WorldWideScience

Sample records for biogenic nox emissions

  1. Worldwide biogenic soil NOx emissions inferred from OMI NO2 observations

    NARCIS (Netherlands)

    Vinken, G.C.M.; Boersma, K.F.; Maasakkers, J.D.; Adon, M.; Martin, R.V.

    2014-01-01

    Biogenic NOx emissions from soils are a large natural source with substantial uncertainties in global bottom-up estimates (ranging from 4 to 15 Tg N yr-1). We reduce this range in emission estimates, and present a top-down soil NOx emission inventory for 2005 based on retrieved tropospheric NO2

  2. Impacts of biogenic emissions of VOC and NOx on tropospheric ozone during summertime in eastern China.

    Science.gov (United States)

    Wang, Qin'geng; Han, Zhiwei; Wang, Tijian; Zhang, Renjian

    2008-05-20

    This study is intended to understand and quantify the impacts of biogenic emissions of volatile organic compounds (VOC) and nitrogen oxides (NO(x)) on the formation of tropospheric ozone during summertime in eastern China. The model system consists of the non-hydrostatic mesoscale meteorological model (MM5) and a tropospheric chemical and transport model (TCTM) with the updated carbon-bond chemical reaction mechanism (CBM-IV). The spatial resolution of the system domain is 30 km x 30 km. The impacts of biogenic emissions are investigated by performing simulations (36 h) with and without biogenic emissions, while anthropogenic emissions are constant. The results indicate that biogenic emissions have remarkable impacts on surface ozone in eastern China. In big cities and their surrounding areas, surface ozone formation tends to be VOC-limited. The increase in ozone concentration by biogenic VOC is generally 5 ppbv or less, but could be more than 10 ppbv or even 30 ppbv in some local places. The impacts of biogenic NO(x) are different or even contrary in different regions, depending on the relative availability of NO(x) and VOC. The surface ozone concentrations reduced or increased by the biogenic NO(x) could be as much as 10 ppbv or 20 ppbv, respectively. The impacts of biogenic emissions on ozone aloft are generally restricted to the boundary layer and generally more obvious during the daytime than during the nighttime. This study is useful for understanding the role of biogenic emissions and for planning strategies for surface ozone abatement in eastern China. Due to limitations of the emission inventories used and the highly non-linear nature of zone formation, however, some uncertainties remain in the results.

  3. Biogenic nitrogen oxide emissions from soils ─ impact on NOx and ozone over West Africa during AMMA (African Monsoon Multidisciplinary Experiment: modelling study

    Directory of Open Access Journals (Sweden)

    J.-P. Chaboureau

    2008-05-01

    Full Text Available Nitrogen oxide biogenic emissions from soils are driven by soil and environmental parameters. The relationship between these parameters and NO fluxes is highly non linear. A new algorithm, based on a neural network calculation, is used to reproduce the NO biogenic emissions linked to precipitations in the Sahel on the 6 August 2006 during the AMMA campaign. This algorithm has been coupled in the surface scheme of a coupled chemistry dynamics model (MesoNH Chemistry to estimate the impact of the NO emissions on NOx and O3 formation in the lower troposphere for this particular episode. Four different simulations on the same domain and at the same period are compared: one with anthropogenic emissions only, one with soil NO emissions from a static inventory, at low time and space resolution, one with NO emissions from neural network, and one with NO from neural network plus lightning NOx. The influence of NOx from lightning is limited to the upper troposphere. The NO emission from soils calculated with neural network responds to changes in soil moisture giving enhanced emissions over the wetted soil, as observed by aircraft measurements after the passing of a convective system. The subsequent enhancement of NOx and ozone is limited to the lowest layers of the atmosphere in modelling, whereas measurements show higher concentrations above 1000 m. The neural network algorithm, applied in the Sahel region for one particular day of the wet season, allows an immediate response of fluxes to environmental parameters, unlike static emission inventories. Stewart et al (2008 is a companion paper to this one which looks at NOx and ozone concentrations in the boundary layer as measured on a research aircraft, examines how they vary with respect to the soil moisture, as indicated by surface temperature anomalies, and deduces NOx fluxes. In this current paper the model-derived results are compared to the observations and calculated fluxes presented by Stewart et

  4. Biogenic Emission Sources

    Science.gov (United States)

    Biogenic emissions sources come from natural sources and need to accounted for in photochemical grid models. They are computed using a model which utilizes spatial information on vegetation and land use.

  5. Biogenic Emission Inventory System (BEIS)

    Science.gov (United States)

    Biogenic Emission Inventory System (BEIS) estimates volatile organic compound (VOC) emissions from vegetation and nitric oxide (NO) emission from soils. Recent BEIS development has been restricted to the SMOKE system

  6. Sensitivity of modeled ozone concentrations to uncertainties in biogenic emissions

    International Nuclear Information System (INIS)

    Roselle, S.J.

    1992-06-01

    The study examines the sensitivity of regional ozone (O3) modeling to uncertainties in biogenic emissions estimates. The United States Environmental Protection Agency's (EPA) Regional Oxidant Model (ROM) was used to simulate the photochemistry of the northeastern United States for the period July 2-17, 1988. An operational model evaluation showed that ROM had a tendency to underpredict O3 when observed concentrations were above 70-80 ppb and to overpredict O3 when observed values were below this level. On average, the model underpredicted daily maximum O3 by 14 ppb. Spatial patterns of O3, however, were reproduced favorably by the model. Several simulations were performed to analyze the effects of uncertainties in biogenic emissions on predicted O3 and to study the effectiveness of two strategies of controlling anthropogenic emissions for reducing high O3 concentrations. Biogenic hydrocarbon emissions were adjusted by a factor of 3 to account for the existing range of uncertainty in these emissions. The impact of biogenic emission uncertainties on O3 predictions depended upon the availability of NOx. In some extremely NOx-limited areas, increasing the amount of biogenic emissions decreased O3 concentrations. Two control strategies were compared in the simulations: (1) reduced anthropogenic hydrocarbon emissions, and (2) reduced anthropogenic hydrocarbon and NOx emissions. The simulations showed that hydrocarbon emission controls were more beneficial to the New York City area, but that combined NOx and hydrocarbon controls were more beneficial to other areas of the Northeast. Hydrocarbon controls were more effective as biogenic hydrocarbon emissions were reduced, whereas combined NOx and hydrocarbon controls were more effective as biogenic hydrocarbon emissions were increased

  7. Quantifying the Global Marine Biogenic Nitrogen Oxides Emissions

    Science.gov (United States)

    Su, H.; Wang, S.; Lin, J.; Hao, N.; Poeschl, U.; Cheng, Y.

    2017-12-01

    Nitrogen oxides (NOx) are among the most important molecules in atmospheric chemistry and nitrogen cycle. The NOx over the ocean areas are traditionally believed to originate from the continental outflows or the inter-continental shipping emissions. By comparing the satellite observations (OMI) and global chemical transport model simulation (GEOS-Chem), we suggest that the underestimated modeled atmospheric NO2 columns over biogenic active ocean areas can be possibly attributed to the biogenic source. Nitrification and denitrification in the ocean water produces nitrites which can be further reduced to NO through microbiological processes. We further report global distributions of marine biogenic NO emissions. The new added emissions improve the agreement between satellite observations and model simulations over large areas. Our model simulations manifest that the marine biogenic NO emissions increase the atmospheric oxidative capacity and aerosol formation rate, providing a closer link between atmospheric chemistry and ocean microbiology.

  8. Framework for Assessing Biogenic CO2 Emissions from Stationary Sources

    Science.gov (United States)

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...

  9. Biogenic emissions modeling for Southeastern Texas

    Energy Technology Data Exchange (ETDEWEB)

    Estes, M.; Jacob, D.; Jarvie, J. [Texas Natural Resource Conservation Commission, Austin, TX (United States)] [and others

    1996-12-31

    The Texas Natural Resource Conservation Commission (TNRCC) modeling staff performed biogenic hydrocarbon emissions modeling in support of gridded photochemical modeling for ozone episodes in 1992 and 1993 for the Coastal Oxidant Assessment for Southeast Texas (COAST) modeling domain. This paper summarizes the results of the biogenic emissions modeling and compares preliminary photochemical modeling results to ambient air monitoring data collected during the 1993 COAST study. Biogenic emissions were estimated using BIOME, a gridded biogenic emissions model that uses region-specific land use and biomass density data, and plant species-specific emission factor data. Ambient air monitoring data were obtained by continuous automated gas chromatography at two sites, one-hour canister samples at 5 sites, and 24-hour canister samples at 13 other sites. The concentrations of Carbon Bond-IV species (as determined from urban airshed modeling) were compared to measured hydrocarbon concentrations. In this paper, we examined diurnal and seasonal variations, as well as spatial variations.

  10. Estimation of biogenic volatile organic compounds emissions in subtropical island--Taiwan.

    Science.gov (United States)

    Chang, Ken-Hui; Chen, Tu-Fu; Huang, Ho-Chun

    2005-06-15

    Elevated tropospheric ozone is harmful to human health and plants. It is formed through the photochemical reactions involving volatile organic compounds (VOCs) and nitrogen oxides (NO(x)). The elevated ozone episodes occur mainly in summer months in the United States, while the high-ozone episodes frequently occur during the fall in Taiwan. The unique landscape of Taiwan produces tremendous amounts of biogenic VOCs in the mountain regions that are adjacent to concentrated urban areas. The urban areas, in turn, generate prodigious amounts of anthropogenic emissions. Biogenic VOC emissions have direct influence on tropospheric ozone formation. To explore the air quality problems in Taiwan, this study attempts to develop a biogenic VOC emission model suitable for air quality applications in Taiwan. The emission model is based on the Biogenic Emissions Inventory System Version 2 and coupled with a detailed Taiwan land use database. The 1999 total Taiwan biogenic VOC emissions were estimated at 214,000 metric tons. The emissions of isoprene, monoterpenes, and other VOCs were about 37.2%, 30.4%, and 32.4% of total biogenic VOC emissions, respectively. The annual total biogenic VOC emission per unit area was more than two times the value of that in any European country, implying that detailed emissions estimates in any size of region will benefit the global biogenic emission inventories.

  11. The ABAG biogenic emissions inventory project

    Science.gov (United States)

    Carson-Henry, C. (Editor)

    1982-01-01

    The ability to identify the role of biogenic hydrocarbon emissions in contributing to overall ozone production in the Bay Area, and to identify the significance of that role, were investigated in a joint project of the Association of Bay Area Governments (ABAG) and NASA/Ames Research Center. Ozone, which is produced when nitrogen oxides and hydrocarbons combine in the presence of sunlight, is a primary factor in air quality planning. In investigating the role of biogenic emissions, this project employed a pre-existing land cover classification to define areal extent of land cover types. Emission factors were then derived for those cover types. The land cover data and emission factors were integrated into an existing geographic information system, where they were combined to form a Biogenic Hydrocarbon Emissions Inventory. The emissions inventory information was then integrated into an existing photochemical dispersion model.

  12. Impacts of Interannual Variability in Biogenic VOC Emissions near Transitional Ozone Production Regimes

    Science.gov (United States)

    Geddes, J.

    2017-12-01

    Due to successful NOx emission controls, summertime ozone production chemistry in urban areas across North America is transitioning from VOC-limited to increasingly NOx-limited. In some regions where ozone production sensitivity is in transition, interannual variability in surrounding biogenic VOC emissions could drive fluctuations in the prevailing chemical regime and modify the impact of anthropogenic emission changes. I use satellite observations of HCHO and NO2 column density, along with a long-term simulation of atmospheric chemistry, to investigate the impact of interannual variability in biogenic isoprene sources near large metro areas. Peak emissions of isoprene in the model can vary by up to 20-60% in any given year compared to the long term mean, and this variability drives the majority of the variability in simulated local HCHO:NO2 ratios (a common proxy for ozone production sensitivity). The satellite observations confirm increasingly NOx-limited chemical regimes with large interannual variability. In several instances, the model and satellite observations suggest that variability in biogenic isoprene emissions could shift summertime ozone production from generally VOC- to generally NOx- sensitive (or vice versa). This would have implications for predicting the air quality impacts of anthropogenic emission changes in any given year, and suggests that drivers of biogenic emissions need to be well understood.

  13. Correlating Engine NOx Emission with Biodiesel Composition

    Science.gov (United States)

    Jeyaseelan, Thangaraja; Mehta, Pramod Shankar

    2017-06-01

    Biodiesel composition comprising of saturated and unsaturated fatty acid methyl esters has a significant influence on its properties and hence the engine performance and emission characteristics. This paper proposes a comprehensive approach for composition-property-NOx emission analysis for biodiesel fuels and highlights the pathways responsible for such a relationship. Finally, a procedure and a predictor equation are developed for the assessment of biodiesel NOx emission from its composition details.

  14. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects.

    Science.gov (United States)

    Petzold, Andreas; Lauer, Peter; Fritsche, Uwe; Hasselbach, Jan; Lichtenstern, Michael; Schlager, Hans; Fleischer, Fritz

    2011-12-15

    The modification of emissions of climate-sensitive exhaust compounds such as CO(2), NO(x), hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fuel life cycle analysis which included land use changes associated with the growth of energy plants. Emissions of CO(2) and NO(x) per kWh were found to be similar for fossil fuels and biogenic fuels. PM mass emission was reduced to 10-15% of HFO emissions for all low-sulfur fuels including MGO as a fossil fuel. Black carbon emissions were reduced significantly to 13-30% of HFO. Changes in emissions were predominantly related to particulate sulfate, while differences between low-sulfur fossil fuels and low-sulfur biogenic fuels were of minor significance. GHG emissions from the biogenic fuel life cycle (FLC) depend crucially on energy plant production conditions and have the potential of shifting the overall GHG budget from positive to negative compared to fossil fuels.

  15. Operation of Marine Diesel Engines on Biogenic Fuels: Modification of Emissions and Resulting Climate Effects

    OpenAIRE

    Petzold, A.; Lauer, P.; Fritsche, U.; Hasselbach, J.; Lichtenstern, M.; Schlager, H.; Fleischer, F.

    2011-01-01

    The modification of emissions of climate-sensitive exhaust compounds such as CO2, NOx, hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fue...

  16. Increases to Biogenic Secondary Organic Aerosols from SO2 and NOx in the Southeastern US

    Science.gov (United States)

    Russell, L. M.; Liu, J.; Ruggeri, G.; Takahama, S.; Claflin, M. S.; Ziemann, P. J.; Lee, A.; Murphy, B.; Pye, H. O. T.; Ng, N. L.; McKinney, K. A.; Surratt, J. D.

    2017-12-01

    During the 2013 Southern Oxidant and Aerosol Study, Fourier Transform Infrared Spectroscopy (FTIR) and Aerosol Mass Spectrometer (AMS) measurements of submicron mass were collected at Look Rock, Tennessee, and Centreville, Alabama. The low NOx, low wind, little rain, and increased daytime isoprene emissions led to multi-day stagnation events at Look Rock that provided clear evidence of particle-phase sulfate enhancing biogenic secondary organic aerosol (bSOA) by selective uptake. Organic mass (OM) sources were apportioned as 42% "vehicle-related" and 54% bSOA, with the latter including "sulfate-related bSOA" that correlated to sulfate (r=0.72) and "nitrate-related bSOA" that correlated to nitrate (r=0.65). Single-particle mass spectra showed three composition types that corresponded to the mass-based factors with spectra cosine similarity of 0.93 and time series correlations of r>0.4. The vehicle-related OM with m/z 44 was correlated to black carbon, "sulfate-related bSOA" was on particles with high sulfate, and "nitrate-related bSOA" was on all particles. The similarity of the m/z spectra (cosine similarity=0.97) and the time series correlation (r=0.80) of the "sulfate-related bSOA" to the sulfate-containing single-particle type provide evidence for particle composition contributing to selective uptake of isoprene oxidation products onto particles that contain sulfate from power plants. Since Look Rock had much less NOx than Centreville, comparing the bSOA at the two sites provides an evaluation of the role of NOx for bSOA. CO and submicron sulfate and OM concentrations were 15-60 % higher at Centreville than at Look Rock but their time series had moderate correlations of r= 0.51, 0.54, and 0.47, respectively. However, NOx had no correlation (r=0.08) between the two sites. OM correlated with the higher NOx levels at Centreville but with O3 at Look Rock. OM sources identified by Positive Matrix Factorization had three very similar factors at both sites from FTIR

  17. Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions.

    Science.gov (United States)

    Hogrefe, Christian; Isukapalli, Sastry S; Tang, Xiaogang; Georgopoulos, Panos G; He, Shan; Zalewsky, Eric E; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.

  18. Modeling and direct sensitivity analysis of biogenic emissions impacts on regional ozone formation in the Mexico-U.S. border area.

    Science.gov (United States)

    Mendoza-Dominguez, A; Wilkinson, J G; Yang, Y J; Russell, A G

    2000-01-01

    A spatially and temporally resolved biogenic hydrocarbon and nitrogen oxides (NOx) emissions inventory has been developed for a region along the Mexico-U.S. border area. Average daily biogenic non-methane organic gases (NMOG) emissions for the 1700 x 1000 km2 domain were estimated at 23,800 metric tons/day (62% from Mexico and 38% from the United States), and biogenic NOx was estimated at 1230 metric tons/day (54% from Mexico and 46% from the United States) for the July 18-20, 1993, ozone episode. The biogenic NMOG represented 74% of the total NMOG emissions, and biogenic NOx was 14% of the total NOx. The CIT photochemical airshed model was used to assess how biogenic emissions impact air quality. Predicted ground-level ozone increased by 5-10 ppb in most rural areas, 10-20 ppb near urban centers, and 20-30 ppb immediately downwind of the urban centers compared to simulations in which only anthropogenic emissions were used. A sensitivity analysis of predicted ozone concentration to emissions was performed using the decoupled direct method for three dimensional air quality models (DDM-3D). The highest positive sensitivity of ground-level ozone concentration to biogenic volatile organic compound (VOC) emissions (i.e., increasing biogenic VOC emissions results in increasing ozone concentrations) was predicted to be in locations with high NOx levels, (i.e., the urban areas). One urban center--Houston--was predicted to have a slight negative sensitivity to biogenic NO emissions (i.e., increasing biogenic NO emissions results in decreasing local ozone concentrations). The highest sensitivities of ozone concentrations to on-road mobile source VOC emissions, all positive, were mainly in the urban areas. The highest sensitivities of ozone concentrations to on-road mobile source NOx emissions were predicted in both urban (either positive or negative sensitivities) and rural (positive sensitivities) locations.

  19. The impact of anthropogenic and biogenic emissions on surface ozone concentrations in Istanbul.

    Science.gov (United States)

    Im, Ulas; Poupkou, Anastasia; Incecik, Selahattin; Markakis, Konstantinos; Kindap, Tayfun; Unal, Alper; Melas, Dimitros; Yenigun, Orhan; Topcu, Sema; Odman, M Talat; Tayanc, Mete; Guler, Meltem

    2011-03-01

    Surface ozone concentrations at Istanbul during a summer episode in June 2008 were simulated using a high resolution and urban scale modeling system coupling MM5 and CMAQ models with a recently developed anthropogenic emission inventory for the region. Two sets of base runs were performed in order to investigate for the first time the impact of biogenic emissions on ozone concentrations in the Greater Istanbul Area (GIA). The first simulation was performed using only the anthropogenic emissions whereas the second simulation was performed using both anthropogenic and biogenic emissions. Biogenic NMVOC emissions were comparable with anthropogenic NMVOC emissions in terms of magnitude. The inclusion of biogenic emissions significantly improved the performance of the model, particularly in reproducing the low night time values as well as the temporal variation of ozone concentrations. Terpene emissions contributed significantly to the destruction of the ozone during nighttime. Biogenic NMVOCs emissions enhanced ozone concentrations in the downwind regions of GIA up to 25ppb. The VOC/NO(x) ratio almost doubled due to the addition of biogenic NMVOCs. Anthropogenic NO(x) and NMVOCs were perturbed by ±30% in another set of simulations to quantify the sensitivity of ozone concentrations to the precursor emissions in the region. The sensitivity runs, as along with the model-calculated ozone-to-reactive nitrogen ratios, pointed NO(x)-sensitive chemistry, particularly in the downwind areas. On the other hand, urban parts of the city responded more to changes in NO(x) due to very high anthropogenic emissions. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Biomass burning - Combustion emissions, satellite imagery, and biogenic emissions

    Science.gov (United States)

    Levine, Joel S.; Cofer, Wesley R., III; Winstead, Edward L.; Rhinehart, Robert P.; Cahoon, Donald R., Jr.; Sebacher, Daniel I.; Sebacher, Shirley; Stocks, Brian J.

    1991-01-01

    After detailing a technique for the estimation of the instantaneous emission of trace gases produced by biomass burning, using satellite imagery, attention is given to the recent discovery that burning results in significant enhancement of biogenic emissions of N2O, NO, and CH4. Biomass burning accordingly has an immediate and long-term impact on the production of atmospheric trace gases. It is presently demonstrated that satellite imagery of fires may be used to estimate combustion emissions, and could be used to estimate long-term postburn biogenic emission of trace gases to the atmosphere.

  1. Photochemistry of biogenic emissions over the Amazon forest

    Science.gov (United States)

    Jacob, Daniel J.; Wofsy, Steven C.

    1988-01-01

    The boundary layer chemistry over the Amazon forest during the dry season is simulated with a photochemical model. Results are in good agreement with measurements of isoprene, NO, ozone, and organic acids. Photochemical reactions of biogenic isoprene and NOx can supply most of the ozone observed in the boundary layer. Production of ozone is very sensitive to the availability of NOx, but is insensitive to the isoprene source strength. High concentrations of total odd nitrogen (NOy) are predicted for the planetary boundary layer, about 1 ppb in the mixed layer and 0.75 ppb in the convective cloud layer. Most of the odd nitrogen is present as PAN-type species, which are removed by dry deposition to the forest. The observed daytime variations of isoprene are explained by a strong dependence of the isoprene emission flux on sun angle. Nighttime losses of isoprene exceed rates of reaction with NO3 and O3 and appear to reflect dry-deposition processes. The 24-hour averaged isoprene emission flux is calculated to be 38 mg/sq m per day. Photooxidation of isoprene could account for a large fraction of the CO enrichment observed in the boundary layer under unpolluted conditions and could constitute an important atmospheric source of formic acid, methacrylic acid, and pyruvic acid.

  2. Biogenic volatile organic compound emissions from vegetation fires.

    Science.gov (United States)

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  3. Framework for Assessing Biogenic CO2 Emissions from ...

    Science.gov (United States)

    This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide emissions from stationary sources. EPA developed the revised report, Framework for Assessing Biogenic CO2 Emissions from Stationary Sources, to present a methodological framework for assessing the extent to which the production, processing, and use of biogenic material at stationary sources for energy production results in a net atmospheric contribution of biogenic CO2 emissions. Biogenic carbon dioxide emissions are defined as CO2 emissions related to the natural carbon cycle, as well as those resulting from the production, harvest, combustion, digestion, decomposition, and processing of biologically-based materials. The EPA is continuing to refine its technical assessment of biogenic CO2 emissions through another round of targeted peer review of the revised study with the EPA Science Advisory Board (SAB). This study was submitted to the SAB's Biogenic Carbon Emissions Panel in February 2015. http://yosemite.epa.gov/sab/sabproduct.nsf/0/3235dac747c16fe985257da90053f252!OpenDocument&TableRow=2.2#2 The revised report will inform efforts by policymakers, academics, and other stakeholders to evaluate the technical aspects related to assessments of biogenic feedstocks used for energy at s

  4. Climate/chemistry feedbacks and biogenic emissions.

    Science.gov (United States)

    Pyle, John A; Warwick, Nicola; Yang, Xin; Young, Paul J; Zeng, Guang

    2007-07-15

    The oxidizing capacity of the atmosphere is affected by anthropogenic emissions and is projected to change in the future. Model calculations indicate that the change in surface ozone at some locations could be large and have significant implications for human health. The calculations depend on the precise scenarios used for the anthropogenic emissions and on the details of the feedback processes included in the model. One important factor is how natural biogenic emissions will change in the future. We carry out a sensitivity calculation to address the possible increase in isoprene emissions consequent on increased surface temperature in a future climate. The changes in ozone are significant but depend crucially on the background chemical regime. In these calculations, we find that increased isoprene will increase ozone in the Northern Hemisphere but decrease ozone in the tropics. We also consider the role of bromine compounds in tropospheric chemistry and consider cases where, in a future climate, the impact of bromine could change.

  5. Biomass burning: Combustion emissions, satellite imagery, and biogenic emissions

    International Nuclear Information System (INIS)

    Levine, J.S.; Cofer, W.R III; Rhinehart, R.P.; Cahoon, D.R. J.; Winstead, E.L.; Sebacher, S.; Sebacher, D.I.; Stocks, B.J.

    1991-01-01

    This chapter deals with two different, but related, aspects of biomass burning. The first part of the chapter deals with a technique to estimate the instantaneous emissions of trace gases produced by biomass burning using satellite imagery. The second part of the chapter concerns the recent discovery that burning results in significantly enhanced biogenic emissions of N 2 O, NO, and CH 4 . Hence, biomass burning has both an immediate and long-term impact on the production of trace gases to the atmosphere. The objective of this research is to better assess and quantify the role of this research is to better assess and quantify the role and impact of biomass as a driver for global change. It will be demonstrated that satellite imagery of fires may be used to estimate combustion emissions and may in the future be used to estimate the long-term postburn biogenic emissions of trace gases to the atmosphere

  6. Seasonal trends of biogenic terpene emissions.

    Science.gov (United States)

    Helmig, Detlev; Daly, Ryan Woodfin; Milford, Jana; Guenther, Alex

    2013-09-01

    Biogenic volatile organic compound (BVOC) emissions from six coniferous tree species, i.e. Pinus ponderosa (Ponderosa Pine), Picea pungens (Blue Spruce), Pseudotsuga menziesii (Rocky Mountain Douglas Fir) and Pinus longaeva (Bristlecone Pine), as well as from two deciduous species, Quercus gambelii (Gamble Oak) and Betula occidentalis (Western River Birch) were studied over a full annual growing cycle. Monoterpene (MT) and sesquiterpene (SQT) emissions rates were quantified in a total of 1236 individual branch enclosure samples. MT dominated coniferous emissions, producing greater than 95% of BVOC emissions. MT and SQT demonstrated short-term emission dependence with temperature. Two oxygenated MT, 1,8-cineol and piperitone, were both light and temperature dependent. Basal emission rates (BER, normalized to 1000μmolm(-2)s(-1) and 30°C) were generally higher in spring and summer than in winter; MT seasonal BER from the coniferous trees maximized between 1.5 and 6.0μgg(-1)h(-1), while seasonal lows were near 0.1μgg(-1)h(-1). The fractional contribution of individual MT to total emissions was found to fluctuate with season. SQT BER measured from the coniferous trees ranged from emissions modeling, was not found to exhibit discernible growth season trends. A seasonal correction factor proposed by others in previous work to account for a sinusoidal shaped emission pattern was applied to the data. Varying levels of agreement were found between the data and model results for the different plant species seasonal data sets using this correction. Consequently, the analyses on this extensive data set suggest that it is not feasible to apply a universal seasonal correction factor across different vegetation species. A modeling exercise comparing two case scenarios, (1) without and (2) with consideration of the seasonal changes in emission factors illustrated large deviations when emission factors are applied for other seasons than those in which they were experimentally

  7. Evaluation of NOx Emissions and Modeling

    Science.gov (United States)

    Henderson, B. H.; Simon, H. A.; Timin, B.; Dolwick, P. D.; Owen, R. C.; Eyth, A.; Foley, K.; Toro, C.; Baker, K. R.

    2017-12-01

    Studies focusing on ambient measurements of NOy have concluded that NOx emissions are overestimated and some have attributed the error to the onroad mobile sector. We investigate this conclusion to identify the cause of observed bias. First, we compare DISCOVER-AQ Baltimore ambient measurements to fine-scale modeling with NOy tagged by sector. Sector-based relationships with bias are present, but these are sensitive to simulated vertical mixing. This is evident both in sensitivity to mixing parameterization and the seasonal patterns of bias. We also evaluate observation-based indicators, like CO:NOy ratios, that are commonly used to diagnose emissions inventories. Second, we examine the sensitivity of predicted NOx and NOy to temporal allocation of emissions. We investigate alternative temporal allocations for EGUs without CEMS, on-road mobile, and several non-road categories. These results show some location-specific sensitivity and will lead to some improved temporal allocations. Third, near-road studies have inherently fewer confounding variables, and have been examined for more direct evaluation of emissions and dispersion models. From 2008-2011, the EPA and FHWA conducted near-road studies in Las Vegas and Detroit. These measurements are used to more directly evaluate the emissions and dispersion using site-specific traffic data. In addition, the site-specific emissions are being compared to the emissions used in larger-scale photochemical modeling to identify key discrepancies. These efforts are part of a larger coordinated effort by EPA scientist to ensure the highest quality in emissions and model processes. We look forward to sharing the state of these analyses and expected updates.

  8. 40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?

    Science.gov (United States)

    2010-07-01

    ... nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this subpart... the emission limits for NOX. ...

  9. Effects of NOx and SO2 on the secondary organic aerosol formation from photooxidation of α-pinene and limonene

    Science.gov (United States)

    Zhao, Defeng; Schmitt, Sebastian H.; Wang, Mingjin; Acir, Ismail-Hakki; Tillmann, Ralf; Tan, Zhaofeng; Novelli, Anna; Fuchs, Hendrik; Pullinen, Iida; Wegener, Robert; Rohrer, Franz; Wildt, Jürgen; Kiendler-Scharr, Astrid; Wahner, Andreas; Mentel, Thomas F.

    2018-02-01

    Anthropogenic emissions such as NOx and SO2 influence the biogenic secondary organic aerosol (SOA) formation, but detailed mechanisms and effects are still elusive. We studied the effects of NOx and SO2 on the SOA formation from the photooxidation of α-pinene and limonene at ambient relevant NOx and SO2 concentrations (NOx: biogenic volatile organic compounds (VOCs) with anthropogenic emissions.

  10. Verification of NOx emission inventories over North Korea.

    Science.gov (United States)

    Kim, Na Kyung; Kim, Yong Pyo; Morino, Yu; Kurokawa, Jun-ichi; Ohara, Toshimasa

    2014-12-01

    In this study, the top-down NOx emissions estimated from satellite observations of NO2 vertical column densities over North Korea from 1996 to 2009 were analyzed. Also, a bottom-up NOx emission inventory from REAS 1.1 from 1980 to 2005 was analyzed with several statistics. REAS 1.1 was in good agreement with the top-down approach for both trend and amount. The characteristics of NOx emissions in North Korea were quite different from other developed countries including South Korea. In North Korea, emissions from industry sector was the highest followed by transportation sector in the 1980s. However, after 1990, the NOx emissions from other sector, mainly agriculture, became the 2nd highest. Also, no emission centers such as urban areas or industrial areas were distinctively observed. Finally, the monthly NOx emissions were high during the warm season. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Biogenic hydrocarbon emission estimates for North Central Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wiedinmyer, C.; Wade Strange, I.; Allen, D.T. [University of Texas at Austin (United States). Dept. of Chemical Engineering; Estes, M. [Texas Natural Resource Conservation Commission, Austin, TX (United States); Yarwood, G. [ENVIRON International Corporation, Novato, CA (United States)

    2000-07-01

    Biogenic hydrocarbon emissions were estimated for a 37 county region in North Central Texas. The estimates were based on several sources of land use/land cover data that were combined using geographical information systems. Field studies were performed to collect species and tree diameter distribution data. These data were used to estimate biomass densities and species distributions for each of the land use and cover classifications. VOC emissions estimates for the domain were produced using the new land use/land cover data and a biogenic emissions model. These emissions were more spatially resolved and a factor of 2 greater in magnitude than those calculated based on the biogenic emissions landuse database (BELD) commonly used in biogenic emissions models. (author)

  12. Importance of soil NO emissions for the total atmospheric NOx budget of Saxony, Germany

    Science.gov (United States)

    Molina-Herrera, Saúl; Haas, Edwin; Grote, Rüdiger; Kiese, Ralf; Klatt, Steffen; Kraus, David; Kampffmeyer, Tatjana; Friedrich, Rainer; Andreae, Henning; Loubet, Benjamin; Ammann, Christof; Horváth, László; Larsen, Klaus; Gruening, Carsten; Frumau, Arnoud; Butterbach-Bahl, Klaus

    2017-03-01

    Soils are a significant source for the secondary greenhouse gas NO and assumed to be a significant source of tropospheric NOx in rural areas. Here we tested the LandscapeDNDC model for its capability to simulate magnitudes and dynamics of soil NO emissions for 22 sites differing in land use (arable, grassland and forest) and edaphic as well as climatic conditions. Overall, LandscapeDNDC simulated mean soil NO emissions agreed well with observations (r2 = 0.82). However, simulated day to day variations of NO did only agree weakly with high temporal resolution measurements, though agreement between simulations and measurements significantly increased if data were aggregated to weekly, monthly and seasonal time scales. The model reproduced NO emissions from high and low emitting sites, and responded to fertilization (mineral and organic) events with pulse emissions. After evaluation, we linked the LandscapeDNDC model to a GIS database holding spatially explicit data on climate, land use, soil and management to quantify the contribution of soil biogenic NO emissions to the total NOx budget for the State of Saxony, Germany. Our calculations show that soils of both agricultural and forest systems are significant sources and contribute to about 8% (uncertainty range: 6-13%) to the total annual tropospheric NOx budget for Saxony. However, the contributions of soil NO emission to total tropospheric NOx showed a high spatial variability and in some rural regions such as the Ore Mts., simulated soil NO emissions were by far more important than anthropogenic sources.

  13. Biogenic volatile emissions from the soil.

    Science.gov (United States)

    Peñuelas, J; Asensio, D; Tholl, D; Wenke, K; Rosenkranz, M; Piechulla, B; Schnitzler, J P

    2014-08-01

    Volatile compounds are usually associated with an appearance/presence in the atmosphere. Recent advances, however, indicated that the soil is a huge reservoir and source of biogenic volatile organic compounds (bVOCs), which are formed from decomposing litter and dead organic material or are synthesized by underground living organism or organs and tissues of plants. This review summarizes the scarce available data on the exchange of VOCs between soil and atmosphere and the features of the soil and particle structure allowing diffusion of volatiles in the soil, which is the prerequisite for biological VOC-based interactions. In fact, soil may function either as a sink or as a source of bVOCs. Soil VOC emissions to the atmosphere are often 1-2 (0-3) orders of magnitude lower than those from aboveground vegetation. Microorganisms and the plant root system are the major sources for bVOCs. The current methodology to detect belowground volatiles is described as well as the metabolic capabilities resulting in the wealth of microbial and root VOC emissions. Furthermore, VOC profiles are discussed as non-destructive fingerprints for the detection of organisms. In the last chapter, belowground volatile-based bi- and multi-trophic interactions between microorganisms, plants and invertebrates in the soil are discussed. © 2014 John Wiley & Sons Ltd.

  14. Methyl chavicol: characterization of its biogenic emission rate

    NARCIS (Netherlands)

    Bouvier-Brown, N.C.; Goldstein, A.H.; Worton, D.R.; Matross, D.M.; Gilman, J.B.; Kuster, W.C.; Welsh-Bon, D.; Warneke, C.; de Gouw, J.A.; Cahill, M.J.; Holzinger, R.

    2009-01-01

    We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California.

  15. Contribution of biogenic emissions to the formation of ozone and particulate matter in the eastern United States.

    Science.gov (United States)

    Pun, Betty K; Wu, Shiang-Yuh; Seigneur, Christian

    2002-08-15

    As anthropogenic emissions of ozone (O3) precursors, fine particulate matter (PM2.5), and PM2.5 precursors continue to decrease in the United States, the fraction of O3 and PM2.5 attributable to natural sources may become significant in some locations, reducing the efficacy that can be expected from future controls of anthropogenic sources. Modeling studies were conducted to estimate the contribution of biogenic emissions to the formation of O3 and PM2.5 in Nashville/TN and the northeastern United States. Two approaches were used to bound the estimates. In an anthropogenic simulation, biogenic emissions and their influence at the domain boundaries were eliminated. Contributions of biogenic compounds to the simulated concentrations of O3 and PM2.5 were determined by the deviation of the concentrations in the anthropogenic case from those in the base case. A biogenic simulation was used to assess the amounts of O3 and PM2.5 produced in an environment free from anthropogenic influences in emissions and boundary conditions. In both locations, the contribution of biogenic emissions to O3 was small (biogenic volatile organic compounds (VOC) emissions (65-89% of total VOC emissions). However, the production of O3 was much more sensitive to biogenic emissions in urban areas (22-34%). Therefore, the effects of biogenic emissions on O3 manifested mostly via their interaction with anthropogenic emissions of NOx. In the anthropogenic simulations, the average contribution of biogenic and natural sources to PM2.5 was estimated at 9% in Nashville/TN and 12% in the northeast domain. Because of the long atmospheric lifetimes of PM2.5, the contribution of biogenic/natural PM2.5 from the boundary conditions was higher than the contribution of biogenic aerosols produced within the domain. The elimination of biogenic emissions also affected the chemistry of other secondary PM2.5 components. Very little PM2.5 was formed in the biogenic simulations.

  16. Biogenic volatile organic compound (VOC) emissions from forests in Finland

    International Nuclear Information System (INIS)

    Lindfors, V.; Laurila, T.

    2000-01-01

    We present model estimates of biogenic volatile organic compound (VOC) emissions from the forests in Finland. The emissions were calculated for the years 1995-1997 using the measured isoprene and monoterpene emission factors of boreal tree species together with detailed satellite land cover information and meteorological data. The three-year average emission is 319 kilotonnes per annum, which is significantly higher than the estimated annual anthropogenic VOC emissions of 193 kilotonnes. The biogenic emissions of the Finnish forests are dominated by monoterpenes, which contribute approximately 45% of the annual total. The main isoprene emitter is the Norway spruce (Picea abies) due to its high foliar biomass density. Compared to the monoterpenes, however, the total isoprene emissions are very low, contributing only about 7% of the annual forest VOC emissions. The isoprene emissions are more sensitive to the meteorological conditions than the monoterpene emissions, but the progress of the thermal growing season is clearly reflected in all biogenic emission fluxes. The biogenic emission densities in northern Finland are approximately half of the emissions in the southern parts of the country. (orig.)

  17. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    Science.gov (United States)

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions.

  18. An atmospheric emission inventory of anthropogenic and biogenic sources for Lebanon

    Science.gov (United States)

    Waked, Antoine; Afif, Charbel; Seigneur, Christian

    2012-04-01

    A temporally-resolved and spatially-distributed emission inventory was developed for Lebanon to provide quantitative information for air pollution studies as well as for use as input to air quality models. This inventory covers major anthropogenic and biogenic sources in the region with 5 km spatial resolution for Lebanon and 1 km spatial resolution for its capital city Beirut and its suburbs. The results obtained for CO, NOx, SO2, NMVOC, NH3, PM10 and PM2.5 for the year 2010 were 563, 75, 62, 115, 4, 12, and 9 Gg, respectively. About 93% of CO emissions, 67% of NMVOC emissions and 52% of NOx emissions are calculated to originate from the on-road transport sector while 73% of SO2 emissions, 62% of PM10 emissions and 59% of PM2.5 emissions are calculated to originate from power plants and industrial sources. The spatial allocation of emissions shows that the city of Beirut and its suburbs encounter a large fraction of the emissions from the on-road transport sector while urban areas such as Zouk Mikael, Jieh, Chekka and Selaata are mostly affected by emissions originating from the industrial and energy production sectors. Temporal profiles were developed for several emission sectors.

  19. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions

    International Nuclear Information System (INIS)

    Tie Xuexi; Li Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-01-01

    In this study, a regional dynamical model (WRF) is used to drive biogenic emission models to calculate high resolution (10 x 10 km) biogenic emissions of isoprene (C 5 H 8 ), monoterpenes (C 1 H 16 ), and nitric oxide (NO) in China. This high resolution biogenic inventory will be available for the community to study the effect of biogenic emissions on photochemical oxidants in China. The biogenic emissions are compared to anthropogenic emissions to gain insight on the potential impact of the biogenic emissions on tropospheric chemistry, especially ozone production in this region. The results show that the biogenic emissions in China exhibit strongly diurnal, seasonal, and spatial variations. The isoprenoid (including both isoprene and monoterpenes) emissions are closely correlated to tree density and strongly vary with season and local time. During winter (January), the biogenic isoprenoid emissions are the lowest, resulting from lower temperature and solar radiation, and highest in summer (July) due to higher temperature and solar radiation. The biogenic NO emissions are also higher during summer and lower during winter, but the magnitude of the seasonal variation is smaller than the emissions of isoprene and monoterpenes. The biogenic emissions of NO are widely spread out in the northern, eastern, and southern China regions, where high-density agricultural soil lands are located. Both biogenic NO and isoprenoid emissions are very small in western China. The calculated total biogenic emission budget is smaller than the total anthropogenic VOC emission budget in China. The biogenic isoprenoid and anthropogenic VOC emissions are 10.9 and 15.1 Tg year -1 , respectively. The total biogenic and anthropogenic emissions of NO are 5.9 and 11.5 Tg(NO) year -1 , respectively. The study shows that in central eastern China, the estimated biogenic emissions of isoprenoids are very small, and the anthropogenic emissions of VOCs are dominant in this region. However, in

  20. Biogenic emissions of isoprenoids and NO in China and comparison to anthropogenic emissions.

    Science.gov (United States)

    Tie, Xuexi; Li, Guohui; Ying, Zhuming; Guenther, Alex; Madronich, Sasha

    2006-12-01

    In this study, a regional dynamical model (WRF) is used to drive biogenic emission models to calculate high resolution (10x10 km) biogenic emissions of isoprene (C(5)H(8)), monoterpenes (C(10)H(16)), and nitric oxide (NO) in China. This high resolution biogenic inventory will be available for the community to study the effect of biogenic emissions on photochemical oxidants in China. The biogenic emissions are compared to anthropogenic emissions to gain insight on the potential impact of the biogenic emissions on tropospheric chemistry, especially ozone production in this region. The results show that the biogenic emissions in China exhibit strongly diurnal, seasonal, and spatial variations. The isoprenoid (including both isoprene and monoterpenes) emissions are closely correlated to tree density and strongly vary with season and local time. During winter (January), the biogenic isoprenoid emissions are the lowest, resulting from lower temperature and solar radiation, and highest in summer (July) due to higher temperature and solar radiation. The biogenic NO emissions are also higher during summer and lower during winter, but the magnitude of the seasonal variation is smaller than the emissions of isoprene and monoterpenes. The biogenic emissions of NO are widely spread out in the northern, eastern, and southern China regions, where high-density agricultural soil lands are located. Both biogenic NO and isoprenoid emissions are very small in western China. The calculated total biogenic emission budget is smaller than the total anthropogenic VOC emission budget in China. The biogenic isoprenoid and anthropogenic VOC emissions are 10.9 and 15.1 Tg year(-1), respectively. The total biogenic and anthropogenic emissions of NO are 5.9 and 11.5 Tg(NO) year(-1), respectively. The study shows that in central eastern China, the estimated biogenic emissions of isoprenoids are very small, and the anthropogenic emissions of VOCs are dominant in this region. However, in

  1. NOx Emissions from Diesel Passenger Cars Worsen with Age.

    Science.gov (United States)

    Chen, Yuche; Borken-Kleefeld, Jens

    2016-04-05

    Commonly, the NOx emissions rates of diesel vehicles have been assumed to remain stable over the vehicle's lifetime. However, there have been hardly any representative long-term emission measurements. Here we present real-driving emissions of diesel cars and light commercial vehicles sampled on-road over 15 years in Zurich/Switzerland. Results suggest deterioration of NOx unit emissions for Euro 2 and Euro 3 diesel technologies, while Euro 1 and Euro 4 technologies seem to be stable. We can exclude a significant influence of high-emitting vehicles. NOx emissions from all cars and light commercial vehicles in European emission inventories increase by 5-10% accounting for the observed deterioration, depending on the country and its share of diesel cars. We suggest monitoring the stability of emission controls particularly for high-mileage light commercial as well as heavy-duty vehicles.

  2. Lightning NOx Emissions: Reconciling Measured and Modeled Estimates With Updated NOx Chemistry

    Science.gov (United States)

    Nault, B. A.; Laughner, J. L.; Wooldridge, P. J.; Crounse, J. D.; Dibb, J.; Diskin, G.; Peischl, J.; Podolske, J. R.; Pollack, I. B.; Ryerson, T. B.; Scheuer, E.; Wennberg, P. O.; Cohen, R. C.

    2017-09-01

    Lightning is one of the most important sources of upper tropospheric NOx; however, there is a large spread in estimates of the global emission rates (2-8 Tg N yr-1). We combine upper tropospheric in situ observations from the Deep Convective Clouds and Chemistry (DC3) experiment and global satellite-retrieved NO2 tropospheric column densities to constrain mean lightning NOx (LNOx) emissions per flash. Insights from DC3 indicate that the NOx lifetime is 3 h in the region of outflow of thunderstorms, mainly due to production of methyl peroxy nitrate and alkyl and multifunctional nitrates. The lifetime then increases farther downwind from the region of outflow. Reinterpreting previous analyses using the 3 h lifetime reduces the spread among various methods that have been used to calculate mean LNOx emissions per flash and indicates a global LNOx emission rate of 9 Tg N yr-1, a flux larger than the high end of recent estimates.

  3. Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers

    Science.gov (United States)

    Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)

    1996-01-01

    Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.

  4. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further

  5. Control strategies for vehicular NOx emissions in Guangzhou, China

    International Nuclear Information System (INIS)

    Shao Min; Zhang Yuanhang; Raufer, Roger

    2001-01-01

    Guangzhou is a city in southern China that has experienced very rapid economic development in recent years. The city's air has very high concentrations of various pollutants, including sulphur dioxide (SO 2 , oxides of nitrogen (NOx), ozone (O 3 ) and particulate. This paper reviews the changes in air quality in the city over the past 15 years, and notes that a serious vehicular-related emissions problem has been superimposed on the traditional coal-burning problem evident in most Chinese cities. As NOx concentrations have increased, oxidants and photochemical smog now interact with the traditional SO 2 and particulate pollutants, leading to increased health risks and other environmental concerns. Any responsible NOx control strategy for the city must include vehicle emission control measures. This paper reviews control strategies designed to abate vehicle emissions to fulfill the city's air quality improvement target in 2010. A cost-effectiveness analysis suggests that, while NOx emission control is expensive, vehicular emission standards could achieve a relatively sizable emissions reduction at reasonable cost. To achieve the 2010 air quality target of NOx, advanced implementation of EURO3 standards is recommended, substituting for the EURO2 currently envisioned in the national regulations Related technical options, including fuel quality improvements and inspection/maintenance (I/M) upgrades (ASM or IM240) are assessed as well. (author)

  6. Minimising NOx emissions: a symptom of managing change

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J. [UltraMax Corporation (USA)

    2000-07-01

    Minimizing NOx emissions is but a symptom of a bigger issues for utility companies in today's world. The bigger issue is determining how to successfully manage change. The companies that manage change well will solve the environmental issues and solve them profitably. NOx reduction can be achieved. It can be achieved while creating a capability to manage change. Solving the ability to manage change is the best route to take. Reducing NOx can be done but it may create other problems such as increased carbon in ash. The combination of software and hardware solutions have been carefully thought through and efficiently implemented. 7 figs., 2 tabs.

  7. 76 FR 80368 - Notification of Teleconferences of the Science Advisory Board Biogenic Carbon Emissions Panel

    Science.gov (United States)

    2011-12-23

    ... Advisory Board Biogenic Carbon Emissions Panel AGENCY: Environmental Protection Agency (EPA). ACTION... Office announces two teleconferences of the SAB Biogenic Carbon Emissions Panel to review EPA's draft Accounting Framework for Biogenic CO2 Emissions from Stationary Sources (September 2011). DATES: The...

  8. Impact of FCC regenerator design in the NOx emissions

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Hugo Borges; Sandes, Emanuel Freire; Gilbert, William Richard; Roncolatto, Rodolfo Eugenio; Gobbo, Rodrigo; Casavechia, Luiz Carlos; Candido, William Victor Carlos [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Bridi, Patricia Elaine [Possebon Engenharia, Sao Mateus do Sul, PR (Brazil)

    2012-07-01

    Fluid Catalytic Cracking (FCC) is the main point source of NOx in the refinery and it is responsible for at least 20% of the total NOx emissions from the refineries. The thermal NOx formation in the FCC regenerator is negligible. However, half of the feed nitrogen is converted to coke, and is burned in the regenerator. The majority of coke nitrogen is reduced to N2 and less than 10% is converted to NOx. This number may vary significantly with the oxygen excess in the flue gas and other operational conditions. With the purpose of evaluating the impact of different regenerator designs in NOx formation, several tests were carried out in the PETROBRAS FCC prototype unit. The test unit is equipped with adiabatic insulation and a CO boiler, allowing it to reproduce the heat balance of a commercial FCC and to operate either in full combustion or partial combustion. Two different designs of FCC regenerators were evaluated: single stage regenerator (the existing configuration) and two stage regenerator, with the catalyst bed divided into two sections by a structured packing baffle. It was observed in the tests that the combustion regime had a very strong effect on NOx formation. In full combustion, the effect of the FCC operating variables: excess oxygen, combustion promoter content in catalyst and regenerator design could be identified. The two stage configuration was capable of decreasing NOx emissions by 30%. In partial combustion, the effect of the CO-boiler variables on NOx emissions was overwhelming, but the use of the structured packing baffle was able to improve the catalyst regeneration.(author)

  9. Low modeled ozone production suggests underestimation of precursor emissions (especially NOx) in Europe

    Science.gov (United States)

    Oikonomakis, Emmanouil; Aksoyoglu, Sebnem; Ciarelli, Giancarlo; Baltensperger, Urs; Prévôt, André Stephan Henry

    2018-02-01

    High surface ozone concentrations, which usually occur when photochemical ozone production takes place, pose a great risk to human health and vegetation. Air quality models are often used by policy makers as tools for the development of ozone mitigation strategies. However, the modeled ozone production is often not or not enough evaluated in many ozone modeling studies. The focus of this work is to evaluate the modeled ozone production in Europe indirectly, with the use of the ozone-temperature correlation for the summer of 2010 and to analyze its sensitivity to precursor emissions and meteorology by using the regional air quality model, the Comprehensive Air Quality Model with Extensions (CAMx). The results show that the model significantly underestimates the observed high afternoon surface ozone mixing ratios (≥ 60 ppb) by 10-20 ppb and overestimates the lower ones (emissions, four scenarios were tested: (i) increased volatile organic compound (VOC) emissions by a factor of 1.5 and 2 for the anthropogenic and biogenic VOC emissions, respectively, (ii) increased nitrogen oxide (NOx) emissions by a factor of 2, (iii) a combination of the first two scenarios and (iv) increased traffic-only NOx emissions by a factor of 4. For southern, eastern, and central (except the Benelux area) Europe, doubling NOx emissions seems to be the most efficient scenario to reduce the underestimation of the observed high ozone mixing ratios without significant degradation of the model performance for the lower ozone mixing ratios. The model performance for ozone-temperature correlation is also better when NOx emissions are doubled. In the Benelux area, however, the third scenario (where both NOx and VOC emissions are increased) leads to a better model performance. Although increasing only the traffic NOx emissions by a factor of 4 gave very similar results to the doubling of all NOx emissions, the first scenario is more consistent with the uncertainties reported by other studies than

  10. Low modeled ozone production suggests underestimation of precursor emissions (especially NOx in Europe

    Directory of Open Access Journals (Sweden)

    E. Oikonomakis

    2018-02-01

    Full Text Available High surface ozone concentrations, which usually occur when photochemical ozone production takes place, pose a great risk to human health and vegetation. Air quality models are often used by policy makers as tools for the development of ozone mitigation strategies. However, the modeled ozone production is often not or not enough evaluated in many ozone modeling studies. The focus of this work is to evaluate the modeled ozone production in Europe indirectly, with the use of the ozone–temperature correlation for the summer of 2010 and to analyze its sensitivity to precursor emissions and meteorology by using the regional air quality model, the Comprehensive Air Quality Model with Extensions (CAMx. The results show that the model significantly underestimates the observed high afternoon surface ozone mixing ratios (≥  60 ppb by 10–20 ppb and overestimates the lower ones (<  40 ppb by 5–15 ppb, resulting in a misleading good agreement with the observations for average ozone. The model also underestimates the ozone–temperature regression slope by about a factor of 2 for most of the measurement stations. To investigate the impact of emissions, four scenarios were tested: (i increased volatile organic compound (VOC emissions by a factor of 1.5 and 2 for the anthropogenic and biogenic VOC emissions, respectively, (ii increased nitrogen oxide (NOx emissions by a factor of 2, (iii a combination of the first two scenarios and (iv increased traffic-only NOx emissions by a factor of 4. For southern, eastern, and central (except the Benelux area Europe, doubling NOx emissions seems to be the most efficient scenario to reduce the underestimation of the observed high ozone mixing ratios without significant degradation of the model performance for the lower ozone mixing ratios. The model performance for ozone–temperature correlation is also better when NOx emissions are doubled. In the Benelux area, however, the third scenario

  11. Synergistic impacts of anthropogenic and biogenic emissions on summer surface O3 in East Asia.

    Science.gov (United States)

    Qu, Yu; An, Junling; Li, Jian

    2013-03-01

    A factor separation technique and an improved regional air quality model (RAQM) were applied to calculate synergistic contributions of anthropogenic volatile organic compounds (AVOCs), biogenic volatile organic compounds (BVOCs) and nitrogen oxides (NOx) to daily maximum surface 03 (O3DM) concentrations in East Asia in summer (June to August 2000). The summer averaged synergistic impacts of AVOCs and NOx are dominant in most areas of North China, with a maximum of 60 ppbv, while those of BVOCs and NOx are notable only in some limited areas with high BVOC emissions in South China, with a maximum of 25 ppbv. This result implies that BVOCs contribute much less to summer averaged O3DM concentrations than AVOCs in most areas of East Asia at a coarse spatial resolution (1 degree x 1 degree) although global emissions of BVOCs are much greater than those of AVOCs. Daily maximum total contributions of BVOCs can approach 20 ppbv in North China, but they can reach 40 ppbv in South China, approaching or exceeding those in some developed countries in Europe and North America. BVOC emissions in such special areas should be considered when 03 control measures are taken. Synergistic contributions among AVOCs, BVOCs and NOx significantly enhance O3 concentrations in the Beijing-Tianjin-Tangshan region and decrease them in some areas in South China. Thus, the total contributions of BVOCs to O3DM vary significantly from day to day and from location to location. This result suggests that 03 control measures obtained from episodic studies could be limited for long-term applications.

  12. Real world NOx emissions of Euro V vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Verbeek, R.; Vonk, W.A.; Verbeek, R.P.; Dekker, H. [TNO Science and Industry, Delft (Netherlands)

    2010-11-15

    In the past decade, vehicle emissions have been reduced substantially as a result of the European emission legislation. Air quality problems are still present, however, in particular in urban areas where local authorities have difficulty meeting European limits regarding air quality (mainly NO2). Therefore, the emission performance of vehicles under urban conditions is of increasing importance for air quality improvement in cities. In this context, TNO was commissioned by the Dutch Ministry of Environment (VROM) to investigate the real-world NOx emissions of Euro V trucks and buses during the past two years. The investigation has shown that, in general, there is a large variety in real-world emissions between different vehicles, in particular under urban conditions. Some vehicles demonstrate the possibility of achieving low emissions under urban conditions, but the results also clearly show that this is not the case for most of the trucks. This outcome is based on two lines of research. Firstly, the real world emissions of eleven trucks and one bus were measured on-road using a Portable Emission Measurement System (PEMS), under conditions typical of everyday use. Secondly, AdBlue consumption data for a number of Dutch vehicle fleets were analysed. AdBlue is the reagent that is used for NOx emission reduction in SCR systems (catalytic after treatment systems), and the amount of reagent used in daily practice is related to the real-world NOx emissions. Both lines of research support the general outcome.

  13. Analysis and Measurement of NOx Emissions in Port Auxiliary Vessels

    Directory of Open Access Journals (Sweden)

    German de Melo Rodriguez

    2013-09-01

    Full Text Available This paper is made NOx pollution emitted by port auxiliary vessels, specifically by harbour tugs, due to its unique operating characteristics of operation, require a large propulsion power changes discontinuously, also possess some peculiar technical characteristics, large tonnage and high propulsive power, that differentiate them from other auxiliary vessels of the port. Taking into account all the above features, there are no studies of the NOx emission engines caused by different working regimes of power because engine manufacturers have not measured these emissions across the range of operating power, but usually we only report the pollution produced by its engines to a maximum continuous power.

  14. NOx emission trade. What is the state-of-the-art?

    International Nuclear Information System (INIS)

    Witkamp, J.

    2003-01-01

    In Leiden, Netherlands, 28 November 2002, a symposium was organized on the subject of NOx emission trade in preparation of a NOx emission trade system. In this article an overview is given of the developments so far [nl

  15. Biomass fuel characterization for NOx emissions in cofiring applications

    NARCIS (Netherlands)

    Di Nola, G.

    2007-01-01

    This dissertation investigates the impact of various biomass fuels and combustion conditions on the NOx emissions during biomass co-firing. Fossil fuels dominated the energy scenario since the industrial revolution. However, in the last decades, increasing concerns about their availability and

  16. Emission of Biogenic Volatile Organic Compounds in the Arctic

    DEFF Research Database (Denmark)

    Lindwall, Frida

    , emitted in order to communicate within and between trophic levels and as protection against biotic and abiotic stresses, or as byproducts. Some BVOCs are very reactive, and when entering the atmosphere they rapidly react with for example hydroxyl radicals and ozone, affecting the oxidative capacity......Emissions of biogenic volatile organic compounds (BVOCs) from arctic ecosystems are scarcely studied and the effect of climate change on BVOC emissions even less so. BVOCs are emitted from all living organisms and play a role for atmospheric chemistry. The major part of BVOCs derives from plants...... dependent and the emissions will increase in a future warmer climate. The aims of this dissertation were to study BVOC emission rates and blends from arctic ecosystems and to reveal the effect of climate change on BVOC emissions from the Arctic. BVOC emissions were measured in ambient and modified...

  17. Biodiesel unsaturation degree effects on diesel engine NOx emissions and cotton wick flame temperature

    OpenAIRE

    Abdullah Mohd Fareez Edzuan; Zhing Sim Shu; Bilong Bugik Clarence

    2017-01-01

    As compared with conventional diesel fuel, biodiesel has better lubricity and lower particulate matter (PM) emissions however nitrogen oxides (NOx) emissions generally increase in biodiesel-fuelled diesel engine. Strict regulation on NOx emissions is being implemented in current Euro 6 standard and it is expected to be tighter in next standard, thus increase of NOx cannot be accepted. In this study, biodiesel unsaturation degree effects on NOx emissions are investigated. Canola, palm and coco...

  18. Intercomparison of NOx emission inventories over East Asia

    Directory of Open Access Journals (Sweden)

    J. Ding

    2017-08-01

    Full Text Available We compare nine emission inventories of nitrogen oxides including four satellite-derived NOx inventories and the following bottom-up inventories for East Asia: REAS (Regional Emission inventory in ASia, MEIC (Multi-resolution Emission Inventory for China, CAPSS (Clean Air Policy Support System and EDGAR (Emissions Database for Global Atmospheric Research. Two of the satellite-derived inventories are estimated by using the DECSO (Daily Emission derived Constrained by Satellite Observations algorithm, which is based on an extended Kalman filter applied to observations from OMI or from GOME-2. The other two are derived with the EnKF algorithm, which is based on an ensemble Kalman filter applied to observations of multiple species using either the chemical transport model CHASER and MIROC-chem. The temporal behaviour and spatial distribution of the inventories are compared on a national and regional scale. A distinction is also made between urban and rural areas. The intercomparison of all inventories shows good agreement in total NOx emissions over mainland China, especially for trends, with an average bias of about 20 % for yearly emissions. All the inventories show the typical emission reduction of 10 % during the Chinese New Year and a peak in December. Satellite-derived approaches using OMI show a summer peak due to strong emissions from soil and biomass burning in this season. Biases in NOx emissions and uncertainties in temporal variability increase quickly when the spatial scale decreases. The analyses of the differences show the importance of using observations from multiple instruments and a high spatial resolution model for the satellite-derived inventories, while for bottom-up inventories, accurate emission factors and activity information are required. The advantage of the satellite-derived approach is that the emissions are soon available after observation, while the strength of the bottom-up inventories is that they include

  19. Evaluating Global Emission Inventories of Biogenic Bromocarbons

    Science.gov (United States)

    Hossaini, Ryan; Mantle, H.; Chipperfield, M. P.; Montzka, S. A.; Hamer, P.; Ziska, F.; Quack, B.; Kruger, K.; Tegtmeier, S.; Atlas, E.; hide

    2013-01-01

    Emissions of halogenated very short-lived substances (VSLS) are poorly constrained. However, their inclusion in global models is required to simulate a realistic inorganic bromine (Bry) loading in both the troposphere, where bromine chemistry perturbs global oxidizing capacity, and in the stratosphere, where it is a major sink for ozone (O3). We have performed simulations using a 3-D chemical transport model (CTM) including three top-down and a single bottom-up derived emission inventory of the major brominated VSLS bromoform (CHBr3) and dibromomethane (CH2Br2). We perform the first concerted evaluation of these inventories, comparing both the magnitude and spatial distribution of emissions. For a quantitative evaluation of each inventory, model output is compared with independent long-term observations at National Oceanic and Atmospheric Administration (NOAA) ground-based stations and with aircraft observations made during the NSF (National Science Foundation) HIAPER Pole-to-Pole Observations (HIPPO) project. For CHBr3, the mean absolute deviation between model and surface observation ranges from 0.22 (38 %) to 0.78 (115 %) parts per trillion (ppt) in the tropics, depending on emission inventory. For CH2Br2, the range is 0.17 (24 %) to 1.25 (167 %) ppt. We also use aircraft observations made during the 2011 Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere (SHIVA) campaign, in the tropical western Pacific. Here, the performance of the various inventories also varies significantly, but overall the CTM is able to reproduce observed CHBr3 well in the free troposphere using an inventory based on observed sea-to-air fluxes. Finally, we identify the range of uncertainty associated with these VSLS emission inventories on stratospheric bromine loading due to VSLS (Br(VSLS/y)). Our simulations show Br(VSLS/y) ranges from approximately 4.0 to 8.0 ppt depending on the inventory. We report an optimized estimate at the lower end of this range (approximately 4 ppt

  20. Atmospheric emission of NOx from mining explosives: A critical review

    Science.gov (United States)

    Oluwoye, Ibukun; Dlugogorski, Bogdan Z.; Gore, Jeff; Oskierski, Hans C.; Altarawneh, Mohammednoor

    2017-10-01

    High-energy materials such as emulsions, slurries and ammonium-nitrate fuel-oil (ANFO) explosives play crucial roles in mining, quarrying, tunnelling and many other infrastructure activities, because of their excellent transport and blasting properties. These explosives engender environmental concerns, due to atmospheric pollution caused by emission of dust and nitrogen oxides (NOx) from blasts, the latter characterised by the average emission factor of 5 kg (t AN explosive)-1. This first-of-its-kind review provides a concise literature account of the formation of NOx during blasting of AN-based explosives, employed in surface operations. We estimate the total NOx emission rate from AN-based explosives as 0.05 Tg (i.e., 5 × 104 t) N per annum, compared to the total global annual anthropogenic NOx emissions of 41.3 × 106 t N y-1. Although minor in the global sense, the large localised plumes from blasting exhibit high NOx concentration (500 ppm) exceeding up to 3000 times the international standards. This emission has profound consequences at mining sites and for adjacent atmospheric environment, necessitating expensive management of exclusion zones. The review describes different types of AN energetic materials for civilian applications, and summarises the essential properties and terminologies pertaining to their use. Furthermore, we recapitulate the mechanisms that lead to the formation of the reactive nitrogen species in blasting of AN-based explosives, review their implications to atmospheric air pollution, and compare the mechanisms with those experienced in other thermal and combustion operations. We also examine the mitigation approaches, including guidelines and operational-control measures. The review discusses the abatement technologies such as the formulation of new explosive mixtures, comprising secondary fuels, spin traps and other additives, in light of their effectiveness and efficiency. We conclude the review with a summary of unresolved problems

  1. Reconciling NOx emissions reductions and ozone trends in ...

    Science.gov (United States)

    Dynamic evaluation seeks to assess the ability of photochemical models to replicate changes in air quality as emissions and other conditions change. When a model fails to replicate an observed change, a key challenge is to discern whether the discrepancy is caused by errors in meteorological simulations, errors in emission magnitudes and changes, or inaccurate responses of simulated pollutant concentrations to emission changes. In this study, the Community Multiscale Air Quality (CMAQ) model is applied to simulate the ozone (O3) change after the NOx SIP Call and mobile emission controls substantially reduced nitrogen oxides (NOx) emissions in the eastern U.S. from 2002 to 2006. For both modeled and observed O3, changes in episode average daily maximal 8-h O3 were highly correlated (R2 = 0.89) with changes in the 95th percentile, although the magnitudes of reductions increased nonlinearly at high percentile O3 concentrations. Observed downward changes in mean NOx (−11.6 to −2.5 ppb) and 8-h O3 (−10.4 to −4.7 ppb) concentrations in metropolitan areas in the NOx SIP Call region were under-predicted by 31%–64% and 26%–66%, respectively. The under-predicted O3 improvements in the NOx SIP Call region could not be explained by adjusting for temperature biases in the meteorological input, or by considering uncertainties in the chemical reaction rate constants. However, the under-prediction in O3 improvements could be alleviated by 5%–31% by constraining NO

  2. Estimation of biogenic emissions with satellite-derived land use and land cover data for air quality modeling of Houston-Galveston ozone nonattainment area.

