Indeed, methanethiol resulted toxic at all the doses used, while dimethyl disulfide toxicity was assessed till a quantity of 1.25 µg, below which it caused, together with 1-undecene ( 10 µg, broccoli growth increase.

  2. Sources of Volatile Organic Compounds (VOCs) in the UAE

    Science.gov (United States)

    Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Riemer, Daniel; Apel, Eric; Lootah, Nadia

    The gas chromatography-flame ionization detection/mass spectrometry system has been used to identify major volatile organic compounds (VOCs) sources in the UAE (latitude 24.45N; longitude 54.22E). VOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption. Transport sources contribute a substantial portion of the VOC burden to the urban atmosphere in developed regions. UAE is located at the edge of the Persian Gulf and is highly affected by emissions from petrochemical industries in neighbouring Saudi Arabia, Qatar, and Iran. VOCs emerging from these industries can be transported to the UAE with jet streams. The analysis of the collected air samples at three locations in Sharjah, UAE during the autumn and winter seasons indicates the presence of more than 100 VOC species. The concentrations of these species vary in magnitudes but the most prominent are: acetylene, ethane, propane, butane, pentane, benzene, and toluene. The possible tracers for various emission sources have also been identified such as 2-methylpentane, 1, 3-butadiene and 2, 2-dimethlybutane for vehicle exhaust, the light hydrocarbons, namely n-butane, trans-2-butene, and n-pentane for gasoline vapor, and n-nonane, n-decane, and n-undecane for diesel vapor and asphalt application processes. As various emission sources are characterized by overlapping VOC species, the ratio of possible VOC tracers are used to quantify the contribution of different sources. Our aim in this paper is to explore and discuss possible impacts of transported emissions on the local VOC emission inventory from various sources for the UAE. This work is partially supported by Office of Development and Alumni Affairs at the American University of Sharjah, U.A.E.

  3. Measuring concentrations of volatile organic compounds in vinyl flooring.

    Science.gov (United States)

    Cox, S S; Little, J C; Hodgson, A T

    2001-08-01

    The initial solid-phase concentration of volatile organic compounds (VOCs) is a key parameter influencing the emission characteristics of many indoor materials. Solid-phase measurements are typically made using solvent extraction or thermal headspace analysis. The high temperatures and chemical solvents associated with these methods can modify the physical structure of polymeric materials and, consequently, affect mass transfer characteristics. To measure solid-phase concentrations under conditions resembling those in which the material would be installed in an indoor environment, a new technique was developed for measuring VOC concentrations in vinyl flooring (VF) and similar materials. A 0.09-m2 section of new VF was punched randomly to produce -200 0.78-cm2 disks. The disks were milled to a powder at -140 degrees C to simultaneously homogenize the material and reduce the diffusion path length without loss of VOCs. VOCs were extracted from the VF particles at room temperature by fluidized-bed desorption (FBD) and by direct thermal desorption (DTD) at elevated temperatures. The VOCs in the extraction gas from FBD and DTD were collected on sorbent tubes and analyzed by gas chromatography/mass spectrometry (GC/MS). Seven VOCs emitted by VF were quantified. Concentration measurements by FBD ranged from 5.1 microg/g VF for n-hexadecane to 130 microg/g VF for phenol. Concentrations measured by DTD were higher than concentrations measured by FBD. Differences between FBD and DTD results may be explained using free-volume and dual-mobility sorption theory, but further research is necessary to more completely characterize the complex nature of a diffusant in a polymer matrix. PMID:11518293

  4. Urinary Volatile Organic Compounds for the Detection of Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Tanzeela Khalid

    Full Text Available The aim of this work was to investigate volatile organic compounds (VOCs emanating from urine samples to determine whether they can be used to classify samples into those from prostate cancer and non-cancer groups. Participants were men referred for a trans-rectal ultrasound-guided prostate biopsy because of an elevated prostate specific antigen (PSA level or abnormal findings on digital rectal examination. Urine samples were collected from patients with prostate cancer (n = 59 and cancer-free controls (n = 43, on the day of their biopsy, prior to their procedure. VOCs from the headspace of basified urine samples were extracted using solid-phase micro-extraction and analysed by gas chromatography/mass spectrometry. Classifiers were developed using Random Forest (RF and Linear Discriminant Analysis (LDA classification techniques. PSA alone had an accuracy of 62-64% in these samples. A model based on 4 VOCs, 2,6-dimethyl-7-octen-2-ol, pentanal, 3-octanone, and 2-octanone, was marginally more accurate 63-65%. When combined, PSA level and these four VOCs had mean accuracies of 74% and 65%, using RF and LDA, respectively. With repeated double cross-validation, the mean accuracies fell to 71% and 65%, using RF and LDA, respectively. Results from VOC profiling of urine headspace are encouraging and suggest that there are other metabolomic avenues worth exploring which could help improve the stratification of men at risk of prostate cancer. This study also adds to our knowledge on the profile of compounds found in basified urine, from controls and cancer patients, which is useful information for future studies comparing the urine from patients with other disease states.

  5. Stable carbon isotope ratios of ambient aromatic volatile organic compounds

    Science.gov (United States)

    Kornilova, Anna; Huang, Lin; Saccon, Marina; Rudolph, Jochen

    2016-09-01

    Measurements of mixing ratios and stable carbon isotope ratios of aromatic volatile organic compounds (VOC) in the atmosphere were made in Toronto (Canada) in 2009 and 2010. Consistent with the kinetic isotope effect for reactions of aromatic VOC with the OH radical the observed stable carbon isotope ratios are on average significantly heavier than the isotope ratios of their emissions. The change of carbon isotope ratio between emission and observation is used to determine the extent of photochemical processing (photochemical age, ∫ [OH]dt) of the different VOC. It is found that ∫ [OH]dt of different VOC depends strongly on the VOC reactivity. This demonstrates that for this set of observations the assumption of a uniform ∫ [OH]dt for VOC with different reactivity is not justified and that the observed values for ∫ [OH]dt are the result of mixing of VOC from air masses with different values for ∫ [OH]dt. Based on comparison between carbon isotope ratios and VOC concentration ratios it is also found that the varying influence of sources with different VOC emission ratios has a larger impact on VOC concentration ratios than photochemical processing. It is concluded that for this data set the use of VOC concentration ratios to determine ∫ [OH]dt would result in values for ∫ [OH]dt inconsistent with carbon isotope ratios and that the concept of a uniform ∫ [OH]dt for an air mass has to be replaced by the concept of individual values of an average ∫ [OH]dt for VOC with different reactivity.

  6. Global simulation of aromatic volatile organic compounds in the atmosphere

    Science.gov (United States)

    Cabrera Perez, David; Taraborrelli, Domenico; Pozzer, Andrea

    2015-04-01

    Among the large number of chemical compounds in the atmosphere, the organic group plays a key role in the tropospheric chemistry. Specifically the subgroup called aromatics is of great interest. Aromatics are the predominant trace gases in urban areas due to high emissions, primarily by vehicle exhausts and fuel evaporation. They are also present in areas where biofuel is used (i.e residential wood burning). Emissions of aromatic compounds are a substantial fraction of the total emissions of the volatile organic compounds (VOC). Impact of aromatics on human health is very important, as they do not only contribute to the ozone formation in the urban environment, but they are also highly toxic themselves, especially in the case of benzene which is able to trigger a range of illness under long exposure, and of nitro-phenols which cause detrimental for humans and vegetation even at very low concentrations. The aim of this work is to assess the atmospheric impacts of aromatic compounds on the global scale. The main goals are: lifetime and budget estimation, mixing ratios distribution, net effect on ozone production and OH loss for the most emitted aromatic compounds (benzene, toluene, xylenes, ethylbenzene, styrene and trimethylbenzenes). For this purpose, we use the numerical chemistry and climate simulation ECHAM/MESSy Atmospheric Chemistry (EMAC) model to build the global atmospheric budget for the most emitted and predominant aromatic compounds in the atmosphere. A set of emissions was prepared in order to include biomass burning, vegetation and anthropogenic sources of aromatics into the model. A chemical mechanism based on the Master Chemical Mechanism (MCM) was developed to describe the chemical oxidation in the gas phase of these aromatic compounds. MCM have been reduced in terms of number of chemical equation and species in order to make it affordable in a 3D model. Additionally other features have been added, for instance the production of HONO via ortho

  7. Leaf, branch, stand and landscape scale measurements of volatile organic compound fluxes from U.S. woodlands.

    Science.gov (United States)

    Guenther, A.; Greenberg, J.; Harley, P.; Helmig, D.; Klinger, L.; Vierling, L.; Zimmerman, P.; Geron, C.

    1996-01-01

    Natural volatile organic compound (VOC) fluxes were measured in three U.S. woodlands in summer 1993. Fluxes from individual leaves and branches were estimated with enclosure techniques and used to initialize and evaluate VOC emission model estimates. Ambient measurements were used to estimate above canopy fluxes for entire stands and landscapes. The branch enclosure experiments revealed 78 VOCs. Hexenol derivatives were the most commonly observed oxygenated compounds. The branch measurements also revealed high rates of isoprene emission from three genera of plants (Albizia, Chusqua and Mahonia) and high rates of monoterpene emission from three genera (Atriplex, Chrysthamnus and Sorbus) for which VOC emission rates have not been reported. Measurements on an additional 34 species confirmed previous results. Leaf enclosure measurements of isoprene emission rates from Quercus were substantially higher than the rates used in existing emission models. Model predictions of diurnal variations in isoprene fluxes were generally within +/- 35% of observed flux variations. Measurements with a fast response analyzer demonstrated that 60 min is a reasonable time resolution for biogenic emission models. Average daytime stand scale (hundreds of m) flux measurements ranged from about 1.3 mg C m(-2) h(-1) for a shrub oak stand to 1.5-2.5 mg C m(-2) h(-1) for a mixed forest stand. Morning, evening and nighttime fluxes were less than 0.1 mg C m(-2) h(-1). Average daytime landscape scale (tens of km) flux measurements ranged from about 3 mg C m(-2) h(-1) for a shrub oak-aspen and rangeland landscape to about 7 mg C m(-2) h(-1) for a deciduous forest landscape. Fluxes predicted by recent versions (BEIS2, BEIS2.1) of a biogenic emission model were within 10 to 50% of observed fluxes and about 300% higher than those predicted by a previous version of the model (BEIS). PMID:14871743

  8. Volatile organic compound (VOC) determination in working atmospheres; Determinacion de compuestos organicos volatiles (VOC) en ambiente laboral

    Energy Technology Data Exchange (ETDEWEB)

    Blass A, Georgina; Panama T, Luz A; Corrales C, Deyanira [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The present work describes, in a synthesized way, the implementation and application of procedures based on the normativity related to the subject of the volatile organic compounds (Volatile Organic Compounds VOC), that allow to sample, quantify and evaluate the present contamination in the working atmosphere of a refinery due to the fugitive emissions of VOC and other substances. In accordance with the corresponding normativity, more than 189 organic compounds denominated dangerous air polluting agents (Hazardous Air Pollutants, HAP) can be found in a working atmosphere, but they are the 11 main HAP that can be found in a refinery. In the present article the work made for the sampling and quantification of 5 of the 11 dangerous polluting agents of the air: benzene, toluene, xylene, iso-octane and naphthalene. [Spanish] El presente trabajo describe, de manera sintetizada, la implementacion y aplicacion de procedimientos basados en la normatividad relacionada al tema de los compuestos organicos volatiles (Volatil Organic Compounds, VOC), que permiten muestrear, cuantificar y evaluar la contaminacion presente en el ambiente laboral de una refineria debido a las emisiones fugitivas de VOC y otras sustancias. De acuerdo con la normatividad correspondiente, mas de 189 compuestos organicos denominados contaminantes peligrosos del aire (Hazardous Air Pollutants, HAP), pueden ser encontrados en un ambiente laboral, pero son 11 los principales HAP que pueden ser hallados en una refineria. En el presente articulo se informa el trabajo realizado para el muestreo y cuantificacion de 5 de los 11 contaminantes peligrosos del aire: benceno, tolueno, xileno, iso-octano y naftaleno.

  9. Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    Directory of Open Access Journals (Sweden)

    E. S. Cross

    2013-08-01

    Full Text Available A detailed understanding of the climate and air quality impacts of aviation requires measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground 143 m downwind of the engines and characterized as a function of engine power from idle (4% maximum rated thrust through 85% power. Results show that I/SVOC emissions are highest during engine idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10–20% of the total organic gas-phase emissions at idle, and an increasing fraction of the total gas-phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30% and may be linked to cracked, partially oxidized or unburned fuel components.

  10. Online measurements of the emissions of intermediate-volatility and semi-volatile organic compounds from aircraft

    Directory of Open Access Journals (Sweden)

    E. S. Cross

    2013-03-01

    Full Text Available A detailed understanding of the climate and air quality impacts of aviation requires detailed measurements of the emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs from aircraft. Currently both the amount and chemical composition of aircraft I/SVOC emissions remain poorly characterized. Here we characterize I/SVOC emissions from aircraft, using a novel instrument for the online, quantitative measurement of the mass loading and composition of low-volatility organic vapors. Emissions from the NASA DC8 aircraft were sampled on the ground, 143 m downwind of the engines and characterized as a function of engine power from ground idle (~4% maximum rated thrust through 85% power. Results show that I/SVOC emissions are highest during engine-idle operating conditions, with decreasing but non-zero I/SVOC emissions at higher engine powers. Comparison of I/SVOC emissions with total hydrocarbon (THC measurements, VOC measurements, and an established emissions profile indicates that I/SVOCs comprise 10–20% of the total organic gas phase emissions at idle, and an increasing fraction of the total gas phase organic emissions at higher powers. Positive matrix factorization of online mass spectra is used to identify three distinct types of I/SVOC emissions: aliphatic, aromatic and oxygenated. The volatility and chemical composition of the emissions suggest that unburned fuel is the dominant source of I/SVOCs at idle, while pyrolysis products make up an increasing fraction of the I/SVOCs at higher powers. Oxygenated I/SVOC emissions were detected at lower engine powers (≤30% and may be linked to cracked, partially oxidized or unburned fuel components.

  11. Determination of the biogenic secondary organic aerosol fraction in the boreal forest by AMS and NMR measurements

    Directory of Open Access Journals (Sweden)

    E. Finessi

    2011-08-01

    Full Text Available The study investigates the sources of fine organic aerosol (OA in the boreal forest, based on measurements including both filter sampling (PM1 and online methods and carried out during a one-month campaign held in Hyytiälä, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS were employed to measure on-line air mass concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions.

    The NMR results supported the AMS speciation of oxidized organic aerosol (OOA into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls. Such component, contributing on average 50 % of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component showed features consistent with less oxygenated aerosols and was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated to the formation of terrestrial biogenic secondary organic aerosol (BSOA, based on the

  12. Temperature-dependent release of volatile organic compounds of eucalypts by direct analysis in real time (DART) mass spectrometry.

    Science.gov (United States)

    Maleknia, Simin D; Vail, Teresa M; Cody, Robert B; Sparkman, David O; Bell, Tina L; Adams, Mark A

    2009-08-01

    A method is described for the rapid identification of biogenic, volatile organic compounds (VOCs) emitted by plants, including the analysis of the temperature dependence of those emissions. Direct analysis in real time (DART) enabled ionization of VOCs from stem and leaf of several eucalyptus species including E. cinerea, E. citriodora, E. nicholii and E. sideroxylon. Plant tissues were placed directly in the gap between the DART ionization source skimmer and the capillary inlet of the time-of-flight (TOF) mass spectrometer. Temperature-dependent emission of VOCs was achieved by adjusting the temperature of the helium gas into the DART ionization source at 50, 100, 200 and 300 degrees C, which enabled direct evaporation of compounds, up to the onset of pyrolysis of plant fibres (i.e. cellulose and lignin). Accurate mass measurements facilitated by TOF mass spectrometry provided elemental compositions for the VOCs. A wide range of compounds was detected from simple organic compounds (i.e. methanol and acetone) to a series of monoterpenes (i.e. pinene, camphene, cymene, eucalyptol) common to many plant species, as well as several less abundant sesquiterpenes and flavonoids (i.e. naringenin, spathulenol, eucalyptin) with antioxidant and antimicrobial properties. The leaf and stem tissues for all four eucalypt species showed similar compounds. The relative abundances of methanol and ethanol were greater in stem wood than in leaf tissue suggesting that DART could be used to investigate the tissue-specific transport and emissions of VOCs. PMID:19551840

  13. VOLATILE ORGANIC COMPOUNDS INHIBIT HUMAN AND RAT NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS EXPRESSED IN XENOPUS OOCYTES.

    Science.gov (United States)

    This manuscript provides evidence to indicate that rats and humans are equally sensitive at the pharmacodynamic level to effects of volatile organic compounds.? This manuscript also presents novel data that provides a plausible mechanism, disruption of ion channel functi...

  14. HENRY'S LAW CONSTANTS AND MICELLAR PARTITIONING OF VOLATILE ORGANIC COMPOUNDS IN SURFACTANT SOLUTIONS

    Science.gov (United States)

    Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace expe...

  15. Predicting partitioning of volatile organic compounds from air into plant cuticular matrix by quantum chemical descriptors

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on theoretical linear solvation energy relationship and quantum chemical descriptors computed by AM1 Hamiltonian, a new model is developed to predict the partitioning of some volatile organic compounds between the plant cuticular matrix and air.

  16. Measurement of volatile organic compounds and total OH reactivity in the atmosphere

    OpenAIRE

    Sinha, Vinayak

    2007-01-01

    Volatile organic compounds play a critical role in ozone formation and drive the chemistry of the atmosphere, together with OH radicals. The simplest volatile organic compound methane is a climatologically important greenhouse gas, and plays a key role in regulating water vapour in the stratosphere and hydroxyl radicals in the troposphere. The OH radical is the most important atmospheric oxidant and knowledge of the atmospheric OH sink, together with the OH source and ambient OH concentration...

  17. Biogenicity and Syngeneity of Organic Matter in Ancient Sedimentary Rocks: Recent Advances in the Search for Evidence of Past Life

    Energy Technology Data Exchange (ETDEWEB)

    Oehler, Dorothy Z.; Cady, Sherry L.

    2014-12-01

    he past decade has seen an explosion of new technologies for assessment of biogenicity and syngeneity of carbonaceous material within sedimentary rocks. Advances have been made in techniques for analysis of in situ organic matter as well as for extracted bulk samples of soluble and insoluble (kerogen) organic fractions. The in situ techniques allow analysis of micrometer-to-sub-micrometer-scale organic residues within their host rocks and include Raman and fluorescence spectroscopy/imagery, confocal laser scanning microscopy, and forms of secondary ion/laser-based mass spectrometry, analytical transmission electron microscopy, and X-ray absorption microscopy/spectroscopy. Analyses can be made for chemical, molecular, and isotopic composition coupled with assessment of spatial relationships to surrounding minerals, veins, and fractures. The bulk analyses include improved methods for minimizing contamination and recognizing syngenetic constituents of soluble organic fractions as well as enhanced spectroscopic and pyrolytic techniques for unlocking syngenetic molecular signatures in kerogen. Together, these technologies provide vital tools for the study of some of the oldest and problematic carbonaceous residues and for advancing our understanding of the earliest stages of biological evolution on Earth and the search for evidence of life beyond Earth. We discuss each of these new technologies, emphasizing their advantages and disadvantages, applications, and likely future directions.

  18. Biogenicity and Syngeneity of Organic Matter in Ancient Sedimentary Rocks: Recent Advances in the Search for Evidence of Past Life

    Directory of Open Access Journals (Sweden)

    Dorothy Z. Oehler

    2014-08-01

    Full Text Available The past decade has seen an explosion of new technologies for assessment of biogenicity and syngeneity of carbonaceous material within sedimentary rocks. Advances have been made in techniques for analysis of in situ organic matter as well as for extracted bulk samples of soluble and insoluble (kerogen organic fractions. The in situ techniques allow analysis of micrometer-to-sub-micrometer-scale organic residues within their host rocks and include Raman and fluorescence spectroscopy/imagery, confocal laser scanning microscopy, and forms of secondary ion/laser-based mass spectrometry, analytical transmission electron microscopy, and X-ray absorption microscopy/spectroscopy. Analyses can be made for chemical, molecular, and isotopic composition coupled with assessment of spatial relationships to surrounding minerals, veins, and fractures. The bulk analyses include improved methods for minimizing contamination and recognizing syngenetic constituents of soluble organic fractions as well as enhanced spectroscopic and pyrolytic techniques for unlocking syngenetic molecular signatures in kerogen. Together, these technologies provide vital tools for the study of some of the oldest and problematic carbonaceous residues and for advancing our understanding of the earliest stages of biological evolution on Earth and the search for evidence of life beyond Earth. We discuss each of these new technologies, emphasizing their advantages and disadvantages, applications, and likely future directions.

  19. A Push-Pull Test to Measure Volatilization Fluxes of Organic Pollutants without Flux Chambers

    Science.gov (United States)

    Reid, M. C.; Jaffe, P. R.

    2011-12-01

    Volatilization of organic contaminants is a potentially significant removal mechanism from wetlands, but field measurements are scarce and the physiochemical controls on volatilization from wetland soils remain poorly understood. It has been established that volatilization rates of certain pollutants are enhanced by vegetation and are strongly correlated with evapotranspiration (ET). These observations rely on flux chambers measurements, which are characterized by significant uncertainty due the chamber's effects on the meteorological variables around the plant and consequent impact on the biophysical processes governing ET and plant uptake of soil contaminants. Here we present data from a mesocosm study using a modified single-well push-pull test to measure in-situ volatilization rates from inundated soils vegetated with the wetland macrophytes Scirpus acutus and Typha latifolia, as well as from unplanted soil. This new method uses a test solution containing the volatile tracers sulfur hexafluoride (SF6), helium (He), and dichlorodifluoromethane (CFC-12) to estimate first-order volatilization rates and examine the relationship between physiochemical properties and volatilization rates. The test also yields an estimate for the volume of subsurface gas bubbles, which is used to derive a retardation factor for the effect of interphase partitioning on the estimation of kinetic parameters. We evaluate models to partition observed fluxes into different pathways for plant-mediated volatilization: transpirational uptake and consequent volatilization, and gas-phase diffusion through porous root aerenchyma. Those models are then used to scale tracer-derived volatilization fluxes to priority organic pollutants including benzene, trichloroethylene, and vinyl chloride. We also discuss the implementation of this method at field scales to estimate volatilization as a component of phytoremediation applications.

  20. Rapid changes of induced volatile organic compounds in Pinus massoniana

    Institute of Scientific and Technical Information of China (English)

    REN Qin; JIN Youju; HU Yongiian; CHEN Huajun; LI Zhenyu

    2007-01-01

    Using the thermal-desorption cold trap gas chromatography/mass spectrometer(TCT-GC-MS)technique,the composition and relative contents of volatile compounds were analyzed in undamaged(control),insect-damaged(ID)and artificially-damaged(AD)leaves ofPinus massoniana in field at different times and levels of damage.Results showed that although volatile substances were highly released earlier in AD leaves plants,they were significantly less abundant in AD than in ID leaves treatments.Also,the damage level considerably influenced the changes of induced volatile products from leaves.Compared with the control,the emission rate of camphene,β-pinene,phellandrene,caryophyllene and(E)farnesene was high after 1 h in 25%-40% ID-affected leaves,whereas that of tricyclene,myrcene,camphene,β-Pinene,phellandrene and caryophyllene reached its maximum after 24 h in 60%-75% D-affected leaves.In the same manner,some volatile compounds in the AD leaves treatment displayed their peaks just after 1 h,but others after 24 h.The AD and ID leaves at the damage level of 25%-40% did not exhibit an obvious regularity with time;however,in 60%- 75% AD leaves,peaks of volatile substances were attained after 1 or 2 h.Our results also showed that the relative content ofβ-pinene increased and was higher in damaged than control plants,β-pinene plays an important role in inducing the insect resistance of P.massoniana trees.

  1. Understanding the formation of biogenic secondary organic aerosol from α-pinene in smog chamber studies: role of organic peroxy radicals

    Directory of Open Access Journals (Sweden)

    B. Bonn

    2007-03-01

    Full Text Available This study focusses on the description of the nucleation process observed during the ozone reaction of the biogenic monoterpene α-pinene in smog chambers. Therefore, a detailed aerosol dynamics model (UHMA was extended by a tropospheric chemistry module and a detailed description of the first steps of organic nucleation. We assume secondary ozonides to act as nucleation initiating molecules, which are subsequently activated by reactions with organic peroxy radicals (RO2. With this set-up the observed particle size distributions of an exemplary experiment in Valencia was reproduced, when only the long-lived organic compounds like carboxylic acids and carbonyl compounds are detected by the available aerosol size distribution instruments. Our results indicate that fragile or reactive species might get destroyed because of weak bond breakage during the size classification. This assumption would imply a serious detection problem in nucleation studies to be solved.

  2. Understanding the anthropogenic influence on formation of biogenic secondary organic aerosols via analysis of organosulfates and related oxidation products

    Directory of Open Access Journals (Sweden)

    Q. T. Nguyen

    2014-01-01

    Full Text Available Anthropogenic emissions of sulfur dioxide (SO2 and nitrogen oxides (NOx may affect concentration levels and composition of biogenic secondary organic aerosols (BSOA through photochemical reactions with biogenic organic precursors to form organosulfates and nitrooxy organosulfates. We investigated this influence in a field study from 19 May–22 June 2011 at two sampling sites in Denmark. Within the study, we identified a substantial number of organic acids, organosulfates and nitrooxy organosulfates in the ambient urban curbside and semi-rural background air. A high degree of correlation in concentrations was found among a group of specific organic acids, organosulfates and nitrooxy organosulfates, which may originate from various precursors, suggesting a common mechanism or factor affecting their concentration levels at the sites. It was proposed that the formation of those species most likely occurred on a larger spatial scale with the compounds being long-range transported to the sites on the days with highest concentrations. The origin of the long-range transported aerosols was investigated using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT model in addition to modeled emissions of related precursors including isoprene and monoterpenes using the global Model of Emissions of Gases and Aerosols from Nature (MEGAN and SO2 emissions using the European Monitoring and Evaluation Program (EMEP database. The local impacts were also studied by examining the correlation between selected species which showed significantly enhanced concentrations at the urban curbside site and the local concentrations of various gases including SO2, ozone (O3, carbon monoxide (CO, NOx, aerosol acidity and other meteorological conditions. This investigation showed that an inter-play of the local parameters such as the aerosol acidity, NOx, relative humidity (RH, temperature and global radiation seemed to influence the concentration level of those

  3. Evolution of volatile sulfur compounds from soils treated with sulfur-containing organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Banwart, W.L.; Bremner, J.M.

    1976-01-01

    Release of volatile S compounds from soils treated with S-containing organic materials was studied. Methyl mercaptan, dimethyl sulfide, dimethyl disulfide, carbonyl sulfide and carbon disulfide were identified as gaseous products of decomposition of animal manures, sewage sludges and plant materials in soils under aerobic or waterlogged conditions. No release of hydrogen sulfide was detected. Most of the S volatilized from soils treated with sludges was in the form of dimethyl sulfide and dimethyl disulfide, whereas most of the S volatilized from soils treated with manures and plant materials was in the form of methyl mercaptan and dimethyl sulfide. More S compounds were released, and more S was volatilized, by decomposition of manures, sludges or plant materials in soils under waterlogged conditions than by decomposition under aerobic conditions. When calculated as a percentage of the S added as organic material, the average amount of S volatilized under aerobic or waterlogged conditions was < 0.2%, < 0.5% and < 3.4% for the sludges, manures and plant materials, respectively. The five volatile S compounds produced by decomposition of manures, sludges and plant materials in soils under aerobic and waterlogged conditions also were produced by decomposition of plant proteins (zein, gluten and gliadin). It is concluded that the volatile S compounds released by decomposition of the above organic materials in soils are largely, if not entirely, produced by microbial degradation of methionine and cystine in these materials. 17 references, 5 tables.

  4. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012.

    Science.gov (United States)

    Geron, Chris; Daly, Ryan; Harley, Peter; Rasmussen, Rei; Seco, Roger; Guenther, Alex; Karl, Thomas; Gu, Lianhong

    2016-03-01

    Leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower - NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses similar to those previously reported in the literature and used in Biogenic Volatile Organic Compound (BVOC) emission models. During the peak of the drought in August, isoprene emission rates were substantially reduced, and response to temperature was dramatically altered, especially for the species in the red oak subgenus (Erythrobalanus). Quercus stellata (in the white oak subgenus Leucobalanus), on the other hand, increased its isoprene emission rate during August, and showed no decline at high temperatures during June or August, consistent with its high tolerance to drought and adaptation to xeric sites at the prairie-deciduous forest interface. Mid-late October measurements were conducted after soil moisture recharge, but were affected by senescence and cooler temperatures. Isoprene emission rates were considerably lower from all species compared to June and August data. The large differences between the oaks in response to drought emphasizes the need to consider BVOC emissions at the species level instead of just the whole canopy. Monoterpene emissions from Quercus rubra in limited data were highest among the oaks studied, while monoterpene emissions from the other oak species were 80-95% lower and less than assumed in current BVOC emission models. Major monoterpenes from Q. rubra (and in ambient air) were p-cymene, α-pinene, β-pinene, d-limonene, γ-terpinene, β-ocimene (predominantly1,3,7-trans-β-ocimene, but also 1,3,6-trans-β-ocimene), tricyclene, α-terpinene, sabinene, terpinolene, and myrcene. Results are discussed in the context of canopy flux studies

  5. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012.

