WorldWideScience

Sample records for biogenic methane production

  1. Enhancement of Biogenic Coalbed Methane Production and Back Injection of Coalbed Methane Co-Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Song Jin

    2007-05-31

    Biogenic methane is a common constituent in deep subsurface environments such as coalbeds and oil shale beds. Coalbed methane (CBM) makes significant contributions to world natural gas industry and CBM production continues to increase. With increasing CBM production, the production of CBM co-produced water increases, which is an environmental concern. This study investigated the feasibility in re-using CBM co-produced water and other high sodic/saline water to enhance biogenic methane production from coal and other unconventional sources, such as oil shale. Microcosms were established with the selected carbon sources which included coal, oil shale, lignite, peat, and diesel-contaminated soil. Each microcosm contained either CBM coproduced water or groundwater with various enhancement and inhibitor combinations. Results indicated that the addition of nutrients and nutrients with additional carbon can enhance biogenic methane production from coal and oil shale. Methane production from oil shale was much greater than that from coal, which is possibly due to the greater amount of available Dissolved Organic Carbon (DOC) from oil shale. Inconclusive results were observed from the other sources since the incubation period was too low. WRI is continuing studies with biogenic methane production from oil shale.

  2. Physiology and Genetics of Biogenic Methane-Production from Acetate

    Energy Technology Data Exchange (ETDEWEB)

    Sowers, Kevin R

    2013-04-04

    Biomass conversion catalyzed by methanogenic consortia is a widely available, renewable resource for both energy production and waste treatment. The efficiency of this process is directly dependent upon the interaction of three metabolically distinct groups of microorganisms; the fermentative and acetogenic Bacteria and the methanogenic Archaea. One of the rate limiting steps in the degradation of soluble organic matter is the dismutation of acetate, a predominant intermediate in the process, which accounts for 70 % or more of the methane produced by the methanogens. Acetate utilization is controlled by regulation of expression of carbon monoxide dehydrogensase (COdh), which catalyzes the dismutation of acetate. However, physiological and molecular factors that control differential substrate utilization have not been identified in these Archaea. Our laboratory has identified sequence elements near the promoter of the gene (cdh) encoding for COdh and we have confirmed that these sequences have a role in the in vivo expression of cdh. The current proposal focuses on identifying the regulatory components that interact with DNA and RNA elements, and identifying the mechanisms used to control cdh expression. We will determine whether expression is controlled at the level of transcription or if it is mediated by coordinate interaction of transcription initiation with other processes such as transcription elongation rate and differential mRNA stability. Utilizing recently sequenced methanosarcinal genomes and a DNA microarray currently under development genes that encode regulatory proteins and transcription factors will be identified and function confirmed by gene disruption and subsequent screening on different substrates. Functional interactions will be determined in vivo by assaying the effects of gene dosage and site-directed mutagenesis of the regulatory gene on the expression of a cdh::lacZ operon fusion. Results of this study will reveal whether this critical

  3. Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production

    Science.gov (United States)

    Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.

    2014-12-01

    Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.

  4. Formation temperatures of thermogenic and biogenic methane

    OpenAIRE

    Stolper, D. A.; Lawson, M.; Davis, C. L.; Ferreira, A. A.; Santos Neto, E. V.; Ellis, G.S.; Lewan, M.D.; Martini, A. M.; Tang, Y.; Schoell, M.; Sessions, A.L.; Eiler, J. M.

    2014-01-01

    Methane is an important greenhouse gas and energy resource generated dominantly by methanogens at low temperatures and through the breakdown of organic molecules at high temperatures. However, methane-formation temperatures in nature are often poorly constrained. We measured formation temperatures of thermogenic and biogenic methane using a “clumped isotope” technique. Thermogenic gases yield formation temperatures between 157° and 221°C, within the nominal gas window, and biogenic gases yiel...

  5. Formation temperatures of thermogenic and biogenic methane

    Science.gov (United States)

    Stolper, D.A.; Lawson, M.; Davis, C.L.; Ferreira, A.A.; Santos Neto, E. V.; Ellis, G.S.; Lewan, M.D.; Martini, A.M.; Tang, Y.; Schoell, M.; Sessions, A.L.; Eiler, J.M.

    2014-01-01

    Methane is an important greenhouse gas and energy resource generated dominantly by methanogens at low temperatures and through the breakdown of organic molecules at high temperatures. However, methane-formation temperatures in nature are often poorly constrained. We measured formation temperatures of thermogenic and biogenic methane using a “clumped isotope” technique. Thermogenic gases yield formation temperatures between 157° and 221°C, within the nominal gas window, and biogenic gases yield formation temperatures consistent with their comparatively lower-temperature formational environments (<50°C). In systems where gases have migrated and other proxies for gas-generation temperature yield ambiguous results, methane clumped-isotope temperatures distinguish among and allow for independent tests of possible gas-formation models.

  6. Biogenic methane potential of marine sediments. Application of chemical thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Arning, E.T.; Schulz, H.M. [Helmholtz Centre Potsdam GFZ, Potsdam (Germany); Berk, W. van [Technical Univ. of Clausthal (Germany). Dept. of Hydrogeology

    2013-08-01

    Accumulations of biogenic methane-dominated gas are widespread and occur in a variety of depositional settings and rock types. However, the potential of biogenic methane remains underexplored. This is mainly due to the fact that quantitative assessments applying numerical modeling techniques for exploration purposes are generally lacking to date. Biogenic methane formation starts in relatively shallow marine sediments below the sulfate reduction zone. When sulfate is exhausted, methanogenesis via the CO{sub 2} reduction pathway is often the dominant biogenic methane formation process in marine sediments (Claypool and Kaplan, 1974). The process can be simplified by the reaction: 2CH{sub 2}O + Ca{sup 2+} + H{sub 2}O {yields} CH{sub 4} + CaCO{sub 3} + 2H{sup +}. The products of early diagenetic reactions initiate coupled equilibrium reactions that induce a new state of chemical equilibrium among minerals, pore water and gas. The driving force of the complex biogeochemical reactions in sedimentary environments during early diagenesis is the irreversible redox-conversion of organic matter. Early diagenetic formation of biogenic methane shortly after deposition ('early diagenesis') was retraced using PHREEQC computer code that is applied to calculate homogenous and heterogeneous mass-action equations in combination with one-dimensional diffusion driven transport (Parkhurst and Appelo, 1999). Our modeling approach incorporates interdependent diagenetic reactions evolving into a diffusive multi-component and multiphase system by means of thermodynamic equilibrium calculations of species distribution (Arning et al., 2011, 2012, 2013). Reaction kinetics of organic carbon conversion is integrated into the set of equilibrium reactions by defining type and amount of converted organic matter in a certain time step. It is the aim (1) to calculate quantitatively thermodynamic equilibrium conditions (composition of pore water, mineral phase and gas phase assemblage) in

  7. Effects of composition of labile organic matter on biogenic production of methane in the coastal sediments of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Gonsalves, M.J.B.D.; Fernandes, C.E.G.; Fernandes, S.O.; Kirchman, D.L.; LokaBharathi, P.A.

    Coastal regions are potential zones for production of methane which could be governed by ecological/environmental differences or even sediment properties of a niche. In order to test the hypothesis that methanogenesis in most marine sediments could...

  8. Insights into Methane Formation Temperatures, Biogenic Methanogenesis, and Natural Methane Emissions from Clumped Isotopes

    Science.gov (United States)

    Douglas, P. M.; Stolper, D. A.; Walter Anthony, K. M.; Dallimore, S.; Paull, C. K.; Wik, M.; Crill, P. M.; Winterdahl, M.; Smith, D. A.; Luhmann, A. J.; Ding, K.; Seyfried, W. E., Jr.; Eiler, J. M.; Ponton, C.; Sessions, A. L.

    2015-12-01

    Multiply substituted isotopologues of methane are a valuable new tool for characterizing and understanding the source of methane in different Earth environments. Here we present methane clumped isotope results from natural gas wells, hydrothermal vents, marine and lacustrine methane seeps, and culture experiments. We observe a wide range of formation temperatures for thermogenic methane. Methane samples from low-maturity reservoirs indicate formation temperatures between 102-144° C, high-maturity conventional and shale gasses indicate temperatures between 158-246 °C, and thermogenic coal gases indicate temperatures between 174-267 °C. Methane formation temperatures generally correlate positively with δ13C, and negatively with gas wetness indices. Methane samples from a set of marine hydrothermal vents indicate a formation temperature of 290-350 °C. Methane sampled from subsurface and marine biogenic sources typically indicate temperatures consistent with the formation environment (0-64° C). In contrast, freshwater biogenic methane samples, and cultures of hydrogenotrophic and methylotrophic methanogens, express low levels of isotopic clumping inconsistent with their formation temperature. These data and complementary models suggest that kinetic isotope effects, likely modulated by rates and pathways of methanogenesis, affect biogenic methane in cultures and freshwater environments. Alternatively, non-equilibrium signatures may result from mixing of methane with widely differing δD and δ13C values. Analyses of biogenic methane emissions from lakes indicate a correlation between methane flux and non-equilibrium clumped isotope fractionations in a given lake. Results from large methane seeps in Alaskan lakes confirm that some seeps emit thermogenic methane, but also indicate that other seeps emit subsurface biogenic methane or variable mixtures of biogenic and thermogenic methane. These results point to diverse sources for large Arctic methane seeps.

  9. Microbial Methane Formation from Coal and Wood in Abandoned Coal Mines - Analogues for biogenic methane formation in Black Shales

    Science.gov (United States)

    Krüger, M.; Beckmann, S.; Engelen, B.; Cypionka, H.

    2009-04-01

    About seven percent of the global annual methane emissions originate from coal mining. Also, mine gas has come into focus of the power industry and is being used increasingly for heat and power production. In many coal deposits worldwide, stable carbon and hydrogen isotopic signatures of methane indicate a mixed thermogenic and biogenic origin. In this study, we have measured in an abandoned coal mine methane fluxes and isotopic signatures of methane and carbon dioxide, and collected samples for microbiological and phylogenetic investigations. Mine timber and hard coal showed an in-situ production of methane with isotopic signatures similar to those of the methane in the mine atmosphere. Enrichment cultures amended with mine timber or hard coal as sole carbon sources formed methane over a period of nine months. Predominantly, acetoclastic methanogenesis was stimulated in enrichments containing acetate or hydrogen/carbon dioxide. Molecular techniques revealed that the archaeal community in enrichment cultures and unamended samples was dominated by members of the Methanosarcinales. The combined geochemical and microbiological investigations identify microbial methanogenesis as a recent source of methane in abandoned coal mines. Overall, our new results support the assumption that abandoned coal reservoirs have a potential to supply methane gas for energy production over extended time scales. The worldwide increased mining activity will go along with an increased coal weathering and the formation of biogenic methane. Currently, our research is focussing on the question to which extent and for how long recent biogenic methane production is contributing to shale gas formation as another important future energy resource.