    Science.gov (United States)

    Byun, Daewon W; Kim, Soontae; Czader, Beata; Nowak, David; Stetson, Stephen; Estes, Mark

    2005-06-01

    The Houston-Galveston Area (HGA) is one of the most severe ozone non-attainment regions in the US. To study the effectiveness of controlling anthropogenic emissions to mitigate regional ozone nonattainment problems, it is necessary to utilize adequate datasets describing the environmental conditions that influence the photochemical reactivity of the ambient atmosphere. Compared to the anthropogenic emissions from point and mobile sources, there are large uncertainties in the locations and amounts of biogenic emissions. For regional air quality modeling applications, biogenic emissions are not directly measured but are usually estimated with meteorological data such as photo-synthetically active solar radiation, surface temperature, land type, and vegetation database. In this paper, we characterize these meteorological input parameters and two different land use land cover datasets available for HGA: the conventional biogenic vegetation/land use data and satellite-derived high-resolution land cover data. We describe the procedures used for the estimation of biogenic emissions with the satellite derived land cover data and leaf mass density information. Air quality model simulations were performed using both the original and the new biogenic emissions estimates. The results showed that there were considerable uncertainties in biogenic emissions inputs. Subsequently, ozone predictions were affected up to 10 ppb, but the magnitudes and locations of peak ozone varied each day depending on the upwind or downwind positions of the biogenic emission sources relative to the anthropogenic NOx and VOC sources. Although the assessment had limitations such as heterogeneity in the spatial resolutions, the study highlighted the significance of biogenic emissions uncertainty on air quality predictions. However, the study did not allow extrapolation of the directional changes in air quality corresponding to the changes in LULC because the two datasets were based on vastly different

  3. Reburning technology - a means to reduce NOx emissions

    International Nuclear Information System (INIS)

    Kremer, H.; Lorra, M.

    1999-01-01

    Nitrogen oxide emission control technologies can be classified as either combustion modifications to minimize the NO production or post-combustion flue gas treatment to reduce the NO concentration afterwards. The techniques for minimizing NOx Production includes the use of low-NOx burners, overfire air (staged combustion) and boiler combustion optimization. Procedures for flue gas treatment can be subdivided into selective catalytic reduction (SCR) or selective non-catalytic reduction (SNCR). The re burning process is a selective non-catalytic technology which is applicable to a wide variety of boilers and can be implemented within a relatively short period of time. The NOx reduction potential of this technique is in the range of 50 % up to 70 %. (author)

  4. Estimating the Biogenic Non-Methane Hydrocarbon Emissions over Greece

    Directory of Open Access Journals (Sweden)

    Ermioni Dimitropoulou

    2018-01-01

    Full Text Available Biogenic emissions affect the urban air quality as they are ozone and secondary organic aerosol (SOA precursors and should be taken into account when applying photochemical pollution models. The present study presents an estimation of the magnitude of non-methane volatile organic compounds (BNMVOCs emitted by vegetation over Greece. The methodology is based on computation developed with the aid of a Geographic Information System (GIS and theoretical equations in order to produce an emission inventory on a 6 × 6 km2 spatial resolution, in a temporal resolution of 1 h covering one year (2016. For this purpose, a variety of input data was used: updated satellite land-use data, land-use specific emission potentials, foliar biomass densities, temperature, and solar radiation data. Hourly, daily, and annual isoprene, monoterpenes, and other volatile organic compounds (OVOCs were estimated. In the area under study, the annual biogenic emissions were estimated up to 472 kt, consisting of 46.6% isoprene, 28% monoterpenes, and 25.4% OVOCs. Results delineate an annual cycle with increasing values from March to April, while maximum emissions were observed from May to September, followed by a decrease from October to January.

  5. The Gothenburg Protocol: NOx emissions problematic for Norway

    International Nuclear Information System (INIS)

    Lind, Oddvar

    2000-01-01

    The Gothenburg Protocol concerns long-range air pollution and is a continuation of earlier protocols and agreements. Its recommendations are based on calculations of where the greatest possible health- and environmental impact is obtained per dollar invested. European countries have done much to reduce the emission of sulphur dioxide. Norway and most other countries, however, have difficulties reducing their emissions of nitrogen oxides. In Norway, the emission of sulphur dioxide must also be substantially reduced, as the tolerance limit for SO2 in nature is low. It is socio-economically profitable for Norway to conform to the Gothenburg Protocol. One of the largest environmental problems in Norway is acid rain and death of fish. Although it is difficult to calculate the exact values of fishing-lakes and of reduced health injuries when the emissions of harmful waste gases are reduced, the profit is very high. 90% of the SO2 pollution in Norway is long-range transported from abroad. Yet Norway must reduce the domestic emissions from 30 000 to 22 000 tonnes the next 10 years. Most of the present emission of SO2 in Norway comes from the production of metals. The reduction goal can be achieved by a combination of improving industrial processes, SO2 cleaning, and reducing the sulphur content of oil. In many European countries, the greatest problem is the increasing emission of NOx and formation of ozone at the ground, which is largely due to the rapidly increasing motor traffic. In Norway, most of the NOx emission comes from the coastal traffic and the fishing fleet, followed by the motor traffic, the petroleum industry and the processing industry. The most cost-effective NOx reductions can be obtained in the North Sea by installing low-NOx gas turbines. In ships, catalytic cleaning of NOx and engine improvements will contribute. On land, the goods traffic can be made more efficient. Most of the emission of ammonia comes from agriculture, where special measures are

  6. Implications of diesel emissions control failures to emission factors and road transport NOx evolution

    Science.gov (United States)

    Ntziachristos, Leonidas; Papadimitriou, Giannis; Ligterink, Norbert; Hausberger, Stefan

    2016-09-01

    Diesel NOx emissions have been at the forefront of research and regulation scrutiny as a result of failures of late vehicle technologies to deliver on-road emissions reductions. The current study aims at identifying the actual emissions levels of late light duty vehicle technologies, including Euro 5 and Euro 6 ones. Mean NOx emission factor levels used in the most popular EU vehicle emission models (COPERT, HBEFA and VERSIT+) are compared with latest emission information collected in the laboratory over real-world driving cycles and on the road using portable emissions measurement systems (PEMS). The comparison shows that Euro 5 passenger car (PC) emission factors well reflect on road levels and that recently revealed emissions control failures do not call for any significant corrections. However Euro 5 light commercial vehicles (LCVs) and Euro 6 PCs in the 2014-2016 period exhibit on road emission levels twice as high as used in current models. Moreover, measured levels vary a lot for Euro 6 vehicles. Scenarios for future evolution of Euro 6 emission factors, reflecting different degree of effectiveness of emissions control regulations, show that total NOx emissions from diesel Euro 6 PC and LCV may correspond from 49% up to 83% of total road transport emissions in 2050. Unless upcoming and long term regulations make sure that light duty diesel NOx emissions are effectively addressed, this will have significant implications in meeting future air quality and national emissions ceilings targets.

  7. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    Science.gov (United States)

    Hertwich, Edgar G

    2013-09-03

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated.

  8. Emission of the main biogenic volatile organic compounds in France

    International Nuclear Information System (INIS)

    Luchetta, L.; Simon, V.; Torres, L.

    2000-01-01

    An estimation of biogenic emissions of the main non-methanic Volatile Organic Compounds (VOCs) due to the forest cover in France has been realized. 32 species representing 98% of French forest have been considered for the estimation. The latter dealt on a net made of 93 irregular spatial grids (Departments) with an average size of 75 km x 75 km. We assigned emission rates and foliar biomass densities specific to each of the 32 species. The environmental variables (temperature, light intensity) have been collected for the whole of French Departments. A special effort was extended so as to use ''Guenther's'' calculation algorithms, and specific emitting factors to species growing in France or in bordering countries. Along the way of the five years (1994-1998) of the study we have calculated the yearly mean of isoprene, mono-terpenes and Other Volatile Organic Compounds (OVOCs) emissions on the scale of the French Departments. At the national level isoprene emission is reckoned at 457 kt yr -1 and represents nearly 49% of the total emission, whereas mono-terpenes with 350 kt yr -1 and OVOCs with 129 kt yr -1 represent respectively 37% and 14% of the total. The yearly biogenic emission of VOCs in France represents virtually half the anthropic source. However in some regions (Mediterranean area) natural emissions can widely exceed anthropic emissions during certain periods. Let's note the whole of our results remains tinged with a great uncertainty because the estimations carried out are presented with correction factors that can reach values comprised between 4 and 7. (author)

  9. Computations of NOx emissions of domestic boilers

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, D. [Ecole Centrale de Paris, 92 - Chatenay-Malabry (France). EM2C Lab.; Gicquel, O.; Darabiha, N.

    2001-07-01

    Due to severe regulations concerning pollutant emissions, practical devices using combustion to release energy must be designed from the start using accurate, predictive numerical tools. A partially premixed methane/air flame in a two-dimensional configuration is investigated in this work. This configuration is close to those used in real domestic gas boilers. The flame structure and flow pattern are calculated using complex chemistry and detailed transport models. A post-processing method is then used to predict NO emission. Computations are performed for two configurations. The two cases have the same primary and secondary mass flow-rates and equivalence ratio. The only difference between them is the introduction of an insert inside the primary injector. Both results have been compared to measurements. Calculations are found to be in good agreement with the flame shapes observed experimentally. The classical burner shows a Bunsen-type flame while the one with an insert has a totally different shape (butterfly-type flame). NO emission levels are also well predicted in both configurations. The butterfly flame induces a reduction in NO emission. This reduction seems to be due to the increased mixing between the burnt gases and the secondary air jet, which homogenizes the temperature distribution and reduces the maximum temperature. (orig.)

  10. 40 CFR 60.4380 - How are excess emissions and monitor downtime defined for NOX?

    Science.gov (United States)

    2010-07-01

    ... downtime defined for NOX? 60.4380 Section 60.4380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... downtime defined for NOX? For the purpose of reports required under § 60.7(c), periods of excess emissions... NOX control will also be considered an excess emission. (2) A period of monitor downtime is any unit...

  11. Inversion of CO and NOx emissions using the adjoint of the IMAGES model

    Directory of Open Access Journals (Sweden)

    J.-F. Müller

    2005-01-01

    Full Text Available We use ground-based observations of CO mixing ratios and vertical column abundances together with tropospheric NO2 columns from the GOME satellite instrument as constraints for improving the global annual emission estimates of CO and NOx for the year 1997. The agreement between concentrations calculated by the global 3-dimensional CTM IMAGES and the observations is optimized using the adjoint modelling technique, which allows to invert for CO and NOx fluxes simultaneously, taking their chemical interactions into account. Our analysis quantifies a total of 39 flux parameters, comprising anthropogenic and biomass burning sources over large continental regions, soil and lightning emissions of NOx, biogenic emissions of CO and non-methane hydrocarbons, as well as the deposition velocities of both CO and NOx. Comparison between observed, prior and optimized CO mixing ratios at NOAA/CMDL sites shows that the inversion performs well at the northern mid- and high latitudes, and that it is less efficient in the Southern Hemisphere, as expected due to the scarsity of measurements over this part of the globe. The inversion, moreover, brings the model much closer to the measured NO2 columns over all regions. Sensitivity tests show that anthropogenic sources exhibit weak sensitivity to changes of the a priori errors associated to the bottom-up inventory, whereas biomass burning sources are subject to a strong variability. Our best estimate for the 1997 global top-down CO source amounts to 2760 Tg CO. Anthropogenic emissions increase by 28%, in agreement with previous inverse modelling studies, suggesting that the present bottom-up inventories underestimate the anthropogenic CO emissions in the Northern Hemisphere. The magnitude of the optimized NOx global source decreases by 14% with respect to the prior, and amounts to 42.1 Tg N, out of which 22.8 Tg N are due to anthropogenic sources. The NOx emissions increase over Tropical regions, whereas they decrease

  12. DEVELOPMENT OF SEASONAL AND ANNUAL BIOGENIC EMISSIONS INVENTORIES FOR THE U.S. AND CANADA

    Science.gov (United States)

    The report describes the development of a biogenic emissions inventory for the U.S. and Canada, to assess the role of biogenic emissions in ozone formation. Emission inventories were developed at hourly and grid (1/4 x 116 degree) level from input data at the same scales. Emissio...

  13. Update of NOx emission temporal profiles using CMAQ-HDDM

    Science.gov (United States)

    Bae, C.; Lee, J. B.; Kim, H. C.; Kim, B. U.; Kim, S.

    2017-12-01

    This study demonstrates the impact of revised temporal profiles of NOx emissions on air quality simulations in the Seoul Metropolitan Area (SMA), South Korea. Air pollutants such as ozone and nitrogen oxides can be harmful to the human body even with short-term exposure. Since most of air quality models use predefined temporal profiles which are often outdated or taken from different chemical environment, providing accurate temporal variation of emissions are challenging in prediction of correct local air quality. Considering secondary formation of pollutants are important in mega cities and temporal variations of emissions are not coincident with those of resultant concentrations, we utilized CMAQ-HDDM to link emissions and consequential concentrations from different time steps. Base simulations were conducted using WRF, SMOKE, and CMAQ modeling frame using CREATE 2015 and CAPSS 2013 emissions inventories for East Asia and South Korea, respectively. With current modeling system, modeled NOx concentrations underestimate 4% in the daytime (10-16 LST), but overestimate 30% in the nighttime during May to August 2015. Applying revised temporal profiles based on HDDM sensitivities, model performance was improved significantly. We conclude that the proposed temporal allocation method can be useful to reduce the model-observation discrepancies when the activity data for emission sources are difficult to obtain with a bottom-up approach.

  14. Understanding NOx emission trends in China based on OMI observations

    Science.gov (United States)

    Wang, Y.; Ga, D.; Smeltzer, C. D.; Yi, R.; Liu, Z.

    2012-12-01

    We analyze OMI observations of NO2 columns over China from 2005 to 2010. Simulations using a regional 3-D chemical transport model (REAM) are used to derive the top-down anthropogenic NOx emissions. The Kendall method is then applied to derive the emission trend. The emission trend is affected by the economic slowdown in 2009. After removing the effect of one year abnormal data, the overall emission trend is 4.35±1.42% per year, which is slower than the linear-regression trend of 5.8-10.8% per year reported for previous years. We find large regional, seasonal, and urban-rural variations in emission trend. The annual emission trends of Northeast China, Central China Plain, Yangtze River Delta and Pearl River Delta are 44.98±1.39%, 5.24±1.63%, 3.31±1.02% and -4.02±1.87%, respectively. The annual emission trends of four megacities, Beijing, Shanghai, Guangzhou and Shenzhen are 0.7±0.27%, -0.75±0.31%, -4.08±1.21% and -6.22±2.85%,, considerably lower than the regional averages. These results appear to suggest that a number of factors, including migration of high-emission industries, vehicle emission regulations, emission control measures of thermal power plants, increased hydro-power usage, have reduced or reversed the increasing trend of NOx emissions in more economically developed megacities and southern coastal regions.

  15. NOx Emission Reduction by Oscillating Combustion

    Energy Technology Data Exchange (ETDEWEB)

    John C. Wagner

    2004-03-31

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  16. NOx Emission Reduction by Oscillating combustion

    Energy Technology Data Exchange (ETDEWEB)

    Institute of Gas Technology

    2004-01-30

    High-temperature, natural gas-fired furnaces, especially those fired with preheated air, produce large quantities of NO{sub x} per ton of material processed. Regulations on emissions from industrial furnaces are becoming increasingly more stringent. In addition, competition is forcing operators to make their furnaces more productive and/or efficient. Switching from preheated air to industrial oxygen can increase efficiency and reduce NO{sub x}, but oxygen is significantly more costly than air and may not be compatible with the material being heated. What was needed, and what was developed during this project, is a technology that reduces NO{sub x} emissions while increasing furnace efficiency for both air- and oxy-fired furnaces. Oscillating combustion is a retrofit technology that involves the forced oscillation of the fuel flow rate to a furnace. These oscillations create successive, fuel-rich and fuel-lean zones within the furnace. Heat transfer from the flame to the load increases due to the more luminous fuel-rich zones, a longer overall flame length, and the breakup of the thermal boundary layer. The increased heat transfer shortens heat up times, thereby increasing furnace productivity, and reduces the heat going up the stack, thereby increasing efficiency. The fuel-rich and fuel-lean zones also produce substantially less NO{sub x} than firing at a constant excess air level. The longer flames and higher heat transfer rate reduces overall peak flame temperature and thus reduces additional NO{sub x} formation from the eventual mixing of the zones and burnout of combustibles from the rich zones. This project involved the development of hardware to implement oscillating combustion on an industrial scale, the laboratory testing of oscillating combustion on various types of industrial burners, and the field testing of oscillating combustion on several types of industrial furnace. Before laboratory testing began, a market study was conducted, based on the

  17. Emission of SO2 and NOx from power plants

    International Nuclear Information System (INIS)

    Boll Illerup, J.; Bruun, H.G.

    2003-01-01

    The European Parliament and the European Council have issued the directive on the limitation of emissions of certain pollutants into the air from large combustion plants (LCP directive, 2001/80/EC of 23 October 2001). The objective of the directive is to control and reduce emissions of SO 2 and NO X , to keep depositions and concentrations below the critical loads and levels. The directive was implemented in Denmark in 2002 and replaces Statutory Order no. 689 of 15 October 1990 about reduction of SO 2 , NO X and particulate matter from large combustion plants. The purpose of the project is to evaluate whether the emission limit values laid down by the LCP directive will - to the same extent as the Statutory Order from the Danish Energy Agency on emission quota for power plants - ensure the fulfilment of Denmark's obligations in relation to the EU directive on national emission ceilings and the similar obligations in the UNECE Gothenburg Protocol. The emission ceilings for Denmark in 2010 are 55,000 tons SO 2 and 127,000 tons NO X The project includes the power plants regulated by the quota law, which means all plants larger than 25 MWe. The emissions are calculated for three production scenarios: 1) the national supply scenario where the produced electricity equals the electricity used in Denmark, 2) the low price scenario with little export of electricity in the ELSAM area and little import in the Energi E2 area, and 3) the high price scenario with large export of electricity. The emissions are estimated from emission factors based on the LCP directive and emission factors based on a valuation of the actual concentration of SO, and NOX in the flue gas. If the emissions from the power plants just comply with the emission limit values given in the directive the total emissions of both SO 2 and NO X are higher than the quota for all three scenarios. If the emissions are assumed to depend on the actual technological status in 2010 at individual plants, e.g. installed

  18. NOx emissions in gas turbines: formation mechanism and reduction; Emissoes de NOx em turbinas a gas: mecanismos de formacao e algumas tecnologias de reducao

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, Antonio Garrido; Martins, Gilberto; Gallo, Waldyr L.R. [Universidade Metodista de Piracicaba, SP (Brazil)]. E-mails: agallego@unimep.br; gmartins@unimep.br; gallo@fem.unicamp.br

    2000-06-01

    Some aspects related to the NOx emissions from industrial gas turbines are studied. Brazilian and international emission regulations are discussed. The main oxide formation mechanisms inside the combustion chamber are presented, and the main strategies for the reduction of NOx emission are explored (including water and steam injection, staged combustion, low-NOx burners and catalytic reduction). The need for a revision on Brazilian regulations for NOx is evidenced. (author)

  19. Impact of biogenic emissions on feedbacks in the climate system

    Science.gov (United States)

    Krüger, Olaf

    2017-04-01

    Impact of biogenic emissions on feedbacks in the climate system Bio-geophysical feedback between marine or continental ecosystems and the atmosphere potentially can alter climate change. A prominent feedback loop which is under discussion since 1983 bases on the emission of biologically produced gases - molecular oxygen, sulphur containing compounds and possibly isoprene, supersaturated in oceanic waters - into the marine troposphere. These by-products of phytoplankton metabolism lead to aerosol production and procure sustained influence on climate via modulation of cloud optical properties. In this contribution some findings related to the above mentioned climate processes are presented with special emphasis on marine ecosystems. A comparison of marine and continental ecosystems is made and different processes with major impact on feedbacks in the climate system are discussed.

  20. High NO2/NOx emissions downstream of the catalytic diesel particulate filter: An influencing factor study.

    Science.gov (United States)

    He, Chao; Li, Jiaqiang; Ma, Zhilei; Tan, Jianwei; Zhao, Longqing

    2015-09-01

    Diesel vehicles are responsible for most of the traffic-related nitrogen oxide (NOx) emissions, including nitric oxide (NO) and nitrogen dioxide (NO2). The use of after-treatment devices increases the risk of high NO2/NOx emissions from diesel engines. In order to investigate the factors influencing NO2/NOx emissions, an emission experiment was carried out on a high pressure common-rail, turbocharged diesel engine with a catalytic diesel particulate filter (CDPF). NO2 was measured by a non-dispersive ultraviolet analyzer with raw exhaust sampling. The experimental results show that the NO2/NOx ratios downstream of the CDPF range around 20%-83%, which are significantly higher than those upstream of the CDPF. The exhaust temperature is a decisive factor influencing the NO2/NOx emissions. The maximum NO2/NOx emission appears at the exhaust temperature of 350°C. The space velocity, engine-out PM/NOx ratio (mass based) and CO conversion ratio are secondary factors. At a constant exhaust temperature, the NO2/NOx emissions decreased with increasing space velocity and engine-out PM/NOx ratio. When the CO conversion ratios range from 80% to 90%, the NO2/NOx emissions remain at a high level. Copyright © 2015. Published by Elsevier B.V.

  1. CONTROL OF NOX EMISSIONS FROM U.S. COAL-FIRED ELECTRIC UTILITY BOILERS

    Science.gov (United States)

    The paper discusses the control of nitrogen oxide (NOx) emissions from U.S. coal-fired electric utility boilers. (NOTE: In general, NOx control technologies are categorized as being either primary or secondary control technologies. Primary technologies reduce the amount of NOx pr...

  2. Impacts of the abolition of NOx emission trade; Effecten van de afschaffing van NOx- emissiehandel

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, P. [ECN Beleidsstudies, Petten (Netherlands)

    2012-09-15

    The consequences of abolishing the NOx emission trade have been analyzed for the installations that are covered by BEMS legislation (Dutch decree on emission limits for medium-sized combustion plants). The following aspects have been analyzed: What are the enforcement costs if these installations need to comply with BEMS requirements as of 2014?; How are these costs distributed across the various sectors and in particular for the sectors of onshore/offshore gas and oil extraction, greenhouse horticulture and hospitals?; To what extent can costs be lowered by allowing a 2-,3- or 5-year delay of the implementation date for existing installations in BEMS? To answer the above questions, data were used from the NEA (Netherlands Emission Authority) at sector level. Model calculations were conducted to determine the costs and effects [Dutch] De gevolgen van de afschaffing van NOx-emissiehandel zijn geanalyseerd voor het installatiepark dat terugvalt op BEMS-wetgeving (Besluit emissie-eisen middelgrote stookinstallaties). De volgende zaken zijn geanalyseerd: Wat zijn de nalevingskosten indien vanaf 2014 deze installaties aan de BEMS-eisen moeten voldoen?; Hoe zijn deze kosten verdeeld over de verschillende sectoren en in het bijzonder voor de sectoren offshore/onshore gas- en oliewinning, de glastuinbouw en ziekenhuizen?; In hoeverre zijn de kosten te verlagen door 2, 3 of 5 jaar uitstel te geven ten opzichte van de implementatiedatum voor bestaande installaties in BEMS? Voor het beantwoorden van de bovenstaande vragen is gebruik gemaakt van gegevens van de NEa (Nederlandse Emissie autoriteit) op sectorniveau. Met modelberekeningen zijn hiermee kosten en effecten bepaald.

  3. Emissions of biogenic sulfur gases from Alaskan tundra

    Science.gov (United States)

    Hines, Mark E.; Morrison, Michael C.

    1992-01-01

    Results of sulfur emission measurements made in freshwater and marine wetlands in Alaskan tundra during the Arctic Boundary Layer Expedition 2A (ABLE 3A) in July 1988 are presented. The data indicate that this type of tundra emits very small amounts of gaseous sulfur and, when extrapolated globally, accounts for a very small percentage of the global flux of biogenic sulfur to the atmosphere. Sulfur emissions from marine sites are up to 20-fold greater than fluxes from freshwater habitats and are dominated by dimethyl sulfide (DMS). Highest emissions, with a mean of 6.0 nmol/sq m/h, occurred in water-saturated wet meadow areas. In drier upland tundra sites, highest fluxes occurred in areas inhabited by mixed vegetation and labrador tea at 3.0 nmol/sq m/h and lowest fluxes were from lichen-dominated areas at 0.9 nmol/sq m/h. DMS was the dominant gas emitted from all these sites. Emissions of DMS were highest from intertidal soils inhabited by Carex subspathacea.

  4. Real Driving NOx Emissions of European Trucks and Detection of Manipulated Emission Systems

    Science.gov (United States)

    Pöhler, Denis; Adler, Tim; Krufczik, Chsristopher; Horbanski, Martin; Lampel, Johannes; Platt, Ulrich

    2017-04-01

    Nitrogen dioxide (NO2) is the most problematic pollutant in Europe and many other countries. NO2 has a negative impact for the health and the environment, and in most European cities the currently allowed mean annual limit of 40μg/m3 is exceeded. Vehicles, especially Diesel, are the most relevant source. They emit NOx (NO + NO2), and NO can also be converted to NO2 in the atmosphere. Thus vehicle NOx emissions are regulated in the EU with the EURO Norm Standard (e.g. EURO 6 since 1.1.2013 for trucks with 400mg/kWh). Trucks achieve these low emissions with complex emission after treatment systems. All EURO 6 trucks and almost all EURO 5 trucks use the SCR system consuming AdBlue to reduce the NOx emissions. Since the diesel emission scandal for cars, it is well known that real driving emissions (RDE) can be several times higher that the EURO Norm Standard. The main problem is that RDE are only randomly investigated. Here we present a study of NOx RDE of more than 250 randomly chosen trucks on German highways. The measurements were performed with a newly developed mobile NOx-ICAD + CO2 -instrument applying the plume chasing measurement principle, where the pollutants are investigated in the emission plume and were converted to emission factors to be compared to the EURO standard. For most trucks the brand, the model name, the country of registration and its EURO class could be determined and used in a statistical analysis. The observed NOx emission data show that typical truck RDE are in the range of the expected EURO Norm or slightly higher. However, almost every fourth truck from Eastern Europe show emissions much higher that the EURO Norm. This was not observed for German trucks. As the emissions increase up to a factor of 5 to 10 these view trucks contribute significantly to the air pollution. These high emissions clearly indicate a defect emission treatment system. Most likely it indicates illegal manipulated emissions systems where the AdBlue injection is

  5. Emissions of biogenic sulfur gases from northern bogs and fens

    Science.gov (United States)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Sulfur gases are important components of the global cycle of S. They contribute to the acidity of precipitation and they influence global radiation balance and climate. The role of terrestrial sources of biogenic S and their effect on atmospheric chemistry remain as major unanswered questions in our understanding of the natural S cycle. The role of northern wetlands as sources and sinks of gaseous S by measuring rates of S gas exchange as a function of season, hydrologic conditions, and gradients in tropic status was investigated. Experiments were conducted in wetlands in New Hampshire, particularly a poor fen, and in Mire 239, a poor fen at the Experimental Lakes Area (ELA) in Ontario. Emissions were determined using Teflon enclosures, gas cryotrapping methods and gas chromatography (GC) with flame photometric detection. Dynamic (sweep flow) and static enclosures were employed which yielded similar results. Dissolved S gases and methane were determined by gas stripping followed by GC.

  6. 76 FR 61100 - Notification of a Public Meeting of the Science Advisory Board Biogenic Carbon Emissions Panel

    Science.gov (United States)

    2011-10-03

    ... Advisory Board Biogenic Carbon Emissions Panel AGENCY: Environmental Protection Agency (EPA). ACTION... Office announces a public face-to-face meeting of the SAB Biogenic Carbon Emissions Panel to review EPA's draft Accounting Framework for Biogenic CO 2 Emissions from Stationary Sources (September 2011). DATES...

  7. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S

  8. Spatio-temporal variability in isotopic signatures of atmospheric NOx emissions from vehicles

    Science.gov (United States)

    Miller, D. J.; Wojtal, P.; O'Connor, M.; Clark, S.; Hastings, M. G.

    2015-12-01

    Atmospheric nitrogen oxides (NOx = NO + NO2) play key roles in atmospheric chemistry and radiative forcing. Their oxidation products, nitric acid or nitrate, have significant contributions to nitrogen (N) deposition, with implications for ecosystem health. On-road vehicle NOx sources currently dominate U.S. anthropogenic emission budgets, yet vehicle NOx emissions contributions to local and regional N deposition patterns are highly uncertain. NOx isotopic signatures offer a potentially valuable observational tool to trace source contributions to N deposition. We characterize the spatio-temporal variability of vehicle NOx emission isotopic signatures with a field and laboratory-verified technique for actively capturing NOx in solution to quantify the nitrogen isotopic composition (δ15N-NOx) to within ±1.5‰ (1σ) precision. We present a novel combination of on-road mobile and stationary urban δ15N-NOx measurements at minutes to hourly resolution along with NOx and CO2 concentration measurements. We evaluate spatial gradients of δ15N-NOx on U.S. Northeast and Midwest highways, including six urban metropolitan areas and rural interstate highways during summer and autumn. We also assess on-road diurnal δ15N-NOx variations over ~800 km driving distance in Providence, RI by targeting the upwind footprint of urban background measurements to distinguish background and source NOx. We observe on-road δ15N-NOx signatures range from -3 to -10‰ under different traffic conditions in the U.S. Northeast and Midwest. On-road δ15N-NOx daytime variations from -3 to -6‰ agree well with simultaneous urban background sampling in Providence, RI, suggesting that vehicles dominate NOx emissions in this region. We use these datasets to estimate the range of representative δ15N-NOx source signatures for U.S. vehicle fleet-integrated emission plumes. Our novel approach suggests that previously reported isotopic signatures for vehicle NOx are not necessarily representative. These

  9. 40 CFR 75.17 - Specific provisions for monitoring emissions from common, bypass, and multiple stacks for NOX...

    Science.gov (United States)

    2010-07-01

    ... emissions from common, bypass, and multiple stacks for NOX emission rate. 75.17 Section 75.17 Protection of..., and multiple stacks for NOX emission rate. Notwithstanding the provisions of paragraphs (a), (b), (c... this part to meet the monitoring and reporting requirements of a State or federal NOX mass emission...

  10. Impact of biogenic terpene emissions from Brassica napus on tropospheric ozone over Saxony (Germany): numerical investigation.

    Science.gov (United States)

    Renner, Eberhard; Münzenberg, Annette

    2003-01-01

    The role of biogenic emissions in tropospheric ozone production is currently under discussion and major aspects are not well understood yet. This study aims towards the estimation of the influence of biogenic emissions on tropospheric ozone concentrations over Saxony in general and of biogenic emissions from brassica napus in special. MODELLING TOOLS: The studies are performed by utilizing a coupled numerical modelling system consisting of the meteorological model METRAS and the chemistry transport model MUSCAT. For the chemical part, the Euro-RADM algorithm is used. EMISSIONS: Anthropogenic and biogenic emissions are taken into account. The anthropogenic emissions are introduced by an emission inventory. Biogenic emissions, VOC and NO, are calculated within the chemical transport model MUSCAT at each time step and in each grid cell depending on land use type and on the temperature. The emissions of hydrocarbons from forest areas as well as biogenic NO especially from agricultural grounds are considered. Also terpene emissions from brassica napus fields are estimated. SIMULATION SETUP AND METEOROLOGICAL CONDITIONS: The simulations were performed over an area with an extension of 160 x 140 km2 which covers the main parts of Saxony and neighboring areas of Brandenburg, Sachsen-Anhalt and Thuringia. Summer smog with high ozone concentrations can be expected during high pressure conditions on hot summer days. Typical meteorological conditions for such cases were introduced in an conceptual way. It is estimated that biogenic emissions change tropospheric ozone concentrations in a noticeable way (up to 15% to 20%) and, therefore, should not be neglected in studies about tropospheric ozone. Emissions from brassica napus do have a moderate potential to enhance tropospheric ozone concentrations, but emissions are still under consideration and, therefore, results vary to a high degree. Summing up, the effect of brassica napus terpene emissions on ozone concentrations is

  11. [Development of biogenic VOC emissions inventory with high temporal and spatial resolution].

    Science.gov (United States)

    Hu, Y; Zhang, Y; Xie, S; Zeng, L

    2001-11-01

    A new method was developed to estimate biogenic VOC emissions with high temporal and spatial resolution by use of Mesoscale Meteorology Modeling System Version5 (MM5). In this method, the isoprene and monoterpene standard emission factors for some types of tree in China were given and the standard VOC emission factors and seasonally average densities of leaf biomass for all types of vegetation were determined. A biogenic VOC emissions inventory in South China was established which could meet the requirement of regional air quality modeling. Total biogenic VOC emissions in a typical summer day were estimated to be 1.12 x 10(4) metric tons in an area of 729 km x 729 km of South China. The results showed the temporal and spatial distributions of biogenic VOC emission rates in this area. The results also showed that the geographical distribution of biogenic VOC emission rates depended on vegetation types and their distributions and the diurnal variation mainly depended on the solar radiation and temperature. The uncertainties of estimating biogenic VOC emissions were also discussed.

  12. Evaluation of NOX emissions from TVA coal-fired power plants

    International Nuclear Information System (INIS)

    Jones, J.W.; Stamey-Hall, S.

    1991-01-01

    The paper gives results of a preliminary evaluation of nitrogen oxide (NOx) emissions from 11 Tennessee Valley Authority (TVA) coal-fired power plants. Current EPA AP-42 emission factors for NOx from coal-fired utility boilers do not account for variations either in these emissions as a function of generating unit load, or in designs of boilers of the same general type, particularly wall-fired boilers. The TVA has compiled short-term NOx emissions data from 30 units at 11 TVA coal-fired plants. These units include cyclone, cell burner, single wall, opposed wall, single tangential, and twin tangential boiler firing designs. Tests were conducted on 29 of the 30 units at high load; 18 were also tested at reduced load. NOx emissions rates were calculated for each test and compared to the calculated rate for each boiler type using AP-42. Preliminary analysis indicates that: (1) TVA cyclone-fired units emit more NOx than estimated using AP-42; (2) TVA cell burner units emit considerably more NOx than estimated; (3) most TVA single-wall-fired units emit slightly more NOx than estimated; (4) most TVA single-furnace tangentially fired units emit less NOx than estimated at high load, but the same as (or more than) estimated at reduced load; and (5) most TVA twin-furnace tangentially fired units, at high load, emit slightly more NOx than estimated using AP-42

  13. NOx Emissions Performance and Correlation Equations for a Multipoint LDI Injector

    Science.gov (United States)

    He, Zhuohui J.; Chang, Clarence T.; Follen, Caitlin E.

    2015-01-01

    Lean Direct Injection (LDI) is a combustor concept that reduces nitrogen oxides (NOx) emissions. This paper looks at a 3-zone multipoint LDI concept developed by Parker Hannifin Corporation. The concept was tested in a flame-tube test facility at NASA Glenn Research Center. Due to test facility limitations, such as inlet air temperature and pressure, the flame-tube test was not able to cover the full set of engine operation conditions. Three NOx correlation equations were developed based on assessing NOx emissions dependencies on inlet air pressure (P3), inlet air temperature (T3), and fuel air equivalence ratio (?) to estimate the NOx emissions at the unreachable high engine power conditions. As the results, the NOx emissions are found to be a strong function of combustion inlet air temperature and fuel air equivalence ratio but a weaker function of inlet air pressure. With these three equations, the NOx emissions performance of this injector concept is calculated as a 66% reduction relative to the ICAO CAEP-6 standard using a 55:1 pressure-ratio engine cycle. Uncertainty in the NOx emissions estimation increases as the extrapolation range departs from the experimental conditions. Since maximum inlet air pressure tested was less than 50% of the full power engine inlet air pressure, a future experiment at higher inlet air pressure conditions is needed to confirm the NOx emissions dependency on inlet air pressure.

  14. Continuous reduction of cyclic adsorbed and desorbed NO(x) in diesel emission using nonthermal plasma.

    Science.gov (United States)

    Kuwahara, Takuya; Nakaguchi, Harunobu; Kuroki, Tomoyuki; Okubo, Masaaki

    2016-05-05

    Considering the recent stringent regulations governing diesel NO(x) emission, an aftertreatment system for the reduction of NO(x) in the exhaust gas has been proposed and studied. The proposed system is a hybrid method combining nonthermal plasma and NOx adsorbent. The system does not require precious metal catalysts or harmful chemicals such as urea and ammonia. In the present system, NO(x) in diesel emission is treated by adsorption and desorption by adsorbent as well as nonthermal plasma reduction. In addition, the remaining NO(x) in the adsorbent is desorbed again in the supplied air by residual heat. The desorbed NO(x) in air recirculates into the intake of the engine, and this process, i.e., exhaust gas components' recirculation (EGCR) achieves NO(x) reduction. Alternate utilization of two adsorption chambers in the system can achieve high-efficiency NO(x) removal continuously. An experiment with a stationary diesel engine for electric power generation demonstrates an energy efficiency of 154 g(NO2)/kWh for NO(x) removal and continuous NO(x) reduction of 70.3%. Considering the regulation against diesel emission in Japan, i.e., the new regulation to be imposed on vehicles of 3.5-7.5 ton since 2016, the present aftertreatment system fulfills the requirement with only 1.0% of engine power. Copyright © 2016. Published by Elsevier B.V.

  15. Biodiesel unsaturation degree effects on diesel engine NOx emissions and cotton wick flame temperature

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd Fareez Edzuan

    2017-01-01

    Full Text Available As compared with conventional diesel fuel, biodiesel has better lubricity and lower particulate matter (PM emissions however nitrogen oxides (NOx emissions generally increase in biodiesel-fuelled diesel engine. Strict regulation on NOx emissions is being implemented in current Euro 6 standard and it is expected to be tighter in next standard, thus increase of NOx cannot be accepted. In this study, biodiesel unsaturation degree effects on NOx emissions are investigated. Canola, palm and coconut oils are selected as the feedstock based on their unsaturation degree. Biodiesel blends of B20 were used to fuel a single cylinder diesel engine and exhaust emissions were sampled directly at exhaust tailpipe with a flue gas analyser. Biodiesel flame temperature was measured from a cotton wick burned in simple atmospheric conditions using a thermocouple. Fourier transform infrared (FTIR spectrometer was also used to identify the functional groups presence in the biodiesel blends. Oxygen content in biodiesel may promote complete combustion as the NOx emissions and flame temperatures were increased while the carbon monoxide (CO emissions were decreased for all biodiesel blends. It is interesting to note that the NOx emissions and flame temperatures were directly proportional with biodiesel unsaturation degree. It might be suggested that apart from excess oxygen and free radical formation, higher NOx emissions can also be caused by the elevated flame temperatures due to the presence of double bonds in unsaturated biodiesel.

  16. Emission and role of biogenic volatile organic compounds in biosphere

    International Nuclear Information System (INIS)

    Saleem, A.R.

    2013-01-01

    Plants are an essential part of the biosphere. Under the influence of climate change, plants respond in multiple ways within the ecosystem. One such way is the release of assimilated carbon back to the atmosphere in form of biogenic volatile organic compounds (BVOCs), which are produced by plants and are involved in plant growth, reproduction, defense and other . These compounds are emitted from vegetation into the atmosphere under different environmental situations. Plants produce an extensive range of BVOCs, including isoprenoids, sequisterpenes, aldehydes, alcohols and terpenes in different tissues above and below the ground. The emission rates vary with various environmental conditions and the plant growth stage in its life span.BVOCs are released under biotic and abiotic stress changes, like heat, drought, land-use changes, higher atmospheric CO concentrations, increased UV radiation and insect or disease attack. Plants emit BVOCs in atmosphere in order to avoid stress, and adapt to harsh circumstances. These compounds also have a significant role in plant-plant interaction, communication and competition. BVOCs have the ability to alter atmospheric chemistry; they readily react with atmospheric pollutant gases under high temperature and form tropospheric ozone, which is a potent air pollutant for global warming and disease occurrence. BVOCs may be a cause of photochemical smog and increase the stay of other GHGs in the atmosphere. Therefore, further study is required to assess the behavior of BVOCs in the biosphere as well as the atmosphere. (author)

  17. Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007

    Science.gov (United States)

    Hodnebrog, Ø.; Solberg, S.; Stordal, F.; Svendby, T. M.; Simpson, D.; Gauss, M.; Hilboll, A.; Pfister, G. G.; Turquety, S.; Richter, A.; Burrows, J. P.; Denier van der Gon, H. A. C.

    2012-09-01

    The hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors using state-of-the-art inventories for anthropogenic, biogenic and forest fire emissions. The models have been evaluated against measurement data, and processes leading to ozone formation have been quantified. Heat wave episodes are projected to occur more frequently in a future climate, and therefore this study also makes a contribution to climate change impact research. The plume from the Greek forest fires in August 2007 is clearly seen in satellite observations of CO and NO2 columns, showing extreme levels of CO in and downwind of the fires. Model simulations reflect the location and influence of the fires relatively well, but the modelled magnitude of CO in the plume core is too low. Most likely, this is caused by underestimation of CO in the emission inventories, suggesting that the CO/NOx ratios of fire emissions should be re-assessed. Moreover, higher maximum values are seen in WRF-Chem than in EMEP MSC-W, presumably due to differences in plume rise altitudes as the first model emits a larger fraction of the fire emissions in the lowermost model layer. The model results are also in fairly good agreement with surface ozone measurements. Biogenic VOC emissions reacting with anthropogenic NOx emissions are calculated to contribute significantly to the levels of ozone in the region, but the magnitude and geographical distribution depend strongly on the model and biogenic emission module used. During the July and August heat waves, ozone levels increased substantially due to a combination of forest fire emissions and the effect of high temperatures. We found that the largest temperature impact on ozone was through the temperature dependence of the biogenic emissions

  18. NOx EMISSIONS PRODUCED WITH COMBUSTION OF POWDER RIVER BASIN COAL IN A UTILITY BOILER

    Energy Technology Data Exchange (ETDEWEB)

    John S. Nordin; Norman W. Merriam

    1997-04-01

    The objective of this report is to estimate the NOx emissions produced when Powder River Basin (PRB) coal is combusted in a utility boiler. The Clean Air Act regulations specify NOx limits of 0.45 lb/mm Btu (Phase I) and 0.40 lb/mm Btu (Phase II) for tangentially fired boilers, and 0.50 lb/mm 13tu (Phase II) and 0.46 lb/mm Btu (Phase II) for dry-bottom wall-fired boilers. The Clean Air Act regulations also specify other limits for other boiler types. Compliance for Phase I has been in effect since January 1, 1996. Compliance for Phase II goes into effect on January 1, 2000. Emission limits are expressed as equivalent NO{sub 2} even though NO (and sometimes N{sub 2}O) is the NOx species emitted during combustion. Regulatory agencies usually set even lower NOx emission limits in ozone nonattainment areas. In preparing this report, Western Research Institute (WRI) used published test results from utilities burning various coals, including PRB coal, using state-of-the art control technology for minimizing NOx emissions. Many utilities can meet Clean Air Act NOx emission limits using a combination of tight combustion control and low-NOx burners and by keeping furnaces clean (i.e., no slag buildup). In meeting these limits, some utilities also report problems such as increased carbon in their fly ash and excessive furnace tube corrosion. This report discusses utility experience. The theory of NOx emission formation during coal combustion as related to coal structure and how the coal is combusted is also discussed. From this understanding, projections are made for NOx emissions when processed PRB coal is combusted in a test similar to that done with other coals. As will be shown, there are a lot of conditions for achieving low NOx emissions, such as tight combustion control and frequent waterlancing of the furnace to avoid buildup of deposits.

  19. The challenge to NOx emission control for heavy-duty diesel vehicles in China

    Directory of Open Access Journals (Sweden)

    K. B. He

    2012-10-01

    Full Text Available China's new "Twelfth Five-Year Plan" set a target for total NOx emission reduction of 10% for the period of 2011–2015. Heavy-duty diesel vehicles (HDDVs have been considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test program in 2008. This program included a sub-task for measuring on-road emission profiles of hundreds of HDDVs using portable emission measurement systems (PEMS. The major finding is that neither the on-road distance-specific (g km−1 nor brake-specific (g kWh−1 NOx emission factors for diesel buses and heavy-duty diesel trucks improved in most cases as emission standards became more stringent. For example, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3 ± 3.3 g km−1, 12.5 ± 1.3 g km−1, and 11.8 ± 2.0 g km−1, respectively. No statistically significant difference in NOx emission factors was observed between Euro II and III buses. Even for Euro IV buses equipped with SCR systems, the NOx emission factors are similar to Euro III buses. The data regarding real-time engine performance of Euro IV buses suggest the engine certification cycles did not reflect their real-world operating conditions. These new on-road test results indicate that previous estimates of total NOx emissions for HDDV fleet may be significantly underestimated. The new estimate in total NOx emissions for the Beijing HDDV fleet in 2009 is 37.0 Gg, an increase of 45% compared to the previous study. Further, we estimate that the total NOx emissions for the national HDDV fleet in 2009 are approximately 4.0 Tg, higher by 1.0 Tg (equivalent to 18% of total NOx emissions for vehicle fleet in 2009 than that estimated in the official report. This would also result in 4% increase in estimation of national anthropogenic NOx emissions. More effective control measures (such as promotion of CNG buses and a new in-use compliance testing program are urged to secure the goal of total NOx

  20. Impact of biogenic emissions on ozone formation in the Mediterranean area - a BEMA modelling study

    International Nuclear Information System (INIS)

    Thunis, P.; Cuvelier, C.

    2000-01-01

    The aim of this modelling study is to understand and quantify the influence of biogenic volatile organic compound (BVOC) emissions on the formation of tropospheric ozone in the Burriana area (north of Valencia) on the east coast of Spain. The mesoscale modelling system used consists of the meteorology/transport module TVM and the chemical reaction mechanism RACM. The results of the model simulations are validated and compared with the data collected during the biogenic emissions in the mediterranean area (BEMA) field campaign that took place in June 1997. Anthropogenic and biogenic emission inventories have been constructed with an hourly resolution. Averaged (over the land area and over 24 h) emission fluxes for AVOC, anthropogenic NO x , BVOC and biogenic NO x are given by 16.0, 9.9, 6.2, and 0.7 kg km -2 day -1 , respectively. The impact of biogenic emissions is investigated on peak ozone values by performing simulations with and without biogenic emissions; while keeping anthropogenic emissions constant. The impact on ozone formation is also studied in combination with some anthropogenic emissions reduction strategies, i.e. when anthropogenic VOC emissions and/or NO x emissions are reduced. A factor separation technique is applied to isolate the impact due to biogenic emissions from the overall impact due to biogenic and anthropogenic emissions together. The results indicate that the maximum impact of biogenic emissions on ozone formation represents at the most 10 ppb, while maximum ozone values are of the order of 100 ppb. At different locations the maximum impact is reached at different times of the day depending on the arrival time of the sea breeze. It is also shown that this impact does not coincide in time with the maximum simulated ozone concentrations that are reached over the day. By performing different emission reduction scenarios, BVOC impacts are found to be sensitive mainly to NO x , and not to AVOC. Finally, it is shown that amongst the various

  1. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    International Nuclear Information System (INIS)

    Ogle, Stephen M; Davis, Kenneth; Lauvaux, Thomas; Miles, Natasha L; Richardson, Scott; Schuh, Andrew; Cooley, Dan; Breidt, F Jay; West, Tristram O; Heath, Linda S; Smith, James E; McCarty, Jessica L; Gurney, Kevin R; Tans, Pieter; Denning, A Scott

    2015-01-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated emissions associated with managing lands for carbon sequestration and other activities, which often have large uncertainties. We report here on the challenges and results associated with a case study using atmospheric measurements of CO 2 concentrations and inverse modeling to verify nationally-reported biogenic CO 2 emissions. The biogenic CO 2 emissions inventory was compiled for the Mid-Continent region of United States based on methods and data used by the US government for reporting to the UNFCCC, along with additional sources and sinks to produce a full carbon balance. The biogenic emissions inventory produced an estimated flux of −408 ± 136 Tg CO 2 for the entire study region, which was not statistically different from the biogenic flux of −478 ± 146 Tg CO 2 that was estimated using the atmospheric CO 2 concentration data. At sub-regional scales, the spatial density of atmospheric observations did not appear sufficient to verify emissions in general. However, a difference between the inventory and inversion results was found in one isolated area of West-central Wisconsin. This part of the region is dominated by forestlands, suggesting that further investigation may be warranted into the forest C stock or harvested wood product data from this portion of the study area. The results suggest that observations of atmospheric CO 2 concentration data and inverse modeling could be used to verify biogenic emissions, and provide more confidence in biogenic GHG emissions reporting to the UNFCCC. (letter)

  2. Carbon-14 based determination of the biogenic fraction of industrial CO2 emissions : Application and validation

    NARCIS (Netherlands)

    Palstra, S. W. L.; Meijer, H. A. J.

    The C-14 method is a very reliable and sensitive method for industrial plants, emission authorities and emission inventories to verify data estimations of biogenic fractions of CO2 emissions. The applicability of the method is shown for flue gas CO2 samples that have been sampled in I-h intervals at

  3. Experimental Validation of a Virtual Engine-Out NOx Sensor for Diesel Emission Control

    NARCIS (Netherlands)

    Escobar Valdivieso, D.; Mentink, P.; Külah, S.; Forrai, A.; Willems, F.P.T.

    2017-01-01

    Motivated by automotive emissions legislations, a Virtual NOx sensor is developed. This virtual sensor consists of a real-time, phenomenological model that computes engine-out NOx by using the measured in-cylinder pressure signal from a single cylinder as its main input. The implementation is made

  4. Characterization of NOx emission in the suburbs of Tokyo based on simultaneous and real-time observations of atmospheric Ox and NOx

    Science.gov (United States)

    Matsumoto, J.

    2013-12-01

    Nitrogen oxides, NOx (NO, NO2), and volatile organic compounds, VOCs, are important as precursors of photochemical oxidants (tropospheric ozone, O3). To predict and control photochemical oxidants, NOx emission should be captured precisely. In addition, the ratio of NO2/NOx in the exhaust gas is also important as the initial balance between NO and NO2 in the atmosphere. Monitoring the NO2/NOx ratio in the exhaust gases is essential. Especially, the influence of the NOx emission on the real atmosphere should be explored. However, conversion reactions among NO, NO2 and O3 are typically in the time scale of minutes. The NO2/NOx ratio can change rapidly just after emission. Real-time observations of these compounds in the second time scale are essential. In view of photochemical oxidant, near emission sources of NO, ozone concentration can be easily perturbed by reaction with locally emitted NO. As an index of oxidant, the sum of O3 and NO2 (Ox = O3 + NO2) is useful. In this study, a simultaneous and real-time analyzer of atmospheric Ox and NOx has been developed utilizing the dual NO2 detectors based on laser-induced fluorescence technique (LIF), and characterization of NOx emission was explored through the observations of Ox and NOx in the suburbs of Tokyo. The dual LIF detectors consisted of one laser head, two LIF cells, and one common vacuum pump. As the Ox monitor, the excess NO was added to the sample and O3 was converted to NO2, and then the sum of O3 and NO2 in the sample was quantified at the 1st LIF cell. As the NOx monitor, the excess O3 was added to the sample and NO was converted to NO2, and then the sum of NO and NO2 in the sample was quantified at the 2nd LIF cell. Both the ';Ox' and ';NOx' channels in the dual LIF analyzer were simultaneously monitoring Ox and NOx in the sample air, respectively. The temporal resolution of observed data was 1 s. Typical conversion efficiencies of O3 and NO to NO2 were more than 0.98. The lower detection limits were 0

  5. Uncertainty in biogenic isoprene emissions and its impacts on tropospheric chemistry in East Asia.

    Science.gov (United States)

    Han, K M; Park, R S; Kim, H K; Woo, J H; Kim, J; Song, C H

    2013-10-01

    In this study, the accuracy of biogenic isoprene emission fluxes over East Asia during two summer months (July and August) was examined by comparing two tropospheric HCHO columns (ΩHCHO) obtained from the SCIAMACHY sensor and the Community Multi-scale Air Quality (CMAQ v4.7.1) model simulations, using three available biogenic isoprene emission inventories over East Asia: i) GEIA, ii) MEGAN and iii) MOHYCAN. From this comparative analysis, the tropospheric HCHO columns from the CMAQ model simulations, using the MEGAN and MOHYCAN emission inventories (Ω(CMAQ, MEGAN) and Ω(CMAQ, MOHYCAN)), were found to agree well with the tropospheric HCHO columns from the SCIAMACHY observations (Ω(SCIA)). Secondly, the propagation of such uncertainties in the biogenic isoprene emission fluxes to the levels of atmospheric oxidants (e.g., OH and HO2) and other atmospheric gaseous/particulate species over East Asia during the two summer months was also investigated. As the biogenic isoprene emission fluxes decreased from the GEIA to the MEGAN emission inventories, the levels of OH radicals increased by factors of 1.39 and 1.75 over Central East China (CEC) and South China, respectively. Such increases in the OH radical mixing ratios subsequently influence the partitioning of HO(y) species. For example, the HO2/OH ratios from the CMAQ model simulations with GEIA isoprene emissions were 2.7 times larger than those from the CMAQ model simulations based on MEGAN isoprene emissions. The large HO2/OH ratios from the CMAQ model simulations with the GEIA biogenic emission were possibly due to the overestimation of GEIA biogenic isoprene emissions over East Asia. It was also shown that such large changes in HO(x) radicals created large differences on other tropospheric compounds (e.g., NO(y) chemistry) over East Asia during the summer months. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Estimation of NOx emissions from NO2 hotspots in polluted background using satellite observations

    Science.gov (United States)

    Liu, Fei; Beirle, Steffen; Zhang, Qiang; Wagner, Thomas

    2015-04-01

    Satellite observations have been widely used to study NOx emissions from power plants and cities, which are major NOx sources with large impacts on human health and climate. The quantification of NOx emissions from measured column densities of NO2 requires information on the NOx lifetime, which is typically gained from atmospheric chemistry models. But some recent studies determined the NOx lifetime from the satellite observations as well by analyzing the downwind plume evolution; however, this approach was so far only applied for strong isolated 'point sources' located in clean background, like Riyadh in Saudi Arabia. Here we present a modified method for the quantification of NOx emissions and corresponding atmospheric lifetimes based on OMI observations of NO2, together with ECMWF wind fields, but without further model input, for hot spots located in polluted background. We use the observed NO2 patterns under calm wind conditions as proxy for the spatial patterns of NOx emissions; by this approach, even complex source distributions can be treated realistically. From the change of the spatial patterns of NO2 at larger wind speeds (separately for different wind directions), the effective atmospheric lifetime is fitted. Emissions are derived from integrated NO2 columns above background by division by the corresponding lifetime. NOx lifetimes and emissions are estimated for 19 power plants and 50 cities across China and the US. The derived lifetimes are 3.3 ± 1.2 hours on average with extreme values of 0.9 to 7.7 hours. The resulting very short lifetimes for mountainous sites have been found to be uncertain due to the potentially inaccurate ECMWF wind data in mountainous regions. The derived NOx emissions show overall good agreement with bottom-up inventories.

  7. Emissions of biogenic VOC from forest ecosystems in central Europe: Estimation and comparison with anthropogenic emission inventory

    International Nuclear Information System (INIS)

    Zemankova, Katerina; Brechler, Josef

    2010-01-01

    This paper describes a method of estimating emission fluxes of biogenic volatile organic compounds (BVOCs) based on the approach proposed by and the high-resolution Corine land-cover 2000 database (1 x 1 km resolution). The computed emission fluxes for the Czech Republic (selected for analysis as being representative of a heavily cultivated, central European country) are compared with anthropogenic emissions, both for the entire country and for individual administrative regions. In some regions, BVOC emissions are as high as anthropogenic emissions; however, in most regions the BVOC emissions are approximately 50% of the anthropogenic emissions. The yearly course of BVOC emissions (represented by monoterpenes and isoprene) is presented, along with the spatial distribution of annual mean values. Differences in emission distributions during winter (January) and summer (June) are also considered. - The amount of the biogenic VOCs emitted over the central Europe is comparable with the anthropogenic VOC emissions from this region.

  8. Biogenic emissions of greenhouse gases caused by arable and animal agriculture. Task 3. Overall biogenic greenhouse gas emissions from agriculture. National Inventories

    International Nuclear Information System (INIS)

    Hensen, A.

    1999-12-01

    The aim of the concerted action 'Biogenic Emissions of Greenhouse Gases Caused by Arable and Animal Agriculture' is to obtain an overview of the current knowledge on the emissions of greenhouse gases related to agricultural activities. This task 3 report summarises the activities that take place in the Netherlands with respect to agriculture emission inventories. This 'national' report was compiled using information from a number of Dutch groups. Therefore, from a national point of view the compilation does not contain new information. The paper can however be useful for other European partners to get an overview of how emission estimates are obtained in the Netherlands. 14 p

  9. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer

    Science.gov (United States)

    Zimmerman, P. R.; Greenberg, J. P.; Westberg, C. E.

    1988-01-01

    Tropospheric mixing ratios of methane, C2-C10 hydrocarbons, and carbon monoxide were measured over the Amazon tropical forest near Manaus, Amazonas, Brazil, in July and August 1985. The measurements, consisting mostly of altitude profiles of these gases, were all made within the atmospheric boundary layer up to an altitude of 1000 m above ground level. Data characterize the diurnal hydrocarbon composition of the boundary layer. Biogenic emissions of isoprene control hydroxyl radical concentrations over the forest. Biogenic emission fluxes of isoprene and terpenes are estimated to be 25,000 micrograms/sq m per day and 5600 micrograms/sq m per day, respectively. This isoprene emission is equivalent to 2 percent of the net primary productivity of the tropical forest. Atmospheric oxidation of biogenic isoprene and terpenes emissions from the Amazon forest may account for daily increases of 8-13 ppb for carbon monoxide in the planetary boundary layer.

  10. USER'S GUIDE TO THE PERSONAL COMPUTER VERSION OF THE BIOGENIC EMISSIONS INVENTORY SYSTEM (PC-BEIS2)

    Science.gov (United States)

    The document is a user's guide for an updated Personal Computer version of the Biogenic Emissions Inventory System (PC-BEIS2), allowing users to estimate hourly emissions of biogenic volatile organic compounds (BVOCs) and soil nitrogen oxide emissions for any county in the contig...

  11. PC-BEIS: a personal computer version of the biogenic emissions inventory system

    International Nuclear Information System (INIS)

    Pierce, T.E.; Waldruff, P.S.

    1991-01-01

    The US Environmental Protection Agency's Biogenic Emissions Inventory System (BEIS) has been adapted for use on IBM-compatible personal computers (PCs). PC-BEIS estimates hourly emissions of isoprene, α-pinene, other monoterpenes, and unidentified hydrocarbons for any county in the contiguous United States. To run the program, users must provide hourly data on ambient temperature, relative humidity, wind speed, cloud cover, and a code that identifies the particular county. This paper provides an overview of the method used to calculate biogenic emissions, shows an example application, and gives information on how to obtain a copy of the program

  12. Most effective combustion technologies for reducing Nox emissions in aero gas turbines

    Directory of Open Access Journals (Sweden)

    F Ommi

    2016-09-01

    Full Text Available The growth in air transportation volume has important global environmental impacts associated with the potential for climate change. Jet aircraft emissions are deposited directly into the upper atmosphere and some of them have a greater warming effect than gases emitted closer to the surface. One of the key issues that is addressed in virtually every aero gas turbine application is emissions, particularly Nox emissions. There are different technologies for nitrogen oxide emission control in aircraft gas turbines. In this paper, we have briefly reviewed the technologies with the greatest potential to reduce Nox emissions in aero engines.

  13. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    Science.gov (United States)

    Stephen M Ogle; Kenneth Davis; Thomas Lauvaux; Andrew Schuh; Dan Cooley; Tristram O West; Linda S Heath; Natasha L Miles; Scott Richardson; F Jay Breidt; James E Smith; Jessica L McCarty; Kevin R Gurney; Pieter Tans; A Scott. Denning

    2015-01-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country's contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated...

  14. Decreasing emissions of NOx relative to CO2 in East Asia inferred from satellite observations

    Science.gov (United States)

    Reuter, M.; Buchwitz, M.; Hilboll, A.; Richter, A.; Schneising, O.; Hilker, M.; Heymann, J.; Bovensmann, H.; Burrows, J. P.

    2014-11-01

    At present, global CO2 emission inventories are mainly based on bottom-up estimates that rely, for example, on reported fossil fuel consumptions and fuel types. The associated uncertainties propagate into the CO2-to-NOx emission ratios that are used in pollution prediction and monitoring, as well as into biospheric carbon fluxes derived by inverse models. Here we analyse simultaneous and co-located satellite retrievals from SCIAMACHY (ref. ; SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY) of the column-average dry-air mole fraction of CO2 (refs , ) and NO2 (refs , , ) for the years 2003-2011 to provide a top-down estimate of trends in emissions and in the ratio between CO2 and NOx emissions. Our analysis shows that the CO2-to-NOx emission ratio has increased by 4.2 +/- 1.7% yr-1 in East Asia. In this region, we find a large positive trend of CO2 emissions (9.8 +/- 1.7% yr-1), which we largely attribute to the growing Chinese economy. This trend exceeds the positive trend of NOx emissions (5.8 +/- 0.9% yr-1). Our findings suggest that the recently installed and renewed technology in East Asia, such as power plants, transportation and so on, is cleaner in terms of NOx emissions than the old infrastructure, and roughly matches relative emission levels in North America and Europe.

  15. NOx Emission Trading in a European Context: Discussion of the Economic, Legal, and Cultural Aspects

    Directory of Open Access Journals (Sweden)

    Chris P.A. Dekkers

    2001-01-01

    Full Text Available Emission trading is a new instrument in environmental policy. It is an alien notion in most European countries and it is often viewed with hesitation. The paper discusses the economic, legal, and perhaps more importantly, the cultural aspects to consider when one tries to explore the prospects for trading emissions of NOX and other substances in Europe. Issues to be addressed are the present legal framework in Europe in relation to the national emission ceilings on NOX and other substances on the basis of relevant EU directives and UNECE protocols. The paper will discuss the extent to which the legal framework within the EU imposes constraints on the design of a national emission trading scheme, and what options are available to fit emission trading into that legislative structure. The NOX emission trading programme developed in the Netherlands will be used to demonstrate the various aspects in a European context.

  16. NOx emission trends over Chinese cities estimated from OMI observations during 2005 to 2015

    Directory of Open Access Journals (Sweden)

    F. Liu

    2017-08-01

    Full Text Available Satellite nitrogen dioxide (NO2 observations have been widely used to evaluate emission changes. To determine trends in nitrogen oxides (NOx emission over China, we used a method independent of chemical transport models to quantify the NOx emissions from 48 cities and seven power plants over China, on the basis of Ozone Monitoring Instrument (OMI NO2 observations from 2005 to 2015. We found that NOx emissions over 48 Chinese cities increased by 52 % from 2005 to 2011 and decreased by 21 % from 2011 to 2015. The decrease since 2011 could be mainly attributed to emission control measures in power sector; while cities with different dominant emission sources (i.e., power, industrial, and transportation sectors showed variable emission decline timelines that corresponded to the schedules for emission control in different sectors. The time series of the derived NOx emissions was consistent with the bottom-up emission inventories for all power plants (r = 0. 8 on average, but not for some cities (r = 0. 4 on average. The lack of consistency observed for cities was most probably due to the high uncertainty of bottom-up urban emissions used in this study, which were derived from downscaling the regional-based emission data to city level by using spatial distribution proxies.

  17. NOx emission trends over Chinese cities estimated from OMI observations during 2005 to 2015

    Science.gov (United States)

    Liu, Fei; Beirle, Steffen; Zhang, Qiang; van der A, Ronald J.; Zheng, Bo; Tong, Dan; He, Kebin

    2017-08-01

    Satellite nitrogen dioxide (NO2) observations have been widely used to evaluate emission changes. To determine trends in nitrogen oxides (NOx) emission over China, we used a method independent of chemical transport models to quantify the NOx emissions from 48 cities and seven power plants over China, on the basis of Ozone Monitoring Instrument (OMI) NO2 observations from 2005 to 2015. We found that NOx emissions over 48 Chinese cities increased by 52 % from 2005 to 2011 and decreased by 21 % from 2011 to 2015. The decrease since 2011 could be mainly attributed to emission control measures in power sector; while cities with different dominant emission sources (i.e., power, industrial, and transportation sectors) showed variable emission decline timelines that corresponded to the schedules for emission control in different sectors. The time series of the derived NOx emissions was consistent with the bottom-up emission inventories for all power plants (r = 0. 8 on average), but not for some cities (r = 0. 4 on average). The lack of consistency observed for cities was most probably due to the high uncertainty of bottom-up urban emissions used in this study, which were derived from downscaling the regional-based emission data to city level by using spatial distribution proxies.

  18. Evaluation of biogenic emission flux and its impact on oxidants and inorganic aerosols in East Asia

    Science.gov (United States)

    Han, K. M.; Song, C. H.; Park, R. S.; Woo, J.; Kim, H.