    Science.gov (United States)

    Geron, Chris; Daly, Ryan; Harley, Peter; Rasmussen, Rei; Seco, Roger; Guenther, Alex; Karl, Thomas; Gu, Lianhong

    2016-03-01

    Leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower - NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses similar to those previously reported in the literature and used in Biogenic Volatile Organic Compound (BVOC) emission models. During the peak of the drought in August, isoprene emission rates were substantially reduced, and response to temperature was dramatically altered, especially for the species in the red oak subgenus (Erythrobalanus). Quercus stellata (in the white oak subgenus Leucobalanus), on the other hand, increased its isoprene emission rate during August, and showed no decline at high temperatures during June or August, consistent with its high tolerance to drought and adaptation to xeric sites at the prairie-deciduous forest interface. Mid-late October measurements were conducted after soil moisture recharge, but were affected by senescence and cooler temperatures. Isoprene emission rates were considerably lower from all species compared to June and August data. The large differences between the oaks in response to drought emphasizes the need to consider BVOC emissions at the species level instead of just the whole canopy. Monoterpene emissions from Quercus rubra in limited data were highest among the oaks studied, while monoterpene emissions from the other oak species were 80-95% lower and less than assumed in current BVOC emission models. Major monoterpenes from Q. rubra (and in ambient air) were p-cymene, α-pinene, β-pinene, d-limonene, γ-terpinene, β-ocimene (predominantly1,3,7-trans-β-ocimene, but also 1,3,6-trans-β-ocimene), tricyclene, α-terpinene, sabinene, terpinolene, and myrcene. Results are discussed in the context of canopy flux studies

  6. Volatile organic compound speciation above and within a Douglas fir forest

    Science.gov (United States)

    Copeland, Nichola; Cape, J. Neil; Nemitz, Eiko; Heal, Mathew R.

    2014-09-01

    Mixing ratios and fluxes of volatile organic compounds (VOCs) were measured by PTR-MS (and GC-MS) and virtual disjunct eddy covariance during a three-week field campaign in summer 2009 within and above a Douglas fir (Pseudotsuga menziesii) forest in Speulderbos, the Netherlands. Measurements included the first non-terpenoid species fluxes and mixing ratios for Douglas fir canopy. Above-canopy emissions of monoterpenes were comparable to previous studies of P. menziesii, with estimated standard emission factors for the first and second halves of the campaign of 0.8 ± 0.4 and 0.8 ± 0.3 μg gdw-1 h-1, and temperature coefficients of 0.19 ± 0.06 and 0.08 ± 0.05 °C-1, respectively. Estimated isoprene standard emission factors for the two halves of the campaign were 0.09 ± 0.12 and 0.16 ± 0.18 μg gdw-1 h-1. Fluxes of several non-terpenoid VOCs were significant, with maximum fluxes greater than has been measured for other coniferous species. α-Pinene was the dominant monoterpene within and above the canopy. Within-canopy mixing ratios of individual species were generally greatest in early evening consistent with reduced vertical mixing and continued temperature-dependent emissions. Acetaldehyde, acetone and monoterpenes had elevated mixing ratios toward the bottom of the canopy (5-10 m) with assumed contribution from the large quantities of forest-floor leaf litter. MBO (2-methyl-3-buten-2-ol) and estragole had peak mixing ratios at the top of the canopy and are known to have coniferous sources. MVK + MACR (methyl vinyl ketone and methacrolein) also had highest mixing ratios at the top of the canopy consistent with formation from in-canopy oxidation of isoprene. The work highlights the importance of quantifying a wider variety of VOCs from biogenic sources than isoprene and monoterpenes.

  7. Volatile organic compounds in industrial, urban, and suburban areas: Sources and exposures

    Science.gov (United States)

    Jia, Chunrong

    This research was aimed at evaluating and refining sampling and analytical methods for airborne volatile organic compounds (VOCs), and at characterizing concentrations and potential exposures of VOCs found in indoor and ambient air in industrial, urban and suburban communities. A new analytical strategy of combining selective ion monitoring (SIM) and scan mode mass spectrometer analyses was developed and evaluated. This strategy improved sensitivity and selectivity without extra cost or calibration efforts. An intermittent active sampling method for collecting VOCs, which has not been previously evaluated, was compared to continuous active and passive sampling methods with the aim of obtaining long-term integrated measurements. Results obtained by the three methods agreed over a wide concentration range after accounting for the sampling rate. Intermittent sampling provides greater flexibility with respect to sampling period and flow rate, and enables the use of multi-bed adsorbents that increase the range of VOCs that can be monitored. VOC concentrations were measured inside and outside of 159 residences in suburban (Ann Arbor), urban (Ypsilanti) and urban/industrial (Dearborn) communities in southeastern Michigan from 2004 to 2005. A total of 53 and 46 VOCs were detected indoors and outdoors, respectively. Outdoors, benzene, toluene, p,m-xylene and carbon tetrachloride had the highest concentrations, and differences were seen between cities and seasons. Factor analyses identified four types of outdoor sources: vehicle exhaust/gasoline vapor, industrial solvents, biogenic emissions, and industrial sources. Indoors, benzene, toluene, p,m-xylene, n-heptane, alpha-pinene and d-limonene had the highest concentrations. Indoor to outdoor concentration ratios ranged from 1 to 10 for most compounds. Higher indoor concentrations were associated with the presence of attached garages, recent renovations, indoor smoking, residence age, infrequent window/door opening, high CO2

  8. Volatile organic compound fluxes and concentrations in London (ClearfLo)

    Science.gov (United States)

    Valach, Amy; Langford, Ben; Nemitz, Eiko; MacKenzie, Rob; Hewitt, Nick

    2014-05-01

    Volatile organic compounds (VOCs) from anthropogenic sources such as fuel combustion or evaporative emissions can directly and indirectly affect human health. Some VOCs, such as benzene and 1,3- butadiene are carcinogens. These and other VOCs contribute to the formation of ozone (O3) and aerosol particles, which have effects on human health and the radiative balance of the atmosphere. Although in the UK VOC emissions are subject to control under European Commission Directive 2008/50/EC and emission reducing technologies have been implemented, urban air pollution remains a concern. Urban air quality is likely to remain a priority since currently >50% of the global population live in urban areas with trends in urbanization and population migration predicted to increase. The ClearfLo project is a large multi-institutional consortium funded by the UK Natural Environment Research Council (NERC) and provides integrated measurements of meteorology, gas phase and particulate composition of the atmosphere over London. Both long term and IOP measurements were made at street and elevated locations at a range of sites across London and its surroundings during 2011 and 2012. Mixing ratios of a selection of nine VOCs were measured using a high sensitivity proton transfer reaction-mass spectrometer (PTR-MS) at a ground level urban background (North Kensington) and kerbside (Marylebone Road) site during the winter IOP. VOC fluxes were measured by virtually disjunct eddy covariance (vDEC) at an elevated urban site (King's College Strand) in Aug-Dec 2012. Our results for the first IOP showed that most of the selected compound concentrations depended on traffic emissions, although there was a marked difference between the urban background and kerbside sites. We identified some temperature effects on VOC concentrations. We also present the first analyses of VOC flux measurements over London. Preliminary analyses indicate most compounds associated with vehicle emissions closely

  9. Volatile organic compound emission rates from mixed deciduous and coniferous forests in Northern Wisconsin, USA

    Science.gov (United States)

    Isebrands, J. G.; Guenther, A. B.; Harley, P.; Helmig, D.; Klinger, L.; Vierling, L.; Zimmerman, P.; Geron, C.

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regions of the world to understand regional and global impacts and to implement possible mitigation strategies. The mixed deciduous and coniferous forests of northern Wisconsin, USA, were predicted to have significant VOC emission rates because they are comprised of many genera (i.e. Picea, Populus, Quercus, Salix) known to be high VOC emitters. In July 1993, a study was conducted on the Chequamegon National Forest near Rhinelander, WI, to identify and quantify VOC emitted from major trees, shrubs, and understory herbs in the mixed northern forests of this region. Emission rates were measured at various scales - at the leaf level with cuvettes, the branch level with branch enclosures, the canopy level with a tower based system, and the landscape level with a tethered balloon air sampling system. Area-average emission rates were estimated by scaling, using biomass densities and species composition along transects representative of the study site. Isoprene (C 5H 8) was the primary VOC emitted, although significant quantities of monoterpenes (C 10H 16) were also emitted. The highest emission rates of isoprene (at 30°C and photosynthetically active radiation of 1000 μmol m -2 s -1) were from northern red oak ( Quercus rubra, >110 μg(C) g -1 h -1); aspen ( Populus tremuloides, >77); willow ( Salix spp., >54); and black spruce ( Picea mariana, >10). Emission rates of hybrid poplar clones ranged from 40 to 90 μg(C) g -1 h -1 at 25°C; those of Picea provenances were generally VOC to the atmosphere. Accurate estimates of these emissions are required for determining appropriate regulatory air pollution control strategies. Future studies are needed to extrapolate these estimates to other landscapes

  10. [Emission model of volatile organic compounds from materials used indoors].

    Science.gov (United States)

    Han, K

    1998-11-30

    Various materials, such as wall-paper, floor-wax, paint, multicolor wall-coat, air freshener and mothball were experimented in a simulated test chamber under constant selected temperature, humidity and air exchange rate. The relation between the total VOCs concentration and time was regressed by four emission models and the surface emission rate was calculated. The regressed results indicated the similarity among four emission models for the liquid materials with volatile-solvent such as paint and multicolor wall-coat. But for low volatile solid materials, such as wall-paper, floor-wax, mothball, the sink model and the empirical model were better than the dilution model and vapor pressure model. Only for air freshener, it was improper to the total VOCs concentration as a parameter.

  11. RT-MATRIX: Measuring Total Organic Carbon by Photocatalytic Oxidation of Volatile Organic Compounds

    Science.gov (United States)

    2008-01-01

    Volatile organic compounds (VOCs) inevitably accumulate in enclosed habitats such as the International Space Station and the Crew Exploration Vehicle (CEV) as a result of human metabolism, material off-gassing, and leaking equipment. Some VOCs can negatively affect the quality of the crew's life, health, and performance; and consequently, the success of the mission. Air quality must be closely monitored to ensure a safe living and working environment. Currently, there is no reliable air quality monitoring system that meets NASA's stringent requirements for power, mass, volume, or performance. The ultimate objective of the project -- the development of a Real-Time, Miniaturized, Autonomous Total Risk Indicator System (RT.MATRIX).is to provide a portable, dual-function sensing system that simultaneously determines total organic carbon (TOC) and individual contaminants in air streams.

  12. Role of Anthropogenic Volatile Organic Compounds and Nitrogen Oxides as Ozone Precursors in the Wintertime over East Asia

    Institute of Scientific and Technical Information of China (English)

    ZHANG Meigen; Itsushi Uno

    2002-01-01

    As an exercise in model sensitivity, the Models-3 Community Multiscale Air Quality (CMAQ) modeling system with meteorological fields from the Regional Atmospheric Modeling System (RAMS) was applied to study the response of photochemical oxidants to systematic increases in anthropogenic volatile organic compounds (VOC) and nitrogen oxides (NOx) emissions in January 1997 over East Asia. Three simulations-one base case and two sensitivity simulations were carried out. Two sensitivity simulations were performed by assuming a 35% separate increase in anthropogenic VOC and NOx emissions comparing with the base case. Biogenic VOC emissions were held constant across the sensitivity simulations. To evaluate the model performance, ozone mixing ratios (O3) from the base case simulation were compared with surface observations at five remote sites in Japan, and it was found that the model reproduces most of the important features in the observations.Monthly average O3 concentrations in the daytime were examined to gain an understanding of how the increase in anthropogenic emissions affected the overall chemical system for each sensitivity simulation.

  13. Mixing ratios and eddy covariance flux measurements of volatile organic compounds from an urban canopy (Manchester, UK

    Directory of Open Access Journals (Sweden)

    B. Langford

    2008-01-01

    Full Text Available Concentrations and fluxes of six volatile organic compounds (VOC were measured above the city of Manchester (UK during the summer of 2006. A proton transfer reaction-mass spectrometer was used for the measurement of concentrations, and fluxes were calculated using both the disjunct and the virtual disjunct eddy covariance techniques. The two flux systems, which operated in alternate half hours, showed reasonable agreement, with R2 values ranging between 0.2 and 0.8 for the individual analytes. On average, fluxes measured in the disjunct mode were lower than those measured in the virtual mode by approximately 19%, of which at least 8% can be attributed to the differing measurement frequencies of the two systems and the subsequent attenuation of high frequency flux contributions. Observed fluxes are thought to be largely controlled by anthropogenic sources, with vehicle emissions the major contributor. However both evaporative and biogenic emissions may account for a fraction of the isoprene present. Fluxes of the oxygenated compounds were highest on average, ranging between 60–89 μg m−2 h−1, whereas the fluxes of aromatic compounds were lower, between 19–42 μg m−2 h−1. The observed fluxes of benzene were up-scaled to give a city wide emission estimate which was found to be significantly lower than that of the National Atmospheric Emissions Inventory (NAEI.

  14. Dynamic Solution Injection: a new method for preparing pptv–ppbv standard atmospheres of volatile organic compounds

    Directory of Open Access Journals (Sweden)

    L. Abrell

    2010-11-01

    Full Text Available Proton Transfer Reaction-Mass Spectrometry (PTR-MS and thermal desorption Gas Chromatography-Mass Spectrometry (GC-MS allow for absolute quantification of a wide range of atmospheric volatile organic compounds (VOCs with concentrations in the ppbv to pptv range. Although often neglected, routine calibration is necessary for accurate quantification of VOCs by PTR-MS and GC-MS. Several gas calibration methods currently exist, including compressed gas cylinders, permeation tubes, diffusion tubes, and liquid injection. While each method has its advantages and limitations, no single technique has emerged that is capable of dynamically generating known concentrations of complex mixtures of VOCs over a large concentration range (ppbv to pptv and is technically simple, field portable, and affordable. We present the development of a new VOC calibration technique based on liquid injection with these features termed Dynamic Solution Injection (DSI. This method consists of injecting VOCs (0.1–0.5 mM dissolved in cyclohexane (PTR-MS or methanol (GC-MS into a 1.0 slpm flow of purified dilution gas in an unheated 25 ml glass vial. Upon changes in the injection flow rate (0.5–4.0 μl min−1, new VOC concentrations are reached within seconds to minutes, depending on the compound, with a liquid injection flow rate accuracy and precision of better than 7% and 4% respectively. We demonstrate the utility of the DSI technique by calibrating a PTR-MS to seven different cyclohexane solutions containing a total of 34 different biogenic compounds including volatile isoprenoids, oxygenated VOCs, fatty acid oxidation products, aromatics, and dimethyl sulfide. We conclude that because of its small size, low cost, and simplicity, the Dynamic Solution Injection method will be of great use to both laboratory and field VOC studies.

  15. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.

    Science.gov (United States)

    Huang, R; Li, G Q; Zhang, J; Yang, L; Che, H J; Jiang, D H; Huang, H C

    2011-07-01

    A study was conducted to identify volatile organic compounds or volatiles produced by Candida intermedia strain C410 using gas chromatography-mass spectrometry, and to determine efficacy of the volatiles of C. intermedia in suppression of conidial germination and mycelial growth of Botrytis cinerea and control of Botrytis fruit rot of strawberry. Results showed that, among 49 volatiles (esters, alcohols, alkenes, alkanes, alkynes, organic acids, ketones, and aldehydes) identified from C. intermedia cultures on yeast extract peptone dextrose agar, two compounds, 1,3,5,7-cyclooctatetraene and 3-methyl-1-butanol, were the most abundant. Synthetic chemicals of 1,3,5,7-cyclooctatetraene; 3-methyl-1-butanol; 2-nonanone; pentanoic acid, 4-methyl-, ethyl ester; 3-methyl-1-butanol, acetate; acetic acid, pentyl ester; and hexanoic acid, ethyl ester were highly inhibitory to conidial germination and mycelial growth of B. cinerea. Inhibition of conidial germination and mycelial growth of B. cinerea by volatiles of C. intermedia was also observed. Meanwhile, results showed that incidence and severity of Botrytis fruit rot of strawberry was significantly (P < 0.01) reduced by exposure of the strawberry fruit to the volatiles from C. intermedia cultures or C. intermedia-infested strawberry fruit. These results suggest that the volatiles of C. intermedia C410 are promising biofumigants for control of Botrytis fruit rot of strawberry. PMID:21323467

  16. Determination of the solubility of low volatility liquid organic compounds in water using volatile-tracer assisted headspace gas chromatography.

    Science.gov (United States)

    Zhang, Shu-Xin; Chai, Xin-Sheng; Barnes, Donald G

    2016-02-26

    This study reports a new headspace gas chromatographic method (HS-GC) for the determination of water solubility of low volatility liquid organic compounds (LVLOs). The HS-GC analysis was performed on a set of aqueous solutions containing a range of concentrations of toluene-spiked (as a tracer) LVLOs, from under-saturation to over-saturation. A plot of the toluene tracer GC signal vs. the concentration of the LVLO results in two lines of different slopes that intersect at the concentration corresponding to the compound's solubility in water. The results showed that the HS-GC method has good precision (RSD liquids in waters of environmental and biological systems.

  17. Volatile Organic Compound Emissions from Different Stages of Cananga odorata Flower Development

    OpenAIRE

    Xiao-Wei Qin; Chao-Yun Hao; Shu-Zhen He; Gang Wu; Le-He Tan; Fei Xu; Rong-Suo Hu

    2014-01-01

    Headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to identify the volatile organic compounds (VOCs) of the different flower development stages of Cananga odorata for the evaluation of floral volatile polymorphism as a basis to determine the best time of harvest. Electronic nose results, coupled with discriminant factor analysis, suggested that emitted odors varied in different C. odorata flower development stages, including the bud, display-p...

  18. Human exposures to volatile halogenated organic chemicals in indoor and outdoor air.

    OpenAIRE

    Andelman, J B

    1985-01-01

    Volatile halogenated organic chemicals are found in indoor and outdoor air, often at concentrations substantially above those in remote, unpopulated areas. The outdoor ambient concentrations vary considerably among sampling stations throughout the United States, as well as diurnally and daily. The vapor pressures and air-water equilibrium (Henry's Law) constants of these chemicals influence considerably the likely relative human exposures for the air and water routes. Volatilization of chemic...

  19. SPME applied to the study of volatile organic compounds emitted by three species of Eucalyptus in situ. Solid-phase micro extraction.

    Science.gov (United States)

    Zini, Cláudia A; Augusto, Fabio; Christensen, Eva; Caramão, Elina B; Pawliszyn, Janusz

    2002-12-01

    Headspace solid-phase microextraction coupled to gas chromatography/ion trap mass spectrometry-65 microm polydimethylsiloxane/divinylbenzene (PDMS/DVB) was used to identify and monitor the emission patterns of biogenic volatile organic compounds from leaves of Eucalyptus dunnii, Eucalyptus saligna, and Eucalyptus citriodora in situ. Short extractions (1 min) were performed every 30 min for periods of 8-10 h during 24 days taking advantage of the high capacity of this porous polymer coating. Forty-two compounds were detected and 20 identified in the headspace of E. saligna leaves, and 19 of 27 compounds were identified in the headspace of E. dunnii leaves. The emission pattern of (E)-beta-ocimene and rose oxide suggests that they may play a bioactive role in Eucalyptus. PMID:12452632

  20. Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135

    International Nuclear Information System (INIS)

    DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media, thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)

  1. Biogenic gradients in algal density affect the emergent properties of spatially self-organized mussel beds

    NARCIS (Netherlands)

    Liu, Q.X.; Weerman, E.J.; Gupta, R.; Herman, P.M.J.; Olff, H.; van de Koppel, J.

    2014-01-01

    Theoretical models highlight that spatially self-organized patterns can have important emergent effects on the functioning of ecosystems, for instance by increasing productivity and affecting the vulnerability to catastrophic shifts. However, most theoretical studies presume idealized homogeneous co

  2. 75 FR 24404 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Science.gov (United States)

    2010-05-05

    ... Organic Compound Automobile Refinishing Rules for Indiana AGENCY: Environmental Protection Agency (EPA... approved volatile organic compound (VOC) automobile refinishing rules to all persons in Indiana who sell or... references to control technology requirements. In EPA's January 14, 2010, proposal (75 FR 2090), we present...

  3. 76 FR 18893 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Science.gov (United States)

    2011-04-06

    ... Organic Compound Emission Control Measures for Lithographic and Letterpress Printing in Cleveland AGENCY... volatile organic compound (VOC) rule. These rule revisions specify compliance dates for subject facilities... solution. In EPA's December 30, 2010, proposal (75 FR 82363), we present a detailed legal and...

  4. Diet-induced and mono-genetic obesity alter volatile organic compound signature in mice.

    Science.gov (United States)

    Kistler, Martin; Muntean, Andreea; Szymczak, Wilfried; Rink, Nadine; Fuchs, Helmut; Gailus-Durner, Valerie; Wurst, Wolfgang; Hoeschen, Christoph; Klingenspor, Martin; Hrabě de Angelis, Martin; Rozman, Jan

    2016-03-01

    The prevalence of obesity is still rising in many countries, resulting in an increased risk of associated metabolic diseases. In this study we aimed to describe the volatile organic compound (VOC) patterns symptomatic for obesity. We analyzed high fat diet (HFD) induced obese and mono-genetic obese mice (global knock-in mutation in melanocortin-4 receptor MC4R-ki). The source strengths of 208 VOCs were analyzed in ad libitum fed mice and after overnight food restriction. Volatiles relevant for a random forest-based separation of obese mice were detected (26 in MC4R-ki, 22 in HFD mice). Eight volatiles were found to be important in both obesity models. Interestingly, by creating a partial correlation network of the volatile metabolites, the chemical and metabolic origins of several volatiles were identified. HFD-induced obese mice showed an elevation in the ketone body acetone and acrolein, a marker of lipid peroxidation, and several unidentified volatiles. In MC4R-ki mice, several yet-unidentified VOCs were found to be altered. Remarkably, the pheromone (methylthio)methanethiol was found to be reduced, linking metabolic dysfunction and reproduction. The signature of volatile metabolites can be instrumental in identifying and monitoring metabolic disease states, as shown in the screening of the two obese mouse models in this study. Our findings show the potential of breath gas analysis to non-invasively assess metabolic alterations for personalized diagnosis. PMID:26860833

  5. Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors

    Science.gov (United States)

    Updyke, Katelyn M.; Nguyen, Tran B.; Nizkorodov, Sergey A.

    2012-12-01

    Filter samples of secondary organic aerosols (SOA) generated from the ozone (O3)- and hydroxyl radical (OH)-initiated oxidation of various biogenic (isoprene, α-pinene, limonene, α-cedrene, α-humulene, farnesene, pine leaf essential oils, cedar leaf essential oils) and anthropogenic (tetradecane, 1,3,5-trimethylbenzene, naphthalene) precursors were exposed to humid air containing approximately 100 ppb of gaseous ammonia (NH3). Reactions of SOA compounds with NH3 resulted in production of light-absorbing "brown carbon" compounds, with the extent of browning ranging from no observable change (isoprene SOA) to visible change in color (limonene SOA). The aqueous phase reactions with dissolved ammonium (NH4+) salts, such as ammonium sulfate, were equally efficient in producing brown carbon. Wavelength-dependent mass absorption coefficients (MAC) of the aged SOA were quantified by extracting known amounts of SOA material in methanol and recording its UV/Vis absorption spectra. For a given precursor, the OH-generated SOA had systematically lower MAC compared to the O3-generated SOA. The highest MAC values, for brown carbon from SOA resulting from O3 oxidation of limonene and sesquiterpenes, were comparable to MAC values for biomass burning particles but considerably smaller than MAC values for black carbon aerosols. The NH3/NH4+ + SOA brown carbon aerosol may contribute to aerosol optical density in regions with elevated concentrations of NH3 or ammonium sulfate and high photochemical activity.

  6. Photodegradation of Secondary Organic Aerosol Particles as a Source of Small, Oxygenated Volatile Organic Compounds.

    Science.gov (United States)

    Malecha, Kurtis T; Nizkorodov, Sergey A

    2016-09-20

    We investigated the photodegradation of secondary organic aerosol (SOA) particles by near-UV radiation and photoproduction of oxygenated volatile organic compounds (OVOCs) from various types of SOA. We used a smog chamber to generate SOA from α-pinene, guaiacol, isoprene, tetradecane, and 1,3,5-trimethylbenzene under high-NOx, low-NOx, or ozone oxidation conditions. The SOA particles were collected on a substrate, and the resulting material was exposed to several mW of near-UV radiation (λ ∼ 300 nm) from a light-emitting diode. Various OVOCs, including acetic acid, formic acid, acetaldehyde, and acetone were observed during photodegradation, and their SOA-mass-normalized fluxes were estimated with a Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). All the SOA, with the exception of guaiacol SOA, emitted OVOCs upon irradiation. Based on the measured OVOC emission rates, we estimate that SOA particles would lose at least ∼1% of their mass over a 24 h period during summertime conditions in Los Angeles, California. This condensed-phase photochemical process may produce a few Tg/year of gaseous formic acid, the amount comparable to its primary sources. The condensed-phase SOA photodegradation processes could therefore measurably affect the budgets of both particulate and gaseous atmospheric organic compounds on a global scale. PMID:27547987

  7. Volatile organic compounds released by blowfly larvae and pupae: new perspectives in forensic entomology.

    Science.gov (United States)

    Frederickx, C; Dekeirsschieter, J; Brostaux, Y; Wathelet, J-P; Verheggen, F J; Haubruge, E

    2012-06-10

    To evaluate postmortem intervals (PMIs), one should take into account the determined age of necrophagous flies present on the cadaver. However, PMI determination needs further improvement, and rapid and accurate approaches have therefore to be developed. While previous studies have focussed on insect cuticular hydrocarbons, here we explore the volatile profile released by larvae and pupae of Calliphora vicina Robineau-Desvoidy (Diptera: Calliphoridae). We monitored changes in volatile compounds daily, by headspace solid-phase microextraction, followed by gas chromatography-mass spectrometry. Branched and unbranched hydrocarbons, alcohols, esters and acids were identified, and the volatile profile was shown to vary, in both composition and quantity, with the age of the larva/pupa under investigation. We concluded, based on the analysis of the released volatile organic compounds, that it is possible to increase the accuracy of the estimated PMI, through improved estimation of the age of blowflies present on the cadaver.

  8. Real refractive indices and volatility of secondary organic aerosol generated from photooxidation and ozonolysis of limonene, α-pinene and toluene

    Directory of Open Access Journals (Sweden)

    H. Kim

    2013-01-01

    Full Text Available Thermodenuding particles can provide insights into aerosol composition, and may be a way to create particles in laboratory chambers that better mimic the atmosphere. The volatility of secondary organic aerosol (SOA was investigated by evaporating organics from the particles using a thermodenuder (TD at temperatures between ~ 60 and 100 °C. Volatility was influenced by the parent hydrocarbon, oxidation chemistry and relative humidity (RH. For SOA generated from ozonolysis, limonene had lower volatility than α-pinene, and OH scavengers had no influence on volatility. For photooxidation, α-pinene SOA was slightly more volatile than limonene SOA and increasing RH also modestly increased volatility, while toluene SOA was unaffected by heating to 98 °C. For both α-pinene and limonene, the concentration of NOx and the HC/NOx ratio had no discernible effect on SOA volatility. Refractive indices for the original and denuded particles were retrieved from polar nephelometer measurements using parallel and perpendicular polarized 532 nm light. Retrievals were performed with a genetic algorithm method using Mie-Lorenz scattering theory and measured particle size distributions. Retrieved refractive indices for the SOA before thermodenuding varied between 1.35 and 1.61 depending on several factors, including parent hydrocarbon, oxidation chemistry, and SOA generation temperature. For high NOx SOA, as particles shrink, their refractive index returns to the value of the corresponding size particles before heating (limonene or slightly higher (α-pinene. For low NOx however, the resulting refractive index is 0.05 ± 0.02 lower than the corresponding size undenuded particles. Additionally, for α-pinene SOA from ozonolysis with OH radical scavenger, resulting refractive indices were higher by about 0.03 after heating. Consistent with no change in size, refractive indices of toluene SOA were unaffected by heating

  9. Coupled biotic-abiotic oxidation of organic matter by biogenic MnO_{2}

    Science.gov (United States)

    Gonzalez, Julia; Peña, Jasquelin

    2016-04-01

    Some reactive soil minerals are strongly implicated in stabilising organic matter. However, others can play an active role in the oxidation of organic molecules. In natural systems, layer-type manganese oxide minerals (MnO2) typically occur as biomineral assemblages consisting of mineral particles and microbial biomass. Both the mineral and biological fractions of the assemblage can be powerful oxidants of organic C. The biological compartment relies on a set of enzymes to drive oxidative transformations of reduced C-substrates, whereas MnO2 minerals are strong, less specific abiotic oxidants that are assumed to rely on interfacial interactions between C-substrates and the mineral surface. This project aims to understand the coupling between microbial C mineralization and abiotic C oxidation mediated by MnO2 in bacterial-MnO2 assemblages. Specifically, under conditions of high C turnover, microbial respiration can significantly alter local pH, dissolved oxygen and pool of available reductants, which may modify rates and mechanism of C oxidation by biotic and abiotic components. We first investigated changes in the solution chemistry of Pseudomonas putida suspensions exposed to varying concentrations of glucose, chosen to represent readily bioavailable substrates in soils. Glucose concentrations tested ranged between 0 and 5.5mM and changes in pH, dissolved oxygen and dissolved organic and inorganic carbon were tracked over 48h. We then combined literature review and wet-chemical experiments to compile the pH dependence of rates of organic substrate oxidation by MnO2, including glucose. Our results demonstrate a strong pH dependence for these abiotic reactions. In assemblages of P. putida - MnO2, kinetic limitations for abiotic C oxidation by MnO2 are overcome by changes in biogeochemical conditions that result from bacterial C metabolism. When extrapolated to a soil solution confronted to an input of fresh dissolved organic matter, bacterial C metabolism of the

  10. Marine biogenic source of atmospheric organic nitrogen in the subtropical North Atlantic

    OpenAIRE

    Altieri, Katye E.; Fawcett, Sarah E.; Peters, Andrew J.; Sigman, Daniel M.; Hastings, Meredith G.