  10. Gas formation. Formation temperatures of thermogenic and biogenic methane.

    Science.gov (United States)

    Stolper, D A; Lawson, M; Davis, C L; Ferreira, A A; Santos Neto, E V; Ellis, G S; Lewan, M D; Martini, A M; Tang, Y; Schoell, M; Sessions, A L; Eiler, J M

    2014-06-27

    Methane is an important greenhouse gas and energy resource generated dominantly by methanogens at low temperatures and through the breakdown of organic molecules at high temperatures. However, methane-formation temperatures in nature are often poorly constrained. We measured formation temperatures of thermogenic and biogenic methane using a "clumped isotope" technique. Thermogenic gases yield formation temperatures between 157° and 221°C, within the nominal gas window, and biogenic gases yield formation temperatures consistent with their comparatively lower-temperature formational environments (<50°C). In systems where gases have migrated and other proxies for gas-generation temperature yield ambiguous results, methane clumped-isotope temperatures distinguish among and allow for independent tests of possible gas-formation models. PMID:24970083

  11. Biogenic amines in dairy products

    OpenAIRE

    Linares, Daniel M.; Martín, M. Cruz; Ladero Losada, Víctor Manuel; Álvarez González, Miguel Ángel; Fernández García, María

    2011-01-01

    Biogenic amines (BA) are organic, basic, nitrogenous compounds with biological activity, mainly formed by the decarboxylation of amino acids. BA are present in a wide range of foods, including dairy products, and can accumulate in high concentrations. In some cheeses more than 1000 mg of BA have been detected per kilogram of cheese. The consumption of food containing large amounts of these amines can have toxicological consequences. Although there is no specific legislation regarding the BA c...

  12. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues

    Science.gov (United States)

    Stolper, D. A.; Martini, A. M.; Clog, M.; Douglas, P. M.; Shusta, S. S.; Valentine, D. L.; Sessions, A. L.; Eiler, J. M.

    2015-07-01

    Sources of methane to sedimentary environments are commonly identified and quantified using the stable isotopic compositions of methane. The methane "clumped-isotope geothermometer", based on the measurement of multiply substituted methane isotopologues (13CH3D and 12CH2D2), shows promise in adding new constraints to the sources and formational environments of both biogenic and thermogenic methane. However, questions remain about how this geothermometer behaves in systems with mixtures of biogenic and thermogenic gases and different biogenic environments. We have applied the methane clumped-isotope thermometer to a mixed biogenic-thermogenic system (Antrim Shale, USA) and to biogenic gas from gas seeps (Santa Barbara and Santa Monica Basin, USA), a pond on the Caltech campus, and methanogens grown in pure culture. We demonstrate that clumped-isotope based temperatures add new quantitative constraints to the relative amounts of biogenic vs. thermogenic gases in the Antrim Shale indicating a larger proportion (∼50%) of thermogenic gas in the system than previously thought. Additionally, we find that the clumped-isotope temperature of biogenic methane appears related to the environmental settings in which the gas forms. In systems where methane generation rates appear to be slow (e.g., the Antrim Shale and gas seeps), microbial methane forms in or near both internal isotopic equilibrium and hydrogen-isotope equilibrium with environmental waters. In systems where methane forms rapidly, microbial methane is neither in internal isotopic equilibrium nor hydrogen-isotope equilibrium with environmental waters. A quantitative model of microbial methanogenesis that incorporates isotopes is proposed to explain these results.

  13. Deposition of Biogenic Iron Minerals in a Methane Oxidizing Microbial Mat

    Directory of Open Access Journals (Sweden)

    Christoph Wrede

    2013-01-01

    Full Text Available The syntrophic community between anaerobic methanotrophic archaea and sulfate reducing bacteria forms thick, black layers within multi-layered microbial mats in chimney-like carbonate concretions of methane seeps located in the Black Sea Crimean shelf. The microbial consortium conducts anaerobic oxidation of methane, which leads to the formation of mainly two biomineral by-products, calcium carbonates and iron sulfides, building up these chimneys. Iron sulfides are generated by the microbial reduction of oxidized sulfur compounds in the microbial mats. Here we show that sulfate reducing bacteria deposit biogenic iron sulfides extra- and intracellularly, the latter in magnetosome-like chains. These chains appear to be stable after cell lysis and tend to attach to cell debris within the microbial mat. The particles may be important nuclei for larger iron sulfide mineral aggregates.

  14. Enhanced Microbial Pathways for Methane Production from Oil Shale

    Energy Technology Data Exchange (ETDEWEB)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  15. Methylotrophic methanogenesis governs the biogenic coal bed methane formation in Eastern Ordos Basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongguang; Yu, Zhisheng; Liu, Ruyin [Graduate Univ. of Chinese Academy of Sciences, Beijing (China). College of Resources and Environment; Zhang, Hongxun [Graduate Univ. of Chinese Academy of Sciences, Beijing (China). College of Resources and Environment; Chinese Academy of Sciences, Beijing (China). Research Center for Eco-Environmental Sciences; Zhong, Qiding; Xiong, Zhenghe [China National Research Institute of Food and Fermentation Industries, Beijing (China). Food Analysis using Isotope Technology Lab

    2012-12-15

    To identify the methanogenic pathways present in a deep coal bed methane (CBM) reservoir associated with Eastern Ordos Basin in China, a series of geochemical and microbiological studies was performed using gas and water samples produced from the Liulin CBM reservoir. The composition and stable isotopic ratios of CBM implied a mixed biogenic and thermogenic origin of the methane. Archaeal 16S rRNA gene analysis revealed the dominance of the methylotrophic methanogen Methanolobus in the water produced. The high potential of methane production by methylotrophic methanogens was found in the enrichments using the water samples amended with methanol and incubated at 25 and 35 C. Methylotrophic methanogens were the dominant archaea in both enrichments as shown by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). Bacterial 16S rRNA gene analysis revealed that fermentative, sulfate-reducing, and nitrate-reducing bacteria inhabiting the water produced were a factor in coal biodegradation to fuel methanogens. These results suggested that past and ongoing biodegradation of coal by methylotrophic methanogens and syntrophic bacteria, as well as thermogenic CBM production, contributed to the Liulin CBM reserves associated with the Eastern Ordos Basin. (orig.)

  16. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  17. Factors influencing biogenic amines accumulation in dairy products

    OpenAIRE

    Daniel M. eLinares; Beatriz edel Río; Victor eLadero; Noelia eMartínez; María eFernández; María Cruz eMartín; Miguel A. eAlvarez

    2012-01-01

    Fermented foods are within the food products more often complained of having caused biogenic amines poisoning. Concerning milk-based fermented foods, cheese is the main product likely to contain significant levels of biogenic amines, specially tyramine, histamine and putrescine. Prompted by the increasing awareness of the risks related to dietary uptake of high biogenic amine loads, in this review we report about cheese elaboration and processing technological aspects affecting biogenic amine...

  18. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.; Ambus, Per

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...

  19. Methane photochemistry and methane production on Neptune

    Science.gov (United States)

    Romani, P. N.; Atreya, S. K.

    1988-01-01

    The Neptune stratosphere's methane photochemistry is presently studied by means of a numerical model in which the observed mixing ratio of methane prompts photolysis near the CH4 homopause. Haze generation by methane photochemistry has its basis in the formation of hydrocarbon ices and polyacetylenes; the hazes can furnish the requisite aerosol haze at the appropriate pressure levels required by observations of Neptune in the visible and near-IR. Comparisons of model predictions with Uranus data indicate a lower ratio of polyacetylene production to hydrocarbon ice, as well as a lower likelihood of UV postprocessing of the acetylene ice to polymers on Neptune, compared to Uranus.

  20. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.;

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature......, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH4 in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. Hence, scaling up of aerobic CH4 emission needs to take...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  1. Factors influencing biogenic amines accumulation in dairy products

    Directory of Open Access Journals (Sweden)

    Daniel M. eLinares

    2012-05-01

    Full Text Available Fermented foods are within the food products more often complained of having caused biogenic amines poisoning. Concerning milk-based fermented foods, cheese is the main product likely to contain significant levels of biogenic amines, specially tyramine, histamine and putrescine. Prompted by the increasing awareness of the risks related to dietary uptake of high biogenic amine loads, in this review we report about cheese elaboration and processing technological aspects affecting biogenic amines levels. Synthesis of biogenic amines is possible only when three conditions converge: i availability of the substrate amino acids; ii presence of microorganisms with the appropriate catabolic pathway activated; and iii environmental conditions favorable to the decarboxilation activity. These conditions depend on several factors such as milk treatment (pasteurization, use of starter cultures, NaCl concentration, time and temperature of ripening and preservation, pH… which will be discussed in this chapter.

  2. Investigations of Methane Production in Hypersaline Environments

    Science.gov (United States)

    Bebout, Brad M.

    2015-01-01

    The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleo-environments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption. Methane in the atmosphere of Mars may be an indication of life but might also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. Hypersaline environments have now been reported to be extremely likely in several locations in our solar system, including: Mars, Europa, and Enceladus. Modern hypersaline microbial mat communities, (thought to be analogous to those present on the early Earth at a period of time when Mars was experiencing very similar environmental conditions), have been shown to produce methane. However, very little is known about the physical and/or biological controls imposed upon the rates at which methane, and other important trace gases, are produced and consumed in these environments. We describe here the results of our investigations of methane production in hypersaline environments, including field sites in Chile, Baja California Mexico, California, USA and the United Arab Emirates. We have measured high concentrations of methane in bubbles of gas produced both in the sediments underlying microbial mats, as well as in areas not colonized by microbial mats in the Guerrero Negro hypersaline ecosystem, Baja California Mexico, in Chile, and in salt ponds on the San Francisco Bay. The carbon isotopic (d13C) composition of the methane in the bubbles exhibited an extremely wide range of values, (ca. -75 per mille ca. -25 per mille). The hydrogen isotopic composition of the methane (d2H) ranged from -60 to -30per mille and -450 to -350per mille. These isotopic values are outside of the range of values normally considered to be biogenic, however incubations of the sediments in contact with these gas bubbles reveals that the methane is indeed being

  3. Preliminary investigation of biogenic gas production in Indonesian low rank coals and implications for a renewable energy source

    Science.gov (United States)

    Susilawati, Rita; Papendick, Sam L.; Gilcrease, Patrick C.; Esterle, Joan S.; Golding, Suzanne D.; Mares, Tennille E.