    2010-12-01

    As a major precursor during the summer season, biogenic species are of primary importance in the ozone and SOAs (secondary organic aerosols) formations. Isoprene and mono-terpene also influence the level of inorganic aerosols (i.e. sulfate and nitrate) by controlling OH radicals. However, biogenic emission fluxes are highly uncertain in East Asia. While isoprene emission fluxes from the GEIA (Global Emissions Inventory Activity) and POET (Precursors of Ozone and their Effects in the Troposphere) inventories estimate approximately 20 Tg yr-1 in East Asia, those from the MEGAN (Model of Emissions of Gases and Aerosols from Nature) and MOHYCAN (MOdel for Hydrocarbon emissions by the CANopy) estimate approximately 10 Tg yr-1 and 5 Tg yr-1, respectively. In order to evaluate and/or quantify the magnitude of biogenic emission fluxes over East Asia, the tropospheric HCHO columns obtained from the GOME (Global Ozone Monitoring Experiment) observations were compared with the HCHO columns from the CMAQ (Community Multi-scale Air Quality) simulations over East Asia. In this study, US EPA Models-3/CMAQ v4.5.1 model simulation using the ACE-ASIA (Asia Pacific Regional Aerosol Characterization Experiment) emission inventory for anthropogenic pollutants and GEIA, POET, MEGAN, and MOHYCAN emission inventories for biogenic species was carried out in conjunction with the Meteorological fields generated from the PSU/NCAR MM5 (Pennsylvania state University/National Center for Atmospheric Research Meso-scale Model 5) model for the summer episodes of the year 2002. In addition to an evaluation of the biogenic emission flux, we investigated the impact of the uncertainty in biogenic emission inventory on inorganic aerosol formations and variations of oxidants (OH, O3, and H2O2) in East Asia. In this study, when the GEIA and POET emission inventories are used, the CMAQ-derived HCHO columns are highly overestimated over East Asia, particularly South China compared with GOME-derived HCHO

  19. Carbon-14 based determination of the biogenic fraction of industrial CO(2) emissions - application and validation.

    Science.gov (United States)

    Palstra, S W L; Meijer, H A J

    2010-05-01

    The (14)C method is a very reliable and sensitive method for industrial plants, emission authorities and emission inventories to verify data estimations of biogenic fractions of CO(2) emissions. The applicability of the method is shown for flue gas CO(2) samples that have been sampled in 1-h intervals at a coal- and wood-fired power plant and a waste incineration plant. Biogenic flue gas CO(2) fractions of 5-10% and 48-50% have been measured at the power plant and the waste incineration plant, respectively. The reliability of the method has been proven by comparison of the power plant results with those based on carbon mass input and output data of the power plant. At industrial plants with relatively low biogenic CO(2) fraction (<10%) the results need to be corrected for sampled (14)CO(2) from atmospheric air. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. BOREAS TGB-5 Biogenic Soil Emissions of NO and N2O

    Science.gov (United States)

    Levine, J. S.; Winstead, E. L.; Parsons, D. A. B.; Scholes, M. C.; Cofer, W. R.; Cahoon, D. R.; Sebacher, D. I.; Scholes, R. J.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB)-5 team made several measurements of trace gas concentrations and fluxes at various NSA sites. This data set contains biogenic soil emissions of nitric oxide and nitrous oxide that were measured over a wide range of spatial and temporal site parameters. Since very little is known about biogenic soil emissions of nitric oxide and nitrous oxide from the boreal forest, the goal of the measurements was to characterize the biogenic soil fluxes of nitric oxide and nitrous oxide from black spruce and jack pine areas in the boreal forest. The diurnal variation and monthly variation of the emissions was examined as well as the impact of wetting through natural or artificial means. Temporally, the data cover mid-August 1993, June to August 1994, and mid-July 1995. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).

  1. Evaluating NOx emission inventories for regulatory air quality modeling using satellite and air quality model data

    Science.gov (United States)

    Kemball-Cook, Susan; Yarwood, Greg; Johnson, Jeremiah; Dornblaser, Bright; Estes, Mark

    2015-09-01

    The purpose of this study was to assess the accuracy of NOx emissions in the Texas Commission on Environmental Quality's (TCEQ) State Implementation Plan (SIP) modeling inventories of the southeastern U.S. We used retrieved satellite tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) together with NO2 columns from the Comprehensive Air Quality Model with Extensions (CAMx) to make top-down NOx emissions estimates using the mass balance method. Two different top-down NOx emissions estimates were developed using the KNMI DOMINO v2.0 and NASA SP2 retrievals of OMI NO2 columns. Differences in the top-down NOx emissions estimates made with these two operational products derived from the same OMI radiance data were sufficiently large that they could not be used to constrain the TCEQ NOx emissions in the southeast. The fact that the two available operational NO2 column retrievals give such different top-down NOx emissions results is important because these retrievals are increasingly being used to diagnose air quality problems and to inform efforts to solve them. These results reflect the fact that NO2 column retrievals are a blend of measurements and modeled data and should be used with caution in analyses that will inform policy development. This study illustrates both benefits and challenges of using satellite NO2 data for air quality management applications. Comparison with OMI NO2 columns pointed the way toward improvements in the CAMx simulation of the upper troposphere, but further refinement of both regional air quality models and the NO2 column retrievals is needed before the mass balance and other emission inversion methods can be used to successfully constrain NOx emission inventories used in U.S. regulatory modeling.

  2. Enhanced biogenic emissions of nitric oxide and nitrous oxide following surface biomass burning

    Science.gov (United States)

    Anderson, Iris C.; Levine, Joel S.; Poth, Mark A.; Riggan, Philip J.

    1988-01-01

    Recent measurements indicate significantly enhanced biogenic soil emissions of both nitric oxide (NO) and nitrous oxide (N2O) following surface burning. These enhanced fluxes persisted for at least six months following the burn. Simultaneous measurements indicate enhanced levels of exchangeable ammonium in the soil following the burn. Biomass burning is known to be an instantaneous source of NO and N2O resulting from high-temperature combustion. Now it is found that biomass burning also results in significantly enhanced biogenic emissions of these gases, which persist for months following the burn.

  3. Characteristics of Biogenic VOCs Emission and its High-Resolution Emission Inventory in China

    Science.gov (United States)

    Li, L.; Li, Y.; Xie, S.

    2017-12-01

    Biogenic volatile organic compounds (BVOCs), with high emission and reactivity, can have substantial impacts on the haze and photochemical pollution. It is essential to establish an accurate high-resolution BVOC emission inventory in China for air quality simulation and decision making. Firstly, a semi-static enclosure technique is developed for the field measurements of BVOC emission rates from 50 plant species in China. Using the GC-MS/FID system, 103 VOC species for each plant species are measured. Based on the field measurements in our study and the reported emission rates at home and abroad, a methodology for determining the emission categories of BVOCs is developed using statistical analysis. The isoprene and monoterpene emission rates of 192 plant species/genera in China are determined based on the above emission categories. Secondly, a new vegetation classification with 82 plant functional types (PFTs) is developed based on the most detailed and latest vegetation investigations, China's official statistical data and Vegetation Atlas of China (1:1,000,000). The leaf biomass is estimated based on provincial vegetation volume and production with biomass-apportion models. The WRF model is used to determine meteorological variables at a high spatio-temporal resolution. Using MEAGNv2.1 and the determined emission rates in our study, the high-resolution emission inventories of isoprene, 37 monoterpene species, 32 sesquiterpene species, and other VOCs (OVOCs) from 82 PFTs in China for 1981-2013 are established. The total annual BVOC emissions in 2013 are 55.88 Tg, including 33.87 Tg isoprene, 6.36 Tg monoterpene, 1.29 Tg sesquiterpene, and 14.37 Tg OVOCs. The distribution of isoprene emission fluxes is consistent with the distribution of broadleaf trees, especially tree species with high or higher emission potential. During 1981-2013, China's BVOC emissions have increased by 47.48% at an average rate of 1.80% yr-1. Emissions of isoprene have the largest enhancement

  4. A smart and robust NOx emission evaluation tool for the environmental screening of heavy-duty vehicles

    NARCIS (Netherlands)

    Vermeulen, R.J.; Ligterink, N.E.; Vonk, W.A.; Baarbe, H.L.

    2012-01-01

    At the request of the Dutch Ministry of Infrastructure and Environment a smart measurement system was developed to judge the real world NOx emission of heavy-duty vehicles. The measurement system uses a NOx - O2 sensor for the measurement of the tail pipe concentration of NOx and to estimate the

  5. The present-day and future impact of NOx emissions from subsonic aircraft on the atmosphere in relation to the impact of NOx surface sources

    Directory of Open Access Journals (Sweden)

    G. J. M. Velders

    Full Text Available The effect of present-day and future NOx emissions from aircraft on the NOx and ozone concentrations in the atmosphere and the corresponding radiative forcing were studied using a three-dimensional chemistry transport model (CTM and a radiative model. The effects of the aircraft emissions were compared with the effects of the three most important anthropogenic NOx surface sources: road traffic, electricity generation and industrial combustion. From the model results, NOx emissions from aircraft are seen to cause an increase in the NOx and ozone concentrations in the upper troposphere and lower stratosphere, and a positive radiative forcing. For the reference year 1990, the aircraft emissions result in an increase in the NOx concentration at 250 hPa of about 20 ppt in January and 50 ppt in July over the eastern USA, the North Atlantic Flight Corridor and Western Europe, corresponding to a relative increase of about 50%. The maximum increase in the ozone concentrations due to the aircraft emissions is about 3-4 ppb in July over the northern mid-latitudes, corresponding to a relative increase of about 3-4%. The aircraft-induced ozone changes cause a global average radiative forcing of 0.025 W/m2 in July. According to the ANCAT projection for the year 2015, the aircraft NOx emissions in that year will be 90% higher than in the year 1990. As a consequence of this, the calculated NOx perturbation by aircraft emissions increases by about 90% between 1990 and 2015, and the ozone perturbation by about 50-70%. The global average radiative forcing due to the aircraft-induced ozone changes increases by about 50% between 1990 and 2015. In the year 2015, the effects of the aircraft emissions on the ozone burden and radiative forcing are clearly larger than the individual effects of the NOx surface sources. Taking chemical conversion in the aircraft plume into account in the CTM explicitly, by means of modified aircraft NOx emissions, a significant reduction

  6. The present-day and future impact of NOx emissions from subsonic aircraft on the atmosphere in relation to the impact of NOx surface sources

    Directory of Open Access Journals (Sweden)

    P. J. M. Valks

    1999-08-01

    Full Text Available The effect of present-day and future NOx emissions from aircraft on the NOx and ozone concentrations in the atmosphere and the corresponding radiative forcing were studied using a three-dimensional chemistry transport model (CTM and a radiative model. The effects of the aircraft emissions were compared with the effects of the three most important anthropogenic NOx surface sources: road traffic, electricity generation and industrial combustion. From the model results, NOx emissions from aircraft are seen to cause an increase in the NOx and ozone concentrations in the upper troposphere and lower stratosphere, and a positive radiative forcing. For the reference year 1990, the aircraft emissions result in an increase in the NOx concentration at 250 hPa of about 20 ppt in January and 50 ppt in July over the eastern USA, the North Atlantic Flight Corridor and Western Europe, corresponding to a relative increase of about 50%. The maximum increase in the ozone concentrations due to the aircraft emissions is about 3-4 ppb in July over the northern mid-latitudes, corresponding to a relative increase of about 3-4%. The aircraft-induced ozone changes cause a global average radiative forcing of 0.025 W/m2 in July. According to the ANCAT projection for the year 2015, the aircraft NOx emissions in that year will be 90% higher than in the year 1990. As a consequence of this, the calculated NOx perturbation by aircraft emissions increases by about 90% between 1990 and 2015, and the ozone perturbation by about 50-70%. The global average radiative forcing due to the aircraft-induced ozone changes increases by about 50% between 1990 and 2015. In the year 2015, the effects of the aircraft emissions on the ozone burden and radiative forcing are clearly larger than the individual effects of the NOx surface sources. Taking chemical conversion in the aircraft plume into account in the CTM explicitly, by means of modified aircraft NOx emissions, a significant reduction

  7. Uncertainty in biogenic isoprene emissions and its impacts on tropospheric chemistry in East Asia

    International Nuclear Information System (INIS)

    Han, K.M.; Park, R.S.; Kim, H.K.; Woo, J.H.; Kim, J.; Song, C.H.

    2013-01-01

    In this study, the accuracy of biogenic isoprene emission fluxes over East Asia during two summer months (July and August) was examined by comparing two tropospheric HCHO columns (Ω HCHO ) obtained from the SCIAMACHY sensor and the Community Multi-scale Air Quality (CMAQ v4.7.1) model simulations, using three available biogenic isoprene emission inventories over East Asia: i) GEIA, ii) MEGAN and iii) MOHYCAN. From this comparative analysis, the tropospheric HCHO columns from the CMAQ model simulations, using the MEGAN and MOHYCAN emission inventories (Ω CMAQ, MEGAN and Ω CMAQ, MOHYCAN ), were found to agree well with the tropospheric HCHO columns from the SCIAMACHY observations (Ω SCIA ). Secondly, the propagation of such uncertainties in the biogenic isoprene emission fluxes to the levels of atmospheric oxidants (e.g., OH and HO 2 ) and other atmospheric gaseous/particulate species over East Asia during the two summer months was also investigated. As the biogenic isoprene emission fluxes decreased from the GEIA to the MEGAN emission inventories, the levels of OH radicals increased by factors of 1.39 and 1.75 over Central East China (CEC) and South China, respectively. Such increases in the OH radical mixing ratios subsequently influence the partitioning of HO y species. For example, the HO 2 /OH ratios from the CMAQ model simulations with GEIA isoprene emissions were 2.7 times larger than those from the CMAQ model simulations based on MEGAN isoprene emissions. The large HO 2 /OH ratios from the CMAQ model simulations with the GEIA biogenic emission were possibly due to the overestimation of GEIA biogenic isoprene emissions over East Asia. It was also shown that such large changes in HO x radicals created large differences on other tropospheric compounds (e.g., NO y chemistry) over East Asia during the summer months. - Highlights: • GEIA isoprene emissions were possibly overestimated over East Asia. • Using MEGAN or MOHYCAN emissions in CMAQ well captured

  8. Influence of satellite-derived photolysis rates and NOx emissions on Texas ozone modeling

    Science.gov (United States)

    Tang, W.; Cohan, D. S.; Pour-Biazar, A.; Lamsal, L. N.; White, A. T.; Xiao, X.; Zhou, W.; Henderson, B. H.; Lash, B. F.

    2015-02-01

    Uncertain photolysis rates and emission inventory impair the accuracy of state-level ozone (O3) regulatory modeling. Past studies have separately used satellite-observed clouds to correct the model-predicted photolysis rates, or satellite-constrained top-down NOx emissions to identify and reduce uncertainties in bottom-up NOx emissions. However, the joint application of multiple satellite-derived model inputs to improve O3 state implementation plan (SIP) modeling has rarely been explored. In this study, Geostationary Operational Environmental Satellite (GOES) observations of clouds are applied to derive the photolysis rates, replacing those used in Texas SIP modeling. This changes modeled O3 concentrations by up to 80 ppb and improves O3 simulations by reducing modeled normalized mean bias (NMB) and normalized mean error (NME) by up to 0.1. A sector-based discrete Kalman filter (DKF) inversion approach is incorporated with the Comprehensive Air Quality Model with extensions (CAMx)-decoupled direct method (DDM) model to adjust Texas NOx emissions using a high-resolution Ozone Monitoring Instrument (OMI) NO2 product. The discrepancy between OMI and CAMx NO2 vertical column densities (VCDs) is further reduced by increasing modeled NOx lifetime and adding an artificial amount of NO2 in the upper troposphere. The region-based DKF inversion suggests increasing NOx emissions by 10-50% in most regions, deteriorating the model performance in predicting ground NO2 and O3, while the sector-based DKF inversion tends to scale down area and nonroad NOx emissions by 50%, leading to a 2-5 ppb decrease in ground 8 h O3 predictions. Model performance in simulating ground NO2 and O3 are improved using sector-based inversion-constrained NOx emissions, with 0.25 and 0.04 reductions in NMBs and 0.13 and 0.04 reductions in NMEs, respectively. Using both GOES-derived photolysis rates and OMI-constrained NOx emissions together reduces modeled NMB and NME by 0.05, increases the model

  9. Significance of Future Biogenic and Fire Emissions on Regional Aerosol Burden

    Science.gov (United States)

    Lim, A.; Tai, A. P. K.; Val Martin, M.

    2017-12-01

    Land-use and land cover changes have been found to substantially affect atmospheric aerosols and climate worldwide1,2, but the complex mechanisms and pathways involved in the interactions between terrestrial processes and aerosols are not well understood. Here we use a global coupled aerosol chemistry-climate-land model (CESM with CAM5 using Modal Aerosol Module 3 and CLM4.5 in Satellite Phenology mode) to investigate how aerosols respond to future climate and land-use changes, and in turn, affects cloud cover and other hydrometeorological variables in the long term. Time-sliced simulations are conducted for a base year (2000) as a base case; then three future projected scenarios for year 2050 driven by land-use and climate projections following the Representative Concentration Pathways RCP8.53 are conducted. The first scenario considers future projected biogenic emissions, allowing us to investigate the effect of increased plant activity and enhanced biogenic emissions due to future land-use and climate on aerosol burden. The second scenario considers future biomass burning emissions, allowing us to investigate the effect of increased biomass burning emissions due to future land-use and climate on aerosol burden. The third scenario combines the projected changes in the two emissions. We find that both biogenic and biomass burning emissions contribute significantly to local aerosol and cloud condensation nuclei (CCN) concentrations. The contribution from biogenic emissions to local aerosol burden is smaller in magnitude (10% to 20%), but the effects are ubiquitous in many places globally. Meanwhile, the contribution from biomass burning emissions can be much higher in magnitude (63%)4, but concentrated in heavily burned regions and occurs only during burning season. Effects of both emissions are not additive since a larger flux of emissions causes greater deposition. The resulting further impacts of land-use change on regional hydrometeorology are also explored

  10. Reducing NOx emissions from a biodiesel-fueled engine by use of low-temperature combustion.

    Science.gov (United States)

    Fang, Tiegang; Lin, Yuan-Chung; Foong, Tien Mun; Lee, Chia-Fon

    2008-12-01

    Biodiesel is popularly discussed in many countries due to increased environmental awareness and the limited supply of petroleum. One of the main factors impacting general replacement of diesel by biodiesel is NOx (nitrogen oxides) emissions. Previous studies have shown higher NOx emissions relative to petroleum diesel in traditional direct-injection (DI) diesel engines. In this study, effects of injection timing and different biodiesel blends are studied for low load [2 bar IMEP (indicated mean effective pressure)] conditions. The results show that maximum heat release rate can be reduced by retarding fuel injection. Ignition and peak heat release rate are both delayed for fuels containing more biodiesel. Retarding the injection to post-TDC (top dead center) lowers the peak heat release and flattens the heat release curve. It is observed that low-temperature combustion effectively reduces NOx emissions because less thermal NOx is formed. Although biodiesel combustion produces more NOx for both conventional and late-injection strategies, with the latter leading to a low-temperature combustion mode, the levels of NOx of B20 (20 vol % soy biodiesel and 80 vol % European low-sulfur diesel), B50, and B100 all with post-TDC injection are 68.1%, 66.7%, and 64.4%, respectively, lower than pure European low-sulfur diesel in the conventional injection scenario.

  11. Observations of biogenic isoprene emissions and atmospheric chemistry components at the Savé super site in Benin, West Africa, during the DACCIWA field campaign.

    Science.gov (United States)

    Jambert, Corinne; Pacifico, Federica; Delon, Claire; Lohou, Fabienne; Reinares Martinez, Irene; Brilouet, Pierre-Etienne; Derrien, Solene; Dione, Cheikh; Brosse, Fabien; Gabella, Omar; Pedruzzo Bagazgoitia, Xavier; Durand, Pierre

    2017-04-01

    Tropospheric oxidation of VOCs (Volatile Organic Compounds), including isoprene, in the presence of NOx and sunlight leads to the formation of O3 and Secondary Organic Aerosols (SOA). Changes in NO or VOCs sources will consequently modify their atmospheric concentrations and thus, the rate of O3 production and SOA formation. NOx have also an impact on the abundance of the hydroxyl radical (OH) which determines the lifetime of some pollutants and greenhouse gases. Anthropogenic emissions of pollutants from mega cities located on the Guinean coast in South West Africa are likely to increase in the next decades due to a strong anthropogenic pressure and to land use changes at the regional or continental scale. The consequences on regional air quality and on pollutant deposition onto surfaces may have some harmful effects on human and ecosystem health. Furthermore, the regional climate and water cycle are affected by changes in atmospheric chemistry. When transported northward on the African continent, polluted air masses meet biogenic emissions from rural areas which contributes to increase ozone and SOA production, in high temperature and solar radiation conditions, highly favourable to enhanced photochemistry. During the Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) field campaign, we measured the atmospheric chemical composition and the exchanges of trace components in a hinterland area of Benin, at the Savé super-site (8°02'03" N, 2°29'11″ E). The observations, monitored in June and July 2016, in a rural mixed agricultural area, include near surface concentrations of ozone (O3), carbon monoxide (CO), nitrogen oxides (NOx) and isoprene, isoprene fluxes and meteorological parameters. We observed hourly average concentrations of O3 up to 50 ppb, low NOx concentrations (ca. 1 ppb and CO concentrations between 75 and 300 ppb. An 8 m tower was equipped with a Fast Isoprene Sensor and sonic anemometer to measure isoprene concentrations and

  12. On the Effects of NOx Emission Control and Drought on an Ozone-Polluted Ecosystem

    Science.gov (United States)

    Pusede, S.; Geddes, J.; Buysse, C. E.; Esperanza, A.; Najacht, E.; Anderson, J. F.; Bailey, C. B.; Munyan, J.

    2017-12-01

    Regulatory emission controls are typically designed to reduce ozone when ozone is highest. However, high ozone concentrations are often asynchronous with periods of the greatest ozone harm to plants and ecosystems, particularly during drought. Because ozone production chemistry is nonlinear, emissions reductions designed to be effective in polluted cities may have a range of effects on downwind ecosystems. Here, we investigate the influence of regional NOx emission controls on ozone pollution in Sequoia National Park (SNP). First, we show that steep declines in NOx throughout the region have had smaller impacts in SNP than in cities upwind, and that these reductions have been least effective at times of day and year when plants are most sensitive to ozone. Second, in recent years (2012-2015), California experienced the worst drought in recorded history. We present observational evidence of the ozone response in SNP to drought conditions, finding that the drought altered the chemical sensitivity of local ozone production to NOx emissions and, hence, the effectiveness of NOx emission controls. We show that drought impacts on the ozone sensitivity to NOx have persisted at least two years since the drought ended.

  13. Modelling the spatial distribution of SO2 and NO(x) emissions in Ireland

    NARCIS (Netherlands)

    Kluizenaar, Y.de; Aherne, J.; Farrell, E.P.

    2001-01-01

    The spatial distributions of sulphur dioxide (SO2) and nitrogen oxides (NO(x)) emissions are essential inputs to models of atmospheric transport and deposition. Information of this type is required for international negotiations on emission reduction through the critical load approach.

  14. Field test of available methods to measure remotely SOx and NOx emissions from ships

    NARCIS (Netherlands)

    Balzani Lööv, J.M.; Alfoldy, B.; Gast, L.F.L.; Hjorth, J.; Lagler, F.; Mellqvist, J.; Beecken, J.; Berg, N.; Duyzer, J.; Westrate, H.; Swart, D.P.J.; Berkhout, A.J.C.; Jalkanen, J.P.; Prata, A.J.; Van Der Hoff, G.R.; Borowiak, A.

    2014-01-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors based on remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the

  15. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM A LOWLAND TROPICAL WET FOREST IN COSTA RICA

    Science.gov (United States)

    Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCS) at a lowland tropical wet forest site in Costa Rica. Ten of the species. examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total bas...

  16. Foliar leaching, translocation, and biogenic emission of 35S in radiolabeled loblolly pines

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.

    1990-01-01

    Foliar leaching, basipetal (downward) translocation, and biogenic emission of sulfur (S), as traced by 35 S, were examined in a field study of loblolly pines. Four trees were radiolabeled by injection with amounts of 35 S in the 6-8 MBq range, and concentrations in needle fall, stemflow, throughfall, and aboveground biomass were measured over a period of 15-20 wk after injection. The contribution of dry deposition to sulfate-sulfur (SO 4 2- -S) concentrations in net throughfall (throughfall SO 4 2- -S concentration minus that in incident precipitation) beneath all four trees was > 90%. Calculations indicated that about half of the summertime SO 2 dry deposition flux to the loblolly pines was fixed in the canopy and not subsequently leached by rainfall. Based on mass balance calculations, 35 S losses through biogenic emissions from girdled trees were inferred to be 25-28% of the amount injected. Estimates based on chamber methods and mass balance calculations indicated a range in daily biogenic S emission of 0.1-10 μg/g dry needles. Translocation of 35 S to roots in nongirdled trees was estimated to be between 14 and 25% of the injection. It is hypothesized that biogenic emission and basipetal translocation of S (and not foliar leaching) are important mechanisms by which forest trees physiologically adapt to excess S in the environment

  17. UNITED STATES LAND USE INVENTORY FOR ESTIMATING BIOGENIC OZONE PRECURSOR EMISSIONS

    Science.gov (United States)

    The U.S. Geological Survey's (USGS) Earth Resources Observation System (EROS) Data Center's (EDC) 1-km classified land cover data are combined with other land use data using a Geographic Information System (GIS) to create the Biogenic Emissions Landcover Database (BELD). The land...

  18. Future changes in biogenic isoprene emissions: how might they affect regional and global atmospheric chemistry?

    Science.gov (United States)

    Christine Wiedinmyer; Xuexi Tie; Alex Guenther; Ron Neilson; Claire. Granier

    2006-01-01

    Isoprene is emitted from vegetation to the atmosphere in significant quantities, and it plays an important role in the reactions that control tropospheric oxidant concentrations. As future climatic and land-cover changes occur, the spatial and temporal variations, as well as the magnitude of these biogenic isoprene emissions, are expected to change. This paper presents...

  19. Differences in satellite-derived NOx emission factors between Eurasian and North American boreal forest fires

    Science.gov (United States)

    Schreier, S. F.; Richter, A.; Schepaschenko, D.; Shvidenko, A.; Hilboll, A.; Burrows, J. P.

    2015-11-01

    Current fire emission inventories apply universal emission factors (EFs) for the calculation of NOx emissions over large biomes such as boreal forest. However, recent satellite-based studies over tropical and subtropical regions have indicated spatio-temporal variations in EFs within specific biomes. In this study, satellite measurements of tropospheric NO2 vertical columns (TVC NO2) from the GOME-2 instrument and fire radiative power (FRP) from MODIS are used for the estimation of fire emission rates (FERs) of NOx over Eurasian and North American boreal forests. The retrieval of TVC NO2 is based on a stratospheric correction using simulated stratospheric NO2 instead of applying the reference sector method, which was used in a previous study. The model approach is more suitable for boreal latitudes. TVC NO2 and FRP are spatially aggregated to a 1° × 1° horizontal resolution and temporally averaged to monthly values. The conversion of the satellite-derived tropospheric NO2 columns into production rates of NOx from fire (Pf) is based on the NO2/NOx ratio as obtained from the MACC reanalysis data set and an assumed lifetime of NOx. A global land cover map is used to define boreal forests across these two regions in order to evaluate the FERs of NOx for this biome. The FERs of NOx, which are derived from the gradients of the linear relationship between Pf and FRP, are more than 30% lower for North American than for Eurasian boreal forest fires. We speculate that these discrepancies are mainly related to the variable nitrogen content in plant tissues, which is higher in deciduous forests dominating large parts in Eurasia. In order to compare the obtained values with EFs found in the literature, the FERs are converted into EFs. The satellite-based EFs of NOx are estimated at 0.83 and 0.61 g kg-1 for Eurasian and North American boreal forests, respectively, which is in good agreement with the value found in a recent emission factor compilation. However, recent fire

  20. Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign

    Directory of Open Access Journals (Sweden)

    J. E. Shilling

    2013-02-01

    Full Text Available The CARES campaign was conducted during June, 2010 in the vicinity of Sacramento, California to study aerosol formation and aging in a region where anthropogenic and biogenic emissions regularly mix. Here, we describe measurements from an Aerodyne High Resolution Aerosol Mass Spectrometer (AMS, an Ionicon Proton Transfer Reaction Mass Spectrometer (PTR-MS, and trace gas detectors (CO, NO, NOx deployed on the G-1 research aircraft to investigate ambient gas- and particle-phase chemical composition. AMS measurements showed that the particle phase is dominated by organic aerosol (OA (85% on average with smaller concentrations of sulfate (5%, nitrate (6% and ammonium (3% observed. PTR-MS data showed that isoprene dominated the biogenic volatile organic compound concentrations (BVOCs, with monoterpene concentrations generally below the detection limit. Using two different metrics, median OA concentrations and the slope of plots of OA vs. CO concentrations (i.e., ΔOA/ΔCO, we contrast organic aerosol evolution on flight days with different prevailing meteorological conditions to elucidate the role of anthropogenic and biogenic emissions on OA formation. Airmasses influenced predominantly by biogenic emissions had median OA concentrations of 2.2 μg m−3 and near zero ΔOA/ΔCO. Those influenced predominantly by anthropogenic emissions had median OA concentrations of 4.7 μg m−3 and ΔOA/ΔCO ratios of 35–44 μg m−3 ppmv. But, when biogenic and anthropogenic emissions mixed, OA levels were enhanced, with median OA concentrations of 11.4 μg m−3 and ΔOA/ΔCO ratios of 77–157 μg m−3 ppmv. Taken together, our observations show that production of OA was enhanced when anthropogenic emissions from Sacramento mixed with isoprene-rich air from the foothills. After considering several anthropogenic/biogenic interaction mechanisms, we conclude that NOx concentrations

  1. Performance of the JULES land surface model for UK Biogenic VOC emissions

    Science.gov (United States)

    Hayman, Garry; Comyn-Platt, Edward; Vieno, Massimo; Langford, Ben

    2017-04-01

    Emissions of biogenic non-methane volatile organic compounds (NMVOCs) are important for air quality and tropospheric composition. Through their contribution to the production of tropospheric ozone and secondary organic aerosol (SOA), biogenic VOCs indirectly contribute to climate forcing and climate feedbacks [1]. Biogenic VOCs encompass a wide range of compounds and are produced by plants for growth, development, reproduction, defence and communication [2]. There are both biological and physico-chemical controls on emissions [3]. Only a few of the many biogenic VOCs are of wider interest and only two or three (isoprene and the monoterpenes, α- and β-pinene) are represented in chemical transport models. We use the Joint UK Land Environment Simulator (JULES), the UK community land surface model, to estimate biogenic VOC emission fluxes. JULES is a process-based model that describes the water, energy and carbon balances and includes temperature, moisture and carbon stores [4, 5]. JULES currently provides emission fluxes of the 4 largest groups of biogenic VOCs: isoprene, terpenes, methanol and acetone. The JULES isoprene scheme uses gross primary productivity (GPP), leaf internal carbon and the leaf temperature as a proxy for the electron requirement for isoprene synthesis [6]. In this study, we compare JULES biogenic VOC emission estimates of isoprene and terepenes with (a) flux measurements made at selected sites in the UK and Europe and (b) gridded estimates for the UK from the EMEP/EMEP4UK atmospheric chemical transport model [7, 8], using site-specific or EMEP4UK driving meteorological data, respectively. We compare the UK-scale emission estimates with literature estimates. We generally find good agreement in the comparisons but the estimates are sensitive to the choice of the base or reference emission potentials. References (1) Unger, 2014: Geophys. Res. Lett., 41, 8563, doi:10.1002/2014GL061616; (2) Laothawornkitkul et al., 2009: New Phytol., 183, 27, doi

  2. An Estimate of Biogenic Emissions of Volatile Organic Compounds during Summertime in China (7 pp).

    Science.gov (United States)

    Heinrich, Almut

    2007-01-01

    and Aim. An accurate estimation of biogenic emissions of VOC (volatile organic compounds) is necessary for better understanding a series of current environmental problems such as summertime smog and global climate change. However, very limited studies have been reported on such emissions in China. The aim of this paper is to present an estimate of biogenic VOC emissions during summertime in China, and discuss its uncertainties and potential areas for further investigations. This study was mainly based on field data and related research available so far in China and abroad, including distributions of land use and vegetations, biomass densities and emission potentials. VOC were grouped into isoprene, monoterpenes and other VOC (OVOC). Emission potentials of forests were determined for 22 genera or species, and then assigned to 33 forest ecosystems. The NCEP/NCAR reanalysis database was used as standard environmental conditions. A typical summertime of July 1999 was chosen for detailed calculations. The biogenic VOC emissions in China in July were estimated to be 2.3×1012gC, with 42% as isoprene, 19% as monoterpenes and 39% as OVOC. About 77.3% of the emissions are generated from forests and woodlands. The averaged emission intensity was 4.11 mgC m-2 hr-1 for forests and 1.12 mgC m-2 hr-1 for all types of vegetations in China during the summertime. The uncertainty in the results arose from both the data and the assumptions used in the extrapolations. Generally, uncertainty in the field measurements is relatively small. A large part of the uncertainty mainly comes from the taxonomic method to assign emission potentials to unmeasured species, while the ARGR method serves to estimate leaf biomass and the emission algorithms to describe light and temperature dependence. This study describes a picture of the biogenic VOC emissions during summertime in China. Due to the uneven spatial and temporal distributions, biogenic VOC emissions may play an important role in the

  3. Comparison of regional and global land cover products and the implications for biogenic emission modeling.

    Science.gov (United States)

    Huang, Ling; McDonald-Buller, Elena; McGaughey, Gary; Kimura, Yosuke; Allen, David T

    2015-10-01

    Accurate estimates of biogenic emissions are required for air quality models that support the development of air quality management plans and attainment demonstrations. Land cover characterization is an essential driving input for most biogenic emissions models. This work contrasted the global Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product against a regional land cover product developed for the Texas Commissions on Environmental Quality (TCEQ) over four climate regions in eastern Texas, where biogenic emissions comprise a large fraction of the total inventory of volatile organic compounds (VOCs) and land cover is highly diverse. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) was utilized to investigate the influences of land cover characterization on modeled isoprene and monoterpene emissions through changes in the standard emission potential and emission activity factor, both separately and simultaneously. In Central Texas, forest coverage was significantly lower in the MODIS land cover product relative to the TCEQ data, which resulted in substantially lower estimates of isoprene and monoterpene emissions by as much as 90%. Differences in predicted isoprene and monoterpene emissions associated with variability in land cover characterization were primarily caused by differences in the standard emission potential, which is dependent on plant functional type. Photochemical modeling was conducted to investigate the effects of differences in estimated biogenic emissions associated with land cover characterization on predicted ozone concentrations using the Comprehensive Air Quality Model with Extensions (CAMx). Mean differences in maximum daily average 8-hour (MDA8) ozone concentrations were 2 to 6 ppb with maximum differences exceeding 20 ppb. Continued focus should be on reducing uncertainties in the representation of land cover through field validation. Uncertainties in the estimation of biogenic emissions associated with

  4. Influence of modelled soil biogenic NO emissions on related trace gases and the atmospheric oxidizing capacity

    NARCIS (Netherlands)

    Steinkamp, J.; Ganzeveld, L.N.; Wilcke, W.; Lawrence, M.G.

    2009-01-01

    The emission of nitric oxide (NO) by soils (SNOx) is an important source of oxides of nitrogen (NOx=NO+NO2) in the troposphere, with estimates ranging from 4 to 21 Tg of nitrogen per year. Previous studies have examined the influence of SNOx on ozone (O-3) chemistry. We employ the ECHAM5/MESSy

  5. Experimental Assessment of NOx Emissions from 73 Euro 6 Diesel Passenger Cars.

    Science.gov (United States)

    Yang, Liuhanzi; Franco, Vicente; Mock, Peter; Kolke, Reinhard; Zhang, Shaojun; Wu, Ye; German, John

    2015-12-15

    Controlling nitrogen oxides (NOx) emissions from diesel passenger cars during real-world driving is one of the major technical challenges facing diesel auto manufacturers. Three main technologies are available for this purpose: exhaust gas recirculation (EGR), lean-burn NOx traps (LNT), and selective catalytic reduction (SCR). Seventy-three Euro 6 diesel passenger cars (8 EGR only, 40 LNT, and 25 SCR) were tested on a chassis dynamometer over both the European type-approval cycle (NEDC, cold engine start) and the more realistic Worldwide harmonized light-duty test cycle (WLTC version 2.0, hot start) between 2012 and 2015. Most vehicles met the legislative limit of 0.08 g/km of NOx over NEDC (average emission factors by technology: EGR-only 0.07 g/km, LNT 0.04 g/km, and SCR 0.05 g/km), but the average emission factors rose dramatically over WLTC (EGR-only 0.17 g/km, LNT 0.21 g/km, and SCR 0.13 g/km). Five LNT-equipped vehicles exhibited very poor performance over the WLTC, emitting 7-15 times the regulated limit. These results illustrate how diesel NOx emissions are not properly controlled under the current, NEDC-based homologation framework. The upcoming real-driving emissions (RDE) regulation, which mandates an additional on-road emissions test for EU type approvals, could be a step in the right direction to address this problem.

  6. Large increases in Arctic biogenic volatile emissions are a direct effect of warming

    Science.gov (United States)

    Kramshøj, Magnus; Vedel-Petersen, Ida; Schollert, Michelle; Rinnan, Åsmund; Nymand, Josephine; Ro-Poulsen, Helge; Rinnan, Riikka

    2016-05-01

    Biogenic volatile organic compounds are reactive gases that can contribute to atmospheric aerosol formation. Their emission from vegetation is dependent on temperature and light availability. Increasing temperature, changing cloud cover and shifting composition of vegetation communities can be expected to affect emissions in the Arctic, where the ongoing climate changes are particularly severe. Here we present biogenic volatile organic compound emission data from Arctic tundra exposed to six years of experimental warming or reduced sunlight treatment in a randomized block design. By separately assessing the emission response of the whole ecosystem, plant shoots and soil in four measurements covering the growing season, we have identified that warming increased the emissions directly rather than via a change in the plant biomass and species composition. Warming caused a 260% increase in total emission rate for the ecosystem and a 90% increase in emission rates for plants, while having no effect on soil emissions. Compared to the control, reduced sunlight decreased emissions by 69% for the ecosystem, 61-65% for plants and 78% for soil. The detected strong emission response is considerably higher than observed at more southern latitudes, emphasizing the high temperature sensitivity of ecosystem processes in the changing Arctic.

  7. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets

    Science.gov (United States)

    Anenberg, Susan C.; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K.; Lacey, Forrest; Malley, Christopher S.; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-01

    Vehicle emissions contribute to fine particulate matter (PM2.5) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NOx), which are key PM2.5 and ozone precursors. Regulated NOx emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM2.5- and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NOx emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NOx emissions in these markets, avoiding approximately 174,000 global PM2.5- and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  8. Global NOx emission estimates derived from an assimilation of OMI tropospheric NO2 columns

    Directory of Open Access Journals (Sweden)

    K. Sudo

    2012-03-01

    Full Text Available A data assimilation system has been developed to estimate global nitrogen oxides (NOx emissions using OMI tropospheric NO2 columns (DOMINO product and a global chemical transport model (CTM, the Chemical Atmospheric GCM for Study of Atmospheric Environment and Radiative Forcing (CHASER. The data assimilation system, based on an ensemble Kalman filter approach, was applied to optimize daily NOx emissions with a horizontal resolution of 2.8° during the years 2005 and 2006. The background error covariance estimated from the ensemble CTM forecasts explicitly represents non-direct relationships between the emissions and tropospheric columns caused by atmospheric transport and chemical processes. In comparison to the a priori emissions based on bottom-up inventories, the optimized emissions were higher over eastern China, the eastern United States, southern Africa, and central-western Europe, suggesting that the anthropogenic emissions are mostly underestimated in the inventories. In addition, the seasonality of the estimated emissions differed from that of the a priori emission over several biomass burning regions, with a large increase over Southeast Asia in April and over South America in October. The data assimilation results were validated against independent data: SCIAMACHY tropospheric NO2 columns and vertical NO2 profiles obtained from aircraft and lidar measurements. The emission correction greatly improved the agreement between the simulated and observed NO2 fields; this implies that the data assimilation system efficiently derives NOx emissions from concentration observations. We also demonstrated that biases in the satellite retrieval and model settings used in the data assimilation largely affect the magnitude of estimated emissions. These dependences should be carefully considered for better understanding NOx sources from top-down approaches.

  9. NOx lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations

    Directory of Open Access Journals (Sweden)

    F. Liu

    2016-04-01

    Full Text Available We present a new method to quantify NOx emissions and corresponding atmospheric lifetimes from OMI NO2 observations together with ECMWF wind fields without further model input for sources located in a polluted background. NO2 patterns under calm wind conditions are used as proxy for the spatial patterns of NOx emissions, and the effective atmospheric NOx lifetime is determined from the change of spatial patterns measured at larger wind speeds. Emissions are subsequently derived from the NO2 mass above the background, integrated around the source of interest. Lifetimes and emissions are estimated for 17 power plants and 53 cities located in non-mountainous regions across China and the USA. The derived lifetimes for the ozone season (May–September are 3.8 ± 1.0 h (mean ± standard deviation with a range of 1.8 to 7.5 h. The derived NOx emissions show generally good agreement with bottom-up inventories for power plants and cities. Regional inventory shows better agreement with top-down estimates for Chinese cities compared to global inventory, most likely due to different downscaling approaches adopted in the two inventories.

  10. Reduce NOx Emissions by Adsorber-Reduction Catalyst on Lean Burn Gasoline Engine

    Directory of Open Access Journals (Sweden)

    Dongpeng Yue

    2013-09-01

    Full Text Available The effect of a new catalyst system composed of traditional three way catalyst converter and adsorber-reduction catalysis converter on the emission characteristics and BSFC (Breake Specific Fuel Consumption- BSFCof a lean burn gasoline engine operated were investigated in this paper under different schemes of catalyst converter arrangement and different speeds and loads. The results show that the position of Three Way Catalyst is before the NOx adsorber Catalyst was the best scheme of catalyst converter arrangement. Which has the highest converter efficiency of reduction NOx emission in lean burn gasoline engine. The effects of speed on the exhaust emission and BSFC were also related to the ratio of lean burn time to rich burn time and the absolute value of both time of the adsorber-reduction catalyst converter. The load of the engine was the main influential factor to the exhaust emission characteristics and BSFC of lean burn gasoline engine, and the more load of the engine was, the more NOx emission , the less NOx conversion rate (CNOx and the better BSFC were.

  11. Emissions of biogenic VOC from forest ecosystems in central Europe: estimation and comparison with anthropogenic emission inventory.

    Science.gov (United States)

    Zemankova, Katerina; Brechler, Josef

    2010-02-01

    This paper describes a method of estimating emission fluxes of biogenic volatile organic compounds (BVOCs) based on the approach proposed by Guenther et al. (1995) and the high-resolution Corine land-cover 2000 database (1x1km resolution). The computed emission fluxes for the Czech Republic (selected for analysis as being representative of a heavily cultivated, central European country) are compared with anthropogenic emissions, both for the entire country and for individual administrative regions. In some regions, BVOC emissions are as high as anthropogenic emissions; however, in most regions the BVOC emissions are approximately 50% of the anthropogenic emissions. The yearly course of BVOC emissions (represented by monoterpenes and isoprene) is presented, along with the spatial distribution of annual mean values. Differences in emission distributions during winter (January) and summer (June) are also considered. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  12. Spatio-temporal variation of biogenic volatile organic compounds emissions in China.

    Science.gov (United States)

    Li, L Y; Chen, Y; Xie, S D

    2013-11-01

    Aiming to reduce the large uncertainties of biogenic volatile organic compounds (BVOCs) emissions estimation, the emission inventory of BVOCs in China at a high spatial and temporal resolution of 36 km × 36 km and 1 h was established using MEGANv2.1 with MM5 providing high-resolution meteorological data, based on the most detailed and latest vegetation investigations. BVOC emissions from 82 plant functional types in China were computed firstly. More local species-specific emission rates were developed combining statistical analysis and category classification, and the leaf biomass was estimated based on vegetation volume and production with biomass-apportion models. The total annual BVOC emissions in 2003 were 42.5 Tg, including isoprene 23.4 Tg, monoterpene 5.6 Tg, sesquiterpene 1.0 Tg, and other VOCs (OVOCs) 12.5 Tg. Subtropical and tropical evergreen and deciduous broadleaf shrubs, Quercus, and bamboo contributed more than 45% to the total BVOC emissions. The highest biogenic emissions were found over northeastern, southeastern, and southwestern China. Strong seasonal pattern was observed with the highest BVOC emissions in July and the lowest in January and December, with daily emission peaked at approximately 13:00 or 14:00 local time. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observations

    Directory of Open Access Journals (Sweden)

    Y. Lei

    2012-05-01

    Full Text Available Using OMI (Ozone Monitoring Instrument tropospheric NO2 columns and a nested-grid 3-D global chemical transport model (GEOS-Chem, we investigated the growth in NOx emissions from coal-fired power plants and their contributions to the growth in NO2 columns in 2005–2007 in China. We first developed a unit-based power plant NOx emission inventory for 2005–2007 to support this investigation. The total capacities of coal-fired power generation have increased by 48.8% in 2005–2007, with 92.2% of the total capacity additions coming from generator units with size ≥300 MW. The annual NOx emissions from coal-fired power plants were estimated to be 8.11 Tg NO2 for 2005 and 9.58 Tg NO2 for 2007, respectively. The modeled summer average tropospheric NO2 columns were highly correlated (R2 = 0.79–0.82 with OMI measurements over grids dominated by power plant emissions, with only 7–14% low bias, lending support to the high accuracy of the unit-based power plant NOx emission inventory. The ratios of OMI-derived annual and summer average tropospheric NO2 columns between 2007 and 2005 indicated that most of the grids with significant NO2 increases were related to power plant construction activities. OMI had the capability to trace the changes of NOx emissions from individual large power plants in cases where there is less interference from other NOx sources. Scenario runs from GEOS-Chem model suggested that the new power plants contributed 18.5% and 10% to the annual average NO2 columns in 2007 in Inner Mongolia and North China, respectively. The massive new power plant NOx emissions significantly changed the local NO2 profiles, especially in less polluted areas. A sensitivity study found that changes of NO2 shape factors due to including new power plant emissions increased the summer average OMI tropospheric NO2 columns by 3.8–17.2% for six selected locations, indicating that the updated emission information could help to improve the satellite

  14. Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observations

    Science.gov (United States)

    Wang, S. W.; Zhang, Q.; Streets, D. G.; He, K. B.; Martin, R. V.; Lamsal, L. N.; Chen, D.; Lei, Y.; Lu, Z.

    2012-05-01

    Using OMI (Ozone Monitoring Instrument) tropospheric NO2 columns and a nested-grid 3-D global chemical transport model (GEOS-Chem), we investigated the growth in NOx emissions from coal-fired power plants and their contributions to the growth in NO2 columns in 2005-2007 in China. We first developed a unit-based power plant NOx emission inventory for 2005-2007 to support this investigation. The total capacities of coal-fired power generation have increased by 48.8% in 2005-2007, with 92.2% of the total capacity additions coming from generator units with size ≥300 MW. The annual NOx emissions from coal-fired power plants were estimated to be 8.11 Tg NO2 for 2005 and 9.58 Tg NO2 for 2007, respectively. The modeled summer average tropospheric NO2 columns were highly correlated (R2 = 0.79-0.82) with OMI measurements over grids dominated by power plant emissions, with only 7-14% low bias, lending support to the high accuracy of the unit-based power plant NOx emission inventory. The ratios of OMI-derived annual and summer average tropospheric NO2 columns between 2007 and 2005 indicated that most of the grids with significant NO2 increases were related to power plant construction activities. OMI had the capability to trace the changes of NOx emissions from individual large power plants in cases where there is less interference from other NOx sources. Scenario runs from GEOS-Chem model suggested that the new power plants contributed 18.5% and 10% to the annual average NO2 columns in 2007 in Inner Mongolia and North China, respectively. The massive new power plant NOx emissions significantly changed the local NO2 profiles, especially in less polluted areas. A sensitivity study found that changes of NO2 shape factors due to including new power plant emissions increased the summer average OMI tropospheric NO2 columns by 3.8-17.2% for six selected locations, indicating that the updated emission information could help to improve the satellite retrievals.

  15. Biogenic nonmethane hydrocarbon emissions estimated from tethered balloon observations

    Science.gov (United States)

    Davis, K. J.; Lenschow, D. H.; Zimmerman, P. R.

    1994-01-01

    A new technique for estimating surface fluxes of trace gases, the mixed-layer gradient technique, is used to calculate isoprene and terpene emissions from forests. The technique is applied to tethered balloon measurements made over the Amazon forest and a pine-oak forest in Alabama at altitudes up to 300 m. The observations were made during the dry season Amazon Boundary Layer Experiment (ABLE 2A) and the Rural Oxidants in the Southern Environment 1990 experiment (ROSE I). Results from large eddy simulations of scalar transport in the clear convective boundary layer are used to infer fluxes from the balloon profiles. Profiles from the Amazon give a mean daytime emission of 3630 +/- 1400 micrograms isoprene sq m/h, where the uncertainty represents the standard deviation of the mean of eight flux estimates. Twenty profiles from Alabama give emissions of 4470 +/- 3300 micrograms isoprene sq m/h, 1740 +/- 1060 micrograms alpha-pinene sq m/h, and 790 +/- 560 micrograms beta-pinene sq m/h, respectively. These results are in agreement with emissions derived from chemical budgets. The emissions may be overestimated because of uncertainty about how to incorporate the effects of the canopy on the mixed-layer gradients. The large variability in these emission estimates is probably due to the relatively short sampling times of the balloon profiles, though spatially heterogeneous emissions may also play a role. Fluxes derived using this technique are representative of an upwind footprint of several kilometers and are independent of hydrocarbon oxidation rate and mean advection.

  16. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    Directory of Open Access Journals (Sweden)

    N. C. Bouvier-Brown

    2009-03-01

    Full Text Available We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments – a gas chromatograph with mass spectrometer detector (GC-MS, a proton transfer reaction mass spectrometer (PTR-MS, and a thermal desorption aerosol GC-MS (TAG – and found to be abundant within and above Blodgett Forest. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO, a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4–68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72–10.2 μgCg−1 h−1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  17. Arctic emissions of biogenic volatile organic compounds – from plants, litter and soils

    DEFF Research Database (Denmark)

    Svendsen, Sarah Hagel

    Significant amounts of biogenic volatile organic compounds are emitted from terrestrial ecosystems. These emissions may influence the atmospheric chemistry and the climate. Climate warming will be most pronounced in the Arctic and this will likely have a large effect on the BVOC emissions from...... these areas. Despite this, BVOC emissions from arctic ecosystems are sparsely studied and measurements of high arctic soil and litter BVOC emissions are completely lacking. In this thesis, I have studied BVOC emissions from a high arctic soil moisture gradient, from decomposing shrub litter from high and low...... arctic heaths at increasing temperature and from high arctic active layer soils and permafrost soils during a thaw event and at increasing temperature. Ecosystem BVOC emissions were measured in situ and BVOC emissions from soils and litter were measured from laboratory incubations. BVOCs were sampled...

  18. Comparison of wintertime CO to NOx ratios to MOVES and MOBILE6.2 on-road emissions inventories

    Science.gov (United States)

    Wallace, H. W.; Jobson, B. T.; Erickson, M. H.; McCoskey, J. K.; VanReken, T. M.; Lamb, B. K.; Vaughan, J. K.; Hardy, R. J.; Cole, J. L.; Strachan, S. M.; Zhang, W.

    2012-12-01

    The CO-to-NOx molar emission ratios from the US EPA vehicle emissions models MOVES and MOBILE6.2 were compared to urban wintertime measurements of CO and NOx. Measurements of CO, NOx, and volatile organic compounds were made at a regional air monitoring site in Boise, Idaho for 2 months from December 2008 to January 2009. The site is impacted by roadway emissions from a nearby busy urban arterial roads and highway. The measured CO-to-NOx ratio for morning rush hour periods was 4.2 ± 0.6. The average CO-to-NOx ratio during weekdays between the hours of 08:00 and 18:00 when vehicle miles travelled were highest was 5.2 ± 0.5. For this time period, MOVES yields an average hourly CO-to-NOx ratio of 9.1 compared to 20.2 for MOBILE6.2. Off-network emissions are a significant fraction of the CO and NOx emissions in MOVES, accounting for 65% of total CO emissions, and significantly increase the CO-to-NOx molar ratio. Observed ratios were more similar to the average hourly running emissions for urban roads determined by MOVES to be 4.3.

  19. Study of the NOx emissions during 'fluidised bed' combustion of Bulgarian lignite

    International Nuclear Information System (INIS)

    Bonev, B.; Totev, T.; Stanoev, Vl.; Velkova, A.; Barzilova, S.

    2003-01-01

    Based on the conducted experiment for lignite from 'Maritsa Iztok' fluidized bed combustion, an analysis is done of the impact of different fuel parameters (diameter of coal particles; bed temperature; ash content of the coal particles, oxygen content of the fluidized agent ) on NOx emissions

  20. Projection of SO2, NOx, NMVOC, particulate matter and black carbon emissions - 2015-2030

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Hjelgaard, Katja Hossy

    This report contains a description of models and background data for projection of SO2, NOX, NMVOC, PM2.5 and black carbon for Denmark. The emissions are projected to 2030 using basic scenarios together with the expected results of a few individual policy measures. Official Danish forecasts...

  1. Quantifying emissions of NH3 and NOx from Agricultural Sources and Biomass Burning using SOF

    Science.gov (United States)

    Kille, N.; Volkamer, R. M.; Dix, B. K.

    2017-12-01

    Column measurements of trace gas absorption along the direct solar beam present a powerful yet underused approach to quantify emission fluxes from area sources. The University of Colorado Solar Occultation Flux (CU SOF) instrument (Kille et al., 2017, AMT, doi:10.5194/amt-10-373-2017) features a solar tracker that is self-positioning for use from mobile platforms that are in motion (Baidar et al., 2016, AMT, doi: 10.5194/amt-9-963-2016). This enables the use from research aircraft, as well as the deployment under broken cloud conditions, while making efficient use of aircraft time. First airborne SOF measurements have been demonstrated recently, and we discuss applications to study emissions from biomass burning using aircraft, and to study primary emissions of ammonia and nitrogen oxides (= NO + NO2) from area sources such as concentrated animal feeding operations (CAFO). SOF detects gases in the open atmosphere (no inlets), does not require access to the source, and provides results in units that can be directly compared with emission inventories. The method of emission quantification is relatively straightforward. During FRAPPE (Front Range Air Pollution and Photochemistry Experiment) in Colorado in 2014, we measured emission fluxes of NH3, and NOx from CAFO, quantifying the emissions from 61400 of the 535766 cattle in Weld County, CO (11.4% of the cattle population). We find that NH3 emissions from dairy and cattle farms are similar after normalization by the number of cattle, i.e., we find emission factors, EF, of 11.8 ± 2.0 gNH3/h/head for the studied CAFOs; these EFs are at the upper end of reported values. Results are compared to daytime NEI emissions for case study days. Furthermore, biologically active soils are found to be a strong source of NOx. The NOx sources account for 1.2% of the N-flux (i.e., NH3), and can be competitive with other NOx sources in Weld, CO. The added NOx is particularly relevant in remote regions, where O3 formation and oxidative

  2. Application of an EGR system in a direct injection diesel engine to reduce NOx emissions

    Science.gov (United States)

    De Serio, D.; De Oliveira, A.; Sodré, J. R.

    2016-09-01

    This work presents the application of an exhaust gas recirculation (EGR) system in a direct injection diesel engine operating with diesel oil containing 7% biodiesel (B7). EGR rates of up to 10% were applied with the primary aim to reduce oxides of nitrogen (NOx) emissions. The experiments were conducted in a 44 kW diesel power generator to evaluate engine performance and emissions for different load settings. The use of EGR caused a peak pressure reduction during the combustion process and a decrease in thermal efficiency, mainly at high engine loads. A reduction of NOx emissions of up to 26% was achieved, though penalizing carbon monoxide (CO) and total hydrocarbons (THC) emissions.

  3. To what extent can biogenic SOA be controlled?

    Science.gov (United States)

    Carlton, Annmarie G; Pinder, Robert W; Bhave, Prakash V; Pouliot, George A

    2010-05-01

    The implicit assumption that biogenic secondary organic aerosol (SOA) is natural and can not be controlled hinders effective air quality management. Anthropogenic pollution facilitates transformation of naturally emitted volatile organic compounds (VOCs) to the particle phase, enhancing the ambient concentrations of biogenic secondary organic aerosol (SOA). It is therefore conceivable that some portion of ambient biogenic SOA can be removed by controlling emissions of anthropogenic pollutants. Direct measurement of the controllable fraction of biogenic SOA is not possible, but can be estimated through 3-dimensional photochemical air quality modeling. To examine this in detail, 22 CMAQ model simulations were conducted over the continental U.S. (August 15 to September 4, 2003). The relative contributions of five emitted pollution classes (i.e., NO(x), NH(3), SO(x), reactive non methane carbon (RNMC) and primary carbonaceous particulate matter (PCM)) on biogenic SOA were estimated by removing anthropogenic emissions of these pollutants, one at a time and all together. Model results demonstrate a strong influence of anthropogenic emissions on predicted biogenic SOA concentrations, suggesting more than 50% of biogenic SOA in the eastern U.S. can be controlled. Because biogenic SOA is substantially enhanced by controllable emissions, classification of SOA as biogenic or anthropogenic based solely on VOC origin is not sufficient to describe the controllable fraction.

  4. Effects of temperature-dependent NOx emissions on continental ozone production

    Science.gov (United States)

    Romer, Paul S.; Duffey, Kaitlin C.; Wooldridge, Paul J.; Edgerton, Eric; Baumann, Karsten; Feiner, Philip A.; Miller, David O.; Brune, William H.; Koss, Abigail R.; de Gouw, Joost A.; Misztal, Pawel K.; Goldstein, Allen H.; Cohen, Ronald C.

    2018-02-01

    Surface ozone concentrations are observed to increase with rising temperatures, but the mechanisms responsible for this effect in rural and remote continental regions remain uncertain. Better understanding of the effects of temperature on ozone is crucial to understanding global air quality and how it may be affected by climate change. We combine measurements from a focused ground campaign in summer 2013 with a long-term record from a forested site in the rural southeastern United States, to examine how daily average temperature affects ozone production. We find that changes to local chemistry are key drivers of increased ozone concentrations on hotter days, with integrated daily ozone production increasing by 2.3 ppb °C-1. Nearly half of this increase is attributable to temperature-driven increases in emissions of nitrogen oxides (NOx), most likely by soil microbes. The increase of soil NOx emissions with temperature suggests that ozone will continue to increase with temperature in the future, even as direct anthropogenic NOx emissions decrease dramatically. The links between temperature, soil NOx, and ozone form a positive climate feedback.

  5. Effects of temperature-dependent NOx emissions on continental ozone production

    Directory of Open Access Journals (Sweden)

    P. S. Romer

    2018-02-01

    Full Text Available Surface ozone concentrations are observed to increase with rising temperatures, but the mechanisms responsible for this effect in rural and remote continental regions remain uncertain. Better understanding of the effects of temperature on ozone is crucial to understanding global air quality and how it may be affected by climate change. We combine measurements from a focused ground campaign in summer 2013 with a long-term record from a forested site in the rural southeastern United States, to examine how daily average temperature affects ozone production. We find that changes to local chemistry are key drivers of increased ozone concentrations on hotter days, with integrated daily ozone production increasing by 2.3 ppb °C−1. Nearly half of this increase is attributable to temperature-driven increases in emissions of nitrogen oxides (NOx, most likely by soil microbes. The increase of soil NOx emissions with temperature suggests that ozone will continue to increase with temperature in the future, even as direct anthropogenic NOx emissions decrease dramatically. The links between temperature, soil NOx, and ozone form a positive climate feedback.

  6. Evolution of NOx emissions in Europe with focus on road transport control measures

    Directory of Open Access Journals (Sweden)

    S. Reis

    2009-02-01

    Full Text Available European emission trends of nitrogen oxides since 1880 and up to present are presented here and are linked to the evolution of road transport emissions. Road transport has been the dominating source of NOx emissions since 1970, and contributes with 40% to the total emissions in 2005. Five trend regimes have been identified between 1880 and 2005. The first regime (1880–1950 is determined by a slow increase in fuel consumption all over Europe. The second regime (1950–1980 is characterized by a continued steep upward trend in liquid fuel use and by the introduction of the first regulations on road traffic emissions. Reduction in fuel consumption determines the emission trends in the third regime (1980–1990 that is also characterized by important differences between Eastern and Western Europe. Emissions from road traffic continue to grow in Western Europe in this period, and it is argued here that the reason for this continued NOx emission increase is related to early inefficient regulations for NOx in the transport sector. The fourth regime (1990–2000 involves a turning point for road traffic emissions, with a general decrease of emissions in Europe during that decade. It is in this period that we can identify the first emission reductions due to technological abatement in Western Europe. In the fifth regime (2000–2005, the economic recovery in Eastern Europe imposes increased emission from road traffic in this area. Western European emissions are on the other hand decoupled from the fuel consumption, and continue to decrease. The implementation of strict measures to control NOx emissions is demonstrated here to be a main reason for the continued Western European emission reductions. The results indicate that even though the effectiveness of European standards is hampered by a slow vehicle turnover, loopholes in the type-approval testing, and an increase in diesel consumption, the effect of such technical abatement measures is traceable

  7. Constraints on ship NOx emissions in Europe using OMI NO2 observations

    Science.gov (United States)

    Vinken, G. C. M.; Boersma, K. F.

    2012-04-01

    About 90% of world trade is transported by oceangoing ships, and seaborne trade has been shown to have increased by about 5% per year in the past decade. Global ship traffic is currently not regulated under international treaties (e.g. Kyoto protocol) and ships are still allowed to burn low-grade bunker fuel. As a result, ships emit large quantities of nitrogen oxides (NOx = NO + NO2), important precursors for ozone (O3) and particulate matter formation. Previous studies indicated that the global NOx emissions from shipping are in the range 3.0-10.4 Tg N per year (15-30% of total global NOx emissions). Because most ships sail within 400 km of the coast, it is important to understand the contribution of ship emissions to atmospheric composition in the densely populated coastal regions. Chemistry Transport Models (CTMs), in combination with emission inventories, are used to simulate atmospheric concentrations of air pollutants to assess the impact of ship emissions. However, these bottom-up inventories, based on extrapolation of a few engine measurements and strong assumptions, suffer from large uncertainties. In this study we provide top-down constraints on ship NOx emissions in Europe using satellite observations of NO2 columns. We use the nested version of the GEOS-Chem model (0.5°-0.667°) to simulate tropospheric NO2 columns over Europe for the years 2005-2006, using our plume-in-grid treatment of ship NOx emissions. We improve the NO2 retrievals from the Ozone Monitoring Instrument (OMI v2.0) by replacing the coarse a priori (TM4) vertical NO2 profiles (2°-3°) with the high-resolution GEOS-Chem profiles. This ensures consistency between the retrievals and model simulations. GEOS-Chem simulations of tropospheric NO2 columns show remarkable quantitative agreement with the observed OMI columns over Europe (R2=0.89, RMS difference < 0.2-1015 molec. cm-2), providing confidence in the ability of the model to simulate NO2 pollution over the European mainland. We

  8. SELECTIVE CATALYTIC REDUCTION OF DIESEL ENGINE NOX EMISSIONS USING ETHANOL AS A REDUCTANT

    Energy Technology Data Exchange (ETDEWEB)

    (1)Kass, M; Thomas, J; Lewis, S; Storey, J; Domingo, N; Graves, R (2) Panov, A

    2003-08-24

    NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400 C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N2O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N2O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.

  9. Quantification of variability and uncertainty in lawn and garden equipment NOx and total hydrocarbon emission factors.

    Science.gov (United States)

    Frey, H Christopher; Bammi, Sachin

    2002-04-01

    Variability refers to real differences in emissions among multiple emission sources at any given time or over time for any individual emission source. Variability in emissions can be attributed to variation in fuel or feedstock composition, ambient temperature, design, maintenance, or operation. Uncertainty refers to lack of knowledge regarding the true value of emissions. Sources of uncertainty include small sample sizes, bias or imprecision in measurements, nonrepresentativeness, or lack of data. Quantitative methods for characterizing both variability and uncertainty are demonstrated and applied to case studies of emission factors for lawn and garden (L&G) equipment engines. Variability was quantified using empirical and parametric distributions. Bootstrap simulation was used to characterize confidence intervals for the fitted distributions. The 95% confidence intervals for the mean grams per brake horsepower/hour (g/hp-hr) emission factors for two-stroke engine total hydrocarbon (THC) and NOx emissions were from -30 to +41% and from -45 to +75%, respectively. The confidence intervals for four-stroke engines were from -33 to +46% for THCs and from -27 to +35% for NOx. These quantitative measures of uncertainty convey information regarding the quality of the emission factors and serve as a basis for calculation of uncertainty in emission inventories (EIs).

  10. Spatio-temporal variation of biogenic volatile organic compounds emissions in China

    International Nuclear Information System (INIS)

    Li, L.Y.; Chen, Y.; Xie, S.D.