    2016-01-01

    Global models indicate that the human-derived nitrogen emissions that reach the ocean through atmospheric transport and deposition directly impact biology and the oceanic carbon dioxide (CO2) sink. Here, we find that the organic nitrogen in marine aerosols derives predominantly from biological production in the surface ocean rather than from pollution on land. Our previous work has shown significant anthropogenic influence on North Atlantic nitrate deposition, whereas ammonium cycles dynamica...

  11. Interactions Between Biogenic Silica (BSiO2) and Organic Carbon (POC) During the Recycling of Sinking Particles

    Science.gov (United States)

    Moriceau, B.; Goutx, M.; Guigue, C.; Tamburini, C.; Lee, C.; Armstrong, R. A.; Duflos, M.; Charriere, B.; Ragueneau, O.

    2006-12-01

    Despite recent progress in understanding the ocean's role in the global carbon cycle, we are not yet able to predict the response of ecosystems to climate change and feedbacks of the ocean onto atmospheric CO2. In particular, particle flux dynamics must be represented more faithfully in ocean models. We know that particulate organic carbon (POC) flux is associated with ballast minerals (BSiO2, CaCO3), but the processes controlling the interactions between carbon and ballast minerals during decomposition must be explored further. The present study aims to provide a better understanding of interactions between carbon and BSiO2 during mineralization of sinking particles. Previous studies have provided evidence that the degradation of the external membrane by bacteria increase the BSiO2 dissolution rate. Alternatively, it has been hypothesized that biogenic silica could protect carbon from degradation. To test this hypothesis, an in-vitro batch experiment using the diatom Skeletonema costatum was conducted. In this experiment, carbon degradation, bacterial growth, and BSiO2 dissolution were followed simultaneously. To identify the processes involved and the types of carbon that eventually interact with BSiO2 during mineralization, the concentrations of different lipids and amino acids were also measured. A strong increase of the degradation rate constant of the POC and PON was observed after dissolution of 40 % of initial BSiO2. This increase is associated to a peak of glycine in total amino acids and a switch between free and attached bacteria. These results suggest that carbon degradation is increased when enough of the frustule is dissolved to uncover the glycine contain inside the frustule, this amino acid may trigger an increase in the concentration of attached bacteria, which may in turn increase the degradation rate constant of organic carbon.

  12. Molecular Formula Characterization of Biogenic Secondary Organic Aerosol: Descriptive Statistical Evaluation

    Science.gov (United States)

    Dalbec, M.; Zhao, Y.; Fisseha, R.; Putman, A.; Kundu, S.; Rahn, T. A.; Mazzoleni, L. R.

    2013-12-01

    The detailed molecular composition of approximately 20 laboratory generated terpene ozonolysis secondary organic aerosol (SOA) samples was studied using ultrahigh resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Individual experiments were conducted with one of four terpene SOA precursors (α-pinene, β-pinene, limonene or β-caryophyllene), varied relative humidity (RH) conditions (0%, 4%, or 30%) and the presence or absence of cyclohexane (serving as a radical scavenger). In this work, we focus on the molecular composition of the SOA experiments conducted at 4% and 30% RH without cyclohexane. In each of the experimental SOA samples, the oxygen number and the DBE values increase with increasing carbon number and three or four distinct groups (aka oligomer groups) were observed in the mass spectra. The overall bulk properties, such as the elemental ratios and the average number of double bond equivalents (DBE), of the SOA were highly similar. Despite the high number of identified species (N ≥ 1000) in each SOA sample, compounds unique to the SOA formed at either 4% or 30% RH conditions were comparatively low (terpene SOA precursor were most closely related regardless of the RH or the presence/absence of cyclohexane. Furthermore, SOA experiments with D-limonene and β-caryophyllene as precursors were clearly distinguished from β-pinene and α-pinene. When the experimental SOA composition was compared with ambient samples, we observed a high number of common monoisotopic molecular formulas for summer aerosol [63%; Mazzoleni et. al., Env. Chem. 2012] and winter cloudwater samples [60%; Zhao et. al., ACPD 2013]. However the molecular formulas identified as significant using principal components analysis, were not found consistently in both samples indicating variable SOA contributions to summer and winter ambient samples. Mazzoleni, L.R., P. Saranjampour, M.M. Dalbec, V. Samburova, B. Zielinska, A.G. Hallar, D. Lowenthal, and S. Kohl

  13. Performance of rotating drum biofilter for volatile organic compound removal at high organic loading rates

    Institute of Scientific and Technical Information of China (English)

    YANG Chunping; CHEN Hong; ZENG Guangming; ZHU Xueqing; SUIDAN Makram T

    2008-01-01

    Uneven distribution of volatile organic compounds (VOCs) and biomass,and excess biomass accumulation in some biofilters hinder the application of biofiltration technology.An innovative multilayer rotating drum biofilter (RDB) was developed to correct these problems.The RDB was operated at an empty bed contact time (EBCT) of 30 s and a rotational rate of 1.0 r/rain.Diethyl ether was chosen as the model VOC.Performance of the RDB was evaluated at organic loading rates of 32.1,64.2,128,and 256 g ether/(m3·h) (16.06 g ether/(m3·h) ≈1.0 kg chemical oxygen demand (COD)/(m3·d)).The EBCT and organic loading rates were recorded on the basis of the medium volume.Results show that the ether removal efficiency decreased with an increased VOC loading rate.Ether removal efficiencies exceeding 99% were achieved without biomass control even at a high VOC loading rate of 128 g ether/(m3·h). However,when the VOC loading rate was increased to 256 g ether/(m3·h),the average removal efficiency dropped to 43%.Nutrient limitation possibly contributed to the drop in ether removal efficiency.High biomass accumulation rate was also observed in the medium at the two higher ether loading rates,and removal of the excess biomass in the media was necessary to maintain stable performance. This work showed that the RDB is effective in the removal of diethyl ether from waste gas streams even at high organic loading rates. The results might help establish criteria for designing and operating RDBs.

  14. Organ distribution of biogenic amine derivatives of 103Ru labelled ruthenocenyl - radiopharmaceuticals for adrenal and ovar

    International Nuclear Information System (INIS)

    The organ distribution of 103Ru labelled ruthenocenyl derivatives of tyramine, histamine, benzylamine, phenylethylamine and homoveratrylamine were measured in rats. The derivatives of tyramine, histamine and benzylamine showed a high affinity for the adrenal and ovar. Adrenal/muscle ratios up to 2000/1 were gained but only if the dose was administered i. v. and was below 0,1 μmol/kg. The ruthenocenyl derivatives of tyramine labelled with 103Ru in the ruthenocene moiety or with 14C in the tyramine moiety showed a parallel distribution pattern but completely different from the distribution of 103RuCl3. This indicates that the tyramine derivatives are not destroyed in the body yielding Ru-ions. The advantages of the ruthenocenyl derivatives in comparison with the known amphetamine derivatives labelled with radioactive iodine are discussed. (orig.)

  15. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene.

    Science.gov (United States)

    Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T; Larsen, Kim L

    2014-01-01

    Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1. PMID:25550739

  16. Expanding the modular ester fermentative pathways for combinatorial biosynthesis of esters from volatile organic acids.

    Science.gov (United States)

    Layton, Donovan S; Trinh, Cong T

    2016-08-01

    Volatile organic acids are byproducts of fermentative metabolism, for example, anaerobic digestion of lignocellulosic biomass or organic wastes, and are often times undesired inhibiting cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic acids to acyl CoAs and alcohols to form a combinatorial library of esters. By assembling these modules with the engineered Escherichia coli modular chassis cell, we developed microbial manufacturing platforms to perform the following functions: (i) rapid in vivo screening of novel AATs for their catalytic activities; (ii) expanding combinatorial biosynthesis of unique fermentative esters; and (iii) upgrading volatile organic acids to esters using single or mixed cell cultures. To demonstrate this framework, we screened for a set of five unique and divergent AATs from multiple species, and were able to determine their novel activities as well as produce a library of 12 out of the 13 expected esters from co-fermentation of sugars and (C2-C6) volatile organic acids. We envision the developed framework to be valuable for in vivo characterization of a repertoire of not-well-characterized natural AATs, expanding the combinatorial biosynthesis of fermentative esters, and upgrading volatile organic acids to high-value esters. Biotechnol. Bioeng. 2016;113: 1764-1776. © 2016 Wiley Periodicals, Inc. PMID:26853081

  17. Assessing the fate of biodegradable volatile organic contaminants in unsaturated soil filter systems

    Science.gov (United States)

    Thullner, Martin; de Biase, Cecilia; Hanzel, Joanna; Reger, Daniel; Wick, Lukas; Oswald, Sascha; van Afferden, Manfred; Schmidt, Axel; Reiche, Nils; Jechalke, Sven

    2010-05-01

    The assessment of contaminant biodegradation in the subsurface is challenged by various abiotic processes leading to a reduction of contaminant concentration without a destructive mass removal of the contaminant. In unsaturated porous media, this interplay of processes is further complicated by volatilization. Many organic contaminants are sufficiently volatile to allow for significant fluxes from the water phase into the soil air, which can eventually lead to an emission of contaminants into the atmosphere. Knowledge of the magnitude of these emissions is thus required to evaluate the efficiency of bioremediation in such porous media and to estimate potential risks due to these emissions. In the present study, vertical flow constructed wetlands were investigated at the pilot scale as part of the SAFIRA II project. The investigated wetland system is intermittently irrigated by contaminated groundwater containing the volatile compounds benzene and MTBE. Measured concentration at the in- and outflow of the system demonstrate a high mass removal rate, but the highly transient flow and transport processes in the system challenge the quantification of biodegradation and volatilization and their contribution to the observed mass removal. By a combination of conservative solute tracer tests, stable isotope fractionation and measurements of natural radon concentration is the treated groundwater is was possible to determine the contribution of biodegradation and volatilization to total mass removal. The results suggest that for the investigated volatile compounds biodegradation is the dominating mass removal process with volatilization contributing only to minor or negligible amounts. These results can be confirmed by reactive transport simulations and were further supported by laboratory studies showing that also gas phase gradients of volatile compounds can be affected by biodegradation suggesting the unsaturated zone to act as a biofilter for contaminants in the soil air.

  18. Biogenic magnetite and magnetic sensitivity in organisms - from magnetic bacteria to pigeons

    Science.gov (United States)

    Winklhofer, M.

    2005-12-01

    A large number of animals across all major animal phyla use the Earth's magnetic field for orientation, long-distance migration and homing (see te{WiltschkoWiltschko:95}, for a review of the behavioural evidence). Despite three decades of research in the field, astonishingly little is known about the nature of the underlying magnetic sense, the main reason for its elusiveness being that magnetic sensory cells - the postulated morphological correlates of the magnetoreceptor - have not yet been identified with certainty. It was only in the last five years that candidate magnetoreceptor cells have been detected, on which hypothesis can now be tested and specific theoretical models be elaborated to answer the following questions: What is the nature of magnetic sensory cells? By what physical mechanism is the external magnetic field coupled into the organism (reception)? How sensitive is the mechanism to small changes in the magnetic field (detection threshold) ? What physical mechanisms or chemical pathways convert the received magnetic energy into a nervous signal (transduction)? Figs 3, Refs 40.

  19. Studies of Minerals, Organic and Biogenic Materials through Time-Resolved Raman Spectroscopy

    Science.gov (United States)

    Garcia, Christopher S.; Abedin, M. Nurul; Ismail, Syed; Sharma, Shiv K.; Misra, Anupam K.; Nyugen, Trac; Elsayed-Ali, hani

    2009-01-01

    A compact remote Raman spectroscopy system was developed at NASA Langley Research center and was previously demonstrated for its ability to identify chemical composition of various rocks and minerals. In this study, the Raman sensor was utilized to perform time-resolved Raman studies of various samples such as minerals and rocks, Azalea leaves and a few fossil samples. The Raman sensor utilizes a pulsed 532 nm Nd:YAG laser as excitation source, a 4-inch telescope to collect the Raman-scattered signal from a sample several meters away, a spectrograph equipped with a holographic grating, and a gated intensified CCD (ICCD) camera system. Time resolved Raman measurements were carried out by varying the gate delay with fixed short gate width of the ICCD camera, allowing measurement of both Raman signals and fluorescence signals. Rocks and mineral samples were characterized including marble, which contain CaCO3. Analysis of the results reveals the short (approx.10-13 s) lifetime of the Raman process, and shows that Raman spectra of some mineral samples contain fluorescence emission due to organic impurities. Also analyzed were a green (pristine) and a yellow (decayed) sample of Gardenia leaves. It was observed that the fluorescence signals from the green and yellow leaf samples showed stronger signals compared to the Raman lines. Moreover, it was also observed that the fluorescence of the green leaf was more intense and had a shorter lifetime than that of the yellow leaf. For the fossil samples, Raman shifted lines could not be observed due the presence of very strong short-lived fluorescence.

  20. Atmospheric volatile organic compounds (VOC) at a remote tropical forest site in central Amazonia

    NARCIS (Netherlands)

    Kessermeier, J.; Kuhn, U.; Wolf, A.; Andreae, P.; Ciccioli, P.; Brancaleoni, E.; Frattoni, M.; Ganzeveld, L.N.; Guenther, J.; Greenberg, J.P.; Castro Vasconcellos, De P.; Tavares, T.; Artaxo, P.

    2000-01-01

    According to recent assessments, tropical woodlands contribute about half of all global natural non-methane volatile organic compound (VOC) emissions. Large uncertainties exist especially about fluxes of compounds other than isoprene and monoterpenes. During the Large-Scale Biosphere/Atmosphere Expe

  1. Release and uptake of volatile inorganic and organic gases through the snowpack at Niwot Ridge, Colorado

    NARCIS (Netherlands)

    Helmig, D.; Apel, E.; Blake, D.; Ganzeveld, L.N.; Lefer, B.L.; Meinardi, S.; Swanson, A.L.

    2009-01-01

    Whole air drawn from four heights within the high elevation (3,340 m asl), deep, winter snowpack at Niwot Ridge, Colorado, were sampled into stainless steel canisters, and subsequently analyzed by gas chromatography for 51 volatile inorganic and organic gases. Two adjacent plots with similar snow co

  2. 76 FR 41086 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Science.gov (United States)

    2011-07-13

    ...) a new rule for the control of volatile organic compound (VOC) emissions from reinforced plastic... Plastic Composites Production, underestimate emissions generated by tub/shower manufacturers and notes... Administrative Code (OAC) 3745-21-25 ``Control of VOC Emissions from Reinforced Plastic Composites...

  3. 76 FR 4835 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Science.gov (United States)

    2011-01-27

    ... control of volatile organic compound (VOC) emissions from reinforced plastic composites production... approve into Ohio's SIP new rule OAC 3745-21-25 ``Control of VOC Emissions from Reinforced Plastic... contains requirements that satisfy RACT standards for VOC emissions from reinforced plastic...

  4. SUPERCRITICAL FLUID EXTRACTION OF SEMI-VOLATILE ORGANIC COMPOUNDS FROM PARTICLES

    Science.gov (United States)

    A nitrogen oxide flux chamber was modified to measure the flux of semi-volatile organic compounds (SVOCs). Part of the modification involved the development of methods to extract SVOCs from polyurethane foam (PUF), sand, and soil. Breakthroughs and extraction efficiencies were ...

  5. Modeling emissions of volatile organic compounds from silage storages and feed lanes

    Science.gov (United States)

    An initial volatile organic compound (VOC) emission model for silage sources, developed using experimental data from previous studies, was incorporated into the Integrated Farm System Model (IFSM), a whole-farm simulation model used to assess the performance, environmental impacts, and economics of ...

  6. Structure of phase-separated ferroelectric/ semiconducting polymer blends for organic non-volatile memories

    NARCIS (Netherlands)

    Mcneill, C.R.; Asadi, K.; Watts, B.; Blom, P.W.M.; Leeuw, D.M. de

    2010-01-01

    The phase-separated structure of blends of the ferroelectric polymer P(VDF-TrFE) and the semiconducting polymer P3HT used in organic non-volatile memories is revealed with soft X-ray spectromicroscopy. These thin-film blends show a columnar morphology, with P3HT-rich columns enclosed in a continuous

  7. Design and Analysis of SAW Based MEMS Gas Sensor for the Detection of Volatile Organic Gases

    Directory of Open Access Journals (Sweden)

    Staline Johnson

    2014-03-01

    Full Text Available This paper portrays the design and analysis of SAW based MEMS gas sensor for the detection of volatile organic gases. The gas sensor consists of interdigitated transducers modeled on a piezoelectric substrate and covered by a thin film of polyisobutylene (PIB which acts as the sensing layer. The piezoelectric substrate material used is YZ cut Lithium Niobate (LiNbO3 and electrodes used are made of Aluminium (Al. Mass loading effect on the sensing layer is used for the detection of volatile organic gases. The design and simultions were carried out by using comsol multiphysics software based on Finite Element Method (FEM for analytical simulations. The resonant frequency of the SAW device was determined and simulations are carried out by exposing the sensor to 100 ppm of various volatile organic gases and corresponding shift in resonant frequency for various gases are determined. The reduction in the resonant frequency is used for the detection of volatile organic gases such as chloromethane, dichloromethane, trichloromethane, tetrachloroethene, carbon tetrachloride and trichloroethylene.

  8. FINAL REPORT: MEMBRANE-MEDIATED EXTRACTION AND BIODEGRADATION OF VOLATILE ORGANIC COMPOUNDS FROM AIR

    Science.gov (United States)

    The report describes feasibility tests of a two-step strategy for air pollution control applicable to exhaust air contaminated with volatile organic compounds (VOCs) from painting aircraft. In the first step, the VOC-contaminated air passes over coated, polypropylene, hollow-fibe...

  9. VOLATILE ORGANIC COMPOUNDS AS BREATH BIOMARKERS FOR ACTIVE AND PASSIVE SMOKING

    Science.gov (United States)

    Real-time breath measurement technology was used to investigate the suitability of some volatile organic compounds (VOCs) to serve as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to toba...

  10. Removal of volatile organic compounds in vertical flow filters: predictions from Reactive Transport Modeling

    NARCIS (Netherlands)

    De Biase, C.; Maier, U.; Baeder-Bederski, O.; Bayer, P.; Oswald, S.E.; Thullner, M.

    2011-01-01

    Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical rea

  11. 77 FR 14324 - National Volatile Organic Compound Emission Standards for Aerosol Coatings-Addition of Dimethyl...

    Science.gov (United States)

    2012-03-09

    ...The EPA is proposing to amend the National Volatile Organic Compound Emission Standards for Aerosol Coatings final rule, which is a rule that establishes national reactivity-based emission standards for the aerosol coatings category (aerosol spray paints) under the Clean Air Act. This proposed action adds three compounds: dimethyl carbonate, benzotrifluoride, and hexamethyldisiloxane and their......

  12. Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air

    NARCIS (Netherlands)

    Scholten, E.; Bromberg, L.; Rutledge, G.C.; Hatton, T.A.

    2011-01-01

    Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and aliphatic isophorone diisocyanate as the hard segments and butanediol and tetrame

  13. Development of the colorimetric sensor array for detection of explosives and volatile organic compounds in air

    DEFF Research Database (Denmark)

    Kostesha, Natalie; Alstrøm, Tommy Sonne; Johnsen, C;

    2010-01-01

    In the framework of the research project 'Xsense' at the Technical University of Denmark (DTU) we are developing a simple colorimetric sensor array which can be useful in detection of explosives like DNT and TNT, and identification of volatile organic compounds in the presence of water vapor in a...

  14. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    Science.gov (United States)

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS. A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA Toluene (TOL...

  15. INHIBITION OF HUMAN A7 NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS BY THE VOLATILE ORGANIC SOLVENT TRICHLOROETHYLENE.

    Science.gov (United States)

    Volatile organic compounds such as toleune, trichloroethylene and perchloroethylene are potent and reversible blockers of voltage-gated calcium current in nerve growth factor (NGF)-differentiated pheochromocytoma (PC12) cells. It is hypothesized that effects of VOCs on ICa contri...

  16. AMBIENT LEVEL VOLATILE ORGANIC COMPOUND (VOC) MONITORING USING SOLID ADSORBANTS - RECENT U.S. EPA STUDIES

    Science.gov (United States)

    Ambient air spiked with 1-10 ppbv concentrations of 41 toxic volatile organic compounds (VOCs) listed in U.S. Environmental Protection Agency (EPA) Compendium Method TO-14A was monitored using solid sorbents for sample collection and a Varian Saturn 2000 ion trap mass spectrome...

  17. 78 FR 11101 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of trans

    Science.gov (United States)

    2013-02-15

    ... equipment, hot water heaters and waste heat recovery equipment. III. Background A. The EPA's VOC Exemption... refrigerant in commercial chillers and waste heat recovery (Rankin cycle) systems. In the foam blowing... definition was first set forth in the ``Recommended Policy on Control of Volatile Organic Compounds'' (42...

  18. 78 FR 55234 - Approval and Promulgation of Implementation Plans; Indiana; Volatile Organic Compound Emission...

    Science.gov (United States)

    2013-09-10

    ...On May 29, 2012, the Indiana Department of Environmental Management (IDEM) submitted revisions to its volatile organic compound (VOC) industrial solvent cleaning rule for manufacturers of coatings, inks, adhesives, and resins for approval into its State Implementation Plan (SIP). These revisions are approvable because they are consistent with EPA's Industrial Solvent Cleaning Control Technique......

  19. Spatial analysis of volatile organic compounds in South Philadelphia using passive samplers

    Science.gov (United States)

    Select volatile organic compounds (VOCs) were measured in the vicinity of a petroleum refinery and related operations in South Philadelphia, Pennsylvania, USA, using passive air sampling and laboratory analysis methods. Two-week, time-integrated samplers were deployed at 17 sites...

  20. 75 FR 57412 - Approval and Promulgation of Implementation Plans Alabama: Volatile Organic Compounds

    Science.gov (United States)

    2010-09-21

    ...EPA is proposing to approve a revision to the Alabama State Implementation Plan (SIP) submitted by the Alabama Department of Environmental Management (ADEM) on March 3, 2010. The proposed revision would modify the definition of ``volatile organic compounds'' (VOCs) found at Alabama Administrative Code section 335-3-1-.02(gggg). Specifically, the revision would add two compounds (propylene......

  1. WORKSHOP REPORT - CONSIDERATIONS FOR DEVELOPING LEACHING TEST METHODS FOR SEMI- AND NON-VOLATILE ORGANIC COMPOUNDS

    Science.gov (United States)

    The report provides a summary of the information exchange at a workshop on the potential for release of semi- or non-volatile organic constituents at contaminated sites where sub-surface treatment has been used to control migration, and from waste that is disposed or re-used. The...

  2. 75 FR 57390 - Approval and Promulgation of Implementation Plans; Alabama: Volatile Organic Compounds

    Science.gov (United States)

    2010-09-21

    ...EPA is taking direct final action to approve a revision to the Alabama State Implementation Plan (SIP) submitted by the Alabama Department of Environmental Management (ADEM) on March 3, 2010. The revision modifies the definition of ``volatile organic compounds'' (VOCs) found at Alabama Administrative Code (AAC) section 335-3- 1-.02(gggg). Specifically, the revision adds two compounds......

  3. 77 FR 46961 - Approval and Promulgation of Implementation Plans; Wisconsin; Volatile Organic Compound Emission...

    Science.gov (United States)

    2012-08-07

    ... Volatile Organic Compound (VOC) emissions in moderate ozone nonattainment areas. Wisconsin's VOC rules... action'' subject to review by the Office of Management and Budget under Executive Order 12866 (58 FR... as specified in Executive Order 13132 (64 FR 43255, August 10, 1999); Is not an...

  4. Oxidation of volatile organic vapours in air by solid potassium permanganate

    NARCIS (Netherlands)

    Mahmoodlu, M.G.; Hartog, N.; Hassanizadeh, S.M.; Raoof, A.

    2013-01-01

    Volatile organic compounds (VOCs) may frequently contaminate groundwater and pose threat to human health when migrating into the unsaturated soil zone and upward to the indoor air. The kinetic of chemical oxidation has been investigated widely for dissolved VOCs in the saturated zone. But, so far th

  5. 40 CFR 60.502 - Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals.

    Science.gov (United States)

    2010-07-01

    ... (VOC) emissions from bulk gasoline terminals. 60.502 Section 60.502 Protection of Environment... SOURCES Standards of Performance for Bulk Gasoline Terminals § 60.502 Standard for Volatile Organic Compound (VOC) emissions from bulk gasoline terminals. On and after the date on which § 60.8(a) requires...

  6. 75 FR 8246 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Science.gov (United States)

    2010-02-24

    ... Board, Article 8: Volatile Organic Compound Rules, Rule 2: Surface Coating Emission Limitations, Section... Compound Rules, Rule 2: Surface Coating Emission Limitations, Section 2: Automobile and light duty truck... the Internet and will be publicly available only in hard copy form. Publicly available...

  7. Removal of H2S and volatile organic sulfur compounds by silicone membrane extraction

    NARCIS (Netherlands)

    Manconi, I.; Lens, P.N.L.

    2009-01-01

    BACKGROUND: This study explores an alternative process for the abatement and/or desulfurization of H2S and volatile organic sulfur compounds (VOSC) containing waste streams, which employs a silicone-based membrane to simultaneously remove H2S and VOSC. An extractive membrane reactor allows the selec

  8. ECOS E-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database

    Energy Technology Data Exchange (ETDEWEB)

    Parisien, Lia [The Environmental Council Of The States, Washington, DC (United States)

    2016-01-31

    This final scientific/technical report on the ECOS e-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database provides a disclaimer and acknowledgement, table of contents, executive summary, description of project activities, and briefing/technical presentation link.

  9. Sensory eye irritation in humans exposed to mixtures of volatile organic compounds

    DEFF Research Database (Denmark)

    Hempel-Jørgensen, Anne Hempel; Kjærgaard, Søren K.; Mølhave, Lars;

    1999-01-01

    Eight subjects participated in a controlled eyes-only exposure study of human sensory irritation in ocular mucosal tissue. The authors investigated dose-response properties and the additive effects of three mixtures of volatile organic compounds. The dose-response relationships for these mixtures...

  10. Cold Temperature and Biodiesel Fuel Effects on Speciated Emissions of Volatile Organic Compounds from Diesel Trucks

    Science.gov (United States)

    Speciated volatile organic compounds (VOCs) were measured in diesel exhaust from three medium heavy-duty trucks equipped with modern aftertreatment technologies. Emissions testing was conducted on a chassis dynamometer at two ambient temperatures (-6.7°C and 21.7°C) operating on ...

  11. Micro-Spectroscopic Chemical Imaging of Individual Identified Marine Biogenic and Ambient Organic Ice Nuclei (Invited)

    Science.gov (United States)

    Knopf, D. A.; Alpert, P. A.; Wang, B.; OBrien, R. E.; Moffet, R. C.; Aller, J. Y.; Laskin, A.; Gilles, M.

    2013-12-01

    Atmospheric ice formation represents one of the least understood atmospheric processes with important implications for the hydrological cycle and climate. Current freezing descriptions assume that ice active sites on the particle surface initiate ice nucleation, however, the nature of these sites remains elusive. Here, we present a new experimental method that allows us to relate physical and chemical properties of individual particles with observed water uptake and ice nucleation ability using a combination of micro-spectroscopic and optical single particle analytical techniques. We apply this method to field-collected particles and particles generated via bursting of bubbles produced by glass frit aeration and plunging water impingement jets in a mesocosm containing artificial sea water and bacteria and/or phytoplankton. The most efficient ice nuclei (IN) within a particle population are identified and characterized. Single particle characterization is achieved by computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy. A vapor controlled cooling-stage coupled to an optical microscope is used to determine the onsets of water uptake, immersion freezing, and deposition ice nucleation of the individual particles as a function of temperature (T) as low as 200 K and relative humidity (RH) up to water saturation. In addition, we perform CCSEM/EDX to obtain on a single particle level the elemental composition of the entire particle population. Thus, we can determine if the IN are exceptional in nature or belong to a major particle type class with respect to composition and size. We find that ambient and sea spray particles are coated by organic material and can induce ice formation under tropospheric relevant conditions. Micro-spectroscopic single particle analysis of the investigated particle samples invokes a potential

  12. Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal

    Data.gov (United States)

    U.S. Environmental Protection Agency — We show in the present study that the unsaturated aldehydes, 2-E-pentenal, 2-E-hexenal and 3-Z-hexenal, are biogenic volatile organic compound (BVOC) precursors for...

  13. Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments

    DEFF Research Database (Denmark)

    Rosén, Peter; Vogel, Hendrik; Cunningham, Laura;

    2010-01-01

    We demonstrate the use of Fourier transform infrared spectroscopy (FTIRS) to make quantitative measures of total organic carbon (TOC), total inorganic carbon (TIC) and biogenic silica (BSi) concentrations in sediment. FTIRS is a fast and cost-effective technique and only small sediment samples...... varied between r = 0.84-0.99 for TOC, r = 0.85-0.99 for TIC, and r = 0.68-0.94 for BSi. Because FTIR spectra contain information on a large number of both inorganic and organic components, there is great potential for FTIRS to become an important tool in paleolimnology....

  14. ORGANIC VOLATILE IMPURITIES AND THEIR REGULATORY LIMITS: A PHARMACEUTICL PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    VIVEK CHAVDA

    2013-01-01

    Full Text Available Impurities in drug substances and drug products have been important regulatory issues in the Office of Generic Drugs by having significant impact on the approvability of Abbreviated New Drug Application (ANDAs. Organic solvents are commonly used in the pharmaceutical industry as reaction media, in separation and purification of synthesis products and also for cleaning of equipments. As residual solvents are not desirable substances in a final product, different methods for their removal may be used, provided they fulfill safety criteria. After the drying process, analysis need to be performed to check if amounts of solvents used at any step of the production do not exceed acceptable limits (taken from ICH Guideline or from pharmacopoeias. Also new solvents like supercritical fluids or ionic liquids are developed to replace traditional organic solvents in the pharmaceutical production processes. This review was grafted to provide information regarding OVI and/or residual solvent.