    2013-11-01

    Indonesia has abundant coal resources at depths suitable to contain substantial volumes of naturally occurring methane, which are currently being explored. Most Indonesian coals are thermally immature, but are composed of hydrogen-rich organic components that are presumed to make them excellent substrates for biogenic methane production. Gas isotope results from pilot wells in South Sumatra, reported in this study, are interpreted to indicate biogenic origins for the methane. Corresponding formation water samples were collected and incubated, and show the presence of indigenous microbial communities capable of producing methane from Indonesian and Australian coal. Although these results are only preliminary, they are promising and support the possibility of Indonesia developing bio renewable energy from coal seams.

  4. Factors Influencing Biogenic Amines Accumulation in Dairy Products

    OpenAIRE

    Linares, Daniel M.; del Río, Beatriz; Ladero, Victor; Martínez, Noelia; Fernández, María; Martín, María Cruz; Álvarez, Miguel A.

    2012-01-01

    Fermented foods are among the food products more often complained of having caused episodes of biogenic amines (BA) poisoning. Concerning milk-based fermented foods, cheese is the main product likely to contain potentially harmful levels of BA, specially tyramine, histamine, and putrescine. Prompted by the increasing awareness of the risks related to dietary uptake of high biogenic amine loads, in this review we report all those elaboration and processing technological aspects affecting BA bi...

  5. Factors influencing biogenic amines accumulation in dairy products

    OpenAIRE

    Alvarez, Miguel A.

    2012-01-01

    Fermented foods are among the food products more often complained of having caused episodes of biogenic amines (BA) poisoning. Concerning milk-based fermented foods, cheese is the main product likely to contain potentially harmful levels of BA, specially tyramine, histamine, and putrescine. Prompted by the increasing awareness of the risks related to dietary uptake of high biogenic amine loads, in this review we report all those elaboration and processing technological aspects affecting BA bi...

  6. Biogenic amines in meat and fermented meat products

    Directory of Open Access Journals (Sweden)

    Joanna Stadnik

    2010-09-01

    Full Text Available Recent trends in food quality and safety promote an increasing search for trace compounds that can affect human health. Biogenic amines belong to this group of substances. They can cause distinctive pharmacological, physiological and toxic effects in organisms. Their amounts are usually increasing as a consequence of the use of poor quality raw materials, during controlled or spontaneous microbial fermentation or in the course of food spoilage. The origin of biogenic amines makes them suitable as chemical indicators of the hygienic quality and freshness of some foods being associated to the degree of food fermentation or degradation. The development of appropriate manufacturing technologies to obtain products free or nearly free from biogenic amines is a challenge for the meat industry. This review briefly summarises current knowledge on the biological implications of biogenic amines on human health and collects data on the factors affecting their formation in meat and fermented meat products.

  7. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by ¹³CH₄.

    Science.gov (United States)

    Schaefer, Hinrich; Mikaloff Fletcher, Sara E; Veidt, Cordelia; Lassey, Keith R; Brailsford, Gordon W; Bromley, Tony M; Dlugokencky, Edward J; Michel, Sylvia E; Miller, John B; Levin, Ingeborg; Lowe, Dave C; Martin, Ross J; Vaughn, Bruce H; White, James W C

    2016-04-01

    Between 1999 and 2006, a plateau interrupted the otherwise continuous increase of atmospheric methane concentration [CH4] since preindustrial times. Causes could be sink variability or a temporary reduction in industrial or climate-sensitive sources. We reconstructed the global history of [CH4] and its stable carbon isotopes from ice cores, archived air, and a global network of monitoring stations. A box-model analysis suggests that diminishing thermogenic emissions, probably from the fossil-fuel industry, and/or variations in the hydroxyl CH4 sink caused the [CH4] plateau. Thermogenic emissions did not resume to cause the renewed [CH4] rise after 2006, which contradicts emission inventories. Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands. If so, mitigating CH4 emissions must be balanced with the need for food production. PMID:26966190

  8. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4

    Science.gov (United States)

    Schaefer, Hinrich; Fletcher, Sara E. Mikaloff; Veidt, Cordelia; Lassey, Keith R.; Brailsford, Gordon W.; Bromley, Tony M.; Dlugokencky, Edward J.; Michel, Sylvia E.; Miller, John B.; Levin, Ingeborg; Lowe, Dave C.; Martin, Ross J.; Vaughn, Bruce H.; White, James W. C.

    2016-04-01

    Between 1999 and 2006, a plateau interrupted the otherwise continuous increase of atmospheric methane concentration [CH4] since preindustrial times. Causes could be sink variability or a temporary reduction in industrial or climate-sensitive sources. We reconstructed the global history of [CH4] and its stable carbon isotopes from ice cores, archived air, and a global network of monitoring stations. A box-model analysis suggests that diminishing thermogenic emissions, probably from the fossil-fuel industry, and/or variations in the hydroxyl CH4 sink caused the [CH4] plateau. Thermogenic emissions did not resume to cause the renewed [CH4] rise after 2006, which contradicts emission inventories. Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands. If so, mitigating CH4 emissions must be balanced with the need for food production.

  9. Archaebacterial Fuel Production: Methane from Biomass.

    Science.gov (United States)

    Lennox, John E.; And Others

    1983-01-01

    Discusses microbial production of methane from biomass. Topics include methogens (bacteria producing methane), ecology of methanogenesis, methanogenesis in ruminant/nonruminant and other environments, role of methanogenesis in nature, and methane production in sewage treatment plants. Also discusses construction of methane digesters (and related…

  10. Methane Production in Minnesota Peatlands

    OpenAIRE

    Williams, Richard T; Crawford, Ronald L.

    1984-01-01

    Rates of methane production in Minnesota peats were studied. Surface (10- to 25-cm) peats produced an average of 228 nmol of CH4 per g (dry weight) per h at 25°C and ambient pH. Methanogenesis rates generally decreased with depth in ombrotrophic peats, but on occasion were observed to rise within deeper layers of certain fen peats. Methane production was temperature dependent, increasing with increasing temperature (4 to 30°C), except in peats from deeper layers. Maximal methanogenesis from t...

  11. High-temperature removal of sulphur for biogenic gas products; Hochtemperatur-Entschwefelung fuer biogene Produktgase. Design und Optimierung - Schlussbericht/Jahresbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schildhauer, T.; Biollaz, S.

    2009-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a project concerning the development of basics ideas on the design and optimisation of high-temperature methods for the removal of sulphur from biogenic gas products. Tests made as part of the 'Methane from Wood' project at pilot installations in Switzerland and Austria are discussed. Low temperature and high-temperature methods are examined and discussed. A number of sulphur compounds were tested. Also, experiments made using nickel, HDS and CPO catalysers are discussed.

  12. Stable hydrogen and carbon isotopic compositions of biogenic methanes from several shallow aquatic environments

    International Nuclear Information System (INIS)

    Stable hydrogen (δD) and carbon (δ/sup 13/C) isotopic compositions of methane gas bubbles formed in the sediments of several shallow aquatic environments were measured and found to range from -3460/oo to -2630/oo and from -75.00/oo to -51.50/oo, respectively. Evaluation of the δD data with a previously published model implies that acetate dissimilation accounts for about 50% to 80% of the total methane production. δD-CH/sub 4/ and δ/sup 13/C-CH/sub 4/ are generally inversely correlated; this indicates that the observed isotopic variation is not solely due to differential methane oxidation. δ/sup 13/C-CH/sub 4/ values reported in this paper imply that methane produced in these sediments is generally substantially more /sup 13/C-depleted than the estimated average atmospheric methane source. Methane with a δD near the estimated atmospheric source average is produced in some of these sediments; this apparent agreement may be fortuitous as few relevant data are available

  13. Biogenic non-methane hydrocarbons (NMHC). Nature`s contribution to regional and global atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klockow, D.; Hoffman, T. [Inst. of Spectrochemistry and Applied Spectroscopy, Dortmund (Germany)

    1995-12-31

    Terrestrial vegetation provides an important source of volatile hydrocarbons, especially isoprene, monoterpenes and in addition possibly sesquiterpenes as well as oxygenated compounds. Although there exist considerable uncertainties in the estimation of the magnitude of these biogenic NMHC emissions, it is generally accepted that the majority of global NMHC release is from natural and not from anthropogenic sources. Taking into consideration the high reactivity of the mostly unsaturated biogenic emissions, their impact on tropospheric processes can be assumed to be of great importance. Together with anthropogenic NO{sub x} emissions, the highly reactive natural alkenes can act as precursors in photochemical oxidant formation and contribute to regional-scale air pollution. Their oxidation in the atmosphere and the subsequent gas-to-particle conversion of the products lead to the formation of organic aerosols. Because of the formation of phytotoxic compounds, the interaction of the biogenic hydrocarbons with ozone inside or outside the leaves and needles of plants has been suggested to play a role in forest decline. (author)

  14. Factors influencing biogenic amines accumulation in dairy products.

    Science.gov (United States)

    Linares, Daniel M; Del Río, Beatriz; Ladero, Victor; Martínez, Noelia; Fernández, María; Martín, María Cruz; Alvarez, Miguel A

    2012-01-01

    Fermented foods are among the food products more often complained of having caused episodes of biogenic amines (BA) poisoning. Concerning milk-based fermented foods, cheese is the main product likely to contain potentially harmful levels of BA, specially tyramine, histamine, and putrescine. Prompted by the increasing awareness of the risks related to dietary uptake of high biogenic amine loads, in this review we report all those elaboration and processing technological aspects affecting BA biosynthesis and accumulation in dairy foods. Improved knowledge of the factors involved in the synthesis and accumulation of BA should lead to a reduction in their incidence in milk products. Synthesis of BA is possible only when three conditions converge: (i) availability of the substrate amino acids; (ii) presence of microorganisms with the appropriate catabolic pathway activated; and (iii) environmental conditions favorable to the decarboxylation activity. These conditions depend on several factors such as milk treatment (pasteurization), use of starter cultures, NaCl concentration, time, and temperature of ripening and preservation, pH, temperature, or post-ripening technological processes, which will be discussed in this chapter. PMID:22783233

  15. Enhancement of methane production from barley waste

    OpenAIRE

    L. Neves; Ribeiro, R.; Oliveira, Rosário; Alves, M. M.

    2006-01-01

    Two different approaches were attempted to try and enhance methane production from an industrial waste composed of 100% barley, which results from production of instant coffee substitutes. In previous work, this waste was co-digested with an excess of activated sludge produced in the wastewater treatment plant located in same industrial unit, resulting in a very poor methane yield (25LCH4(STP)/ kgVSinitial), and low reductions in total solids (31%) and in volatile solids (40%). Wh...