    2013-01-01

    Aiming to reduce the large uncertainties of biogenic volatile organic compounds (BVOCs) emissions estimation, the emission inventory of BVOCs in China at a high spatial and temporal resolution of 36 km × 36 km and 1 h was established using MEGANv2.1 with MM5 providing high-resolution meteorological data, based on the most detailed and latest vegetation investigations. BVOC emissions from 82 plant functional types in China were computed firstly. More local species-specific emission rates were developed combining statistical analysis and category classification, and the leaf biomass was estimated based on vegetation volume and production with biomass-apportion models. The total annual BVOC emissions in 2003 were 42.5 Tg, including isoprene 23.4 Tg, monoterpene 5.6 Tg, sesquiterpene 1.0 Tg, and other VOCs (OVOCs) 12.5 Tg. Subtropical and tropical evergreen and deciduous broadleaf shrubs, Quercus, and bamboo contributed more than 45% to the total BVOC emissions. The highest biogenic emissions were found over northeastern, southeastern, and southwestern China. Strong seasonal pattern was observed with the highest BVOC emissions in July and the lowest in January and December, with daily emission peaked at approximately 13:00 or 14:00 local time. -- Highlights: •An emission inventory of BVOCs in China at a high spatial and temporal resolution of 36 km and 1 h is established. •High-resolution meteorological data simulated by MM5 is used. •We update the land cover data used in MEGAN based on the most detailed and latest vegetation investigations. •A new vegetation classification with 82 plant functional types is developed in MEGAN. •The leaf biomass is estimated based on vegetation volume and production with biomass-apportion models. -- An emission inventory of BVOCs in China was established based on the most detailed and latest vegetation investigations, and high-resolution meteorological data

  11. Coupling of a NOx-trap and a DPF for emission reduction of a 6-cylinder HD engine; Verbindung eines NOx-Speicherkatalysators mit einem Diesel Partikel Filter zur Emissions-Reduzierung an einem 6 Zylinder Nfz Motor

    Energy Technology Data Exchange (ETDEWEB)

    Colliou, T.; Lavy, J.; Martin, B.; Dementhon, J.B. [IFP, Lyon (France); Pichon, G.; Chandes, K.; Pierron, L. [Renault Trucks., St Priest (France)

    2003-07-01

    To ensure overall optimization of engine performance (NOx, particulates, efficiency), the use of a NOx after-treatment system appears necessary to meet the European heavy duty vehicle EURO IV emissions standards. Among the identified means, the NOx-trap should offer efficiency comparable to that of reduction by urea, without having the same constraints. The trap works on the basis of the alternation of operating phases with a lean mixture during which NOx are stored and rich phases during which nitrates are destored and treated. The study has been performed on a RENAULT TRUCKS 6-cylinder 6,2 liters heavy-duty engine. A first investigation with a NOx-trap only has been carried out to evaluate and optimise the storage, destorage and reduction phases from the NOx conversion efficiency and fuel penalty trade-off. The equivalence ratio level, which affects the regeneration phase duration and efficiency, the fuel penalty and the temperature level of the NOx-trap have been shown as a key parameter. From the results obtained, high equivalence ratio regeneration (around 1.18) provides the best results. The necessity to run in rich condition, even for a short time, leads to an increase of particulate emission level and a DPF is therefore required. The different possible arrangements of the two after-treatment systems (NOx-trap and Catalysed DPF) have been evaluated in a second part of the study. The NOx-trap upstream the CDPF provides the best NOx / fuel penalty trade-off since it allows NOx slip reduction (reaction with the slipped reductants inside the CDPF) and do not disturb the rich pulses. For low NOx target, the requirement of NOx-trap regeneration frequency reduces the CRT effect efficiency. Thus, for these conditions, specific DPF regeneration strategies are required. The implementation of the CDPF upstream the NOx-trap can eliminate this drawback up to 1 g/kW.h NOx target without any CDPF loading process. Furthermore, the implementation of the CDPF upstream is

  12. Predictive NOx emission monitoring on board a passenger ferry

    International Nuclear Information System (INIS)

    Cooper, D.A.; Andreasson, K.

    1999-01-01

    NO x emissions from a medium speed diesel engine on board a servicing passenger ferry have been indirectly measured using a predictive emission monitoring system (PEMS) over a 1-yr period. Conventional NO x measurements were carried out with a continuous emission monitoring system (CEMS) at the start of the study to provide historical data for the empirical PEMS function. On three other occasions during the year the CEMS was also used to verify the PEMS and follow any changes in emission signature of the engine. The PEMS consisted of monitoring exhaust O 2 concentrations (in situ electrochemical probe), engine load, combustion air temperature and humidity, and barometric pressure. Practical experiences with the PEMS equipment were positive and measurement data were transferred to a land-based office by using a modem data communication system. The initial PEMS function (PEMS1) gave systematic differences of 1.1-6.9% of the calibration domain (0-1725 ppm) and a relative accuracy of 6.7% when compared with CEMS for whole journeys and varying load situations. Further improvements on the performance could be obtained by updating this function. The calculated yearly emission for a total engine running time of 4618 h was 316 t NO x ± 38 t and the average NO x emission corrected for ambient conditions 14.3 g kWh corr -1 . The exhaust profile of the engine in terms of NO x , CO and CO 2 emissions as determined by CEMS was similar for most of the year. Towards the end of the study period, a significantly lower NO x emission was detected which was probably caused by replacement of fuel injector nozzles. The study suggests that PEMS can be a viable option for continuous, long-term NO x measurements on board ships. (author)

  13. Radiative forcing from aircraft emissions of NOx: model calculations with CH4 surface flux boundary condition

    Directory of Open Access Journals (Sweden)

    Giovanni Pitari

    2017-12-01

    Full Text Available Two independent chemistry-transport models with troposphere-stratosphere coupling are used to quantify the different components of the radiative forcing (RF from aircraft emissions of NOx, i.e., the University of L'Aquila climate-chemistry model (ULAQ-CCM and the University of Oslo chemistry-transport model (Oslo-CTM3. The tropospheric NOx enhancement due to aircraft emissions produces a short-term O3 increase with a positive RF (+17.3 mW/m2 (as an average value of the two models. This is partly compensated by the CH4 decrease due to the OH enhancement (−9.4 mW/m2. The latter is a long-term response calculated using a surface CH4 flux boundary condition (FBC, with at least 50 years needed for the atmospheric CH4 to reach steady state. The radiative balance is also affected by the decreasing amount of CO2 produced at the end of the CH4 oxidation chain: an average CO2 accumulation change of −2.2 ppbv/yr is calculated on a 50 year time horizon (−1.6 mW/m2. The aviation perturbed amount of CH4 induces a long-term response of tropospheric O3 mostly due to less HO2 and CH3O2 being available for O3 production, compared with the reference case where a constant CH4 surface mixing ratio boundary condition is used (MBC (−3.9 mW/m2. The CH4 decrease induces a long-term response of stratospheric H2O (−1.4 mW/m2. The latter finally perturbs HOx and NOx in the stratosphere, with a more efficient NOx cycle for mid-stratospheric O3 depletion and a decreased O3 production from HO2+NO in the lower stratosphere. This produces a long-term stratospheric O3 loss, with a negative RF (−1.2 mW/m2, compared with the CH4 MBC case. Other contributions to the net NOx RF are those due to NO2 absorption of UV-A and aerosol perturbations (the latter calculated only in the ULAQ-CCM. These comprise: increasing sulfate due to more efficient oxidation of SO2, increasing inorganic and organic nitrates and the net aerosols indirect effect on warm clouds

  14. Tropospheric methanol observations from space: constraints on the seasonality of biogenic emissions

    Science.gov (United States)

    Wells, K. C.; Millet, D. B.; Cady-Pereira, K. E.; Shephard, M. W.; Xiao, Y.; Razavi, A.; Clerbaux, C.

    2011-12-01

    Methanol is the most abundant non-methane organic compound in the atmosphere, and is an important precursor of atmospheric pollutants such as CO and formaldehyde. The recent development of methanol retrievals from nadir-viewing satellite-based platforms offers powerful new information for quantifying methanol emissions on a global scale. This study uses methanol observations from the Tropospheric Emission Spectrometer (TES) on the Aura satellite and the Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp-A satellite, in conjunction with aircraft data, to investigate methanol emissions from major plant functional types in the GEOS-Chem global chemical transport model (driven with MEGAN biogenic emissions). We first evaluate the TES methanol retrievals by comparing to simulation results and flight observations from several North American field campaigns. Results show that the retrieval performs well when the degrees of freedom for signal are above 0.5. We analyze one full year of TES and IASI observations and find a persistent model underestimate in springtime, and make recommendations for an improved seasonal distribution of biogenic methanol emissions over temperate regions of the globe.

  15. Ionising radiation effect on the luminescence emission of inorganic and biogenic calcium carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Boronat, C. [CIEMAT, Av. Complutense 40, Madrid 28040 (Spain); Correcher, V., E-mail: v.correcher@ciemat.es [CIEMAT, Av. Complutense 40, Madrid 28040 (Spain); Virgos, M.D. [CIEMAT, Av. Complutense 40, Madrid 28040 (Spain); Garcia-Guinea, J. [CSIC, Museo Nacional Ciencias Naturales, José Gutiérrez Abascal 2, Madrid 28006 (Spain)

    2017-06-15

    Highlights: • Aragonite and biogenic Ca-carbonates could be used as a TL dosimeters. • TL can be employed for retrospective dosimetry purposes. • Calcium carbonates show an acceptable ionizing radiation sensitivity. • The stability of the radiation–induced TL remains, at least, till 700 h. - Abstract: As known, the luminescence emission of mineral phases could be potentially employed for dosimetric purposes in the case of radiological terrorism or radiation accident where conventional monitoring is not available. In this sense, this paper reports on the thermo- (TL) and cathodoluminescence (CL) emission of both biogenic (common periwinkle – littorina littorera – shell made of calcite 90% and aragonite 10%) and inorganic (aragonite 100%) Ca-rich carbonates previously characterized by X-ray diffraction and Raman spectroscopy. Whereas the aragonite sample displays the main CL waveband peaked in the red region (linked to point defects), the more intense emission obtained from the common periwinkle shell appears at higher energies (mainly associated with structural defects). The UV-blue TL emission of the samples, regardless of the origin, displays (i) an acceptable ionizing radiation sensitivity, (ii) linear dose response in the range of interest (up to 8 Gy), (iii) reasonable stability of the TL signal after 700 h of storage with an initial decay of ca. 88% for the mineral sample and 60% for the biogenic sample and maintaining the stability from 150 h onwards. (iv) The tests of thermal stability of the TL emission performed in the range of 180–320 °C confirm a continuum in the trap system.

  16. Ionising radiation effect on the luminescence emission of inorganic and biogenic calcium carbonates

    International Nuclear Information System (INIS)

    Boronat, C.; Correcher, V.; Virgos, M.D.; Garcia-Guinea, J.

    2017-01-01

    Highlights: • Aragonite and biogenic Ca-carbonates could be used as a TL dosimeters. • TL can be employed for retrospective dosimetry purposes. • Calcium carbonates show an acceptable ionizing radiation sensitivity. • The stability of the radiation–induced TL remains, at least, till 700 h. - Abstract: As known, the luminescence emission of mineral phases could be potentially employed for dosimetric purposes in the case of radiological terrorism or radiation accident where conventional monitoring is not available. In this sense, this paper reports on the thermo- (TL) and cathodoluminescence (CL) emission of both biogenic (common periwinkle – littorina littorera – shell made of calcite 90% and aragonite 10%) and inorganic (aragonite 100%) Ca-rich carbonates previously characterized by X-ray diffraction and Raman spectroscopy. Whereas the aragonite sample displays the main CL waveband peaked in the red region (linked to point defects), the more intense emission obtained from the common periwinkle shell appears at higher energies (mainly associated with structural defects). The UV-blue TL emission of the samples, regardless of the origin, displays (i) an acceptable ionizing radiation sensitivity, (ii) linear dose response in the range of interest (up to 8 Gy), (iii) reasonable stability of the TL signal after 700 h of storage with an initial decay of ca. 88% for the mineral sample and 60% for the biogenic sample and maintaining the stability from 150 h onwards. (iv) The tests of thermal stability of the TL emission performed in the range of 180–320 °C confirm a continuum in the trap system.

  17. Reduction of NOx emissions in regenerative fossil fuel fired glass furnaces: a review of literature and experimental studies

    NARCIS (Netherlands)

    Beerkens, R.G.C.; Limpt, J.A.C. van

    2008-01-01

    The mechanism of nitrogen oxide (NOx) formation in combustion chambers of glass furnaces is briefly described. The most important parameters governing the NOx emissions of glass furnaces are discussed. Elimination or minimisation of conditions that cause the formation of nitrogen oxides in

  18. Comparison and evaluation of anthropogenic emissions of SO2 and NOx over China

    Science.gov (United States)

    Li, Meng; Klimont, Zbigniew; Zhang, Qiang; Martin, Randall V.; Zheng, Bo; Heyes, Chris; Cofala, Janusz; Zhang, Yuxuan; He, Kebin

    2018-03-01

    Bottom-up emission inventories provide primary understanding of sources of air pollution and essential input of chemical transport models. Focusing on SO2 and NOx, we conducted a comprehensive evaluation of two widely used anthropogenic emission inventories over China, ECLIPSE and MIX, to explore the potential sources of uncertainties and find clues to improve emission inventories. We first compared the activity rates and emission factors used in two inventories and investigated the reasons of differences and the impacts on emission estimates. We found that SO2 emission estimates are consistent between two inventories (with 1 % differences), while NOx emissions in ECLIPSE's estimates are 16 % lower than those of MIX. The FGD (flue-gas desulfurization) device penetration rate and removal efficiency, LNB (low-NOx burner) application rate and abatement efficiency in power plants, emission factors of industrial boilers and various vehicle types, and vehicle fleet need further verification. Diesel consumptions are quite uncertain in current inventories. Discrepancies at the sectorial and provincial levels are much higher than those of the national total. We then examined the impacts of different inventories on model performance by using the nested GEOS-Chem model. We finally derived top-down emissions by using the retrieved columns from the Ozone Monitoring Instrument (OMI) compared with the bottom-up estimates. High correlations were observed for SO2 between model results and OMI columns. For NOx, negative biases in bottom-up gridded emission inventories (-21 % for MIX, -39 % for ECLIPSE) were found compared to the satellite-based emissions. The emission trends from 2005 to 2010 estimated by two inventories were both consistent with satellite observations. The inventories appear to be fit for evaluation of the policies at an aggregated or national level; more work is needed in specific areas in order to improve the accuracy and robustness of outcomes at finer spatial

  19. Comparison and evaluation of anthropogenic emissions of SO2 and NOx over China

    Directory of Open Access Journals (Sweden)

    M. Li

    2018-03-01

    Full Text Available Bottom-up emission inventories provide primary understanding of sources of air pollution and essential input of chemical transport models. Focusing on SO2 and NOx, we conducted a comprehensive evaluation of two widely used anthropogenic emission inventories over China, ECLIPSE and MIX, to explore the potential sources of uncertainties and find clues to improve emission inventories. We first compared the activity rates and emission factors used in two inventories and investigated the reasons of differences and the impacts on emission estimates. We found that SO2 emission estimates are consistent between two inventories (with 1 % differences, while NOx emissions in ECLIPSE's estimates are 16 % lower than those of MIX. The FGD (flue-gas desulfurization device penetration rate and removal efficiency, LNB (low-NOx burner application rate and abatement efficiency in power plants, emission factors of industrial boilers and various vehicle types, and vehicle fleet need further verification. Diesel consumptions are quite uncertain in current inventories. Discrepancies at the sectorial and provincial levels are much higher than those of the national total. We then examined the impacts of different inventories on model performance by using the nested GEOS-Chem model. We finally derived top-down emissions by using the retrieved columns from the Ozone Monitoring Instrument (OMI compared with the bottom-up estimates. High correlations were observed for SO2 between model results and OMI columns. For NOx, negative biases in bottom-up gridded emission inventories (−21 % for MIX, −39 % for ECLIPSE were found compared to the satellite-based emissions. The emission trends from 2005 to 2010 estimated by two inventories were both consistent with satellite observations. The inventories appear to be fit for evaluation of the policies at an aggregated or national level; more work is needed in specific areas in order to improve the accuracy and robustness of

  20. Low cost combustion tuning and fuel nozzles modification to reduce NOx emission in large coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    B. Chudnovsky; L. Levin; A. Talanker; E. Bar-Ziv; A. Vikhansky; A.F. Sarofim [Israel Electric Corporation (IEC), Haifa (Israel)

    2003-07-01

    This work focuses on low-cost combustion tuning to reduce NOx emission in coal-fired tangential boilers, testing the furnace in various operation modes. We have also experimented different coal nozzle types. The measurements were accompanied by computer simulations of the combustion process. We also used an on-line supervision system. The data obtained from 575 MW boilers show that with tuning and modified nozzles NOx was considerably reduced. The emission of NOx was reduced from 1200 to 570 mg/dNm{sup 3} at 6% O{sub 2} for South African coal at full load. At partial load NOx emission dropped from 1400 to 750-850 mg/dNm{sup 3} at 6% O{sub 2}. High volatile coal firing led to additional NOx reduction. A series of tests were performed with Colombian and Indonesian coals as well, dropping NOx emission to 400-450 mg/dNm{sup 3} at6% O{sub 2} at full load. Sootblowing optimization using the supervision system enabled us to further reduce NOx emission by approximately 10%. The boiler and unit performance was not influenced by any of the techniques used for NOx reduction. In such a manner, the results presented in this work clearly show that technological methods for reduction NOx are available and capable of obtaining the required NOx emission. We believe that the conclusions of the present study are general and may be applied to other utility boilers as well. 13 refs., 12 figs., 7 tabs.

  1. Factors Influencing Surface Emissions of CO and NOx From a Brazilian Savanna

    Science.gov (United States)

    Zepp, R. G.; Kisselle, K. W.; Burke, R. A.; Pinto, A. S.; Bustamante, M. M.

    2002-12-01

    Human activities in savannas such as biomass burning and land conversion influence soil and plant emissions of atmospheric carbon monoxide (CO) and NOx [nitric oxide (NO) plus nitrogen dioxide (NO2)]. Direct emissions of these gases from burning are a major global source. In addition, emissions of CO and NOX from soils and plant litter also provide a significant source of the gases. Here, we report field and laboratory investigations of the production of CO and NOx from soils and surface litter derived from two natural vegetation types in central Brazil, cerrado stricto sensu (20-50% canopy cover) and campo sujo (open scrubland). The field studies were conducted using opaque and transparent flux chambers to investigate the effects of illumination and heating of the land surface on the gas fluxes. These studies showed that both NOx and CO fluxes were elevated in the transparent chambers. The largest increases in NOx and CO fluxes were observed from recently burned surfaces, indicating that photochemical or temperature-sensitive precursors of the gases were produced in the surface residue by fire. Laboratory studies of the thermal production of CO from plant litter were species specific with activation energies ranging from 72 to 100 kJ mol-1. Activation energies for deciduous plant litter from the Brazilian sites were higher than those previously reported for African savanna grass litter. Other laboratory studies using simulated solar radiation demonstrated that removal of UV radiation by light filters strongly reduced CO fluxes, indicating that the observed enhancement of CO production under illumination was primarily due to photodegradation of the litter rather than enhanced thermal production.

  2. Top-down NOx and SO2 emissions simultaneously estimated from different OMI retrievals and inversion frameworks

    Science.gov (United States)

    Qu, Z.; Henze, D. K.; Wang, J.; Xu, X.; Wang, Y.

    2017-12-01

    Quantifying emissions trends of nitrogen oxides (NOx) and sulfur dioxide (SO2) is important for improving understanding of air pollution and the effectiveness of emission control strategies. We estimate long-term (2005-2016) global (2° x 2.5° resolution) and regional (North America and East Asia at 0.5° x 0.667° resolution) NOx emissions using a recently developed hybrid (mass-balance / 4D-Var) method with GEOS-Chem. NASA standard product and DOMINO retrievals of NO2 column are both used to constrain emissions; comparison of these results provides insight into regions where trends are most robust with respect to retrieval uncertainties, and highlights regions where seemingly significant trends are retrieval-specific. To incorporate chemical interactions among species, we extend our hybrid method to assimilate NO2 and SO2 observations and optimize NOx and SO2 emissions simultaneously. Due to chemical interactions, inclusion of SO2 observations leads to 30% grid-scale differences in posterior NOx emissions compared to those constrained only by NO2 observations. When assimilating and optimizing both species in pseudo observation tests, the sum of the normalized mean squared error (compared to the true emissions) of NOx and SO2 posterior emissions are 54-63% smaller than when observing/constraining a single species. NOx and SO2 emissions are also correlated through the amount of fuel combustion. To incorporate this correlation into the inversion, we optimize seven sector-specific emission scaling factors, including industry, energy, residential, aviation, transportation, shipping and agriculture. We compare posterior emissions from inversions optimizing only species' emissions, only sector-based emissions, and both species' and sector-based emissions. In situ measurements of NOx and SO2 are applied to evaluate the performance of these inversions. The impacts of the inversion on PM2.5 and O3 concentrations and premature deaths are also evaluated.

  3. Biogenic emissions and CO 2 gas exchange investigated on four Mediterranean shrubs

    Science.gov (United States)

    Hansen, U.; van Eijk, J.; Bertin, N.; Staudt, M.; Kotzias, D.; Seufert, G.; Fugit, J.-L.; Torres, L.; Cecinato, A.; Brancaleoni, E.; Ciccioli, P.; Bomboi, T.

    In order to investigate the impact of plant physiology on emissions of biogenic volatile organic compounds monoterpene emission rates from Rosmarinus officinalis (L.) and Pistacia lentiscus (L.) and isoprene emission rates from Erica arborea (L.) and Myrtus communis (L.) were determined. The study, an activity in the framework of BEMA (Biogenic Emissions in the Mediterranean Area), was carried out in May 1994 at Castelporziano near Rome in Italy, using a dynamic enclosure technique combined with recording CO 2 gas exchange, temperature and irradiance data. The monoterpenes dominating the emission pattern were 1,8-cineol, α-pinene and β-pinene for rosemary and α-pinene, linalool and β-pinene + sabinene for pistachio. Total monoterpene emission rates standardized to 30°C of 1.84 ± 0.24 and 0.35 ± 0.04 μg Cg -1 dw h -1 were found for rosemary and pistachio, respectively (on a leaf dry weight basis). Myrtle emitted 22.2 ± 4.9 μg C g -1 dw h -1 at standard conditions (30°C, PAR 1000 μmol photons m -2 s -1 as isoprene and erica 5.61 μg C g -1 dw h -1 The carbon loss due to terpenoid emissions per photosynthetically carbon uptake was about 0.01-0.1% for the monoterpene emitters. The isoprene emitting shrubs lost 0-0.9% of the assimilated carbon. The rapid induction of emissions in the sun after temporary shading indicates that isoprene emissions were closely linked to photosynthesis. A higher proportion of the assimilated carbon was lost as isoprene under conditions of high light and temperature compared to the morning and evening hours.

  4. Biogenic volatile organic compounds (BVOCs) emissions from Abies alba in a French forest.

    Science.gov (United States)

    Moukhtar, S; Couret, C; Rouil, L; Simon, V

    2006-02-01

    Air quality studies need to be based on accurate and reliable data, particularly in the field of the emissions. Biogenic emissions from forests, crops, and grasslands are now considered as major compounds in photochemical processes. Unfortunately, depending on the type of vegetation, these emissions are not so often reliably defined. As an example, although the silver fir (Abies alba) is a very widespread conifer tree in the French and European areas, its standard emission rate is not available in the literature. This study investigates the isoprene and monoterpenes emission from A. alba in France measured during the fieldwork organised in the Fossé Rhénan, from May to June 2003. A dynamic cuvette method was used. Limonene was the predominant monoterpene emitted, followed by camphene, alpha-pinene and eucalyptol. No isoprene emission was detected. The four monoterpenes measured showed different behaviours according to micrometeorological conditions. In fact, emissions of limonene, alpha-pinene and camphene were temperature-dependant while eucalyptol emissions were temperature and light dependant. Biogenic volatile organic compounds emissions were modeled using information gathered during the field study. Emissions of the three monoterpenes previously quoted were achieved using the monoterpenes algorithm developed by Tingey et al. (1980) [Tingey D, Manning M, Grothaus L, Burns W. Influence of light and temperature on monoterpene emission rates from slash pine. Plant Physiol 1980;65: 797-801.] and the isoprene algorithm [Guenther, A., Monson, R., Fall, R., 1991. Isoprene and monoterpene emission rate variability: observations with eucalyptus and emission rate algorithm development. J Geophys Res 26A: 10799-10808.]; [Guenther, A., Zimmerman, P., Harley, P., Monson, R., Fall, R., 1993. Isoprene and monoterpene emission rate variability: model evaluation and sensitivity analysis. J Geophys Res 98D: 12609-12617.]) was used for the eucalyptol emission. With these

  5. Comparisons of MOVES Light-duty Gasoline NOx Emission Rates with Real-world Measurements

    Science.gov (United States)

    Choi, D.; Sonntag, D.; Warila, J.

    2017-12-01

    Recent studies have shown differences between air quality model estimates and monitored values for nitrogen oxides. Several studies have suggested that the discrepancy between monitored and modeled values is due to an overestimation of NOx from mobile sources in EPA's emission inventory, particularly for light-duty gasoline vehicles. EPA's MOtor Vehicle Emission Simulator (MOVES) is an emission modeling system that estimates emissions for cars, trucks and other mobile sources at the national, county, and project level for criteria pollutants, greenhouse gases, and air toxics. Studies that directly measure vehicle emissions provide useful data for evaluating MOVES when the measurement conditions are properly accounted for in modeling. In this presentation, we show comparisons of MOVES2014 to thousands of real-world NOx emissions measurements from individual light-duty gasoline vehicles. The comparison studies include in-use vehicle emissions tests conducted on chassis dynamometer tests in support of Denver, Colorado's Vehicle Inspection & Maintenance Program and remote sensing data collected using road-side instruments in multiple locations and calendar years in the United States. In addition, we conduct comparisons of MOVES predictions to fleet-wide emissions measured from tunnels. We also present details on the methodology used to conduct the MOVES model runs in comparing to the independent data.

  6. Smog chamber studies on the air chemistry of biogenic hydrocarbons in the presence of ozone, NOx and SO2

    International Nuclear Information System (INIS)

    Nolting, F.; Zetzsch, C.

    1990-01-01

    The influence of SO 2 on the photochemical degradation processes of the biogenic hydrocarbon α-pinene was studied with respect to the present forest decline. For that purpose premixed air was irradiated with simulated sunlight in laboratory experiments using a modified smog chamber. The performance of a novel semi continuous analyzer for H 2 SO 4 /sulfate was tested for smog chamber studies of the transformation of SO 2 to sulfuric acid and sulfur containing aerosol. An influence of SO 2 on the formation of ozone was not detected. The rates of degradation cannot be described by gas phase reactions alone, and, in addition, they are faster in the presence of humidity. Depending on humidity, 30-50% of the consumed SO 2 can be recovered in the suspended aerosol. In the presence of 60% relative humidity the nearly exclusive product is sulfur aerosol that needs further characterization. (orig.) With 9 figs., 42 refs [de

  7. Arctic Vegetation under Climate Change – Biogenic Volatile Organic Compound Emissions and Leaf Anatomy

    DEFF Research Database (Denmark)

    Schollert, Michelle

    common arctic plant species, illustrating the great importance of vegetation composition for determining ecosystem BVOC emissions. Additionally, this thesis assesses the BVOC emission responses in common arctic plant species to effects of climate change: warming, shading and snow addition. Against...... treatment effects on BVOC emissions. Furthermore, the anatomy of arctic plants seems to respond differently to warming than species at lower latitudes. The results in this thesis demonstrate the complexity of the effects of climate change on BVOC emissions and leaf anatomy of arctic plant species......Biogenic volatile organic compounds (BVOCs) emitted from terrestrial vegetation are highly reactive non-methane hydrocarbons which participate in oxidative reactions in the atmosphere prolonging the lifetime of methane and contribute to the formation of secondary organic aerosols. The BVOC...

  8. Off-season biogenic volatile organic compound emissions from heath mesocosms

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Gierth, Diana; Bilde, Merete

    2013-01-01

    Biogenic volatile organic compounds (BVOCs) affect both atmospheric processes and ecological interactions. Our primary aim was to differentiate between BVOC emissions from above- and belowground plant parts and heath soil outside the growing season. The second aim was to assess emissions from...... herbivory, mimicked by cutting the plants. Mesocosms from a temperate Deschampsia flexuosa-dominated heath ecosystem and a subarctic mixed heath ecosystem were either left intact, the aboveground vegetation was cut, or all plant parts (including roots) were removed. For 3-5 weeks, BVOC emissions were...... measured in growth chambers by an enclosure method using gas chromatography-mass spectrometry. CO2 exchange, soil microbial biomass and soil carbon and nitrogen concentrations were also analyzed. Vegetation cutting increased BVOC emissions by more than 20-fold, and the induced compounds were mainly eight...

  9. Comparative study of automotive, aircraft and biogenic emissions of aldehydes and aromatic compounds.

    Science.gov (United States)

    Guimarães, C S; Custodio, D; de Oliveira, R C S; Varandas, L S; Arbilla, G

    2010-02-01

    Air samples were collected in three well characterized locations in the city of Rio de Janeiro, Brazil: downtown, the idle and taxi way areas of the national airport and an urban forest, where the main emissions are from vehicular, aircraft and biogenic sources, respectively. Aldehydes and BTEX concentrations show a characteristic profile which may be attributed to the emission sources. Formaldehyde/acetaldehyde ratios, in the early morning, were 1.39, 0.62 and 2.22 in downtown, airport and forest, respectively. Toluene/benzene ratios, for downtown, airport and forest areas, were 1.11, 1.82 and 1.06, respectively. The results show that the impact of the urban emissions on the forest is negligible as well as the impact of aircraft emissions over the urban area.

  10. Experimental Study on Relationship between NOx Emission and Fuel Consumption of a Diesel Engine

    Science.gov (United States)

    Ning, Ping; Liu, Chunjiang; Feng, Zhiqiang; Xia, Yijiang

    2018-01-01

    For YC6112 diesel engine assembled Delphl model single fuel pump electric controlled, in the premise of not changing its overall unit structure parameters of other systems, three different types of camshaft for single pumps, two kinds of fuel injectors, two types of superchargers and some phase shifting angle of different camshafts were chosen to match with the engine precisely, the experiments under thirteen kinds of working conditions for the engine with different matching were carried out, the change regulation between NOX emission and fuel consumption for the engine with different kinds of configurations was analyzed. The experiment results show the NOX emission and fuel consumption can be reduced greatly by configuring proper camshaft, fuel injectors and superchargers with YC6112 diesel engine.

  11. Reduction of NOx emissions when burning low heating value gas

    International Nuclear Information System (INIS)

    Gustafsson, R.; Oskarsson, J.; Waldheim, L.

    1993-09-01

    On the gasification of nitrogen-rich fuel the nitrogen from the fuel goes into the gas phase in the form of ammonia and hydrogen cyanide and also nitrogen containing tars. When the gas is combusted the nitrogen compounds are oxidized to a great extent to NO x and, therefore, high NO x emissions can be found on the combustion of low heating value gas produced from energy forest wood chips as is also the case with direct combustion of nitrogen rich fuels. An experimental study has been carried out where the important parameters for designing a combustion chamber for low heating value gases have been studied in order to obtain maximum reduction of NO x emissions. The effect of tar cracking using dolomite on these emissions and the effect of parameters such as the addition of steam has also been tested. The tests were carried out with energy forest wood chips with 0.3% nitrogen. The gasification was carried out in a pyrolysis reactor, operated to yield a low heating value gas, and which was coupled to a simplified gas turbine combustion chamber at atmospheric pressure. The results show that the main part of the nitrogen in the fuel is found as ammonia in the low heating value gas. With this type of gasification the conversion of fuel nitrogen to ammonia in the gas is equivalent to 500-600 mg/MJ, calculated as NO 2 . Only very low amounts of hydrogen cyanide have been noted and no nitrogen containing tar components have been found. No apparent effect of steam additions has been noted. On the other hand the distribution of air in the combustion chamber and residence time during the under stoichiometric conditions are of great importance for the NO x reduction. Depending on the air distribution the emissions of NO 2 varied between 100 and 250 mg/MJ, calculated as NO 2 . 23 refs, 11 figs, 2 tabs

  12. Influence of Nox Emissions on Central Valley Fog Frequency and Persistence

    Science.gov (United States)

    Gray, E.; Baldocchi, D. D.; Goldstein, A. H.

    2016-12-01

    From 1930-1970, California's Central Valley (CV) radiation fog significantly increased, with locations such as Fresno seeing an 83% growth in fog frequency. However, in the last 30 years, researchers identified a 50% reduction in fog days (Baldocchi and Waller, 2014). The dominant hypotheses suggest that the decline in fog can be explained by rising temperatures associated with climate change or urban heat island effect. This assertion fails to explain the significant increase in CV fog midcentury. Here we instead assert that changes in air pollution, rather than climate, better explain this upward-then-downward temporal trend. As unregulated emissions increased NOx concentration from 1930-1970, it directly contributed to the formation of ammonium nitrate, the CV's dominate wintertime aerosol, which size range and hygroscopicity make efficient cloud condensation nuclei (CCN). Upon emission mitigation, NOx concentration declined rapidly, therefore reducing the CCN available for fog formation. Using over 75 years of meteorological measurements, we developed a detailed CV fog climatology. Additionally, we compiled a record of surface CV NOx concentration from 1963-Present as an indicator of subsequent secondary aerosol formation. We used this data to analyze the spatial and temporal correlation between fog frequency and mechanistic drivers of fog formation, including temperature, dewpoint, precipitation, wind speed, and aerosol concentration. In addition to the upward-then-downward temporal trend, CV fog frequency exhibits a pronounced north-south gradient, with fog consistently more frequent and persistent in southern latitudes than northern. Unlike temperature and wind speed records, precipitation and dewpoint trends exhibit a similar north-south spatial pattern. However, only NOx concentration adheres to both the upward-then-downward temporal trend and the north-south spatial distribution. Thus, we conclude that fog trends in the CV best correlate both temporally

  13. Characteristics and mechanism of NOx emission of hydrogen fueled internal combustion engine

    OpenAIRE

    Hairong ZHU; Zewei GENG; Qinggang LIU; Peiying PENG

    2017-01-01

    In order to deeply study the NOx formation mechanism of hydrogen fueled internal combustion engine (HICE), a hydrogen fueled internal combustion engine CFD simulation model including three-dimensional gridding coupling detailed chemical reaction mechanism is built based on CONVERGE software, and the combustion and emission characteristics of hydrogen fueled internal combustion engine under different loads are researched. The simulation result is consistent with the experimental data. The simu...

  14. Off-season biogenic volatile organic compound emissions from heath mesocosms: responses to vegetation cutting.

    Science.gov (United States)

    Rinnan, Riikka; Gierth, Diana; Bilde, Merete; Rosenørn, Thomas; Michelsen, Anders

    2013-01-01

    Biogenic volatile organic compounds (BVOCs) affect both atmospheric processes and ecological interactions. Our primary aim was to differentiate between BVOC emissions from above- and belowground plant parts and heath soil outside the growing season. The second aim was to assess emissions from herbivory, mimicked by cutting the plants. Mesocosms from a temperate Deschampsia flexuosa-dominated heath ecosystem and a subarctic mixed heath ecosystem were either left intact, the aboveground vegetation was cut, or all plant parts (including roots) were removed. For 3-5 weeks, BVOC emissions were measured in growth chambers by an enclosure method using gas chromatography-mass spectrometry. CO2 exchange, soil microbial biomass, and soil carbon and nitrogen concentrations were also analyzed. Vegetation cutting increased BVOC emissions by more than 20-fold, and the induced compounds were mainly eight-carbon compounds and sesquiterpenes. In the Deschampsia heath, the overall low BVOC emissions originated mainly from soil. In the mixed heath, root, and soil emissions were negligible. Net BVOC emissions from roots and soil of these well-drained heaths do not significantly contribute to ecosystem emissions, at least outside the growing season. If insect outbreaks become more frequent with climate change, ecosystem BVOC emissions will periodically increase due to herbivory.

  15. Application of High Resolution Air-Borne Remote Sensing Observations for Monitoring NOx Emissions

    Science.gov (United States)

    Souri, A.; Choi, Y.; Pan, S.; Curci, G.; Janz, S. J.; Kowalewski, M. G.; Liu, J.; Herman, J. R.; Weinheimer, A. J.

    2017-12-01

    Nitrogen oxides (NOx=NO+NO2) are one of the air pollutants, responsible for the formation of tropospheric ozone, acid rain and particulate nitrate. The anthropogenic NOx emissions are commonly estimated based on bottom-up inventories which are complicated by many potential sources of error. One way to improve the emission inventories is to use relevant observations to constrain them. Fortunately, Nitrogen dioxide (NO2) is one of the most successful detected species from remote sensing. Although many studies have shown the capability of using space-borne remote sensing observations for monitoring emissions, the insufficient sample number and footprint of current measurements have introduced a burden to constrain emissions at fine scales. Promisingly, there are several air-borne sensors collected for NASA's campaigns providing high spatial resolution of NO2 columns. Here, we use the well-characterized NO2 columns from the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's B200 aircraft into a 1×1 km regional model to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. Firstly, in order to incorporate the data, we convert the NO2 slant column densities to vertical ones using a joint of a radiative transfer model and the 1x1 km regional model constrained by P3-B aircraft measurements. After conducting an inverse modeling method using the Kalman filter, we find the ACAM observations are resourceful at mitigating the overprediction of model in reproducing NO2 on regular days. Moreover, the ACAM provides a unique opportunity to detect an anomaly in emissions leading to strong air quality degradation that is lacking in previous works. Our study provides convincing evidence that future geostationary satellites with high spatial and temporal resolutions will give us insights into uncertainties associated with the emissions at regional scales.

  16. Evaluation of MEGAN predicted biogenic isoprene emissions at urban locations in Southeast Texas

    Science.gov (United States)

    Kota, Sri Harsha; Schade, Gunnar; Estes, Mark; Boyer, Doug; Ying, Qi

    2015-06-01

    Summertime isoprene emissions in the Houston area predicted by the Model of Emissions of Gases and Aerosol from Nature (MEGAN) version 2.1 during the 2006 TexAQS study were evaluated using a source-oriented Community Multiscale Air Quality (CMAQ) Model. Predicted daytime isoprene concentrations at nine surface sites operated by the Texas Commission of Environmental Quality (TCEQ) were significantly higher than local observations when biogenic emissions dominate the total isoprene concentrations, with mean normalized bias (MNB) ranges from 2.0 to 7.7 and mean normalized error (MNE) ranges from 2.2 to 7.7. Predicted upper air isoprene and its first generation oxidation products of methacrolein (MACR) and methyl vinyl ketone (MVK) were also significantly higher (MNB = 8.6, MNE = 9.1) than observations made onboard of NOAA's WP-3 airplane, which flew over the urban area. Over-prediction of isoprene and its oxidation products both at the surface and the upper air strongly suggests that biogenic isoprene emissions in the Houston area are significantly overestimated. Reducing the emission rates by approximately 3/4 was necessary to reduce the error between predictions and observations. Comparison of gridded leaf area index (LAI), plant functional type (PFT) and gridded isoprene emission factor (EF) used in MEGAN modeling with estimates of the same factors from a field survey north of downtown Houston showed that the isoprene over-prediction is likely caused by the combined effects of a large overestimation of the gridded EF in urban Houston and an underestimation of urban LAI. Nevertheless, predicted ozone concentrations in this region were not significantly affected by the isoprene over-predictions, while predicted isoprene SOA and total SOA concentrations can be higher by as much as 50% and 13% using the higher isoprene emission rates, respectively.

  17. NOx emissions from high swirl turbulent spray flames with highly oxygenated fuels

    KAUST Repository

    Bohon, Myles

    2013-01-01

    Combustion of fuels with fuel bound oxygen is of interest from both a practical and a fundamental viewpoint. While a great deal of work has been done studying the effect of oxygenated additives in diesel and gasoline engines, much less has been done examining combustion characteristics of fuels with extremely high mass fractions of fuel bound oxygen. This work presents an initial investigation into the very low NOx emissions resulting from the combustion of a model, high oxygen mass fraction fuel. Glycerol was chosen as a model fuel with a fuel bound oxygen mass fraction of 52%, and was compared with emissions measured from diesel combustion at similar conditions in a high swirl turbulent spray flame. This work has shown that high fuel bound oxygen mass fractions allow for combustion at low global equivalence ratios with comparable exhaust gas temperatures due to the significantly lower concentrations of diluting nitrogen. Despite similar exhaust gas temperatures, NOx emissions from glycerol combustion were up to an order of magnitude lower than those measured using diesel fuel. This is shown to be a result not of specific burner geometry, but rather is influenced by the presence of higher oxygen and lower nitrogen concentrations at the flame front inhibiting NOx production. © 2012 The Combustion Institute.

  18. Improved NOx emissions and combustion characteristics for a retrofitted down-fired 300-MWe utility boiler.

    Science.gov (United States)

    Li, Zhengqi; Ren, Feng; Chen, Zhichao; Liu, Guangkui; Xu, Zhenxing

    2010-05-15

    A new technique combining high boiler efficiency and low-NO(x) emissions was employed in a 300MWe down-fired boiler as an economical means to reduce NO(x) emissions in down-fired boilers burning low-volatile coals. Experiments were conducted on this boiler after the retrofit with measurements taken of gas temperature distributions along the primary air and coal mixture flows and in the furnace, furnace temperatures along the main axis and gas concentrations such as O(2), CO and NO(x) in the near-wall region. Data were compared with those obtained before the retrofit and verified that by applying the combined technique, gas temperature distributions in the furnace become more reasonable. Peak temperatures were lowered from the upper furnace to the lower furnace and flame stability was improved. Despite burning low-volatile coals, NO(x) emissions can be lowered by as much as 50% without increasing the levels of unburnt carbon in fly ash and reducing boiler thermal efficiency.

  19. Top-down NOX Emissions of European Cities Derived from Modelled and Spaceborne Tropospheric NO2 Columns

    Science.gov (United States)

    Verstraeten, W. W.; Boersma, K. F.; Douros, J.; Williams, J. E.; Eskes, H.; Delcloo, A. W.

    2017-12-01

    High nitrogen oxides (NOX = NO + NO2) concentrations near the surface impact humans and ecosystems badly and play a key role in tropospheric chemistry. NO2 is an important precursor of tropospheric ozone (O3) which in turn affects the production of the hydroxyl radical controlling the chemical lifetime of key atmospheric pollutants and reactive greenhouse gases. Combustion from industrial, traffic and household activities in large and densely populated urban areas result in high NOX emissions. Accurate mapping of these emissions is essential but hard to do since reported emissions factors may differ from real-time emissions in order of magnitude. Modelled NO2 levels and lifetimes also have large associated uncertainties and overestimation in the chemical lifetime which may mask missing NOX chemistry in current chemistry transport models (CTM's). The simultaneously estimation of both the NO2 lifetime and as well as the concentrations by applying the Exponentially Modified Gaussian (EMG) method on tropospheric NO2 columns lines densities should improve the surface NOX emission estimates. Here we evaluate if the EMG methodology applied on the tropospheric NO2 columns simulated by the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) CTM can reproduce the NOX emissions used as model input. First we process both the modelled tropospheric NO2 columns for the period April-September 2013 for 21 selected European urban areas under windy conditions (averaged vertical wind speeds between surface and 500 m from ECMWF > 2 m s-1) as well as the accompanying OMI (Ozone Monitoring Instrument) data providing us with real-time observation-based estimates of midday NO2 columns. Then we compare the top-down derived surface NOX emissions with the 2011 MACC-III emission inventory, used in the CTM as input to simulate the NO2 columns. For cities where NOX emissions can be assumed as originating from one large source good agreement is found between the top-down derived

  20. Biogenic and pyrogenic emissions from Africa and their impact on the global atmosphere

    International Nuclear Information System (INIS)

    Scholes, Mary; Andreae, M.O.

    2000-01-01

    Tropical regions, with their high biological activity, have the potential to emit large amounts of trace gases and aerosols to the atmosphere. This can take the form of trace gas fluxes from soils and vegetation, where gaseous species are produced and consumed by living organisms, or of smoke emissions from vegetation fires. In the last decade, considerable scientific effort has gone into quantifying these fluxes from the African continent. We find that both biogenic and pyrogenic emissions have a powerful impact on regional and global atmospheric chemistry, particularly on photooxidation processes and tropospheric ozone. The emissions of radiatively active gases and aerosols from the African continent are likely to have a significant climatic effect, but presently available data are not sufficient for reliable quantitative estimates of this effect

  1. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient.

    Science.gov (United States)

    Svendsen, Sarah Hagel; Lindwall, Frida; Michelsen, Anders; Rinnan, Riikka

    2016-12-15

    Emissions of biogenic volatile organic compounds (BVOCs) from terrestrial ecosystems are important for the atmospheric chemistry and the formation of secondary organic aerosols, and may therefore influence the climate. Global warming is predicted to change patterns in precipitation and plant species compositions, especially in arctic regions where the temperature increase will be most pronounced. These changes are potentially highly important for the BVOC emissions but studies investigating the effects are lacking. The aim of this study was to investigate the quality and quantity of BVOC emissions from a high arctic soil moisture gradient extending from dry tundra to a wet fen. Ecosystem BVOC emissions were sampled five times in the July-August period using a push-pull enclosure technique, and BVOCs trapped in absorbent cartridges were analyzed using gas chromatography-mass spectrometry. Plant species compositions were estimated using the point intercept method. In order to take into account important underlying ecosystem processes, gross ecosystem production, ecosystem respiration and net ecosystem production were measured in connection with chamber-based BVOC measurements. Highest emissions of BVOCs were found from vegetation communities dominated by Salix arctica and Cassiope tetragona, which had emission profiles dominated by isoprene and monoterpenes, respectively. These results show that emissions of BVOCs are highly dependent on the plant cover supported by the varying soil moisture, suggesting that high arctic BVOC emissions may affect the climate differently if soil water content and plant cover change. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Air Pollution Inequality and Its Sources in SO2 and NOX Emissions among Chinese Provinces from 2006 to 2015

    Directory of Open Access Journals (Sweden)

    Mohaddeseh Azimi

    2018-01-01

    Full Text Available This paper investigates inequality in SO2 and NOX emissions, by observing their extraordinary levels and uneven distribution in China during the period of the 11th and 12th Five-Year Plans (FYPs, 2006–2015. This provincial and regional analysis utilizing the Theil index and Kaya factors help us to find the trajectory of inequality and its primary sources. Based on our analysis, we conclude the driving factors behind emissions inequalities are as follows. There are four economic factors of per capita SO2 emission: SO2 emission intensity of coal consumption, coal intensity of power generation, power intensity of GDP, and per capita GDP. Additionally, there are four urban development factors of per capita NOX emission: NOX emission intensity of gasoline consumption, proportion of gasoline vehicles, vehicle use in urban population, and urbanization rate. The SO2 emission results represent an increase of 6% in overall inequality where the inequality of power intensity of GDP is the main contributor. In terms of NOX emission, the 3% growth in total inequality is related to the high effect of NOX emission intensity of gasoline consumption. We also examine the effect of other factors affecting the trajectory of inequalities. To apply these results in practice, we compare the 11th and 12th FYPs and give some policy suggestions.

  3. NOx emissions and combustibility characteristics of coal blends

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Arias, B.; Pis, J.J. [CSIC, Instituto Nacional del Carbon, Oviedo (Spain). Dept. of Energy and Environment

    2001-07-01

    In this work, a series of coals with different origin and rank were blended and several aspects of the resultant blends were studied. This included determination of the grindability of individual coals and blends by means of the Hardgrove Grindability Index (HGI), and temperature programmed combustion test, which were carried out in a thermogravimetric analyser (TG) coupled to a quadruple mass spectrometer (MS) for evolved gas analysis. Special attention was paid to the combustibility parameters and the NO emissions during blends combustion. It was found that while some coal blends present interaction between the individual coals, others do not. This behaviour was assumed to be due to the differences in coal structure and functional groups composition. 18 refs., 11 figs., 2 tabs.

  4. Present status and trends in SO2 and NOx emission control regulations in Europe

    International Nuclear Information System (INIS)

    Ellison, W.

    1987-01-01

    1983 West German legislation (GFAVO) calls for retrofitting by 1988 of FGD facilities of a minimum of 85% sulfur dioxide (SO2) removal efficiency, with stack emission no greater than 400 milligrams (mg) per normal cubic meter (Nm 3 ) of flue gas, for new and existing boilers greater than approximately 110 megawatts i.e. MW(e), size. As of 1986, more than 100 FGD systems with greater than 40,000 MW(e) aggregate capacity have been purchased in West Germany alone. 1983 West German legislation requires by 1993 the retrofit addition of approximately 400 more FGD installations aggregating approximately 25,000 MW(e) of capacity on boilers in the size range 35 to 110 MW(e). Stringent West German SO2 legislation in 1983 was followed in 1984 by enactment of very strict new nitrogen oxides (NOx) limits calling for emissions of no more than 200 mg NOx, measured as nitrogen dioxide, NO2, per Nm 3 , approximately 0.16 lb NO2 per million Btu heat input, for existing and new boilers greater than 110 MW(e), size. As of 1986 approximately 50 high-efficiency commercial systems aggregating more than 10,000 MW(e) capacity, most for retrofit addition, have been purchased in West Germany alone, and approximately 30,000 MW(e) of additional NOx removal capacity will be required to be retrofitted by deadlines during the period 1988 to 1990. For comparative purposes a brief description is given of regulations in North America for control of SO2 and NOx emissions from large coal-fired boilers

  5. Biogenic greenhouse gas emissions linked to the life cycles of biodiesel derived from European rapeseed and Brazilian soybeans

    NARCIS (Netherlands)

    Reijnders, L.; Huijbregts, M.A.J.

    2008-01-01

    Biogenic emissions of carbonaceous greenhouse gases and N2O turn out to be important determinants of life cycle emissions of greenhouse gases linked to the life cycle of biodiesel from European rapeseed and Brazilian soybeans. For biodiesel from European rapeseed and for biodiesel from Brazilian

  6. A plant chamber system with downstream reaction chamber to study the effects of pollution on biogenic emissions

    NARCIS (Netherlands)

    Timovsky, J.; Gankema, Paulien; Pierik, Ronald; Holzinger, Rupert

    2014-01-01

    A system of two plant chambers and a downstream reaction chamber has been set up to investigate the emission of biogenic volatile organic compounds (BVOCs) and possible effects of pollutants such as ozone. The system can be used to compare BVOC emissions from two sets of differently treated plants,

  7. Biogenic Volatile Organic Compound Emission Rates From Urban Vegetation in Southeast China

    Science.gov (United States)

    Baker, B.; Graessli, M.; Bai, J.; Huang, A.; Li, N.; Guenther, A.

    2005-12-01

    Currently, the country of China is growing economically at an extraordinary pace. With this growth comes an increase in emissions of anthropogenic pollutants such as hydrocarbons and nitrogen oxides from factories and vehicles. To accurately determine the effects of these pollutants on regional ozone production, and to best determine mitigation strategies, biogenic volatile organic compound (BVOC) emissions must be considered in regional atmospheric chemistry models. To date, few studies have been carried out to determine BVOC emission factors for plant species that occur in China. Considering that approximately 20% of the world's population resides in this region, it is important to develop accurate databases for BVOC emissions for the country of China. This experiment took place during May and June of 2005 and was based in the Fairy Lake Botanical Gardens (FLBG) located to the northeast of the city of Shenzhen. The city of Shenzhen is located in southeast China in Guangdong province. The city was designated a 'special economic zone' in 1980 and has experienced intense population and economic growth ever since. The dense city is surrounded by hilly rural areas of forest on three sides, and Hong Kong to the south. The purpose of the experiment was to evaluate emissions of BVOC from plants that are important to the Shenzhen region as well as to southeastern China. Over 150 species of plants were screened for emissions of isoprene and monoterpenes. These species include most of the dominant trees and shrubs planted in the Shenzhen area. Samples were collected at the FLBG as well as at various locations around the city of Shenzhen. BVOC emission samples were collected and analyzed in one of two ways. First, a Teflon enclosure was placed over a plant's branch with a constant flow of ambient air passing through the enclosure. Samples were then pumped into a Teflon bag for analysis. Samples were analyzed within 30 minutes by gas chromatography (GC) with either a photo

  8. Global Partitioning of NOx Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions

    Science.gov (United States)

    Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly

    2005-01-01

    This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.

  9. The effects of fire on biogenic soil emissions of nitric oxide and nitrous oxide

    Science.gov (United States)

    Levine, Joel S.; Cofer, Wesley R., III; Sebacher, Daniel I.; Boston, Penelope J.; Winstead, Edward L.; Sebacher, Shirley

    1988-01-01

    Measurements of biogenic soil emissions of nitric oxide (NO) and nitrous oxide (N2O) before and after a controlled burn conducted in a chaparral ecosystem on June 22, 1987, showed significantly enhanced emissions of both gases after the burn. Mean NO emissions from heavily burned and wetted (to simulate rainfall) sites exceeded 40 ng N/sq m s, and increase of 2 to 3 compared to preburn wetted site measurements. N2O emissions from burned and wetted sites ranged from 9 to 22 ng N/sq m s. Preburn N2O emissions from these wetted sites were all below the detection level of the instrumentation, indicating a flux below 2 ng N/sq m s. The flux of NO exceeded the N2O flux from burned wetted sites by factors ranging from 2.7 to 3.4. These measurements, coupled with preburn and postburn measurements of ammonium and nitrate in the soil of this chaparral ecosystem and measurements of NO and N2O emissions obtained under controlled laboratory conditions, suggest that the postfire enhancement of NO and N2O emissions is due to production of these gases by nitrifying bacteria.

  10. City-level variations in NOx emissions derived from hourly monitoring data in Chicago

    Science.gov (United States)

    de Foy, Benjamin

    2018-03-01

    Control on emissions of nitrogen oxides (NOx) in the United States of America have led to reductions in concentrations in urban areas by up to a factor of two in the last decade. The Air Quality System monitoring network provides surface measurements of concentrations at hourly resolution over multiple years, revealing variations at the annual, seasonal, day of week and diurnal time scales. A multiple linear regression model was used to estimate the temporal profiles in the NOx concentrations as well as the impact of meteorology, ozone concentrations, and boundary layer heights. The model is applied to data from 2005 to 2016 available at 6 sites in Chicago, Illinois. Results confirm the 50% decrease in NOx over the length of the time series. The weekend effect is found to be stronger in more commercial areas, with 32% reductions on Saturdays and 45% on Sundays and holidays; and weaker in more residential areas with 20% reductions on Saturdays and 30% reductions on Sundays. Weekday diurnal profiles follow a double hump with emission peaks during the morning and afternoon rush hours, but only a shallow drop during the middle day. Difference in profiles from the 6 sites suggest that there are different emission profiles within the urban area. Diurnal profiles on Saturdays have less variation throughout the day and more emissions in the evening. Sundays are very different from both weekdays and Saturdays with a gradual increase until the early evening. The results suggest that in addition to vehicle type and vehicle miles traveled, vehicle speed and congestion must be taken into account to correctly quantify morning rush hour emissions and the weekend effect.

  11. Public health impacts of excess NOx emissions from Volkswagen diesel passenger vehicles in Germany

    Science.gov (United States)

    Chossière, Guillaume P.; Malina, Robert; Ashok, Akshay; Dedoussi, Irene C.; Eastham, Sebastian D.; Speth, Raymond L.; Barrett, Steven R. H.

    2017-03-01

    In September 2015, the Volkswagen Group (VW) admitted the use of ‘defeat devices’ designed to lower emissions measured during VW vehicle testing for regulatory purposes. Globally, 11 million cars sold between 2008 and 2015 are affected, including about 2.6 million in Germany. On-road emissions tests have yielded mean on-road NOx emissions for these cars of 0.85 g km-1, over four times the applicable European limit of 0.18 g km-1. This study estimates the human health impacts and costs associated with excess emissions from VW cars driven in Germany. A distribution of on-road emissions factors is derived from existing measurements and combined with sales data and a vehicle fleet model to estimate total excess NOx emissions. These emissions are distributed on a 25 by 28 km grid covering Europe, using the German Federal Environmental Protection Agency’s (UBA) estimate of the spatial distribution of NOx emissions from passenger cars in Germany. We use the GEOS-Chem chemistry-transport model to predict the corresponding increase in population exposure to fine particulate matter and ozone in the European Union, Switzerland, and Norway, and a set of concentration-response functions to estimate mortality outcomes in terms of early deaths and of life-years lost. Integrated over the sales period (2008-2015), we estimate median mortality impacts from VW excess emissions in Germany to be 1200 premature deaths in Europe, corresponding to 13 000 life-years lost and 1.9 billion EUR in costs associated with life-years lost. Approximately 60% of mortality costs occur outside Germany. For the current fleet, we estimate that if on-road emissions for all affected VW vehicles in Germany are reduced to the applicable European emission standard by the end of 2017, this would avert 29 000 life-years lost and 4.1 billion 2015 EUR in health costs (median estimates) relative to a counterfactual case with no recall.

  12. Experimental investigation on NOx emission characteristics of a new solid fuel made from sewage sludge mixed with coal in combustion.

    Science.gov (United States)

    Zhai, Yunbo; Zhu, Lu; Chen, Hongmei; Xu, Bibo; Li, Caiting; Zeng, Guangming

    2015-02-01

    In this article, a new briquette fuel (SC), which was produced by the mixture of coal fines (25.9%), sewage sludge (60.6%), lignin (4.5%), tannic acid (4.5%) and elemental silicon (4.5%), was provided. Then, in a high temperature electric resistance tubular furnace, the total emissions of NO2 and NO, effects of combustion temperature, air flow rate and heating rate on NOx (NO, NO2) emissions of SC were studied during the combustion of SC; furthermore, effects of additives on hardness were also analysed, and the X-ray photoelectron spectroscopy was applied to investigate the reduced NOx emission mechanism. The research results showed that, compared with the characteristics of briquette fuel (SC0) produced only by the mixture of coal and sewage sludge (the ratio of coal to sewage sludge was the same as that of SC), the Meyer hardness of SC was 12.6% higher than that of SC0 and the emissions of NOx were 27.83% less than that of SC0 under the same combustion conditions. The NOx emissions of SC decreased with the adding of heating rate and increased with the rise of air flow rate. When the temperature was below 1000 °C, the emissions of NOx increased with the elevated temperature, however, further temperature extension will result in a decreasing in emissions of NOx. Furthermore, the X-ray photoelectron spectroscopy results proposed that the possible mechanism for the reduction of NOx emissions was nitrogen and silicon in SC to form the compounds of silicon and nitrogen at high temperatures. © The Author(s) 2015.

  13. Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions

    Science.gov (United States)

    Seco, R.; Peñuelas, J.; Filella, I.; Llusià, J.; Molowny-Horas, R.; Schallhart, S.; Metzger, A.; Müller, M.; Hansel, A.

    2011-12-01

    Atmospheric volatile organic compounds (VOCs) are involved in ozone and aerosol generation, thus having implications for air quality and climate. VOCs and their emissions by vegetation also have important ecological roles as they can protect plants from stresses and act as communication cues between plants and between plants and animals. In spite of these key environmental and biological roles, the reports on seasonal and daily VOC mixing ratios in the literature for Mediterranean natural environments are scarce. We conducted seasonal (winter and summer) measurements of VOC mixing ratios in an elevated (720 m a.s.l.) holm oak Mediterranean forest site near the metropolitan area of Barcelona (NE Iberian Peninsula). Methanol was the most abundant compound among all the VOCs measured in both seasons. While aromatic VOCs showed almost no seasonal variability, short-chain oxygenated VOCs presented higher mixing ratios in summer, presumably due to greater emission by vegetation and increased photochemistry, both enhanced by the high temperatures and solar radiation in summer. Isoprenoid VOCs showed the biggest seasonal change in mixing ratios: they increased by one order of magnitude in summer, as a result of the vegetation's greater physiological activity and emission rates. The maximum diurnal concentrations of ozone increased in summer too, most likely due to more intense photochemical activity and the higher levels of VOCs in the air. The daily variation of VOC mixing ratios was mainly governed by the wind regime of the mountain, as the majority of the VOC species analyzed followed a very similar diel cycle. Mountain and sea breezes that develop after sunrise advect polluted air masses to the mountain. These polluted air masses had previously passed over the urban and industrial areas surrounding the Barcelona metropolitan area, where they were enriched in NOx and in VOCs of biotic and abiotic origin. Moreover, these polluted air masses receive additional biogenic

  14. Correlations between water-soluble organic aerosol and water vapor: a synergistic effect from biogenic emissions?

    Science.gov (United States)

    Hennigan, Christopher J; Bergin, Michael H; Weber, Rodney J

    2008-12-15

    Ground-based measurements of meteorological parameters and water-soluble organic carbon in the gas(WSOCg) and particle (WSOCp) phases were carried out in Atlanta, Georgia, from May to September 2007. Fourteen separate events were observed throughout the summer in which WSOCp and water vapor concentrations were highly correlated (average WSOCp-water vapor r = 0.92); however, for the entire summer, no well-defined relationship existed between the two. The correlation events, which lasted on average 19 h, were characterized by a wide range of WSOCp and water vapor concentrations. Several hypotheses for the correlation are explored, including heterogeneous liquid phase SOA formation and the co-emission of biogenic VOCs and water vapor. The data provide supporting evidence for contributions from both and suggest the possibility of a synergistic effect between the co-emission of water vapor and VOCs from biogenic sources on SOA formation. Median WSOCp concentrations were also correlated with elemental carbon (EC), although this correlation extended over the entire summer. Despite the emission of water vapor from anthropogenic mobile sources and the WSOCp-EC correlation, mobile sources were not considered a potential cause for the WSOCp-water vapor correlations because of their low contribution to the water vapor budget. Meteorology could perhaps have influenced the WSOCp-EC correlation, but other factors are implicated as well. Overall, the results suggest that the temperature-dependent co-emission of water vapor through evapotranspiration and SOA precursor-VOCs by vegetation may be an important process contributing to SOA in some environments.

  15. Incorporating GOES Satellite Photosynthetically Active Radiation (PAR) Retrievals to Improve Biogenic Emission Estimates in Texas

    Science.gov (United States)

    Zhang, Rui; White, Andrew T.; Pour Biazar, Arastoo; McNider, Richard T.; Cohan, Daniel S.

    2018-01-01

    This study examines the influence of insolation and cloud retrieval products from the Geostationary Operational Environmental Satellite (GOES) system on biogenic emission estimates and ozone simulations in Texas. Compared to surface pyranometer observations, satellite-retrieved insolation and photosynthetically active radiation (PAR) values tend to systematically correct the overestimation of downwelling shortwave radiation in the Weather Research and Forecasting (WRF) model. The correlation coefficient increases from 0.93 to 0.97, and the normalized mean error decreases from 36% to 21%. The isoprene and monoterpene emissions estimated by the Model of Emissions of Gases and Aerosols from Nature are on average 20% and 5% less, respectively, when PAR from the direct satellite retrieval is used rather than the control WRF run. The reduction in biogenic emission rates using satellite PAR reduced the predicted maximum daily 8 h ozone concentration by up to 5.3 ppbV over the Dallas-Fort Worth (DFW) region on some days. However, episode average ozone response is less sensitive, with a 0.6 ppbV decrease near DFW and 0.3 ppbV increase over East Texas. The systematic overestimation of isoprene concentrations in a WRF control case is partially corrected by using satellite PAR, which observes more clouds than are simulated by WRF. Further, assimilation of GOES-derived cloud fields in WRF improved CAMx model performance for ground-level ozone over Texas. Additionally, it was found that using satellite PAR improved the model's ability to replicate the spatial pattern of satellite-derived formaldehyde columns and aircraft-observed vertical profiles of isoprene.

  16. The CO/NOx emissions of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2014-05-28

    The CO and NOx exhaust emissions of swirled, strongly pulsed, turbulent jet diffusion flames were studied experimentally in a coflow swirl combustor. Measurements of emissions were performed on the combustor centerline using standard emission analyzers combined with an aspirated sampling probe located downstream of the visible flame tip. The highest levels of CO emissions are generally found for compact, isolated flame puffs, which is consistent with the quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels by up to a factor of 2.5, suggesting more rapid and compete fuel/air mixing by imposing swirl in the coflow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off times. The swirled coflow air can, in some cases, increase the NO emissions due to a longer combustion residence time due to the flow recirculation within the swirl-induced recirculation zone. Scaling relations, when taking into account the impact of air dilution over an injection cycle on the flame length, reveal a strong correlation between the CO emissions and the global residence time. However, the NO emissions do not successfully correlate with the global residence time. For some specific cases, a compact flame with a simultaneous decrease in both CO and NO emissions compared to the steady flames was observed. © Copyright © Taylor & Francis Group, LLC.

  17. Eagle Ford Shale BTEX and NOx concentrations are dominated by oil and gas industry emissions

    Science.gov (United States)

    Schade, G. W.; Roest, G. S.