  15. Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents.

    OpenAIRE

    Mout eDeVrieze; Piyush ePandey; Bucheli, Thomas D.; Adithi Ravikumar Varadarajan; Christian H Ahrens; Laure eWeisskopf; Aurélien eBailly

    2015-01-01

    The plant kingdom represents a prominent biodiversity island for microbes that associate with the below- or aboveground organs of vegetal species. Both the root and the leaf represent interfaces where dynamic biological interactions influence plant life. Beside well-studied communication strategies based on soluble compounds and protein effectors, bacteria were recently shown to interact both with host plants and other microbial species through the emissions of volatile organic compounds (VOC...

  16. Urban stress-induced biogenic VOC emissions impact secondary aerosol formation in Beijing

    OpenAIRE

    Ghirardo, A.; Xie, J; Zheng, X; Wang, Y.; Grote, R.; Block, K.; J. Wildt; Mentel, T.; Kiendler-Scharr, A.; M. Hallquist; Butterbach-Bahl, K.; J.-P. Schnitzler

    2015-01-01

    Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs), which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs) and "stress-induced" BVOCs (sBVOCs) from the dominant broadleaf woody plant species in the megacity of Beijing. Based on an inventory of BVOC emissions and the tree census, we assessed the potential impact ...

  17. Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing

    OpenAIRE

    Ghirardo, Andrea; Xie, Junfei; Zheng, Xunhua; Wang, Yuesi; Grote, Rüdiger; Block, Katja; Wildt, Jürgen; Mentel, Thomas; Kiendler-Scharr, Astrid; Hallquist, Mattias; Butterbach-Bahl, Klaus; Schnitzler, Jörg-Peter

    2016-01-01

    Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs), which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs) and "stress-induced" BVOCs (sBVOCs) from the dominant broadleaf woody plant species in the megacity of Beijing. Based on the municipal tree census and cuvette BVOC measurements on leaf level, we built an inventory of BVOC...

  18. Construction of a cryogen-free thermal desorption gas chromatographic system with off-the-shelf components for monitoring ambient volatile organic compounds.

    Science.gov (United States)

    Ou-Yang, Chang-Feng; Liao, Wei-Cheng; Wang, Pei-Chieh; Fan, Gang-Jei; Hsiao, Chien-Cheng; Chuang, Ming-Tung; Chang, Chih-Chung; Lin, Neng-Huei; Wang, Jia-Lin

    2016-04-01

    An automated gas chromatographic system aimed at performing unattended measurements of ambient volatile organic compounds was configured and tested. By exploiting various off-the-shelf components, the thermal desorption unit was easily assembled and can be connected with any existing commercial gas chromatograph in the laboratory to minimize cost. The performance of the complete thermal desorption gas chromatographic system was assessed by analyzing a standard mixture containing 56 target nonmethane hydrocarbons from C2 -C12 at sub-ppb levels. Particular attention was given to the enrichment efficiency of the C2 compounds, such as ethane (b.p. = -88.6°C) and ethylene (b.p. = -104.2°C), due to their extremely high volatilities. Quality assurance was performed in terms of the linearity, precision and limits of detection of the target compounds. To further validate the system, field measurements of target compounds in ambient air were compared with those of a commercial total hydrocarbon analyzer and a carbon monoxide analyzer. Highly coherent results from the three instruments were observed during a two-month period of synchronized measurements. Moreover, the phenomenon of opposite diurnal variations between the biogenic isoprene and anthropogenic species was exploited to help support the field applicability of the thermal desorption gas chromatographic method. PMID:26924196

  19. Remove volatile organic compounds (VOCs) with membrane separation techniques

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Membrane separation, a new technology for removing VOCs including pervaporation, vapor permeation, membrane contactor, and membrane bioreactor was presented. Comparing with traditional techniques, these special techniques are an efficient and energy-saving technology. Vapor permeation can be applied to recovery of organic solvents from exhaust streams. Membrane contactor could be used for removing or recovering VOCs from air or wastewater. Pervaporation and vapor permeation are viable methods for removing VOCs from wastewater to yield a VOC concentrate which could either be destroyed by conventional means, or be recycled for reuse.

  20. An above-canopy flux network for improving and evaluating biogenic VOC emission models: GLOBal Organic Emissions NETwork (GLOBOENET) (Invited)

    Science.gov (United States)

    Guenther, A. B.; Turnipseed, A.; Duhl, T.; Shertz, S.; Karl, T.; Monson, R.; Litvak, M. E.; Jardine, K. J.; Abrell, L.; Geron, C.; Seco, R.

    2009-12-01

    The first estimates of global total biogenic VOC emissions were reported almost 50 years ago. Observations over the following three decades were incorporated into a monthly biogenic VOC emission inventory on a 1 degree by 1 degree grid, called the GEIA natural VOC emission inventory, in the early 1990s and began to be widely used in global chemistry and transport models. Also in the 1990s, regulatory air quality modelers began to routinely include regional biogenic VOC emission inventories using procedures such as BEIS/BEIS2/BEIS3. These approaches are still used today although there have been advances in the past two decades that have improved our understanding of the processes controlling biogenic VOC emissions. Current models, including the Model of Emissions of Gases and Aerosols from Nature (MEGAN), have integrated some of this information and are being incorporated as on-line components of coupled models. A major limitation in the advancement and evaluation of these models is the lack of suitable observations from representative ecosystems. We have initiated a community activity, called GLOBOENET, to address the need for observations that can be used to improve and evaluate these models. GLOBOENET is enhancing existing flux towers, such as those participating in FLUXNET, by adding biogenic VOC flux measurements to sites that are well characterized and are already measuring fluxes of CO2, water and energy. The biogenic VOC flux measurements are made with a low-cost and low-power Relaxed Eddy Accumulation (REA) system that has been evaluated by comparison to a PTRMS eddy covariance system. This presentation will describe the GLOBOENET approach and present some initial results. This includes seasonal and interannual variations at a forested site in Colorado that demonstrates the importance of climate, phenology and stress-induced emissions. Results from additional sites in Arizona, North Carolina, Michigan and New Mexico will also be shown and a strategy for

  1. Dynamic Solution Injection: a new method for preparing pptv-ppbv standard atmospheres of volatile organic compounds

    Directory of Open Access Journals (Sweden)

    K. J. Jardine

    2010-07-01

    Full Text Available Proton Transfer Reaction-Mass Spectrometry (PTR-MS and thermal desorption Gas Chromatography-Mass Spectrometry (GC-MS allow for absolute quantification of a wide range of atmospheric volatile organic compounds (VOCs with concentrations in the ppbv to pptv range. Although often neglected, routine calibration is necessary for accurate quantification of VOCs by PTR-MS and GC-MS. Several gas calibration methods currently exist, including compressed gas cylinders, permeation tubes, diffusion tubes, and liquid injection. While each method has its advantages and limitations, no single technique has emerged that is capable of dynamically generating accurate concentrations of complex mixtures of VOCs over a large concentration range (ppbv to pptv, is technically simple and field portable, and affordable. We present the development of a new VOC calibration technique based on liquid injection with these features termed Dynamic Solution Injection (DSI. This method consists of injecting VOCs (0.1–0.5 mM dissolved in cyclohexane (PTR-MS or methanol (GC-MS into a 1.0 slpm flow of purified dilution gas in an unheated 25 mL glass vial. Upon changes in the injection flow rate (0.5–4.0 μL min−1, new VOC concentrations are reached within seconds to minutes, depending on the compound, with a liquid injection flow rate accuracy and precision of better than 7% and 4%, respectively. We demonstrate the utility of the DSI technique by calibrating a PTR-MS to seven different cyclohexane solutions containing a total of 34 different biogenic compounds including volatile isoprenoids, oxygenated VOCs, fatty acid oxidation products, aromatics, and dimethyl sulfide. In order to validate the new DSI method, a GC-MS and PTR-MS calibration intercomparison with VOC standards generated by dynamic dilution of NIST traceable permeation tubes (α-pinene, acetone, and ethanol and a compressed gas cylinder (acetaldehyde was made. The results revealed that while

  2. Real-time quantification of traces of biogenic volatile selenium compounds in humid air by selected ion flow tube mass spectrometry.

    Science.gov (United States)

    Sovová, Kristýna; Shestivska, Violetta; Španěl, Patrik

    2012-06-01

    Biological volatilization of selenium, Se, in a contaminated area is an economical and environmentally friendly approach to phytoremediation techniques, but analytical methods for monitoring and studying volatile compounds released in the process of phytovolatilization are currently limited in their performance. Thus, a new method for real time quantification of trace amounts of the vapors of hydrogen selenide (H(2)Se), methylselenol (CH(3)SeH), dimethylselenide ((CH(3))(2)Se), and dimethyldiselenide ((CH(3))(2)Se(2)) present in ambient air adjacent to living plants has been developed. This involves the characterization of the mechanism and kinetics of the reaction of H(3)O(+), NO(+), and O(2)(+•) reagent ions with molecules of these compounds and then use of the rate constants so obtained to determine their absolute concentrations in air by selected ion flow tube mass spectrometry, SIFT-MS. The results of experiments demonstrating this method on emissions from maize (Zea mays) seedlings cultivated in Se rich medium are also presented.

  3. HS-SPME analysis of volatile organic compounds of coniferous needle litter

    Science.gov (United States)

    Isidorov, V. A.; Vinogorova, V. T.; Rafałowski, K.

    The composition of volatile emission of Scots pine ( Pinus sylvestris) and spruce ( Picea exelsa) litter was studied by gas chromatography-mass spectrometry (GC-MS) and samples were collected by solid-phase microextraction (SPME) method. The list of identified compounds includes over 60 organic substances of different classes. It was established that volatile emission contain not only components of essential oils of pine and spruce needles but also a large number of organic compounds which are probably secondary metabolites of litter-decomposing fungi. They include lower carbonyl compounds and alcohols as well as products of terpene dehydration and oxidation. These data show that the processes of litter decomposition are an important source of reactive organic compounds under canopy of coniferous forests.

  4. Validation of thermodesorption method for analysis of semi-volatile organic compounds adsorbed on wafer surface.

    Science.gov (United States)

    Hayeck, Nathalie; Gligorovski, Sasho; Poulet, Irène; Wortham, Henri

    2014-05-01

    To prevent the degradation of the device characteristics it is important to detect the organic contaminants adsorbed on the wafers. In this respect, a reliable qualitative and quantitative analytical method for analysis of semi-volatile organic compounds which can adsorb on wafer surfaces is of paramount importance. Here, we present a new analytical method based on Wafer Outgassing System (WOS) coupled to Automated Thermal Desorber-Gas chromatography-Mass spectrometry (ATD-GC-MS) to identify and quantify volatile and semi-volatile organic compounds from 6", 8" and 12" wafers. WOS technique allows the desorption of organic compounds from one side of the wafers. This method was tested on three important airborne contaminants in cleanroom i.e. tris-(2-chloroethyl) phosphate (TCEP), tris-(2-chloroisopropyl) phosphate (TCPP) and diethyl phthalate (DEP). In addition, we validated this method for the analysis and quantification of DEP, TCEP and TCPP and we estimated the backside organic contamination which may contribute to the front side of the contaminated wafers. We are demonstrating that WOS/ATD-GC-MS is a suitable and highly efficient technique for desorption and quantitative analysis of organophosphorous compounds and phthalate ester which could be found on the wafer surface.

  5. Potential for ion-induced nucleation of volatile organic compounds by radon decay in indoor environments

    International Nuclear Information System (INIS)

    There is considerable interest in the ''unattached'' fraction of radon progeny in indoor air because of its significance to the estimation of the risks of radon exposure. Because of its high mobility in air, the unattached fraction is more efficiently deposited in the respiratory tract. Variation in the diameter of the ''unattached'' fraction and in its diffusion coefficient can be due to clustering of other atmospheric species around the 218PoO2+ ion. The purpose of this study was to investigate the potential for the formation of clusters of vapor phase organic compounds, found in indoor air, around the 218PoO2+ ion and to determine which were most likely to form clusters. A secondary purpose was to provide a compilation of measurements of indoor organic compounds for future experiments and theoretical calculations by the radon research community. The classical charged liquid droplet theory (Thomson equation) was used to estimate the Gibbs free energy of ion-induced nucleation and to provide an indication of the indoor organic compounds most likely to undergo ion-induced nucleation. Forty-four volatile and semi-volatile organic compounds out of the more than 300 which have been reported in indoor air were investigated. Water vapor was included for comparison. The results indicate that there is a potential for the formation of clusters of organic compounds around the 218PoO2+ ion. The compounds with the greatest potential for cluster formation are the volatile oxidized hydrocarbons (e.g., n-butanol, phenol, hexanal, nonanal, benzaldehyde, the ketones and the acetates) and the semi-volatile organic compounds (pentachlorophenol, nicotine, chlordane, chlorpyrifos)

  6. Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J. M.; Washenfelder, Rebecca; Adler, Gabriela; Lee, H-J; Segev, Lior; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey; Brown, Steven; Rudich, Yinon

    2014-05-14

    Atmospheric absorption by brown carbon aerosol may play an important role in global radiative forcing. Brown carbon arises from both primary and secondary sources, but the mechanisms and reactions for the latter are highly uncertain. One proposed mechanism is the reaction of ammonia or amino acids with carbonyl products in secondary organic aerosol (SOA). We generated SOA in situ by reacting biogenic alkenes (α-pinene, limonene, and α-humulene) with excess ozone, humidifying the resulting aerosol, and reacting the humidified aerosol with gaseous ammonia. We determined the complex refractive indices (RI) in the 360 – 420 nm range for these aerosols using broadband cavity enhanced spectroscopy (BBCES). The average real part (n) of the measured spectral range of the NH3-aged α-pinene SOA increased from n = 1.50 (±0.01) for the unreacted SOA to n = 1.57 (± 0.01) after a 1.5h exposure to 1.9 ppm NH3; whereas,the imaginary component (k) remained below k < 0.001 (± 0.002). For the limonene and α-humulene SOA the real part did not change significantly, and we observed a small change in the imaginary component of the RI. The imaginary component increased from k = 0.0 to an average k= 0.029 (± 0.021) for α-humulene SOA, and from k < 0.001 (± 0.002) to an average k = 0.032 (±0.019) for limonene SOA after a 1.5 h exposure to 1.3 and 1.9 ppm of NH3, respectively. Collected filter samples of the aged and unreacted α-pinene SOA and limonene SOA were analyzed off-line with nanospray desorption electrospray ionization high resolution mass spectrometry (nano-DESI/HR-MS), and in-situ with a Time-of-Fligh Aerosol Mass Spectrometer, confirming that the SOA reacted and that various nitrogen-containing reaction products formed. If we assume that NH3 aging reactions scale linearly with time and concentration, then a 1.5 h reaction with 1 ppm NH3 in the laboratory is equivalent to 24 h reaction with 63 ppbv NH3, indicating that the observed aerosol absorption will be limited

  7. [Pollution characteristics of volatile organic compounds from wastewater treatment system of vitamin C production].

    Science.gov (United States)

    Guo, Bin; Lu, Guo-Li; Ren, Ai-Ling; Du, Zhao; Xing, Zhi-Xian; Han, Peng; Gao, Bo; Liu, Shu-Ya

    2013-12-01

    Using a portable gas chromatography and mass spectrometry (GC-MS), the volatile organic compounds (VOCs) pollution in each unit of the wastewater treatment system for vitamin C production was studied, and the species characteristics of volatile organic compounds (VOCs) were analyzed and summarized. The results showed that 32 kinds of volatile organic compounds were identified, and the total mass concentration range of volatilizing VOCs was 0.9629-32.0970 mg x m(-3). The most species and the largest concentration (25 and 32.0970 mg x m(-3)) of volatilizing VOCs were found in grit chamber, which was located in the most front-end of the wastewater treatment system and was in semi-closed state. The proportion of molecular sulfide in the grit chamber was as high as 30.02%; Higher proportions of aromatic hydrocarbons were monitored in the subsequent processing units, with percentages of 21.06%-31.48%. The main types of VOCs monitored were chlorinated hydrocarbons and ketones, accounting for 6.39%-55.80% and 10.40%-58.08% of the total amount, respectively; 14 kinds of VOCs were detected in every unit of the wastewater treatment system: acetone, 2-butanone, n-hexane, chloroform, chlorobenzene etc, among which, vinyl chloride, styrene and 1,3-butadiene belong to the highly toxic substances. The vinyl chloride concentration exceeded the standard of "atmospheric pollutants emission standards" (GB 16297-1996), while 1,3-butadiene and other pollutants have no national standard limits. The results of this study provide a scientific basis for the revision of China's pharmaceutical wastewater VOCs emission standards. PMID:24640904

  8. Evolution of free amino acids, biogenic amines and n-nitrosoamines throughout ageing in organic fermented beef

    Directory of Open Access Journals (Sweden)

    Karolina M. Wójciak

    2016-06-01

    Full Text Available Background. In recent years, interest in uncured meat products has grown and studies were carried out on the use of substances which could replace nitrites, such as acid whey. In spite of this problem in fermented meat products, there is no information regarding the effects of prolonged ageing on the formation of chemi- cal (nitrosoamines, biogenic amines, secondary lipid oxidation products and microbiological (L. monocy- togenes, S. aureus, OLD toxicants in fermented beef marinated with acid whey. The aim of this study was to determine the selected pathogenic bacteria, biogenic amines, N-nitrosamines contents in fermented beef subjected to extended ageing. Material and methods. In this study, selected pathogenic bacteria, N-nitrosamines, biogenic amines, amino acids, TBARS values changes during the ageing of fermented beef marinated with acid whey were analyzed in 0-, 2- and 36-month-old samples. Results. The pH values of fermented beef aged for 2 months (5.68, 5.49 and 5.68 respectively were sig- nificantly lower (p < 0.05 than those obtained after the end of the manufacturing ripening period (5.96, 5.97 and 5.74 respectively, which confirmed the effectiveness of the fermentation process of acidification on beef. The high Lactic Acid Bacteria content (5.64–6.30 log cfu/g confirmed this finding. Histamine was not detected in either of the products. The highest concentration of total biogenic amine (i.e. 1159.0 mg/kg was found in fermented beef marinated with acid whey, whereas a total of only 209.8 mg/kg, was observed in control beef with nitrate and nitrite. N-nitrosamines were not detected in any of the ageing beef samples. Conclusion. In this study, marinating beef in acid whey did not inhibit the production of biogenic amines in the samples analyzed. The high concentration of FAAs, the potential precursor of BA, could lead to intense peptidase activity. The results obtained indicate that biogenic amines are not direct precursors

  9. Volatile and particulate organic compounds in the ambient air of a eucalyptus forest in Portugal during the FIELDVOC'94 campaign

    Energy Technology Data Exchange (ETDEWEB)

    Pio, C.A.; Nunes, T.V.; Castro, L.M.; Lopes, D.A. [Universidade de Aveiro (Portugal). Dept. de Ambiente e Ordenamento

    2001-07-01

    During the FIELDVOC'94 campaign in a eucalyptus forest in Portugal the distributions of momoterpenes compounds and particulate carbon were measured in the ambient air above the forest. Monoterpenes compounds in the eucalyptus forest atmosphere consisted mainly of {beta}-pinene, {alpha}-pinene, 1,8-cineol, limonene and trans-ocimene. For several monoterpenes, such as {beta}-pinene and {alpha}-pinene, atmospheric levels were higher at night than during the day. This was partially attributed to decrease in atmospheric turbulence and transport of emissions from nearby pine forests during the night by the low intensity of easterly winds. {beta}-Pinene, which is emitted by pine trees but not in any noticeable amount by eucalyptus, was used as a tracer. Particulate carbon was measured as organic carbon and black carbon (BC). The measurement of particulate carbon levels was also done during the FIELDVOC'94 campaign at a coastal site, where clean air masses arriving from the Atlantic were sampled. The concentrations of atmospheric particulate carbon were higher in the forest than along the coast. Based upon a mass balance, it was possible to estimate an upper limit to the inclusion of biogenic volatile organic emissions into the organic aerosol component when air masses were transported from the coast inland during sea breezes. A value of as much as 40% of the particulate organic carbon (POC) can be attributed to emissions from vegetation of compounds such as monoterpenes which, after oxidation to less volatile products, are transferred to the particulate phase. (Author)

  10. A global perspective on aerosol from low-volatility organic compounds

    Directory of Open Access Journals (Sweden)

    H. O. T. Pye

    2010-05-01

    Full Text Available Global production of organic aerosol from primary emissions of semivolatile (SVOCs and intermediate (IVOCs volatility organic compounds is estimated using the global chemical transport model, GEOS-Chem. SVOC oxidation is predicted to be a larger global source of net aerosol production than oxidation of traditional parent hydrocarbons (terpenes, isoprene, and aromatics. Using a prescribed rate constant and reduction in volatility for atmospheric oxidation, the yield of aerosol from SVOCs is predicted to be about 75% on a global, annually-averaged basis. For IVOCs, the use of a naphthalene-like surrogate with different high-NOx and low-NOx parameterizations produces a global aerosol yield of about 30%, or roughly 5 Tg/yr of aerosol. Estimates of the total global organic aerosol source presented here range between 60 and 100 Tg/yr. This range reflects uncertainty in the parameters for SVOC volatility, SVOC oxidation, SVOC emissions, and IVOC emissions, as well as wet deposition. The highest estimates result if SVOC emissions are significantly underestimated (by more than a factor of 2 or if wet deposition of the gas-phase semivolatile species is less effective than previous estimates. A significant increase in SVOC emissions, a reduction of the volatility of the SVOC emissions, or an increase in the enthalpy of vaporization of the organic aerosol all lead to an appreciable reduction of prediction/measurement discrepancy. In addition, if current primary organic aerosol (POA inventories capture only about one-half of the SVOC emission and the Henrys Law coefficient for oxidized semivolatiles is on the order of 103 M/atm, a global estimate of OA production is not inconsistent with the top-down estimate of 140 Tg/yr by (Goldstein and Galbally, 2007. Additional information is needed to constrain the emissions and treatment of SVOCs and IVOCs, which have traditionally not been included in models.

  11. The biogenic approach to cognition.

    Science.gov (United States)

    Lyon, Pamela

    2006-03-01

    After half a century of cognitive revolution we remain far from agreement about what cognition is and what cognition does. It was once thought that these questions could wait until the data were in. Today there is a mountain of data, but no way of making sense of it. The time for tackling the fundamental issues has arrived. The biogenic approach to cognition is introduced not as a solution but as a means of approaching the issues. The traditional, and still predominant, methodological stance in cognitive inquiry is what I call the anthropogenic approach: assume human cognition as the paradigm and work 'down' to a more general explanatory concept. The biogenic approach, on the other hand, starts with the facts of biology as the basis for theorizing and works 'up' to the human case by asking psychological questions as if they were biological questions. Biogenic explanations of cognition are currently clustered around two main frameworks for understanding biology: self-organizing complex systems and autopoiesis. The paper describes the frameworks and infers from them ten empirical principles--the biogenic 'family traits'--that constitute constraints on biogenic theorizing. Because the anthropogenic approach to cognition is not constrained empirically to the same degree, I argue that the biogenic approach is superior for approaching a general theory of cognition as a natural phenomenon. PMID:16628463

  12. Volatile Halogenated Organic Compounds Released to Seawater from Temperate Marine Macroalgae

    Science.gov (United States)

    Gschwend, Philip M.; Macfarlane, John K.; Newman, Kathleen A.

    1985-03-01

    Volatile halogenated organic compounds synthesized by various industrial processes are troublesome pollutants because they are persistent in terrestrial ecosystems and because they may be present in sufficient quantities to alter the natural atmospheric cycles of the halogens. Certain of these compounds, including polybromomethanes and several previously unobserved alkyl monohalides and dihalides, appear to be natural products of the marine environment. A variety of temperate marine macroalgae (the brown algae Ascophyllum nodosum and Fucus vesiculosis, the green algae Enteromorpha linza and Ulva lacta, and the red alga Gigartina stellata) not only contain volatile halogenated organic compounds but also release them to seawater at rates of nanograms to micrograms of each compound per gram of dry algae per day. The macroalgae may be an important source of bromine-containing material released to the atmosphere.

  13. [Emission characteristics and hazard assessment analysis of volatile organic compounds from chemical synthesis pharmaceutical industry].

    Science.gov (United States)

    Li, Yan; Wang, Zhe-Ming; Song, Shuang; Xu, Zhi-Rong; Xu, Ming-Zhu; Xu, Wei-Li

    2014-10-01

    In this study, volatile organic compounds (VOCs) released from chemical synthesis pharmaceutical industry in Taizhou, Zhejiang province were analyzed quantitatively and qualitatively. The total volatile organic compounds (TVOCs) was in the range of 14.9-308.6 mg · m(-3). Evaluation models of ozone formation potentials (OFP) and health risk assessment were adopted to preliminarily assess the environmental impact and health risk of VOCs. The results showed that the values of OFP of VOCs were in the range of 3.1-315.1 mg · m(-3), based on the maximum incremental reactivity, the main principal contribution was toluene, tetrahydrofuran (THF), acetic ether etc. The non-carcinogenic risk and the carcinogen risk fell in the ranges of 9.48 x 10(-7)-4.98 x 10(-4) a(-1) and 3.17 x 10(-5)- 6.33 x 10(-3). The principal contribution of VOCs was benzene, formaldehyde and methylene chloride.

  14. Preliminary evaluation of selected in situ remediation technologies for Volatile Organic Compound contamination at Arid sites

    Energy Technology Data Exchange (ETDEWEB)

    Lenhard, R.J.; Gerber, M.A.; Amonette, J.E.

    1992-10-01

    To support the Volatile Organic Compounds-Arid Site (VOC-Arid) Integrated Demonstration (ID) in its technical, logistical, institutional, and economical testing of emerging environmental management and restoration technologies. Pacific Northwest Laboratory(a) is evaluating several in situ remediation technologies for possible inclusion in the demonstration. The evaluations are made with respect to the initial focus of the VOC-Arid ID: the carbon tetrachloride contamination at the Hanford Site, where it was disposed to the vadose zone along with other volatile and nonvolatile organic wastes. heavy metals, acids. and radionuclides. The purposes of this report are (1) to identify candidate in situ technologies for inclusion in the program, (2) to evaluate the candidate technologies based on their potential applicability to VOC contamination at arid sites and geologic conditions representative of the ID host site (i.e., Hanford Site), and (3) to prioritize those technologies for future US Department of Energy (DOE) support.

  15. Measurement of surface emission flux rates for volatile organic compounds at Technical Area 54

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, V.; Morgenstern, M.; Krier, D. [Los Alamos National Lab., NM (United States); Gilkeson, R. [Weirich and Associates, Albuquerque, NM (United States)

    1998-06-01

    The survey described in this report was conducted to estimate the mass of volatile organic compounds venting to the atmosphere from active and inactive waste disposal sites at Technical Area 54. A large number of nonintrusive passive sample collection devices were placed on the ground surface for 72 hours to characterize an area of approximately 150 acres. Results provided an indication of the boundary location of the known volatile organic plume, plume constituents, and isolated high concentration areas. The data from this survey enhanced existing data from a limited number of monitor wells currently used for plume surveillance. Results indicate that the estimated mass emission to the atmosphere is orders of magnitude lower than what is considered a small flux rate at a spill site or a Resource Conservation and Recovery Act landfill and is far below the threshold limit established by the State of New Mexico as an air quality concern.

  16. A method for the combined measurement of volatile and condensable organic AMC in semiconductor applications

    Science.gov (United States)

    Miller, Charles M.; Zaloga, Emily C.; Lobert, Jürgen M.

    2014-04-01

    Monitoring airborne molecular contamination (AMC) at the parts per trillion (ppt) level in cleanroom environments, scanner applications and compressed gas lines is essential for processes, equipment and yield-control. For the operation of EUV tools, in particular, volatile organic contamination is known to have as much impact as condensable organic compounds, which requires a suitable sampling and measurement methodology. Some of the current industry standards use sample traps comprised of porous 2,6-diphenylene-oxide polymer resin, such as Tenax®, for measuring volatile organic (6 C atoms, about toluene and higher) AMC. Inherent problems associated with these traps are a number of artifacts and chemical reactions that reduce accuracy of reported organic AMC concentrations. The break-down of the polymeric material forms false positive artifacts when used in the presence of reactive gases, such as nitrous acid and ozone, which attack and degrade the polymer to form detectable AMC. Most importantly, these traps have poor capture efficiency for volatile organic compounds (VOC). To address the disadvantages of polymer-based sample traps, we developed a method based on carbonaceous, multi-layered adsorbent traps to replace the 2,6-diphenylene-oxide polymer resin sample trap type. Along with the new trap's ability to retain volatile organics, the trap was found to provide artifact-free results. With industry trends towards detecting more contaminants while continuously reducing required reporting limits for those compounds, artifact-free and accurate detection of AMC is needed at the parts per quadrillion (ppq) level. The proposed, multi-layered trap substantially increases laboratory productivity and reduces cost by eliminating the need to analyze condensable and volatile organic compounds in two separate methods. In our studies, even some organic compounds with six C-atoms, that are part of exposure tool OEM requirements, were not effectively retained by polymeric

  17. Biogenic amines in seafood: a review.

    Science.gov (United States)

    Biji, K B; Ravishankar, C N; Venkateswarlu, R; Mohan, C O; Gopal, T K Srinivasa

    2016-05-01

    The biogenic amines are low molecular weight organic bases present normally in the body with biological activity influencing important physiological functions. The physiological functions of these molecules are achieved by very low concentrations in the tissues. However, significantly high amounts of biogenic amines are produced during processing and storage of seafood as a result of microbial contamination and inadequate storage conditions. Microorganisms having decarboxylase enzyme activity convert amino acids to their respective biogenic amines. Biogenic amines in seafood have been implicated as a major causative agent of food borne illness, where intoxication results from the ingestion of foods containing higher amount of biogenic amines. Hence its identification, quantitation and awareness of this food borne toxin are important in relation to food safety and spoilage. The aim of this paper is to review the basic concepts of seafood quality and safety in relation to biogenic amines along with its control measures and future areas for research. PMID:27407186

  18. Assessing the chemotaxis behavior of Physarum polycephalum to a range of simple volatile organic chemicals

    OpenAIRE

    de Lacy Costello, Ben P.J.; Adamatzky, Andrew I.