  16. Quantifying Low Temperature Production of Methane on Mars

    Science.gov (United States)

    Schwenzer, S. P.

    2011-03-01

    Potential anorganic production of methane from a range of martian rock compositions is quantified and compared to the concentration of methane observed on Mars. Impact-craters are suggested as potential sites of methane formation and storage.

  17. Estimating methane gas production in peat soils of the Florida Everglades using hydrogeophysical methods

    Science.gov (United States)

    Wright, William; Comas, Xavier

    2016-04-01

    The spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Everglades. Ground penetrating radar (GPR) is a hydrogeophysical tool that has been successfully used in the last decade to noninvasively investigate carbon dynamics in peat soils; however, application in subtropical systems is almost non-existent. This study is based on four field sites in the Florida Everglades, where changes in gas content within the soil are monitored using time-lapse GPR measurements and gas releases are monitored using gas traps. A weekly methane gas production rate is estimated using a mass balance approach, considering gas content estimated from GPR, gas release from gas traps and incorporating rates of diffusion, and methanotrophic consumption from previous studies. Resulting production rates range between 0.02 and 0.47 g CH4 m-2 d-1, falling within the range reported in literature. This study shows the potential of combining GPR with gas traps to monitor gas dynamics in peat soils of the Everglades and estimate methane gas production. We also show the enhanced ability of certain peat soils to store gas when compared to others, suggesting that physical properties control biogenic gas storage in the Everglades peat soils. Better understanding biogenic methane gas dynamics in peat soils has implications regarding the role of wetlands in the global carbon cycle, particularly under a climate change scenario.

  18. Biogenic amines in meat and fermented meat products

    OpenAIRE

    Joanna Stadnik; Zbigniew J. Dolatowski

    2010-01-01

    Recent trends in food quality and safety promote an increasing search for trace compounds that can affect human health. Biogenic amines belong to this group of substances. They can cause distinctive pharmacological, physiological and toxic effects in organisms. Their amounts are usually increasing as a consequence of the use of poor quality raw materials, during controlled or spontaneous microbial fermentation or in the course of food spoilage. The origin of biogenic amines makes them suitabl...

  19. Biogenic carbon fluxes from global agricultural production and consumption

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, Julie; West, Tristram O.; Le Page, Yannick LB; Kyle, G. Page; Zhang, Xuesong; Collatz, George; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange (NCE) and spatially distributed to 0.05 degree resolution using MODIS satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which is respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of ca. 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  20. Validation of an HPLC Analytical Method for Determination of Biogenic Amines in Agricultural Products and Monitoring of Biogenic Amines in Korean Fermented Agricultural Products.

    Science.gov (United States)

    Yoon, Hyeock; Park, Jung Hyuck; Choi, Ari; Hwang, Han-Joon; Mah, Jae-Hyung

    2015-09-01

    An HPLC analytical method was validated for the quantitative determination of biogenic amines in agricultural products. Four agricultural foods, including apple juice, Juk, corn oil and peanut butter, were selected as food matrices based on their water and fat contents (i.e., non-fatty liquid, non-fatty solid, fatty liquid and fatty solid, respectively). The precision, accuracy, recovery, limit of detection (LOD) and quantification (LOQ) were determined to test the validity of an HPLC procedure for the determination of biogenic amines, including tryptamine, β-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine and spermine, in each matrix. The LODs and LOQs for the biogenic amines were within the range of 0.01~0.10 mg/kg and 0.02~0.31 mg/kg, respectively. The relative standard deviation (RSD) of intraday for biogenic amine concentrations ranged from 1.86 to 5.95%, whereas the RSD of interday ranged from 2.08 to 5.96%. Of the matrices spiked with biogenic amines, corn oil with tyramine and Juk with putrescine exhibited the least accuracy of 84.85% and recovery rate of 89.63%, respectively, at the lowest concentration (10 mg/kg). Therefore, the validation results fulfilled AOAC criteria and recommendations. Subsequently, the method was applied to the analysis of biogenic amines in fermented agricultural products for a total dietary survey in Korea. Although the results revealed that Korean traditional soy sauce and Doenjang contained relatively high levels of histamine, the amounts are of no concern if these fermented agricultural products serve as condiments. PMID:26483889

  1. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments

    Science.gov (United States)

    Oremland, R.S.; Marsh, L.M.; Polcin, S.

    1982-01-01

    It has been generally believed that sulphate reduction precludes methane generation during diagenesis of anoxic sediments1,2. Because most biogenic methane formed in nature is thought to derive either from acetate cleavage or by hydrogen reduction of carbon dioxide3-6, the removal of these compounds by the energetically more efficient sulphate-reducing bacteria can impose a substrate limitation on methanogenic bacteria 7-9. However, two known species of methanogens, Methanosarcina barkeri and Methanococcus mazei, can grow on and produce methane from methanol and methylated amines10-13. In addition, these compounds stimulate methane production by bacterial enrichments from the rumen11,14 and aquatic muds13,14. Methanol can enter anaerobic food webs through bacterial degradation of lignins15 or pectin16, and methylated amines can be produced either from decomposition of substances like choline, creatine and betaine13,14 or by bacterial reduction of trimethylamine oxide17, a common metabolite and excretory product of marine animals. However, the relative importance of methanol and methylated amines as precursors of methane in sediments has not been previously examined. We now report that methanol and trimethylamine are important substrates for methanogenic bacteria in salt marsh sediments and that these compounds may account for the bulk of methane produced therein. Furthermore, because these compounds do not stimulate sulphate reduction, methanogenesis and sulphate reduction can operate concurrently in sulphate-containing anoxic sediments. ?? 1982 Nature Publishing Group.

  2. Methane productivity of manure, straw and solid fractions of manure

    DEFF Research Database (Denmark)

    Møller, H.B.; Sommer, S.G.; Ahring, Birgitte Kiær

    2004-01-01

    volumetric methane yield of straw was found to be higher than the yield from total manure and the solid fractions of manure, due to the higher VS content, and hence the use of straw as bedding material will increase the volumetric as well as the livestock-based methane productivity.......The methane productivity of manure in terms of volatile solids (VS), volume and livestock production was determined. The theoretical methane productivity is higher in pig (516 1 kg(-1) VS) and sow (530 1 kg(-1) VS) manure than in dairy cattle manure (469 1 kg(-1) VS), while the ultimate methane...... yield in terms of VS is considerably higher in pig (356 1 kg(-1) VS) and sow manure (275 1 kg(-1) VS) than in dairy cattle manure (148 1 kg(-1) VS). Methane productivity based on livestock units (LU) shows the lowest methane productivity for sows (165 m(3) CH4 LU-1), while the other animal categories...

  3. Methane productivity of manure, straw and solid fractions of manure

    DEFF Research Database (Denmark)

    Møller, H.B.; Sommer, S.G.; Ahring, Birgitte Kiær

    2004-01-01

    The methane productivity of manure in terms of volatile solids (VS), volume and livestock production was determined. The theoretical methane productivity is higher in pig (516 1 kg(-1) VS) and sow (530 1 kg(-1) VS) manure than in dairy cattle manure (469 1 kg(-1) VS), while the ultimate methane...... yield in terms of VS is considerably higher in pig (356 1 kg(-1) VS) and sow manure (275 1 kg(-1) VS) than in dairy cattle manure (148 1 kg(-1) VS). Methane productivity based on livestock units (LU) shows the lowest methane productivity for sows (165 m(3) CH4 LU-1), while the other animal categories...... volumetric methane yield of straw was found to be higher than the yield from total manure and the solid fractions of manure, due to the higher VS content, and hence the use of straw as bedding material will increase the volumetric as well as the livestock-based methane productivity....

  4. Terrestrial plant methane production and emission

    DEFF Research Database (Denmark)

    Bruhn, Dan; Møller, Ian M.; Mikkelsen, Teis Nørgaard;

    2012-01-01

    aerobic plant CH4 production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH4 in pectin and in plant tissues from different studies and argue that pectin is very far from the sole......In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce...... aerobic CH4 into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  5. BIOGENIC AMINES CONTENT IN SELECTED COMMERCIAL FERMENTED PRODUCTS OF ANIMAL ORIGIN

    OpenAIRE

    Vendula Pachlová; Radka Flasarová; Ludmila Zálešáková; František Buňka; Pavel Budinský; Leona Buňková

    2012-01-01

    The aim of this study was to monitor of biogenic amines contents in commercial fermented products, especially various type of ripening cheeses and fermented meat products (15 cheese samples and nine dry fermented meat products obtained from Czech Republic, Slovak Republic, Poland, and Germany). Furthermore, the changes in samples during storage were also observed. The samples were stored at 6±1°C. The samples were taken the first day of storage and the last day of shelf-life. The biogenic ami...

  6. Potential for biohydrogen and methane production from olive pulp

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær; Lyberatos, G.

    The present study investigates the potential for thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp, b) anaerobic bio-production of hydrogen...... and hydrogen-effluent was as high as 19 mmole CH4 per g TS. This suggests that olive pulp is an ideal substrate for methane production and it shows that biohydrogen production can be very efficiently coupled with a subsequent step for methane production....

  7. Aerobic methane production from organic matter

    Science.gov (United States)

    Vigano, I.

    2010-01-01

    Methane, together with H2O, CO2 and N2O, is an important greenhouse gas in th e Earth’s atmosphere playing a key role in the radiative budget. It has be en known for decades that the production of the reduced compound CH4 is possible almost exclusively in anoxic environments per opera of one of the most importan t class of microorganisms which form the Archaea reign. Methane can be produced also from incomplete combustion of organic material. The generation of CH4 in an oxygenated environment under near-ambient conditions is a new discovery made in 2006 by Keppler et. al where surprisingly they measured emissions of this green house gas from plants incubated in chambers with air containing 20% of oxygen. A lthough the estimates on a global scale are still object of an intensive debate, the results presented in this thesis clearly show the existence of methane prod uction under oxic conditions for non living plant material. Temperature and UV l ight are key factors that drive the generation of CH4 from plant matter in a wel l oxygenated environment.