    2017-12-01

    US shale oil and gas exploration has been identified as a major source of greenhouse gases and non-methane hydrocarbon (NMHC) emissions to the atmosphere. Here, we present a detailed analysis of 2015 air quality data acquired by the Texas Commission on Environmental Quality (TCEQ) at an air quality monitoring station in Karnes County, TX, central to Texas' Eagle Ford shale area. Data include time series of hourly measured NMHCs, nitrogen oxides (NOx), and hydrogen sulfide (H2S) alongside meteorological measurements. The monitor was located in Karnes City, and thus affected by various anthropogenic emissions, including traffic and oil and gas exploration sources. Highest mixing ratios measured in 2015 included nearly 1 ppm ethane, 0.8 ppm propane, alongside 4 ppb benzene. A least-squares minimization non-negative matrix factorization (NMF) analysis, tested with prior data analyzed using standard PMF-2 software, showed six major emission sources: an evaporative and fugitive source, a flaring source, a traffic source, an oil field source, a diesel source, and an industrial manufacturing source, together accounting for more than 95% of data set variability, and interpreted using NMHC composition and meteorological data. Factor scores strongly suggest that NOx emissions are dominated by flaring and associated sources, such as diesel compressor engines, likely at midstream facilities, while traffic in this rural area is a minor NOx source. The results support, but exceed existing 2012 emission inventories estimating that local traffic emitted seven times fewer NOx than oil and gas exploration sources in the county. Sources of air toxics such as the BTEX compounds are also dominated by oil and gas exploration sources, but are more equally distributed between the associated factors. Benzene abundance is only 20-40% associated with traffic sources, and may thus be 2.5-5 times higher now than prior to the shale boom in this area. Although the monitor was located relatively

  18. Reassessment of biogenic volatile organic compound emissions in the Atlanta area

    International Nuclear Information System (INIS)

    Geron, C.D.; Pierce, T.E.; Guenther, A.B.

    1995-01-01

    Localized estimates of biogenic volatile organic compound (BVOC) emissions are important inputs for photochemical oxidant simulation models. Since forest tree species are the primary emitters of BVOCs, it is important to develop reliable estimates of their areal coverage and BVOC emission rates. A new system is used to estimate these emissions in the Atlanta area for specific tree genera at hourly and county levels. The U.S. Department of Agriculture, Forest Service Forest Inventory and Analysis data and an associated urban vegetation survey are used to estimate canopy occupancy by genus in the Atlanta area. A simple canopy model is used to adjust photosynthetically active solar radiation at five vertical levels in the canopy. Lraf temperature and photosynthetically active radiation derived from ambient conditions above the forest canopy are then used to drive empirical equations to estimate genus level emission rates of BVOCs vertically through forest canopies. These genera-level estimates are then aggregated to county and regional levels for input into air quality models and for comparison with (1) the regulatory model currently used and (2) previous estimates for the Atlanta area by local researchers. Estimated hourly emissions from the three approaches during a documented ozone event day are compared. The proposed model yields peak diurnal isoprene emission rates that are over a factor of three times higher than previous estimates. This results in total BVOC emission rates that are roughly a factor of two times higher than previous estimates. These emissions are compared with observed emissions from forests of similar composition. Possible implications for oxidant events are discussed. (author)

  19. Assessment and Mitigation of NOx emission within a street canyon and tunnel portal micro environment

    Science.gov (United States)

    Uhrner, Ulrich; Reifeltshammer, Rafael

    2017-04-01

    Substantial breeches of the NO2 annual mean have been recorded at an air quality station located in a busy road in a German city. The daily traffic volume is about 26 000 vehicles a day and the share of heavy duty vehicles is small due to a heavy traffic driving ban. Critical is that traffic from the 540 m long city tunnel bends into the road and that there are tall buildings located at both sides of the road. 9 additional measurements with passive samplers indicate that the air quality limit value is exceeded from the tunnel portal towards the next major intersection (approximately 500 m). The objective of this study is to compute emissions from open roads versus tunnel portal emissions and to analyse their effect upon local air quality within this complex urban micro environment. The aim of this project was to evaluate the impact of tunnel ventilation and traffic reductions measures. A base case was computed using sophisticated flow and dispersion modelling, accounting for the impact of buildings and the effect of the sunken road and tunnel jet. NOx to NO2 conversion was computed using a Romberg type approach and good results were obtained for NO2 annual means compared with measurements. The effect of tunnel emissions and emissions from open roads was analysed respectively. The NOx/NO2 concentration pattern revealed that the portal area is affected by the portal emissions about 60 m in driving direction. However, kerbside concentrations are dominated only within 30 m in driving direction. At the air quality station at 150 m distance from the portal, 75 % of the NOx concentrations can be attributed to open roads and the rest is mainly attributable to urban background. A zero portal emission scenario resulted in significant improvement within the immediate vicinity of the portal. Due to the strong impact of open roads a 50 % traffic reduction scenario affecting tunnel and open roads emissions was computed. Although reductions of up to -25 µg/m3 may result

  20. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.

    Science.gov (United States)

    Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L

    2009-05-15

    Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further

  1. Influence of tree provenance on biogenic VOC emissions of Scots pine (Pinus sylvestris) stumps

    Science.gov (United States)

    Kivimäenpää, Minna; Magsarjav, Narantsetseg; Ghimire, Rajendra; Markkanen, Juha-Matti; Heijari, Juha; Vuorinen, Martti; Holopainen, Jarmo K.

    2012-12-01

    Resin-storing plant species such as conifer trees can release substantial amounts of volatile organic compounds (VOCs) into the atmosphere under stress circumstances that cause resin flow. Wounding can be induced by animals, pathogens, wind or direct mechanical damage e.g. during harvesting. In atmospheric modelling of biogenic VOCs, actively growing vegetation has been mostly considered as the source of emissions. Root systems and stumps of resin-storing conifer trees could constitute a significant store of resin after tree cutting. Therefore, we assessed the VOC emission rates from the cut surface of Scots pine stumps and estimated the average emission rates for an area with a density of 2000 stumps per ha. The experiment was conducted with trees of one Estonian and three Finnish Scots pine provenances covering a 1200 km gradient at a common garden established in central Finland in 1991. VOC emissions were dominated by monoterpenes and less than 0.1% of the total emission was sesquiterpenes. α-Pinene (7-92% of the total emissions) and 3-carene (0-76% of the total emissions) were the dominant monoterpenes. Proportions of α-pinene and camphene were significantly lower and proportions of 3-carene, sabinene, γ-terpinene and terpinolene higher in the southernmost Saaremaa provenance compared to the other provenances. Total terpene emission rates (standardised to +20 °C) from stumps varied from 27 to 1582 mg h-1 m-2 when measured within 2-3 h after tree cutting. Emission rates decreased rapidly to between 2 and 79 mg h-1 m-2 at 50 days after cutting. The estimated daily terpene emission rates on a hectare basis from freshly cut stumps at a cut tree density of 2000 per ha varied depending on provenance. Estimated emission ranges were 100-710 g ha-1 d-1 and 137-970 g ha-1 d-1 in 40 and in 60 year-old forest stands, respectively. Our result suggests that emission directly from stump surfaces could be a significant source of monoterpene emissions for a few weeks after

  2. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  3. Modeling of photochemical air pollution in the Barcelona area with highly disaggregated anthropogenic and biogenic emissions

    International Nuclear Information System (INIS)

    Toll, I.; Baldasano, J.M.

    2000-01-01

    The city of Barcelona and its surrounding area, located in the western Mediterranean basin, can reach high levels of O 3 in spring and summertime. To study the origin of this photochemical pollution, a numerical modeling approach was adopted and the episode that took place between 3 and 5 August 1990 was chosen. The main meteorological mesoscale flows were reproduced with the meteorological non-hydrostatic mesoscale model MEMO for 5 August 1990, when weak pressure synoptic conditions took place. The emissions inventory was calculated with the EIM-LEM model, giving highly disaggregated anthropogenic and biogenic emissions in the zone studied, an 80 x 80 km 2 area around the city of Barcelona. Major sources of VOC were road traffic (51%) and vegetation (34%), while NO x were mostly emitted by road traffic (88%). However, emissions from some industrial stacks can be locally important and higher than those from road traffic. Photochemical simulation with the MARS model revealed that the combination of mesoscale wind flows and the above-mentioned local emissions is crucial in the production and transport of O 3 in the area. On the other hand, the geostrophic wind also played an important role in advecting the air masses away from the places O 3 had been generated. The model simulations were also evaluated by comparing meteorological measurements from nine surface stations and concentration measurements from five surface stations, and the results proved to be fairly satisfactory. (author)

  4. Exhaust particle and NOx emission performance of an SCR heavy duty truck operating in real-world conditions

    Science.gov (United States)

    Saari, Sampo; Karjalainen, Panu; Ntziachristos, Leonidas; Pirjola, Liisa; Matilainen, Pekka; Keskinen, Jorma; Rönkkö, Topi

    2016-02-01

    Particle and NOx emissions of an SCR equipped HDD truck were studied in real-world driving conditions using the "Sniffer" mobile laboratory. Real-time CO2 measurement enables emission factor calculation for NOx and particles. In this study, we compared three different emission factor calculation methods and characterised their suitability for real-world chasing experiments. The particle number emission was bimodal and dominated by the nucleation mode particles (diameter below 23 nm) having emission factor up to 1 × 1015 #/kgfuel whereas emission factor for soot (diameter above 23 nm that is consistent with the PMP standard) was typically 1 × 1014 #/kgfuel. The effect of thermodenuder on the exhaust particles indicated that the nucleation particles consisted mainly of volatile compounds, but sometimes there also existed a non-volatile core. The nucleation mode particles are not controlled by current regulations in Europe. However, these particles consistently form under atmospheric dilution in the plume of the truck and constitute a health risk for the human population that is exposed to those. Average NOx emission was 3.55 g/kWh during the test, whereas the Euro IV emission limit over transient testing is 3.5 g NOx/kWh. The on-road emission performance of the vehicle was very close to the expected levels, confirming the successful operation of the SCR system of the tested vehicle. Heavy driving conditions such as uphill driving increased both the NOx and particle number emission factors whereas the emission factor for soot particle number remains rather constant.

  5. Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing

    Directory of Open Access Journals (Sweden)

    A. Ghirardo

    2016-03-01

    Full Text Available Trees can significantly impact the urban air chemistry by the uptake and emission of reactive biogenic volatile organic compounds (BVOCs, which are involved in ozone and particle formation. Here we present the emission potentials of "constitutive" (cBVOCs and "stress-induced" BVOCs (sBVOCs from the dominant broadleaf woody plant species in the megacity of Beijing. Based on the municipal tree census and cuvette BVOC measurements on leaf level, we built an inventory of BVOC emissions, and assessed the potential impact of BVOCs on secondary organic aerosol (SOA formation in 2005 and 2010, i.e., before and after realizing the large tree-planting program for the 2008 Olympic Games. We found that sBVOCs, such as fatty acid derivatives, benzenoids, and sesquiterpenes, constituted a significant fraction ( ∼  40 % of the total annual BVOC emissions, and we estimated that the overall annual BVOC budget may have doubled from  ∼  4.8  ×  109 g C year−1 in 2005 to  ∼  10.3  ×  109 g C year−1 in 2010 due to the increase in urban greening, while at the same time the emission of anthropogenic VOCs (AVOCs decreased by 24 %. Based on the BVOC emission assessment, we estimated the biological impact on SOA mass formation potential in Beijing. Constitutive and stress-induced BVOCs might produce similar amounts of secondary aerosol in Beijing. However, the main contributors of SOA-mass formations originated from anthropogenic sources (> 90 %. This study demonstrates the general importance to include sBVOCs when studying BVOC emissions. Although the main problems regarding air quality in Beijing still originate from anthropogenic activities, the present survey suggests that in urban plantation programs, the selection of low-emitting plant species has some potential beneficial effects on urban air quality.

  6. Measurements of the atmospheric emission of N2O from biogenic sources in general and by grassland ecosystems in particular

    NARCIS (Netherlands)

    Duyzer, J.

    1995-01-01

    The project is part of the 'Integrated N2O grassland project'. The project carried out at TNO aims to determine the atmospheric emissions of N2O from biogenic surface sources in the Netherlands. The following activities were part of the project: u ⊙ determination of

  7. NOx emissions from large point sources: variability in ozone production, resulting health damages and economic costs

    International Nuclear Information System (INIS)

    Mauzerall, D.L.; Namsoug Kim

    2005-01-01

    We present a proof-of-concept analysis of the measurement of the health damage of ozone (O 3 ) produced from nitrogen oxides (NO x =NO+NO 2 ) emitted by individual large point sources in the eastern United States. We use a regional atmospheric model of the eastern United States, the Comprehensive Air quality Model with Extensions (CAMx), to quantify the variable impact that a fixed quantity of NO x emitted from individual sources can have on the downwind concentration of surface O 3 , depending on temperature and local biogenic hydrocarbon emissions. We also examine the dependence of resulting O 3 -related health damages on the size of the exposed population. The investigation is relevant to the increasingly widely used 'cap and trade' approach to NO x regulation, which presumes that shifts of emission over time and space, holding the total fixed over the course of the summer O 3 season, will have minimal effect on the environmental outcome. By contrast, we show that a shift of a unit of NO x emissions from one place or time to another could result in large changes in resulting health effects due to O 3 formation and exposure. We indicate how the type of modeling carried out here might be used to attach externality-correcting prices to emissions. Charging emitters fees that are commensurate with the damage caused by their NO x emissions would create an incentive for emitters to reduce emissions at times and in locations where they cause the largest damage. (author)

  8. Sampling and monitoring of biogenic emissions by eucalyptus leaves using membrane extraction with sorbent interface (MESI).

    Science.gov (United States)

    Wang, Limei; Lord, Heather; Morehead, Rick; Dorman, Frank; Pawliszyn, Janusz

    2002-10-23

    Membrane extraction with sorbent interface (MESI) has been applied to monitor plant fragrance volatiles emitted into indoor air. The main components of the MESI system are a membrane module and a trap, which can be connected directly to a GC or GC-MS for simultaneous multicomponent extraction and monitoring. A polydimethylsiloxane (PDMS) membrane and two different traps, PDMS and Tenax, as well as a DC current supply for trap desorption have been applied in this research. After the membrane module is placed in contact with the plant, the MESI/GC-MS provides semicontinuous characterization of volatile compounds emitted. The MESI device has been applied to monitor the biogenic volatile organic compounds released during the first 8 h after a branch was cut from a Eucalyptus dunnii tree. The study demonstrates that the MESI system is a simple and useful tool for monitoring changes in emission processes as a function of time.

  9. In-use NOx emissions from model year 2010 and 2011 heavy-duty diesel engines equipped with aftertreatment devices.

    Science.gov (United States)

    Misra, Chandan; Collins, John F; Herner, Jorn D; Sax, Todd; Krishnamurthy, Mohan; Sobieralski, Wayne; Burntizki, Mark; Chernich, Don

    2013-07-16

    The California Air Resources Board (ARB) undertook this study to characterize the in-use emissions of model year (MY) 2010 or newer diesel engines. Emissions from four trucks: one equipped with an exhaust gas recirculation (EGR) and three equipped with EGR and a selective catalytic reduction (SCR) device were measured on two different routes with three different payloads using a portable emissions measurement system (PEMS) in the Sacramento area. Results indicated that brake-specific NOx emissions for the truck equipped only with an EGR were independent of the driving conditions. Results also showed that for typical highway driving conditions, the SCR technology is proving to be effective in controlling NOx emissions. However, under operations where the SCR's do not reach minimum operating temperature, like cold starts and some low load/slow speed driving conditions, NOx emissions are still elevated. The study indicated that strategies used to maintain exhaust temperature above a certain threshold, which are used in some of the newer SCRs, have the potential to control NOx emissions during certain low-load/slow speed driving conditions.

  10. Model study of the impact of biogenic emission on regional ozone and the effectiveness of emission reduction scenarios over eastern China

    International Nuclear Information System (INIS)

    Han, Zhiwei; Matsuda, Kazuhide; Ueda, Hiromasa

    2005-01-01

    The impact of biogenic emission on regional ozone and emission control scenarios has been numerically studied through a series of sensitivity model simulations. A typical episode with elevated ozone over eastern China from 12 to 16 August 2001 was investigated by using a tropospheric chemistry and transport model (TCTM), driven by a non-hydrostatic mesoscale model MM5. The meteorological conditions during this period were characterized by high-pressure systems associated with low wind speeds, high temperatures and clear skies. Afternoon ozone concentrations exceeding 80 parts per billion (ppb) occurred over broad areas of eastern China. There is a generally good agreement between simulation and observation, indicating that the TCTM is able to represent major physical and chemical processes of tropospheric ozone and well reproduce the diurnal and day-to-day variability associated with synoptic conditions. The sensitivity analysis reveals a significant influence of biogenic hydrocarbons on regional ozone. Ozone levels are apparently enhanced by biogenic emission over large areas of eastern China. The largest increase up to 30 ppb in daytime average concentration is found in portions of the middle reaches of the Yangtze River, Yangtze Delta and northeast China. However, the response of ozone to biogenic emission varies spatially, showing more sensitivity in polluted areas than that in clean rural areas. The regimes limited by nitrogen oxides (NO x ) and volatile organic carbon (VOC) in eastern China are further investigated with respect to biogenic emission. Ozone shows a clear tendency to shift from VOC limitation to NO x limitation as it moves from urban and industrial areas to rural areas. Most of the rural areas in southern China tend to be NO x limited, whereas most of the northern parts of China appear to be VOC limited. By considering biogenic emission, ozone tends to become more NO x limited and less VOC limited, both in extent and intensity, over eastern

  11. A plant chamber system with downstream reaction chamber to study the effects of pollution on biogenic emissions.

    Science.gov (United States)

    Timkovsky, J; Gankema, P; Pierik, R; Holzinger, R

    2014-01-01

    A system of two plant chambers and a downstream reaction chamber has been set up to investigate the emission of biogenic volatile organic compounds (BVOCs) and possible effects of pollutants such as ozone. The system can be used to compare BVOC emissions from two sets of differently treated plants, or to study the photochemistry of real plant emissions under polluted conditions without exposing the plants to pollutants. The main analytical tool is a proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) which allows online monitoring of biogenic emissions and chemical degradation products. The identification of BVOCs and their oxidation products is aided by cryogenic trapping and subsequent in situ gas chromatographic analysis.

  12. New fuel air control strategy for reducing NOx emissions from corner-fired utility boilers at medium-low loads

    DEFF Research Database (Denmark)

    Zhao, Sinan; Fang, Qingyan; Yin, Chungen

    2017-01-01

    Due to the rapidly growing renewable power, the fossil fuel power plants have to be increasingly operated under large and rapid load change conditions, which can induce various challenges. This work aims to reduce NOx emissions of large-scale corner-fired boilers operated at medium–low loads....... The combustion characteristics and NOx emissions from a 1000 MWe corner-fired tower boiler under different loads are investigated experimentally and numerically. A new control strategy for the annular fuel air is proposed and implemented in the boiler, in which the secondary air admitted to the furnace through...... of the selective catalytic reduction (SCR) system by about 20% at medium–low loads, compared to those based on the original control. The new control strategy has also been successfully applied to two other corner-fired boilers to achieve a significant NOx emission reduction at partial loads. In all three...

  13. Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Tobias Nüesch

    2014-05-01

    Full Text Available Motivated by the fact that the real driving NOx emissions (RDE of conventional diesel vehicles can exceed the legislation norms by far, a concept for the control of RDE with a diesel parallel hybrid electric vehicle (HEV is proposed. By extending the well-known equivalent consumption minimization strategy (ECMS, the power split degree of freedom is used to control the NOx emissions and the battery state of charge (SOC simultaneously. Through an appropriate formulation of the problem, the feedback control is shown to be separable into two dependent PI controllers. By hardware-in-the-loop (HIL experiments, as well as by simulations, the proposed method is shown to minimize the fuel consumption while tracking a given reference trajectory for both the NOx emissions and the battery SOC.

  14. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    Science.gov (United States)

    Wyche, K. P.; Ryan, A. C.; Hewitt, C. N.; Alfarra, M. R.; McFiggans, G.; Carr, T.; Monks, P. S.; Smallbone, K. L.; Capes, G.; Hamilton, J. F.; Pugh, T. A. M.; MacKenzie, A. R.

    2014-12-01

    Silver birch (Betula pendula) and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis) from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photo-oxidation under a range of controlled conditions (relative humidity or RH ~65-89%, volatile organic compound-to-NOx or VOC / NOx ~3-9 and NOx ~2 ppbV). Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene but low isoprene emitter, and its emissions were observed to produce measurable amounts of secondary organic aerosol (SOA) via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26-39%). In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e. in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields) with condensation of photo-oxidation products of the minor volatile organic compounds (VOCs) co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally isoprene-emitting landscapes in Southeast

  15. THERMODYNAMIC MODELLING OF A PISTONS ENGINE: CALCULATION OF THE NOX EMISSIONS

    Directory of Open Access Journals (Sweden)

    N. Mahfoudi

    2015-07-01

    Full Text Available The internal combustion engines are under development remarkable these last decades, but they represent, currently, a very important source of polluting gas emissions. The nitrogen oxides (NOx form part of these polluting emissions, and have a harmful effect on human health, as well as the environment.Considering the complexity of the process of formation of the latter, many numerical simulations were developed, our work, allows the calculation of the nitrogen oxide rate (NO in exhaust gases, starting from the developed equations of the chemical kinetics, while being based on the thermal mechanism of Zeldovich. Simulation is carried out for a gasoline engine, and the results obtained show that: the maximum of NO concentrations corresponds to an equivalent ratio of 0,9. For leaner or richer equivalence ratios, concentration decreased. The NO concentrations depend of various parameters (spark timing angle, combustion duration, and engine speed.

  16. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments.

    Science.gov (United States)

    Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun

    2017-01-03

    Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO 2 (GWP bio ). In this study we calculated the GWP bio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWP bio factors ranged from 0.13-0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWP bio . Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO 2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWP bio and energy conversion efficiency. By considering the GWP bio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWP bio .

  17. Analysis of the Global Warming Potential of Biogenic CO2 Emission in Life Cycle Assessments

    Science.gov (United States)

    Liu, Weiguo; Zhang, Zhonghui; Xie, Xinfeng; Yu, Zhen; von Gadow, Klaus; Xu, Junming; Zhao, Shanshan; Yang, Yuchun

    2017-01-01

    Biomass is generally believed to be carbon neutral. However, recent studies have challenged the carbon neutrality hypothesis by introducing metric indicators to assess the global warming potential of biogenic CO2 (GWPbio). In this study we calculated the GWPbio factors using a forest growth model and radiative forcing effects with a time horizon of 100 years and applied the factors to five life cycle assessment (LCA) case studies of bioproducts. The forest carbon change was also accounted for in the LCA studies. GWPbio factors ranged from 0.13–0.32, indicating that biomass could be an attractive energy resource when compared with fossil fuels. As expected, short rotation and fast-growing biomass plantations produced low GWPbio. Long-lived wood products also allowed more regrowth of biomass to be accounted as absorption of the CO2 emission from biomass combustion. The LCA case studies showed that the total life cycle GHG emissions were closely related to GWPbio and energy conversion efficiency. By considering the GWPbio factors and the forest carbon change, the production of ethanol and bio-power appeared to have higher GHG emissions than petroleum-derived diesel at the highest GWPbio. PMID:28045111

  18. Numerical model to quantify biogenic volatile organic compound emissions: The Pearl River Delta region as a case study.

    Science.gov (United States)

    Wang, Xuemei; Situ, Shuping; Chen, Weihua; Zheng, Junyu; Guenther, Alex; Fan, Qi; Chang, Ming

    2016-08-01

    This article compiles the actual knowledge of the biogenic volatile organic compound (BVOC) emissions estimated using model methods in the Pearl River Delta (PRD) region, one of the most developed regions in China. The developed history of BVOC emission models is presented briefly and three typical emission models are introduced and compared. The results from local studies related to BVOC emissions have been summarized. Based on this analysis, it is recommended that local researchers conduct BVOC emission studies systematically, from the assessment of model inputs, to compiling regional emission inventories to quantifying the uncertainties and evaluating the model results. Beyond that, more basic researches should be conducted in the future to close the gaps in knowledge on BVOC emission mechanisms, to develop the emission models and to refine the inventory results. This paper can provide a perspective on these aspects in the broad field of research associated with BVOC emissions in the PRD region. Copyright © 2016. Published by Elsevier B.V.

  19. Overall evaluation of combustion and NO(x) emissions for a down-fired 600 MW(e) supercritical boiler with multiple injection and multiple staging.

    Science.gov (United States)

    Kuang, Min; Li, Zhengqi; Liu, Chunlong; Zhu, Qunyi

    2013-05-07

    To achieve significant reductions in NOx emissions and to eliminate strongly asymmetric combustion found in down-fired boilers, a deep-air-staging combustion technology was trialed in a down-fired 600 MWe supercritical utility boiler. By performing industrial-sized measurements taken of gas temperatures and species concentrations in the near wing-wall region, carbon in fly ash and NOx emissions at various settings, effects of overfire air (OFA) and staged-air damper openings on combustion characteristics, and NOx emissions within the furnace were experimentally determined. With increasing the OFA damper opening, both fluctuations in NOx emissions and carbon in fly ash were initially slightly over OFA damper openings of 0-40% but then lengthened dramatically in openings of 40-70% (i.e., NOx emissions reduced sharply accompanied by an apparent increase in carbon in fly ash). Decreasing the staged-air declination angle clearly increased the combustible loss but slightly influenced NOx emissions. In comparison with OFA, the staged-air influence on combustion and NOx emissions was clearly weaker. Only at a high OFA damper opening of 50%, the staged-air effect was relatively clear, i.e., enlarging the staged-air damper opening decreased carbon in fly ash and slightly raised NOx emissions. By sharply opening the OFA damper to deepen the air-staging conditions, although NOx emissions could finally reduce to 503 mg/m(3) at 6% O2 (i.e., an ultralow NOx level for down-fired furnaces), carbon in fly ash jumped sharply to 15.10%. For economical and environment-friendly boiler operations, an optimal damper opening combination (i.e., 60%, 50%, and 50% for secondary air, staged-air, and OFA damper openings, respectively) was recommended for the furnace, at which carbon in fly ash and NOx emissions attained levels of about 10% and 850 mg/m(3) at 6% O2, respectively.

  20. A new modeling approach for assessing the contribution of industrial and traffic emissions to ambient NOx concentrations

    Science.gov (United States)

    Chen, Shimon; Yuval; Broday, David M.

    2018-01-01

    The Optimized Dispersion Model (ODM) is uniquely capable of incorporating emission estimates, ambient air quality monitoring data and meteorology to provide reliable high-resolution (in both time and space) air quality estimates using non-linear regression. However, it was so far not capable of describing the effects of emissions from elevated sources. We formulated an additional term to extend the ODM such that these sources can be accounted for, and implemented it in modeling the fine spatiotemporal patterns of ambient NOx concentrations over the coastal plain of Israel. The diurnal and seasonal variation in the contribution of industry to the ambient NOx is presented, as well as its spatial features. Although industrial stacks are responsible for 88% of the NOx emissions in the study area, their contribution to ambient NOx levels is generally about 2% with a maximal upper bound of 27%. Meteorology has a major role in this source allocation, with the highest impact of industry in the summer months, when the wind is blowing inland past the coastal stacks and vertical mixing is substantial. The new Optimized Dispersion Model (ODM) out-performs both Inverse-Distance-Weighing (IDW) interpolation and a previous ODM version in predicting ambient NOx concentrations. The performance of the new model is thoroughly assessed.

  1. Public Health Impacts of Excess NOX Emissions from Volkswagen Diesel Passenger Vehicles: a comparison between Germany and the United States

    Science.gov (United States)

    Chossiere, G.; Barrett, S. R. H.; Malina, R.; Dedoussi, I. C.; Eastham, S. D.; Ashok, A.

    2016-12-01

    In September 2015, the Volkswagen Group admitted the use of an illegal emissions control system that activates during vehicle testing for regulatory purposes. Globally, 11 million diesel cars sold between 2008 and 2015 are affected, including about 2.6 million in Germany and 480,000 in the United States. On-road tests suggest that NOx emissions for these cars amount to 0.85 g/km on average, over four times the applicable European limit of 0.18 g/km and more than 20 times the corresponding EPA standard. This study quantifies and compares the human health impacts and costs associated with excess emissions from VW cars driven in Germany and in the United States. A distribution of emissions factors built from existing on-road measurements is combined with sales data and a vehicle fleet model to estimate total excess NOx emissions in each country. In Europe, we used the GEOS-Chem chemistry-transport model to predict the increase in population exposure to fine particulate matter and ozone due to the excess NOx emissions in Germany. The corresponding quantities in the US case were obtained using an adjoint-based air pollution model derived from the GEOS-Chem model. A set of concentration-response functions allowed us to estimate mortality outcomes in terms of early deaths in the US and in Europe. Integrated over the sales period (2008 - 2015), we estimate median mortality impacts from VW excess emissions in Germany to be 1,100 (95% CI: 0 to 3,000) early deaths in Europe, corresponding to 3.9 billion EUR (95% CI: 0 to 10 billion) in associated costs. Another 59 (95% CI: 10 to 150) early deaths is expected in the US as a result of excess emissions released in the country, corresponding to 450 million USD in social costs. We find that excess NOx emissions in Europe have 5 times greater health impacts per kilogram than those in the US due to the higher population density and more NOx-sensitive background conditions in Europe. The gas ratios in the two regions support this

  2. Effect of steam injection on nox emissions and performance of a single cylinder diesel engine fuelled with soy methyl ester

    Directory of Open Access Journals (Sweden)

    Manickam Madhavan V.

    2017-01-01

    Full Text Available Biodiesel attracts most of the researchers and automotive industries in recent years as an alternative fuel for diesel engines, because of its better lubricity property, higher cetane number, and less greenhouse gas emissions. The use of bio diesel leads to reduction in hydro carbons, carbon monoxide, and particulate matter, but increase in NOx emissions. Increase in biodiesel blends in standard diesel leads to increase in NOx emission. In this study, an attempt is made to reduce the NOx emis-sions of a diesel engine fueled with pure soy methyl ester (B100 with low pressure steam injection. Experiments were carried out and studied for both standard diesel and pure biodiesel of soy methyl ester with steam injection ratio of 5, 10, and 15% on mass ratio basis of air in the inlet manifold. The present study has shown that around 30% reduction in NOx can be achieved for the steam injection rate of 10% and considerable reduction for all other steam injection rates when compared to standard diesel and B100. It is also observed that steam injection having signifi-cant impact on reduction of other emissions such as HC, CO, and CO2. The study also noted marginal improvement in the engine brake power, brake thermal effi-ciency and reduction in specific fuel consumption at part loads and minor increase during peak load operation for the low pressure steam injection on B100.

  3. Variation in biogenic volatile organic compound emission pattern of Fagus sylvatica L. due to aphid infection

    Science.gov (United States)

    Joó, É.; Van Langenhove, H.; Šimpraga, M.; Steppe, K.; Amelynck, C.; Schoon, N.; Müller, J.-F.; Dewulf, J.

    2010-01-01

    Volatile organic compounds (VOCs) have been the focus of interest to understand atmospheric processes and their consequences in formation of ozone or aerosol particles; therefore, VOCs contribute to climate change. In this study, biogenic VOCs (BVOCs) emitted from Fagus sylvatica L. trees were measured in a dynamic enclosure system. In total 18 compounds were identified: 11 monoterpenes (MT), an oxygenated MT, a homoterpene (C 14H 18), 3 sesquiterpenes (SQT), isoprene and methyl salicylate. The frequency distribution of the compounds was tested to determine a relation with the presence of the aphid Phyllaphis fagi L. It was found that linalool, (E)-β-ocimene, α-farnesene and a homoterpene identified as (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), were present in significantly more samples when infection was present on the trees. The observed emission spectrum from F. sylvatica L. shifted from MT to linalool, α-farnesene, (E)-β-ocimene and DMNT due to the aphid infection. Sabinene was quantitatively the most prevalent compound in both, non-infected and infected samples. In the presence of aphids α-farnesene and linalool became the second and third most important BVOC emitted. According to our investigation, the emission fingerprint is expected to be more complex than commonly presumed.

  4. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

    Science.gov (United States)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1995-01-01

    The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.

  5. Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition

    Science.gov (United States)

    Niinemets, Ülo; Fares, Silvano; Harley, Peter; Jardine, Kolby J.

    2014-01-01

    Biogenic volatile organic compound (BVOC) emissions are widely modeled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighboring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that due to reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends on compound reactivity, physicochemical characteristics, as well as their participation in leaf metabolism. We argue that future models should be based on the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage. PMID:24635661

  6. The effects of fire on biogenic emissions of methane and nitric oxide from wetlands

    Science.gov (United States)

    Levine, Joel S.; Cofer, Wesley R., III; Sebacher, Daniel I.; Rhinehart, Robert P.; Winstead, Edward L.; Sebacher, Shirley; Hinkle, C. Ross; Schmalzer, Paul A.; Koller, Albert M., Jr.

    1990-01-01

    Enhanced emissions of methane (CH4) and nitric oxide (NO) were measured following three controlled burns in a Florida wetlands in 1987 and 1988. Wetlands are the major global source of methane resulting from metabolic activity of methanogenic bacteria. Methanogens require carbon dioxide, acetate, or formate for their growth and the metabolic production of methane. All three water-soluble compounds are produced in large concentrations during biomass burning. Postfire methane emissions exceeded 0.15 g CH 4/sq m per day. Preburn and postburn measurements of soil nutrients indicate significant postburn increases in soil ammonium, from 8.35 to 13.49 parts per million (ppm) in the upper 5 cm of the Juncus marsh and from 8.83 to 23.75 ppm in the upper 5 cm of the Spartina marsh. Soil nitrate concentrations were found to decrease in both marshes after the fire. These measurements indicate that the combustion products of biomass burning exert an important 'fertilizing' effect on the biosphere and on the biogenic production of environmentally significant atmospheric gases.

  7. Reduction of NOx and particulate emissions from coal-fired boilers by modification of coal nozzles and combustion tuning

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, B.; Talanker, A.; Mugenstein, A.; Shpon, G.; Vikhansky, A.; Elperin, T.; Bar-Ziv, E.; Bockelie, M.; Eddings, E.; Sarofim, A.F. [Israel Electric Corporation, Haifa (Israel). Engineering Division

    2001-07-01

    In the present paper two issues are discussed: the effect of the burner replacement on boiler performance and NOx emissions and the effect of the burner replacement on performance and efficiency of electrostatic precipitators (ESP). We also have experimented with different coal types and found the coals that together with combustion tuning met commonly accepted emission limits for NOx (less than 600 mg/dNm{sup 3}) and levels of carbon in fly ash (LOI) (approximately 5-6%) for existing boilers without low NOx burners. Our measurements were accompanied by computer simulations of the combustion of the combustion process in the boiler. Special attention was paid to detailed simulation of the flow and ignition in the near-burner zone. 7 refs., 12 figs., 5 tabs.

  8. LBA-ECO TG-02 Biogenic VOC Emissions from Brazilian Amazon Forest and Pasture Sites

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports concentrations of biogenic volatile organic compounds (BVOCs) collected from tethered balloon-sampling platforms above selected...

  9. LBA-ECO TG-02 Biogenic VOC Emissions from Brazilian Amazon Forest and Pasture Sites

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports concentrations of biogenic volatile organic compounds (BVOCs) collected from tethered balloon-sampling platforms above selected forest and...

  10. Atmospheric pollution reduction effect and regional predicament: An empirical analysis based on the Chinese provincial NOx emissions.

    Science.gov (United States)

    Ding, Lei; Liu, Chao; Chen, Kunlun; Huang, Yalin; Diao, Beidi

    2017-07-01

    Atmospheric pollution emissions have become a matter of public concern in recent years. However, most of the existing researches on NOx pollution are from the natural science and technology perspective, few studies have been conducted from an economic point, and regional differences have not been given adequate attention. This paper adopts provincial panel data from 2006 to 2013 and the LMDI model to analyze the key driving factors and regional dilemmas of NOx emissions. The results show that significant regional disparities still exit on NO x emissions and its reduction effect 27 provinces didn't accomplish their corresponding reduction targets. Economic development factor is the dominating driving factor of NO x emissions during the study period, while energy efficiency and technology improvement factors offset total NO x emissions in the majority of provinces. In addition, the industrial structure factor plays a more significant role in reducing the NO x emissions after 2011. Therefore, the government should consider all these factors as well as regional heterogeneity in developing appropriate pollution mitigating policies. It's necessary to change NOx emissions control attitude from original key areas control to divided-zone control, not only attaches great importance to the reduction of the original key areas, but also emphasizes the new potential hotspots with high NO x emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Co-controlling CO2 and NOx emission in China's cement industry: An optimal development pathway study

    Directory of Open Access Journals (Sweden)

    Xiang-Zhao Feng

    2018-03-01

    Full Text Available It is of important practical significance to reduce NOx emission and CO2 emission in China's cement industry. This paper firstly identifies key factors that influence China's future cement demand, and then uses the Gompertz model to project China's future cement demand and production. Furthermore, the multi-pollutant abatement planning model (MAP was developed based on the TIMES model to analyze the co-benefits of CO2 and NOx control in China's cement industry. During modeling analysis, three scenarios such as basic as usual scenario (BAU, moderately low carbon scenario (MLC, and radically low carbon scenario (RLC, were built according to different policy constraints and emission control goals. Moreover, the benefits of co-controlling NOx and CO2 emission in China's cement industry have been estimated. Finally, this paper proposes a cost-efficient, green, and low carbon development roadmap for the Chinese cement sector, and puts forwards countermeasures as follows: first, different ministries should enhance communication and coordination about how to promote the co-control of NOx and CO2 in cement industry. Second, co-control technology list should be issued timely for cement industry, and the R&D investment on new technologies and demonstration projects should be increased. Third, the phase-out of old cement capacity needs to be continued at policy level. Fourth, it is important to scientifically evaluate the relevant environmental impact and adverse motivation of ammonia production by NOx removal requirement in cement industry. Keywords: Cement industry, CO2 abatement, NOx reduction, Co-benefit analysis

  12. Determination of the biogenic emission rates of species contributing to VOC in the San Joaquin Valley OF California

    Science.gov (United States)

    Tanner, Roger L.; Zielinska, Barbara

    As part of an extensive effort to characterize biogenic hydrocarbon emission rates in the San Joaquin Valley and surrounding areas during the SJVAQS/AUSPEX field experimental period, July-August 1990, measurements were made for the first time of isoprene, terpene, and other VOC emission rates from blue oak ( Quercus douglasii), foothill pine ( Pinus sabiniana), and a ground cover plant called tarweed ( Holocarpha sp.) at a rural site near Mariposa, CA. A flow-through plant enclosure method was used to measure the emission flux rates from these species; the plant limb or whole plant was flushed with clean air just prior to hydrocarbon sampling. Samples of the plant emissions were collected on Tenax GC or Tenax GC-Carbosieve S-I1 cartridges and analysed by gas chromatography- Fourier transform infrared-mass spectrometry (GC-FTIR-MS). Quantifiable biogenic emissions from two blue oak specimens consisted only of isoprene, with an average emission rate of 8.4 μg g -1 dry biomass h -1. Emission rates (above the detection of about 0.05 μg -1 h -1) from two foothill pine specimens consisted mostly of α-pinene; an average emission rate of 0.64 μg -1 h -1 of α-pinene was observed. The tarweed species emitted both α- and β-pinenes, along with other terpene and oxygenated species, some of which have been tentatively identified. The emission rates of biogenic hydrocarbons from foothill pine and blue oak species as determined in this study make these species potentially significant contributors to summertime VOC levels in the San Joaquin Valley of California, based on vegetation classification data and the predominant summer meteorology.

  13. Cleaning up the air: effectiveness of air quality policy for SO2 and NOx emissions in China

    Science.gov (United States)

    van der A, Ronald J.; Mijling, Bas; Ding, Jieying; Elissavet Koukouli, Maria; Liu, Fei; Li, Qing; Mao, Huiqin; Theys, Nicolas

    2017-02-01

    Air quality observations by satellite instruments are global and have a regular temporal resolution, which makes them very useful in studying long-term trends in atmospheric species. To monitor air quality trends in China for the period 2005-2015, we derive SO2 columns and NOx emissions on a provincial level with improved accuracy. To put these trends into perspective they are compared with public data on energy consumption and the environmental policies of China. We distinguish the effect of air quality regulations from economic growth by comparing them relatively to fossil fuel consumption. Pollutant levels, per unit of fossil fuel, are used to assess the effectiveness of air quality regulations. We note that the desulfurization regulations enforced in 2005-2006 only had a significant effect in the years 2008-2009, when a much stricter control of the actual use of the installations began. For national NOx emissions a distinct decreasing trend is only visible from 2012 onwards, but the emission peak year differs from province to province. Unlike SO2, emissions of NOx are highly related to traffic. Furthermore, regulations for NOx emissions are partly decided on a provincial level. The last 3 years show a reduction both in SO2 and NOx emissions per fossil fuel unit, since the authorities have implemented several new environmental regulations. Despite an increasing fossil fuel consumption and a growing transport sector, the effects of air quality policy in China are clearly visible. Without the air quality regulations the concentration of SO2 would be about 2.5 times higher and the NO2 concentrations would be at least 25 % higher than they are today in China.

  14. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    Science.gov (United States)

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  15. Performance of High Temperature Air Combustion Boiler with Low NOx Emission

    Science.gov (United States)

    Kobayashi, Hiromichi; Ito, Yoshihito; Tsuruta, Naoki; Yoshikawa, Kunio

    Thermal performance in the experiments and three-dimensional numerical simulations for a high temperature air combustion boiler where fuel can be efficiently combusted by high temperature preheated air (800°C-1000°C) is examined. The boiler can burn not only natural gas but also low calorific gas (e. g. full gasification gas obtained from coal or wastes). In the boiler, four regenerative burners are installed. This boiler has new features that not only air but also gasification gas is heated up to 900°C, and combination of burners is switched every 15 seconds where two burners are used as inlets of fuel and air and the other two burners are used as outlets of exhaust gas. Natural gas and syngas obtained from coal are burned. The NOx emission for each fuel is less than 50ppm. The heat transfer of three-dimensional calculation is predicted higher than that of experiment.

  16. Trend analysis of urban NO2 concentrations and the importance of direct NO2 emissions versus ozone/NOx equilibrium

    NARCIS (Netherlands)

    Keuken, M.; Roemer, M.; Elshout, S. van den

    2009-01-01

    The annual air quality standard of NO2 is often exceeded in urban areas near heavy traffic locations. Despite significant decrease of NOx emissions in 1986-2005 in the industrial and harbour area near Rotterdam, NO2 concentrations at the urban background remain at the same level since the end of the

  17. Method for the control of NOx emissions in long-range space travel

    Science.gov (United States)

    Xu, X. H.; Shi, Y.; Liu, S. H.; Wang, H. P.; Chang, S. G.; Fisher, J. W.; Pisharody, S.; Moran, M.; Wignarajah, K.

    2003-01-01

    The wheat straw, an inedible biomass that can be continuously produced in a space vehicle has been used to produce activated carbon for effective control of NOx emissions from the incineration of wastes. The optimal carbonization temperature of wheat straw was found to be around 600 degrees C when a burnoff of 67% was observed. The BET surface area of the activated carbon produced from the wheat straw reached as high as 300 m2/g. The presence of oxygen in flue gas is essential for effective adsorption of NO by activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. Consequently, water vapor in flue gas should be removed by drying agents before adsorption to ensure high NO adsorption efficiency. All of the NO in the flue gas was removed for more than 2 h by the activated carbons when 10% oxygen was present and the ratio of carbon weight to the flue gas flow rate (W/F) was 30 g min/L, with a contact time of 10.2 s. All of NO was reduced to N2 by the activated carbon at 450 degrees C with a W/F ratio of 15 g min/L and a contact time of 5.1 s. Reduction of the adsorbed NO also regenerated the activated carbon, and the regenerated activated carbon exhibited an improved NO adsorption efficiency. However, the reduction of the adsorbed NO resulted in a loss of carbon which was determined to be about 0.99% of the activated carbon per cycle of regeneration. The sufficiency of the amount of wheat straw in providing the activated carbon based on a six-person crew, such as the mission planned for Mars, has been determined. This novel approach for the control of NOx emissions is sustainable in a closed system such as the case in space travel. It is simple to operate and is functional under microgravity environment.

  18. Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica

    Energy Technology Data Exchange (ETDEWEB)

    Geron, C. [United States Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Lab.; Guenther, A.; Greenberg, J. [National Center for Atmospheric Research, Boulder, CO (United States); Loescher, H.W. [University of Florida, Gainesville, FL (United States). School of Forest Resources and Conservation; Clark, D. [University of Missouri-St. Louis, MS (United States). Dept. of Biology; Baker, B. [South Dakota School of Mines and Technology, Rapid City, SD (United States)

    2002-08-01

    Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCs) at a lowland tropical wet forest site in Costa Rica. Ten of the species examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total basal area of old-growth forest on the major edaphic site types, indicating that a high proportion of the canopy leaf area is a source of isoprene. A limited number of canopy-level BVOC flux measurements were also collected by relaxed eddy accumulation (REA). These measurements verify that the forest canopy in this region is indeed a significant source of isoprene. In addition, REA fluxes of methanol and especially acetone were also significant, exceeding model estimates and warranting future investigation at this site. Leaf monoterpene emissions were non-detectable or very low from the species surveyed, and ambient concentrations and REA fluxes likewise were very low. Although the isoprene emission rates reported here are largely consistent with phylogenetic relations found in other studies (at the family, genus, and species levels), two species in the family Mimosaceae, a group previously found to consist largely of non-isoprene emitters, emitted significant quantities of isoprene. One of these, Pentaclethra macroloba (Willd.) Kuntze, is by far the most abundant canopy tree species in the forests of this area, composing 30-40% of the total basal area. The other, Zygia longifolia (Humb. and Bonpl.) Britton and Rose is a common riparian species. Our results suggest that the source strength of BVOCs is important not only to tropical atmospheric chemistry, but also may be important in determining net ecosystem carbon exchange.(author)

  19. The Tree Drought Emission MONitor (Tree DEMON, an innovative system for assessing biogenic volatile organic compounds emission from plants

    Directory of Open Access Journals (Sweden)

    Marvin Lüpke

    2017-03-01

    Full Text Available Abstract Background Biogenic volatile organic compounds (BVOC emitted by plants play an important role for ecological and physiological processes, for example as response to stressors. These emitted compounds are involved in chemical processes within the atmosphere and contribute to the formation of aerosols and ozone. Direct measurement of BVOC emissions requires a specialized sample system in order to obtain repeatable and comparable results. These systems need to be constructed carefully since BVOC measurements may be disturbed by several side effects, e.g., due to wrong material selection and lacking system stability. Results In order to assess BVOC emission rates, a four plant chamber system was constructed, implemented and throughout evaluated by synthetic tests and in two case studies on 3-year-old sweet chestnut seedlings. Synthetic system test showed a stable sampling with good repeatability and low memory effects. The first case study demonstrated the capability of the system to screen multiple trees within a few days and revealed three different emission patterns of sweet chestnut trees. The second case study comprised an application of drought stress on two seedlings compared to two in parallel assessed seedlings of a control. Here, a clear reduction of BVOC emissions during drought stress was observed. Conclusion The developed system allows assessing BVOC as well as CO2 and water vapor gas exchange of four tree specimens automatically and in parallel with repeatable results. A canopy volume of 30 l can be investigated, which constitutes in case of tree seedlings the whole canopy. Longer lasting experiments of e.g., 1–3 weeks can be performed easily without any significant plant interference.

  20. Impact of passenger car NOX emissions on urban NO2 pollution - Scenario analysis for 8 European cities

    Science.gov (United States)

    Degraeuwe, Bart; Thunis, Philippe; Clappier, Alain; Weiss, Martin; Lefebvre, Wouter; Janssen, Stijn; Vranckx, Stijn

    2017-12-01

    Residents of large European cities are exposed to NO2 concentrations that often exceed the established air quality standards. Diesel cars have been identified as a major contributor to this situation; yet, it remains unclear to which levels the NOX emissions of diesel cars have to decrease to effectively mitigate urban NO2 pollution across Europe. Here, we take a continental perspective and model urban NO2 pollution in a generic street canyon of 8 major European cities for various NOX emission scenarios. We find that a reduction in the on-road NOX emissions of diesel cars to the Euro 6 level can in general decrease the regional and urban NO2 concentrations and thereby the frequency of exceedances of the NO2 air quality standard. High NO2 fractions in the NOX emissions of diesel cars tend to increase the urban NO2 concentrations only in proximity of intense road traffic typically found on artery roads in large cities like Paris and London. In cities with a low share of diesel cars in the vehicle fleet such as Athens or a high contribution from the NO2 background to the urban NO2 pollution such as Krakow, measures addressing heavy-duty vehicles, and the manufacturing, energy, and mining industry are necessary to decrease urban air pollution. We regard our model results as robust albeit subject to uncertainty resulting from the application of a generic street layout. With small modifications in the input parameters, our model could be used to assess the impact of NOX emissions from road transport on NO2 air pollution in any European city.

  1. On-road assessment of light duty vehicles in Delhi city: Emission factors of CO, CO2 and NOX

    Science.gov (United States)

    Jaiprakash; Habib, Gazala

    2018-02-01

    This study presents the technology based emission factors of gaseous pollutants (CO, CO2, and NOX) measured during on-road operation of nine passenger cars of diesel, gasoline, and compressed natural gas (CNG). The emissions from two 3-wheelers, and three 2-wheelers were measured by putting the vehicles on jacks and operating them according to Modified Indian Driving Cycle (MIDC) at no load condition. The emission factors observed in the present work were significantly higher than values reported from dynamometer study by Automotive Research Association of India (ARAI). Low CO (0.34 ± 0.08 g km-1) and high NOX (1.0 ± 0.4 g km-1) emission factors were observed for diesel passenger cars, oppositely high CO (2.2 ± 2.6 g km-1) and low NOX (1.0 ± 1.6 g km-1) emission factors were seen for gasoline powered cars. The after-treatment technology in diesel vehicles was effective in CO reduction. While the use of turbocharger in diesel vehicles to generate high combustion temperature and pressure produces more NOx, probably which may not be effectively controlled by after-treatment device. The after-treatment devices in gasoline powered Post-2010, Post-2005 vehicles can be acclaimed for reduced CO emissions compared to Post-2000 vehicles. This work presents a limited data set of emission factors from on-road operations of light duty vehicles, this limitation can be improved by further measurements of emissions from similar vehicles.

  2. Efficiency Analysis of Technological Methods for Reduction of NOx Emissions while Burning Hydrocarbon Fuels in Heat and Power Plants

    Directory of Open Access Journals (Sweden)

    S. M. Kabishov

    2013-01-01

    Full Text Available The paper contains a comparative efficiency analysis pertaining to application of existing technological methods for suppression of nitric oxide formation in heating boilers of heat generators. A special attention has been given to investigation of NOx  emission reduction while burning hydrocarbon fuel with the help of oxygen-enriched air. The calculations have demonstrated that while enriching oxidizer with the help of oxygen up to 50 % (by volume it is possible to reduce volume of NOx formation (while burning fuel unit by 21 %.

  3. Estimating the biogenic emissions of non-methane volatile organic compounds from the North Western Mediterranean vegetation of Catalonia, Spain.

    Science.gov (United States)

    Parra, R; Gassó, S; Baldasano, J M

    2004-08-15

    An estimation of the magnitude of non-methane volatile organic compounds (NMVOCs) emitted by vegetation in Catalonia (NE of the Iberian Peninsula, Spain), in addition to their superficial and temporal distribution, is presented for policy and scientific (photochemical modelling) purposes. It was developed for the year 2000, for different time resolutions (hourly, daily, monthly and annual) and using a high-resolution land-use map (1-km2 squared cells). Several meteorological surface stations provided air temperature and solar radiation data. An adjusted mathematical emission model taking account of Catalonia's conditions was built into a geographic information system (GIS) software. This estimation uses the latest information, mainly relating to: (1) emission factors; (2) better knowledge of the composition of Catalonia's forest cover; and (3) better knowledge of the particular emission behaviour of some Mediterranean vegetal species. Results depict an annual cycle with increasing values in the March-April period with the highest emissions in July-August, followed by a decrease in October-November. Annual biogenic NMVOCs emissions reach 46.9 kt, with monoterpenes the most abundant species (24.7 kt), followed by other biogenic volatile organic compounds (e.g. alcohols, aldehydes and acetone) (16.3 kt), and isoprene (5.9 kt). These compounds signify 52%, 35% and 13%, respectively, of total emission estimates. Peak hourly total emission for a winter day could be less than 10% of the corresponding value for a summer day.

  4. Estimating the biogenic emissions of non-methane volatile organic compounds from the North Western Mediterranean vegetation of Catalonia, Spain

    International Nuclear Information System (INIS)

    Parra, R.; Gasso, S.; Baldasano, J.M.

    2004-01-01

    An estimation of the magnitude of non-methane volatile organic compounds (NMVOCs) emitted by vegetation in Catalonia (NE of the Iberian Peninsula, Spain), in addition to their superficial and temporal distribution, is presented for policy and scientific (photochemical modelling) purposes. It was developed for the year 2000, for different time resolutions (hourly, daily, monthly and annual) and using a high-resolution land-use map (1-km 2 squared cells). Several meteorological surface stations provided air temperature and solar radiation data. An adjusted mathematical emission model taking account of Catalonia's conditions was built into a geographic information system (GIS) software. This estimation uses the latest information, mainly relating to: (1) emission factors; (2) better knowledge of the composition of Catalonia's forest cover; and (3) better knowledge of the particular emission behaviour of some Mediterranean vegetal species. Results depict an annual cycle with increasing values in the March-April period with the highest emissions in July-August, followed by a decrease in October-November. Annual biogenic NMVOCs emissions reach 46.9 kt, with monoterpenes the most abundant species (24.7 kt), followed by other biogenic volatile organic compounds (e.g. alcohols, aldehydes and acetone) (16.3 kt), and isoprene (5.9 kt). These compounds signify 52%, 35% and 13%, respectively, of total emission estimates. Peak hourly total emission for a winter day could be less than 10% of the corresponding value for a summer day

  5. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications.

    Science.gov (United States)

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto; Kerminen, Veli-Matti; Junninen, Heikki; Paasonen, Pauli; Stratmann, Frank; Herrmann, Hartmut; Guenther, Alex B; Worsnop, Douglas R; Kulmala, Markku; Ehn, Mikael; Sipilä, Mikko

    2015-06-09

    Oxidation products of monoterpenes and isoprene have a major influence on the global secondary organic aerosol (SOA) burden and the production of atmospheric nanoparticles and cloud condensation nuclei (CCN). Here, we investigate the formation of extremely low volatility organic compounds (ELVOC) from O3 and OH radical oxidation of several monoterpenes and isoprene in a series of laboratory experiments. We show that ELVOC from all precursors are formed within the first minute after the initial attack of an oxidant. We demonstrate that under atmospherically relevant concentrations, species with an endocyclic double bond efficiently produce ELVOC from ozonolysis, whereas the yields from OH radical-initiated reactions are smaller. If the double bond is exocyclic or the compound itself is acyclic, ozonolysis produces less ELVOC and the role of the OH radical-initiated ELVOC formation is increased. Isoprene oxidation produces marginal quantities of ELVOC regardless of the oxidant. Implementing our laboratory findings into a global modeling framework shows that biogenic SOA formation in general, and ELVOC in particular, play crucial roles in atmospheric CCN production. Monoterpene oxidation products enhance atmospheric new particle formation and growth in most continental regions, thereby increasing CCN concentrations, especially at high values of cloud supersaturation. Isoprene-derived SOA tends to suppress atmospheric new particle formation, yet it assists the growth of sub-CCN-size primary particles to CCN. Taking into account compound specific monoterpene emissions has a moderate effect on the modeled global CCN budget.

  6. Monthly top-down NOx emissions for China (2005-2012): A hybrid inversion method and trend analysis

    Science.gov (United States)

    Qu, Zhen; Henze, Daven K.; Capps, Shannon L.; Wang, Yi; Xu, Xiaoguang; Wang, Jun; Keller, Martin

    2017-04-01

    We develop an approach combining mass balance and four-dimensional variational (4D-Var) methods to facilitate inversion of decadal-scale total nitrogen oxides (NOx = NO + NO2) emissions. In 7 year pseudo-observation tests, hybrid posterior emissions have smaller normalized mean square error (NMSE) than that of mass balance when compared to true emissions in most cases and perform slightly better in detecting NOx emission magnitudes and trends. Using this hybrid method, OMI NO2 satellite observations and the GEOS-Chem chemical transport model, we find more than 30% increases of emissions over most of East China at the 0.5° × 0.667° grid cell level, leading to a 16% growth of emissions over all of China from 2005 to 2012, whereas emissions in several urban centers have decreased by 10-26% in the same period. From 2010 to 2012, a decline is found in the North China Plain, Hubei Province, and Pearl River Delta area, coinciding with China's enforcement of its twelfth "Five Year Plan." Changes in individual grid cell may be different from changes over the entire city or province, as exemplified by opposite trends in Beijing versus the Mentougou district of Beijing from 2005 to 2012. Also, NO2 columns do not necessarily have the same trend as NOx emissions due to their nonlinear response to emissions and the influence of meteorology, the latter alone which can cause up to 30% interannual changes in NO2 columns. Compared to recent bottom-up inventories, hybrid posterior emissions have the same seasonality, smaller emissions, and emission growth rate at the national scale.

  7. Non-controlled biogenic emissions to the atmosphere from Lazareto landfill, Tenerife, Canary Islands.

    Science.gov (United States)

    Nolasco, Dácil; Lima, R Noemí; Hernández, Pedro A; Pérez, Nemesio M

    2008-01-01

    [corrected] Historically, landfills have been the simplest form of eliminating urban solid waste with the minimum cost. They have been the most usual method for discarding solid waste. However, landfills are considered authentic biochemical reactors that introduce large amounts of contaminants into the environment in the form of gas and leachates. The dynamics of generation and the movement of gas in landfills depend on the input and output parameters, as well as on the structure of the landfill and the kind of waste. The input parameters include water introduced through natural or artificial processes, the characteristics of the urban solid waste, and the input of atmospheric air. The main output parameters for these biochemical reactors include the gases and the leachates that are potentially pollutants for the environment. Control systems are designed and installed to minimize the impact on the environment. However, these systems are not perfect and a significant amount of landfill gas could be released to the atmosphere through the surface in a diffuse form, also known as Non-controlled emission. In this paper, the results of the Non-controlled biogenic gas emissions from the Lazareto landfill in Tenerife, Canary Islands, are presented. The purpose of this study was to evaluate the concentration of CH4 and CO2 in the soil gas of the landfill cover, the CH4 and CO2 efflux from the surface of the landfill and, finally, to compare these parameters with other similar landfills. In this way, a better understanding of the process that controls biogenic gas emissions in landfills is expected. A Non-controlled biogenic gas emission survey of 281 sampling sites was carried out during February and March, 2002. The sampling sites were selected in order to obtain a well-distributed sampling grid. Surface landfill CO2 efflux measurements were carried out at each sampling site on the surface landfill together with soil gas collection and ground temperatures at a depth of 30

  8. Non-methane biogenic volatile organic compound emissions from boreal peatland microcosms under warming and water table drawdown

    DEFF Research Database (Denmark)

    Faubert, P; Tiiva, P; Nakam, TA

    2011-01-01

    Abstract Boreal peatlands have significant emissions of non-methane biogenic volatile organic compounds (BVOCs). Climate warming is expected to affect these ecosystems both directly, with increasing temperature, and indirectly, through water table drawdown following increased evapotranspiration. We...... assessed the combined effect of warming and water table drawdown on the BVOC emissions from boreal peatland microcosms. We also assessed the treatment effects on the BVOC emissions from the peat soil after the 7-week long experiment. Emissions of isoprene, monoterpenes, sesquiterpenes, other reactive VOCs...... and other VOCs were sampled using a conventional chamber technique, collected on adsorbent and analyzed by GC–MS. Carbon emitted as BVOCs was less than 1% of the CO2 uptake and up to 3% of CH4 emission. Water table drawdown surpassed the direct warming effect and significantly decreased the emissions of all...

  9. In-Use NOx Emissions from Diesel and Liquefied Natural Gas Refuse Trucks Equipped with SCR and TWC, Respectively.

    Science.gov (United States)

    Misra, Chandan; Ruehl, Chris; Collins, John; Chernich, Don; Herner, Jorn

    2017-06-20

    The California Air Resources Board (ARB) and the City of Sacramento undertook this study to characterize the in-use emissions from model year (MY) 2010 or newer diesel, liquefied natural gas (LNG), and hydraulic hybrid diesel engines during real-world refuse truck operation. Emissions from five trucks, two diesels equipped with selective catalytic reduction (SCR), two LNG's equipped with three-way catalyst (TWC), and one hydraulic hybrid diesel equipped with SCR, were measured using a portable emissions measurement system (PEMS) in the Sacramento area. Results showed that the brake-specific NOx emissions for the LNG trucks equipped with the TWC catalyst were lowest of all the technologies tested. Results also showed that the brake specific NOx emissions from the conventional diesel engines were significantly higher despite the exhaust temperature being high enough for proper SCR function. Like diesel engines, the brake specific NOx emissions from the hydraulic hybrid diesel also exceeded certification although this can be explained on the basis of the temperature profile. Future studies are warranted to establish whether the below average SCR performance observed in this study is a systemic issue or is it a problem specifically observed during this work.

  10. An experimental study on effect of coke ratio on SO2 and NOx emissions in sintering process

    Science.gov (United States)

    Wang, Hui; Zhang, Pu; Yang, Jingling

    2018-02-01

    By using the sinter cup experiment, the effects of different coke ratios of 0%, 25%, 50%, 75%, and 100% on the formation and total emissions of SO2 and NOx in the sintering process were studied with the Testo350 flue gas analyzer. The experimental results show that the emissions of SO2 and NOx are closely related to sintering process. With the increase of the coke proportion, the sintering temperature changes and the maximum peak time appears earlier. SO2 concentration has a bimodal distribution and NOx concentration has a triple peak. Besides, the both maximum peaks appear at the end of sintering. In addition, due to the increasing of the S and N contents in the fuel with the coke ratios from 0% to 100%, the amounts of SO2 and NOx emissions are raised respectively at 10.82 mg, 11.42 mg, 13.84 mg, 13.69 mg, 20.36 mg and 3.11 mg, 3.39 mg, 4.44 mg, 4.31 mg, 6.16 mg.

  11. Emissions of isoprenoids and oxygenated biogenic volatile organic compounds from a New England mixed forest

    Directory of Open Access Journals (Sweden)

    K. A. McKinney

    2011-05-01

    Full Text Available Fluxes of biogenic volatile organic compounds, including isoprene, monoterpenes, and oxygenated VOCs measured above a mixed forest canopy in central Massachusetts during the 2005 and 2007 growing seasons are reported. Mixing ratios were measured using proton transfer reaction mass spectrometry (PTR-MS and fluxes computed by the disjunct eddy covariance technique. Isoprene was by far the predominant BVOC emitted at this site, with summer mid-day average fluxes of 5.3 and 4.4 mg m−2 hr−1 in 2005 and 2007, respectively. In comparison, mid-day average fluxes of monoterpenes were 0.21 and 0.15 mg m−2 hr−1 in each of these years. On short times scales (days, the diel pattern in emission rate compared well with a standard emission algorithm for isoprene. The general shape of the seasonal cycle and the observed decrease in isoprene emission rate in early September was, however, not well captured by the model. Monoterpene emission rates exhibited dependence on light as well as temperature, as determined from the improved fit to the observations obtained by including a light-dependent term in the model. The mid-day average flux of methanol from the canopy was 0.14 mg m−2 hr−1 in 2005 and 0.19 mg m−2 hr−1 in 2007, but the maximum flux was observed in spring (29 May 2007, when the flux reached 1.0 mg m−2 hr−1. This observation is consistent with enhanced methanol production during leaf expansion. Summer mid-day fluxes of acetone were 0.15 mg m−2 hr−1 during a short period in 2005, but only 0.03 mg m−2 h−1 averaged over 2007. Episodes of negative fluxes of oxygenated VOCs, particularly acetone, were observed periodically, especially in 2007. Thus, deposition within the canopy could help explain the low season-averaged flux of acetone in 2007. Fluxes of species of biogenic origin

  12. Shifting primary energy source and NOx emission location with plug-in hybrid vehicles

    Science.gov (United States)

    Karman, Deniz

    2011-06-01

    Plug-in hybrid vehicles (PHEVs) present an interesting technological opportunity for using non-fossil primary energy in light duty passenger vehicles, with the associated potential for reducing air pollutant and greenhouse gas emissions, to the extent that the electric power grid is fed by non-fossil sources. This perspective, accompanying the article by Thompson et al (2011) in this issue, will touch on two other studies that are directly related: the Argonne study (Elgowainy et al 2010) and a PhD thesis from Utrecht (van Vliet 2010). Thompson et al (2011) have examined air quality effects in a case where the grid is predominantly fossil fed. They estimate a reduction of 7.42 tons/day of NOx from motor vehicles as a result of substituting electric VMTs for 20% of the light duty gasoline vehicle miles traveled. To estimate the impact of this reduction on air quality they also consider the increases in NOx emissions due to the increased load on electricity generating units. The NOx emission increases are estimated as 4.0, 5.5 and 6.3 tons for the Convenience, Battery and Night charging scenarios respectively. The net reductions are thus in the 1.1-3.4 tons/day range. The air quality modelling results presented show that the air quality impact from a ground-level ozone perspective is favorable overall, and while the effect is stronger in some localities, the difference between the three scenarios is small. This is quite significant and suggests that localization of the NOx emissions to point sources has a more pronounced effect than the absolute reductions achieved. Furthermore it demonstrates that localization of NOx emissions to electricity generating units by using PHEVs in vehicle traffic has beneficial effects for air quality not only by minimizing direct human exposure to motor vehicle emissions, but also due to reduced exposure to secondary pollutants (i.e. ozone). In an electric power grid with a smaller share of fossil fired generating units, the beneficial

  13. Effects of daily, high spatial resolution a priori profiles of satellite-derived NOx emissions

    Science.gov (United States)

    Laughner, J.; Zare, A.; Cohen, R. C.