    2013-01-01

    The chemotaxis behavior of the plasmodial stage of the true slime mold Physarum Polycephalum was assessed when given a binary choice between two volatile organic chemicals (VOCs) placed in its environment. All possible binary combinations were tested between 19 separate VOCs selected due to their prevalence and biological activity in common plant and insect species. The slime mold exhibited positive chemotaxis toward a number of VOCs with the following order of preference:   Farnesene > β-myr...

  19. Disjunct eddy covariance measurements of volatile organic compound fluxes using proton transfer reaction mass spectrometry

    OpenAIRE

    Taipale, Risto

    2011-01-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from natural and anthropogenic sources, vegetation being the dominant source on a global scale. Some of these reactive compounds are deemed major contributors or inhibitors to aerosol particle formation and growth, thus making VOC measurements essential for current climate change research. This thesis discusses ecosystem scale VOC fluxes measured above a boreal Scots pine dominated forest in southern Finland. The flux measureme...

  20. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene

    OpenAIRE

    Ludmilla Lumholdt; Sophie Fourmentin; Nielsen, Thorbjørn T; Larsen, Kim L.

    2014-01-01

    Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixt...

  1. Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.

    1994-07-01

    This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

  2. Annual cycle of volatile organic compound exchange between a boreal pine forest and the atmosphere

    OpenAIRE

    Rantala, P.; Aalto, J; Taipale, R.; T. M. Ruuskanen; J. Rinne

    2015-01-01

    Long-term flux measurements of volatile organic compounds (VOC) over boreal forests are rare, although the forests are known to emit considerable amounts of VOCs into the atmosphere. Thus, we measured fluxes of several VOCs and oxygenated VOCs over a Scots-pine-dominated boreal forest semi-continuously between May 2010 and December 2013. The VOC profiles were obtained with a proton transfer reaction mass spectrometry, and the fluxes were calculated using vertical concentrati...

  3. Annual cycle of volatile organic compound exchange between a boreal pine forest and the atmosphere

    OpenAIRE

    Rantala, P.; Aalto, J; Taipale, R.; T. M. Ruuskanen; J. Rinne

    2015-01-01

    Long-term flux measurements of volatile organic compounds (VOC) over boreal forests are rare, although the forests are known to emit considerable amounts of VOCs into the atmosphere. Thus, we measured fluxes of several VOCs and oxygenated VOCs over a Scots pine dominated boreal forest semi-continuously between May 2010 and December 2013. The VOC profiles were obtained with a proton-transfer-reaction mass-spectrometry, and the fluxes were calculated using vertical concentrati...

  4. Automated analyser for monitoring trace amounts of volatile chloro-organic compounds in recirculated industrial water

    OpenAIRE

    Elżbieta Przyk; Jacek Namieśnik; Wojciech Chrzanowski; Andrzej Wasik; Wacław Janicki

    2002-01-01

    An automated analyser of volatile chloro-organic compounds in water was constructed and tested using standard mixtures of dichloromethane and dichloroethane. It was based on continuous, countercurrent gas stripping of the liquid sample followed by periodic trapping of the analytes on two traps alternately connected to the bubbler outlet, and thermal desorption. When one trap performed adsorption, the other underwent desorption and cooling. Analytes were detected by an ECD detector. Integratio...

  5. The Venus flytrap attracts insects by the release of volatile organic compounds

    OpenAIRE

    Kreuzwieser, J.; Scheerer, U.; Kruse, J.; Burzlaff, T.; Honsel, A.; Alfarraj, S.; Georgiev, P.; Schnitzler, J.-P.; Ghirardo, A.; Kreuzer, I.; Hedrich, R; Rennenberg, H

    2015-01-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reacti...

  6. The Interplay of the Gut Microbiome, Bile Acids, and Volatile Organic Compounds

    OpenAIRE

    Nidhi M. Sagar; Cree, Ian A; James A. Covington; Ramesh P Arasaradnam

    2015-01-01

    Background. There has been an increasing interest in the use of volatile organic compounds (VOCs) as potential surrogate markers of gut dysbiosis in gastrointestinal disease. Gut dysbiosis occurs when pathological imbalances in gut bacterial colonies precipitate disease and has been linked to the dysmetabolism of bile acids (BA) in the gut. BA metabolites as a result of microbial transformations act as signaling molecules and have demonstrated regulation of intestinal homeostasis through the ...

  7. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    Science.gov (United States)

    Mowry, Curtis Dale; Thornberg, Steven Michael

    1999-01-01

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  8. 78 FR 11119 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of trans

    Science.gov (United States)

    2013-02-15

    ...The EPA is proposing to revise the definition of volatile organic compounds (VOCs) for purposes of preparing state implementation plans (SIPs) to attain the national ambient air quality standards for ozone under title I of the Clean Air Act (CAA). This proposed revision would add trans 1-chloro-3,3,3-trifluoroprop-1-ene (also known as SolsticeTM 1233zd(E)) to the list of compounds......

  9. Electrospun Polyurethane Fibers for Absorption of Volatile Organic Compounds from Air

    OpenAIRE

    Scholten, Elke; Bromberg, Lev E.; Rutledge, Gregory C.; Hatton, T. Alan

    2011-01-01

    Electrospun polyurethane fibers for removal of volatile organic compounds (VOC) from air with rapid VOC absorption and desorption have been developed. Polyurethanes based on 4,4-methylenebis(phenylisocyanate) (MDI) and aliphatic isophorone diisocyanate as the hard segments and butanediol and tetramethylene glycol as the soft segments were electrospun from their solutions in N,N-dimethylformamide to form micrometer-sized fibers. Although activated carbon possessed a many-fold higher surface ar...

  10. Modeling Diffusion-Controlled Emissions of Volatile Organic Compounds from Building Materials

    OpenAIRE

    Cox, Steven Scott

    2001-01-01

    The adverse effects of contaminated outdoor air have been recognized and subject to control for many years. More recently environmental engineers and health professionals have become cognizant of the hazards associated with contaminated indoor air. It is now understood that contaminated indoor air negatively impacts human health, worker productivity, and physical property. Volatile organic compounds (VOCs) are a common class of indoor air pollutants. Building materials such as treated w...

  11. Non-linear partitioning and organic volatility distributions of urban aerosols.

    Science.gov (United States)

    Madronich, S; Conley, A J; Lee-Taylor, J; Kleinman, L I; Hodzic, A; Aumont, B

    2016-07-18

    Gas-to-particle partitioning of organic aerosols (OA) is represented in most models by Raoult's law, and depends on the existing mass of particles into which organic gases can dissolve. This raises the possibility of non-linear response of particle-phase OA mass to the emissions of precursor volatile organic compounds (VOCs) that contribute to this partitioning mass. Implications for air quality management are evident: a strong non-linear dependence would suggest that reductions in VOC emission would have a more-than-proportionate benefit in lowering ambient OA concentrations. Chamber measurements on simple VOC mixtures generally confirm the non-linear scaling between OA and VOCs, usually stated as a mass-dependence of the measured OA yields. However, for realistic ambient conditions including urban settings, no single component dominates the composition of the organic particles, and deviations from linearity are presumed to be small. Here we re-examine the linearity question using volatility spectra from several sources: (1) chamber studies of selected aerosols, (2) volatility inferred for aerosols sampled in two megacities, Mexico City and Paris, and (3) an explicit chemistry model (GECKO-A). These few available volatility distributions suggest that urban OA may be only slightly super-linear, with most values of the normalized sensitivity exponent in the range 1.1-1.3, also substantially lower than seen in chambers for some specific aerosols. The rather low exponents suggest that OA concentrations in megacities are not an inevitable convergence of non-linear effects, but can be addressed (much like in smaller urban areas) by proportionate reductions in emissions. PMID:27092376

  12. Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs)

    OpenAIRE

    A. W. H. Chan; Kautzman, K. E.; P. S. Chhabra; J. D. Surratt; Chan, M. N.; Crounse, J. D.; A. Kürten; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J.H.

    2009-01-01

    Current atmospheric models do not include secondary organic aerosol (SOA) production from gas-phase reactions of polycyclic aromatic hydrocarbons (PAHs). Recent studies have shown that primary semivolatile emissions, previously assumed to be inert, undergo oxidation in the gas phase, leading to SOA formation. This opens the possibility that low-volatility gas-phase precursors are a potentially large source of SOA. In this work, SOA formation from gas-phase photooxidation of naphthalene...

  13. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Annalisa eGiorgio

    2015-10-01

    Full Text Available Six rhizobacteria isolated from common bean and able to protect bean plants from the common bacterial blight causal agent, were in vitro evaluated for their potential antifungal effects toward different plant pathogenic fungi, mostly soil-borne. By dual culture assays, the above bacteria resulted producing diffusible and volatile metabolites which inhibited the growth of the majority of the pathogens under study. In particular, the latter substances highly affected the mycelium growth of Sclerotinia sclerotiorum strains, one of which was selected for further studies either on mycelium or sclerotia.Gas chromatographic analysis of the bacterial volatiles led to the identification of an array of volatile organic compounds (VOCs. Time course studies showed the modification of the VOCs profile along a period of 5 days. In order to evaluate the single detected VOC effects on fungal growth, some of the pure compounds were tested on S. sclerotiorum mycelium and their minimal inhibitory quantities were determined. Similarly, the minimal inhibitory quantities on sclerotia germination were also defined. Moreover, observations by light and transmission electron microscopes highlighted hyphae cytoplasm granulation and ultrastructural alterations at cell organelles, mostly membranes, mitochondria and endoplasmic reticulum. The membranes appeared one of the primary targets of bacterial volatiles, as confirmed by haemolytic activity observed for the majority of pure VOCs. However, of interest is the alteration observed on mitochondria as well.

  14. Biocide effects of volatile organic compounds produced by potential biocontrol rhizobacteria on Sclerotinia sclerotiorum.

    Science.gov (United States)

    Giorgio, Annalisa; De Stradis, Angelo; Lo Cantore, Pietro; Iacobellis, Nicola S

    2015-01-01

    Six rhizobacteria isolated from common bean and able to protect bean plants from the common bacterial blight (CBB) causal agent, were in vitro evaluated for their potential antifungal effects toward different plant pathogenic fungi, mostly soil-borne. By dual culture assays, the above bacteria resulted producing diffusible and volatile metabolites which inhibited the growth of the majority of the pathogens under study. In particular, the latter substances highly affected the mycelium growth of Sclerotinia sclerotiorum strains, one of which was selected for further studies either on mycelium or sclerotia. Gas chromatographic analysis of the bacterial volatiles led to the identification of an array of volatile organic compounds (VOCs). Time course studies showed the modification of the VOCs profile along a period of 5 days. In order to evaluate the single detected VOC effects on fungal growth, some of the pure compounds were tested on S. sclerotiorum mycelium and their minimal inhibitory quantities were determined. Similarly, the minimal inhibitory quantities on sclerotia germination were also defined. Moreover, observations by light and transmission electron microscopes highlighted hyphae cytoplasm granulation and ultrastructural alterations at cell organelles, mostly membranes, mitochondria, and endoplasmic reticulum. The membranes appeared one of the primary targets of bacterial volatiles, as confirmed by hemolytic activity observed for the majority of pure VOCs. However, of interest is the alteration observed on mitochondria as well. PMID:26500617

  15. Biogenic contribution to PM-2.5 ambient aerosol from radiocarbon measurements

    Science.gov (United States)

    Lewis, C.; Klouda, G.; Ellenson, W.

    2003-04-01

    Knowledge of the relative contributions of biogenic versus anthropogenic sources to ambient aerosol is of great interest in the formulation of strategies to achieve nationally mandated air quality standards. Radiocarbon (14C) measurements provide a means to quantify the biogenic fraction of any carbon-containing sample of ambient aerosol. In the absence of an impact from biomass burning (e.g., during summertime) such measurements can provide an estimate of the contribution of biogenic secondary organic aerosol, from biogenic volatile organic compound precursors. Radiocarbon results for 11.5-h PM-2.5 samples collected near Nashville, Tennessee, USA, during summer 1999 will be presented. On average the measured biogenic fraction was surprisingly large (more than half), with the average biogenic fraction for night samples being only slightly smaller than for day samples. Discussion will include (a) description of the radiocarbon methodology, (b) use of radiocarbon measurements on local vegetation and fuel samples as calibration data, (c) concurrent measurements of organic carbon and elemental carbon ambient concentrations, (d) assessment of organic aerosol sampling artifact through use of organic vapor denuders, variable face velocities, and filter extraction, and (e) comparison with published radiocarbon results obtained in Houston, Texas in a similar study. Disclaimer: This work has been funded wholly or in part by the United States Environmental Protection Agency under Interagency Agreement No. 13937923 to the National Institute of Standards and Technology, and Contract No. 68-D5-0049 to ManTech Environmental Tecnology, Inc. It has been subjected to Agency review and approved for publication.

  16. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA)

    Energy Technology Data Exchange (ETDEWEB)

    Seco, Roger [Univ. of California, Irvine, CA (United States); Karl, Thomas [Univ. of Innsbruck (Austria); Guenther, Alex B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Washington State Univ., Pullman, WA (United States); Hosman, Kevin P. [Univ. of Missouri, Columbia, MO (United States); Pallardy, Stephen G. [Univ. of Missouri, Columbia, MO (United States); Gu, Lianhong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Geron, Chris [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States); Harley, Peter [National Center for Atmospheric Research, Boulder, CO (United States); Kim, Saewung [Univ. of California, Irvine, CA (United States)

    2015-07-07

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegeta-tion and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately repre-sented for accurately modeling the coupled biosphere–atmosphere–climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. We describe the diur-nal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were domi-nated by isoprene, which attained high emission rates of up to 35.4 mg m-2h-1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which high-lights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Never-theless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, conflrming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7–17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement cam-paign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. The MEGANv2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes

  17. Applications of Satellite Remote Sensing Data for Biogenic Emission Estimates in Southeastern Texas

    Science.gov (United States)

    Feldman, M. S.; Howard, T.; Mullins, G.; McDonald-Buller, E.; Allen, D. T.

    2007-12-01

    Biogenic hydrocarbons, including isoprene, monoterpenes, and oxygenated compounds, are emitted in substantial quantities by vegetation and dominate the overall volatile organic compound emission inventory in Southeastern Texas. Spatial distributions of biogenic emissions in Texas are heterogeneous, and biogenic emission processes are affected by the characterization of land cover, leaf area index, drought stress, and surface temperatures. On a regional scale, biogenic emissions, particularly isoprene, in the presence of high levels of nitrogen oxides (NOx), will produce elevated ground-level ozone concentrations. The sensitivity of biogenic emission estimates and air quality model predictions to the characterization of land use/land cover (LULC) in southeastern Texas is examined. A LULC database has been developed for the region based on source imagery collected by the Landsat 7 Enhanced Thematic Mapper-Plus sensor between 1999 and 2003, and data from field studies used for species identification and quantification of biomass densities. This database and the LULC database currently used in regulatory air quality models by the State of Texas are compared. Effects of the LULC data on biogenic emission estimates and modeled ozone concentrations are examined using the Global Biosphere Emissions and Interactions System and the Comprehensive Air Quality Model with extensions during an August 22-September 6, 2000 episode developed for the Houston/Galveston area. These results are also compared to biogenic emission estimates from the recently created Model of Emissions of Gases and Aerosols from Nature (MEGAN), which includes a global vegetation map compiled from recent satellite data and ecosystem inventories. Biogenic emissions estimated from the new LULC dataset showed good general spatial agreement with those from the currently used LULC dataset but significantly lower emissions (~40% less hourly emissions across the modeling domain), primarily due to differences in

  18. Microorganisms Associated with Volatile Organic Compound Production in Spoilt Mango Fruits

    Directory of Open Access Journals (Sweden)

    Aliyu D. Ibrahim

    2015-11-01

    Full Text Available Microorganisms associated with the production of volatile compound in spoilt mango fruits sold in Sokoto town were isolated and identified. The organisms include seven species of bacteria and a species of yeast. These include Bacillus pumilus, Bacillus firmus, Brevibacillus laterosporus, Morganella morganii, Paenibacillus alvei, Staphylococcus saccharolyticus, Listeria monocytogenes and Candida krusei respectively. GC-MS analysis revealed the presence of eleven and sixteen volatile organic compound in the healthy and spoilt ripe mango fruits. Octadecanoic acid, oleic acid, 1 – Butanol, 3 – methyl-, carbonate (2:1 and 3,7 – Dimethyl nonane were common to both healthy and spoilt fruits with the first three having higher concentration in healthy fruits than spoilt while the later had higher concentration in the spoilt. One methyl group of 3,3- Dimethyl hexane in healthy fruit was shifted to position two to yield 2,3-Dimethyl hexane in the spoilt fruits. 2,2-Dimethylbutane, Methyl(methyl-4-deoxy-2,3-di-O-methyl.beta.1-threo-hex-4-enopyranosid urinate, 3-(4-amino-phenyl-2-(toluene-4-sulfonylamino-propionic acid, 2-Methyl-3-heptanone, 3,5-Nonadien-7-yn-2-ol, (E,E, Butanoic acid, 1,1-dimethylethyl ester, 1-methyl-3-beta.phenylethyl-2,4,5-trioxoimidazolidine, Pentanoic acid, 2,2-dimethyl, ethyl ester (Vinyl 2,2-dimethylpentanoate, 4-Methyurazole, 1-Tridecyn- 4 – 9 – ol, 1-Hexyl-1-nitrocyclohexane were unique to spoilt fruits. This study suggests that these unique volatile metabolites could be exploited as biomarkers to discriminate pathogens even when more than one disease is present thereby curbing post harvest loss during storage after further validation and the volatile organic compound could form the basis for constructing a metabolomics database for Nigeria.

  19. Development of an In-Fiber Nanocavity Towards Detection of Volatile Organic Gases

    Directory of Open Access Journals (Sweden)

    Francisco J. Arregui

    2006-06-01

    Full Text Available A fiber optic sensor for Volatile Organic Compounds (VOCs detection has beendeveloped and characterized for some organic gasses. The sensor is based on a novelvapochromic material, which is able to change its optical properties in presence of organicvapors in a reversely way. A nano Fabry Perot is constructed onto a cleaved ended opticalfiber pigtail by Electrostatic Self Assembly method (ESA, doping this structure with thevapochromic material. Employing a reflection scheme, a change in the intensity modulatedreflected signal at 850 nm have been registered. The response of the sensor has beenevaluated for five different VOCs, and a deeper study has been made for vapors of threedifferent alcohols.

  20. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    Directory of Open Access Journals (Sweden)

    F. D. Lopez-Hilfiker

    2015-02-01

    Full Text Available We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer, but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS. Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products. Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing

  1. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene

    Directory of Open Access Journals (Sweden)

    Ludmilla Lumholdt

    2014-11-01

    Full Text Available Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest–host complexes with ratios of up to 16:1.

  2. A mass transfer model for predicting emission of the volatile organic compounds in wet building materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tao; JIA Li

    2008-01-01

    A new mass transfer model is developped to predict the volatile organic compounds (VOCs) from fresh wet building materials. The dry section of wet materials during the process of VOC emission from wet building materials is considered in this new model, differing from the mass transfer-based models in other literatures. The mechanism of effect of saturated vapor pressure on the surface of wet building materials in the process of VOC emission is discussed. The concentration of total volatile organic compounds (TVOC) in the building materials gradually decreases as the emission of VOCs begins, and the vapor pressure of VOCs on the surface of wet building materials decreases in the case of newly wet building materials. To ensure the partial pressure of VOCs on the surface of wet building materials to be saturated vapor pressure, the interface of gas-wet layer is lowered, and a dry layer of no-volatile gases in the material is formed. Compared with the results obtained by VB model, CFD model and the ex-periment data, the results obtained by the present model agree well with the results obtained by CFD model and the experiment data. The present model is more accurate in predicting emission of VOC from wet building materials than VB model.

  3. Volatile organic compounds as new biomarkers for colorectal cancer: a review.

    Science.gov (United States)

    Di Lena, M; Porcelli, F; Altomare, D F

    2016-07-01

    Analysis of the volatile part of the metabolome (volatile organic compounds, VOC) present in the gas phase of excreted materials is a promising new screening tool for several cancers, including colorectal cancer (CRC). The VOC signature can reflect health status, like a 'fingerprint', and can be modified in several diseases. Technical difficulties still limit the widespread use of VOC analysis in the clinical setting, but this approach has already been applied successfully in the diagnosis of CRC. The present study reviews the available data on VOC present in the headspace (the gaseous constituents of a closed space above a liquid or solid) of blood, urine, faeces and breath as a potential screening tool for CRC. A systematic electronic literature search was conducted in PubMed, Scirus and Google using the following keywords: Metabolomic, Volatile Organic Compounds (VOC), Electronic-nose and Colorectal Cancer. Only articles published in English between 2000 and 2015 were selected and these were independently checked by two of the authors. Ten papers describing the reliability of VOC analysis in breath and faeces, blood and urine were selected; all indicated good reliability in detecting CRC. The use of different substrates and different analytical platforms has led to the identification of different patterns of VOC. The reliability of a metabolomic approach as a noninvasive biomarker for use in CRC screening is supported by this review despite several limitations due to the number of patients included in each study, the different analytical platforms and biological materials used and different VOC identified. PMID:26752703

  4. Analysis of build-up of heavy metals and volatile organics on urban roads in gold coast, Australia.

    Science.gov (United States)

    Mahbub, Parvez; Goonetilleke, Ashantha; Ayoko, Godwin A; Egodawatta, Prasanna; Yigitcanlar, Tan

    2011-01-01

    Urban water quality can be significantly impaired by the build-up of pollutants such as heavy metals and volatile organics on urban road surfaces due to vehicular traffic. Any control strategy for the mitigation of traffic related build-up of heavy metals and volatile organic pollutants should be based on the knowledge of their build-up processes. In the study discussed in this paper, the outcomes of a detailed experimental investigation into build-up processes of heavy metals and volatile organics are presented. It was found that traffic parameters such as average daily traffic, volume over capacity ratio and surface texture depth had similar strong correlations with the build-up of heavy metals and volatile organics. Multicriteria decision analyses revealed that that the 1-74 microm particulate fraction of total suspended solids (TSS) could be regarded as a surrogate indicator for particulate heavy metals in build-up and this same fraction of total organic carbon could be regarded as a surrogate indicator for particulate volatile organics build-up. In terms of pollutants affinity, TSS was found to be the predominant parameter for particulate heavy metals build-up and total dissolved solids was found to be the predominant parameter for the potential dissolved particulate fraction in heavy metals buildup. It was also found that land use did not play a significant role in the build-up of traffic generated heavy metals and volatile organics.

  5. RECOVERY OF SEMI-VOLATILE ORGANIC COMPOUNDS DURING SAMPLE PREPARATION: IMPLICATIONS FOR CHARACTERIZATION OF AIRBORNE PARTICULATE MATTER

    Science.gov (United States)

    Semi-volatile compounds present special analytical challenges not met by conventional methods for analysis of ambient particulate matter (PM). Accurate quantification of PM-associated organic compounds requires validation of the laboratory procedures for recovery over a wide v...

  6. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork

    DEFF Research Database (Denmark)

    Nieminen, Timo T.; Dalgaard, Paw; Björkroth, Johanna

    2016-01-01

    Accumulation of volatile organic compounds was monitored in association with sensory quality, bacterial concentrations and culture-independent microbial community analyses in raw pork loin and pork collar during storage under high-oxygen modified atmosphere at +4°C. Of the 48 volatile compounds....... According to the culture-dependent and culture-independent characterization of bacterial communities, Brochothrix thermosphacta, lactic acid bacteria (Carnobacterium, Lactobacillus, Lactococcus, Leuconostoc, Weissella) and Photobacterium spp. predominated in pork samples. Photobacterium spp., typically...... not associated with spoilage of meat, were detected also in 8 of the 11 retail packages of pork investigated subsequently. Eleven isolates from the pork samples were shown to belong to Photobacterium phosphoreum by phenotypic tests and sequencing of the 16S rRNA and gyrB gene fragments. Off-odors in pork samples...

  7. Assessment of volatile organic compounds in surface water at Canal Creek, Aberdeen Proving Ground, Maryland, November 1999-September 2000

    Science.gov (United States)

    Phelan, Daniel J.; Olsen, Lisa D.; Senus, Michael P.; Spencer, Tracey A.

    2001-01-01

    The purpose of this report is to describe the occurrence and distribution of volatile organic compounds in surface-water samples collected by the U.S. Geological Survey in the Canal Creek area of Aberdeen Proving Ground, Maryland, from November 1999 through September 2000. The report describes the differences between years with below normal and normal precipitation, the effects of seasons, tide stages, and location on volatile organic compound concentrations in surface water, and provides estimates of volatile organic concentration loads to the tidal Gunpowder River. Eighty-four environmental samples from 20 surface-water sites were analyzed. As many as 13 different volatile organic compounds were detected in the samples. Concentrations of volatile organic compounds in surface-water samples ranged from below the reporting limit of 0.5 micrograms per liter to a maximum of 50.2 micrograms per liter for chloroform. Chloroform was detected most frequently, and was found in 55 percent of the environmental samples that were analyzed for volatile organic compounds (46 of 84 samples). Carbon tetrachloride was detected in 56 percent of the surface-water samples in the tidal part of the creek (34 of 61 samples), but was only detected in 3 of 23 samples in the nontidal part of the creek. 1,1,2,2-Tetrachloroethane was detected in 43 percent of the tidal samples (26 of 61 samples), but was detected at only two nontidal sites and only during November 1999. Three samples were collected from the tidal Gunpowder River about 300 feet from the mouth of Canal Creek in May 2000, and none of the samples contained volatile organic compound concentrations above detection levels. Volatile organic compound concentrations in surface water were highest in the reaches of the creek adjacent to the areas with the highest known levels of ground-water contamination. The load of total volatile organic compounds from Canal Creek to the Gunpowder River is approximately 1.85 pounds per day (0

  8. Study of the influence of temperature the venting depollution process of soils contaminated with volatile organic compounds

    OpenAIRE

    GABRIELA-ALINA BRUSTUREAN; JEAN CARRÉ; DELIA PERJU; TEODOR TODINCA

    2006-01-01

    Venting is one of the most used in situ remediation methods for unsaturated soils contaiminated with volatile organic compounds (VOC). The development of mathematical models and their validation by means of experimental results allowed the identification of the main parameters which influence the soil depollution process. The influence of temperature on the venting depollution process of soils polluted with volatile organic compounds was studied in this investigation. It was found that the de...

  9. Temperature-dependent accumulation mode particle and cloud nuclei concentrations from biogenic sources during WACS 2010

    Directory of Open Access Journals (Sweden)

    L. Ahlm

    2012-10-01

    Full Text Available Submicron aerosol particles collected simultaneously at the mountain peak (2182 m a.s.l. and at a forested mid-mountain site (1300 m a.s.l. on Whistler Mountain, British Columbia, Canada, during June and July 2010 were analyzed by Fourier transform infrared (FTIR spectroscopy for quantification of organic functional groups. Positive matrix factorization (PMF was applied to the FTIR spectra. Three PMF factors associated with (1 combustion, (2 biogenics, and (3 vegetative detritus, were identified at both sites. The biogenic factor was correlated with both temperature and several volatile organic compounds (VOCs. The combustion factor dominated the submicron particle mass during the beginning of the campaign when the temperature was lower and advection was from the Vancouver area, but as the temperature started to rise in early July the biogenic factor came to dominate as a result of increased emissions of biogenic VOCs and thereby increased formation of secondary organic aerosol (SOA. On average, the biogenic factor represented 69% and 49% of the submicron organic particle mass at Whistler Peak and at the mid-mountain site, respectively. The lower fraction at the mid-mountain site was a result of more vegetative detritus there, and also higher influence from local combustion sources.