  8. Biogenic hydrogen production from organic raw materials and residues; Biogene Wasserstofferzeugung aus organischen Roh- und Reststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.; Rechtenbach, D.; Stegmann, R. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Inst. fuer AbfallRessourcenWirtschaft

    2007-02-15

    Hydrogen (H{sub 2}) is considered as an energy source for the future. Laboratory scale thermophilic fermentation tests were carried out in three different test systems (500 ml Sensomat system, 6 l anaerobic test system (ATS) and a 30 l continuously stirred tank reactor CSTR). Hydrogen was produced from glucose and agricultural products as substrates in batch and discontinuous tests at 60 C. The inoculum consisted of heat-treated digested sewage sludge. The best specific hydrogen production of 280 Nml H{sub 2}/g VSS was achieved with glucose at a pH 5.5 in batch operation in the CSTR. Corn starch produced 211 Nml H{sub 2}/g VSS and potato starch 123 Nml H{sub 2}/g VSS. The agricultural products sugar beet, fodder beet, potato, turnip, corn and bio-waste potato peel showed good potential for biological hydrogen production with conversion yields between 24 - 60%. In the discontinuous test system, hydrogen production rates of between 0.4 Nl/(l{sub R}.d) and 1.3 Nl/(l{sub R}.d) were produced, corresponding to yields of between 83 to 445 Nml H{sub 2}/g VSS. (orig.)

  9. Validation of an HPLC Analytical Method for Determination of Biogenic Amines in Agricultural Products and Monitoring of Biogenic Amines in Korean Fermented Agricultural Products

    OpenAIRE

    Yoon, Hyeock; Park, Jung Hyuck; Choi, Ari; Hwang, Han-Joon; Mah, Jae-Hyung

    2015-01-01

    An HPLC analytical method was validated for the quantitative determination of biogenic amines in agricultural products. Four agricultural foods, including apple juice, Juk, corn oil and peanut butter, were selected as food matrices based on their water and fat contents (i.e., non-fatty liquid, non-fatty solid, fatty liquid and fatty solid, respectively). The precision, accuracy, recovery, limit of detection (LOD) and quantification (LOQ) were determined to test the validity of an HPLC procedu...

  10. Responses of non-methane biogenic volatile organic compound emissions to climate change in boreal and subarctic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Faubert, P.

    2010-07-01

    Non-methane biogenic volatile organic compound emissions (BVOCs) have important roles in the global atmospheric chemistry but their feedbacks to climate change are still unknown. This thesis reports one of the first estimates of BVOC emissions from boreal and subarctic ecosystems. Most importantly, this thesis assesses the BVOC emission responses to four effects of climate change in these ecosystems: (1) the direct effect of warming, and its indirect effects via (2) water table drawdown, (3) change in the vegetation composition, and (4) enhanced UV-B radiation. BVOC emissions were measured using a conventional chamber method in which the compounds were collected on adsorbent and later analyzed by gas chromatography-mass spectrometry. On a subarctic heath, warming by only 1.9-2.5 degC doubled the monoterpene and sesquiterpene emissions. Such a high increase of BVOC emissions under a conservative warming cannot be predicted by the current models, which underlines the importance of a focus on BVOC emissions from the Subarctic under climate change. On a subarctic peatland, enhanced UV-B did not affect the BVOC emissions but the water table level exerted the major effect. The water table drawdown experimentally applied on boreal peatland microcosms decreased the emissions of monoterpenes and other VOCs (BVOCs with a lifetime>1 d) for the hollows (wet microsites) and that of all BVOC groups for the lawns (moderately wet microsites). The warming treatment applied on the lawn microcosms decreased the isoprene emission. The removal of vascular plants in the hummock (dry microsites) microcosms decreased the emissions of monoterpenes while the emissions between the microcosms covered with Sphagnum moss and bare peat were not different. In conclusion, the results presented in this thesis indicate that climate change has complex effects on the BVOC emissions. These results make a significant contribution to improving the modeling of BVOC emissions for a better understanding of

  11. Production and emission of methane and carbon dioxide by ruminants

    International Nuclear Information System (INIS)

    Animal digestion is responsible for the production of both carbon dioxide and methane, while breathing produces only carbon dioxide. The author described the digestion mechanism of ruminants, explaining that they produce higher levels of methane and carbon dioxide than other animals. Fermentation stoichiometry of ruminants was also discussed along with the influence that diet has on methane production. It was noted that methane production can be decreased by increasing animal productivity, or by using ionophore antibiotics and long chain fatty acids. Test results from each of these methods have revealed side effects and none appears to be applicable for the time being. 10 refs., 1 tab., 1 fig

  12. Potential for biohydrogen and methane production from olive pulp

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær;

    2005-01-01

    The present study investigates the potential for thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp, b) anaerobic bio-production of hydrogen...

  13. Eating beef: cattle, methane and food production.

    Science.gov (United States)

    Wahlquist, Åsa K

    2013-01-01

    A number of prominent people have advocated eating less meat or becoming a vegetarian to reduce global warming, because cattle produce the greenhouse gas methane. This raises a number of questions including: what will happen to the grasslands that much of the world's cattle currently graze; how will alternate protein be produced, and what will the greenhouse consequences of that production be? It comes down to production systems. About 70 per cent of the world's agricultural land is grassland, and the only way to produce food from grasslands is to graze ruminants on it. If domesticated animals do not graze the grasslands, native or feral ruminants, which also produce methane, tend to move in. Feeding high quality grain to cattle is much less defensible. Replacing animal protein with plant proteins like soybeans necessitates more cropping land, water, fuel and chemicals being used. A more rational food system would raise cattle on grasslands but not feed them high quality grains. Instead more of the currently grown crop could be devoted to human consumption. PMID:23353606

  14. Evaluation of N-nitrosopiperidine formation from biogenic amines during the production of dry fermented sausages

    OpenAIRE

    De Mey, Eveline; De Maere, Hannelore; Goemaere, Olivier; Steen, Liselot; Peeters, Christine; Derdelinckx, Guy; Paelinck, Hubert; Fraeye, Ilse

    2014-01-01

    The aim of this study was to determine the role of the precursors cadaverine and piperidine in the N-nitrosopiperidine (NPIP) formation during the production of dry fermented sausages. The influences of pH (4.9 and 5.3), sodium nitrite (0 and 150 mg/kg) and ascorbate (0 and 500 mg/kg) were investigated by the use of a dry fermented sausage model. The biogenic amines and volatile N-nitrosamines were analyzed by HPLC-UV and GC-TEA. The major biogenic amines were tyramine (TYR), putrescine (PUT)...

  15. Biogenic amine content, histamine-forming bacteria, and adulteration of pork in tuna sausage products.

    Science.gov (United States)

    Kung, Hsien-Feng; Tsai, Yung-Hsiang; Chang, Shih-Chih; Hong, Tang-Yao

    2012-10-01

    Twenty-five tuna sausage products were purchased from retail markets in Taiwan. The rates of occurrence of biogenic amines, histamine-forming bacteria, and adulteration by pork and poultry were determined. The average content of various biogenic amines in all tested samples was less than 2.0 mg/100 g (Thunnus albacares for 22 samples (88%), Thunnus alalunga for 1 sample (4%), and Thunnus thynnus for 1 sample (4%), whereas the remaining sample was identified as Makaira nigricans (blue marlin). PMID:23043830

  16. Potential of biogenic hydrogen production for hydrogen driven remediation strategies in marine environments

    OpenAIRE

    Hosseinkhani, Baharak; Hennebel, Tom; Boon, Nico

    2014-01-01

    Fermentative production of bio-hydrogen (bio-H2) from organic residues has emerged as a promising alternative for providing the required electron source for hydrogen driven remediation strategies. Unlike the widely used production of H2 by bacteria in fresh water systems, few reports are available regarding the generation of biogenic H2 and optimisation processes in marine systems. The present research aims to optimise the capability of an indigenous marine bacterium for the production of bio...

  17. Methanization of biogenic synthetic gases with respect to direct reaction of higher hydrocarbons; Methanisierung biogener Synthesegase mit Hinblick auf die direkte Umsetzung von hoeheren Kohlenwasserstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Kienberger, Thomas

    2010-07-01

    The present work deals with a process for the methanation of the synthesis-gas from allothermal fluidized bed gasification. In the proposed process, the tar and sulfur contaminated syngas is used in a fixed-bed methanation reactor without further gas treatment. Commercial nickel catalysts are applied, which offer the opportunity to bring the gas to stoichiometry, in order to remove sulfur compounds by adsorption and to reform the synthesis-gas tar-content directly in the methanation reactor. An increased catalyst consumption turns out to be disadvantageous for the process. For process development in the course of this work, a biomass-fueled allothermic fluidized bed gasifier (Q{sub BR}=5kW) as well as a polytropic temperature-controlled methanation-reactor was constructed, built up and put into operation. It is possible to operate the system fully remote-controlled, which enables long-term tests without staff on site. Within the step of modelling with the software package ASPEN Plus in advance of experiments, parametric studies of both, the gasifier as well as of the process of methanation, were performed. As a major result, it can be shown that due to the use of nickel as methanation-catalyst-material, the educt gas-conversion is independent of the synthesis-gas's H{sub 2}/CO-ratio. Gasification tests were made to investigate the allothermic fluidized bed gasifier, in order to find an optimum point of operation for the downstream methane-synthesis. In the found point of operation, due to a sufficient water-content in the synthesis gas, from the thermodynamic perspective, carbon deposits on the methanation-catalyst can be avoided. The synthesis gas has a gravimetric tar-load of 10,4 g/Nm{sup 3}, furthermore hydrogen sulfide (H{sub 2}S) with a concentration of around 8 ppm{sub v} was measured as the representative sulfur component. It this gas is led to the methanation-reactor, in contrast to attempts with a clean synthesis-gas, the equilibrium

  18. Reducing Methane Emissions from Cattle Production in Central Queensland

    OpenAIRE

    Rolfe, John

    2002-01-01

    Beef cattle contribute about 7% of national greenhouse gas emissions through the release of methane into the atmosphere. Cattle in northern Australia produce more methane per unit of beef produced because of tropical (C4) grasses and slower average growth rates. In this paper the level of emissions from different herds and some strategies to reduce emissions are modelled. The results indicate that few options exist to reduce methane emissions without reducing beef production. The opportunity ...

  19. Ecosystem and physiological controls over methane production in northern wetlands

    Science.gov (United States)

    Valentine, David W.; Holland, Elisabeth A.; Schimel, David S.