    2016-12-01

    The current generation of space-borne NO2 column observations provides a powerful method of constraining NOx emissions due to the spatial resolution and global coverage afforded by the Ozone Monitoring Instrument (OMI). The greater resolution available in next generation instruments such as TROPOMI and the capabilities of geosynchronous platforms TEMPO, Sentinel-4, and GEMS will provide even greater capabilities in this regard, but we must apply lessons learned from the current generation of retrieval algorithms to make the best use of these instruments. Here, we focus on the effect of the resolution of the a priori NO2 profiles used in the retrieval algorithms. We show that for an OMI retrieval, using daily high-resolution a priori profiles results in changes in the retrieved VCDs up to 40% when compared to a retrieval using monthly average profiles at the same resolution. Further, comparing a retrieval with daily high spatial resolution a priori profiles to a more standard one, we show that emissions derived increase by 100% when using the optimized retrieval.

  14. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx.

    Science.gov (United States)

    Huang, Xiaoyan; Wang, Yang; Xing, Zhenyu; Du, Ke

    2016-09-15

    The estimation of emission factors (EFs) is the basis of accurate emission inventory. However, the EFs of air pollutants for motor vehicles vary under different operating conditions, which will cause uncertainty in developing emission inventory. Natural gas (NG), considered as a "cleaner" fuel than gasoline, is increasingly being used to reduce combustion emissions. However, information is scarce about how much emission reduction can be achieved by motor vehicles burning NG (NGVs) under real road driving conditions, which is necessary for evaluating the environmental benefits for NGVs. Here, online, in situ measurements of the emissions from nine bi-fuel vehicles were conducted under different operating conditions on the real road. A comparative study was performed for the EFs of black carbon (BC), carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx) for each operating condition when the vehicles using gasoline and compressed NG (CNG) as fuel. BC EFs were reported in part I. The part II in this paper series reports the influence of operating conditions and fuel types on the EFs of CO, HC and NOx. Fuel-based EFs of CO showed good correlations with speed when burning CNG and gasoline. The correlation between fuel-based HC EFs and speed was relatively weak whether burning CNG or gasoline. The fuel-based NOx EFs moderately correlated with speed when burning CNG, but weakly correlated with gasoline. As for HC, the mileage-based EFs of gasoline vehicles are 2.39-12.59 times higher than those of CNG vehicles. The mileage-based NOx EFs of CNG vehicles are slightly higher than those of gasoline vehicles. These results would facilitate a detailed analysis of the environmental benefits for replacing gasoline with CNG in light duty vehicles. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions

    DEFF Research Database (Denmark)

    Valolahti, Hanna Maritta; Kivimäenpää, Minna; Faubert, Patrick

    2015-01-01

    Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensi-tive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, weaimed to investigate how warming affects the BVOC emissions in the long term...... (up to 13 treatment years). We alsoaimed to assess whether the increased litterfall resulting from the vegetation changes in the warming subarctic wouldaffect the emissions. The study was conducted in a field experiment with factorial open-top chamber warming andannual litter addition treatments......-trometry. Plant species coverage in the plots was analyzed by the point intercept method. Warming by 2 °C caused a2-fold increase in monoterpene and 5-fold increase in sesquiterpene emissions, averaged over all measurements.When the momentary effect of temperature was diminished by standardization of emissions...

  16. Simulations of NOx Emissions from Low Emissions Discrete Jet Injector Combustor Tests

    Science.gov (United States)

    Ajmani, Kumud; Breisacher, Kevin

    2014-01-01

    An experimental and computational study was conducted to evaluate the performance and emissions characteristics of a candidate Lean Direct Injection (LDI) combustor configuration with a mix of simplex and airblast injectors. The National Combustion Code (NCC) was used to predict the experimentally measured EINOx emissions for test conditions representing low power, medium power, and high-power engine cycle conditions. Of the six cases modeled with the NCC using a reduced-kinetics finite-rate mechanism and lagrangian spray modeling, reasonable predictions of combustor exit temperature and EINOx were obtained at two high-power cycle conditions.

  17. Numerical investigation on the flow, combustion, and NOX emission characteristics in a 660 MWe tangential firing ultra-supercritical boiler

    Directory of Open Access Journals (Sweden)

    Wenjing Sun

    2016-02-01

    Full Text Available A three-dimensional numerical simulation was carried out to study the pulverized-coal combustion process in a tangentially fired ultra-supercritical boiler. The realizable k-ε model for gas coupled with discrete phase model for coal particles, P-1 radiation model for radiation, two-competing-rates model for devolatilization, and kinetics/diffusion-limited model for combustion process are considered. The characteristics of the flow field, particle motion, temperature distribution, species components, and NOx emissions were numerically investigated. The good agreement of the measurements and predictions implies that the applied simulation models are appropriate for modeling commercial-scale coal boilers. It is found that an ideal turbulent flow and particle trajectory can be observed in this unconventional pulverized-coal furnace. With the application of over-fire air and additional air, lean-oxygen combustion takes place near the burner sets region and higher temperature at furnace exit is acquired for better heat transfer. Within the limits of secondary air, more steady combustion process is achieved as well as the reduction of NOx. Furthermore, the influences of the secondary air, over-fire air, and additional air on the NOx emissions are obtained. The numerical results reveal that NOx formation attenuates with the decrease in the secondary air ratio (γ2nd and the ratio of the additional air to the over-fire air (γAA/γOFA was within the limits.

  18. Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials expecting diesel-auto emission regulation

    International Nuclear Information System (INIS)

    Komatsu, Tamikuni; Tomokuni, Keizou; Yamada, Issaku

    2006-01-01

    Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials, which does not rely on the conventional NOx-absorption-reduction-catalysts, is presented for the purpose of de-NOx of diesel-auto emissions. The established catalysts basically consist of mesoporous silica or metal-substituted mesoporous silicates for supports and platinum for active species, which is operated under lean- and rich-conditions. The new catalysts are very active at 150-200 o C and free from difficult problems of SOx-deactivation and hydrothermal ageing of the NOx-absorption-reduction catalyst. (author)

  19. The influence of biogenic emissions from Africa on tropical tropospheric ozone during 2006: a global modeling study

    Directory of Open Access Journals (Sweden)

    J. E. Williams

    2009-08-01

    Full Text Available We have performed simulations using a 3-D global chemistry-transport model to investigate the influence that biogenic emissions from the African continent exert on the composition of the troposphere in the tropical region. For this purpose we have applied two recently developed biogenic emission inventories provided for use in large-scale global models (Granier et al., 2005; Lathière et al., 2006 whose seasonality and temporal distribution for biogenic emissions of isoprene, other volatile organic compounds and NO is markedly different. The use of the 12 year average values for biogenic emissions provided by Lathière et al. (2006 results in an increase in the amount of nitrogen sequestrated into longer lived reservoir compounds which contributes to the reduction in the tropospheric ozone burden in the tropics. The associated re-partitioning of nitrogen between PAN, HNO3 and organic nitrates also results in a ~5% increase in the loss of nitrogen by wet deposition. At a global scale there is a reduction in the oxidizing capacity of the model atmosphere which increases the atmospheric lifetimes of CH4 and CO by ~1.5% and ~4%, respectively. Comparisons against a range of different measurements indicate that applying the 12 year average of Lathière et al. (2006 improves the performance of TM4_AMMA for 2006 in the tropics. By the use of sensitivity studies we show that the release of NO from soils in Africa accounts for between ~2–45% of tropospheric ozone in the African troposphere, ~10% in the upper troposphere and between ~5–20% of the tropical tropospheric ozone column over the tropical Atlantic Ocean. The subsequent reduction in OH over the source regions allows enhanced transport of CO out of the region. For biogenic volatile organic C1 to C3 species released from Africa, the effects on tropical tropospheric ozone are rather limited, although this source contributes to the global burden of VOC by between ~2–4% and

  20. Investigating the microbial community responsible for unusually high soil N2O and NOx emissions in the Colorado Desert

    Science.gov (United States)

    Eberwein, J. R.; Carey, C.; Aronson, E. L.; Jenerette, D.

    2016-12-01

    Although the importance of soil nitrogenous emissions are well accepted in terms of local and global ecological relevance, there remain considerable knowledge gaps concerning the mechanisms regulating production, particularly in arid systems. This study aimed to connect desert soil trace gas emissions of nitrous oxide (N2O) and nitrogen oxides (NOx) with compositional changes in the microbial community. We quantified real-time soil trace gas emissions at two sites in the Colorado Desert experiencing contrasting anthropogenic nitrogen (N) deposition loads (characterize the soil microbial community. N2O fluxes reached as high as 1200 ng N2O-N m-2 s-1, well above most published emissions, but returned to pre-wetting conditions within 12 hours. NOx emissions reached as high as 350 ng NOx-N m-2 s-1 and remained elevated past 24 hours post-wetting. Results from the 16S analysis indicate distinct differences in the microbial community composition between the high and low N deposition sites, with less than 50% of operational taxonomic units (OTUs) in common between sites. N addition had a significant effect on the soil microbial community at the low deposition site, but not at the high deposition site. Furthermore, significant shifts in the bacterial community occurred after wetting, with only one third of the community remaining constant between time points. These results suggest that gaseous N export, particularly N2O emission, is a greater form of nitrogen loss in this system than is currently assumed. Experimental N additions and anthropogenic N deposition show potential for shifting soil microbial community composition, with implications for soil N emissions. Furthermore, shifts in the microbial community can occur as quickly as 15 minutes post-wetting, representing a remarkable ability for soil microorganisms to recover from extreme water stress. As aridlands cover approximately one third of the Earth's land surface, understanding the mechanisms that contribute to

  1. Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba.

    Science.gov (United States)

    Li, Dewen; Chen, Ying; Shi, Yi; He, Xingyuan; Chen, Xin

    2009-04-01

    In natural environment with ambient air, ginkgo trees emitted volatile organic compounds 0.18 microg g(-1) h(-1) in July, and 0.92 microg g(-1) h(-1) in September. Isoprene and limonene were the most abundant detected compounds. In September, alpha-pinene accounted for 22.5% of the total. Elevated CO(2) concentration in OTCs increased isoprene emission significantly in July (pemission was enhanced in July and decreased in September by elevated CO(2). Exposed to elevated O(3) increased the isoprene and monoterpenes emissions in July and September, and the total volatile organic compounds emission rates were 0.48 microg g(-1) h(-1) (in July) and 2.24 microg g(-1) h(-1) (in September), respectively. The combination of elevated CO(2) and O(3) did not have any effect on biogenic volatile organic compounds emissions, except increases of isoprene and Delta3-carene in September.

  2. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by ¹³CH₄.

    Science.gov (United States)

    Schaefer, Hinrich; Mikaloff Fletcher, Sara E; Veidt, Cordelia; Lassey, Keith R; Brailsford, Gordon W; Bromley, Tony M; Dlugokencky, Edward J; Michel, Sylvia E; Miller, John B; Levin, Ingeborg; Lowe, Dave C; Martin, Ross J; Vaughn, Bruce H; White, James W C

    2016-04-01

    Between 1999 and 2006, a plateau interrupted the otherwise continuous increase of atmospheric methane concentration [CH4] since preindustrial times. Causes could be sink variability or a temporary reduction in industrial or climate-sensitive sources. We reconstructed the global history of [CH4] and its stable carbon isotopes from ice cores, archived air, and a global network of monitoring stations. A box-model analysis suggests that diminishing thermogenic emissions, probably from the fossil-fuel industry, and/or variations in the hydroxyl CH4 sink caused the [CH4] plateau. Thermogenic emissions did not resume to cause the renewed [CH4] rise after 2006, which contradicts emission inventories. Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands. If so, mitigating CH4 emissions must be balanced with the need for food production. Copyright © 2016, American Association for the Advancement of Science.

  3. Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission

    Science.gov (United States)

    Kostiuk, Larry W.; Cheng, Robert K.

    1996-01-01

    An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

  4. The use of rice hulls for sustainable control of NOx emissions in deep space missions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X.H.; Shi, Y.; Chang, S.G.; Fisher, J.W.; Pisharody, S.; Moran, M.J.; Wignarajah, K.

    2001-12-21

    The use of the activated carbon produced from rice hulls to control NOx emissions for the future deep space missions has been demonstrated. The optimal carbonization temperature range was found to be between 600 C and 750 C. The burnoff of 61.8% was found at 700 C in pyrolysis and 750 C in activation. The BET surface area of the activated carbon from rice hulls was determined to be 172 m{sup 2}/g when prepared at 700 C. The presence of oxygen in flue gas is essential for effective adsorption of NO by the activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. Consequently, water vapor in flue gas should be removed by drying agents before adsorption to ensure high NO adsorption efficiency. All of NO in the flue gas was removed for more than one and a half hours when 10% oxygen was present and using a ratio of the carbon weight to the flue gas flow rate (W/F) of 15.4 g-min/L. The reduction of the adsorbed NO to form N{sub 2} can be effectively accomplished under anaerobic conditions at 550 C. For NO saturated activated carbon, the loss of carbon mass was determined to be about 0.16% of the activated carbon per cycle of regeneration. The reduction of the adsorbed NO also regenerates the activated carbon. The regenerated activated carbon exhibits improved NO adsorption efficiency.

  5. Impact of excess NOx emissions from diesel cars on air quality, public health and eutrophication in Europe

    Science.gov (United States)

    Jonson, J. E.; Borken-Kleefeld, J.; Simpson, D.; Nyíri, A.; Posch, M.; Heyes, C.

    2017-09-01

    Diesel cars have been emitting four to seven times more NOx in on-road driving than in type approval tests. These ‘excess emissions’ are a consequence of deliberate design of the vehicle’s after-treatment system, as investigations during the ‘Dieselgate’ scandal have revealed. Here we calculate health and environmental impacts of these excess NOx emissions in all European countries for the year 2013. We use national emissions reported officially under the UNECE Convention for Long-range Transport of Atmospheric Pollutants and employ the EMEP MSC-W Chemistry Transport Model and the GAINS Integrated Assessment Model to determine atmospheric concentrations and resulting impacts. We compare with impacts from hypothetical emissions where light duty diesel vehicles are assumed to emit only as much as their respective type approval limit value or as little as petrol cars of the same age. Excess NO2 concentrations can also have direct health impacts, but these overlap with the impacts from particulate matter (PM) and are not included here. We estimate that almost 10 000 premature deaths from PM2.5 and ozone in the adult population (age >30 years) can be attributed to the NOx emissions from diesel cars and light commercial vehicles in EU28 plus Norway and Switzerland in 2013. About 50% of these could have been avoided if diesel limits had been achieved also in on-road driving; and had diesel cars emitted as little NOx as petrol cars, 80% of these premature deaths could have been avoided. Ecosystem eutrophication impacts (critical load exceedances) from the same diesel vehicles would also have been reduced at similar rates as for the health effects.

  6. Final Technical Report on Investigation of Selective Non-Catalytic Processes for In-Situ Reduction of NOx and CO Emissions from Marine Gas Turbines and Diesel Engines

    National Research Council Canada - National Science Library

    Bowman, Craig

    1997-01-01

    .... These observations suggest the possibility of utilizing SNCR for reducing NO(x) emissions from marine gas turbines and Diesel engines by direct injection of a reductant species into the combustion chamber, possibly as a fuel...

  7. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies.

    Science.gov (United States)

    Ren, Yuan; Qu, Zelong; Du, Yuanyuan; Xu, Ronghua; Ma, Danping; Yang, Guofu; Shi, Yan; Fan, Xing; Tani, Akira; Guo, Peipei; Ge, Ying; Chang, Jie

    2017-11-01

    Biogenic volatile organic compounds (BVOCs) emissions lead to fine particulate matter (PM 2.5 ) and ground-level ozone pollution, and are harmful to human health, especially in urban areas. However, most BVOCs estimations ignored the emissions from urban green spaces, causing inaccuracies in the understanding of regional BVOCs emissions and their environmental and health effects. In this study, we used the latest local vegetation datasets from our field survey and applied an estimation model to analyze the spatial-temporal patterns, air quality impacts, health damage and mitigating strategies of BVOCs emissions in the Greater Beijing Area. Results showed that: (1) the urban core was the hotspot of regional BVOCs emissions for the highest region-based emission intensity (3.0 g C m -2 yr -1 ) among the 11 sub-regions; (2) urban green spaces played much more important roles (account for 62% of total health damage) than rural forests in threating human health; (3) BVOCs emissions from green spaces will more than triple by 2050 due to urban area expansion, tree growth and environmental changes; and (4) adopting proactive management (e.g. adjusting tree species composition) can reduce 61% of the BVOCs emissions and 50% of the health damage related to BVOCs emissions by 2050. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Responses of non-methane biogenic volatile organic compound emissions to climate change in boreal and subarctic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Faubert, P.

    2010-07-01

    Non-methane biogenic volatile organic compound emissions (BVOCs) have important roles in the global atmospheric chemistry but their feedbacks to climate change are still unknown. This thesis reports one of the first estimates of BVOC emissions from boreal and subarctic ecosystems. Most importantly, this thesis assesses the BVOC emission responses to four effects of climate change in these ecosystems: (1) the direct effect of warming, and its indirect effects via (2) water table drawdown, (3) change in the vegetation composition, and (4) enhanced UV-B radiation. BVOC emissions were measured using a conventional chamber method in which the compounds were collected on adsorbent and later analyzed by gas chromatography-mass spectrometry. On a subarctic heath, warming by only 1.9-2.5 degC doubled the monoterpene and sesquiterpene emissions. Such a high increase of BVOC emissions under a conservative warming cannot be predicted by the current models, which underlines the importance of a focus on BVOC emissions from the Subarctic under climate change. On a subarctic peatland, enhanced UV-B did not affect the BVOC emissions but the water table level exerted the major effect. The water table drawdown experimentally applied on boreal peatland microcosms decreased the emissions of monoterpenes and other VOCs (BVOCs with a lifetime>1 d) for the hollows (wet microsites) and that of all BVOC groups for the lawns (moderately wet microsites). The warming treatment applied on the lawn microcosms decreased the isoprene emission. The removal of vascular plants in the hummock (dry microsites) microcosms decreased the emissions of monoterpenes while the emissions between the microcosms covered with Sphagnum moss and bare peat were not different. In conclusion, the results presented in this thesis indicate that climate change has complex effects on the BVOC emissions. These results make a significant contribution to improving the modeling of BVOC emissions for a better understanding of

  9. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

  10. Influence of enhanced Asian NOx emissions on ozone in the upper troposphere and lower stratosphere in chemistry–climate model simulations

    Directory of Open Access Journals (Sweden)

    C. Roy

    2017-01-01

    78.5 mW m−2 respectively. These elevated NOx emissions produce significant warming over the Tibetan Plateau and increase precipitation over India due to a strengthening of the monsoon Hadley circulation. However, increase in NOx emissions over India by 73 % (similar to the observed increase over China results in large ozone production over the Indo-Gangetic Plain and Tibetan Plateau. The higher ozone concentrations, in turn, induce a reversed monsoon Hadley circulation and negative precipitation anomalies over India. The associated subsidence suppresses vertical transport of NOx and ozone into the ASM anticyclone.

  11. Signal Control for Reducing Vehicle NOx and CO2 Emissions Based on Prediction of Arrival Traffic Flows at Intersections

    Science.gov (United States)

    Oda, Toshihiko

    Nitrogen oxide (NOx) and carbon dioxide (CO2) emissions from vehicles have been increasing every year because of the growing number of vehicles, and they cause serious environmental problems such as air pollution and global warming. To alleviate these problems, this paper proposes a new traffic signal control method for reducing vehicle NOx and CO2 emissions on arterial roads. To this end, we first model the amount of vehicle emissions as a function of the traffic delay and the number of stops at intersections. This step is necessary because it is difficult to obtain the amount of emissions directly using traffic control systems. Second, we introduce a signal control model in which the control parameters are continuously updated on the basis of predictions of arrival traffic flows at intersections. The signal timings are calculated in such a manner so as to minimize the weighted sum of the two emissions, which depend on the traffic flow. To evaluate the validity of this method, simulation experiments are carried out on an arterial road. The experiments show that the proposed method significantly outperforms existing methods in reducing both the emissions and travel time.

  12. Estimates of global biomass burning emissions for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2

    Science.gov (United States)

    Jain, Atul K.; Tao, Zhining; Yang, Xiaojuan; Gillespie, Conor

    2006-03-01

    Open fire biomass burning and domestic biofuel burning (e.g., cooking, heating, and charcoal making) algorithms have been incorporated into a terrestrial ecosystem model to estimate CO2 and key reactive GHGs (CO, NOx, and NMHCs) emissions for the year 2000. The emissions are calculated over the globe at a 0.5° × 0.5° spatial resolution using tree density imagery, and two separate sets of data each for global area burned and land clearing for croplands, along with biofuel consumption rate data. The estimated global and annual total dry matter (DM) burned due to open fire biomass burning ranges between 5221 and 7346 Tg DM/yr, whereas the resultant emissions ranges are 6564-9093 Tg CO2/yr, 438-568 Tg CO/yr, 11-16 Tg NOx/yr (as NO), and 29-40 Tg NMHCs/yr. The results indicate that land use changes for cropland is one of the major sources of biomass burning, which amounts to 25-27% (CO2), 25 -28% (CO), 20-23% (NO), and 28-30% (NMHCs) of the total open fire biomass burning emissions of these gases. Estimated DM burned associated with domestic biofuel burning is 3,114 Tg DM/yr, and resultant emissions are 4825 Tg CO2/yr, 243 Tg CO/yr, 3 Tg NOx/yr, and 23 Tg NMHCs/yr. Total emissions from biomass burning are highest in tropical regions (Asia, America, and Africa), where we identify important contributions from primary forest cutting for croplands and domestic biofuel burning.

  13. Preliminary carbon isotope measurements of fossil fuel and biogenic emissions from the Brazilian Southeastern region

    Science.gov (United States)

    Oliveira, F. M.; Santos, G.; Macario, K.; Muniz, M.; Queiroz, E.; Park, J.

    2014-12-01

    Researchers have confirmed that the continuing global rising of atmospheric CO2 content is caused by anthropogenic CO2 contributions. Most of those contributions are essentially associated with burning of fossil fuels (coal, petroleum and natural gas). However, deforestation, biomass burning, and land use changes, can also play important roles. Researchers have showed that 14C measurements of annual plants, such as corn leaf (Hsueh et al. 2007), annual grasses (Wang and Pataki 2012), and leaves of deciduous trees (Park et al. 2013) can be used to obtain time-integrated information of the fossil fuel ration in the atmosphere. Those regional-scale fossil fuel maps are essential for monitoring CO2 emissions mitigation efforts and/or growth spikes around the globe. However, no current data from anthropogenic contributions from both biogenic and fossil carbon has been reported from the major urban areas of Brazil. Here we make use of carbon isotopes (13C and 14C) to infer sources of CO2 in the highly populated Brazilian Southeastern region (over 80 million in 2010). This region leads the country in population, urban population, population density, vehicles, industries, and many other utilities and major infrastructures. For a starting point, we focus on collecting Ipê leaves (Tabebuia, a popular deciduous tree) from across Rio de Janeiro city and state as well as Sao Paulo city during May/June of 2014 to obtain the regional distribution of 13C and 14C of those urban domes. So far, Δ14C range from -10 to 32‰, when δ13C values are running from -26 to -35‰. The result of these preliminary investigations will be presented and discussed.Hsueh et al. 2007 Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophysical Research Letters. 34: L02816. doi:10.1029/2006GL027032 Wang and Pataki 2012 Drivers of spatial variability in urban plant and soil isotopic composition in the Los Angeles Basin. Plant and Soil 350: 323

  14. Recent increases in nitrogen oxide (NOx) emissions from coal-fired electric generating units equipped with selective catalytic reduction.

    Science.gov (United States)

    McNevin, Thomas F

    2016-01-01

    The most effective control technology available for the reduction of oxides of nitrogen (NOx) from coal-fired boilers is selective catalytic reduction (SCR). Installation of SCR on coal-fired electric generating units (EGUs) has grown substantially since the onset of the U.S. Environmental Protection Agency's (EPA) first cap and trade program for oxides of nitrogen in 1999, the Ozone Transport Commission (OTC) NOx Budget Program. Installations have increased from 6 units present in 1998 in the states that encompass the current Cross-State Air Pollution Rule (CSAPR) ozone season program to 250 in 2014. In recent years, however, the degree of usage of installed SCR technology has been dropping significantly at individual plants. Average seasonal NOx emission rates increased substantially during the Clean Air Interstate Rule (CAIR) program. These increases coincided with a collapse in the cost of CAIR allowances, which declined to less than the cost of the reagent required to operate installed SCR equipment, and was accompanied by a 77% decline in delivered natural gas prices from their peak in June of 2008 to April 2012, which in turn coincided with a 390% increase in shale gas production between 2008 and 2012. These years also witnessed a decline in national electric generation which, after peaking in 2007, declined through 2013 at an annualized rate of -0.3%. Scaling back the use of installed SCR on coal-fired plants has resulted in the release of over 290,000 tons of avoidable NOx during the past five ozone seasons in the states that participated in the CAIR program. To function as designed, a cap and trade program must maintain allowance costs that function as a disincentive for the release of the air pollutants that the program seeks to control. If the principle incentive for reducing NOx emissions is the avoidance of allowance costs, emissions may be expected to increase if costs fall below a critical value, in the absence of additional state or federal

  15. Reducing diesel NOx and PM emissions of diesel buses and trucks.

    Science.gov (United States)

    2008-07-01

    The objective of the present investigation was development of a high efficiency : selective catalytic reduction (SCR) system for reducing diesel nitrogen oxides (NOx) and : particulate matters of diesel trucks. The investigation was divided into two ...

  16. Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques - part B: applications.

    Science.gov (United States)

    Ortega, John; Helmig, Detlev; Daly, Ryan W; Tanner, David M; Guenther, Alex B; Herrick, Jeffrey D

    2008-06-01

    The focus of the studies presented in the preceding companion paper (Part A: Review) and here (Part B: Applications) is on defining representative emission rates from vegetation for determining the roles of biogenic volatile organic compound (BVOC) emissions in atmospheric chemistry and aerosol processes. The review of previously published procedures for identifying and quantifying BVOC emissions has revealed a wide variety of experimental methods used by various researchers. Experimental details become increasingly critical for quantitative emission measurements of low volatility monoterpenes (MT) and sesquiterpenes (SQT). These compounds are prone to be lost inadvertently by uptake to materials in contact with the sample air or by reactions with atmospheric oxidants. These losses become more prominent with higher molecular weight compounds, potentially leading to an underestimation of their emission rates. We present MT and SQT emission rate data from numerous experiments that include 23 deciduous tree species, 14 coniferous tree species, 8 crops, and 2 shrubs. These data indicate total, normalized (30 degrees C) basal emission rates from emissions have exponential dependencies on temperature (i.e. rates are proportional to e(betaT)). The inter-quartile range of beta-values for MT was between 0.12 and 0.17K(-1), which is higher than the value commonly used in models (0.09K(-1)). However many of the MT emissions also exhibited light dependencies, making it difficult to separate light and temperature influences. The primary light-dependent MT was ocimene, whose emissions were up to a factor of 10 higher than light-independent MT emissions. The inner-quartile range of beta-values for SQT was between 0.15 and 0.21K(-1).

  17. Effects of various intake valve timings and spark timings on combustion, cyclic THC and NOX emissions during cold start phase with idle operation in CVVT engine

    International Nuclear Information System (INIS)

    Choi, Kwan Hee; Lee, Hyung Min; Hwang, In Goo; Myung, Cha Lee; Park, Sim Soo

    2008-01-01

    In a gasoline SI engine, valve events and spark timings put forth a major influence on overall efficiency, fuel economy, and exhaust emissions. Residual gases controlled by the valve overlap can be used to reduce NOx emissions and the spark retardation technique can be used to improve raw THC emissions and catalyst light-off performance during the cold start phase. This paper investigated the behaviors of the engine and its combustion characteristics with various intake valve timings and spark timings during the fast idle condition and cold start. And cyclic THC and NOx emissions were measured at the exhaust port and their formation mechanisms were examined with fast response gas analyzers. As a result, THCs and NOx were reduced by 35% and 23% with optimizing valve overlap and spark advance during the cold transient start phase. Consequently, the valve events and ignition timings were found to significantly affect combustion phenomena and cold-start emissions

  18. NOx Emission in Iron and Steel Production: A Review of Control Measures for Safe and Eco-Friendly Environment

    Directory of Open Access Journals (Sweden)

    U. A. Mukhtar

    2017-12-01

    Full Text Available Iron and steel manufacturing involved preparation of raw materials through processes such as sintering, pelletizing and coke making. During these processes, pollutants such as Sulphur (iv oxides (SO2 Carbon II oxides (CO, Nitrogen oxides (NOX, Volatile organic compounds (VOC and Particulate matter (PM etc. are emitted. The present work is aimed at describing some mitigation technologies of controlling emissions in iron and steel production. The processes involved in the production of iron and steel using Blast Furnace (BF and Basic Oxygen Furnace (BOF has been described. The mitigation technologies of controlling emissions were analyzed and discussed with environmental impacts based on the economical and technical factors. In this work, the data presented is based on existing reviews. The combination of low NOX burner (LNB and Selective catalytic reduction (SCR is capable of reducing emission for up to 90% and above. Emissions of other pollutants into the atmosphere as a result of ammonia slip, formation of acids and other gases are harmful to the environment and causes damage to the SCR systems. Installation and operation cost are the major impacts of the SCR technology in the process of iron and steel production.

  19. Herbivory by an Outbreaking Moth Increases Emissions of Biogenic Volatiles and Leads to Enhanced Secondary Organic Aerosol Formation Capacity.

    Science.gov (United States)

    Yli-Pirilä, Pasi; Copolovici, Lucian; Kännaste, Astrid; Noe, Steffen; Blande, James D; Mikkonen, Santtu; Klemola, Tero; Pulkkinen, Juha; Virtanen, Annele; Laaksonen, Ari; Joutsensaari, Jorma; Niinemets, Ülo; Holopainen, Jarmo K

    2016-11-01

    In addition to climate warming, greater herbivore pressure is anticipated to enhance the emissions of climate-relevant biogenic volatile organic compounds (VOCs) from boreal and subarctic forests and promote the formation of secondary aerosols (SOA) in the atmosphere. We evaluated the effects of Epirrita autumnata, an outbreaking geometrid moth, feeding and larval density on herbivore-induced VOC emissions from mountain birch in laboratory experiments and assessed the impact of these emissions on SOA formation via ozonolysis in chamber experiments. The results show that herbivore-induced VOC emissions were strongly dependent on larval density. Compared to controls without larval feeding, clear new particle formation by nucleation in the reaction chamber was observed, and the SOA mass loadings in the insect-infested samples were significantly higher (up to 150-fold). To our knowledge, this study provides the first controlled documentation of SOA formation from direct VOC emission of deciduous trees damaged by known defoliating herbivores and suggests that chewing damage on mountain birch foliage could significantly increase reactive VOC emissions that can importantly contribute to SOA formation in subarctic forests. Additional feeding experiments on related silver birch confirmed the SOA results. Thus, herbivory-driven volatiles are likely to play a major role in future biosphere-vegetation feedbacks such as sun-screening under daily 24 h sunshine in the subarctic.

  20. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars.

    Science.gov (United States)

    Rosenkranz, Maaria; Pugh, Thomas A M; Schnitzler, Jörg-Peter; Arneth, Almut

    2015-09-01

    Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment. © 2014 John Wiley & Sons Ltd.

  1. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions.

    Science.gov (United States)

    Valolahti, Hanna; Kivimäenpää, Minna; Faubert, Patrick; Michelsen, Anders; Rinnan, Riikka

    2015-09-01

    Emissions of biogenic volatile organic compounds (BVOCs) have been earlier shown to be highly temperature sensitive in subarctic ecosystems. As these ecosystems experience rapidly advancing pronounced climate warming, we aimed to investigate how warming affects the BVOC emissions in the long term (up to 13 treatment years). We also aimed to assess whether the increased litterfall resulting from the vegetation changes in the warming subarctic would affect the emissions. The study was conducted in a field experiment with factorial open-top chamber warming and annual litter addition treatments on subarctic heath in Abisko, northern Sweden. After 11 and 13 treatment years, BVOCs were sampled from plant communities in the experimental plots using a push-pull enclosure technique and collection into adsorbent cartridges during the growing season and analyzed with gas chromatography-mass spectrometry. Plant species coverage in the plots was analyzed by the point intercept method. Warming by 2 °C caused a 2-fold increase in monoterpene and 5-fold increase in sesquiterpene emissions, averaged over all measurements. When the momentary effect of temperature was diminished by standardization of emissions to a fixed temperature, warming still had a significant effect suggesting that emissions were also indirectly increased. This indirect increase appeared to result from increased plant coverage and changes in vegetation composition. The litter addition treatment also caused significant increases in the emission rates of some BVOC groups, especially when combined with warming. The combined treatment had both the largest vegetation changes and the highest BVOC emissions. The increased emissions under litter addition were probably a result of a changed vegetation composition due to alleviated nutrient limitation and stimulated microbial production of BVOCs. We suggest that the changes in the subarctic vegetation composition induced by climate warming will be the major factor

  2. Decreasing NOx of a Low-Speed Two-Stroke Marine Diesel Engine by Using In-Cylinder Emission Control Measures

    Directory of Open Access Journals (Sweden)

    Liyan Feng

    2016-04-01

    Full Text Available The authors applied one-dimensional (1-D simulation and 3-D Computational Fluid Dynamics (CFD simulation to evaluate the potential of in-cylinder control methods on a low-speed 2-stroke marine engine to reach the International Maritime Organization (IMO Tier 3 NOx emissions standards. Reducing the combustion temperature is an important in-cylinder measure to decrease NOx emissions of marine diesel engines. Miller-cycle and Exhaust Gas Recirculation (EGR are effective methods to reduce the maximum combustion temperature and accordingly decrease NOx emissions. The authors’ calculation results indicate that with a combination of 2-stage turbocharging, a mild Miller-cycle and 10% EGR rate, the NOx emissions can be decreased by 48% without the increased Specific Fuel Oil Consumption (SFOC penalties; with a medium Miller-cycle and 10% EGR, NOx can be decreased by 56% with a slight increase of SFOC; with a medium Miller-cycle and 20% EGR, NOx can be decreased by 77% and meet IMO Tier 3 standards, but with the high price of a considerable increase of SFOC. The first two schemes are promising to meet IMO Tier 3 standards with good fuel economy if other techniques are combined.

  3. Secondary inorganic aerosols in Europe: sources and the significant influence of biogenic VOC emissions, especially on ammonium nitrate

    Science.gov (United States)

    Aksoyoglu, Sebnem; Ciarelli, Giancarlo; El-Haddad, Imad; Baltensperger, Urs; Prévôt, André S. H.

    2017-06-01

    Contributions of various anthropogenic sources to the secondary inorganic aerosol (SIA) in Europe as well as the role of biogenic emissions on SIA formation were investigated using the three-dimensional regional model CAMx (comprehensive air quality model with extensions). Simulations were carried out for two periods of EMEP field campaigns, February-March 2009 and June 2006, which are representative of cold and warm seasons, respectively. Biogenic volatile organic compounds (BVOCs) are known mainly as precursors of ozone and secondary organic aerosol (SOA), but their role on inorganic aerosol formation has not attracted much attention so far. In this study, we showed the importance of the chemical reactions of BVOCs and how they affect the oxidant concentrations, leading to significant changes, especially in the formation of ammonium nitrate. A sensitivity test with doubled BVOC emissions in Europe during the warm season showed a large increase in secondary organic aerosol (SOA) concentrations (by about a factor of two), while particulate inorganic nitrate concentrations decreased by up to 35 %, leading to a better agreement between the model results and measurements. Sulfate concentrations decreased as well; the change, however, was smaller. The changes in inorganic nitrate and sulfate concentrations occurred at different locations in Europe, indicating the importance of precursor gases and biogenic emission types for the negative correlation between BVOCs and SIA. Further analysis of the data suggested that reactions of the additional terpenes with nitrate radicals at night were responsible for the decline in inorganic nitrate formation, whereas oxidation of BVOCs with OH radicals led to a decrease in sulfate. Source apportionment results suggest that the main anthropogenic source of precursors leading to formation of particulate inorganic nitrate is road transport (SNAP7; see Table 1 for a description of the categories), whereas combustion in energy and

  4. Reduction on NOx emissions on urban areas by changing specific vehicle fleets: effects on NO2 and O3 concentration

    Science.gov (United States)

    Goncalves, M.; Jimenez, P.; Baldasano, J.

    2007-12-01

    The largest amount of NOx emissions in urban areas comes from on-road traffic, which is the largest contributor to urban air pollution (Colvile et al., 2001). Currently different strategies are being tested in order to reduce its effects; many of them oriented to the reduction of the unitary vehicles emissions, by alternative fuels use (such as biofuels, natural gas or hydrogen) or introduction of new technologies (such as hybrid electric vehicles or fuel cells). Atmospheric modelling permits to predict their consequences on tropospheric chemistry (Vautard et al., 2007). Hence, this work assesses the changes on NO2 and O3 concentrations when substituting a 10 per cent of the urban private cars fleets by petrol hybrid electric cars (HEC) or by natural gas cars (NGC) in Madrid and Barcelona urban areas (Spain). These two cities are selected in order to highlight the different patterns of pollutants transport (inland vs. coastal city) and the different responses to emissions reductions. The results focus on a typical summertime episode of air pollution, by means of the Eulerian air quality model ARW- WRF/HERMES/CMAQ, applied with high resolution (1-hr, 1km2) since of the complexity of both areas under study. The detailed emissions scenarios are implemented in the HERMES traffic emissions module, based on the Copert III-EEA/EMEP-CORINAIR (Nztiachristos and Samaras, 2000) methodology. The HEC introduction reduces NOx emissions from on-road traffic in a 10.8 per cent and 8.2 per cent; and the NGC introduction in a 10.3 per cent and 7.8 per cent, for Madrid and Barcelona areas, respectively. The scenarios also affect the NMVOCs reduction (ranging from -3.1 to -6.9 per cent), influencing the tropospheric photochemistry through the NOx/NMVOCs ratio. The abatement of the NO photooxidation but also to the reduction on primary NO2 involves a decrease on NO2 levels centred on urban areas. For example, the NO2 24-hr average concentration in downtown areas reduces up to 8 per

  5. A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines

    International Nuclear Information System (INIS)

    D’Ambrosio, Stefano; Finesso, Roberto; Fu, Lezhong; Mittica, Antonio; Spessa, Ezio

    2014-01-01

    Highlights: • New semi-empirical correlation to predict NOx emissions in diesel engines. • Based on a real-time three-zone diagnostic combustion model. • The model is of fast application, and is therefore suitable for control-oriented applications. - Abstract: The present work describes the development of a fast control-oriented semi-empirical model that is capable of predicting NOx emissions in diesel engines under steady state and transient conditions. The model takes into account the maximum in-cylinder burned gas temperature of the main injection, the ambient gas-to-fuel ratio, the mass of injected fuel, the engine speed and the injection pressure. The evaluation of the temperature of the burned gas is based on a three-zone real-time diagnostic thermodynamic model that has recently been developed by the authors. Two correlations have also been developed in the present study, in order to evaluate the maximum burned gas temperature during the main combustion phase (derived from the three-zone diagnostic model) on the basis of significant engine parameters. The model has been tuned and applied to two diesel engines that feature different injection systems of the indirect acting piezoelectric, direct acting piezoelectric and solenoid type, respectively, over a wide range of steady-state operating conditions. The model has also been validated in transient operation conditions, over the urban and extra-urban phases of an NEDC. It has been shown that the proposed approach is capable of improving the predictive capability of NOx emissions, compared to previous approaches, and is characterized by a very low computational effort, as it is based on a single-equation correlation. It is therefore suitable for real-time applications, and could also be integrated in the engine control unit for closed-loop or feed-forward control tasks

  6. Quantifying Emission Controls of CO and NOx During the Victory Day Military Parade through Inverse Modelling with Ensemble Kalman Filter

    Science.gov (United States)

    Wu, H.; Tang, X.; Wang, Z.

    2016-12-01

    During the China Victory Day Parade in 2015, temporary emission control measures were conducted over Beijing and surrounding regions to guarantee the air quality of Beijing. This offers a great opportunity to explore the ability and limitations of the top-down emission estimation. In this study, we employed an ensemble Kalman filter (EnKF) in coupling with a Nested Air Quality Prediction Modeling System (NAQPMS) to establish a high temporal and spatial resolution emission inversion estimation scheme. The scheme enables to assimilated more than 400 surface observations of carbon monoxide (CO) and nitrogen dioxides (NO2) into a 5km×5km resolution model to inversely adjust the a priori emission inventory based on the Multi-resolution Emission Inventory for China (MEIC) for the base year of 2010. Fifty ensemble members and an offline hourly inverse analysis were employed during the four-week inverse period. Results suggested that the inverse estimation scheme significantly reduced the biases in the a prior emission inventory. Therefore, a new emission inventory was obtained and served as the base to compare with the inverse emission inventory during the China Victory Day Parade. Comparison between the new base emission inventory and the inverse emission inventory during the China Victory Day Parade revealed the temporal and spatial characters of the emission control measures over Beijing and surrounding areas. Significant emission reductions were found in Beijing-Tianjin-Hebei and surrounding areas. Meanwhile, NOx showed more reductions in areas around Beijing due to more rigorous vehicle control. This study highlighted the advantages and limitations of the EnKF-based emission estimation scheme. The uncertainties related to observation network, sampling strategy, and meteorological errors were also discussed.

  7. Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years

    Energy Technology Data Exchange (ETDEWEB)

    Sindelarova, K.; Granier, Claire; Bouarar, I.; Guenther, Alex B.; Tilmes, S.; Stavrakou, T.; Muller, J. F.; Kuhn, U.; Stefani, P.; Knorr, W.

    2014-09-09

    The Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1) together with the Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields were used to create a global emission dataset of biogenic VOCs available on a monthly basis for the time period of 1980 - 2010. This dataset is called MEGAN-MACC. The model estimated mean annual total BVOC emission of 760 Tg(C) yr1 consisting of isoprene (70%), monoterpenes (11%), methanol (6%), acetone (3%), sesquiterpenes (2.5%) and other BVOC species each contributing less than 2 %. Several sensitivity model runs were performed to study the impact of different model input and model settings on isoprene estimates and resulted in differences of * 17% of the reference isoprene total. A greater impact was observed for sensitivity run applying parameterization of soil moisture deficit that led to a 50% reduction of isoprene emissions on a global scale, most significantly in specific regions of Africa, South America and Australia. MEGAN-MACC estimates are comparable to results of previous studies. More detailed comparison with other isoprene in ventories indicated significant spatial and temporal differences between the datasets especially for Australia, Southeast Asia and South America. MEGAN-MACC estimates of isoprene and*-pinene showed a reasonable agreement with surface flux measurements in the Amazon andthe model was able to capture the seasonal variation of emissions in this region.

  8. Role of management strategies and environmental factors in determining the emissions of biogenic volatile organic compounds from urban greenspaces.

    Science.gov (United States)

    Ren, Yuan; Ge, Ying; Gu, Baojing; Min, Yong; Tani, Akira; Chang, Jie

    2014-06-03

    Biogenic volatile organic compound (BVOC) emissions from urban greenspace have recently become a global concern. To identify key factors affecting the dynamics of urban BVOC emissions, we built an estimation model and utilized the city of Hangzhou in southeastern China as an example. A series of single-factor scenarios were first developed, and then nine multifactor scenarios using a combination of different single-factor scenarios were built to quantify the effects of environmental changes and urban management strategies on urban BVOC emissions. Results of our model simulations showed that (1) annual total BVOC emissions from the metropolitan area of Hangzhou were 4.7×10(8) g of C in 2010 and were predicted to be 1.2-3.2 Gg of C (1 Gg=10(9) g) in our various scenarios in 2050, (2) urban management played a more important role in determining future urban BVOC emissions than environmental changes, and (3) a high ecosystem service value (e.g., lowest BVOC/leaf mass ratio) could be achieved through positive coping in confronting environmental changes and adopting proactive urban management strategies on a local scale, that is, to moderately increase tree density while restricting excessive greenspace expansion and optimizing the species composition of existing and newly planted trees.

  9. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt

    2002-08-15

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  10. Lightning NOx emissions over the USA constrained by TES ozone observations and the GEOS-Chem model

    Directory of Open Access Journals (Sweden)

    K. E. Pickering

    2010-01-01

    Full Text Available Improved estimates of NOx from lightning sources are required to understand tropospheric NOx and ozone distributions, the oxidising capacity of the troposphere and corresponding feedbacks between chemistry and climate change. In this paper, we report new satellite ozone observations from the Tropospheric Emission Spectrometer (TES instrument that can be used to test and constrain the parameterization of the lightning source of NOx in global models. Using the National Lightning Detection (NLDN and the Long Range Lightning Detection Network (LRLDN data as well as the HYPSLIT transport and dispersion model, we show that TES provides direct observations of ozone enhanced layers downwind of convective events over the USA in July 2006. We find that the GEOS-Chem global chemistry-transport model with a parameterization based on cloud top height, scaled regionally and monthly to OTD/LIS (Optical Transient Detector/Lightning Imaging Sensor climatology, captures the ozone enhancements seen by TES. We show that the model's ability to reproduce the location of the enhancements is due to the fact that this model reproduces the pattern of the convective events occurrence on a daily basis during the summer of 2006 over the USA, even though it does not well represent the relative distribution of lightning intensities. However, this model with a value of 6 Tg N/yr for the lightning source (i.e.: with a mean production of 260 moles NO/Flash over the USA in summer underestimates the intensities of the ozone enhancements seen by TES. By imposing a production of 520 moles NO/Flash for lightning occurring in midlatitudes, which better agrees with the values proposed by the most recent studies, we decrease the bias between TES and GEOS-Chem ozone over the USA in July 2006 by 40%. However, our conclusion on the strength of the lightning source of NOx is limited by the fact that the contribution from the stratosphere is underestimated in the GEOS-Chem simulations.

  11. Simultaneous reduction of NOx, N{sub 2}O, SO{sub 2} emissions from a fluidized bed coal combustor using alternative bed material

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T.; Asazuma, J.; Shinkai, M.; Matsunaga, S.; Yamagiwa, K.; Fujiwara, N. [Niigata University, Niigata (Japan). Dept. of Chemistry & Chemical Engienering

    2003-07-01

    A kind of porous alumina was employed as bed material of bubbling fluidized bed coal combustion instead of non-porous silica sand. The effect of the bed material on emissions of N{sub 2}O and NOx was evaluated using a bench-scale combustor. The present porous alumina suppressed N{sub 2}O emission. This result is explained by the catalytic activity of porous alumina to decompose N{sub 2}O. In addition, NOx emission with porous bed material was nearly the same as or lower than that for the sand bed. Thus the decrease in N{sub 2}O without increasing NOx was attained. A modification of desulfurization by limestone was proposed. Fine limestone particles were employed as sorbent in order to conduct SO{sub 2} capture in the freeboard. By employing fine particles, the contact between volatile matter and limestone, which is known to increase the emission of NOx, was avoided. Thus the increase in NOx emission during limestone feed was avoided.

  12. Top-down NOX emissions over European cities from LOTOS-EUROS simulated and OMI observed tropospheric NO2 columns using the Exponentially Modified Gaussian approach

    Science.gov (United States)

    Verstraeten, Willem W.; Folkert Boersma, K.; Douros, John; Williams, Jason E.; Eskes, Henk H.; Delcloo, Andy

    2017-04-01

    High nitrogen oxides concentrations at the surface (NOX = NO + NO2) impact humans and ecosystem badly and play a key role in tropospheric chemistry. Surface NOX emissions drive major processes in regional and global chemistry transport models (CTM). NOX contributes to the formation of acid rain, act as aerosol precursors and is an important trace gas for the formation of tropospheric ozone (O3). Via tropospheric O3, NOX indirectly affects the production of the hydroxyl radical which controls the chemical lifetime of key atmospheric pollutants and reactive greenhouse gases. High NOX emissions are mainly observed in polluted regions produced by anthropogenic combustion from industrial, traffic and household activities typically observed in large and densely populated urban areas. Accurate NOX inventories are essential, but state-of the- art emission databases may vary substantially and uncertainties are high since reported emissions factors may differ in order of magnitude and more. To date, the modelled NO2 concentrations and lifetimes have large associated uncertainties due to the highly non-linear small-scale chemistry that occurs in urban areas and uncertainties in the reaction rate data, missing nitrogen (N) species and volatile organic compounds (VOC) emissions, and incomplete knowledge of nitrogen oxides chemistry. Any overestimation in the chemical lifetime may mask missing NOX chemistry in current CTM's. By simultaneously estimating both the NO2 lifetime and concentrations, for instance by using the Exponentially Modified Gaussian (EMG), a better surface NOX emission flux estimate can be obtained. Here we evaluate if the EMG methodology can reproduce the emissions input from the tropospheric NO2 columns simulated by the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) CTM model. We apply the EMG methodology on LOTOS-EUROS simulated tropospheric NO2 columns for the period April-September 2013 for 21 selected European urban areas under windy

  13. Seasonal variability of NOx emissions over east China constrained by satellite observations: Implications for combustion and microbial sources

    Science.gov (United States)

    Wang, Yuxuan; McElroy, Michael B.; Martin, Randall V.; Streets, David G.; Zhang, Qiang; Fu, Tung-May

    2007-03-01

    Observations of tropospheric column densities of NO2 obtained from the Global Ozone Monitoring Experiment (GOME) for a 3-year period (1997, 1998, and 2000) are used to derive average seasonal variations in surface emissions of NOx from east China (100-123°E, 20-42°N). The retrieval allows for zonal variations in the contribution of the stratosphere to the NO2 column and removes a bias of ±10% on the seasonality of retrieved columns introduced by cloud screening. The top-down inventory is constructed using an inversion approach with a global 3-D chemical transport model (GEOS-Chem) and combined subsequently with the a priori inventory to develop an a posteriori inventory. The contribution of background NO2 arising from nonsurface sources (lightning) and long-range transport of emissions originating outside of east China is accounted for in the inversion. The a posteriori estimate of overall emissions for east China, 4.66 Tg N/yr (±30% uncertainty), is 33% higher than the a priori value and is shown to improve agreement with surface measurements of nitrate wet deposition and concentrations of NOy observed in China. On the basis of multiple constraints on the spatial and seasonal variations of combustion and microbial processes, the a posteriori inventory is partitioned among emissions from biomass burning, fuel combustion, and microbial activity (or soil emissions). Emission of NOx from biomass burning in east China is estimated as 0.08 TgN/yr ± 50% in the a posteriori inventory, increased by about a factor of 2 from the a priori estimate. The resulting a posteriori inventory for fuel combustion (3.72 TgN/yr ± 32%) is about 15% higher than the a priori and exhibits a distinct maximum in winter, in contrast to the weak seasonality indicated in the a priori inventory. The a posteriori value for the microbial source of NOx (0.85 TgN/yr ± 40%) is about a factor of 3 higher than the a priori value, amounting to 23% of combustion sources for east China and

  14. Biogenic CH4 and N2O emissions overwhelm land CO2 sink in Asia: Toward a full GHG budget

    Science.gov (United States)

    Tian, H.

    2017-12-01

    The recent global assessment indicates the terrestrial biosphere as a net source of greenhouse gases to the atmosphere (Tian et al Nature 2016). The fluxes of greenhouse gases (GHG) vary by region. Both TD and BU approaches indicate that human-caused biogenic fluxes of CO2, CH4 and N2O in the biosphere of Southern Asia led to a large net climate warming effect, because the 100-year cumulative effects of CH4 and N2O emissions together exceed that of the terrestrial CO2 sink. Southern Asia has about 90% of the global rice fields and represents more than 60% of the world's nitrogen fertilizer consumption, with 64%-81% of CH4 emissions and 36%-52% of N2O emissions derived from the agriculture and waste sectors. Given the large footprint of agriculture in Southern Asia, improved fertilizer use efficiency, rice management and animal diets could substantially reduce global agricultural N2O and CH4 emissions. This study highlights the importance of including all three major GHGs in regional climate impact assessments, mitigation option and climate policy development.

  15. Approaches for quantifying reactive and low-volatility biogenic organic compound emissions by vegetation enclosure techniques - part A.

    Science.gov (United States)

    Ortega, John; Helmig, Detlev

    2008-06-01

    The high reactivity and low vapor pressure of many biogenic volatile organic compounds (BVOC) make it difficult to measure whole-canopy fluxes of BVOC species using common analytical techniques. The most appropriate approach for estimating these BVOC fluxes is to determine emission rates from dynamic vegetation enclosure measurements. After scaling leaf- and branch-level emission rates to the canopy level, these fluxes can then be used in models to determine BVOC influences on atmospheric chemistry and aerosol processes. Previously published reports from enclosure measurements show considerable variation among procedures with limited guidelines or standard protocols to follow. This article reviews this literature and describes the variety of enclosure types, materials, and analysis techniques that have been used to determine BVOC emission rates. The current review article is followed by a companion paper which details a comprehensive enclosure technique that incorporates both recommendations from the literature as well as insight gained from theoretical calculations and practical experiences. These methods have yielded new BVOC emission data for highly reactive monoterpenes (MT) and sesquiterpenes (SQT) from a variety of vegetation species.

  16. Simulated changes in biogenic VOC emissions and ozone formation from habitat expansion of Acer Rubrum (red maple)

    International Nuclear Information System (INIS)

    Drewniak, Beth A; Snyder, Peter K; Twine, Tracy E; Steiner, Allison L; Wuebbles, Donald J

    2014-01-01

    A new vegetation trend is emerging in northeastern forests of the United States, characterized by an expansion of red maple at the expense of oak. This has changed emissions of biogenic volatile organic compounds (BVOCs), primarily isoprene and monoterpenes. Oaks strongly emit isoprene while red maple emits a negligible amount. This species shift may impact nearby urban centers because the interaction of isoprene with anthropogenic nitrogen oxides can lead to tropospheric ozone formation and monoterpenes can lead to the formation of particulate matter. In this study the Global Biosphere Emissions and Interactions System was used to estimate the spatial changes in BVOC emission fluxes resulting from a shift in forest composition between oak and maple. A 70% reduction in isoprene emissions occurred when oak was replaced with maple. Ozone simulations with a chemical box model at two rural and two urban sites showed modest reductions in ozone concentrations of up to 5–6 ppb resulting from a transition from oak to red maple, thus suggesting that the observed change in forest composition may benefit urban air quality. This study illustrates the importance of monitoring and representing changes in forest composition and the impacts to human health indirectly through changes in BVOCs. (paper)

  17. Sulfur isotope studies of biogenic sulfur emissions at Wallops Island, Virginia

    International Nuclear Information System (INIS)

    Hitchcock, D.R.; Black, M.S.; Herbst, R.P.

    1978-03-01

    This research attempted to determine whether it is possible to measure the stable sulfur isotope distributions of atmospheric particulate and gaseous sulphur, and to use this information together with measurements of the ambient levels of sulfur gases and particulate sulfate and sodium in testing certain hypotheses. Sulfur dioxide and particulate sulfur samples were collected at a coastal marine location and their delta (34)S values were determined. These data were used together with sodium concentrations to determine the presence of biogenic sulfur and the identity of the biological processes producing it. Excess (non-seasalt) sulfate levels ranged from 2 to 26 micrograms/cu m and SO2 from 1 to 9 ppb. Analyses of air mass origins and lead concentrations indicated that some anthropogenic contaminants were present on all days, but the isotope data revealed that most of the atmospheric sulfur originated locally from the metabolism of bacterial sulfate reducers on all days, and that the atmospheric reactions leading to the production of sulfate from this biogenic sulfur source are extremely rapid. Delta 34 S values of atmospheric sulfur dioxide correlated well with those of excess sulfate, and implied little or no sulfur isotope fractionation during the oxidation of sulfur gases to sulfate

  18. Modeling the impact of in-cylinder combustion parameters of DI engines on soot and NOx emissions at rated EGR levels using ANN approach

    International Nuclear Information System (INIS)

    Taghavifar, Hamid; Taghavifar, Hadi; Mardani, Aref; Mohebbi, Arash

    2014-01-01

    Highlights: • Effect of in-cylinder combustion parameters on soot and NOx emissions at rated EGR levels was studied. • ANN model was adopted to predict the emissions under the effect of combustion parameters. • A trainlm ANN with 5-19-17-2 structure denoted MSE equal to 0.0004627 as outperforming model. • Increment of EGR reduced the emissions where the equivalence ratio had contradictory effect. - Abstract: This study examines the effect of in-cylinder combustion parameters on soot and NOx emissions at rated EGR levels by using the data obtained from the CFD implemented code. The obtained data were subsequently used to construct an artificial neural network (ANN) model to predict the soot and NOx productions. To this aim, at three different engine speeds of 2000, 3000 and 4000 rpm, heat release rate, equivalence ratio, turbulence kinetic energy and temperature varied to obtain the relevant soot and NOx data at three EGR levels of 0.2, 0.3 and 0.4. It was discovered that wherein the application of higher EGR rates reduced the NOx as a result of mixture dilution, equivalence ratio increment makes soot production to be increased as well as NOx emission. It was also found that the application of higher EGR from 20% to 40% decreased soot mass fraction in the combustion chamber. Increment of EGR reduced the emissions where the equivalence ratio had contradictory effect on the produced emissions. Various ANN topological configurations and training algorithms were incorporated to yield the optimal solution to the modeling problem applying statistical criteria. Among the four adopted training algorithms of trainlm, trainscg, trainrp, and traingdx, the training function of Levenberg–Marquardt (trainlm) with topological structure of 5-19-17-2 denoted MSE equal to 0.0004627

  19. On the Response of Ozone to Temperature at Low NOx Concentrations

    Science.gov (United States)

    Romer, P.; Duffey, K.; Wooldridge, P. J.; Brune, W. H.; Miller, D. O.; Feiner, P. A.; Zhang, L.; Goldstein, A. H.; Olson, K. F.; Misztal, P. K.; De Gouw, J. A.; Koss, A.; Edgerton, E. S.; Cohen, R. C.

    2016-12-01

    The relationship between ozone and temperature is an important tool for predicting how concentrations of ozone are likely to change as a function of climate and of precursor emissions. This relationship and the mechanisms that control it under low-NOx conditions remain poorly understood, especially in forested areas with high concentrations of biogenic volatile organic compounds. Here we combine detailed in-situ measurements from the 2013 Southern Oxidant and Aerosol Study (SOAS) in rural Alabama with long-term observations from the same location to assess the response of O3 to temperature at low NOx and to evaluate the chemical mechanisms that contribute to this response. We find that the response of local ozone production to temperature is controlled by temperature dependent changes in NOx chemistry. We analyze how the mechanisms that control this response vary with the concentration of NOx and compare the observed relationship between ozone concentration and temperature to the calculated changes in local ozone production.

  20. Structure, Stability and Emissions of Lean Direct Injection Combustion, including a Novel Multi-Point LDI System for NOx Reduction

    Science.gov (United States)

    Villalva Gomez, Rodrigo

    Experimental research on Lean Direct Injection (LDI) combustors for gas turbine applications is presented. LDI combustion is an alternative to lean premixed combustion which has the potential of equivalent reduction of oxides of nitrogen (NOx) emissions and of peak combustor exit temperatures, but without some drawbacks of premixed combustors, such as flashback and autoignition. Simultaneous observations of the velocity field and reaction zone of an LDI swirl-stabilized combustor with a mixing tube at atmospheric conditions, with the goal of studying the flame stabilization mechanism, are shown. The flame was consistently anchored at the shear layer formed by the high-speed reactants exiting the mixing tube and the low speed recirculation region. Individual image analysis of the location of the tip of the recirculation zone and tip of the reaction region confirmed previously observed trends, but showed that calculation of the distance between these two points for corresponding image pairs yields results no different than when calculated from random image pairs. This most likely indicates a lag in the anchoring of the flame to changes in the recirculation zone, coupled with significant stochastic variation. An alternate LDI approach, multi-point LDI (MLDI), is also tested experimentally. A single large fuel nozzle is replaced by multiple small fuel nozzles to improve atomization and reduce the total volume of the high-temperature, low velocity recirculation zones, reducing NOx formation. The combustor researched employs a novel staged approach to allow good performance across a wide range of conditions by using a combination of nozzle types optimized to various power settings. The combustor has three independent fuel circuits referenced as pilot, intermediate, and outer. Emissions measurements, OH* chemiluminescence imaging, and thermoacoustic instability studies were run in a pressurized combustion facility at pressures from 2.0 to 5.3 bar. Combustor performance

  1. Biogenic volatile organic compound emissions from senescent maize leaves and a comparison with other leaf developmental stages

    Science.gov (United States)

    Mozaffar, A.; Schoon, N.; Bachy, A.; Digrado, A.; Heinesch, B.; Aubinet, M.; Fauconnier, M.-L.; Delaplace, P.; du Jardin, P.; Amelynck, C.

    2018-03-01

    Plants are the major source of Biogenic Volatile Organic Compounds (BVOCs) which have a large influence on atmospheric chemistry and the climate system. Therefore, understanding of BVOC emissions from all abundant plant species at all developmental stages is very important. Nevertheless, investigations on BVOC emissions from even the most widespread agricultural crop species are rare and mainly confined to the healthy green leaves. Senescent leaves of grain crop species could be an important source of BVOCs as almost all the leaves senesce on the field before being harvested. For these reasons, BVOC emission measurements have been performed on maize (Zea mays L.), one of the most cultivated crop species in the world, at all the leaf developmental stages. The measurements were performed in controlled environmental conditions using dynamic enclosures and proton transfer reaction mass spectrometry (PTR-MS). The main compounds emitted by senescent maize leaves were methanol (31% of the total cumulative BVOC emission on a mass of compound basis) and acetic acid (30%), followed by acetaldehyde (11%), hexenals (9%) and m/z 59 compounds (acetone/propanal) (7%). Important differences were observed in the temporal emission profiles of the compounds, and both yellow leaves during chlorosis and dry brown leaves after chlorosis were identified as important senescence-related BVOC sources. Total cumulative BVOC emissions from senescent maize leaves were found to be among the highest for senescent Poaceae plant species. BVOC emission rates varied strongly among the different leaf developmental stages, and senescent leaves showed a larger diversity of emitted compounds than leaves at earlier stages. Methanol was the compound with the highest emissions for all the leaf developmental stages and the contribution from the young-growing, mature, and senescent stages to the total methanol emission by a typical maize leaf was 61, 13, and 26%, respectively. This study shows that BVOC

  2. Development & Characterization of a Whole Plant Chamber for the Investigation of Environmental Perturbations on Biogenic VOC Emissions

    Science.gov (United States)

    Holder, J.; Riches, M.; Abeleira, A.; Farmer, D.

    2017-12-01

    Accurate prediction of both climate and air quality under a changing earth system requires a full understanding of the sources, feedbacks, and ultimate fate of all atmospherically relevant chemical species, including volatile organic compounds (VOCs). Biogenic VOCs (BVOC) from plant emissions are the main source of VOCs to the atmosphere. However, the impact of global change on BVOC emissions is poorly understood. For example, while short-term increases in temperature are typically associated with increased BVOC emissions, the impact of long-term temperature increases are less clear. Our study aims to investigate the effects of long-term, singular and combined environmental perturbations on plant BVOC emissions through the use of whole plant chambers in order to better understand the effects of global change on BVOC-climate-air quality feedbacks. To fill this knowledge gap and provide a fundamental understanding of how BVOC emissions respond to environmental perturbations, specifically elevated temperature, CO2, and drought, whole citrus trees were placed in home-built chambers and monitored for monoterpene and other BVOC emissions utilizing thermal desorption gas chromatography mass spectrometry (TD-GC-MS). Designing and building a robust whole plant chamber to study atmospherically relevant chemical species while accommodating the needs of live plants over timescales of days to weeks is not a trivial task. The environmental conditions within the chamber must be carefully controlled and monitored. The inter-plant and chamber variability must be characterized. Finally, target BVOCs need to be sampled and detected from the chamber. Thus, the chamber design, control and characterization considerations along with preliminary BVOC results will be presented and discussed.