    The biogenic factor was strongly correlated (r ~ 0.9 to number concentration of particles with diameter (Dp> 100 nm, whereas the combustion factor was better correlated to number concentration of particles with Dp < 100 nm (r~ 0.4. The number concentration of cloud condensation nuclei (CCN was correlated (r ~ 0.7 to the biogenic factor for supersaturations (S of 0.2% or higher, which indicates that particle condensational growth from biogenic vapors was an important factor in controlling the CCN concentration for clouds where S≥0.2%. Both the number concentration of particles with

  10. Temperature-dependent accumulation mode particle and cloud nuclei concentrations from biogenic sources during WACS 2010

    Directory of Open Access Journals (Sweden)

    L. Ahlm

    2013-03-01

    Full Text Available Submicron aerosol particles collected simultaneously at the mountain peak (2182 m a.s.l. and at a forested mid-mountain site (1300 m a.s.l. on Whistler Mountain, British Columbia, Canada, during June and July 2010 were analyzed by Fourier transform infrared (FTIR spectroscopy for quantification of organic functional groups. Positive matrix factorization (PMF was applied to the FTIR spectra. Three PMF factors associated with (1 combustion, (2 biogenics, and (3 vegetative detritus were identified at both sites. The biogenic factor was correlated with both temperature and several volatile organic compounds (VOCs. The combustion factor dominated the submicron particle mass during the beginning of the campaign, when the temperature was lower and advection was from the Vancouver area, but as the temperature started to rise in early July, the biogenic factor came to dominate as a result of increased emissions of biogenic VOCs, and thereby increased formation of secondary organic aerosol (SOA. On average, the biogenic factor represented 69% and 49% of the submicron organic particle mass at Whistler Peak and at the mid-mountain site, respectively. The lower fraction at the mid-mountain site was a result of more vegetative detritus there, and also higher influence from local combustion sources. The biogenic factor was strongly correlated (r~0.9 to number concentration of particles with diameter (Dp> 100 nm, whereas the combustion factor was better correlated to number concentration of particles with Dpr~0.4. The number concentration of cloud condensation nuclei (CCN was correlated (r~0.7 to the biogenic factor for supersaturations (S of 0.2% or higher, which indicates that particle condensational growth from biogenic vapors was an important factor in controlling the CCN concentration for clouds where S≥0.2%. Both the number concentration of particles with Dp>100 nm and numbers of CCN for S≥0.2% were correlated to temperature. Considering the biogenic

  11. Seasonal variation of volatile organic compounds exchange above a periurban Holm oak forest on the Mediterranean coast

    Science.gov (United States)

    Savi, Flavia; Juráň, Stanislav; Fares, Silvano

    2015-04-01

    Bi-directional exchanges of Volatile Organic Compounds (VOCs) were investigated on a Mediterranean Holm oak forest in Castelporziano presidential estate, a peri-urban forest near the coast of Tyrrhenian sea, 20 Km from Rome downtown, Italy. Two field campaigns were carried out in January and August 2014 to explore VOCs fluxes in two seasons with different climate conditions and physiological activity of plants. Concentration of 23 compounds was measured using a proton transfer reaction - mass spectrometer (PTR-MS). These included biogenic products (BVOC - isoprene, monoterpenes), oxygenated BVOC (OVOC - methanol, acetaldehyde acetone) and VOC of anthropogenic origin (AVOC - acetonitrile, benzene, hexenal, toluene, xylenes). Each half-hour, we switched between measurement at high frequency above the canopy and sampling through a 5-levels gradient from soil to above the canopy. We used the eddy covariance technique to calculate fluxes above the canopy, while gradient measurements were used to estimate in-canopy source and sink distribution by applying an Inverse Lagrangian Transport Model (Karl et al., 2004, J.Geophys.Res). Ozone and NOx concentrations were also measured to better correlate VOCs exchanges with this important secondary pollutant. Low temperatures lead to almost negligible BVOC fluxes during Winter. Summer fluxes were largely represented by BVOC (mainly monoterpenes). The highest fluxes (up to 2.4 nmol m-2 s-1) were recorded in the central hour of the day in response to high light and temperature. Oxygenated compounds (methanol and acetone) showed different behaviour during the two seasons: in Winter a net release of these compounds was observed, while in Summer the canopy acted as a sink for OVOC except for the hottest hours when we observed significant emissions. OVOC source-sink distribution analysis helped identifying the canopy layers which mostly contributed to VOCs exchanges, thus underlining the importance of forest canopies in VOCs exchanges

  12. The role of low-volatility organic compounds in initial particle growth in the atmosphere.

    Science.gov (United States)

    Tröstl, Jasmin; Chuang, Wayne K; Gordon, Hamish; Heinritzi, Martin; Yan, Chao; Molteni, Ugo; Ahlm, Lars; Frege, Carla; Bianchi, Federico; Wagner, Robert; Simon, Mario; Lehtipalo, Katrianne; Williamson, Christina; Craven, Jill S; Duplissy, Jonathan; Adamov, Alexey; Almeida, Joao; Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Brilke, Sophia; Dias, Antònio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Gysel, Martin; Hansel, Armin; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lawler, Michael; Leiminger, Markus; Mathot, Serge; Möhler, Ottmar; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Piel, Felix M; Miettinen, Pasi; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Sipilä, Mikko; Smith, James N; Steiner, Gerhard; Tomè, Antònio; Virtanen, Annele; Wagner, Andrea C; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Carslaw, Kenneth S; Curtius, Joachim; Dommen, Josef; Kirkby, Jasper; Kulmala, Markku; Riipinen, Ilona; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2016-05-26

    About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10

  13. Fungal colonization of air filters and insulation in a multi-story office building: production of volatile organics

    Science.gov (United States)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Mishra, S. K.; Pierson, D. L.

    1997-01-01

    Secondary air filters in the air-handling units on four floors of a multi-story office building with a history of fungal colonization of insulation within the air distribution system were examined for the presence of growing fungi and production of volatile organic compounds. Fungal mycelium and conidia of Cladosporium and Penicillium spp. were observed on insulation from all floors and both sides of the air filters from one floor. Lower concentrations of volatile organics were released from air filter medium colonized with fungi as compared with noncolonized filter medium. However, the volatiles from the colonized filter medium included fungal metabolites such as acetone and a carbonyl sulfide-like compound that were not released from noncolonized filter medium. The growth of fungi in air distribution systems may affect the content of volatile organics in indoor air.

  14. Volatile organic compounds in the western Mediterranean basin: urban and rural winter measurements during the DAURE campaign

    Directory of Open Access Journals (Sweden)

    R. Seco

    2013-04-01

    Full Text Available Atmospheric volatile organic compounds (VOCs have key environmental and biological roles, but little is known about the daily VOC mixing ratios in Mediterranean urban and natural environments. We measured VOC mixing ratios concurrently at an urban and a rural site during the winter DAURE campaign in the northeastern Iberian Peninsula, by means of PTR-MS at both locations: a PTR-Quad-MS at the urban site and a PTR-ToF-MS at the rural site. All VOC mixing ratios measured were higher at the urban site (e.g. acetaldehyde, isoprene, benzene, and toluene with averages up to 1.68, 0.31, 0.58 and 2.71 ppbv, respectively, with the exception of some short-chain oxygenated VOCs such as acetone (with similar averages of 0.7–1.6 ppbv at both sites. The average diurnal pattern also differed between the sites. Most of the VOCs at the urban location showed their highest mixing ratios in the morning and evening. These peaks coincided with traffic during rush hour, the main origin of most of the VOCs analyzed. Between these two peaks, the sea breeze transported the urban air inland, thus helping to lower the VOC loading at the urban site. At the rural site, most of the measured VOCs were advected by the midday sea breeze, yielding the highest daily VOC mixing ratios (e.g. acetaldehyde, isoprene, benzene, and toluene with averages up to 0.65, 0.07, 0.19, and 0.41 ppbv, respectively. Only biogenic monoterpenes showed a clear local origin at this site. In addition, the concentrations of fine particulate matter observed at both sites, together with the synoptic meteorological conditions and radio-sounding data, allowed the identification of different atmospheric scenarios that had a clear influence on the measured VOC mixing ratios. These results highlight the differences and relationships in VOC mixing ratios between nearby urban and rural areas in Mediterranean regions. Further research in other urban-rural areas is warranted to better understand the urban

  15. Volatile Organic Compound Emissions from Different Stages of Cananga odorata Flower Development

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Qin

    2014-06-01

    Full Text Available Headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS was used to identify the volatile organic compounds (VOCs of the different flower development stages of Cananga odorata for the evaluation of floral volatile polymorphism as a basis to determine the best time of harvest. Electronic nose results, coupled with discriminant factor analysis, suggested that emitted odors varied in different C. odorata flower development stages, including the bud, display-petal, initial-flowering, full-flowering, end-flowering, wilted-flower, and dried flower stages. The first two discriminant factors explained 97.52% of total system variance. Ninety-two compounds were detected over the flower life, and the mean Bray–Curtis similarity value was 52.45% among different flower development stages. A high level of volatile polymorphism was observed during flower development. The VOCs were largely grouped as hydrocarbons, esters, alcohols, aldehydes, phenols, acids, ketones, and ethers, and the main compound was β-caryophyllene (15.05%–33.30%. Other identified compounds were β-cubebene, D-germacrene, benzyl benzoate, and α-cubebene. Moreover, large numbers of VOCs were detected at intermediate times of flower development, and more hydrocarbons, esters, and alcohols were identified in the full-flowering stage. The full-flowering stage may be the most suitable period for C. odorata flower harvest.

  16. Volatile organic compound emissions from different stages of Cananga odorata flower development.

    Science.gov (United States)

    Qin, Xiao-Wei; Hao, Chao-Yun; He, Shu-Zhen; Wu, Gang; Tan, Le-He; Xu, Fei; Hu, Rong-Suo

    2014-01-01

    Headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to identify the volatile organic compounds (VOCs) of the different flower development stages of Cananga odorata for the evaluation of floral volatile polymorphism as a basis to determine the best time of harvest. Electronic nose results, coupled with discriminant factor analysis, suggested that emitted odors varied in different C. odorata flower development stages, including the bud, display-petal, initial-flowering, full-flowering, end-flowering, wilted-flower, and dried flower stages. The first two discriminant factors explained 97.52% of total system variance. Ninety-two compounds were detected over the flower life, and the mean Bray-Curtis similarity value was 52.45% among different flower development stages. A high level of volatile polymorphism was observed during flower development. The VOCs were largely grouped as hydrocarbons, esters, alcohols, aldehydes, phenols, acids, ketones, and ethers, and the main compound was β-caryophyllene (15.05%-33.30%). Other identified compounds were β-cubebene, D-germacrene, benzyl benzoate, and α-cubebene. Moreover, large numbers of VOCs were detected at intermediate times of flower development, and more hydrocarbons, esters, and alcohols were identified in the full-flowering stage. The full-flowering stage may be the most suitable period for C. odorata flower harvest. PMID:24979401

  17. Volatile organic compound concentrations and emission rates in new manufactured and site-built houses.

    Science.gov (United States)

    Hodgson, A T; Rudd, A F; Beal, D; Chandra, S

    2000-09-01

    Concentrations of 54 volatile organic compounds (VOCs) and ventilation rates were measured in four new manufactured houses over 2-9.5 months following installation and in seven new site-built houses 1-2 months after completion. The houses were in four projects located in hot-humid and mixed-humid climates. They were finished and operational, but unoccupied. Ventilation rates ranged from 0.14-0.78 h-1. Several of the site-built houses had ventilation rates below the ASHRAE recommended value. In both manufactured and site-built houses, the predominant airborne compounds were alpha-pinene, formaldehyde, hexanal, and acetic acid. Formaldehyde concentrations were below or near 50 ppb with a geometric mean value for all houses of 40 ppb. Similarities in the types of VOCs and in VOC concentrations indicated that indoor air quality in the houses was impacted by the same or similar sources. Major identified sources included plywood flooring, latex paint and sheet vinyl flooring. One site-built house was operated at ventilation rates of 0.14 and 0.32 h-1. VOC emission rates calculated at the two conditions agreed within +/- 10% for the most volatile compounds. Generally, the ratios of emission rates at the low and high ventilation rates decreased with decreasing compound volatility. Changes in VOC emission rates in the manufactured houses over 2-9.5 months after installation varied by compound. Only several compounds showed a consistent decrease in emission rate over this period. PMID:10979199

  18. Methodology for the detection of contamination by hydrocarbons and further soil sampling for volatile and semi-volatile organic enrichment in former petrol stations, SE Spain

    Directory of Open Access Journals (Sweden)

    Rosa María Rosales Aranda

    2012-01-01

    Full Text Available The optimal detection and quantification of contamination plumes in soil and groundwater by petroleum organic compounds, gasoline and diesel, is critical for the reclamation of hydrocarbons contaminated soil at petrol stations. Through this study it has been achieved a sampling stage optimization in these scenarios by means of the location of potential contamination areas before sampling with the application of the 2D electrical resistivity tomography method, a geophysical non destructive technique based on resistivity measurements in soils. After the detection of hydrocarbons contaminated areas, boreholes with continuous coring were performed in a petrol station located in Murcia Region (Spain. The drillholes reached depths down to 10 m and soil samples were taken from each meter of the drilling. The optimization in the soil samples handling and storage, for both volatile and semi-volatile organic compounds determinations, was achieved by designing a soil sampler to minimize volatilization losses and in order to avoid the manual contact with the environmental samples during the sampling. The preservation of soil samples was performed according to Europe regulations and US Environmental Protection Agency recommendations into two kinds of glass vials. Moreover, it has been taken into account the determination techniques to quantify the hydrocarbon pollution based on Gas Chromatography with different detectors and headspace technique to reach a liquid-gas equilibrium for volatile analyses.

  19. Fabrication of spray-printed organic non-volatile memory devices for low cost electronic applications

    International Nuclear Information System (INIS)

    Highlights: • PS:PCBM-based organic non-volatile memory devices was fabricated using spray printing. • The thickness of the film was controlled by adjusting the concentration of the PS:PCBM solutions. • The roughness of spray-printed films was poorer than that of the spin-coated film. • The minimum thickness of the printed film influenced the memory behavior more than the surface roughness. • The spray printed PS:PCBM showed excellent unipolar switching, reliability, retention, and endurance characteristics. - Abstract: We fabricated polystyrene (PS) and 6-phenyl-C61 butyric acid methyl ester (PCBM) based organic non-volatile memory devices using a spray printing technique. Due to the distinct operational properties of this technique, significant differences were observed in the macro- and microscopic features (e.g., the film quality and surface roughness) of the devices. The thickness of the film was successfully controlled by adjusting the concentration of the PS:PCBM solutions sprayed. Although the roughness of the spray-printed films was poorer than that of the spin-coated film, negligible differences were observed in the basic memory characteristics (e.g., the operation voltage range, turn on and off voltage, retention and endurance). In particular, the printing-based organic memory devices were successfully switched, as exhibited by the on/off ratio greater than two orders of magnitude at 0.3 V read voltage. The resistance state of all of the devices was maintained for more than 104 s, indicating their non-volatile characteristics

  20. Fabrication of spray-printed organic non-volatile memory devices for low cost electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Cha, An-Na [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101 Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do (Korea, Republic of); Professional Graduate School of Flexible and Printable Electronics and Polymer Materials Fusion Research Center, Chonbuk National University, 664-14, Deokjin-dong, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756 (Korea, Republic of); Ji, Yongsung [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101 Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do (Korea, Republic of); Lee, Sang-A [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101 Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do (Korea, Republic of); Department of Polymer-Nano Science and Technology, Chonbuk National University, 664-14 Duckjin-dong, Duckjin-gu, Jeonju 561-756 (Korea, Republic of); Noh, Yong-Young [Department of Energy and Materials Engineering, Dongguk University, 26 Pil-dong, 3-Ga, Jung-gu, Seoul 100-715 (Korea, Republic of); Na, Seok-In [Professional Graduate School of Flexible and Printable Electronics and Polymer Materials Fusion Research Center, Chonbuk National University, 664-14, Deokjin-dong, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756 (Korea, Republic of); Bae, Sukang; Lee, Sanghyun [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101 Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do (Korea, Republic of); Kim, Tae-Wook, E-mail: twkim@kist.re.kr [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101 Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do (Korea, Republic of)

    2015-01-15

    Highlights: • PS:PCBM-based organic non-volatile memory devices was fabricated using spray printing. • The thickness of the film was controlled by adjusting the concentration of the PS:PCBM solutions. • The roughness of spray-printed films was poorer than that of the spin-coated film. • The minimum thickness of the printed film influenced the memory behavior more than the surface roughness. • The spray printed PS:PCBM showed excellent unipolar switching, reliability, retention, and endurance characteristics. - Abstract: We fabricated polystyrene (PS) and 6-phenyl-C61 butyric acid methyl ester (PCBM) based organic non-volatile memory devices using a spray printing technique. Due to the distinct operational properties of this technique, significant differences were observed in the macro- and microscopic features (e.g., the film quality and surface roughness) of the devices. The thickness of the film was successfully controlled by adjusting the concentration of the PS:PCBM solutions sprayed. Although the roughness of the spray-printed films was poorer than that of the spin-coated film, negligible differences were observed in the basic memory characteristics (e.g., the operation voltage range, turn on and off voltage, retention and endurance). In particular, the printing-based organic memory devices were successfully switched, as exhibited by the on/off ratio greater than two orders of magnitude at 0.3 V read voltage. The resistance state of all of the devices was maintained for more than 10{sup 4} s, indicating their non-volatile characteristics.

  1. Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mercury pollution is a major environmental problem accompanying industrial activities. Most of the mercury released ends up and retained in the soil as complexes of the toxic ionic mercury (Hg2+), which then can be converted by microbes into the even more toxic methylmercury which tends to bioaccumulate. Mercury detoxification of the soil can also occur by microbes converting the ionic mercury into the least toxic metallic mercury (Hg0) form, which then evaporates. The remediation potential of transgenic plants carrying the MerA gene from E. Coli encoding mercuric ion reductase could be evaluated. A modified version of the gene, optimized for plant codon preferences (merApe9, Rugh et al. 1996), was introduced into tobacco by Agrobacterium-mediated leaf disk transformation. Transgenic seeds were resistant to HgCl2 at 50 μM, and some of them (10-20%) could germinate on media containing as much as 350 μM HgCl2, while the control plants were fully inhibited or died on 50μM HgCl2. The rate of elemental mercury evolution from Hg2+ (added as HgCl2) was 5-8 times higher for transgenic plants than the control. Mercury volatilization by isolated organs standardized for fresh weight was higher (up to 5 times) in the roots than in shoots or the leaves. The data suggest that it is the root system of the transgenic plants that volatilizes most of the reduced mercury (Hg0). It also suggests that much of the mercury need not enter the vascular system to be transported to the leaves for volatilization. Transgenic plants with the merApe9 gene may be used to mercury detoxification for environmental improvement in mercury-contaminated regions more efficiently than it had been predicted based on data on volatilization of whole plants via the upper parts only (Rugh et al. 1996).

  2. Assimilation efficiency in herbivorous aquatic organisms - the potential of the ratio method using 14C and biogenic silica as markers

    International Nuclear Information System (INIS)

    A method for measuring assimilation efficiencies based on the change in the Si: 14C ratio in food and feces is proposed. Since this indicator method uses biogenic silica as the inert substance, the method is restricted to aquatic herbivores that consume food containing it. The method has been demonstrated on adult female Calanus hyperboreus fed the diatom Thalassiosira anguste-lineata; assimilation efficiency decreases from 87.7 to 84.2% during a threefold increase in ingestion rate. The effect of errors in the estimate of Si:C ratios is slight when assimilation efficiency is high, but with decreasing values of assimilation efficiency, the sensitivity to errors in the estimates of silicon and carbon is increased

  3. Validation of a method for the analysis of volatile organic compounds in water

    OpenAIRE

    Karmacharya, Amresh Prasad

    2015-01-01

    Dissertação de mestrado, Qualidade em Análises, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015 Many of the volatile organic compounds (VOCs) which can be harmful to humans have their origin in petroleum products. The VOCs have been found in water sources and leakage from storage tank and accidental spills have been regarded as the main causes of contamination from VOCs. The main objective of this study was to validate detection method of some 15 VOCs by solid-phase micro...

  4. Literature review of stabilization/solidification of volatile organic compounds and the implications for Hanford grouts

    International Nuclear Information System (INIS)

    A literature review was conducted on the stabilization/solidification of volatile organic compounds (VOCs). Based on this literature, it is likely that the limestone-containing grout will not permanently immobilize VOCs and that no presently available additives can guarantee permanent immobilization. The Westinghouse hanford company grout may be fairly effective at retarding aqueous leaching of VOCs, and commercial additives can improve this performance. Significant VOC losses do occur during stabilization/solidification, and the high temperatures of the Westinghouse Hanford Company waste and grout should exacerbate this problem. In fact, these high temperatures raise doubts about the presence of VOCs in the double-shell tanks supernates

  5. Radon, volatile organic compounds and water chemistry in springs around Popocatepetl volcano, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, N.; Pena, P.; Lopez, M.B.E.; Cisniega, G. [Inst. Nacional de Investigaciones Nucleares, Mexico D.F. (Mexico); Valdes, C.; Armienta, M.A.; Mena, M. [Inst. de Geofisica, UNAM, Ciudad Univ., Mexico D.F. (Mexico)

    2003-07-01

    Popocatepetl volcano is a high-risk active volcano in Central Mexico where the highest population density in the country is settled. Radon in the soil and groundwater together with water chemistry from samples of nearby springs is analysed as a function of the 2002-2003 volcanic activity. Soil radon indicated fluctuations related both to the meteorological and sporadic explosive events. Groundwater radon showed essentially differences in concentration due to the specific characteristics of the studied springs. Water chemistry showed also stability along the monitoring period indicating differences between springs. No anthropogenic pollution from volatile organic compounds was observed. (orig.)

  6. Impact of air pressure on volatile organic compound emissions from a carpet

    Institute of Scientific and Technical Information of China (English)

    高鹏; 邓琴琴; LIN; Chao-hsin; 杨旭东

    2009-01-01

    The measurement of volatile organic compound (VOC) emissions from materials is normally conducted under standard environmental conditions, i.e., (23±1) ℃ temperature, (50±5)% relative humidity, and 0.1 MPa pressure. In order to define VOC emissions in non-standard environmental conditions, it is necessary to study the impact of key environmental parameters on emissions. This paper evaluates the impact of air pressure on VOC emissions from an aircraft carpet. The correlation between air pressure and VOC diffusion coefficient is derived, and the emission model is applied to studying the VOC emissions under pressure conditions of less than 0.1 MPa.

  7. Extended Research on Detection of Deception Using Volatile Organic Compound (VOC) Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Center for Human Reliability Studies

    2006-06-01

    A system that captures and analyzes volatile organic compound (VOC) emissions from skin surfaces may offer a viable alternative method to the polygraph instrument currently in use for detecting deception in U.S. government settings. Like the involuntary autonomic central nervous system response data gathered during polygraph testing, VOC emissions from the skin may provide data that can be used to detect stress caused by deception. Detecting VOCs, then, may present a noninvasive, non-intrusive method for observing, recording, and quantifying evidence of stress or emotional change.

  8. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    Science.gov (United States)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  9. Volatile organic compounds over Eastern Himalaya, India: temporal variation and source characterization using Positive Matrix Factorization

    OpenAIRE

    Sarkar, C.; Chatterjee, A.; D. Majumdar; S. K. Ghosh; Srivastava, A.; Raha, S.

    2014-01-01

    A first ever study on the characterization of volatile organic compounds (VOCs) has been made over a Himalayan high altitude station in India. A total of 18 VOCs (mono aromatics-BTEX (benzene, toluene, ethylbenzene, xylene), non-BTEX substituted aromatics and halocarbon) have been measured over Darjeeling (27.01° N, 88.15° E, 2200 m a.s.l.) in the eastern Himalaya in India during the period of July 2011–June 2012. The annual average concentration of the sum of 18 tar...

  10. Development of a Surface Acoustic Wave Sensor for In-Situ Monitoring of Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Jerome L. Wright

    2003-07-01

    Full Text Available This paper describes the development of a surface-acoustic-wave (SAW sensor that is designed to be operated continuously and in situ to detect volatile organic compounds. A ruggedized stainless-steel package that encases the SAW device and integrated circuit board allows the sensor to be deployed in a variety of media including air, soil, and even water. Polymers were optimized and chosen based on their response to chlorinated aliphatic hydrocarbons (e.g., trichloroethylene, which are common groundwater contaminants. Initial testing indicates that a running-average data-logging algorithm can reduce the noise and increase the sensitivity of the in-situ sensor.

  11. [Source emission characteristics and impact factors of volatile halogenated organic compounds from wastewater treatment plant].

    Science.gov (United States)

    He, Jie; Wang, Bo-Guang; Liu, Shu-Le; Zhao, De-Jun; Tang, Xiao-Dong; Zou, Yu

    2011-12-01

    A low enrichment method of using Tenax as absorbent and liquid nitrogen as refrigerant has been established to sample the volatile halogenated organic compounds in Guangzhou Liede municipal wastewater treatment plant as well as its ambient air. The composition and concentration of target halogenated hydrocarbons were analyzed by combined thermal desorption/GC-MS to explore its sources profile and impact factors. The result showed that 19 halogenated organic compounds were detected, including 11 halogenated alkanets, 3 halogenated alkenes, 3 halogenated aromatic hydrocarbons and 2 haloesters, with their total concentrations ranged from 34.91 microg x m(-3) to 127.74 microg x m(-3) and mean concentrations ranged from n.d. to 33.39 microg x m(-3). Main pollutants of the studied plant were CH2Cl2, CHCl3, CFC-12, C2H4Cl2, CFC-11, C2HCl3 and C2Cl4, they came from the wastewater by volatilization. Among the six processing units, the dehydration room showed the highest level of halogenated organic compounds, followed by pumping station, while the sludge thickener was the lowest. The emissions from pumping station, aeration tank and biochemical pool were significantly affected by temperature and humidity of environment. PMID:22468521

  12. Strong Fluorescent Smart Organogel as a Dual Sensing Material for Volatile Acid and Organic Amine Vapors.

    Science.gov (United States)

    Xue, Pengchong; Yao, Boqi; Wang, Panpan; Gong, Peng; Zhang, Zhenqi; Lu, Ran

    2015-11-23

    An L-phenylalanine derivative (C12PhBPCP) consisting of a strong emission fluorophore with benzoxazole and cyano groups is designed and synthesized to realize dual responses to volatile acid and organic amine vapors. The photophysical properties and self-assembly of the said derivative in the gel phase are also studied. C12PhBPCP can gelate organic solvents and self-assemble into 1 D nanofibers in the gels. UV/Vis absorption spectral results show H-aggregate formation during gelation, which indicates strong exciton coupling between fluorophores. Both wet gel and xerogel emit strong green fluorescence because the cyano group suppresses fluorescence quenching in the self-assemblies. Moreover, the xerogel film with strong green fluorescence can be used as a dual chemosensor for quantitative detection of volatile acid and organic amine vapors with fast response times and low detection limits owing to its large surface area and amplified fluorescence quenching. The detection limits are 796 ppt and 25 ppb for gaseous aniline and trifluoroacetic acid (TFA), respectively.

  13. Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect.

    Science.gov (United States)

    Huang, Yu; Ho, Steven Sai Hang; Lu, Yanfeng; Niu, Ruiyuan; Xu, Lifeng; Cao, Junji; Lee, Shuncheng

    2016-01-01

    Volatile organic compounds (VOCs) are ubiquitous in indoor environments. Inhalation of VOCs can cause irritation, difficulty breathing, and nausea, and damage the central nervous system as well as other organs. Formaldehyde is a particularly important VOC as it is even a carcinogen. Removal of VOCs is thus critical to control indoor air quality (IAQ). Photocatalytic oxidation has demonstrated feasibility to remove toxic VOCs and formaldehyde from indoor environments. The technique is highly-chemical stable, inexpensive, non-toxic, and capable of removing a wide variety of organics under light irradiation. In this paper, we review and summarize the traditional air cleaning methods and current photocatalytic oxidation approaches in both of VOCs and formaldehyde degradation in indoor environments. Influencing factors such as temperature, relative humidity, deactivation and reactivations of the photocatalyst are discussed. Aspects of the application of the photocatalytic technique to improve the IAQ are suggested. PMID:26742024

  14. Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect

    Directory of Open Access Journals (Sweden)

    Yu Huang

    2016-01-01

    Full Text Available Volatile organic compounds (VOCs are ubiquitous in indoor environments. Inhalation of VOCs can cause irritation, difficulty breathing, and nausea, and damage the central nervous system as well as other organs. Formaldehyde is a particularly important VOC as it is even a carcinogen. Removal of VOCs is thus critical to control indoor air quality (IAQ. Photocatalytic oxidation has demonstrated feasibility to remove toxic VOCs and formaldehyde from indoor environments. The technique is highly-chemical stable, inexpensive, non-toxic, and capable of removing a wide variety of organics under light irradiation. In this paper, we review and summarize the traditional air cleaning methods and current photocatalytic oxidation approaches in both of VOCs and formaldehyde degradation in indoor environments. Influencing factors such as temperature, relative humidity, deactivation and reactivations of the photocatalyst are discussed. Aspects of the application of the photocatalytic technique to improve the IAQ are suggested.

  15. The role of low-volatility organic compounds in initial particle growth in the atmosphere

    CERN Document Server

    Tröstl, Jasmin; Gordon, Hamish; Heinritzi, Martin; Yan, Chao; Molteni, Ugo; Ahlm, Lars; Frege, Carla; Bianchi, Federico; Wagner, Robert; Simon, Mario; Lehtipalo, Katrianne; Williamson, Christina; Craven, Jill S; Duplissy, Jonathan; Adamov, Alexey; Almeida, Joao; Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Brilke, Sophia; Dias, Antònio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Gysel, Martin; Hansel, Armin; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lawler, Michael; Leiminger, Markus; Mathot, Serge; Möhler, Ottmar; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Piel, Felix M; Miettinen, Pasi; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Sipilä, Mikko; Smith, James; Steiner, Gerhard; Tomè, Antònio; Virtanen, Annele; Wagner, Andrea C; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Carslaw, Kenneth S; Curtius, Joachim; Dommen, Josef; Kirkby, Jasper; Kulmala, Markku; Riipinen, Ilona; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2016-01-01

    About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelv...

  16. An Examination of the Chemistry of Peroxycarboxylic Nitric Anhydrides and Related Volatile Organic Compounds During Texas Air Quality Study 2000 Using Ground-Based Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, James M.; Jobson, B Tom T.; Kuster, W. C.; Goldan, P. D.; Murphy, Paul; Williams, Eric; Frost, G. J.; Riemer, D.; Apel, Eric; Stroud, C.; Wiedinmyer, Christine; Fehsenfeld, Fred C.

    2003-08-19

    Measurements of peroxycarboxylic nitric anhydrides (PANs) along with related volatile organic compounds (VOCs) were made at the La Porte super site during the TexAQS 2000 Houston study. The PAN mixing ratios ranged up to 6.5 ppbv and were broadly correlated with O3, characteristic of a highly polluted urban environment. The anthropogenic PAN homologue concentrations were generally consistent with those found in other urban environments; peroxypropionic nitric anhydride (PPN) averaged 15%, and peroxyisobutyric nitric anhydride (PiBN) averaged 3% of PAN,. Some periods were noted where local petrochemical sources resulted in anomalous PANs chemistry. This effect was especially noticeable in the case of peroxyacrylic nitric anhydride (APAN) where local sources of 1,3-butadiene and acrolein resulted in APAN as high as 30% of PAN. Peroxymethacrylic nitric anhydride (MPAN) was a fairly minor constituent of the PANs except for two periods on 4 and 5 September when air masses from high biogenic hydrocarbons (BHC) areas were observed. BHC chemistry was not a factor in the highest ozone pollution episodes in Houston but may have an impact on daily average ozone levels in some circumstances.