    1994-01-01

    Peat chemistry appears to exert primary control over methane production rates in the Canadian Northern Wetlands Study (NOWES) area. We determined laboratory methane production rate potentials in anaerobic slurries of samples collected from a transect of sites through the NOWES study area. We related methane production rates to indicators of resistance to microbial decay (peat C: N and lignin: N ratios) and experimentally manipulated substrate availability for methanogenesis using ethanol (EtOH) and plant litter. We also determined responses of methane production to pH and temperature. Methane production potentials declined along the gradient of sites from high rates in the coastal fens to low rates in the interior bogs and were generally highest in surface layers. Strong relationships between CH4 production potentials and peat chemistry suggested that methanogenesis was limited by fermentation rates. Methane production at ambient pH responded strongly to substrate additions in the circumneutral fens with narrow lignin: N and C: N ratios (delta CH4/delta EtOH = 0.9-2.3 mg/g) and weakly in the acidic bogs with wide C: N and lignin: N ratios (delta CH4/delta EtOH = -0.04-0.02 mg/g). Observed Q(sub 10) values ranged from 1.7 to 4.7 and generally increased with increasing substrate availability, suggesting that fermentation rates were limiting. Titration experiments generally demonstrated inhibition of methanogenesis by low pH. Our results suggest that the low rates of methane emission observed in interior bogs during NOWES likely resulted from pH and substrate quality limitation of the fermentation step in methane production and thus reflect intrinsically low methane production potentials. Low methane emission rates observed during NOWES will likely be observed in other northern wetland regions with similar vegetation chemistry.

  20. Biogenic gas production from major Amazon reservoirs, Brazil

    Science.gov (United States)

    Pinguelli Rosa, Luiz; Aurelio Dos Santos, Marco; Matvienko, Bohdan; Sikar, Elisabeth; Lourenço, Ronaldo Sérgio M.; Frederico Menezes, Carlos

    2003-05-01

    Methane (CH4) and carbon dioxide (CO2) emissions from Brazilian reservoirs were assessed. Point measurements were made during 1998 and 1999 (using inverted funnels for bubbles and air and water concentration gradients for diffusion) in the 559 km2 Samuel reservoir, which was initially flooded in 1988, and the 2430 km2 Tucuruí reservoir, which was flooded in 1984, and the data were evaluated with respect to historical measurements in other Brazilian reservoirs. Bubble emissions of CH4 were higher in Samuel (ranging from 2 to 70 mgCH4 m-2 day-1) than in Tucuruí (ranging from 0·5 to 30 mgCH4 m-2 day-1), with the highest values occurring the shallowest regions in each reservoir. CH4 from diffusion for the Tucuruí reservoir ranged from 5 to 30 mgCH4 m-2 daymgCO

  1. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    Science.gov (United States)

    Bouvier-Brown, N. C.; Goldstein, A. H.; Worton, D. R.; Matross, D. M.; Gilman, J. B.; Kuster, W. C.; Welsh-Bon, D.; Warneke, C.; de Gouw, J. A.; Cahill, T. M.; Holzinger, R.

    2009-03-01

    We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments - a gas chromatograph with mass spectrometer detector (GC-MS), a proton transfer reaction mass spectrometer (PTR-MS), and a thermal desorption aerosol GC-MS (TAG) - and found to be abundant within and above Blodgett Forest. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO), a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4-68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72-10.2 μgCg-1 h-1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde) in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  2. Methane production from grape skins. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Yunghans, W.N.

    1981-10-09

    Methane production from grape pomace was measured for a 50-day digestion period. Gas production was calculated to be 2400 ft/sup 3//10 d/ton at 53% methane content. Microorganisms particularly a fungus which grows on grape pomace and lignin was isolated. Lignin content of pomace was measured at approximately 60%. Lignin is slowly digested and may represent a residue which requires long term digestion. Research is continuing on isolation of anaerobic methane bacteria and codigestion of pomace with enzymes as cellulase and pectinase. The sewage sludge functioned adequately as a mixed source of organisms capable of digesting grape pomace. A sediment from stored grape juice produced significant amounts of methane and represents a nutrient substrate for additional studies on continuous flow methane production. 3 figs.

  3. Forest cockchafer larvae as methane production hotspots in soils and their importance for net soil methane fluxes

    Science.gov (United States)

    Görres, Carolyn-Monika; Kammann, Claudia; Murphy, Paul; Müller, Christoph

    2016-04-01

    Certain groups of soil invertebrates, namely scarab beetles and millipedes, are capable of emitting considerable amounts of methane due to methanogens inhabiting their gut system. It was already pointed out in the early 1990's, that these groups of invertebrates may represent a globally important source of methane. However, apart from termites, the importance of invertebrates for the soil methane budget is still unknown. Here, we present preliminary results of a laboratory soil incubation experiment elucidating the influence of forest cockchafer larvae (Melolontha hippocastani FABRICIUS) on soil methane cycling. In January/February 2016, two soils from two different management systems - one from a pine forest (extensive use) and one from a vegetable field (intensive use) - were incubated for 56 days either with or without beetle larvae. Net soil methane fluxes and larvae methane emissions together with their stable carbon isotope signatures were quantified at regular intervals to estimate gross methane production and gross methane oxidation in the soils. The results of this experiment will contribute to testing the hypothesis of whether methane production hotspots can significantly enhance the methane oxidation capacity of soils. Forest cockchafer larvae are only found in well-aerated sandy soils where one would usually not suspect relevant gross methane production. Thus, besides quantifying their contribution to net soil methane fluxes, they are also ideal organisms to study the effect of methane production hotspots on overall soil methane cycling. Funding support: Reintegration grant of the German Academic Exchange Service (DAAD) (#57185798).

  4. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    OpenAIRE

    Jokinen, T; Berndt, T; Makkonen, R.; Kerminen, V-M; Junninen, H.; Paasonen, P.; Stratmann, F.; Herrmann, H.; Guenther, AB; Worsnop, DR; M. Kulmala; M. Ehn; Sipilä, M.

    2015-01-01

    Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic comp...

  5. Redox controls on methane formation, migration and fate in shallow aquifers

    OpenAIRE

    Humez, Pauline; Mayer, Bernhard; Nightingale, Michael; Becker, Veith; Kingston, Andrew; Taylor, Stephen; Bayegnak, Guy; Millot, Romain; Kloppmann, Wolfram

    2016-01-01

    Development of unconventional energy resources such as shale gas and coalbed methane has generated some public concern with regard to the protection of groundwater and surface water resources from leakage of stray gas from the deep subsurface. In terms of environmental impact to and risk assessment of shallow groundwater resources, the ultimate challenge is to distinguish: (a) natural in-situ production of biogenic methane, (b) biogenic or thermogenic methane migration into shallow aquifers d...

  6. Evaluating biochemical methane production from brewer's spent yeast.

    Science.gov (United States)

    Sosa-Hernández, Ornella; Parameswaran, Prathap; Alemán-Nava, Gibrán Sidney; Torres, César I; Parra-Saldívar, Roberto

    2016-09-01

    Anaerobic digestion treatment of brewer's spent yeast (SY) is a viable option for bioenergy capture. The biochemical methane potential (BMP) assay was performed with three different samples (SY1, SY2, and SY3) and SY1 dilutions (75, 50, and 25 % on a v/v basis). Gompertz-equation parameters denoted slow degradability of SY1 with methane production rates of 14.59-4.63 mL/day and lag phases of 10.72-19.7 days. Performance and kinetic parameters were obtained with the Gompertz equation and the first-order hydrolysis model with SY2 and SY3 diluted 25 % and SY1 50 %. A SY2 25 % gave a 17 % of TCOD conversion to methane as well as shorter lag phase (methane production. Methane capture and biogas composition were dependent upon the SY source, and co-digestion (or dilution) can be advantageous. PMID:27276935

  7. PEaCH4 v.2.0: A modelling platform to predict early diagenetic processes in marine sediments with a focus on biogenic methane - Case study: Offshore Namibia

    Science.gov (United States)

    Arning, Esther T.; Häußler, Steffen; van Berk, Wolfgang; Schulz, Hans-Martin

    2016-07-01

    The modelling of early diagenetic processes in marine sediments is of interest in marine science, and in the oil and gas industry, here, especially with respect to methane occurrence and gas hydrate formation as resources. Early diagenesis in marine sediments evolves from a complex web of intertwining (bio)geochemical reactions. It comprises microbially catalysed reactions and inorganic mineral-water-gas interactions. A model that will describe and consider all of these reactions has to be complex. However, it should be user-friendly, as well as to be applicable for a broad community and not only for experts in the field of marine chemistry. The presented modelling platform PeaCH4 v.2.0 combines both aspects, and is Microsoft Excel©-based. The modelling tool is PHREEQC (version 2), a computer programme for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. The conceptual PEaCH4 model is based on the conversion of sediment-bound degradable organic matter. PEaCH4 v.2.0 was developed to quantify and predict early diagenetic processes in marine sediments with the focus on biogenic methane formation and its phase behaviour, and allows carbon mass balancing. In regard to the irreversible degradation of organic matter, it comprises a "reaction model" and a "kinetic model" to predict methane formation. Both approaches differ in their calculations and outputs as the "kinetic model" considers the modelling time to integrate temperature dependent biogenic methane formation in its calculations, whereas the "reaction model" simply relies on default organic matter degradation. With regard to the inorganic mineral-water-gas interactions, which are triggered by irreversible degradation of organic matter, PEaCH4 v.2.0 is based on chemical equilibrium thermodynamics, appropriate mass-action laws, and their temperature dependent equilibrium constants. The programme is exemplarily presented with the example of upwelling sediments off Namibia

  8. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  9. Methane hydrates as potential energy resource: Part 2 - Methane production processes from gas hydrates

    International Nuclear Information System (INIS)

    Three processes have been proposed for dissociation of methane hydrates: thermal stimulation, depressurization, and inhibitor injection. The obvious production approaches involve depressurization, heating and their combinations. The depressurization method is lowering the pressure inside the well and encouraging the methane hydrate to dissociate. Its objective is to lower the pressure in the free-gas zone immediately beneath the hydrate stability zone, causing the hydrate at the base of the hydrate stability zone to decompose. The thermal stimulation method is applied to the hydrate stability zone to raise its temperature, causing the hydrate to decompose. In this method, a source of heat provided directly in the form of injected steam or hot water or another heated liquid, or indirectly via electric or sonic means. This causes methane hydrate to decompose and generates methane gas. The methane gas mixes with the hot water and returns to the surface, where the gas and hot water are separated. The chemical inhibition method seeks to displace the natural-gas hydrate equilibrium condition beyond the hydrate stability zone's thermo-dynamic conditions through injection of a liquid inhibitor chemical adjacent to the hydrate. In this method, inhibitor such as methanol is injected from surface down to methane hydrate-bearing layers. The thermal stimulation method is quite expensive. The chemical inhibitor injection method is also expensive. The depressurization method may prove useful to apply more than one production.