  3. Experimental and theoretical analysis of effects of N2, O2 and Ar in excess air on combustion and NOx emissions of a turbocharged NG engine

    International Nuclear Information System (INIS)

    Li, Weifeng; Liu, Zhongchang; Wang, Zhongshu; Xu, Yun; Wang, Jiankun

    2015-01-01

    Highlights: • We defined 7 effects of excess air and quantitative indicators on NOx emissions. • Contributions of N 2 , O 2 and Ar on the thermal effect are separately 85%, 14% and 1%. • Contributions of N 2 and Ar on the dilution effect are 98.8% and 1.2%, respectively. • The high level of N 2 in air is the main reason why NOx emissions decrease with λ. - Abstract: This paper presents the effects of N 2 , O 2 and Ar in excess air on combustion and NOx emissions of a natural gas spark-ignition engine. Based on Arrhenius Law and Zeldovich Mechanism, seven different kinds of effects were defined as well as their quantitative indicators. Excess air and N 2 were separately added into the intake charge with fuel remaining unchanged in a 6-cylinder turbocharged natural gas engine. The results show that the essential reason why NOx emissions vary with increasing excess air ratio (λ) is that the oxidation effect of O 2 varies with the in-cylinder temperature, which is controlled by the thermal effect of excess air. The contributions of N 2 , O 2 and Ar on the thermal effect are 82.6–86.1%, 13.3–16.7% and 0.6–0.7%, respectively. The chemical effect of O 2 is fully offset by the dilution effect of N 2 and Ar. The contributions of N 2 and Ar on the dilution effect are 98.31% and 1.69%, respectively. The increase of NOx emissions caused by O 2 is found to be increased first and then decreased with increasing λ. From the view of the composition of air, the high level of N 2 is the main reason why NOx emissions decrease significantly with increasing λ

  4. Evidence of aqueous secondary organic aerosol formation from biogenic emissions in the North American Sonoran Desert.

    Science.gov (United States)

    Youn, Jong-Sang; Wang, Zhen; Wonaschütz, Anna; Arellano, Avelino; Betterton, Eric A; Sorooshian, Armin

    2013-07-16

    This study examines the role of aqueous secondary organic aerosol formation in the North American Sonoran Desert as a result of intense solar radiation, enhanced moisture, and biogenic volatile organic compounds (BVOCs). The ratio of water-soluble organic carbon (WSOC) to organic carbon (OC) nearly doubles during the monsoon season relative to other seasons of the year. When normalized by mixing height, the WSOC enhancement during monsoon months relative to preceding dry months (May-June) exceeds that of sulfate by nearly a factor of 10. WSOC:OC and WSOC are most strongly correlated with moisture parameters, temperature, and concentrations of O 3 and BVOCs. No positive relationship was identified between WSOC or WSOC:OC and anthropogenic tracers such as CO over a full year. This study points at the need for further work to understand the effect of BVOCs and moisture in altering aerosol properties in understudied desert regions.

  5. Impact of the 2008 Global Recession on air quality over the United States: Implications for surface ozone levels from changes in NOx emissions

    Science.gov (United States)

    Tong, Daniel; Pan, Li; Chen, Weiwei; Lamsal, Lok; Lee, Pius; Tang, Youhua; Kim, Hyuncheol; Kondragunta, Shobha; Stajner, Ivanka

    2016-09-01

    Satellite and ground observations detected large variability in nitrogen oxides (NOx) during the 2008 economic recession, but the impact of the recession on air quality has not been quantified. This study combines observed NOx trends and a regional chemical transport model to quantify the impact of the recession on surface ozone (O3) levels over the continental United States. The impact is quantified by simulating O3 concentrations under two emission scenarios: business-as-usual (BAU) and recession. In the BAU case, the emission projection from the Cross-State Air Pollution Rule is used to estimate the "would-be" NOx emission level in 2011. In the recession case, the actual NO2 trends observed from Air Quality System ground monitors and the Ozone Monitoring Instrument on the Aura satellite are used to obtain "realistic" changes in NOx emissions. The model prediction with the recession effect agrees better with ground O3 observations over time and space than the prediction with the BAU emission. The results show that the recession caused a 1-2 ppbv decrease in surface O3 concentration over the eastern United States, a slight increase (0.5-1 ppbv) over the Rocky Mountain region, and mixed changes in the Pacific West. The gain in air quality benefits during the recession, however, could be quickly offset by the much slower emission reduction rate during the post-recession period.

  6. Impact of the 2008 Global Recession on Air Quality over the United States: Implications for Surface Ozone Levels from Changes in NOx Emissions

    Science.gov (United States)

    Tong, Daniel; Pan, Li; Chen, Weiwei; Lamsal, Lok; Lee, Pius; Tang, Youhua; Kim, Hyuncheol; Kondragunta, Shobha; Stajner, Ivanka

    2016-01-01

    Satellite and ground observations detected large variability in nitrogen oxides (NOx) during the 2008 economic recession, but the impact of the recession on air quality has not been quantified. This study combines observed NOx trends and a regional chemical transport model to quantify the impact of the recession on surface ozone (O3) levels over the continental United States. The impact is quantified by simulating O3 concentrations under two emission scenarios: business-as-usual (BAU) and recession. In the BAU case, the emission projection from the Cross-State Air Pollution Rule is used to estimate the would-be NOx emission level in 2011. In the recession case, the actual NO2 trends observed from Air Quality System ground monitors and the Ozone Monitoring Instrument on the Aura satellite are used to obtain realistic changes in NOx emissions. The model prediction with the recession effect agrees better with ground O3 observations over time and space than the prediction with the BAU emission. The results show that the recession caused a 12ppbv decrease in surface O3 concentration over the eastern United States, a slight increase (0.51ppbv) over the Rocky Mountain region, and mixed changes in the Pacific West. The gain in air quality benefits during the recession, however, could be quickly offset by the much slower emission reduction rate during the post-recession period.

  7. The empirical relationship between satellite-derived tropospheric NO2 and fire radiative power and possible implications for fire emission rates of NOx

    Science.gov (United States)

    Schreier, Stefan F.; Richter, Andreas; Kaiser, Johannes W.; Schepaschenko, Dmitry; Shvidenko, Anatoly; Hilboll, Andreas; Burrows, John P.

    2014-05-01

    Vegetation fires across the globe have various impacts on Earth systems such as the atmosphere and biosphere. Every year, large quantities of biomass in different ecosystems are burned, either started by lightning strikes or caused by humans. Consequently, a considerable amount of trace gases (e.g. NOx) and aerosols is released into the atmosphere. As nitrogen oxides (NOx) affect atmospheric chemistry, air quality, and climate, a quantification of the total emissions is needed. Although several approaches have been developed for the estimation of NOx emissions from fires, they still suffer from large uncertainties. We present a simple statistical approach to estimate fire emission rates (FERs) of NOx based on the linear relationship between satellite-observed tropospheric NO2 vertical columns (TVC NO2) and fire radiative power (FRP). While the great advantage of the method is the spatial coverage of FERs and the application to various biomes and regions, the uncertainties in the two retrieved parameters can lead to uncertainties in the FERs. In general, the approach performs well for the tropical and subtropical regions where both the number and the spatial extent of vegetation fires are rather large throughout the fire season. However, due to the smaller number of fires and the patchy spatial occurrence, the estimation of FERs is more complicated in the boreal regions. Nevertheless, it is possible to derive FERs for some characteristic regions in the North American and Eurasian part of the boreal forest biome. The estimated FERs of NOx for the dominating types of vegetation burned are lowest for open shrublands, savannas, and boreal forest (0.28-1.03 g NOx s-1 MW-1) and highest for croplands and woody savannas (0.82-1.56 g NOx s-1 MW-1). Interestingly, there are large regional discrepancies of up to 40 % observed for evergreen broadleaf forest and boreal forest. Possible explanations for these regional discrepancies are discussed.

  8. Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007

    Directory of Open Access Journals (Sweden)

    Ø. Hodnebrog

    2012-09-01

    Full Text Available The hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors using state-of-the-art inventories for anthropogenic, biogenic and forest fire emissions. The models have been evaluated against measurement data, and processes leading to ozone formation have been quantified. Heat wave episodes are projected to occur more frequently in a future climate, and therefore this study also makes a contribution to climate change impact research.

    The plume from the Greek forest fires in August 2007 is clearly seen in satellite observations of CO and NO2 columns, showing extreme levels of CO in and downwind of the fires. Model simulations reflect the location and influence of the fires relatively well, but the modelled magnitude of CO in the plume core is too low. Most likely, this is caused by underestimation of CO in the emission inventories, suggesting that the CO/NOx ratios of fire emissions should be re-assessed. Moreover, higher maximum values are seen in WRF-Chem than in EMEP MSC-W, presumably due to differences in plume rise altitudes as the first model emits a larger fraction of the fire emissions in the lowermost model layer. The model results are also in fairly good agreement with surface ozone measurements.

    Biogenic VOC emissions reacting with anthropogenic NOx emissions are calculated to contribute significantly to the levels of ozone in the region, but the magnitude and geographical distribution depend strongly on the model and biogenic emission module used. During the July and August heat waves, ozone levels increased substantially due to a combination of forest fire emissions and the effect of high temperatures. We found that the largest temperature impact on

  9. NOx trade. Case studies

    International Nuclear Information System (INIS)

    Jantzen, J.

    2002-01-01

    Some of the questions with respect to the trade of nitrogen oxides that businesses in the Netherlands have to deal with are dealt with: should a business buy or sell rights for NOx emission; which measures must be taken to reduce NOx emission; how much must be invested; and how to deal with uncertainties with regard to prices. Simulations were carried out with the MOSES model to find the answers to those questions. Results of some case studies are presented, focusing on the chemical sector in the Netherlands. Finally, the financial (dis)advantages of NOx trade and the related uncertainties for a single enterprise are discussed [nl

  10. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient

    DEFF Research Database (Denmark)

    Svendsen, Sarah Hagel; Lindwall, Frida; Michelsen, Anders

    2016-01-01

    emissions from a high arctic soil moisture gradient extending from dry tundra to a wet fen. Ecosystem BVOC emissions were sampled five times in the July-August period using a push-pull enclosure technique, and BVOCs trapped in absorbent cartridges were analyzed using gas chromatography-mass spectrometry...

  11. "Updates to Model Algorithms & Inputs for the Biogenic Emissions Inventory System (BEIS) Model"

    Science.gov (United States)

    We have developed new canopy emission algorithms and land use data for BEIS. Simulations with BEIS v3.4 and these updates in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observatio...

  12. Development and Evaluation of the Biogenic Emissions Inventory System (BEIS) Model v3.6

    Science.gov (United States)

    We have developed new canopy emission algorithms and land use data for BEIS v3.6. Simulations with BEIS v3.4 and BEIS v3.6 in CMAQ v5.0.2 are compared these changes to the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and evaluated the simulations against observati...

  13. Discovery of Widespread Biogenic Methane Emissions and Authigenic Carbonate Mound-like Structures at the Aquitaine Shelf (Bay of Biscay)

    Science.gov (United States)

    Dupré, S.; Loubrieu, B.; Scalabrin, C.; Ehrhold, A.; Gautier, E.; Ruffine, L.; Pierre, C.; Battani, A.; Le Bouffant, N.; Berger, L.

    2014-12-01

    Fishery acoustic surveys conducted in the Bay of Biscay (1998-2012) and dedicated to monitoring and predicting pelagic ecosystem evolution reveal numerous active seeps on the Aquitaine Shelf, east of the shelf break (Dupré et al. 2014). Seafloor and water column acoustic investigation with the use of ship-borne multibeam echosounder in 2013 (Gazcogne1 marine expedition) confirmed the presence of numerous (> 3000) persistent and widespread gas emission sites at water depths ranging from ~140 to 180 m. These fluid emissions are associated at the seafloor with high backscatter subcircular small-scale mounds, on average less than 2 m high and a few meters in diameter. Near-bottom visual observations and samplings were conducted with the ROV (Remotely Operated Vehicle) Victor (Gazcogne2 expedition). The whole mounds cover an area of ~200 km2 of the seabed, and are by-products of gas seepage, i.e. methane-derived authigenic carbonates. The spatial distribution of the seeps and related structures, based on water column acoustic gas flares and high backscatter seabed patches, appears to be relatively broad, with a North-South extension of ~80 km across the Parentis Basin and the Landes High, and a West-East extension along a few kilometers wide on the shelf, up to 8 km. Gas bubbles sampled at in situ conditions are principally composed of biogenic methane, possibly originated from Late Pleistocene deposits. The volume of methane emitted into the water column is abundant i) with an average gas flux varying locally from 0.035 to 0.37 Ln/min and ii) with regard to the time needed for the precipitation of the authigenic carbonates identified both at the seabed and in the upper most sedimentary column. The GAZCOGNE study is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. ReferenceDupré, S., Berger, L., Le Bouffant, N., Scalabrin, C., and Bourillet, J.-F., 2014. Fluid emissions at the Aquitaine Shelf (Bay of

  14. Role of iron oxide catalysts in selective catalytic reduction of NOx and soot from vehicular emission

    International Nuclear Information System (INIS)

    Anjuman, S.; Tahira, S.; Hizbullah, K.; Hizbullah, K.

    2011-01-01

    This study deals with Iron containing catalysts i.e Iron oxide Fe/sub 2/O/sub 3/) Iron potassium oxide Fe/sub 1.9/K/sub 0.1/O/sub 3/, copper iron oxide Cu/sub 0.9/K/sub 0.1/, Fe/sub 2/O/sub 3/, nickel iron oxide Ni Fe/sub 2/O/sub 4/, and Nickel potassium iron oxide Ni/sub 0.95/K/sub 0.05/ Fe/sub 2/O/sub 4/ catalyst were synthesized by using PVA technique. By X-ray Diffraction technique these catalysts were characterized to ensure the formation of crystalline structure. Energy Dispersive X-rays analysis (EDX) was used for the confirmation of presence of different metals and Scanning Electron Microscopy (SEM) for Surface Morphology. Then the catalytic investigations of the prepared catalyst were carried out for their activity measurement toward simultaneous conversion of NOx and Soot from an engine exhaust. Some Iron containing oxide catalysts were partially modified by alkali metal potassium and were used for NOx -Soot reaction in a model exhaust gas. Fe/sub 1.9 K /sub 0.1/O/sub 3/ show high catalytic performance for N/sub 2/ formation in the prepared catalyst. Further studies have shown that Fe/sub 1.9/ K/sub 0.1/ O/sub 3/ was deactivated in a substantial way after about 20 Temperature. Temperature Programmed Reaction (TPR) experiments due to agglomeration of the promoter potassium. Experiments carried out over the aged Fe/sub 1.9/K/sub 0.1/O/sub 3/ catalyst have shown that NOx-soot reaction was suppressed at higher oxygen concentration, since O/sub 2/-soot conversion was kindly favored. More over nitrite species formed at the catalyst surface might play an important role in NOx-soot conversion. (author)

  15. Reduction of NOx emission in tangential fired - furnace by changing the, mode of operation

    International Nuclear Information System (INIS)

    Chudnovsky, B.; Talanker, A.; Levin, L.; Kahana, S

    1998-01-01

    The present work analyses tile results of tests on 575 MW units with tangential firing furnace arrangement in sub-stoichiometric combustion. Tangential firing provides good conditions for implementing sub-stoichiometric combustion owing to the delivery scheme of pulverized coal and air. The furnace was tested in several different modes of operation (Over Fire Air, Bunkers Out Of Service, Excess air, Tilt etc.) to achieve low cost NOx reduction. Actual performance data are presented based on experiments made on lEC's boiler in M.D. 'B' power station

  16. Ozone reactivity of biogenic volatile organic compound (BVOC) emissions during the Southeast Oxidant and Aerosol Study (SOAS)

    Science.gov (United States)

    Park, J.; Guenther, A. B.; Helmig, D.

    2013-12-01

    Recent studies on atmospheric chemistry in the forest environment showed that the total reactivity by biogenic volatile organic compound (BVOC) emission is still not well understood. During summer 2013, an intensive field campaign (Southeast Oxidant and Aerosol Study - SOAS) took place in Alabama, U.S.A. In this study, an ozone reactivity measurement system (ORMS) was deployed for the direct determination of the reactivity of foliage emissions. The ORMS is a newly developed measurement approach, in which a known amount of ozone is added to the ozone-free air sample stream, with the ORMS measuring ozone concentration difference between before and after a glass flask flow tube reaction vessel (2-3 minutes of residence time). Emissions were also collected onto adsorbent cartridges to investigate the discrepancy between total ozone reactivity observation and reactivity calculated from identified BVOC. Leaf and canopy level experiments were conducted by deploying branch enclosures on the three dominant tree species at the site (i.e. liquidambar, white oak, loblolly pine) and by sampling ambient air above the forest canopy. For the branch enclosure experiments, BVOC emissions were sampled from a 70 L Teflon bag enclosure, purged with air scrubbed for ozone, nitrogen oxides. Each branch experiment was performed for 3-5 days to collect at least two full diurnal cycle data. In addition, BVOCs were sampled using glass tube cartridges for 2 hours during daytime and 3 - 4 hours at night. During the last week of campaign, the inlet for the ORMS was installed on the top of scaffolding tower (~30m height). The ozone loss in the reactor showed distinct diurnal cycle for all three tree species investigated, and ozone reactivity followed patterns of temperature and light intensity.

  17. EVALUATION OF EMISSION OF CO, NO AND NOX IN EXHAUST OF DIESEL ENGINE FUELED WITH FUEL ADDITIVED

    Directory of Open Access Journals (Sweden)

    Gilson Rodrigo de Miranda

    2011-01-01

    Full Text Available Air pollution has emerged as major global problems. In the last decade, the development of new engines, the use of different forms of treatment of exhaust gases and the increase in fuel quality were used to reduce pollutants (regulated or not. Among the various developments to reduce emissions, the use of oxygenated additives to diesel and paraffin is a quick and effective measure to reduce pollutants. In this work we studied the influence of oxygenated compounds (diethyl ether (DEE, 1-dodecanol (DOD, 2-methoxy-acetate (MEA and terc-butanol (TERC and paraffin (heptane (HEPT and n- hexadecane (CET added to diesel in order to improve the quality of CO, NO and NOx in the exhaust of diesel engine, single cylinder. The fuels used in the studies are formulations of diesel reference, here named S10, which contains low sulfur (

  18. Influence of Operating Conditions and Coal Properties on NOx and N2O Emissions in Pressurized Fluidized Bed Combustion of Subbituminous Coals

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Karel; Pohořelý, Michael

    2004-01-01

    Roč. 83, 7-8 (2004), s. 1095-1103 ISSN 0016-2361 R&D Projects: GA AV ČR IAA4072801 Institutional research plan: CEZ:AV0Z4072921 Keywords : NOx and N2O emissions * combustion Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.368, year: 2004

  19. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    Energy Technology Data Exchange (ETDEWEB)

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  20. A comprehensive emission inventory of biogenic volatile organic compounds in Europe: improved seasonality and land-cover

    Directory of Open Access Journals (Sweden)

    D. C. Oderbolz

    2013-02-01

    Full Text Available Biogenic volatile organic compounds (BVOC emitted from vegetation are important for the formation of secondary pollutants such as ozone and secondary organic aerosols (SOA in the atmosphere. Therefore, BVOC emission are an important input for air quality models. To model these emissions with high spatial resolution, the accuracy of the underlying vegetation inventory is crucial. We present a BVOC emission model that accommodates different vegetation inventories and uses satellite-based measurements of greenness instead of pre-defined vegetation periods. This approach to seasonality implicitly treats effects caused by water or nutrient availability, altitude and latitude on a plant stand. Additionally, we test the influence of proposed seasonal variability in enzyme activity on BVOC emissions. In its present setup, the emission model calculates hourly emissions of isoprene, monoterpenes, sesquiterpenes and the oxygenated volatile organic compounds (OVOC methanol, formaldehyde, formic acid, ethanol, acetaldehyde, acetone and acetic acid. In this study, emissions based on three different vegetation inventories are compared with each other and diurnal and seasonal variations in Europe are investigated for the year 2006. Two of these vegetation inventories require information on tree-cover as an input. We compare three different land-cover inventories (USGS GLCC, GLC2000 and Globcover 2.2 with respect to tree-cover. The often-used USGS GLCC land-cover inventory leads to a severe reduction of BVOC emissions due to a potential miss-attribution of broad-leaved trees and reduced tree-cover compared to the two other land-cover inventories. To account for uncertainties in the land-cover classification, we introduce land-cover correction factors for each relevant land-use category to adjust the tree-cover. The results are very sensitive to these factors within the plausible range. For June 2006, total monthly BVOC emissions decreased up to −27% with

  1. Emissions of terpenoids, benzenoids, and other biogenic gas-phase organic compounds from agricultural crops and their potential implications for air quality

    Science.gov (United States)

    Gentner, D. R.; Ormeño, E.; Fares, S.; Ford, T. B.; Weber, R.; Park, J.-H.; Brioude, J.; Angevine, W. M.; Karlik, J. F.; Goldstein, A. H.

    2014-06-01

    Agriculture comprises a substantial, and increasing, fraction of land use in many regions of the world. Emissions from agricultural vegetation and other biogenic and anthropogenic sources react in the atmosphere to produce ozone and secondary organic aerosol, which comprises a substantial fraction of particulate matter (PM2.5). Using data from three measurement campaigns, we examine the magnitude and composition of reactive gas-phase organic carbon emissions from agricultural crops and their potential to impact regional air quality relative to anthropogenic emissions from motor vehicles in California's San Joaquin Valley, which is out of compliance with state and federal standards for tropospheric ozone PM2.5. Emission rates for a suite of terpenoid compounds were measured in a greenhouse for 25 representative crops from California in 2008. Ambient measurements of terpenoids and other biogenic compounds in the volatile and intermediate-volatility organic compound ranges were made in the urban area of Bakersfield and over an orange orchard in a rural area of the San Joaquin Valley during two 2010 seasons: summer and spring flowering. We combined measurements from the orchard site with ozone modeling methods to assess the net effect of the orange trees on regional ozone. When accounting for both emissions of reactive precursors and the deposition of ozone to the orchard, the orange trees are a net source of ozone in the springtime during flowering, and relatively neutral for most of the summer until the fall, when it becomes a sink. Flowering was a major emission event and caused a large increase in emissions including a suite of compounds that had not been measured in the atmosphere before. Such biogenic emission events need to be better parameterized in models as they have significant potential to impact regional air quality since emissions increase by several factors to over an order of magnitude. In regions like the San Joaquin Valley, the mass of biogenic

  2. Biogenic versus abiogenic emissions from agriculture in the Netherlands and options for emission control in tomato cultivation

    NARCIS (Netherlands)

    Pluimers, J.C.; Kroeze, C.; Bakker, E.J.; Challa, H.; Hordijk, L.

    2001-01-01

    In this paper, present-day emissions of greenhouse gases and acidifying compounds from agriculture are analysed at the farm level. Quantitative estimates are given for these emissions from three nested systems in the Netherlands: the agricultural sector, greenhouse horticulture, and tomato

  3. Simultaneous field measurements of biogenic emissions of nitric oxide and nitrous oxide

    Science.gov (United States)

    Anderson, Iris Cofman; Levine, Joel S.

    1987-01-01

    Seasonal and diurnal emissions of NO and N2O from agricultural sites in Jamestown, Virginia and Boulder, Colorado are estimated in terms of soil temperature; percent moisture; and exchangeable nitrate, nitrite, and ammonium concentrations. The techniques and procedures used to analyze the soil parameters are described. The spatial and temporal variability of the NO and N2O emissions is studied. A correlation between NO fluxes in the Virginia sample and nitrate concentration, temperature, and percent moisture is detected, and NO fluxes for the Colorado site correspond with temperature and moisture. It is observed that the N2O emissions are only present when percent moisture approaches or exceeds the field capacity of the soil. The data suggest that NO is produced primarily by nitrification in aerobic soils, and N2O is formed by denitrification in anaerobic soils.

  4. Using hydroponic biomass to regulate NOx emissions in long range space travel

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X.H.; Shi, Y.; Chang, S.G.; Fisher, J.; Pisharody, S.; Moran, M.; Wignarajah, K.

    2002-02-01

    The incineration of wastes is one of the most promising reclamation technologies being developed for life support in long range space travel. However, incineration in a closed environment will build up hazardous NOx if not regulated. A technology that can remove NOx under microgravity conditions without the need of expendables is required. Activated carbon prepared from inedible wheat straw and sweet potato stalk that were grown under hydroponic conditions has been demonstrated to be able to adsorb NO and reduce it to N{sub 2}. The high mineral content in the activated carbon prepared from hydroponic biomass prohibits high surface area production and results in inferior NO adsorption capacity. The removal of mineral from the carbon circumvents the aforementioned negative effect. The optimal production conditions to obtain maximum yield and surface area for the activated carbon have been determined. A parametric study on the NO removal efficiency by the activated carbon has been done. The presence of oxygen in flue gas is essential for effective adsorption of NO by the activated carbon. On the contrary, water vapor inhibits the adsorption efficiency of NO. The NO adsorption capacity and the duration before it exceeds the Space Maximum Allowable Concentration were determined. After the adsorption of NO, the activated carbon can be regenerated for reuse by heating the carbon bed under anaerobic conditions to above 500 C, when the adsorbed NO is reduced to N{sub 2}. The regenerated activated carbon exhibits improved NO adsorption efficiency. However, regeneration had burned off a small percentage of the activated carbon.

  5. Control and reduction of NOx emissions on light hydrocarbons combustion in fluidized bed combustors: a technological prospection surveys; Controle e reducao de emissoes de NOx durante queima de hidrocarbonetos leves em combustores a leito fluidizado: um estudo de prospeccao tecnologica

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Douglas Alves; Winter, Eduardo [Instituto Nacional da Propriedade Industrial (INPI), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The present paper aims a technological prospecting study of the main technological agents involved in industrial light hydrocarbons combustion process. More specifically, the work approaches technologies applied to nitrogen oxides emissions control and reduction. Nitrogen oxides are typically known as 'NOx' (NO, N{sub 2}O, NO{sub 2}). 'NOx' are byproducts from fuel burning in combustion systems, including also in fluidized bed combustion systems. The technological prospecting study employed 'technology foresight' as tool for evaluating the technological perspectives of the thermal generation, basis on environment protection. Such technological perspectives of the thermal generation were evaluated through invention patent documents. The query methodology for obtaining of patent documents employed a free patent base, known as ESPACENET. Additionally, the documents obtained were evaluated, considering beyond the countries and the publication dates, technological perspectives employed to 'NOx' emissions control and reduction. It is very important to highlight around 70% of the industrial technological information are just found in invention patent documents. (author)

  6. Modeling the regional impact of ship emissions on NOx and ozone levels over the Eastern Atlantic and Western Europe using ship plume parameterization

    Directory of Open Access Journals (Sweden)

    P. Pisoft

    2010-07-01

    Full Text Available In general, regional and global chemistry transport models apply instantaneous mixing of emissions into the model's finest resolved scale. In case of a concentrated source, this could result in erroneous calculation of the evolution of both primary and secondary chemical species. Several studies discussed this issue in connection with emissions from ships and aircraft. In this study, we present an approach to deal with the non-linear effects during dispersion of NOx emissions from ships. It represents an adaptation of the original approach developed for aircraft NOx emissions, which uses an exhaust tracer to trace the amount of the emitted species in the plume and applies an effective reaction rate for the ozone production/destruction during the plume's dilution into the background air. In accordance with previous studies examining the impact of international shipping on the composition of the troposphere, we found that the contribution of ship induced surface NOx to the total reaches 90% over remote ocean and makes 10–30% near coastal regions. Due to ship emissions, surface ozone increases by up to 4–6 ppbv making 10% contribution to the surface ozone budget. When applying the ship plume parameterization, we show that the large scale NOx decreases and the ship NOx contribution is reduced by up to 20–25%. A similar decrease was found in the case of O3. The plume parameterization suppressed the ship induced ozone production by 15–30% over large areas of the studied region. To evaluate the presented parameterization, nitrogen monoxide measurements over the English Channel were compared with modeled values and it was found that after activating the parameterization the model accuracy increases.

  7. Process-based modelling of biogenic monoterpene emissions combining production and release from storage

    NARCIS (Netherlands)

    Schurgers, G.; Arneth, A.; Holzinger, R.|info:eu-repo/dai/nl/337989338; Goldstein, A.H.

    2009-01-01

    Monoterpenes, primarily emitted by terrestrial vegetation, can influence atmospheric ozone chemistry, and can form precursors for secondary organic aerosol. The short-term emissions of monoterpenes have been well studied and understood, but their long-term variability, which is particularly

  8. The impact of biogenic VOC emissions on photochemical ozone formation during a high ozone pollution episode in the Iberian Peninsula in the 2003 summer season

    Directory of Open Access Journals (Sweden)

    N. Castell

    2008-04-01

    Full Text Available Throughout Europe the summer of 2003 was exceptionally warm, especially July and August. The European Environment Agency (EEA reported several ozone episodes, mainly in the first half of August. These episodes were exceptionally long-lasting, spatially extensive, and associated to high temperatures. In this paper, the 10$ndash;15 August 2003 ozone pollution event has been analyzed using meteorological and regional air quality modelling. During this period the threshold values of the European Directive 2002/3/EC were exceeded in various areas of the Iberian Peninsula.

    The aim of this paper is to computationally understand and quantify the influence of biogenic volatile organic compound (BVOC emissions in the formation of tropospheric ozone during this high ozone episode. Being able to differentiate how much ozone comes from biogenic emissions alone and how much comes from the interaction between anthropogenic and biogenic emissions would be helpful to develop a feasible and effective ozone control strategy. The impact on ozone formation was also studied in combination with various anthropogenic emission reduction strategies, i.e., when anthropogenic VOC emissions and/or NOx emissions are reduced. The results show a great dependency of the BVOC contribution to ozone formation on the antropoghenic reduction scenario. In rural areas, the impact due to a NOx and/or VOC reduction does not change the BVOC impact. Nevertheless, within big cities or industrial zones, a NOx reduction results in a decrease of the biogenic impact in ozone levels that can reach 85 μg/m3, whereas an Anthropogenic Volatile Organic Compound (AVOC reduction results in a decrease of the BVOC contribution on ozone formation that varies from 0 to 30 μg/m3 with respect to the contribution at the same points in the 2003 base scenario. On the other hand, downwind of the big cities, a decrease in NOx produces

  9. Antioxidant (A-tocopherol acetate) effect on oxidation stability and NOx emission reduction in methyl ester of Annona oil operated diesel engine

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-05-01

    There is a major drawback while using biodiesel as a alternate fuel for compression ignition diesel engine due to lower heating value, higher viscosity, higher density and higher oxides of nitrogen emission. To minimize these drawbacks, fuel additives can contribute towards engine performance and exhaust emission reduction either directly or indirectly. In this current work, the test was conducted to investigate the effect of antioxidant additive (A-tocopherol acetate) on oxidation stability and NOx emission in a of Annona methyl ester oil (MEAO) fueled diesel engine. The A-tocopherol acetate is mixed in different concentrations such as 0.01, 0.02, 0.03 and 0.04% with 100% by vol MEAO. It is concluded that the antioxidant additive very effective in increasing the oxidation stability and in controlling the NOx emission. Further, the addition of antioxidant additive is slight increase the HC, CO and smoke emissions. Hence, A-tocopherol acetate is very effective in controlling the NOx emission with MEAO operated diesel engine without any major modification.

  10. Influence of the overfire air ratio on the NO(x) emission and combustion characteristics of a down-fired 300-MW(e) utility boiler.

    Science.gov (United States)

    Ren, Feng; Li, Zhengqi; Chen, Zhichao; Fan, Subo; Liu, Guangkui

    2010-08-15

    Down-fired boilers used to burn low-volatile coals have high NO(x) emissions. To find a way of solving this problem, an overfire air (OFA) system was introduced on a 300 MW(e) down-fired boiler. Full-scale experiments were performed on this retrofitted boiler to explore the influence of the OFA ratio (the mass flux ratio of OFA to the total combustion air) on the combustion and NO(x) emission characteristics in the furnace. Measurements were taken of gas temperature distributions along the primary air and coal mixture flows, average gas temperatures along the furnace height, concentrations of gases such as O(2), CO, and NO(x) in the near-wall region and carbon content in the fly ash. Data were compared for five different OFA ratios. The results show that as the OFA ratio increases from 12% to 35%, the NO(x) emission decreases from 1308 to 966 mg/Nm(3) (at 6% O(2) dry) and the carbon content in the fly ash increases from 6.53% to 15.86%. Considering both the environmental and economic effect, 25% was chosen as the optimized OFA ratio.

  11. Improving combustion characteristics and NO(x) emissions of a down-fired 350 MW(e) utility boiler with multiple injection and multiple staging.

    Science.gov (United States)

    Kuang, Min; Li, Zhengqi; Xu, Shantian; Zhu, Qunyi

    2011-04-15

    Within a Mitsui Babcock Energy Limited down-fired pulverized-coal 350 MW(e) utility boiler, in situ experiments were performed, with measurements taken of gas temperatures in the burner and near the right-wall regions, and of gas concentrations (O(2) and NO) from the near-wall region. Large combustion differences between zones near the front and rear walls and particularly high NO(x) emissions were found in the boiler. With focus on minimizing these problems, a new technology based on multiple-injection and multiple-staging has been developed. Combustion improvements and NO(x) reductions were validated by investigating three aspects. First, numerical simulations of the pulverized-coal combustion process and NO(x) emissions were compared in both the original and new technologies. Good agreement was found between simulations and in situ measurements with the original technology. Second, with the new technology, gas temperature and concentration distributions were found to be symmetric near the front and rear walls. A relatively low-temperature and high-oxygen-concentration zone formed in the near-wall region that helps mitigate slagging in the lower furnace. Third, NO(x) emissions were found to have decreased by as much as 50%, yielding a slight decrease in the levels of unburnt carbon in the fly ash.

  12. Climatic effects of biogenic volatile organic compounds (BVOCs) emissions and associated feedbacks due to vegetation change in the boreal zone

    Science.gov (United States)

    Blichner, Sara Marie; Koren Berntsen, Terje; Stordal, Frode

    2017-04-01

    As our understanding of the earth system improves, it is becoming increasingly clear that vegetation and ecosystems are not only influenced by the atmosphere, but that changes in these also feed back to the atmosphere and induce changes here. One such feedback involves the emission of biogenic volatile organic compounds (BVOCs) emitted from vegetation. As BVOCs are oxidized, they become less volatile and contribute to aerosol growth and formation in the atmosphere, and can thus change the radiative balance of the atmosphere through both the direct and indirect aerosol effects. The amount and type of BVOCs emitted by vegetation depends on a myriad of variables; temperature, leaf area index (LAI), species, water availability and various types of stress (e.g. insects attacks). They generally increase with higher temperatures and under stress. These factors beg the question of how emissions will change in the future in response to both temperature increase and changes to vegetation patterns and densities. The boreal region is of particular interest because forest cover in general has been thought to have a warming effect due to trees reducing the albedo, especially when snow covers the ground. We investigate feedbacks through BVOC emissions related to the expected northward expansion of boreal forests in response to global warming with a development version of the Norwegian Earth System Model (NorESM). BVOC emissions are computed by the Model of Emissions of Gases and Aerosols from Nature 2.1 (MEGAN2.1) which is incorporated into the Community Land Model v4.5 (CLM4.5). The atmospheric component is CAM5.3-Oslo. We will present preliminary results of effects on clouds and aerosol concentrations resulting from a fixed poleward shift in boreal forests and compare the radiative effects of this to changes in surface energy fluxes. CO2-concentrations and sea surface temperatures are kept fixed in order to isolate the effects of the change in vegetation patterns. Finally

  13. Emissions of CO2, CO, NOx, HC, PM, HFC-134a, N2O and CH4 from the global light duty vehicle fleet

    Directory of Open Access Journals (Sweden)

    Timothy J. Wallington

    2008-04-01

    Full Text Available Vehicles emit carbon dioxide (CO2, carbon monoxide (CO, nitrogen oxides (NOx, hydrocarbons (HC, particulate matter (PM, hydrofluorocarbon 134a (HFC-134a, methane (CH4, and nitrous oxide (N2O. An understanding of these emissions is needed in discussions of climate change and local air pollution issues. To facilitate such discussions an overview of past, present, and likely future emissions from light duty vehicles is presented. Emission control technologies have reduced the emissions of CO, VOCs, PM, HFC-134a, CH4, and N2O from modern vehicles to very low levels.

  14. Biogenic Volatile Organic Compound (BVOC) emissions from agricultural crop species: is guttation a possible source for methanol emissions following light/dark transition ?

    Science.gov (United States)

    Mozaffar, Ahsan; Amelynck, Crist; Bachy, Aurélie; Digrado, Anthony; Delaplace, Pierre; du Jardin, Patrick; Fauconnier, Marie-Laure; Schoon, Niels; Aubinet, Marc; Heinesch, Bernard

    2015-04-01

    In the framework of the CROSTVOC (CROp STress VOC) project, the exchange of biogenic volatile organic compounds (BVOCs) between two important agricultural crop species, maize and winter wheat, and the atmosphere has recently been measured during an entire growing season by using the eddy covariance technique. Because of the co-variation of BVOC emission drivers in field conditions, laboratory studies were initiated in an environmental chamber in order to disentangle the responses of the emissions to variations of the individual environmental parameters (such as PPFD and temperature) and to diverse abiotic stress factors. Young plants were enclosed in transparent all-Teflon dynamic enclosures (cuvettes) through which BVOC-free and RH-controlled air was sent. BVOC enriched air was subsequently sampled from the plant cuvettes and an empty cuvette (background) and analyzed for BVOCs in a high sensitivity Proton Transfer Reaction Mass Spectrometer (hs-PTR-MS) and for CO2 in a LI-7000 non-dispersive IR gas analyzer. Emissions were monitored at constant temperature (25 °C) and at a stepwise varying PPFD pattern (0-650 µmol m-2 s-1). For maize plants, sudden light/dark transitions at the end of the photoperiod were accompanied by prompt and considerable increases in methanol (m/z 33) and water vapor (m/z 39) emissions. Moreover, guttation droplets appeared on the sides and the tips of the leaves within a few minutes after light/dark transition. Therefore the assumption has been raised that methanol is also coming out with guttation fluid from the leaves. Consequently, guttation fluid was collected from young maize and wheat plants, injected in an empty enclosure and sampled by PTR-MS. Methanol and a large number of other compounds were observed from guttation fluid. Recent studies have shown that guttation from agricultural crops frequently occurs in field conditions. Further research is required to find out the source strength of methanol emissions by this guttation

  15. Systematic Field Study of NO(x) Emission Control Methods for Utility Boilers.

    Science.gov (United States)

    Bartok, William; And Others

    A utility boiler field test program was conducted. The objectives were to determine new or improved NO (x) emission factors by fossil fuel type and boiler design, and to assess the scope of applicability of combustion modification techniques for controlling NO (x) emissions from such installations. A statistically designed test program was…

  16. Development and Application of a Virtual NOx Sensor for Robust Heavy Duty Diesel Engine Emission Control

    NARCIS (Netherlands)

    Mentink, P.; Seykens, X.; Escobar Valdivieso, D.

    2017-01-01

    To meet future emission targets, it becomes increasingly important to optimize the synergy between engine and aftertreatment system. By using an integrated control approach minimal fluid (fuel and DEF) consumption is targeted within the constraints of emission legislation during real-world

  17. Reduction of amine and biological antioxidants on NOx emissions powered by mango seed biodiesel

    Directory of Open Access Journals (Sweden)

    Velmurugan Kolanjiappan

    2017-01-01

    Full Text Available Este estudio analiza la influencia de la amina y algunos antioxidantes biológicos en la reducción de las emisiones de NOx en un motor diesel alimentado con B100 (100% volumen de éster metílico de semillas de mango y B20 (20% en volumen de semillas de mango y 80% en volumen de mezcla de combustible diesel, Se probaron tres antioxidantes de amina, p-fenilendiamina (PPD, etilendiamina (EDA y N, N’-difenil-1,4-fenilendiamina (DPPD y tres antioxidantes biológicos, diclorometano (DCM, acetato de alfa-tocoferol ( α -T y ácido L-ascórbico (L-asc.acid en un motor diesel kirloskar de cuatro tiempos refrigerado por agua, 5,9 KW de potencia. Hay cinco concentraciones usadas en la mezcla antioxidante de mezclas de biodiesel. Es decir, 0,005% -m, 0,010% -m, 0,025% -m, 0,05% -m y 0,1%, valores en los cuales %-m corresponde a la concentración molar empleada en la mezcla antioxidante. Los resultados muestran que la reducción consiguiente de NOx podría ser adquirida por la adhesión de aditivo antioxidante DPPD con la concentración de 0,025% de combustible B20 en un 15,4% y combustible B100 en un 39%. El aditivo DPPD aumentó las emisiones de CO más de 7,42% para el combustible B100 y 6,44% para el combustible B20. El DCM antioxidante biológico exhibe 0,235 g/kWh para combustible B100 y 0,297 g/kWh para combustible B20. Se ha comprobado que la emisión de humo ha aumentado con la adición de antioxidantes. Un ligero incremento en la eficiencia térmica del freno (0,91% se logra con la adición de antioxidantes a plena carga. Los resultados experimentales se comparan con el análisis de varianza y el resultado es simplemente el mismo que el de la experimentación.

  18. Computational intelligence approach for NOx emissions minimization in a coal-fired utility boiler

    International Nuclear Information System (INIS)

    Zhou Hao; Zheng Ligang; Cen Kefa

    2010-01-01

    The current work presented a computational intelligence approach used for minimizing NO x emissions in a 300 MW dual-furnaces coal-fired utility boiler. The fundamental idea behind this work included NO x emissions characteristics modeling and NO x emissions optimization. First, an objective function aiming at estimating NO x emissions characteristics from nineteen operating parameters of the studied boiler was represented by a support vector regression (SVR) model. Second, four levels of primary air velocities (PA) and six levels of secondary air velocities (SA) were regulated by using particle swarm optimization (PSO) so as to achieve low NO x emissions combustion. To reduce the time demanding, a more flexible stopping condition was used to improve the computational efficiency without the loss of the quality of the optimization results. The results showed that the proposed approach provided an effective way to reduce NO x emissions from 399.7 ppm to 269.3 ppm, which was much better than a genetic algorithm (GA) based method and was slightly better than an ant colony optimization (ACO) based approach reported in the earlier work. The main advantage of PSO was that the computational cost, typical of less than 25 s under a PC system, is much less than those required for ACO. This meant the proposed approach would be more applicable to online and real-time applications for NO x emissions minimization in actual power plant boilers.

  19. Multi-lateral emission trading: lessons from inter-state NOx control in the United States

    International Nuclear Information System (INIS)

    Farrell, A.

    2001-01-01

    Marketable emission permit mechanisms are increasingly proposed as efficient means of managing environmental pollution problems such as greenhouse gas emissions. Existing examples of emissions trading in the literature have so far been limited to domestic efforts put in place through the action of a national legislature, which has no parallel in international politics. This paper examines two efforts to establish multi-lateral emissions trading for nitrogen oxides among various states with the US. One, the Ozone Transport Commission's NO x Budget program is a success. The other, the Ozone Transport Assessment Group and the federal government's subsequent NO x SIP Call has not resulted in a multi-lateral emissions control program, let alone an efficient, market-based one. Due to the relative similarities of the states (compared to highly heterogeneous nations of the world) these are ''best case'' examples, and explaining the vast differences in outcomes will help explain the potential and the challenges in developing an international emission trading program to control greenhouse gas emissions. (author)

  20. NOx emission calculations for bulk carriers by using engine power probabilities as weighting factors.

    Science.gov (United States)

    Cheng, Chih-Wen; Hua, Jian; Hwang, Daw-Shang

    2017-10-01

    An important marine pollution issue identified by the International Maritime Organization (IMO) is NO x emissions; however, the stipulated method for determining the NO x certification value does not reflect the actual high emission factors of slow-speed two-stroke diesel engines over long-term slow steaming. In this study, an accurate method is presented for calculating the NO x emission factors and total amount of NO x emissions by using the actual power probabilities of the diesel engines in four types of bulk carriers. The proposed method is suitable for all types and purposes of diesel engines, is not restricted to any operating modes, and is highly accurate. Moreover, it is recommended that the IMO-stipulated certification value calculation method be modified accordingly to genuinely reduce the amount of NO x emissions. The successful achievement of this level of reduction will help improve the air quality, especially in coastal and port areas, and the health of local residents. As per the IMO, the NO x emission certification value of marine diesel engines having a rated power over 130 kW must be obtained using specified weighting factor (WF)-based calculation. However, this calculation fails to represent the current actual situation. Effective emission reductions of 6.91% (at sea) and 31.9% (in ports) were achieved using a mathematical model of power probability functions. Thus, we strongly recommend amending the certification value of NO x Technical Code 2008 (NTC 2008) by removing the WF constraints, such that the NO x emissions of diesel engines is lower than the Tier-limits at any load level to obtain genuine NO x emission reductions.

  1. Modelling NOX concentrations through CFD-RANS in an urban hot-spot using high resolution traffic emissions and meteorology from a mesoscale model

    Science.gov (United States)

    Sanchez, Beatriz; Santiago, Jose Luis; Martilli, Alberto; Martin, Fernando; Borge, Rafael; Quaassdorff, Christina; de la Paz, David

    2017-08-01

    Air quality management requires more detailed studies about air pollution at urban and local scale over long periods of time. This work focuses on obtaining the spatial distribution of NOx concentration averaged over several days in a heavily trafficked urban area in Madrid (Spain) using a computational fluid dynamics (CFD) model. A methodology based on weighted average of CFD simulations is applied computing the time evolution of NOx dispersion as a sequence of steady-state scenarios taking into account the actual atmospheric conditions. The inputs of emissions are estimated from the traffic emission model and the meteorological information used is derived from a mesoscale model. Finally, the computed concentration map correlates well with 72 passive samplers deployed in the research area. This work reveals the potential of using urban mesoscale simulations together with detailed traffic emissions so as to provide accurate maps of pollutant concentration at microscale using CFD simulations.

  2. Real-world NOx emissions of Euro V and Euro VI heavy duty vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, R.; Dekker, H.; Vonk, W.

    2012-04-15

    TNO regularly performs measurements to determine the in-service performance and durability with respect to the pollutant emissions of heavy-duty vehicles under representative driving conditions. The 2011 measurement programme yields new insights regarding the emission performance of the upcoming Euro VI technology for heavy-duty vehicles, mandatory as of 31 December 2013 and, together with the results from earlier performed programmes, leads to conclusions on the emission performance of past and present generations of heavy-duty vehicles (Euro V, EEV)

  3. Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States

    Directory of Open Access Journals (Sweden)

    Y. F. Lam

    2011-05-01

    Full Text Available Simulations of present and future average regional ozone and PM2.5 concentrations over the United States were performed to investigate the potential impacts of global climate change and emissions on regional air quality using CMAQ. Various emissions and climate conditions with different biogenic emissions and domain resolutions were implemented to study the sensitivity of future air quality trends from the impacts of changing biogenic emissions. A comparison of GEOS-Chem and CMAQ was performed to investigate the effect of downscaling on the prediction of future air quality trends. For ozone, the impacts of global climate change are relatively smaller when compared to the impacts of anticipated future emissions reduction, except for the Northeast area, where increasing biogenic emissions due to climate change have stronger positive effects (increases to the regional ozone air quality. The combination effect from both climate change and emission reductions leads to approximately a 10 % or 5 ppbv decrease of the maximum daily average eight-hour ozone (MDA8 over the Eastern United States. For PM2.5, the impacts of global climate change have shown insignificant effect, where as the impacts of anticipated future emissions reduction account for the majority of overall PM2.5 reductions. The annual average 24-h PM2.5 of the future-year condition was found to be about 40 % lower than the one from the present-year condition, of which 60 % of its overall reductions are contributed to by the decrease of SO4 and NO3 particulate matters. Changing the biogenic emissions model increases the MDA8 ozone by about 5–10 % or 3–5 ppbv in the Northeast area. Conversely, it reduces the annual average PM2.5 by 5 % or 1.0 μg m−3 in the Southeast region.

  4. Optimization under variability and uncertainty: a case study for NOx emissions control for a gasification system.

    Science.gov (United States)

    Chen, Jianjun; Frey, H Christopher

    2004-12-15

    Methods for optimization of process technologies considering the distinction between variability and uncertainty are developed and applied to case studies of NOx control for Integrated Gasification Combined Cycle systems. Existing methods of stochastic optimization (SO) and stochastic programming (SP) are demonstrated. A comparison of SO and SP results provides the value of collecting additional information to reduce uncertainty. For example, an expected annual benefit of 240,000 dollars is estimated if uncertainty can be reduced before a final design is chosen. SO and SP are typically applied to uncertainty. However, when applied to variability, the benefit of dynamic process control is obtained. For example, an annual savings of 1 million dollars could be achieved if the system is adjusted to changes in process conditions. When variability and uncertainty are treated distinctively, a coupled stochastic optimization and programming method and a two-dimensional stochastic programming method are demonstrated via a case study. For the case study, the mean annual benefit of dynamic process control is estimated to be 700,000 dollars, with a 95% confidence range of 500,000 dollars to 940,000 dollars. These methods are expected to be of greatest utility for problems involving a large commitment of resources, for which small differences in designs can produce large cost savings.

  5. A technical and economic assessment of fuel oil hydrotreating technology for steam power plant SO2 and NOx emissions control

    Directory of Open Access Journals (Sweden)

    peiman pourmoghaddam

    2016-12-01

    Full Text Available This work presents a simulation approach to the design and economic evaluation of fuel oil hydrotreating processes for the control of SO2 and NOx emission in an Iranian steam power plant. The percent of fuel oil desulphurization was estimated from the SO2 emissions standards for power plants. Based on two different scenarios according to (I European and (II Iranian standards, the design and simulation of hydrodesulphurization reactors, separation, heat recovery, and amine gas sweetening sections were performed and an economic assessment of the plant was investigated for each scenario. The results indicated the following: the cost price of each barrel of low sulfur fuel oil produced in such plants was estimated at  4.24 US$ for scenario (I and 3.17 US$ for scenario (II; the levelized cost of desulfurization in power production was estimated at 0.618 c/kWh for (I and 0.463 c/kWh for (II; and the social cost savings of replacing every barrel of low sulfur fuel oil instead of one barrel of high sulfur fuel oil were estimated at 26.7 US$ for (I and 13.6 US$ (II.

  6. Emissions and transport of NOx over East Asia diagnosed by satellite and in-situ observations and chemical transport model results

    Science.gov (United States)

    Lee, H.; Kim, S.; Brioude, J.; Cooper, O. R.; Frost, G. J.; Trainer, M.; Kim, C.

    2012-12-01

    Nitrogen dioxide (NO2) columns observed from space have been useful in detecting the increase of NOx emissions over East Asia in accordance with rapid growth in its economy. In addition to emissions, transport can be an important factor to determine the observed satellite NO2 columns in this region. Satellite tropospheric NO2 columns showed maximum in winter and minimum in summer over the high emission areas in China, as lifetime of NO2 decreases with increase of sunlight. However, secondary peaks in the satellite NO2 columns were found in spring in both Korea and Japan, which may be influenced by transport of NOx within East Asia. Surface in-situ observations confirm the findings from the satellite measurements. The large-scale distribution of satellite NO2 columns over East Asia and the Pacific Ocean showed that the locations of NO2 column maxima coincided with wind convergence zones that change with seasons. In spring, the convergence zone is located over 30-40°N, leading to the most efficient transport of the emissions from southern China to downwind areas including Korea, Japan, and western coastal regions of the United States. We employed a Lagrangian particle dispersion model to identify the sources of the observed springtime maximum NO2. In order to understand chemical processing during the transport and quantify the roles of emissions and transport in local NOx budgets, we will also present the results from a regional chemical transport model.

  7. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey); Tolunay, Doganay [Department of Soil Science and Ecology, Faculty of Forestry, Istanbul University, Bahcekoy, Istanbul (Turkey); Odabasi, Mustafa [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey); Elbir, Tolga, E-mail: tolga.elbir@deu.edu.tr [Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Tinaztepe Campus, Buca, Izmir (Turkey)

    2014-08-15

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO{sub 2}) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m{sup 2} s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/g h was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/g h. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta

  8. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species

    International Nuclear Information System (INIS)

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Tolunay, Doganay; Odabasi, Mustafa; Elbir, Tolga

    2014-01-01

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO 2 ) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m 2 s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/g h was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/g h. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta-pinene and

  9. Response of terrestrial N2O and NOx emissions to abrupt climate change

    International Nuclear Information System (INIS)

    Pfeiffer, Mirjam; Kaplan, Jed O

    2010-01-01

    Being a potent greenhouse gas, N 2 O emitted by the terrestrial biosphere during abrupt climate change events could have amplified externally forced warming. To investigate this possibility, we tested the sensitivity of terrestrial N 2 O emissions to an abrupt warming event by applying the ARVE-DGVM in combination with a novel scheme for process-based simulation of terrestrial N 2 O and NO x emissions at the Gerzensee site in Switzerland. In this study, we aim to quantify the magnitude of change in emissions for the abrupt climate change event that occurred at the transition from Oldest Dryas to Boel-ling during the last deglaciation. Using high-resolution multiproxy records obtained from the Gerzensee that cover the Late Glacial, we apply a prescribed vegetation change derived from the pollen record and temperature and precipitation reconstructions derived from δ 18 O in lake sediments. Changes in soil temperature and moisture are simulated by the ARVE-DGVM using the reconstructed paleoclimate as a driver. Our results show a pronounced increase in mean annual N 2 O and NO x emissions for the transition (by factor 2.55 and 1.97, respectively), with highest amounts generally being emitted during summer. Our findings suggest that summertime emissions are limited by soil moisture, while temperature controls emissions during winter. For the time between 14670 and 14620 cal. years BP, our simulated N 2 O emissions show increase rates as high as 1% per year, indicating that local reactions of emissions to changing climate could have been considerably faster than the atmospheric concentration changes observed in polar ice.

  10. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets.

    Science.gov (United States)

    Anenberg, Susan C; Miller, Joshua; Minjares, Ray; Du, Li; Henze, Daven K; Lacey, Forrest; Malley, Christopher S; Emberson, Lisa; Franco, Vicente; Klimont, Zbigniew; Heyes, Chris

    2017-05-25

    Vehicle emissions contribute to fine particulate matter (PM 2.5 ) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NO x ), which are key PM 2.5 and ozone precursors. Regulated NO x emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NO x under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM 2.5 - and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NO x emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NO x emissions in these markets, avoiding approximately 174,000 global PM 2.5 - and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.

  11. Car MAX-DOAS measurements around entire cities: quantification of NOx emissions from the cities of Mannheim and Ludwigshafen (Germany

    Directory of Open Access Journals (Sweden)

    U. Platt

    2010-06-01

    Full Text Available We present car Multi-Axis (MAX- DOAS observations of tropospheric NO2 carried out on circles around the cities of Mannheim and Ludwigshafen (Germany on 24 August 2006. Together with information on wind speed and direction, the total emissions of the encircled source(s are quantified from these measurements. In contrast to recent similar studies based on zenith scattered sun light (elevation angle of 90°, we use a MAX-DOAS instrument mounted on a car, which observes scattered sun light under different elevation angles (here 45°, and 90°. Compared to simple zenith sky observations, MAX-DOAS observations have higher sensitivity and reduced uncertainty, and avoid systematic offsets in the determination of the vertically integrated trace gas concentration. The determination of the absolute value of the integrated tropospheric trace gas concentrations is especially important for the calculation of absolute trace gas fluxes through arbitrary transects. However, even if emission sources are completely surrounded, systematic offsets in the measured vertically integrated trace gas concentration can lead to errors in the determined total emissions, especially for observations around extended areas. In this study we discuss and quantify different error sources. In most cases, the largest error source is the variability and imperfect knowledge of the wind field. In addition – depending on the trace species observed - also chemical transformations between the emission sources and the measurement location have to be considered. For that purpose we use local observations within the encircled area to quantify and/or correct these errors. From our observations we derive a total NOx emission from the Mannheim/Ludwigshafen area of (7.4±1.8×1024 molec/sec, which if assumed to be constant throughout the year would correspond to a total emission of 17 830±4340 t/yr (calculated with the mass of NO2 t/yr, consistent with existing emission estimates. From our

  12. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: determination of specific emission rates for thirty-one tree species.

    Science.gov (United States)

    Aydin, Yagmur Meltem; Yaman, Baris; Koca, Husnu; Dasdemir, Okan; Kara, Melik; Altiok, Hasan; Dumanoglu, Yetkin; Bayram, Abdurrahman; Tolunay, Doganay; Odabasi, Mustafa; Elbir, Tolga

    2014-08-15

    Normalized biogenic volatile organic compound (BVOC) emission rates for thirty one tree species that cover the 98% of national forested areas in Turkey were determined. Field samplings were performed at fourteen different forested areas in Turkey using a specific dynamic enclosure system. The selected branches of tree species were enclosed in a chamber consisted of a transparent Nalofan bag. The air-flows were sampled from both inlet and outlet of the chamber by Tenax-filled sorbent tubes during photosynthesis of trees under the presence of sunlight. Several environmental parameters (temperature, humidity, photosynthetically active radiation-PAR, and CO2) were continuously monitored inside and outside the enclosure chamber during the samplings. Collected samples were analyzed using a gas chromatography mass spectrometry (GC/MS) system equipped with a thermal desorber (TD). Sixty five BVOCs classified in five major groups (isoprene, monoterpenes, sesquiterpenes, oxygenated sesquiterpenes, and other oxygenated compounds) were analyzed. Emission rates were determined by normalization to standard conditions (1000 μmol/m(2)s PAR and 30 °C temperature for isoprene and 30 °C temperature for the remaining compounds). In agreement with the literature, isoprene was mostly emitted by broad-leaved trees while coniferous species mainly emitted monoterpenes. Several tree species such as Sweet Chestnut, Silver Lime, and European Alder had higher monoterpene emissions although they are broad-leaved species. High isoprene emissions were also observed for a few coniferous species such as Nordmann Fir and Oriental Spruce. The highest normalized total BVOC emission rate of 27.1 μg/gh was observed for Oriental Plane while South European Flowering Ash was the weakest BVOC emitter with a total normalized emission rate of 0.031 μg/gh. Monoterpene emissions of broad-leaved species mainly consisted of sabinene, limonene and trans-beta-ocimene, while alpha-pinene, beta-pinene and beta

  13. A Spatial Panel Data Analysis of Economic Growth, Urbanization, and NOx Emissions in China

    Directory of Open Access Journals (Sweden)

    Xiangyu Ge

    2018-04-01

    Full Text Available Is nitrogen oxides emissions spatially correlated in a Chinese context? What is the relationship between nitrogen oxides emission levels and fast-growing economy/urbanization? More importantly, what environmental preservation and economic developing policies should China’s central and local governments take to mitigate the overall nitrogen oxides emissions and prevent severe air pollution at the provincial level in specific locations and their neighboring areas? The present study aims to tackle these issues. This is the first research that simultaneously studies the nexus between nitrogen oxides emissions and economic development/urbanization, with the application of a spatial panel data technique. Our empirical findings suggest that spatial dependence of nitrogen oxides emissions distribution exists at the provincial level. Through the investigation of the existence of an environmental Kuznets curve (EKC embedded within the Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT framework, we conclude something interesting: an inverse N-shaped EKC describes both the income-nitrogen oxides nexus and the urbanization-nitrogen oxides nexus. Some well-directed policy advice is provided to reduce nitrogen oxides in the future. Moreover, these results contribute to the literature on development and pollution.

  14. Evidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest.

    Science.gov (United States)

    Müller, Astrid; Miyazaki, Yuzo; Tachibana, Eri; Kawamura, Kimitaka; Hiura, Tsutom

    2017-08-16

    Biogenic organic aerosols can affect cloud condensation nuclei (CCN) properties, and subsequently impact climate change. Large uncertainties exist in how the difference in the types of terrestrial biogenic sources and the abundance of organics relative to sulfate affect CCN properties. For the submicron water-soluble aerosols collected for two years in a cool-temperate forest in northern Japan, we show that the hygroscopicity parameter κ CCN (0.44 ± 0.07) exhibited a distinct seasonal trend with a minimum in autumn (κ CCN  = 0.32-0.37); these κ CCN values were generally larger than that of ambient particles, including water-insoluble fractions. The temporal variability of κ CCN was controlled by the water-soluble organic matter (WSOM)-to-sulfate ratio (R 2  > 0.60), where the significant reduction of κ CCN in autumn was linked to the increased WSOM/sulfate ratio. Positive matrix factorization analysis indicates that α-pinene-derived secondary organic aerosol (SOA) substantially contributed to the WSOM mass (~75%) in autumn, the majority of which was attributable to emissions from litter/soil microbial activity near the forest floor. These findings suggest that WSOM, most likely α-pinene SOA, originated from the forest floor can significantly suppress the aerosol CCN activity in cool-temperate forests, which have implications for predicting climate effects by changes in biogenic emissions in future.

  15. Multi Response Optimization of NOx Emission of a Stationary Diesel Engine Fuelled with Crude Rice Bran Oil Methyl Ester Optimisation à réponses multiples de l’émission de NOx d’un moteur Diesel stationnaire alimenté par de l’ester méthylique d’huile de riz brut

    OpenAIRE

    Saravanan S.; Nagarajan G.; Sampath S.

    2012-01-01

    In the present work, an attempt was made to reduce the NOx emission of crude rice bran oil methyl ester without any considerable increase in smoke density, when used as a fuel in a stationary CI engine. Three factors namely, fuel injection timing, Exhaust Gas Recirculation (EGR) and fuel injection pressure were chosen and their combined effect in controlling the NOx emission of a stationary Diesel engine fuelled with crude rice bran oil methyl ester was investigated. Three levels were chosen ...

  16. An overview of emissions of SO2 and NOx and the long-range transport of oxidized sulfur and nitrogen pollutants in East Asia.

    Science.gov (United States)

    Qu, Yu; An, Junling; He, Youjiang; Zheng, Jun

    2016-06-01

    The long-range transport of oxidized sulfur (sulfur dioxide (SO2) and sulfate) and oxidized nitrogen (nitrogen oxides (NOx) and nitrate) in East Asia is an area of increasing scientific interest and political concern. This paper reviews various published papers, including ground- and satellite-based observations and numerical simulations. The aim is to assess the status of the anthropogenic emissions of SO2 and NOx and the long-range transport of oxidized S and N pollutants over source and downwind region. China has dominated the emissions of SO2 and NOx in East Asia and urgently needs to strengthen the control of their emissions, especially NOx emissions. Oxidized S and N pollutants emitted from China are transported to Korea and Japan, due to persistent westerly winds, in winter and spring. However, the total contributions of China to S and N pollutants across Korea and Japan were not found to be dominant over longer time scales (e.g., a year). The source-receptor relationships for oxidized S and N pollutants in East Asia varied widely among the different studies. This is because: (1) the nonlinear effects of atmospheric chemistry and deposition processes were not well considered, when calculating the source-receptor relationships; (2) different meteorological and emission data inputs and solution schemes for key physical and chemical processes were used; and (3) different temporal and spatial scales were employed. Therefore, simulations using the same input fields and similar model configurations would be of benefit, to further evaluate the source-receptor relationships of the oxidized S and N pollutants. Copyright © 2016. Published by Elsevier B.V.

  17. Experimental Study of Effect of EGR Rates on NOx and Smoke Emission of LHR Diesel Engine Fueled with Blends of Diesel and Neem Biodiesel

    Science.gov (United States)

    Modi, Ashishkumar Jashvantlal; Gosai, Dipak Chimangiri; Solanki, Chandresh Maheshchandra

    2017-10-01

    Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5-40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.

  18. Common Rail Direct Injection Mode of CI Engine Operation with Different Injection Strategies - A Method to Reduce Smoke and NOx Emissions Simultaneously

    Directory of Open Access Journals (Sweden)

    S. V. Khandal

    2018-03-01

    Full Text Available Compression ignition (CI engines are most efficient and robust prime movers used in transportation, power generation applications but suffer from the problems of higher level of exhaust smoke and NOx tailpipe emissions with increased use of fossil fuels. Alternative fuel that replaces diesel and at the same time that result in lower smoke and NOx emissions is presently needed. Therefore the main aim of this experimental study is to lower the smoke and NOx emissions and to use non edible oils that replace the diesel. For this locally available honge biodiesel (BHO and cotton seed biodiesel (BCO were selected as alternative fuels to power CI engine operated in common rail direct injection (CRDI mode. In the first part, optimum fuel injection timing (IT and injection pressure (IP for maximum engine brake thermal efficiency (BTE was obtained. In the second part, performance, combustion and emission characteristics of the CRDI engine was studied with two different fuel injectors having 6 and 7 holes each having 0.2 mm orifice diameter. The CRDI engine results obtained were compared with the baseline date reported. The combustion chamber (CC used for the study was toroidal re-entrant (TRCC. The experimental tests showed that BHO and BCO fuelled CRDI engine showed overall improved performance with 7 hole injector when engine was operated at optimized fuel IT of 10° before top dead centre (bTDC and IP of 900 bar. The smoke emission reduced by 20% to 26% and NOx reduced by 16% to 20% in diesel and biodiesel powered CRDI engine as compared to conventional CI mode besides replacing diesel by biodiesel fuel (BDF.

  19. Experimental Study of Effect of EGR Rates on NOx and Smoke Emission of LHR Diesel Engine Fueled with Blends of Diesel and Neem Biodiesel

    Science.gov (United States)

    Modi, Ashishkumar Jashvantlal; Gosai, Dipak Chimangiri; Solanki, Chandresh Maheshchandra

    2018-04-01

    Energy conservation and efficiency have been the quest of engineers concerned with internal combustion engine. Theoretically, if the heat rejected could be reduced, then the thermal efficiency would be improved, at least up to the limit set by the second law of thermodynamics. For current work a ceramic coated twin cylinder water-cooled diesel engine using blends of diesel and Neem biodiesel as fuel was evaluated for its performance and exhaust emissions. Multi cylinder vertical water cooled self-governed diesel engine, piston, top surface of cylinder head and liners were fully coated with partially stabilized zirconia as ceramic material attaining an adiabatic condition. Previous studies have reported that combustion of Neem biodiesel emitted higher NOx, while hydrocarbon and smoke emissions were lower than conventional diesel fuel. Exhaust gas recirculation (EGR) is one of the techniques being used to reduce NOx emission from diesel engines; because it decreases both flame temperature and oxygen concentration in the combustion chamber. The stationary diesel engine was run in laboratory at a high load condition (85% of maximum load), fixed speed (2000 rpm) and various EGR rates of 5-40% (with 5% increment). Various measurements like fuel flow, exhaust temperature, exhaust emission measurement and exhaust smoke test were carried out. The results indicate improved fuel economy and reduced pollution levels for the low heat rejection (LHR) engine. The results showed that, at 5% EGR with TB10, both NOx and smoke opacity were reduced by 26 and 15%, respectively. Furthermore, TB20 along with 10% EGR was also able to reduce both NOx and smoke emission by 34 and 30%, respectively compared to diesel fuel without EGR.