  17. Observations of diurnal to weekly variations of monoterpene-dominated fluxes of volatile organic compounds from mediterranean forests: implications for regional modeling.

    Science.gov (United States)

    Fares, Silvano; Schnitzhofer, Ralf; Jiang, Xiaoyan; Guenther, Alex; Hansel, Armin; Loreto, Francesco

    2013-10-01

    The Estate of Castelporziano (Rome, Italy) hosts many ecosystems representative of Mediterranean vegetation, especially holm oak and pine forests and dune vegetation. In this work, basal emission factors (BEFs) of biogenic volatile organic compounds (BVOCs) obtained by Eddy Covariance in a field campaign using a proton transfer reaction-time-of-flight-mass spectrometer (PTR-TOF-MS) were compared to BEFs reported in previous studies that could not measure fluxes in real-time. Globally, broadleaf forests are dominated by isoprene emissions, but these Mediterranean ecosystems are dominated by strong monoterpene emitters, as shown by the new BEFs. The original and new BEFs were used to parametrize the model of emissions of gases and aerosols from nature (MEGAN v2.1), and model outputs were compared with measured fluxes. Results showed good agreement between modeled and measured fluxes when a model was used to predict radiative transfer and energy balance across the canopy. We then evaluated whether changes in BVOC emissions can affect the chemistry of the atmosphere and climate at a regional level. MEGAN was run together with the land surface model (community land model, CLM v4.0) of the community earth system model (CESM v1.0). Results highlighted that tropospheric ozone concentration and air temperature predicted from the model are sensitive to the magnitude of BVOC emissions, thus demonstrating the importance of adopting the proper BEF values for model parametrization. PMID:24004275

  18. Observations of Diurnal to Weekly Variations of Monoterpene-Dominated Fluxes of Volatile Organic Compounds from Mediterranean Forests: Implications for Regional Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fares, Silvano; Schnitzhofer, Ralf; Jiang, Xiaoyan; Guenther, Alex; Hansel, Armin; Loreto, Francesco

    2013-10-01

    The Estate of Castelporziano (Rome, Italy) hosts many ecosystems representative of Mediterranean vegetation, especially holm oak and pine forests and dune vegetation. In this work, basal emission factors (BEFs) of biogenic volatile organic compounds (BVOCs) obtained by Eddy Covariance in a field campaign using a proton transfer reaction–time-of-flight–mass spectrometer (PTR-TOF-MS) were compared to BEFs reported in previous studies that could not measure fluxes in real-time. Globally, broadleaf forests are dominated by isoprene emissions, but these Mediterranean ecosystems are dominated by strong monoterpene emitters, as shown by the new BEFs. The original and new BEFs were used to parametrize the model of emissions of gases and aerosols from nature (MEGAN v2.1), and model outputs were compared with measured fluxes. Results showed good agreement between modeled and measured fluxes when a model was used to predict radiative transfer and energy balance across the canopy. We then evaluated whether changes in BVOC emissions can affect the chemistry of the atmosphere and climate at a regional level. MEGAN was run together with the land surface model (community land model, CLM v4.0) of the community earth system model (CESM v1.0). Finally, results highlighted that tropospheric ozone concentration and air temperature predicted from the model are sensitive to the magnitude of BVOC emissions, thus demonstrating the importance of adopting the proper BEF values for model parametrization.

  19. Biogenic influence on cloud microphysics over the global ocean

    Directory of Open Access Journals (Sweden)

    A. Lana

    2012-02-01

    Full Text Available Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth's radiation budget. Aerosol-cloud interactions have been intensively studied in polluted air, but the possibility that the marine biosphere plays a role in regulating cloud brightness in the pristine oceanic atmosphere remains largely unexplored. We used 9 yr of global satellite data and ocean climatologies to derive parameterizations of (a production fluxes of sulfur aerosols formed by the oxidation of the biogenic gas dimethylsulfide emitted from the sea surface; (b production fluxes of secondary organic aerosols from biogenic organic volatiles; (c emission fluxes of biogenic primary organic aerosols ejected by wind action on sea surface; and (d emission fluxes of sea salt also lifted by the wind upon bubble bursting. Series of global weekly estimates of these fluxes were correlated to series of cloud droplet effective radius data derived from satellite (MODIS. Similar analyses were conducted in more detail at 6 locations spread among polluted and clean regions of the oceanic atmosphere. The outcome of the statistical analysis was that negative correlation was common at mid and high latitude for sulfur and organic secondary aerosols, indicating both might be important in seeding cloud droplet activation. Conversely, primary aerosols (organic and sea salt showed more variable, non-significant or positive correlations, indicating that, despite contributing to large shares of the marine aerosol mass, they are not major drivers of the variability of cloud microphysics. Uncertainties and synergisms are discussed, and recommendations of research needs are given.

  20. Simultaneous Microwave Extraction and Separation of Volatile and Non-Volatile Organic Compounds of Boldo Leaves. From Lab to Industrial Scale

    Directory of Open Access Journals (Sweden)

    Loïc Petigny

    2014-04-01

    Full Text Available Microwave extraction and separation has been used to increase the concentration of the extract compared to the conventional method with the same solid/liquid ratio, reducing extraction time and separate at the same time Volatile Organic Compounds (VOC from non-Volatile Organic Compounds (NVOC of boldo leaves. As preliminary study, a response surface method has been used to optimize the extraction of soluble material and the separation of VOC from the plant in laboratory scale. The results from the statistical analysis revealed that the optimized conditions were: microwave power 200 W, extraction time 56 min and solid liquid ratio of 7.5% of plants in water. Lab scale optimized microwave method is compared to conventional distillation, and requires a power/mass ratio of 0.4 W/g of water engaged. This power/mass ratio is kept in order to upscale from lab to pilot plant.

  1. Headspace, Volatile and Semi-Volatile Organic Compounds Diversity and Radical Scavenging Activity of Ultrasonic Solvent Extracts from Amorpha fruticosa Honey Samples

    OpenAIRE

    Mirko Gugić; Janja Kezić; Zvonimir Marijanović; Igor Jerković

    2009-01-01

    Volatile organic compounds of Amorpha fruticosa honey samples were isolated by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE), followed by gas chromatography and mass spectrometry analyses (GC, GC-MS), in order to obtain complementary data for overall characterization of the honey aroma. The headspace of the honey was dominated by 2-phenylethanol (38.3–58.4%), while other major compounds were trans- and cis-linalool oxides, benzaldehyde and benzyl alco...

  2. Microbial communities related to volatile organic compound emission in automobile air conditioning units.

    Science.gov (United States)

    Diekmann, Nina; Burghartz, Melanie; Remus, Lars; Kaufholz, Anna-Lena; Nawrath, Thorben; Rohde, Manfred; Schulz, Stefan; Roselius, Louisa; Schaper, Jörg; Mamber, Oliver; Jahn, Dieter; Jahn, Martina

    2013-10-01

    During operation of mobile air conditioning (MAC) systems in automobiles, malodours can occur. We studied the microbial communities found on contaminated heat exchanger fins of 45 evaporators from car MAC systems which were operated in seven different regions of the world and identified corresponding volatile organic compounds. Collected biofilms were examined by scanning electron microscopy and fluorescent in situ hybridization. The detected bacteria were loosely attached to the metal surface. Further analyses of the bacteria using PCR-based single-strand conformation polymorphism and sequencing of isolated 16S rRNA gene fragments identified highly divergent microbial communities with multiple members of the Alphaproteobacteriales, Methylobacteria were the prevalent bacteria. In addition, Sphingomonadales, Burkholderiales, Bacillales, Alcanivorax spp. and Stenotrophomonas spp. were found among many others depending on the location the evaporators were operated. Interestingly, typical pathogenic bacteria related to air conditioning systems including Legionella spp. were not found. In order to determine the nature of the chemical compounds produced by the bacteria, the volatile organic compounds were examined by closed loop stripping analysis and identified by combined gas chromatography/mass spectrometry. Sulphur compounds, i.e. di-, tri- and multiple sulphides, acetylthiazole, aromatic compounds and diverse substituted pyrazines were detected. Mathematical clustering of the determined microbial community structures against their origin identified a European/American/Arabic cluster versus two mainly tropical Asian clusters. Interestingly, clustering of the determined volatiles against the origin of the corresponding MAC revealed a highly similar pattern. A close relationship of microbial community structure and resulting malodours to the climate and air quality at the location of MAC operation was concluded.

  3. Chemical characterisation of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes of biogenic secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    Y. Gómez-González

    2012-01-01

    Full Text Available Measurements of organic marker compounds and inorganic species were performed on PM2.5 aerosols from a Belgian forest site that is severely impacted by urban pollution ("De Inslag", Brasschaat, Belgium during a 2007 summer period within the framework of the "Formation mechanisms, marker compounds, and source apportionment for biogenic atmospheric aerosols (BIOSOL" project. The measured organic species included (i low-molecular weight (MW dicarboxylic acids (LMW DCAs, (ii methanesulfonate (MSA, (iii terpenoic acids originating from the oxidation of α-pinene, β-pinene, d-limonene and Δ3-carene, and (iv organosulfates related to secondary organic aerosol from the oxidation of isoprene and α-pinene. The organic tracers explained, on average, 5.3 % of the organic carbon (OC, of which 0.7 % was due to MSA, 3.4 % to LMW DCAs, 0.6 % to organosulfates, and 0.6 % to terpenoic acids. The highest atmospheric concentrations of most species were observed during the first five days of the campaign, which were characterised by maximum day-time temperatures >22 °C. Most of the terpenoic acids and the organosulfates peaked during day-time, consistent with their local photochemical origin. High concentrations of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA and low concentrations of cis-pinonic acid were noted during the first five days of the campaign, indicative of an aged biogenic aerosol. Several correlations between organic species were very high (r>0.85, high (0.7<r<0.85, or substantial (0.5<r<0.7, suggesting that they are generated through similar formation pathways. Substantial correlations with temperature were found for OC, water-soluble OC, MBTCA, and several other organic species. MBTCA and terebic acid were highly correlated with the temperature (r>0.7 and showed an Arrhenius-type relationship, consistent with their formation through OH radical chemistry.

  4. Seasonal variations of stable carbon isotopic ratios and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest

    Directory of Open Access Journals (Sweden)

    Y. Miyazaki

    2011-11-01

    Full Text Available To investigate the seasonal changes in biogenic water-soluble organic carbon (WSOC aerosols in a boreal forest, aerosol samples were collected continuously in the canopy of a~deciduous forest in Northern Japan during 2009–2010. Stable carbon isotopic ratios of WSOC (δ13CWSOC in aerosols exhibited a distinct seasonal cycle, with lower values from June through September (−25.5 ± 0.5‰. This cycle follows the net CO2 exchange between the forest ecosystem and the atmosphere, indicating that δ13CWSOC likely reflects the biological activity at the forest site. WSOC concentrations showed the highest values in early summer and autumn. Positive matrix factorization (PMF analysis indicated that the factor in which biogenic secondary organic aerosols (BSOAs dominated accounted for ~ 40% of the highest concentrations of WSOC, where BSOAs mostly consisted of α-/β-pinene SOA. In addition, primary biological aerosol particles (PBAPs made similar contributions (~ 57% to the WSOC near the canopy floor in early summer. This finding indicates that the production of both primary and secondary WSOC aerosols is important during the growing season in a deciduous forest. The methanesulfonic acid (MSA maximum was also found in early summer and had a distinct vertical gradient with larger concentrations near the canopy floor. Together with the similar vertical gradients found for WSOC and δ13CWSOCas well as the α-/β-pinene SOA tracers, our results indicate that the forest floor, including ground vegetation and soil, acts as a significant source of the WSOC within a~forest canopy at the study site.

  5. Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest

    Directory of Open Access Journals (Sweden)

    Y. Miyazaki

    2012-02-01

    Full Text Available To investigate the seasonal changes in biogenic water-soluble organic carbon (WSOC aerosols in a boreal forest, aerosol samples were collected continuously in the canopy of a deciduous forest in northern Japan during 2009–2010. Stable carbon isotopic composition of WSOC (δ13CWSOC in total suspended particulate matter (TSP exhibited a distinct seasonal cycle, with lower values from June through September (−25.5±0.5 ‰. This cycle follows the net CO2 exchange between the forest ecosystem and the atmosphere, indicating that δ13CWSOC likely reflects the biological activity at the forest site. WSOC concentrations showed the highest values in early summer and autumn. Positive matrix factorization (PMF analysis indicated that the factor in which biogenic secondary organic aerosols (BSOAs dominated accounted for ~40 % of the highest concentrations of WSOC, where BSOAs mostly consisted of α-/β-pinene SOA. In addition, primary biological aerosol particles (PBAPs made similar contributions (~57 % to the WSOC near the forest floor in early summer. This finding indicates that the production of both primary and secondary WSOC aerosols is important during the growing season in a deciduous forest. The methanesulfonic acid (MSA maximum was also found in early summer and had a distinct vertical gradient with larger concentrations near the forest floor. Together with the similar vertical gradients found for WSOC and δ13CWSOC as well as the α-/β-pinene SOA tracers, our results indicate that the forest floor, including ground vegetation and soil, acts as a significant source of WSOC in TSP within a forest canopy at the study site.

  6. Determination of fine particulate semi-volatile organic material at three eastern U.S. sampling sites.

    Science.gov (United States)

    Warner, K S; Eatough, D J; Stockburger, L

    2001-09-01

    Correct assessment of fine particulate carbonaceous material as a function of particle size is, in part, dependent on the determination of semi-volatile compounds, which can be lost from particles during sampling. This study gives results obtained for the collection of fine particulate carbonaceous material at three eastern U.S. sampling sites [Philadelphia, PA; Shenandoah National Park, VA; and Research Triangle Park (RTP), NC] using diffusion denuder technology. The diffusion denuder samplers allow for the determination of fine particulate organic material with no artifacts, due to the loss of semi-volatile organic particulate compounds, or collection of gas-phase organic compounds by the quartz filter during sampling. The results show that an average of 41, 43, and 59% of fine particulate organic material was lost as volatilized semi-volatile organic material during collection of particles on a filter at Philadelphia, RTP, and Shenandoah, respectively. The particle size distribution of carbonaceous material retained by a filter and lost from a filter during sampling was obtained for the samples collected at Philadelphia and Shenandoah. The carbonaceous material retained by the particles during sampling was found predominantly in particles smaller than 0.4 microm in aerodynamic diameter. In contrast, the semi-volatile organic material lost from the particles during sampling had a mass median diameter of approximately 0.5 microm.

  7. Car indoor air pollution by volatile organic compounds and aldehydes in Japan

    Directory of Open Access Journals (Sweden)

    Kouichi Tatsu

    2016-06-01

    Full Text Available Fifty-five organic substances including volatile organic compounds (VOCs and aldehydes present in indoor air were measured from 24 car cabins in Japan. A screening-level risk assessment was also performed. Acetaldehyde (3.81–36.0 μg/m3, formaldehyde (3.26–26.7 μg/m3, n-tetradecane (below the method quantification limit (organic compounds originated from the car interior materials. Total volatile organic compound (TVOC concentrations in 14 car cabins (58% of all car cabins exceeded the advisable values established by the Ministry of Health, Labour and Welfare of Japan (400 μg/m3. The highest TVOC concentration (1136 μg/m3 was found in a new car (only one month since its purchase date. Nevertheless, TVOC concentrations exceeded the advisable value even for cars purchased over 10 years ago. Hazard quotients (HQs for formaldehyde obtained using measured median and highest concentrations in both exposure scenarios for occupational use (residential time in a car cabin was assumed to be 8 h were higher than that expected, a threshold indicative of potential adverse effects. Under the same exposure scenarios, HQ values for all other organic compounds remained below this threshold.

  8. A Terpene Synthase Is Involved in the Synthesis of the Volatile Organic Compound Sodorifen of Serratia plymuthica 4Rx13

    OpenAIRE

    Domik, Dajana; Thürmer, Andrea; Weise, Teresa; Brandt, Wolfgang; Daniel, Rolf; Piechulla, Birgit

    2016-01-01

    Bacteria release a plethora of volatile organic compounds, including compounds with extraordinary structures. Sodorifen (IUPAC name: 1,2,4,5,6,7,8-heptamethyl-3-methylenebicyclo[3.2.1]oct-6-ene) is a recently identified and unusual volatile hydrocarbon that is emitted by the rhizobacterium Serratia plymuthica 4R×13. Sodorifen comprises a bicyclic ring structure solely consisting of carbon and hydrogen atoms, where every carbon atom of the skeleton is substituted with either a methyl or a meth...

  9. A terpene synthase is involved in the synthesis of the volatile organic compound sodorifen of Serratia plymuthica 4Rx13

    OpenAIRE

    Dajana eDomik; Andrea eThürmer; Teresa eWeise; Wolfgang eBrandt; Rolf eDaniel; Birgit ePiechulla

    2016-01-01

    Bacteria release a plethora of volatile organic compounds (VOCs), including compounds with extraordinary structures. Sodorifen (IUPAC name: 1,2,4,5,6,7,8-heptamethyl-3-methylenebicyclo[3.2.1]oct-6-ene) is a recently identified and unusual volatile hydrocarbon that is emitted by the rhizobacterium Serratia plymuthica 4Rx13. Sodorifen comprises a bicyclic ring structure solely consisting of carbon and hydrogen atoms, where every carbon atom of the skeleton is substituted with either a methyl or...

  10. The impact of plants on the reduction of volatile organic compounds in a small space.

    Science.gov (United States)

    Song, Jeong-Eun; Kim, Yong-Shik; Sohn, Jang-Yeul

    2007-11-01

    This study aims at examining the reduction of indoor air contaminants by plants placed in an indoor space. Field measurements were performed using Aglaonema brevispathum, Pachira aquatica, and Ficus benjamiana, which were verified as air-purifying plants by NASA. Three conditions for the amount of plants and positions were used in two separate rooms whose dimensions are identical. The concentration of Volatile Organic Compounds (VOCs) was monitored three hours after the plants were placed and three days after the plants were placed. The variations of concentration of Benzene, Toluene, Etylbenzene, and Xylene (BTEX), as well as Formaldehyde, which are all known as the major elements of Volatile Organic Compounds were monitored. The amount of reduction in concentration of Toluene and Formaldehyde was monitored 3 hours and 3 days after the plants were placed in the space. The reduction in the concentration of Benzene, Toluene, Etylbenzene, Xylene, and Formaldehyde was significantly greater when plants were present. When plants were placed near a window, the reduction of concentration was greater. The more plants were used, the more a reduction of indoor air contaminants occurred. The effect of reducing the concentration of air contaminants increased when the amount of plants increased, and when the plants were placed in sunny area. The concentration of Toluene was reduced by 45.6 microg/m(3) when 10% of the model space was occupied by Aglaonema brevispathum.

  11. Graphene-coated quartz crystal microbalance for detection of volatile organic compounds at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Quang, Vu Van; Hung, Vu Ngoc [International Training Institute for Materials Science, Hanoi University of Science and Technology, No. 1, Dai Co Viet Road, Hai Ba Trung, Hanoi (Viet Nam); Tuan, Le Anh; Phan, Vu Ngoc [Advanced Institute of Science and Technology, Hanoi University of Science and Technology, No. 1, Dai Co Viet Road, Hai Ba Trung, Hanoi (Viet Nam); Huy, Tran Quang [Laboratory of Ultrastructure and Bionanotechnology, National Institute of Hygiene of Epidemiology, No. 1, Yersin Street, Hai Ba Trung, Hanoi (Viet Nam); Quy, Nguyen Van, E-mail: quy@itims.edu.vn [International Training Institute for Materials Science, Hanoi University of Science and Technology, No. 1, Dai Co Viet Road, Hai Ba Trung, Hanoi (Viet Nam)

    2014-10-01

    The detection of volatile organic compounds (VOCs) at room temperature with rapid response and recovery is important for early explosive alarm. Herein, we demonstrate significantly enhanced VOC-sensing properties of quartz crystal microbalance (QCM) coated with monolayer graphene film. The monolayer graphene was firstly synthesized by the chemical vapour deposition (CVD) method on Cu foil and then transferred to the gold electrode of the QCM for VOC-sensing application. The gas-sensing properties of the graphene-coated QCM sensor were examined at room temperature for various concentrations of numerous VOCs, including butanol, isopropanol, acetone, and ethanol. The results revealed that the graphene-coated QCM sensor exhibits the best performance with ethanol gas. The gas-sensing mechanism of the graphene-coated QCM sensor was attributed to the adsorption and desorption of VOC molecules on the defect sites of graphene sheet. - Highlights: • The rapid response–recovery is due to the coating of a single atomic layer. • As-developed sensors have good response to volatile organic compounds (VOCs). • The graphene coating enhanced the VOCs detection capability of the as-developed sensors.

  12. The Venus flytrap attracts insects by the release of volatile organic compounds.

    Science.gov (United States)

    Kreuzwieser, Jürgen; Scheerer, Ursel; Kruse, Jörg; Burzlaff, Tim; Honsel, Anne; Alfarraj, Saleh; Georgiev, Plamen; Schnitzler, Jörg-Peter; Ghirardo, Andrea; Kreuzer, Ines; Hedrich, Rainer; Rennenberg, Heinz

    2014-02-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap. PMID:24420576

  13. The Venus flytrap attracts insects by the release of volatile organic compounds.

    Science.gov (United States)

    Kreuzwieser, Jürgen; Scheerer, Ursel; Kruse, Jörg; Burzlaff, Tim; Honsel, Anne; Alfarraj, Saleh; Georgiev, Plamen; Schnitzler, Jörg-Peter; Ghirardo, Andrea; Kreuzer, Ines; Hedrich, Rainer; Rennenberg, Heinz

    2014-02-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.

  14. Measurements of Volatile Organic Compounds in a Newly Built Daycare Center.

    Science.gov (United States)

    Noguchi, Miyuki; Mizukoshi, Atsushi; Yanagisawa, Yukio; Yamasaki, Akihiro

    2016-07-21

    We measured temporal changes in concentrations of total volatile organic compounds (TVOCs) and individual volatile organic compounds in a newly built daycare center. The temporal changes of the TVOC concentrations were monitored with a photo ionization detector (PID), and indoor air was sampled and analyzed by Gas Chromatography/Mass Spectrometry (GC/MS) and high performance liquid chromatography (HPLC) to determine the concentrations of the constituent VOCs. The measurements were performed just after completion of the building and again 3 months after completion. The TVOC concentration exceeded 1000 µg·m(-3) for all the sampling locations just after completion of building, and decreased almost one tenth after 3 months, to below the guideline values of the TVOC in Japan at 400 µg·m(-3). The concentrations of the target VOCs of which the indoor concentrations are regulated in Japan were below the guideline values for all the cases. The air-exchange rates were determined based on the temporal changes of the TVOC concentrations, and it was found that the countermeasure to increase the air exchange rate successfully decrease the TVOC concentration level in the rooms.

  15. Measurements of Volatile Organic Compounds in a Newly Built Daycare Center

    Directory of Open Access Journals (Sweden)

    Miyuki Noguchi

    2016-07-01

    Full Text Available We measured temporal changes in concentrations of total volatile organic compounds (TVOCs and individual volatile organic compounds in a newly built daycare center. The temporal changes of the TVOC concentrations were monitored with a photo ionization detector (PID, and indoor air was sampled and analyzed by Gas Chromatography/Mass Spectrometry (GC/MS and high performance liquid chromatography (HPLC to determine the concentrations of the constituent VOCs. The measurements were performed just after completion of the building and again 3 months after completion. The TVOC concentration exceeded 1000 µg·m−3 for all the sampling locations just after completion of building, and decreased almost one tenth after 3 months, to below the guideline values of the TVOC in Japan at 400 µg·m−3. The concentrations of the target VOCs of which the indoor concentrations are regulated in Japan were below the guideline values for all the cases. The air-exchange rates were determined based on the temporal changes of the TVOC concentrations, and it was found that the countermeasure to increase the air exchange rate successfully decrease the TVOC concentration level in the rooms.

  16. Distribution of Total Volatile Organic Compounds at taxi drivers in Tehran

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Javad Golhosseini

    2015-06-01

    Full Text Available Air pollution is currently the most serious environmental health threat worldwide. Volatile Organic Compounds (VOC are considered as the main effective factors in causing air pollution. Vehicles are among the major sources which emit these compounds, so it seems that automobiles’ microenvironment is one of the places where people are exposed to high concentration of VOC. Evaluating the exposure amount of Total Volatile Organic Compounds (TVOC can indeed be used as an indicator to estimate the amount of exposure to every individual VOC. This study was conducted on the concentration of TVOC inside Tehran taxies for a period of one year. For this purpose, a real time instrument equipped with photo-ionization detector (PID was used. Consequently, the highest and the lowest measured TVOC in taxies equaled 3.33 ppm and 0.72 ppm, respectively. In addition, the arithmetic mean of TVOC concentration was 1.77±0.53 ppm inside the examined taxies. In this study, the parameters like measurement time, climate and vehicle conditions were found to have significant effect on the amount of exposure to TVOC.

  17. Distribution of Total Volatile Organic Compounds at taxi drivers in Tehran

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Javad Golhosseini*

    2015-06-01

    Full Text Available Air pollution is currently the most serious environmental health threat worldwide. Volatile Organic Compounds (VOCs are considered as the main effective factors in causing air pollution. Vehicles are among the major sources which emit these compounds, so it seems that automobiles’ microenvironment is one of the places where people are exposed to high concentration of VOC. Evaluating the exposure amount of Total Volatile Organic Compounds (TVOC can indeed be used as an indicator to estimate the amount of exposure to every individual VOC. This study was conducted on the concentration of TVOC inside Tehran taxies for a period of one year. For this purpose, a real time instrument equipped with photo-ionization detector (PID was used. Consequently, the highest and the lowest measured TVOC in taxies equaled 3.33 ppm and 0.72 ppm, respectively. In addition, the arithmetic mean of TVOC concentration was 1.77±0.53 ppm inside the examined taxies. In this study, the parameters like measurement time, climate and vehicle conditions were found to have significant effect on the amount of exposure to TVOC.

  18. Native Fluorescence Detection Methods and Detectors for Naphthalene and/or Other Volatile Organic Compound Vapors

    Science.gov (United States)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2014-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds have been identified as serious health hazards. This is especially true for personnel working with JP8 jet fuel and other fuels containing naphthalene as well as other hazardous volatile organic compounds (VOCs). Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to naphthalene or other hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined. The badges employ a new native fluorescence based detection method to identify and differentiate VOCs. The particular focus of some embodiments are the detection and identification of naphthalene while other embodiments are directed to detection and identification of other VOCs like aromatic hydrocarbons such as benzene, toluene, and xylene.

  19. Levels and source apportionment of volatile organic compounds in southwestern area of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Rodolfo Sosa, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Humberto Bravo, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico)], E-mail: hbravo@servidor.unam.mx; Violeta Mugica, A. [Universidad Autonoma Metropolitana, Azcapotzalco, D.F. (Mexico); Pablo Sanchez, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Emma Bueno, L. [Centro Nacional de Investigacion y Capacitacion Ambiental, Instituto Nacional de Ecologia (Mexico); Krupa, Sagar [Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108 (United States)

    2009-03-15

    Thirteen volatile organic compounds (VOCs) were quantified at three sites in southwestern Mexico City from July 2000 to February 2001. High concentrations of different VOCs were found at a Gasoline refueling station (GS), a Condominium area (CA), and at University Center for Atmospheric Sciences (CAS). The most abundant VOCs at CA and CAS were propane, n-butane, toluene, acetylene and pentane. In comparison, at GS the most abundant were toluene, pentane, propane, n-butane, and acetylene. Benzene, a known carcinogenic compound had average levels of 28, 35 and 250 ppbC at CAS, CA, and GS respectively. The main contributing sources of the measured VOCs at CA and CAS were the handling and management of LP (Liquid Propane) gas, vehicle exhaust, asphalt works, and use of solvents. At GS almost all of the VOCs came from vehicle exhaust and fuel evaporation, although components of LP gas were also present. Based on the overall results possible abatement strategies are discussed. - Volatile organic compounds were quantified in order to perform their source apportionment in southwestern area of Mexico City.

  20. Air monitoring of volatile organic compounds at relevant receptors during hydraulic fracturing operations in Washington County, Pennsylvania.

    Science.gov (United States)

    Maskrey, Joshua R; Insley, Allison L; Hynds, Erin S; Panko, Julie M

    2016-07-01

    A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.

  1. Air monitoring of volatile organic compounds at relevant receptors during hydraulic fracturing operations in Washington County, Pennsylvania.

    Science.gov (United States)

    Maskrey, Joshua R; Insley, Allison L; Hynds, Erin S; Panko, Julie M

    2016-07-01

    A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds. PMID:27312253

  2. Volatile organic compounds and trace metal level in some beers collected from Romanian market

    Science.gov (United States)

    Voica, Cezara; Kovacs, Melinda; Vadan, Marius

    2013-11-01

    Beer is one of the most popular beverages at worldwide level. Through this study fifteen different types of beer collected from Romanian market were analysed in order to evaluate their mineral, trace element as well the their organic content. Importance of such characterization of beer samples is supported by the fact that their chemical composition can affect both taste and stability of beer, as well the consumer health. Minerals and trace elements analysis were performed on ICP-MS while organic compounds analysis was done through GC-MS. Through ICP-MS analysis, elements as Ca, Na, K and Mg were evidenced at mgṡkg-1 order while elements as Cr, Ba, Co, Ni were detected at lower level. After GC-MS analysis the major volatile compounds that were detected belong to alcohols namely ethanol, propanol, isobutanol, isoamyl alcohol and linalool. Selected fatty acids and esters were evidenced also in the studied beer samples.