  10. 800 year ice-core record of nitrogen deposition in Svalbard linked to ocean productivity and biogenic emissions

    Directory of Open Access Journals (Sweden)

    I. A. Wendl

    2014-09-01

    Full Text Available We present the records of the two nitrogen species nitrate (NO3− and ammonium (NH4+ analysed in a new ice core from Lomonosovfonna, Svalbard, in the Eurasian Arctic covering the period 1222–2009. We investigate the emission sources and the influence of melt on the records. During the 20th century both records are influenced by anthropogenic pollution from Eurasia. In pre-industrial times NO3− is highly correlated with methane-sulfonate (MSA on decadal time-scales, which we explain by a fertilising effect. Enhanced atmospheric NO3− concentrations and the corresponding nitrogen input to the ocean trigger the growth of dimethyl-sulfide-(DMS-producing phytoplankton. Increased DMS production results in elevated fluxes to the atmosphere where it is oxidised to MSA. Eurasia was presumably the main source area also for pre-industrial NO3−, but a more exact source apportionment could not be performed based on our data. This is different for NH4+, where biogenic ammonia (NH3 emissions from Siberian boreal forests were identified as the dominant source of pre-industrial NH4+. Changes in melt at the Lomonosovfonna glacier are excluded as major driving force for the decadal variations of the investigated compounds.

  11. Biogenic nanoparticles: production, characterization, and application of bacterial magnetosomes

    International Nuclear Information System (INIS)

    The ability of magnetotactic bacteria (MTB) to navigate along magnetic field lines is based on unique nanosized organelles (magnetosomes), which are membrane-enclosed intracellular crystals of a magnetic iron mineral that assemble into highly ordered chain-like structures. The biomineralization of magnetosomes is a process with genetic control over the accumulation of iron, the deposition of the magnetic crystal within a specific compartment, as well as the assembly, alignment and intracellular organization of particle chains. Magnetite crystals produced by MTB have uniform species-specific morphologies and sizes, which are mostly unknown from inorganic systems. The unusual characteristics of magnetosome particles have attracted a great interdisciplinary interest and inspired numerous ideas for their biotechnological application. In this article, we summarize the current knowledge of magnetosome biomineralization in bacteria. In addition, we will present results on the mass production, as well as the biochemical and physico-chemical analysis and functionalization of bacterial magnetosomes, with emphasis on their characterization as a novel class of magnetic nanoparticles. Finally, we describe the potential of magnetosomes in various biomedical and technological applications

  12. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    Directory of Open Access Journals (Sweden)

    N. C. Bouvier-Brown

    2008-11-01

    Full Text Available We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments – a gas chromatograph with mass spectrometer detector (GC-MS, a proton transfer reaction mass spectrometer (PTR-MS, and a thermal desorption aerosol GC-MS (TAG – and found to be abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO, a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4–68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72–10.2 μgCg−1h−1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  13. Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere

    Directory of Open Access Journals (Sweden)

    N. C. Bouvier-Brown

    2009-03-01

    Full Text Available We report measurements of ambient atmospheric mixing ratios for methyl chavicol and determine its biogenic emission rate. Methyl chavicol, a biogenic oxygenated aromatic compound, is abundant within and above Blodgett Forest, a ponderosa pine forest in the Sierra Nevada Mountains of California. Methyl chavicol was detected simultaneously by three in-situ instruments – a gas chromatograph with mass spectrometer detector (GC-MS, a proton transfer reaction mass spectrometer (PTR-MS, and a thermal desorption aerosol GC-MS (TAG – and found to be abundant within and above Blodgett Forest. Methyl chavicol atmospheric mixing ratios are strongly correlated with 2-methyl-3-buten-2-ol (MBO, a light- and temperature-dependent biogenic emission from the ponderosa pine trees at Blodgett Forest. Scaling from this correlation, methyl chavicol emissions account for 4–68% of the carbon mass emitted as MBO in the daytime, depending on the season. From this relationship, we estimate a daytime basal emission rate of 0.72–10.2 μgCg−1 h−1, depending on needle age and seasonality. We also present the first observations of its oxidation products (4-methoxybenzaldehyde and 4-methyoxy benzene acetaldehyde in the ambient atmosphere. Methyl chavicol is a major essential oil component of many plant species. This work suggests that methyl chavicol plays a significant role in the atmospheric chemistry of Blodgett Forest, and potentially other sites, and should be included explicitly in both biogenic volatile organic carbon emission and atmospheric chemistry models.

  14. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  15. Method for the production of methanation catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, H.; Hakim, I.

    1976-11-18

    A methanation catalyst is claimed which is produced by precipitation of nickel salts from alcoholic solutions. At the same time, these solutions contain aluminium or magnesium compounds and, in some cases, also a carrier medium. The precipitation agents are alkali boron hydride solutions and alkali carbonate solutions. The precipitate, which is preferably obtained at temperatures between -5 and +5/sup 0/C, consists of a fine mixture of nickel boride, oxide hydrates, and hydroxides of nickel, magnesium, or aluminium. In contrast to the known nickel catalyst masses, it may be processed in air without inert gas. Four examples of preparations with suitable methanation tests are given.

  16. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. The work scope drilled and cored a well The Hot Ice No. 1 on Anadarko leases beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists developing reservoir models. No gas hydrates were encountered in this well; however, a wealth of information was generated and is contained in this report. The Hot Ice No. 1 well was drilled from the surface to a measured depth of 2300 ft. There was almost 100% core recovery from the bottom of surface casing at 107 ft to total depth. Based on the best estimate of the bottom of the methane hydrate stability zone (which used new data obtained from Hot Ice No. 1 and new analysis of data from adjacent wells), core was recovered over its complete range. Approximately 580 ft of porous, mostly frozen, sandstone and 155 of conglomerate were recovered in the Ugnu Formation and approximately 215 ft of porous sandstone were recovered in the West Sak Formation. There were gas shows in the bottom

  17. Contribution of First- versus Second-Generation Products to Secondary Organic Aerosols Formed in the Oxidation of Biogenic Hydrocarbons

    OpenAIRE

    Ng, Nga L.; Kroll, Jesse H.; Keywood, Melita D.; Bahreini, Roya; Varutbangkul, Varuntida; Flagan, Richard C.; Seinfeld, John H.; Lee, Anita; Goldstein, Allen H.

    2006-01-01

    Biogenic hydrocarbons emitted by vegetation are important contributors to secondary organic aerosol (SOA), but the aerosol formation mechanisms are incompletely understood. In this study, the formation of aerosols and gas-phase products from the ozonolysis and photooxidation of a series of biogenic hydrocarbons (isoprene, 8 monoterpenes, 4 sesquiterpenes, and 3 oxygenated terpenes) are examined. By comparing aerosol growth (measured by Differential Mobility Analyzers, DMAs) and gas-phase conc...

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  19. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Steve Runyon; Mike Globe; Kent Newsham; Robert Kleinberg; Doug Griffin

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and utilized for determining the physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. The final efforts of the project are to correlate geology, geophysics, logs, and drilling

  20. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    Science.gov (United States)

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio. PMID:25647030

  1. Biomass gasification for the production of methane

    NARCIS (Netherlands)

    Nanou, P.

    2013-01-01

    Biomass is very promising as a sustainable alternative to fossil resources because it is a renewable source that contains carbon, an essential building block for gaseous and liquid fuels. Methane is the main component of natural gas, which is a fuel used for heating, power generation and transportat

  2. Enhanced methane production using pulsed electric field pre-treatment

    OpenAIRE

    Safavi, Seyedeh Masoumeh, 1987-

    2015-01-01

    An experimental study with pulsed electric field (PEF) pre-treatment was conducted to investigate its effect on methane production. PEF pre-treatment converts organic solids into soluble and colloidal forms increasing bioavailability for anaerobic microorganisms participating in methane generation process. The substrates tested were pig slurry (PS), landfill leachate (LL) and fruit/vegetables (FV). Operating parameters were varied from 15 to 50 kWh/m3 to show the influence of treatment on met...

  3. Raton basin coalbed methane production picking up in Colorado

    Science.gov (United States)

    Hemborg, H. Thomas

    1996-01-01

    Coalbed methane production in the Raton basin of south-central Colorado and northeast New Mexico has gone over pilot testing and entered the development stage which is expected to last several years. The development work is restricted to roughly a 25 mile by 15 mile wide `fairway' centered about 20 miles west of Trinidad, Colorado. At last count, 85 wells were producing nearly 17.5 MMcfd of coalbed methane from the basin's Raton and Vermejo formation coals.

  4. Structural control of coalbed methane production in Alabama

    Science.gov (United States)

    Pashin, J.C.; Groshong, R.H., Jr.

    1998-01-01

    Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to be detachment folds formed above decollements at different stratigraphic levels. Patterns of gas and water production reflect the structural style of each field and further indicate that folding and faulting have affected the distribution of permeability and the overall success of coalbed methane operations. Area balancing can be an effective way to characterize coalbed methane reservoirs in structurally complex regions because it constrains structural geometry and can be used to determine the distribution of layer-parallel strain. Comparison of calculated requisite strain and borehole expansion data from calliper logs suggests that strain in coalbed methane reservoirs is predictable and can be expressed as fracturing and small-scale faulting. However, refined methodology is needed to analyze heterogeneous strain distributions in discrete bed segments. Understanding temporal variation of production patterns in areas where gas and water production are influenced by map-scale structure will further facilitate effective management of coalbed methane fields.Thin-skinned structures are distributed throughout the Alabama coalbed methane fields, and these structures affect the production of gas and water from coal-bearing strata. Extensional structures in Deerlick Creek and Cedar Cove fields include normal faults and hanging-wall rollovers, and area balancing indicates that these structures are detached in the Pottsville Formation. Compressional folds in Gurnee and Oak Grove fields, by comparison, are interpreted to

  5. Large scale production of bio methane from wood

    Energy Technology Data Exchange (ETDEWEB)

    Van der Meijden, C.M.; Rabou, L.P.L.M.; Van der Drift, A.; Vreugdenhil, B.J.; Smit, R. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2011-11-15

    An increasing number of countries is setting objectives and obligations to replace part of their fossil natural gas consumptions by bio-methane to reduce CO2 emissions. The production of bio-methane via digestion has been developed and is implemented on a small scale. The limited amount of suitable digestible feedstock demands for development of a technology which can convert a wider range of biomass fuels, such as wood into bio-methane. Gasification is such a route. Gasification technology offers the possibility to convert lignocellulosic biomass (e.g. residual wood) into a combustible gas. This gas can be converted into natural gas quality gas (bio-methane) by catalytic processes. Bio-fuels such as bio-methane produced from biomass have the potential to become a CO2 negative fuel, because part of the biomass carbon is separated as CO2 during the production process. If this pure CO2 stream is sequestrated, these bio-fuels become even CO2 negative. This might be an attractive option for reducing the level of greenhouse gases in the atmosphere. Several bio-methane demonstration projects are underway based on thermal gasification of woody biomass. The most well known is the 20 MWth GoBiGas project in Gothenburg by Goeteborg Energi and E.ON. ECN (Energy research Centre of the Netherlands) has developed an alternative gasification process (MILENA), optimized for the production of bio-methane. This system has an overall efficiency of 70% from wood to bio-methane. The technology is demonstrated at lab scale (30 kWth) and pilot scale (800 kWth). A 12 MWth demonstration plant is under preparation in close cooperation with the HVC Group who plan to act as launching customer.