  20. 40 CFR 76.7 - Revised NOX emission limitations for Group 1, Phase II boilers.

    Science.gov (United States)

    2010-07-01

    ... Group 1, Phase II boilers. 76.7 Section 76.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... emission limitations for Group 1, Phase II boilers. (a) Beginning January 1, 2000, the owner or operator of a Group 1, Phase II coal-fired utility unit with a tangentially fired boiler or a dry bottom wall...

  1. Modeling analysis of urea direct injection on the NOx emission reduction of biodiesel fueled diesel engines

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Li, J.; Zhou, D.Z.

    2015-01-01

    Highlights: • The effects of urea direct injection on NO x emissions reduction was investigated. • Aqueous urea solution was proposed to be injected after the fuel injection process. • The optimized injection strategy achieved a reduction efficiency of 58%. • There were no severe impacts on the CO emissions and BSFC. - Abstract: In this paper, a numerical simulation study was conducted to explore the possibility of an alternative approach: direct aqueous urea solution injection on the reduction of NO x emissions of a biodiesel fueled diesel engine. Simulation studies were performed using the 3D CFD simulation software KIVA4 coupled with CHEMKIN II code for pure biodiesel combustion under realistic engine operating conditions of 2400 rpm and 100% load. The chemical behaviors of the NO x formation and urea/NO x interaction processes were modeled by a modified extended Zeldovich mechanism and urea/NO interaction sub-mechanism. To ensure an efficient NO x reduction process, various aqueous urea injection strategies in terms of post injection timing, injection angle, and injection rate and urea mass fraction were carefully examined. The simulation results revealed that among all the four post injection timings (10 °ATDC, 15 °ATDC, 20 °ATDC and 25 °ATDC) that were evaluated, 15 °ATDC post injection timing consistently demonstrated a lower NO emission level. The orientation of the aqueous urea injection was also shown to play a critical role in determining the NO x removal efficiency, and 50 degrees injection angle was determined to be the optimal injection orientation which gave the most NO x reduction. In addition, both the urea/water ratio and aqueous urea injection rate demonstrated important roles which affected the thermal decomposition of urea into ammonia and the subsequent NO x removal process, and it was suggested that 50% urea mass fraction and 40% injection rate presented the lowest NO emission levels. At last, with the optimized injection

  2. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME II. SECOND GENERATION LOW-NOX BURNERS

    Science.gov (United States)

    The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...

  3. Aerosol and NOx emission factors and submicron particle number size distributions in two road tunnels with different traffic regimes

    Directory of Open Access Journals (Sweden)

    D. Imhof

    2006-01-01

    Full Text Available Measurements of aerosol particle number size distributions (18–700 nm, mass concentrations (PM2.5 and PM10 and NOx were performed in the Plabutsch tunnel, Austria, and in the Kingsway tunnel, United Kingdom. These two tunnels show different characteristics regarding the roadway gradient, the composition of the vehicle fleet and the traffic frequency. The submicron particle size distributions contained a soot mode in the diameter range D=80–100 nm and a nucleation mode in the range of D=20–40 nm. In the Kingsway tunnel with a significantly lower particle number and volume concentration level than in the Plabutsch tunnel, a clear diurnal variation of nucleation and soot mode particles correlated to the traffic density was observed. In the Plabutsch tunnel, soot mode particles also revealed a diurnal variation, whereas no substantial variation was found for the nucleation mode particles. During the night a higher number concentration of nucleation mode particles were measured than soot mode particles and vice versa during the day. In this tunnel with very high soot emissions during daytime due to the heavy-duty vehicle (HDV share of 18% and another 40% of diesel driven light-duty vehicles (LDV semivolatile species condense on the pre-existing soot surface area rather than forming new particles by homogeneous nucleation. With the low concentration of soot mode particles in the Kingsway tunnel, also the nucleation mode particles exhibit a diurnal variation. From the measured parameters real-world traffic emission factors were estimated for the whole vehicle fleet as well as differentiated into the two categories LDV and HDV. In the particle size range D=18–700 nm, each vehicle of the mixed fleet emits (1.50±0.08×1014 particles km-1 (Plabutsch and (1.26±0.10×1014 particles km-1 (Kingsway, while particle volume emission factors of 0.209±0.008 cm3 km-1 and 0.036±0.004 cm3 km-1, respectively, were obtained. PM1 emission factors of 104±4 mg

  4. Integrated Dry NOx/SO2 Emissions Control System, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2001-10-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round III, the Integrated Dry NO{sub x}/SO{sub 2} Emissions Control System (IDECS), as described in a Report to Congress (U.S. Department of Energy 1991). The desire to reduce emissions of nitrogen oxides (NO, nitric oxide, and NO{sub 2}, nitrogen dioxide, collectively referred to as NO{sub x}) and sulfur dioxide (SO{sub 2}) by up to 70 percent at a minimum capital expenditure, while limiting waste production to dry solids that can be handled by conventional ash-removal equipment, prompted Public Service Company of Colorado (PSCC) to submit the proposal for the IDECS project. In March 1991, PSCC entered into a cooperative agreement with DOE to conduct the study. The project was sited at PSCC's Arapahoe Steam Electric Generating Station in Denver, Colorado. The purpose of this CCT project was to demonstrate the reduction of NO{sub x} and SO{sub 2} emissions by installing a combination of existing and emerging technologies, which were expected to work synergistically to reduce emissions. The technologies were low-NO{sub x} burners (LNBS), overfire air (OFA), and selective noncatalytic reduction (SNCR) for NO{sub x} reduction; and dry sorbent injection (DSI), both with and without flue-gas humidification (FGH), for SO{sub 2} reduction. DOE provided 50 percent of the total project funding of $26.2 million.

  5. A new scaling methodology for NO(x) emissions performance of gas burners and furnaces

    Science.gov (United States)

    Hsieh, Tse-Chih

    1997-11-01

    A general burner and furnace scaling methodology is presented, together with the resulting scaling model for NOsb{x} emissions performance of a broad class of swirl-stabilized industrial gas burners. The model is based on results from a set of novel burner scaling experiments on a generic gas burner and furnace design at five different scales having near-uniform geometric, aerodynamic, and thermal similarity and uniform measurement protocols. These provide the first NOsb{x} scaling data over the range of thermal scales from 30 kW to 12 MW, including input-output measurements as well as detailed in-flame measurements of NO, NOsb{x}, CO, Osb2, unburned hydrocarbons, temperature, and velocities at each scale. The in-flame measurements allow identification of key sources of NOsb{x} production. The underlying physics of these NOsb{x} sources lead to scaling laws for their respective contributions to the overall NOsb{x} emissions performance. It is found that the relative importance of each source depends on the burner scale and operating conditions. Simple furnace residence time scaling is shown to be largely irrelevant, with NOsb{x} emissions instead being largely controlled by scaling of the near-burner region. The scalings for these NOsb{x} sources are combined in a comprehensive scaling model for NOsb{x} emission performance. Results from the scaling model show good agreement with experimental data at all burner scales and over the entire range of turndown, staging, preheat, and excess air dilution, with correlations generally exceeding 90%. The scaling model permits design trade-off assessments for a broad class of burners and furnaces, and allows performance of full industrial scale burners and furnaces of this type to be inferred from results of small scale tests.

  6. Reduction of NOx Emission of a Diesel Engine with a Multiple Injection Pump by SCR Catalytic Converter

    Directory of Open Access Journals (Sweden)

    Vít Marek

    2016-01-01

    Full Text Available This paper deals with reduction of NOx-emission of a diesel engine with multiple injection pump by SCR catalytic converter. Main aim of the measurement was the detection of SCR catalyst converter efficiency. Tests were realized at the Research and Development workplace of Zetor Tractor a.s. Used engine was equipped with a multiple injection pump with electromagnetic regulator of a fuel charge. During the experiment selective catalytic reduction and diesel particulate filter were used as an after treatment of harmful pollutants reduction. Testing cycle of the eight-point test was chosen and Non-Road Steady Cycle (NRSC was maintained according to 97/68/EC directive. Results confirmed the dependencies between temperatures of SCR catalyst and exhaust gases and the volume of exhaust gases on efficiency of SCR catalyst. During the operation load of the engine, selective catalytic reduction reached efficiency over 90 %. Used after treatment system is suitable for reduction of harmful pollutants according to the Tier 4f norm.

  7. Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES

    Energy Technology Data Exchange (ETDEWEB)

    Setyan, Ari; Zhang, Qi; Merkel, M.; Knighton, Walter B.; Sun, Y.; Song, Chen; Shilling, John E.; Onasch, Timothy B.; Herndon, Scott C.; Worsnop, Douglas R.; Fast, Jerome D.; Zaveri, Rahul A.; Berg, Larry K.; Wiedensohler, A.; Flowers, B. A.; Dubey, Manvendra K.; Subramanian, R.

    2012-09-11

    The Carbonaceous Aerosols and Radiative Effects Study (CARES) took place in the Sacramento Valley of California in summer 2010. We present results obtained at Cool, CA, the T1 site of the project ({approx}40 km downwind of urban emissions from Sacramento), where we deployed an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) in parallel with complementary instrumentation to characterize the sources and processes of submicron particles (PM1). Cool is located at the foothill of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. The particle mass loading was low (3.0 {micro}gm{sup -3} on average) and dominated by organics (80% of the PM1 mass) followed by sulfate (9.9 %). Organics and sulfate appeared to be externally mixed, as suggested by their different time series (r2 = 0.13) and size distributions. Sulfate showed a bimodal distribution with a droplet mode peaking at {approx}400nm in vacuum aerodynamic diameter (Dva), and a condensation mode at {approx}150 nm, while organics generally displayed a broad distribution in 60-600nm (Dva). New particle formation and growth events were observed almost every day, emphasizing the roles of organics and sulfate in new particle growth, especially that of organics. The organic aerosol (OA) had a nominal formula of C{sub 1}H{sub 1.38}N{sub 0.004}O{sub 0.44}, thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two different oxygenated OA (OOA, 90% of total OA mass) and a hydrocarbon-like OA (HOA, 10 %) were identified by Positive matrix factorization (PMF) of the high resolution mass spectra. The more oxidized MO-OOA (O/C = 0.54) corresponded to secondary OA (SOA) primarily influenced by biogenic emissions, while the less oxidized LO-OOA (O/C = 0.42) corresponded to SOA associated with urban transport. The HOA factor corresponded to primary emissions mainly

  8. Effects of various meteorological conditions and spatial emission resolutions on the ozone concentration & ROG/NOx limitation in the Milan area (I)

    Science.gov (United States)

    Bärtsch-Ritter, N.; Keller, J.; Dommen, J.; Prévát, A. S. H.

    2003-02-01

    The three-dimensional photochemical model UAM-V is used to investigate the effects of various meteorological conditions and of the coarseness of emission inventories on the ozone concentration and ROG/NOx limitation of the ozone production in the Po Basin in the northern part of Italy. As a base case, the high ozone episode with up to 200 ppb on 13 May 1998 was modelled and previously thoroughly evaluated with measurements gained during a large field experiment. The performed variations in meteorology are applied to mixing height, air temperature, specific humidity and wind speed. Three coarser emission inventories are obtained by resampling from 3×3 km2 up to 54×54 km2 emission grids. The model results show that changes in meteorological input files have the largest effect on peak ozone. In the modelled ozone plume a slope of 10.1 ppb ozone/°C and in Milan of 2.8 ppb ozone/°C were found. The net ozone formation in northern Italy is more strongly temperature than humidity dependent, while the humidity is very important for the ROG/NOx limitation of the ozone production. For each of the meteorological variations (e.g. doubling the mixing height), the modelled ozone plume remains ROG limited for this case. A strong change towards NOx sensitivity in the ROG limited areas is only found if much coarser emission inventories were applied. Increasing ROG limited areas with increasing wind speed are found, because the ROG limited ozone chemistry induced by point sources is spread over a larger area. Simulations without point sources tend to increase the NOx limited areas.

  9. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  10. A FUEL-RICH PRECOMBUSTOR. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS - VOLUME IV. ALTERNATE CON- CEPTS FOR SOX, NOX, AND PARTICULATE EMISSIONS CONTROL FROM

    Science.gov (United States)

    The report gives results a study of the use of precombustors for the simultaneous control of S02, NOx, and ash emissions from coal combustion. In Phase 1, exploratory testing was conducted on a small pilot scale--293 kW (million Btu/hr)-pulverized-coal-fired precombustor to ident...

  11. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  12. Preliminary performance and operating results from the integrated dry NOx/SO2 emissions control system

    International Nuclear Information System (INIS)

    Hunt, T.; Schott, G.; Smith, R.; Muzio, L.; Jones, D.; Mali E.; Arrigoni, T.

    1993-01-01

    The Integrated Dry NO x /SO 2 Emissions Control System was installed at Public Service Company of Colorado's Arapaho 4 generating station in 1992 in cooperation with the U.S. Department of Energy (DOE) and and the Electric Power Research Institute (EPRI). This full scale 100 MWe demonstration combines low-NO x burners, overfire air, and selective noncatalytic reduction (SNCR) for NO x control and dry sorbent injection with humidification for SO 2 control. Operation and testing of the Integrated Dry NO x /SO 2 Emissions Control System began in August 1992 and will continue through mid 1994. Preliminary results of the NO x control technologies show that the original system goal of 70% NO x removal has been easily met and that NO x removals of up to 80% are possible at full load with the combustion and SNCR systems. Testing of the dry sorbent injection system with low sulfur coal began in April 1993 using a calcium-based reagent. A maximum SO 2 removal of 40% has been achieved with duct injection of commercial calcium hydroxide and humidification to a 25 degrees F approach to saturation. Sodium-based dry sorbent injection is expected to achieved up to a 70% SO 2 reduction

  13. Radiation processes for the control of NOx/SO2 emissions

    International Nuclear Information System (INIS)

    Dickson, L.W.; Singh, A.

    1988-01-01

    This report provides a brief review of the use of radiation for the treatment of flue gases and identifies areas for additional research. Two different radiation-based processes have been developed for the removal of nitrogen oxides and sulphur dioxide from the flue gases of coal-fired boilers. In the technique developed by the Ebara Corporation and Japan Atomic Energy Research Institute, ammonia is injected prior to the irradiation step to enhance the process efficiency and to yield a solid ammonium sulphate - ammonium nitrate product that may be used as a fertilizer. The process developed by the Research-Cottrell Corporation uses electron-beam irradiation downstream of a lime spray dryer to remove nitrogen oxides and to enhance the sulphur dioxide removal efficiency. Both of these processes require large quantities of electron-beam power and are currently expected to be more expensive than other available sulphur dioxide emission control technologies. Present emission control regulations in North America do not require the high degree of nitrogen oxide removal provided by the radiation-based processes. Research into the radiolytic oxidation of nitrogen oxides and sulphur dioxide, the radiolytic oxidation of NO x /SO 2 on solid sorbents, and the radiolytic oxidation of NO x /SO 2 in electric fields may lead to the development of more economical radiation treatment processes for flue gases. 44 refs

  14. Urban eddy covariance measurements reveal significant missing NOx emissions in Central Europe.

    Science.gov (United States)

    Karl, T; Graus, M; Striednig, M; Lamprecht, C; Hammerle, A; Wohlfahrt, G; Held, A; von der Heyden, L; Deventer, M J; Krismer, A; Haun, C; Feichter, R; Lee, J

    2017-05-30

    Nitrogen oxide (NO x ) pollution is emerging as a primary environmental concern across Europe. While some large European metropolitan areas are already in breach of EU safety limits for NO 2 , this phenomenon does not seem to be only restricted to large industrialized areas anymore. Many smaller scale populated agglomerations including their surrounding rural areas are seeing frequent NO 2 concentration violations. The question of a quantitative understanding of different NO x emission sources is therefore of immanent relevance for climate and air chemistry models as well as air pollution management and health. Here we report simultaneous eddy covariance flux measurements of NO x , CO 2 , CO and non methane volatile organic compound tracers in a city that might be considered representative for Central Europe and the greater Alpine region. Our data show that NO x fluxes are largely at variance with modelled emission projections, suggesting an appreciable underestimation of the traffic related atmospheric NO x input in Europe, comparable to the weekend-weekday effect, which locally changes ozone production rates by 40%.

  15. Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES

    Directory of Open Access Journals (Sweden)

    A. Setyan

    2012-09-01

    Full Text Available An Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS was deployed during the Carbonaceous Aerosols and Radiative Effects Study (CARES that took place in northern California in June 2010. We present results obtained at Cool (denoted as the T1 site of the project in the foothills of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. During this study, the average mass loading of submicrometer particles (PM1 was 3.0 μg m−3, dominated by organics (80% and sulfate (9.9%. The organic aerosol (OA had a nominal formula of C1H1.38N0.004OM0.44, thus an average organic mass-to-carbon (OM/OC ratio of 1.70. Two distinct oxygenated OA factors were identified via Positive matrix factorization (PMF of the high-resolution mass spectra of organics. The more oxidized MO-OOA (O/C = 0.54 was interpreted as a surrogate for secondary OA (SOA influenced by biogenic emissions whereas the less oxidized LO-OOA (O/C = 0.42 was found to represent SOA formed in photochemically processed urban emissions. LO-OOA correlated strongly with ozone and MO-OOA correlated well with two 1st generation isoprene oxidation products (methacrolein and methyl vinyl ketone, indicating that both SOAs were relatively fresh. A hydrocarbon like OA (HOA factor was also identified, representing primary emissions mainly due to local traffic. On average, SOA (= MO-OOA + LO-OOA accounted for 91% of the total OA mass and 72% of the PM1 mass observed at Cool. Twenty three periods of urban plumes from T0 (Sacramento to T1 (Cool were identified using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem. The average PM1 mass loading was considerably higher in urban plumes than in air masses dominated by biogenic SOA. The change in OA

  16. 40 CFR 75.71 - Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Specific provisions for monitoring NOX and heat input for the purpose of calculating NOX mass emissions. 75.71 Section 75.71 Protection of... MONITORING NOX Mass Emissions Provisions § 75.71 Specific provisions for monitoring NOX and heat input for...

  17. Limitations of ozone data assimilation with adjustment of NOx emissions: mixed effects on NO2 forecasts over Beijing and surrounding areas

    Directory of Open Access Journals (Sweden)

    X. Tang

    2016-05-01

    Full Text Available This study investigates a cross-variable ozone data assimilation (DA method based on an ensemble Kalman filter (EnKF that has been used in the companion study to improve ozone forecasts over Beijing and surrounding areas. The main purpose is to delve into the impacts of the cross-variable adjustment of nitrogen oxide (NOx emissions on the nitrogen dioxide (NO2 forecasts over this region during the 2008 Beijing Olympic Games. A mixed effect on the NO2 forecasts was observed through application of the cross-variable assimilation approach in the real-data assimilation (RDA experiments. The method improved the NO2 forecasts over almost half of the urban sites with reductions of the root mean square errors (RMSEs by 15–36 % in contrast to big increases of the RMSEs over other urban stations by 56–239 %. Over the urban stations with negative DA impacts, improvement of the NO2 forecasts (with 7 % reduction of the RMSEs was noticed at night and in the morning versus significant deterioration during daytime (with 190 % increase of the RMSEs, suggesting that the negative data assimilation impacts mainly occurred during daytime. Ideal-data assimilation (IDA experiments with a box model and the same cross-variable assimilation method confirmed the mixed effects found in the RDA experiments. In the same way, NOx emission estimation was improved at night and in the morning even under large biases in the prior emission, while it deteriorated during daytime (except for the case of minor errors in the prior emission. The mixed effects observed in the cross-variable data assimilation, i.e., positive data assimilation impacts on NO2 forecasts over some urban sites, negative data assimilation impacts over the other urban sites, and weak data assimilation impacts over suburban sites, highlighted the limitations of the EnKF under strong nonlinear relationships between chemical variables. Under strong nonlinearity between daytime ozone concentrations and

  18. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest.

    Science.gov (United States)

    Eller, Allyson S D; Young, Lindsay L; Trowbridge, Amy M; Monson, Russell K

    2016-02-01

    Drought has the potential to influence the emission of biogenic volatile organic compounds (BVOCs) from forests and thus affect the oxidative capacity of the atmosphere. Our understanding of these influences is limited, in part, by a lack of field observations on mature trees and the small number of BVOCs monitored. We studied 50- to 60-year-old Pinus ponderosa trees in a semi-arid forest that experience early summer drought followed by late-summer monsoon rains, and observed emissions for five BVOCs-monoterpenes, methylbutenol, methanol, acetaldehyde and acetone. We also constructed a throughfall-interception experiment to create "wetter" and "drier" plots. Generally, trees in drier plots exhibited reduced sap flow, photosynthesis, and stomatal conductances, while BVOC emission rates were unaffected by the artificial drought treatments. During the natural, early summer drought, a physiological threshold appeared to be crossed when photosynthesis ≅2 μmol m(-2) s(-1) and conductance ≅0.02 mol m(-2) s(-1). Below this threshold, BVOC emissions are correlated with leaf physiology (photosynthesis and conductance) while BVOC emissions are not correlated with other physicochemical factors (e.g., compound volatility and tissue BVOC concentration) that have been shown in past studies to influence emissions. The proportional loss of C to BVOC emission was highest during the drought primarily due to reduced CO2 assimilation. It appears that seasonal drought changes the relations among BVOC emissions, photosynthesis and conductance. When drought is relaxed, BVOC emission rates are explained mostly by seasonal temperature, but when seasonal drought is maximal, photosynthesis and conductance-the physiological processes which best explain BVOC emission rates-decline, possibly indicating a more direct role of physiology in controlling BVOC emission.

  19. Assessment of the Potential to Reduce Emissions from Road Transportation, Notably NOx, Through the Use of Alternative Vehicles and Fuels in the Great Smoky Mountains Region; TOPICAL

    International Nuclear Information System (INIS)

    Sheffield, J.

    2001-01-01

    Air pollution is a serious problem in the region of the Great Smoky Mountains. The U.S. Environmental Protection Agency (EPA) may designate non-attainment areas by 2003 for ozone. Pollutants include nitrogen oxides (NOx), sulfur dioxide (SO(sub 2)), carbon monoxide (CO), volatile organic compounds (VOCs), lead, and particulate matter (PM), which are health hazards, damage the environment, and limit visibility. The main contributors to this pollution are industry, transportation, and utilities. Reductions from all contributors are needed to correct this problem. While improvements are projected in each sector over the next decades, the May 2000 Interim Report issued by the Southern Appalachian Mountains Initiative (SAMI) suggests that the percentage of NOx emissions from transportation may increase. The conclusions are: (1) It is essential to consider the entire fuel cycle in assessing the benefits, or disadvantages, of an alternative fuel option, i.e., feedstock and fuel production, in addition to vehicle operation; (2) Many improvements to the energy efficiency of a particular vehicle and engine combination will also reduce emissions by reducing fuel use, e.g., engine efficiency, reduced weight, drag and tire friction, and regenerative braking; (3) In reducing emissions it will be important to install the infrastructure to provide the improved fuels, support the maintenance of advanced vehicles, and provide emissions testing of both local vehicles and those from out of state; (4) Public transit systems using lower emission vehicles can play an important role in reducing emissions per passenger mile by carrying passengers more efficiently, particularly in congested areas. However, analysis is required for each situation; (5) Any reduction in emissions will be welcome, but the problems of air pollution in our region will not be solved by a few modest improvements. Substantial reductions in emissions of key pollutants are required both in East Tennessee and in

  20. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Felix; P. Vann Bush; Stephen Niksa

    2003-04-30

    In full-scale boilers, the effect of biomass cofiring on NO{sub x} and unburned carbon (UBC) emissions has been found to be site-specific. Few sets of field data are comparable and no consistent database of information exists upon which cofiring fuel choice or injection system design can be based to assure that NOX emissions will be minimized and UBC be reduced. This report presents the results of a comprehensive project that generated an extensive set of pilot-scale test data that were used to validate a new predictive model for the cofiring of biomass and coal. All testing was performed at the 3.6 MMBtu/hr (1.75 MW{sub t}) Southern Company Services/Southern Research Institute Combustion Research Facility where a variety of burner configurations, coals, biomasses, and biomass injection schemes were utilized to generate a database of consistent, scalable, experimental results (422 separate test conditions). This database was then used to validate a new model for predicting NO{sub x} and UBC emissions from the cofiring of biomass and coal. This model is based on an Advanced Post-Processing (APP) technique that generates an equivalent network of idealized reactor elements from a conventional CFD simulation. The APP reactor network is a computational environment that allows for the incorporation of all relevant chemical reaction mechanisms and provides a new tool to quantify NOx and UBC emissions for any cofired combination of coal and biomass.

  1. Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions

    Directory of Open Access Journals (Sweden)

    R. Seco

    2011-12-01

    polluted air masses receive additional biogenic VOCs emitted in the local valley by the vegetation, thus enhancing O3 formation in this forested site. The only VOC species that showed a somewhat different daily pattern were monoterpenes because of their local biogenic emission. Isoprene also followed in part the daily pattern of monoterpenes, but only in summer when its biotic sources were stronger. The increase by one order of magnitude in the concentrations of these volatile isoprenoids highlights the importance of local biogenic summer emissions in these Mediterranean forested areas which also receive polluted air masses from nearby or distant anthropic sources.

  2. Allocating emissions to 4 km and 1 km horizontal spatial resolutions and its impact on simulated NOx and O3 in Houston, TX

    Science.gov (United States)

    Pan, Shuai; Choi, Yunsoo; Roy, Anirban; Jeon, Wonbae

    2017-09-01

    A WRF-SMOKE-CMAQ air quality modeling system was used to investigate the impact of horizontal spatial resolution on simulated nitrogen oxides (NOx) and ozone (O3) in the Greater Houston area (a non-attainment area for O3). We employed an approach recommended by the United States Environmental Protection Agency to allocate county-based emissions to model grid cells in 1 km and 4 km horizontal grid resolutions. The CMAQ Integrated Process Rate analyses showed a substantial difference in emissions contributions between 1 and 4 km grids but similar NOx and O3 concentrations over urban and industrial locations. For example, the peak NOx emissions at an industrial and urban site differed by a factor of 20 for the 1 km and 8 for the 4 km grid, but simulated NOx concentrations changed only by a factor of 1.2 in both cases. Hence, due to the interplay of the atmospheric processes, we cannot expect a similar level of reduction of the gas-phase air pollutants as the reduction of emissions. Both simulations reproduced the variability of NASA P-3B aircraft measurements of NOy and O3 in the lower atmosphere (from 90 m to 4.5 km). Both simulations provided similar reasonable predictions at surface, while 1 km case depicted more detailed features of emissions and concentrations in heavily polluted areas, such as highways, airports, and industrial regions, which are useful in understanding the major causes of O3 pollution in such regions, and to quantify transport of O3 to populated communities in urban areas. The Integrated Reaction Rate analyses indicated a distinctive difference of chemistry processes between the model surface layer and upper layers, implying that correcting the meteorological conditions at the surface may not help to enhance the O3 predictions. The model-observation O3 bias in our studies (e.g., large over-prediction during the nighttime or along Gulf of Mexico coastline), were due to uncertainties in meteorology, chemistry or other processes. Horizontal grid

  3. Diel Variation of Biogenic Volatile Organic Compound Emissions- A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light

    Science.gov (United States)

    Lindwall, Frida; Faubert, Patrick; Rinnan, Riikka

    2015-01-01

    Many hours of sunlight in the midnight sun period suggest that significant amounts of biogenic volatile organic compounds (BVOCs) may be released from arctic ecosystems during night-time. However, the emissions from these ecosystems are rarely studied and limited to point measurements during daytime. We measured BVOC emissions during 24-hour periods in the field using a push-pull chamber technique and collection of volatiles in adsorbent cartridges followed by analysis with gas chromatography- mass spectrometry. Five different arctic vegetation communities were examined: high arctic heaths dominated by Salix arctica and Cassiope tetragona, low arctic heaths dominated by Salix glauca and Betula nana and a subarctic peatland dominated by the moss Warnstorfia exannulata and the sedge Eriophorum russeolum. We also addressed how climate warming affects the 24-hour emission and how the daytime emissions respond to sudden darkness. The emissions from the high arctic sites were lowest and had a strong diel variation with almost no emissions during night-time. The low arctic sites as well as the subarctic site had a more stable release of BVOCs during the 24-hour period with night-time emissions in the same range as those during the day. These results warn against overlooking the night period when considering arctic emissions. During the day, the quantity of BVOCs and the number of different compounds emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene, α -phellandrene, 3-carene and α-terpinene as well as isoprene were absent in dark measurements during the day. Warming by open top chambers increased the emission rates both in the high and low arctic sites, forewarning higher emissions in a future warmer climate in the Arctic. PMID:25897519

  4. Diel Variation of Biogenic Volatile Organic Compound Emissions--A field Study in the Sub, Low and High Arctic on the Effect of Temperature and Light.

    Science.gov (United States)

    Lindwall, Frida; Faubert, Patrick; Rinnan, Riikka

    2015-01-01

    Many hours of sunlight in the midnight sun period suggest that significant amounts of biogenic volatile organic compounds (BVOCs) may be released from arctic ecosystems during night-time. However, the emissions from these ecosystems are rarely studied and limited to point measurements during daytime. We measured BVOC emissions during 24-hour periods in the field using a push-pull chamber technique and collection of volatiles in adsorbent cartridges followed by analysis with gas chromatography-mass spectrometry. Five different arctic vegetation communities were examined: high arctic heaths dominated by Salix arctica and Cassiope tetragona, low arctic heaths dominated by Salix glauca and Betula nana and a subarctic peatland dominated by the moss Warnstorfia exannulata and the sedge Eriophorum russeolum. We also addressed how climate warming affects the 24-hour emission and how the daytime emissions respond to sudden darkness. The emissions from the high arctic sites were lowest and had a strong diel variation with almost no emissions during night-time. The low arctic sites as well as the subarctic site had a more stable release of BVOCs during the 24-hour period with night-time emissions in the same range as those during the day. These results warn against overlooking the night period when considering arctic emissions. During the day, the quantity of BVOCs and the number of different compounds emitted was higher under ambient light than in darkness. The monoterpenes α-fenchene, α-phellandrene, 3-carene and α-terpinene as well as isoprene were absent in dark measurements during the day. Warming by open top chambers increased the emission rates both in the high and low arctic sites, forewarning higher emissions in a future warmer climate in the Arctic.

  5. Using stable isotopes of reactive N in dry and wet deposition to investigate the source, transport, and fate of NOx and NH3

    Science.gov (United States)

    Felix, J.; Elliott, E. M.

    2011-12-01

    Reactive N emissions (NH3 and NOx) can reach the land surfaces via both wet (NH4+, NO3) and dry (NOx, HNO3, NH3, NH4+) depositional processes. Together, these reactive N compounds are important global contributors to air and water quality degradation. Although nitrate concentrations in wet deposition have decreased in the U.S. during the last two decades due to NOx emission regulations set forth by the Clean Air Act, ammonium concentrations in wet deposition have recently increased. In order to further decrease NOx emissions and decrease NH3 emissions, additional tools for reactive N source apportionment are essential. The stable isotopic composition of reactive N may be one such tool for characterizing source, transport, and fate of reactive N emissions. Here, we present results from a comprehensive inventory of the isotopic composition of reactive N emission sources, focusing mainly on agricultural and fossil fuel sources. We build on these inventory results by tracing reactive N emissions across multiple landscapes including: a dairy operation, a conventionally managed cornfield, a tallgrass prairie, and a concentrated animal feeding operation. We then use two examples to illustrate how reactive N isotopes can be used in a regional context. First, we illustrate how passive NH3 samplers deployed at nine U.S. monitoring sites reflect spatial variations in predominant NH3 sources. Secondly, we reconstruct the regional influence of agricultural NOx emissions to nitrate deposition recorded in an ice core from Summit, Greenland. These results reveal significant evidence that the trend in the N isotopic composition of 20th century nitrate deposition in Greenland was driven by increasing biogenic soil NOx emissions induced by fertilizer application in the US over the last century. Together, these studies demonstrate the isotopic composition of reactive N emissions can be an additional tool for investigators to source and trace reactive N emissions in both historical and

  6. Estimation of the Paris NOx emissions from mobile MAX-DOAS observations and CHIMERE model simulations during the MEGAPOLI campaign using the closed integral method

    Science.gov (United States)

    Shaiganfar, Reza; Beirle, Steffen; Denier van der Gon, Hugo; Jonkers, Sander; Kuenen, Jeroen; Petetin, Herve; Zhang, Qijie; Beekmann, Matthias; Wagner, Thomas

    2017-06-01

    We determined NOx emissions from Paris in summer 2009 and winter 2009/2010 by applying the closed integral method (CIM) to a large set of car multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements performed within the framework of the MEGAPOLI project (http://megapoli.dmi.dk/). MAX-DOAS measurements of the tropospheric NO2 vertical column density (VCD) were performed in large circles around Paris. From the combination of the observed NO2 VCDs with wind fields, the NO2 influx into and the outflux from the encircled area was determined. The difference between the influx and outflux represents the total emission. Compared to previous applications of the CIM, the large number of measurements during the MEGAPOLI campaign allowed the investigation of important aspects of the CIM. In particular, the applicability of the CIM under various atmospheric conditions could be tested. Another important advantage of the measurements during MEGAPOLI is that simultaneous atmospheric model simulations with a high spatial resolution (3 × 3 km2) are available for all days. Based on these model data, it was possible to test the consistency of the CIM and to derive information about favourable or non-favourable conditions for the application of the CIM. We found that in most situations the uncertainties and the variability in the wind data dominate the total error budget, which typically ranges between 30 and 50 %. Also, measurement gaps and uncertainties in the partitioning ratio between NO and NO2 are important error sources. Based on a consistency check, we deduced a set of criteria on whether measurement conditions are suitable or not for the application of the CIM. We also developed a method for the calculation of the total error budget of the derived NOx emissions. Typical errors are between ±30 and ±50 % for individual days (with one full circle around Paris). From the application of the CIM to car MAX-DOAS observations we derive daily average NOx

  7. Estimation of the Paris NOx emissions from mobile MAX-DOAS observations and CHIMERE model simulations during the MEGAPOLI campaign using the closed integral method

    Directory of Open Access Journals (Sweden)

    R. Shaiganfar

    2017-06-01

    Full Text Available We determined NOx emissions from Paris in summer 2009 and winter 2009/2010 by applying the closed integral method (CIM to a large set of car multi-axis differential optical absorption spectroscopy (MAX-DOAS measurements performed within the framework of the MEGAPOLI project (http://megapoli.dmi.dk/. MAX-DOAS measurements of the tropospheric NO2 vertical column density (VCD were performed in large circles around Paris. From the combination of the observed NO2 VCDs with wind fields, the NO2 influx into and the outflux from the encircled area was determined. The difference between the influx and outflux represents the total emission. Compared to previous applications of the CIM, the large number of measurements during the MEGAPOLI campaign allowed the investigation of important aspects of the CIM. In particular, the applicability of the CIM under various atmospheric conditions could be tested. Another important advantage of the measurements during MEGAPOLI is that simultaneous atmospheric model simulations with a high spatial resolution (3 × 3 km2 are available for all days. Based on these model data, it was possible to test the consistency of the CIM and to derive information about favourable or non-favourable conditions for the application of the CIM. We found that in most situations the uncertainties and the variability in the wind data dominate the total error budget, which typically ranges between 30 and 50 %. Also, measurement gaps and uncertainties in the partitioning ratio between NO and NO2 are important error sources. Based on a consistency check, we deduced a set of criteria on whether measurement conditions are suitable or not for the application of the CIM. We also developed a method for the calculation of the total error budget of the derived NOx emissions. Typical errors are between ±30 and ±50 % for individual days (with one full circle around Paris. From the application of the CIM to car MAX-DOAS observations we derive

  8. A method for evaluating spatially-resolved NOx emissions using Kalman filter inversion, direct sensitivities, and space-based NO2 observations

    Directory of Open Access Journals (Sweden)

    R. V. Martin

    2008-09-01

    Full Text Available An inverse modeling method was developed and tested for identifying possible biases in emission inventories using satellite observations. The relationships between emission inputs and modeled ambient concentrations were estimated using sensitivities calculated with the decoupled direct method in three dimensions (DDM-3D implemented within the framework of the Community Multiscale Air Quality (CMAQ regional model. As a case study to test the approach, the method was applied to regional ground-level NOx emissions in the southeastern United States as constrained by observations of NO2 column densities derived from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY satellite instrument. A controlled "pseudodata" scenario with a known solution was used to establish that the methodology can achieve the correct solution, and the approach was then applied to a summer 2004 period where the satellite data are available. The results indicate that emissions biases differ in urban and rural areas of the southeast. The method suggested slight downward (less than 10% adjustment to urban emissions, while rural region results were found to be highly sensitive to NOx processes in the upper troposphere. As such, the bias in the rural areas is likely not solely due to biases in the ground-level emissions. It was found that CMAQ was unable to predict the significant level of NO2 in the upper troposphere that was observed during the NASA Intercontinental Chemical Transport Experiment (INTEX measurement campaign. The best correlation between satellite observations and modeled NO2 column densities, as well as comparison to ground-level observations of NO2, was obtained by performing the inverse while accounting for the significant presence of NO2 in the upper troposphere not captured by the regional model.

  9. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Zanfir, Monica; Solunke, Rahul; Shah, Minish

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon's catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full

  10. Tropospheric ozone using an emission tagging technique in the CAM-Chem and WRF-Chem models

    Science.gov (United States)

    Lupascu, A.; Coates, J.; Zhu, S.; Butler, T. M.

    2017-12-01

    Tropospheric ozone is a short-lived climate forcing pollutant. High concentration of ozone can affect human health (cardiorespiratory and increased mortality due to long-term exposure), and also it damages crops. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used as an important component of the design of emissions reduction strategies by indicating which emission sources could be targeted for effective reductions, thus reducing the burden of ozone pollution. Using a "tagging" approach within the CAM-Chem (global) and WRF-Chem (regional) models, we can quantify the contribution of individual emission of NOx and VOC precursors on air quality. Hence, when precursor emissions of NOx are tagged, we have seen that the largest contributors on ozone levels are the anthropogenic sources, while in the case of precursor emissions of VOCs, the biogenic sources and methane account for more than 50% of ozone levels. Further, we have extended the NOx tagging method in order to investigate continental source region contributions to concentrations of ozone over various receptor regions over the globe, with a zoom over Europe. In general, summertime maximum ozone in most receptor regions is largely attributable to local emissions of anthropogenic NOx and biogenic VOC. During the rest of the year, especially during springtime, ozone in most receptor regions shows stronger influences from anthropogenic emissions of NOx and VOC in remote source regions.

  11. Effectiveness of low emission zones: large scale analysis of changes in environmental NO2, NO and NOx concentrations in 17 German cities.

    Directory of Open Access Journals (Sweden)

    Peter Morfeld

    Full Text Available Low Emission Zones (LEZs are areas where the most polluting vehicles are restricted from entering. The effectiveness of LEZs to lower ambient exposures is under debate. This study focused on LEZs that restricted cars of Euro 1 standard without appropriate retrofitting systems from entering and estimated LEZ effects on NO2, NO, and NOx ( = NO2+NO.Continuous half-hour and diffuse sampler 4-week average NO2, NO, and NOx concentrations measured inside and outside LEZs in 17 German cities of 6 federal states (2005-2009 were analysed as matched quadruplets (two pairs of simultaneously measured index values inside LEZ and reference values outside LEZ, one pair measured before and one after introducing LEZs with time differences that equal multiples of 364 days by multiple linear and log-linear fixed-effects regression modelling (covariables: e.g., wind velocity, amount of precipitation, height of inversion base, school holidays, truck-free periods. Additionally, the continuous half-hour data was collapsed into 4-week averages and pooled with the diffuse sampler data to perform joint analysis.More than 3,000,000 quadruplets of continuous measurements (half-hour averages were identified at 38 index and 45 reference stations. Pooling with diffuse sampler data from 15 index and 10 reference stations lead to more than 4,000 quadruplets for joint analyses of 4-week averages. Mean LEZ effects on NO2, NO, and NOx concentrations (reductions were estimated to be at most -2 µg/m(3 (or -4%. The 4-week averages of NO2 concentrations at index stations after LEZ introduction were 55 µg/m(3 (median and mean values or 82 µg/m(3 (95th percentile.This is the first study investigating comprehensively the effectiveness of LEZs to reduce NO2, NO, and NOx concentrations controlling for most relevant potential confounders. Our analyses indicate that there is a statistically significant, but rather small reduction of NO2, NO, and NOx concentrations associated with LEZs.

  12. The impact of particulate matter (PM and nitric oxides (NOx on human health and an analysis of selected sources accounting for their emission in Poland

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2016-10-01

    Full Text Available Introduction and objective: This paper is concerned with the harmful impact of nitric oxides (NOx and particulate matter (PM on humans. The objective was to determine which source of emission is the most urgent in terms of its reduction.Abbreviated description of the state of knowledge: In published epidemiological studies multiple notifications indicating the harmful impact of particulate matter on human health can be found. The harmful impact is underscored by the increase in the number of hospitalisations owing to diseases of respiratory and cardio-vascular systems, as well as by the rise in general fatality rate. The analysis of the PM impact on the human body is prompted by the fact that its detrimental effects are not clearly defined. Additionally, nitric oxides contribute to the increased number of exacerbations of respiratory disease and are a factor increasing susceptibility to development of local inflammation. Conclusions: The following study is meant to show that the air pollution which derives from vehicles (NOx and PM has a significant impact on human health. This applies particularly to residents of cities and big towns. This issue has gained special importance in Poland. According to the data from the Central Statistical Office, the increasing number of vehicles in use and their age lead to increased emission of the pollutants considered.

  13. A CONTROL-ORIENTED REAL-TIME SEMI-EMPIRICAL MODEL FOR THE PREDICTION OF NOX EMISSIONS IN DIESEL ENGINES

    OpenAIRE

    Fu, Lezhong

    2016-01-01

    Nowadays motor vehicle population increases rapidly, and it and this leads to serious energy and environmental problems. Hence, the environment and energy issues are becoming more and more important around the world. Many potential technologies have been presented and researched in universities, institutes and companies. Diesel engines are employed in Europe widely due to high thermal efficiency. The PCCI combustion concept has the potential of simultaneously reducing both NOx and particulate...

  14. On-site monitoring of biogenic emissions from Eucalyptus dunnii leaves using membrane extraction with sorbent interface combined with a portable gas chromatograph system.

    Science.gov (United States)

    Liu, Xinyu; Pawliszyn, Richard; Wang, Limei; Pawliszyn, Janusz

    2004-01-01

    Membrane extraction with sorbent interface, combined with a portable gas chromatograph system (MESI-Portable GC) for continuous on-line monitoring of biogenic volatile organic compounds (BVOCs) emissions (from leaves of Eucalytus dunnii in a greenhouse), is presented herein. A sampling chamber was designed to facilitate the extraction and identification of the BVOCs emitted by the Eucalytus dunnii leaves. Preliminary experiments, including; enrichment times, microtrap temperatures, stripping gas flow rates, and desorption temperatures were investigated to optimize experimental parameters. The main components of BVOCs released by the Eucalytus dunnii leaves were identified by comparing the retention times of peaks with those of authentic standard solutions. They were then confirmed with solid phase microextraction coupled with gas chromatography and mass spectrometry (SPME-GC-MS). BVOC emission profiles of [small alpha]-pinene, eucalyptol, and [gamma]-terpinene emitted by intact and damaged Eucalytus dunnii leaves were obtained. The findings suggest that the MESI-Portable GC system is a simple and useful tool for field monitoring changes in plant emissions as a function of time.

  15. Measurements of biogenic hydrocarbons and carbonyl compounds emitted by trees from temperate warm Atlantic rainforest, Brazil.

    Science.gov (United States)

    Carvalho, Lilian R F; Vasconcellos, Perola C; Mantovani, Waldir; Pool, Cristina S; Pisani, Silvana O

    2005-05-01

    This study is part of a three-year project on biogenic volatile organic compound (VOC) emissions from trees of the temperate warm Atlantic rainforest found in the metropolitan area of Sao Paulo City (MASP). No study of VOC emission rates from plant species has been carried out in the temperate warm Atlantic rainforest of Brazil prior to this work. Eleven species were selected (Alchornea sidifolia, Cupania oblongifolia, Cecropia pachystachia, Syagrus romanzoffiana, Casearia sylvestris, Machaerium villosum, Trema micrantha, Croton floribundus, Myrcia rostrata, Solanum erianthum and Ficus insipida) and some of them were studied in urban, sub-urban and forest areas inside the MASP in order to evaluate biogenic VOC composition at sites characterized by different emission sources. Biogenic VOC emissions were determined by placing branches of plants in a dynamic enclosure system, an all-Teflon cuvette, and by sampling the compounds in the air leaving the cuvette. Pre-concentration using adsorbents to retain the VOC, followed by GC-MS after thermal desorption of the sample, was employed to determine the amount of biogenic hydrocarbons. The collection of carbonyl compounds on a 2,4-dinitrophenylhydrazine coated silica followed by HPLC-UV was used to analyze low molecular weight carbonyl compounds. Emission rates of isoprene, alpha-pinene, camphene and limonene ranged from 0.01 to 2.16 microg C h(-1) g(-1) and emission rates of aldehydes (C(2)-C(6)), acrolein, methacrolein and 2-butanone ranged from 1.5 x 10(-2) to 2.3 micro g C h(-1) g (-1). Ambient and leaf temperatures, relative humidity, light intensity, O(3) and NO(x) levels in the local atmosphere were monitored during experiments. It was possible to identify different biogenic VOCs emitted from typical plants of temperate warm Atlantic rainforest. The emission rates were reported as a function of the type of site investigated and were only provided for compounds for which quantification was feasible. Other biogenic

  16. Innovative clean coal technology: 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Final report, Phases 1 - 3B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report presents the results of a U.S. Department of Energy (DOE) Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The project was conducted at Georgia Power Company`s Plant Hammond Unit 4 located near Rome, Georgia. The technologies demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NOx burner. The primary objective of the demonstration at Hammond Unit 4 was to determine the long-term effects of commercially available wall-fired low NOx combustion technologies on NOx emissions and boiler performance. Short-term tests of each technology were also performed to provide engineering information about emissions and performance trends. A target of achieving fifty percent NOx reduction using combustion modifications was established for the project. Short-term and long-term baseline testing was conducted in an {open_quotes}as-found{close_quotes} condition from November 1989 through March 1990. Following retrofit of the AOFA system during a four-week outage in spring 1990, the AOFA configuration was tested from August 1990 through March 1991. The FWEC CF/SF low NOx burners were then installed during a seven-week outage starting on March 8, 1991 and continuing to May 5, 1991. Following optimization of the LNBs and ancillary combustion equipment by FWEC personnel, LNB testing commenced during July 1991 and continued until January 1992. Testing in the LNB+AOFA configuration was completed during August 1993. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NOx burners and advanced overfire systems.

  17. Effects on NOx and SO2 Emissions during Co-Firing of Coal With Woody Biomass in Air Staging and Reburning

    Directory of Open Access Journals (Sweden)

    Nihad Hodžić

    2018-02-01

    Full Text Available Co-firing coal with different types of biomass is increasingly being applied in thermal power plants in Europe. The main motive for the use of biomass as the second fuel in coal-fired power plants is the reduction of CO2 emissions, and related financial benefits in accordance with the relevant international regulations and agreements. Likewise, the application of primary measures in the combustion chamber, which also includes air staging and/or reburning, results in a significant reduction in emission of polluting components of flue gases, in particular NOx emissions. In addition to being efficient and their application to new and future thermoblocks is practically unavoidable, their application and existing conventional combustion chamber does not require significant constructional interventions and is therefore relatively inexpensive. In this work results of experimental research of co-firing coals from Middle Bosnian basin with waste woody biomass are presented. Previously formed fuel test matrix is subjected to pulverized combustion under various temperatures and various technical and technological conditions. First of all it refers to the different mass ratio of fuel components in the mixture, the overall coefficient of excess air and to the application of air staging and/or reburning. Analysis of the emissions of components of the flue gases are presented and discussed. The impact of fuel composition and process temperature on the values of the emissions of components of the flue gas is determined. Additionally, it is shown that other primary measures in the combustion chamber are resulting in more or less positive effects in terms of reducing emissions of certain components of the flue gases into the environment. Thus, for example, the emission of NOx of 989 mg/ measured in conventional combustion, with the simultaneous application of air staging and reburning is reduced to 782 mg/, or by about 21%. The effects of the primary measures

  18. Effects of Turbulence on Flame Structure and NOx Emission of Turbulent Jet Non-Premixed Flames in High-Temperature Air Combustion

    Science.gov (United States)

    Kobayashi, Hideaki; Oono, Ken; Cho, Eun-Seong; Hagiwara, Hirokazu; Ogami, Yasuhiro; Niioka, Takashi

    Turbulent jet non-premixed flame under the conditions of High Temperature Air Combustion (HiCOT) was investigated. Air diluted with nitrogen was preheated up to about 1300K. Propane was injected through a fuel tube parallel to the preheated airflow. LDV measurement of turbulence, CH-PLIF for reaction zone visualization, and NOx concentration measurements in the burnt gas were performed and the relations between these characteristics were examined. Results showed that turbulence intensity generated by perforated plate installed upstream of the fuel tube was high at high-temperature airflow due to high velocity compared with that at room temperature airflow when the flow rate was controlled to keep the excess air ratio constant regardless of preheating. The reaction zone represented by the CH-PLIF images still had a thin structure even in the HiCOT condition of oxygen concentration of 8vol.%. The flow turbulence in the combustion duct played a significant role in decreasing NOx emission. Due to turbulence, flame was broken and a bubble-like flame structure was generated, especially in the lifted flame cases, implying that the burning fuel lumps flow a considerable distance in air with a low oxygen concentration and generate uniform heat release profiles in HiCOT furnaces.

  19. Evaluation of NOx emission uncertainties based on car-MAX-DOAS observations and CHIMERE model simulations during the MEGAPOLI campaigns in Paris in Summer 2009 and Winter 2009/10

    Science.gov (United States)

    Shaiganfar, Reza; Petetin, Herve; Beirle, Steffen; Beekmann, Matthias; Wagner, Thomas

    2016-04-01

    Within the European project MEGAPOLI we performed two extensive car-MAX-DOAS campaigns around Paris in August 2009 and January/February 2010. The car-MAX-DOAS observations are conducted on circles with different radii around the city with the aim to quantify the NOx emissions from the area inside the circles. The method is based on the combination of the retrieved tropospheric NO2 column densities with wind fields. In this way the influx and the outflux can be calculated; the difference of both represents emissions from the encircled area. Since the car-MAX-DOAS observations are only sensitive to NO2, the derived NO2 emissions have to be upscaled to the total NOx (NO + NO2) emissions from megacity. Also corrections for the rather short lifetime of NOx have to be applied. In our study we investigate the uncertainty of the method with respect to different measurement parameters and wind conditions. For that purpose we make use of model simulations from the regional CHIMERE model. First we sample the modelled NO2 fields at the exact locations and times of the car-MAX-DOAS measurements. Second, we apply the method for the determination of the NOx emissions to this sampled model data. Third, we compare the derived emissions to the input emissions used in the model simulations. From the comparison we identify critical parameters for the application of our method and develop a method for the determination of the uncertainty of the derived emissions. Largest errors are found for situations with low wind speed and/or high variability of the wind speed or direction during the period of the measurements. Also gaps or road segments close to the citiy center cause larger errors. Finally, we apply the method to the car-MAX-DOAS observations and compare the derived emissions to existing emission inventories.

  20. Methyl jasmonate-induced emission of biogenic volatiles is biphasic in cucumber: a high-resolution analysis of dose dependence.

    Science.gov (United States)

    Jiang, Yifan; Ye, Jiayan; Li, Shuai; Niinemets, Ülo

    2017-07-20

    Methyl jasmonate (MeJA) is a key airborne elicitor activating jasmonate-dependent signaling pathways, including induction of stress-related volatile emissions, but how the magnitude and timing of these emissions scale with MeJA dose is not known. Treatments with exogenous MeJA concentrations ranging from mild (0.2 mM) to lethal (50 mM) were used to investigate quantitative relationships among MeJA dose and the kinetics and magnitude of volatile release in Cucumis sativus by combining high-resolution measurements with a proton-transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) and GC-MS. The results highlighted biphasic kinetics of elicitation of volatiles. The early phase, peaking in 0.1-1 h after the MeJA treatment, was characterized by emissions of lipoxygenase (LOX) pathway volatiles and methanol. In the subsequent phase, starting in 6-12 h and reaching a maximum in 15-25 h after the treatment, secondary emissions of LOX compounds as well as emissions of monoterpenes and sesquiterpenes were elicited. For both phases, the maximum emission rates and total integrated emissions increased with applied MeJA concentration. Furthermore, the rates of induction and decay, and the duration of emission bursts were positively, and the timing of emission maxima were negatively associated with MeJA dose for LOX compounds and terpenoids, except for the duration of the first LOX burst. These results demonstrate major effects of MeJA dose on the kinetics and magnitude of volatile response, underscoring the importance of biotic stress severity in deciphering the downstream events of biological impacts. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Measurement of ethylene emission from Japanese red pine (Pinus densiflora) under field conditions in NOx-polluted areas

    International Nuclear Information System (INIS)

    Kume, A.; Nakatani, N.; Tsuboi, N.; Nakane, K.; Sakurai, N.; Nakagawa, N.; Sakugawa, H.

    2001-01-01

    Emission of ethylene from the needles of Japanese red pine, Pinus densiflora, was measured in air-polluted areas in Hiroshima, Japan. We applied a suitable protocol to determine the rate of ethylene emission from the excised needles. The influence of excision of needles on ethylene emission was not detected during the first 4 h of incubation at 20degC. Ethylene emissions were low in the unpolluted (Clean) areas regardless of the altitude or season. The emission of stress ethylene increased with the atmospheric NO 2 concentration, suggesting that atmospheric NO x or related substances induced the higher ethylene emission in the polluted areas (near urban and industrial areas). In all cases, 1-year-old needles emitted significantly larger amounts of ethylene than the current needles. Ethylene emission did not increase evenly in the polluted areas, but the frequency of trees emitting high ethylene increased. Therefore, threshold rates for the baseline ethylene emission were proposed. (Author)

  2. A Pilot-Scale Evaluation of a New Technology to Control NO(x) Emissions from Boilers at KSC: Hydrogen Peroxide Injection into Boiler Flue Gases Followed by Wet Scrubbing of Acid Gases

    Science.gov (United States)

    Cooper, C. David

    1997-01-01

    Emissions of nitrogen oxides NO(x) are a significant problem in the United States. NO(x) are formed in any combustion process, therefore it is not surprising that NO(x) are emitted from the boilers at KSC. Research at UCF has shown (in the laboratory) that injecting H2O2 into hot simulated flue gases can oxidize the NO and NO2 to their acid gas forms, HNO2 and HNO3, respectively. These acid gases are much more water soluble than their counterparts, and theoretically can be removed easily by wet scrubbing. This technology was of interest to NASA, both for their boilers at KSC, and for their combustion sources elsewhere. However, it was necessary to field test the technology and to provide pilot-scale data to aid in design of full-scale facilities. Hence this project was initiated in May of 1996.

  3. Experimental investigation of urea injection parameters influence on NOx emissions from blended biodiesel-fueled diesel engines.

    Science.gov (United States)

    Mehregan, Mina; Moghiman, Mohammad

    2018-02-01

    The present work submits an investigation about the effect of urea injection parameters on NO x emissions from a four-stroke four-cylinder diesel engine fueled with B20 blended biodiesel. An L 9 (3 4 ) Taguchi orthogonal array was used to design the test plan. The results reveal that increasing urea concentration leads to lower NO x emissions. Urea flow rate increment has the same influence on NO x emission. The same result is obtained by an increase in spray angle. Also, according to the analysis of variance (ANOVA), urea concentration and then urea flow rate are the most effective design parameters on NO x emissions, while spray angle and mixing length have less influence on this pollutant emission. Finally, since the result of confirmation test is in good agreement with the predicted value based on the Taguchi technique, the predictive capability of this method in the present study could be deduced.

  4. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer; Richard G. Herman

    2005-03-31

    Research is being conducted under United States Department of Energy (DOE) Contract DE-FC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia.

  5. Ammonia-Free NOx Control System

    Energy Technology Data Exchange (ETDEWEB)

    Song Wu; Zhen Fan; Andrew H. Seltzer

    2005-06-30

    Research is being conducted under United States Department of Energy (DOE) Contract DEFC26-03NT41865 to develop a new technology to achieve very low levels of NOx emissions from pulverized coal fired boiler systems by employing a novel system level integration between the PC combustion process and the catalytic NOx reduction with CO present in the combustion flue gas. The combustor design and operating conditions will be optimized to achieve atypical flue gas conditions. This approach will not only suppress NOx generation during combustion but also further reduce NOx over a downstream catalytic reactor that does not require addition of an external reductant, such as ammonia.

  6. Real world CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars.

    Science.gov (United States)

    O'Driscoll, Rosalind; Stettler, Marc E J; Molden, Nick; Oxley, Tim; ApSimon, Helen M

    2018-04-15

    In this study CO 2 and NO x emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars were compared using a Portable Emissions Measurement System (PEMS). The models sampled accounted for 56% of all passenger cars sold in Europe in 2016. We found gasoline vehicles had CO 2 emissions 13-66% higher than diesel. During urban driving, the average CO 2 emission factor was 210.5 (sd. 47) gkm -1 for gasoline and 170.2 (sd. 34) gkm -1 for diesel. Half the gasoline vehicles tested were Gasoline Direct Injection (GDI). Euro 6 GDI engines created by excessive NO x emissions from modern diesel vehicles. Replacing diesel with gasoline would incur a substantial CO 2 penalty, however greater uptake of hybrid vehicles would likely reduce both CO 2 and NO x emissions. Discrimination of vehicles on the basis of Euro standard is arbitrary and incentives should promote vehicles with the lowest real-world emissions of both NO x and CO 2 . Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Comparison of emission inventory and ambient concentration ratios of CO, NMOG, and NOx in California South Coast Air Basin

    International Nuclear Information System (INIS)

    Fujita, E.M.; Croes, B.E.; Bennett, C.L.; Lawson, D.R.; Lurmann, F.W.; Main, H.H.

    1992-01-01

    In the present study, the author performed a top-down validation of the reactive organic gas and carbon monoxide emission inventories for California's South Coast Air Basin by comparing speciation profiles for nonmethane organic gases (NMOG) and ratios of CO/NO x and NMOG/NO x derived from early-morning (0700 to 0800) ambient measurements taken during the 1987 Southern California Air Quality Study with the corresponding ratios and speciation profiles derived from day-specific, hourly, gridded emission inventories. Twenty separate comparisons were considered for each ratio, each representing a different combination of season, emission category, and spatial and temporal averaging of emissions. It was determined that the most appropriate comparison in summer was ambient pollutant ratios with ratios derived from morning on-road motrovehicle emission inventories, and in the fall, ambient ratios with ratios derived from overnight on-road motor vehicle emission inventories with some contribution from overnight stationary-source NO x emission inventories. From these comparisons, the ambient CO/CO x and NMOG/NO x ratios are about 1.5 and 2 to 2.5 times higher, respectively, than the corresponding inventory ratios. On the assumption that inventories of NO x emissions are reasonably correct, these results indicate that on-road motor vehicle CO and NMOG emissions are significantly underestimated. Comparisons of measured CO, NMOG, and NO x concentrations and CO/NO x and NMOG/NO x ratios with air quality model predictions obtained by the California Air Resources Board show similar differences

  8. ASSESSMENT OF CONTROL TECHNOLOGIES FOR REDUCING EMISSIONS OF SO2 AND NOX FROM EXISTING COAL-FIRED UTILITY BOILERS

    Science.gov (United States)

    The report reviews information and estimated costs on 15 emissioncontrol technology categories applicable to existing coal-fired electric utility boilers. he categories include passive controls such as least emission dispatching, conventional processes, and emerging technologies ...

  9. Possibilities of Simultaneous In-Cylinder Reduction of Soot and NOx Emissions for Diesel Engines with Direct Injection

    OpenAIRE

    Wagner, U.; Eckert, P.; Spicher, U.

    2008-01-01

    Up to now, diesel engines with direct fuel injection are the propulsion systems with the highest efficiency for mobile applications. Future targets in reducing CO2 -emissions with regard to global warming effects can be met with the help of these engines. A major disadvantage of diesel engines is the high soot and nitrogen oxide emissions which cannot be reduced completely with only engine measures today. The present paper describes two different possibilities for the sim...

  10. Fuel-based inventory of NOx and SO2 emissions from motor vehicles in the Hiroshima Prefecture, Japan

    International Nuclear Information System (INIS)

    Nurrohim, Agus; Sakugawa, Hiroshi

    2005-01-01

    In order to attain the 2010 target of reducing national greenhouse gases by 6% to the 1990 level, with reference to the Kyoto Protocol, the Government of Japan has planned and implemented some measures, as well as related policies. This paper discusses the possible impact of these measures on the nitrogen-oxide and sulfur-dioxide emissions from road vehicles in the Hiroshima Prefecture (ca. 3 million population). The number of road vehicles based on vehicle and fuel types in the Hiroshima Prefecture for 1990-2000 are presented, as well as projections for the years 2005 and 2010 using the Gompertz model. Three scenarios were developed to assess the emissions, referring to the possible achievement of related measures and policies as well as new vehicle technologies. Prediction results show that nitrogen-oxide emissions may be decreased from 14.7 kton in 1990 to 9.3 kton in 2010 if Japanese energy-policy and new vehicle developments are successfully implemented. If they are less successfully implemented, the emissions will decrease slightly to 14 kton, in which the decrease of emissions was mostly from gasoline vehicle. The emission of sulfur dioxide was projected to decrease from 1.2 kton in 1990 to within the range 0.45-0.49 kton by 2010, as a result of measures to reduce sulfur content in diesel oil

  11. Consequences of increased NOx emission to air during the handling of gas from the Haltenbanken Soer at Kaarstoe

    International Nuclear Information System (INIS)

    Guerreiro, Cristina

    1998-11-01

    This report discusses the consequences of increasing the emission to air of nitrogen oxides if landing facilities for North-Sea gas is developed at Kaarstoe, Norway. Three alternatives are considered. The pollution from such a facility comes in addition to the existing plant at Kaarstoe, the Aasgard terminal and the planned gas power station. The report considers concentrations in air, deposition to ground, impact on acidification of surface water and the impact of the natural environment. Concentrations in air have been calculated. The assessment of the deposition of nitrogen oxides to ground, the assessment of acidification of surface water and the assessment of the impact on flora and fauna are based on a consequence analysis for a gas power station at Kaarstoe. The influence of the development of the Kaarstoe plant on the local environment is largely determined by the amount of emissions and the tallness of the chimney. The regional impact is not very dependent on the emission conditions and the global impact is independent of the emission conditions and, to some extent, of the emission site

  12. Agriculture is a major source of NOx pollution in California

    Science.gov (United States)

    Almaraz, Maya; Bai, Edith; Wang, Chao; Trousdell, Justin; Conley, Stephen; Faloona, Ian; Houlton, Benjamin Z.

    2018-01-01

    Nitrogen oxides (NOx = NO + NO2) are a primary component of air pollution—a leading cause of premature death in humans and biodiversity declines worldwide. Although regulatory policies in California have successfully limited transportation sources of NOx pollution, several of the United States’ worst–air quality districts remain in rural regions of the state. Site-based findings suggest that NOx emissions from California’s agricultural soils could contribute to air quality issues; however, a statewide estimate is hitherto lacking. We show that agricultural soils are a dominant source of NOx pollution in California, with especially high soil NOx emissions from the state’s Central Valley region. We base our conclusion on two independent approaches: (i) a bottom-up spatial model of soil NOx emissions and (ii) top-down airborne observations of atmospheric NOx concentrations over the San Joaquin Valley. These approaches point to a large, overlooked NOx source from cropland soil, which is estimated to increase the NOx budget by 20 to 51%. These estimates are consistent with previous studies of point-scale measurements of NOx emissions from the soil. Our results highlight opportunities to limit NOx emissions from agriculture by investing in management practices that will bring co-benefits to the economy, ecosystems, and human health in rural areas of California. PMID:29399630

  13. NOx reduction and N2O emissions in a diesel engine exhaust using Fe-zeolite and vanadium based SCR catalysts

    International Nuclear Information System (INIS)

    Cho, Chong Pyo; Pyo, Young Dug; Jang, Jin Young; Kim, Gang Chul; Shin, Young Jin

    2017-01-01

    Highlights: • NO x reduction and N 2 O emission of urea-SCR catalysts with the oxidation precatalysts were investigated. • Fe-zeolite and V-based catalysts were noticeably affected by the NO 2 /NOx ratio. • Remarkable N 2 O formation was observed only for the Fe-zeolite catalyst. - Abstract: Among various approaches used to comply with strict diesel engine exhaust regulations, there is increasing interest in urea based selective catalytic reduction (SCR) as a NO x red