  3. [Preliminary study concerning emissions of the volatile organic compounds from cooking oils].

    Science.gov (United States)

    He, Wan-Qing; Tian, Gang; Nie, Lei; Qu, Song; Li, Jing; Wang, Min-Yan

    2012-09-01

    Cooking oil fume is one of the important sources of atmospheric volatile organic compounds (VOCs), which are the key precursors of ozone and secondary organic aerosols in air. In this study, the production of cooking oil fume was simulated by heating typical pure vegetable oils (peanut oil, sunflower oil, soybean oil, olive oil and blend oil) at different temperatures in beakers to investigate the VOCs emission characteristics. The emitted VOCs were sampled with a Tenax adsorption tube and analyzed using GC-MS after thermal desorption. The results showed that the emission of VOCs increased with the increase of the heating temperature for all the investigated cooking oils, and at a given temperature, the blend oil emitted the lowest amount of VOCs. The VOCs emission intensity at different heating temperatures fitted well with binomial equations and ranged from 1.6-11.1 mg x (kg x min)(-1).

  4. Modeling long-term uptake and re-volatilization of semi-volatile organic compounds (SVOCs) across the soil-atmosphere interface.

    Science.gov (United States)

    Bao, Zhongwen; Haberer, Christina; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter

    2015-12-15

    Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil. PMID:26340582

  5. Characterizing the Chemical Complexity of Semi-Volatile Organic Compounds from Biomass Burning in Amazonia

    Science.gov (United States)

    Wernis, R. A.; Yee, L.; Isaacman-VanWertz, G. A.; Kreisberg, N. M.; de Sá, S. S.; Liu, Y.; Martin, S. T.; Alexander, L.; Palm, B. B.; Hu, W.; Campuzano Jost, P.; Day, D. A.; Jimenez, J. L.; Artaxo, P.; Viegas, J.; Manzi, A. O.; Souza, R. A. F. D.; Hering, S. V.; Goldstein, A. H.

    2015-12-01

    Aerosols are a source of great uncertainty in radiative forcing predictions and have poorly understood impacts on human health. In many environments, biomass burning contributes a significant source of primary aerosol as well as reactive gas-phase precursors that can form secondary organic aerosol (SOA). One class of these precursors, semi-volatile organic compounds (SVOCs), has been shown to have a large contribution to the amount of SOA formed from fire emissions. At present, SVOC emissions from biomass burning are poorly constrained and understanding their contributions to SOA formation is an important research challenge. In the Amazonian dry season, biomass burning is a major source of gases and aerosols reducing regional air quality. As part of the GoAmazon 2014/5 field campaign, we deployed the Semi-Volatile Thermal desorption Aerosol Gas Chromatograph (SV-TAG) instrument at the rural T3 site, 60 km to the west of Manaus, Brazil to measure hourly concentrations of SVOCs in the gas and particle phases. This comprehensive technique detects thousands of compounds, enabling the discovery of previously unidentified compounds. In this work we explore compounds for which a correlation with well-known biomass burning tracers is observed to discover the identities of new tracers. We discuss contributions to the total organic aerosol from well-known, rarely reported and newly-identified biomass burning tracers. We find that levoglucosan, perhaps the most commonly used particle phase biomass burning tracer, contributed 0.6% and 0.3% of total organic aerosol in the dry and wet seasons, respectively.

  6. Biogenic Impact on Materials

    Science.gov (United States)

    Stephan, Ina; Askew, Peter; Gorbushina, Anna; Grinda, Manfred; Hertel, Horst; Krumbein, Wolfgang; Müller, Rolf-Joachim; Pantke, Michael; Plarre, Rüdiger (Rudy); Schmitt, Guenter; Schwibbert, Karin

    Materials as constituents of products or components of technical systems rarely exist in isolation and many must cope with exposure in the natural world. This chapter describes methods that simulate how a material is influenced through contact with living systems such as microorganisms and arthropods. Both unwanted and desirable interactions are considered. This biogenic impact on materials is intimately associated with the environment to which the material is exposed (Materials-Environment Interaction, Chap. 15). Factors such as moisture, temperature and availability of food sources all have a significant influence on biological systems. Corrosion (Chap. 12) and wear (Chap. 13) can also be induced or enhanced in the presence of microorganisms. Section 14.1 introduces the categories between desired (biodegradation) and undesired (biodeterioration) biological effects on materials. It also introduces the role of biocides for the protection of materials. Section 14.2 describes the testing of wood as a building material especially against microorganisms and insects. Section 14.3 characterizes the test methodologies for two other groups of organic materials, namely polymers (Sect. 14.3.1) and paper and textiles (Sect. 14.3.2). Section 14.4 deals with the susceptibility of inorganic materials such as metals (Sect. 14.4.1), concrete (Sect. 14.4.2) and ceramics (Sect. 14.4.3) to biogenic impact. Section 14.5 treats the testing methodology concerned with the performance of coatings and coating materials. In many of these tests specific strains of organisms are employed. It is vital that these strains retain their ability to utilize/attack the substrate from which they were isolated, even when kept for many years in the laboratory. Section 14.6 therefore considers the importance of maintaining robust and representative test organisms that are as capable of utilizing a substrate as their counterparts in nature such that realistic predictions of performance can be made.

  7. Carbon functionalized mesoporous silica-based gas sensors for indoor volatile organic compounds.

    Science.gov (United States)

    Liu, Yupu; Chen, Junchen; Li, Wei; Shen, Dengke; Zhao, Yujuan; Pal, Manas; Yu, Haijun; Tu, Bo; Zhao, Dongyuan

    2016-09-01

    Indoor organic gaseous pollution is a global health problem, which seriously threats the health and life of human all over the world. Hence, it is important to fabricate new sensing materials with high sensitivity and efficiency for indoor volatile organic compounds. In this study, a series of ordered mesoporous silica-based nanocomposites with uniform carbon coatings on the internal surface of silica mesopore channels were synthesized through a simple template-carbonization strategy. The obtained mesoporous silica-carbon nanocomposites not only possess ordered mesostructures, high surface areas (up to ∼759m(2)g(-1)), large and tunable pore sizes (2.6-10.2nm), but also have the improved hydrophobicity and anti-interference capability to environmental humidity. The sensing performances of the mesoporous silica-carbon nanocomposites to volatile organic compounds, such as ethylbenzene, methylbenzene, benzene, methanol, acetone, formaldehyde, dichloromethane and tetrahydrofuran, were systematically investigated. The relationships between the sensing performances and their properties, including mesostructures, surface areas, pore sizes, carbon contents and surface hydrophilic/hydrophobic interactions, have been achieved. The mesoporous silica-carbon nanocomposites with hexagonal mesostructure exhibit outstanding performance at room temperature to benzene and acetone with high responses, short response (2-3s) and recovery (16-19s) time, strong anti-interference to environmental humidity, and long-term stability (less than ∼5% loss of the frequency shifts after 42days). Therefore, the obtained mesoporous silica-carbon nanocomposites have a hopeful prospect in the field of environmental air quality monitoring. PMID:27240244

  8. Volatilization of low vapor pressure - volatile organic compounds (LVP-VOCs) during three cleaning products-associated activities: Potential contributions to ozone formation.

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E; Bennett, Deborah H

    2016-06-01

    There have been many studies to reduce ozone formation mostly from volatile organic compound (VOC) sources. However, the role of low vapor pressure (LVP)-VOCs from consumer products remains mostly unexplored and unaddressed. This study explores the impact of high production volume LVP-VOCs on ozone formation from three cleaning products-associated activities (dishwashing, clothes washing, and surface cleaning). We develop a model framework to account for the portion available for ozone formation during the use phase and from the down-the-drain disposal. We apply experimental studies that measured emission rates or models that were developed for estimating emission rates of organic compounds during the use phase. Then, the fraction volatilized (fvolatilized) and the fraction disposed down the drain (fdown-the-drain) are multiplied by the portion available for ozone formation for releases to the outdoor air (fO3|volatilized) and down-the-drain (fO3|down-the-drain), respectively. Overall, for chemicals used in three specific cleaning-product uses, fvolatilized is less than 0.6% for all studied LVP-VOCs. Because greater than 99.4% of compounds are disposed of down the drain during the use phase, when combined with fO3|volatilized and fO3|down-the-drain, the portion available for ozone formation from the direct releases to outdoor air and the down-the-drain disposal is less than 0.4% and 0.2%, respectively. The results from this study indicate that the impact of the studied LVP-VOCs on ozone formation is very sensitive to what occurs during the use phase and suggest the need for future research on experimental work at the point of use. PMID:27016807

  9. Emissions of volatile organic compounds from heated needles and twigs of Pinus pumila

    Institute of Scientific and Technical Information of China (English)

    ZHAO Feng-jun; SHU Li-fu; WANG Qiu-hua; WANG Ming-yu; TIAN Xiao-rui

    2011-01-01

    A study was conducted to explore the mechanism that emissions of volatile organic compounds (VOC) from heated needles and twigs (200℃, within 15 min) of Pinus purnila affect fire behaviours using the technology of Thermal Desorption - Gas Chromatography-Mass Spectrometry (TD-GC-MS). The results indicated that the main components of VOC from heated needles and twigs are terpenoids. Most of these terpenoids are monoterpenes. Terpenoids account for 72.93% for the needles and 92.40% for the twigs of the total VOC, and their emis sion ratios are 61.200 μg·g-1 and 217.060 μtg·g-1 respectively. Heated twigs can emit more terpenoids than heated needles because twigs had more volatile oils than needles. In actual fires, these large amounts of terpenoid emissions, especially the monoterpene emissions, have strong effects on fire behaviors that are not only in the initial stage but also in the fast propagation stage of fires. These flammable gases are capable of causing violent combustion and creating crown fires. In addition, if these gases accumulate in an uneven geographical area, there will be a possible for eruptive fires and/or fires fiashover to occur.

  10. Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review.

    Science.gov (United States)

    Yang, Cui; Wang, Juan; Li, Donghao

    2013-10-17

    Vegetables and fruits are necessary for human health, and traditional Chinese medicine that uses plant materials can cure diseases. Thus, understanding the composition of plant matrix has gained increased attention in recent years. Since plant matrix is very complex, the extraction, separation and quantitation of these chemicals are challenging. In this review we focus on the microextraction techniques used in the determination of volatile and semivolatile organic compounds (such as esters, alcohols, aldehydes, hydrocarbons, ketones, terpenes, sesquiterpene, phenols, acids, plant secondary metabolites and pesticides) from plants (e.g., fruits, vegetables, medicinal plants, tree leaves, etc.). These microextraction techniques include: solid phase microextraction (SPME), stir-bar sorptive extraction (SBSE), single drop microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), dispersive liquid liquid microextraction (DLLME), and gas purge microsyringe extraction (GP-MSE). We have taken into consideration papers published from 2008 to the end of January 2013, and provided critical and interpretative review on these techniques, and formulated future trends in microextraction for the determination of volatile and semivolatile compounds from plants. PMID:24091369

  11. Cadaveric volatile organic compounds released by decaying pig carcasses (Sus domesticus L.) in different biotopes.

    Science.gov (United States)

    Dekeirsschieter, J; Verheggen, F J; Gohy, M; Hubrecht, F; Bourguignon, L; Lognay, G; Haubruge, E

    2009-08-10

    Forensic entomology uses pig carcasses to surrogate human decomposition and to investigate the entomofaunal colonization. Insects communicate with their environment through the use of chemical mediators, which in the case of necrophagous insects, may consist in the cadaveric volatile organic compounds (VOCs) released by the corpse under decomposition. Previous studies have focused on cadaveric VOCs released from human corpses. Nevertheless, studies on human corpses are restricted for many reasons, including ethics. Forensic entomologists use pig as animal model but very few information are available about the decompositional VOCs released by a decaying pig carcass. We here tested a passive sampling technique, the Radiello diffusive sampler, to monitor the cadaveric VOCs released by decomposing pig carcasses in three biotopes (crop field, forest, urban site). A total of 104 chemical compounds, exclusively produced by the decompositional process, were identified by thermal desorption interfaced with gas chromatography and mass spectrometry (TDS-GC-MS). Ninety, 85 and 57 cadaveric VOCs were identified on pig carcasses laying on the agricultural site, the forest biotope and in the urban site, respectively. The main cadaveric VOCs are acids, cyclic hydrocarbons, oxygenated compounds, sulfur and nitrogen compounds. A better knowledge of the smell of death and their volatile constituents may have many applications in forensic sciences.

  12. Gas-liquid partitioning of halogenated volatile organic compounds in aqueous cyclodextrin solutions

    International Nuclear Information System (INIS)

    Highlights: → Binding of halogenated VOCs with cyclodextrins examined through g-l partitioning. → Complex stabilities reflect host-guest size matching and hydrophobic interaction. → Presence of halogens in the guest molecule stabilizes the binding. → Thermodynamic origin of the binding varies greatly among the systems studied. → Results obey the guest-CD global enthalpy-entropy compensation relationship. - Abstract: Gas-liquid partitioning coefficients (KGL) were measured for halogenated volatile organic compounds (VOCs), namely 1-chlorobutane, methoxyflurane, pentafluoropropan-1-ol, heptafluorobutan-1-ol, α,α,α-trifluorotoluene, and toluene in aqueous solutions of natural α-, β-, and γ-cyclodextrins (CDs) at temperatures from (273.35 to 326.35) K employing the techniques of headspace gas chromatography and inert gas stripping. The binding constants of the 1:1 inclusion complex formation between the VOCs and CDs were evaluated from the depression of the VOCs volatility as a function of CD concentration. The host-guest size matching and the hydrophobic interaction concept were used to rationalize the observed widely different affinity of the VOC-CD pairs to form the inclusion complex. The enthalpic and entropic component of the standard Gibbs free energy of complex formation as derived from the temperature dependence of the binding constant indicate the thermodynamic origin of the binding to vary greatly among the systems studied, but follow the global enthalpy-entropy compensation relationships reported previously in the literature.

  13. Gas-liquid partitioning of halogenated volatile organic compounds in aqueous cyclodextrin solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ondo, Daniel; Barankova, Eva [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic); Dohnal, Vladimir, E-mail: dohnalv@vscht.cz [Department of Physical Chemistry, Institute of Chemical Technology, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2011-08-15

    Highlights: > Binding of halogenated VOCs with cyclodextrins examined through g-l partitioning. > Complex stabilities reflect host-guest size matching and hydrophobic interaction. > Presence of halogens in the guest molecule stabilizes the binding. > Thermodynamic origin of the binding varies greatly among the systems studied. > Results obey the guest-CD global enthalpy-entropy compensation relationship. - Abstract: Gas-liquid partitioning coefficients (K{sub GL}) were measured for halogenated volatile organic compounds (VOCs), namely 1-chlorobutane, methoxyflurane, pentafluoropropan-1-ol, heptafluorobutan-1-ol, {alpha},{alpha},{alpha}-trifluorotoluene, and toluene in aqueous solutions of natural {alpha}-, {beta}-, and {gamma}-cyclodextrins (CDs) at temperatures from (273.35 to 326.35) K employing the techniques of headspace gas chromatography and inert gas stripping. The binding constants of the 1:1 inclusion complex formation between the VOCs and CDs were evaluated from the depression of the VOCs volatility as a function of CD concentration. The host-guest size matching and the hydrophobic interaction concept were used to rationalize the observed widely different affinity of the VOC-CD pairs to form the inclusion complex. The enthalpic and entropic component of the standard Gibbs free energy of complex formation as derived from the temperature dependence of the binding constant indicate the thermodynamic origin of the binding to vary greatly among the systems studied, but follow the global enthalpy-entropy compensation relationships reported previously in the literature.

  14. Current Challenges in Volatile Organic Compounds Analysis as Potential Biomarkers of Cancer

    Directory of Open Access Journals (Sweden)

    Kamila Schmidt

    2015-01-01

    Full Text Available An early diagnosis and appropriate treatment are crucial in reducing mortality among people suffering from cancer. There is a lack of characteristic early clinical symptoms in most forms of cancer, which highlights the importance of investigating new methods for its early detection. One of the most promising methods is the analysis of volatile organic compounds (VOCs. VOCs are a diverse group of carbon-based chemicals that are present in exhaled breath and biofluids and may be collected from the headspace of these matrices. Different patterns of VOCs have been correlated with various diseases, cancer among them. Studies have also shown that cancer cells in vitro produce or consume specific VOCs that can serve as potential biomarkers that differentiate them from noncancerous cells. This review identifies the current challenges in the investigation of VOCs as potential cancer biomarkers, by the critical evaluation of available matrices for the in vivo and in vitro approaches in this field and by comparison of the main extraction and detection techniques that have been applied to date in this area of study. It also summarises complementary in vivo, ex vivo, and in vitro studies conducted to date in order to try to identify volatile biomarkers of cancer.

  15. Potential hazard of volatile organic compounds contained in household spray products

    Science.gov (United States)

    Rahman, Md Mahmudur; Kim, Ki-Hyun

    2014-03-01

    To assess the exposure levels of hazardous volatile pollutants released from common household spray products, a total of 10 spray products consisting of six body spray and four air spray products have been investigated. The body spray products included insect repellents (two different products), medicated patch, deodorant, hair spray, and humectant, whereas the air spray products included two different insecticides (mosquito and/or cockroach), antibacterial spray, and air freshener. The main objective of this study was to measure concentrations of 15 model volatile organic compounds (VOCs) using GC/MS coupled with a thermal desorber. In addition, up to 34 ‘compounds lacking authentic standards or surrogates (CLASS)' were also quantified based on the effective carbon number (ECN) theory. According to our analysis, the most common indoor pollutants like benzene, toluene, styrene, methyl ethyl ketone, and butyl acetate have been detected frequently in the majority of spray products with the concentration range of 5.3-125 mg L-1. If one assumes that the amount of spray products released into air reaches the 0.3 mL level for a given space size of 5 m3, the risk factor is expected to exceed the carcinogenic risk level set for benzene (10-5) by the U.S. EPA.

  16. Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms.

    Science.gov (United States)

    Plyuta, Vladimir; Lipasova, Valentina; Popova, Alexandra; Koksharova, Olga; Kuznetsov, Alexander; Szegedi, Erno; Chernin, Leonid; Khmel, Inessa

    2016-07-01

    The ability to form biofilms plays an important role in bacteria-host interactions, including plant pathogenicity. In this work, we investigated the action of volatile organic compounds (VOCs) produced by rhizospheric strains of Pseudomonas chlororaphis 449, Pseudomonas fluorescens B-4117, Serratia plymuthica IC1270, as well as Serratia proteamaculans strain 94, isolated from spoiled meat, on biofilms formation by three strains of Agrobacterium tumefaciens which are causative agents of crown-gall disease in a wide range of plants. In dual culture assays, the pool of volatiles emitted by the tested Pseudomonas and Serratia strains suppressed the formation of biofilms of A. tumefaciens strains grown on polycarbonate membrane filters and killed Agrobacterium cells in mature biofilms. The individual VOCs produced by the tested Pseudomonas strains, that is, ketones (2-nonanone, 2-heptanone, 2-undecanone), and dimethyl disulfide (DMDS) produced by Serratia strains, were shown to kill A. tumefaciens cells in mature biofilms and suppress their formation. The data obtained in this study suggest an additional potential of some ketones and DMDS as protectors of plants against A. tumefaciens strains, whose virulence is associated with the formation of biofilms on the infected plants. PMID:27214244

  17. A Compendium of Volatile Organic Compounds (VOCs) Released By Human Cell Lines.

    Science.gov (United States)

    Filipiak, Wojciech; Mochalski, Pawel; Filipiak, Anna; Ager, Clemens; Cumeras, Raquel; Davis, Cristina E; Agapiou, Agapios; Unterkofler, Karl; Troppmair, Jakob

    2016-01-01

    Volatile organic compounds (VOCs) offer unique insights into ongoing biochemical processes in healthy and diseased humans. Yet, their diagnostic use is hampered by the limited understanding of their biochemical or cellular origin and their frequently unclear link to the underlying diseases. Major advancements are expected from the analyses of human primary cells, cell lines and cultures of microorganisms. In this review, a database of 125 reliably identified VOCs previously reported for human healthy and diseased cells was assembled and their potential origin is discussed. The majority of them have also been observed in studies with other human matrices (breath, urine, saliva, feces, blood, skin emanations). Moreover, continuing improvements of qualitative and quantitative analyses, based on the recommendations of the ISO-11843 guidelines, are suggested for the necessary standardization of analytical procedures and better comparability of results. The data provided contribute to arriving at a more complete human volatilome and suggest potential volatile biomarkers for future validation. Dedication:This review is dedicated to the memory of Prof. Dr. Anton Amann, who sadly passed away on January 6, 2015. He was motivator and motor for the field of breath research. PMID:27160536

  18. Volatile organic compounds and Photobacterium phosphoreum associated with spoilage of modified-atmosphere-packaged raw pork.

    Science.gov (United States)

    Nieminen, Timo T; Dalgaard, Paw; Björkroth, Johanna

    2016-02-01

    Accumulation of volatile organic compounds was monitored in association with sensory quality, bacterial concentrations and culture-independent microbial community analyses in raw pork loin and pork collar during storage under high-oxygen modified atmosphere at +4 °C. Of the 48 volatile compounds detected in the pork samples, the levels of acetoin, diacetyl and 3-methyl-1-butanol had the highest correlations with the sensory scores and bacterial concentrations. These compounds accumulated in all of the four monitored lots of non-sterile pork but not in the sterilized pork during chilled storage. According to the culture-dependent and culture-independent characterization of bacterial communities, Brochothrix thermosphacta, lactic acid bacteria (Carnobacterium, Lactobacillus, Lactococcus, Leuconostoc, Weissella) and Photobacterium spp. predominated in pork samples. Photobacterium spp., typically not associated with spoilage of meat, were detected also in 8 of the 11 retail packages of pork investigated subsequently. Eleven isolates from the pork samples were shown to belong to Photobacterium phosphoreum by phenotypic tests and sequencing of the 16S rRNA and gyrB gene fragments. Off-odors in pork samples with high proportion of Photobacterium spp. were associated with accumulation of acetoin, diacetyl and 3-methyl-1-butanol in meat, but these compounds did not explain all the off-odors reported in sensory analyses. PMID:26623935

  19. Determination of volatile organic compounds responsible for flavour in cooked river buffalo meat

    Directory of Open Access Journals (Sweden)

    A. Di Luccia

    2010-02-01

    Full Text Available Flavour is an important consumer attractive that directly influences the success of food products on the market. The determination of odorous molecules and their identification allows to useful knowledge for producers to valorise their own products. Buffalo meat has a different chemical composition from pork and beef and requires some cautions in cooking and processing. This work aims at the identification of volatile molecules responsible for flavours in river buffalo meat. The determination was carried out by solid phase micro-extraction (SPME technique and analysed by gas chromatography coupled to mass spectrometry (GC-MS. The most relevant results were the higher odorous impact of buffalo meat and the higher content of sulphide compounds responsible for wild aroma respect to pork and beef. These results were obtained comparing the total area of peaks detected in every chromatogram. We have also found significant differences concerning the contents of pentadecane, 1-hexanol-2 ethyl, butanoic acid, furano-2-penthyl. The origin of volatile organic compounds and their influence on the river buffalo aromas were discussed.

  20. Semi-volatile organic compounds as molecular markers for atmospheric and ecosystem transport

    Science.gov (United States)

    Genualdi, Susan

    The use of semi-volatile organic compounds (SOCs) as molecular markers to identify the contributions of regional and long-range atmospheric transport, as well as current and historic sources, and contaminant deposition in remote ecosystems of the Western U.S. was investigated. Trans-Pacific air masses influenced by Siberian biomass burning events had elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and the historic use pesticides dieldrin and alpha-HCH, while air masses influenced by regional fires in the Pacific Northwestern U.S. had enhanced concentrations of PAHs and the current-use pesticides dacthal and endosulfan. This suggests that previously deposited SOCs, such as pesticides, revolatilize to the atmosphere during forest fires. In addition, forest soils collected from a burned area in the Pacific Northwestern U.S. had significantly lower SOC concentrations (34 to 100 %) than soils collected from an unburned area separated only by a two lane road. This confirms that SOCs re-volatilize and/or degrade from soils and vegetation during the burning process. The chiral signatures of alpha-HCH in air masses at three sites in the Pacific Northwestern U.S. indicated that the boundary layer has a non-racemic alpha-HCH signature likely due to re-volatilization of alpha-HCH from the Pacific Ocean and that the free troposphere is a source of racemic alpha-HCH. Racemic alpha-HCH was also associated with Asian and trans-Pacific air masses. Racemic cis and trans-chlordane in Pacific Northwestern U.S. air masses indicated that U.S. urban areas continue to be a source of chlordane to the atmosphere. The deposition of non-racemic alpha-HCH in seasonal snowpack in continental Western U.S. national park high elevation ecosystems reflected regional transport, while the high latitude, Alaskan national parks were influenced by long-range atmospheric transport of racemic alpha-HCH. The chiral signature of alpha-HCH in fish collected from high elevation and high

  1. Development of a sparging technique for volatile emissions from potato (Solanum tuberosum)

    Science.gov (United States)

    Berdis, Elizabeth; Peterson, Barbara Vieux; Yorio, Neil C.; Batten, Jennifer; Wheeler, Raymond M.

    1993-01-01

    Accumulation of volatile emissions from plants grown in tightly closed growth chambers may have allelopathic or phytotoxic properties. Whole air analysis of a closed chamber includes both biotic and abiotic volatile emissions. A method for characterization and quantification of biogenic emissions solely from plantlets was developed to investigate this complex mixture of volatile organic compounds. Volatile organic compounds from potato (Solanum tuberosum L. cv. Norland) were isolated, separated and identified using an in-line configuration consisting of a purge and trap concentrator with sparging vessels coupled to a GC/MS system. Analyses identified plant volatile compounds: transcaryophyllene, alpha-humulene, thiobismethane, hexanal, cis-3-hexen-1-ol, and cis-3-hexenyl acetate.

  2. Predicting the lifetime of organic vapor cartridges exposed to volatile organic compound mixtures using a partial differential equations model.

    Science.gov (United States)

    Vuong, François; Chauveau, Romain; Grevillot, Georges; Marsteau, Stéphanie; Silvente, Eric; Vallieres, Cécile

    2016-09-01

    In this study, equilibria, breakthrough curves, and breakthrough times were predicted for three binary mixtures of four volatile organic compounds (VOCs) using a model based on partial differential equations of dynamic adsorption coupling a mass balance, a simple Linear Driving Force (LDF) hypothesis to describe the kinetics, and the well-known Extended-Langmuir (EL) equilibrium model. The model aims to predict with a limited complexity, the BTCs of respirator cartridges exposed to binary vapor mixtures from equilibria and kinetics data obtained from single component. In the model, multicomponent mass transfer was simplified to use only single dynamic adsorption data. The EL expression used in this study predicted equilibria with relatively good accuracy for acetone/ethanol and ethanol/cyclohexane mixtures, but the prediction of cyclohexane uptake when mixed with heptane is less satisfactory. The BTCs given by the model were compared to experimental BTCs to determine the accuracy of the model and the impact of the approximation on mass transfer coefficients. From BTCs, breakthrough times at 10% of the exposure concentration t10% were determined. All t10% were predicted within 20% of the experimental values, and 63% of the breakthrough times were predicted within a 10% error. This study demonstrated that a simple mass balance combined with kinetic approximations is sufficient to predict lifetime for respirator cartridges exposed to VOC mixtures. It also showed that a commonly adopted approach to describe multicomponent adsorption based on volatility of VOC rather than adsorption equilibrium greatly overestimated the breakthrough times. PMID:27028086

  3. Molecular characterization of urban organic aerosol in tropical India : contributions of primary emissions and secondary photooxidation

    OpenAIRE

    P. Q. Fu; K. Kawamura; Pavuluri, C.M.; T. Swaminathan; J. Chen

    2010-01-01

    Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Fourteen organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, hydroxy-/polyacids, phthalate esters, hopanes, Polycyclic Aromatic Hydrocarbons (PAHs), and photooxidation products from biogenic Volatile Organic Compounds (VOCs). At da...

  4. Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation

    OpenAIRE

    P. Q. Fu; K. Kawamura; Pavuluri, C.M.; T. Swaminathan; J. Chen

    2010-01-01

    Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Fourteen organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, hydroxy-/polyacids, phthalate esters, hopanes, Polycyclic Aromatic Hydrocarbons (PAHs), and photooxidation products from biogenic Volatile Organic Compo...

  5. Molecular characterization of urban organic aerosol in tropical India: contributions of primary emissions and secondary photooxidation

    OpenAIRE

    P. Q. Fu; K. Kawamura; Pavuluri, C.M.; T. Swaminathan; J. Chen

    2010-01-01

    Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Fourteen organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, hydroxy-/polyacids, phthalate esters, hopanes, Polycyclic Aromatic Hydrocarbons (PAHs), and photooxidation products from biogenic Volatile Organic ...

  6. Origins of volatile organic compounds emerging from tank 241-C-106 during sluicing

    Energy Technology Data Exchange (ETDEWEB)

    STAUFFER, L.A.

    1999-06-02

    Unexpectedly high concentrations of inorganic gases and volatile organic compounds (VOC) were released from the ventilation stack of tank 241-C-106 during sluicing operations on November 18, 1998. Workers experienced serious discomfort. They reported an obnoxious acrid odor and the 450 ppm VOC in ventilation stack 296-C-006 exceeded the level approved in the air discharge permit. Consequently, the operation was terminated. Subsequent analyses of samples collected opportunistically from the stack indicated many organic compounds including heptenes, heptanones, and normal paraffin hydrocarbons (NPH) and t