  6. Anaerobic digestion of biomass for methane production: a review

    Energy Technology Data Exchange (ETDEWEB)

    Gunaseelan, V.N. [PSG College of Arts and Science, Coimbatore (India). Dept. of Zoology

    1997-12-31

    Biological conversion of biomass to methane has received increasing attention in recent years. Hand- and mechanically-sorted municipal solid waste and nearly 100 genera of fruit and vegetable solid wastes, leaves, grasses, woods, weeds, marine and freshwater biomass have been explored for their anaerobic digestion potential to methane. In this review, the extensive literature data have been tabulated and ranked under various categories and the influence of several parameters on the methane potential of the feedstocks are presented. Almost all the land- and water-based species examined to date either have good digestion characteristics or can be pre-treated to promote digestion. This review emphasizes the urgent need for evaluating the inumerable unexplored genera of plants as potential sources for methane production. (author)

  7. Biomass gasification for the production of methane

    OpenAIRE

    Nanou, P.

    2013-01-01

    Biomass is very promising as a sustainable alternative to fossil resources because it is a renewable source that contains carbon, an essential building block for gaseous and liquid fuels. Methane is the main component of natural gas, which is a fuel used for heating, power generation and transportation. In The Netherlands, the contribution of natural gas to the primary energy consumption is almost 50% (Source: Energy Research Centre of The Netherlands [ECN]) and it is a fuel with a well-devel...

  8. Methane Production by Microbial Mats Under Low Sulfate Concentrations

    Science.gov (United States)

    Bebout, Brad M.; Hoehler, Tori M.; Thamdrup, Bo; Albert, Dan; Carpenter, Steven P.; Hogan, Mary; Turk, Kendra; DesMarais, David J.

    2003-01-01

    Cyanobacterial mats collected in hypersaline salterns were incubated in a greenhouse under low sulfate concentrations ([SO4]) and examined for their primary productivity and emissions of methane and other major carbon species. Atmospheric greenhouse warming by gases such as carbon dioxide and methane must have been greater during the Archean than today in order to account for a record of moderate to warm paleoclemates, despite a less luminous early sun. It has been suggested that decreased levels of oxygen and sulfate in Archean oceans could have significantly stimulated microbial methanogenesis relative to present marine rates, with a resultant increase in the relative importance of methane in maintaining the early greenhouse. We maintained modern microbial mats, models of ancient coastal marine communities, in artificial brine mixtures containing both modern [SO4=] (ca. 70 mM) and "Archean" [SO4] (less than 0.2 mM). At low [SO4], primary production in the mats was essentially unaffected, while rates of sulfate reduction decreased by a factor of three, and methane fluxes increased by up to ten-fold. However, remineralization by methanogenesis still amounted to less than 0.4 % of the total carbon released by the mats. The relatively low efficiency of conversion of photosynthate to methane is suggested to reflect the particular geometry and chemical microenvironment of hypersaline cyanobacterial mats. Therefore, such mats w-ere probably relatively weak net sources of methane throughout their 3.5 Ga history, even during periods of low- environmental levels oxygen and sulfate.

  9. Improving productivity and reducing methane production and n and phosphorous excretion in lambs through nutritional strategies. II. Methane production

    International Nuclear Information System (INIS)

    Three trials were conducted to investigate the effect of tea saponins (TS) on production methane production and productive performance in growing goats. In trial 1, TS was added at 0, 0.2, 0.4 and 0.8 mg/ml to study the effects on the ruminal fermentation in vitro. Methane production was significantly decreased when 0.4 and 0.8 mg/ml of TS was added. The TS had little effect on ruminal pH and total volatile fatty acids However, the fermentation patterns were changed, with lower proportion of acetate and higher proportions of propionate when TS was added. Ammonia-N concentration and protozoal counts were significantly lower with TS addition, while microbial protein yield increased suggesting that the TS could modify ruminal fermentation. Twenty-seven growing Boer goats were used in trail two to evaluate the effects of TS addition on growth performance. The animals received the same basal diet (300g concentrate mixture, 200g alfalfa and corn stover silage ad libitum) and TS was added at 0, 3 and 6 g per day. Dry matter intake, average daily gain and feed efficiency in the 3 g TS group were higher than in the other two groups. Trial three was conducted to investigate the effects of TS (5 g/kg DM), TS plus disodium fumarate (DF) (20 g/kg DM) and coconut oil (7% on DM basis) on methane production in sheep using a simple box chamber. Eight Huzhou sheep were assigned to 4 treatments in a 4 x 4 Latin square design. Addition of TS and TSDF decreased (P < 0.0001) methane production by 8.5 and 9.6%, respectively. Addition of TSDF increased (P < 0.01) the proportion of propionate and decreased (P < 0.01) the proportion of acetate. These results suggest that addition of TS and TSDF, though not as effectively as coconut oil, can inhibit methane production, which is beneficial for economy and environment. (author)

  10. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    OpenAIRE

    Yiwen Liu; Qilin Wang; Yaobin Zhang; Bing-Jie Ni

    2015-01-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. Th...

  11. Production of Methane and Water from Crew Plastic Waste

    Science.gov (United States)

    Captain, Janine; Santiago, Eddie; Parrish, Clyde; Strayer, Richard F.; Garland, Jay L.

    2008-01-01

    Recycling is a technology that will be key to creating a self sustaining lunar outpost. The plastics used for food packaging provide a source of material that could be recycled to produce water and methane. The recycling of these plastics will require some additional resources that will affect the initial estimate of starting materials that will have to be transported from earth, mainly oxygen, energy and mass. These requirements will vary depending on the recycling conditions. The degredation products of these plastics will vary under different atmospheric conditions. An estimate of the the production rate of methane and water using typical ISRU processes along with the plastic recycling will be presented.

  12. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    Energy Technology Data Exchange (ETDEWEB)

    Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

    2013-10-31

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production

  13. Bacterial bioaugmentation for improving methane and hydrogen production from microalgae

    Science.gov (United States)

    2013-01-01

    Background The recalcitrant cell walls of microalgae may limit their digestibility for bioenergy production. Considering that cellulose contributes to the cell wall recalcitrance of the microalgae Chlorella vulgaris, this study investigated bioaugmentation with a cellulolytic and hydrogenogenic bacterium, Clostridium thermocellum, at different inoculum ratios as a possible method to improve CH4 and H2 production of microalgae. Results Methane production was found to increase by 17?~?24% with the addition of C. thermocellum, as a result of enhanced cell disruption and excess hydrogen production. Furthermore, addition of C. thermocellum enhanced the bacterial diversity and quantities, leading to higher fermentation efficiency. A two-step process of addition of C. thermocellum first and methanogenic sludge subsequently could recover both hydrogen and methane, with a 9.4% increase in bioenergy yield, when compared with the one-step process of simultaneous addition of C. thermocellum and methanogenic sludge. The fluorescence peaks of excitation-emission matrix spectra associated with chlorophyll can serve as biomarkers for algal cell degradation. Conclusions Bioaugmentation with C. thermocellum improved the degradation of C. vulgaris biomass, producing higher levels of methane and hydrogen. The two-step process, with methanogenic inoculum added after the hydrogen production reached saturation, was found to be an energy-efficiency method for hydrogen and methane production. PMID:23815806

  14. Detection of biogenic CO production above vascular cell cultures using a near-room-temperature QC-DFB laser

    Science.gov (United States)

    Kosterev, A. A.; Tittel, F. K.; Durante, W.; Allen, M.; Kohler, R.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Cho, A. Y.

    2002-01-01

    We report the first application of pulsed, near-room-temperature quantum cascade laser technology to the continuous detection of biogenic CO production rates above viable cultures of vascular smooth muscle cells. A computer-controlled sequence of measurements over a 9-h period was obtained, resulting in a minimum detectable CO production of 20 ppb in a 1-m optical path above a standard cell-culture flask. Data-processing procedures for real-time monitoring of both biogenic and ambient atmospheric CO concentrations are described.

  15. Zero Valent Iron Significantly Enhances Methane Production from Waste Activated Sludge by Improving Biochemical Methane Potential Rather Than Hydrolysis Rate

    Science.gov (United States)

    Liu, Yiwen; Wang, Qilin; Zhang, Yaobin; Ni, Bing-Jie

    2015-02-01

    Anaerobic digestion has been widely applied for waste activated sludge (WAS) treatment. However, methane production from anaerobic digestion of WAS is usually limited by the slow hydrolysis rate and/or poor biochemical methane potential of WAS. This work systematically studied the effects of three different types of zero valent iron (i.e., iron powder, clean scrap and rusty scrap) on methane production from WAS in anaerobic digestion, by using both experimental and mathematical approaches. The results demonstrated that both the clean and the rusty iron scrap were more effective than the iron powder for improving methane production from WAS. Model-based analysis showed that ZVI addition significantly enhanced methane production from WAS through improving the biochemical methane potential of WAS rather than its hydrolysis rate. Economic analysis indicated that the ZVI-based technology for enhancing methane production from WAS is economically attractive, particularly considering that iron scrap can be freely acquired from industrial waste. Based on these results, the ZVI-based anaerobic digestion process of this work could be easily integrated with the conventional chemical phosphorus removal process in wastewater treatment plant to form a cost-effective and environment-friendly approach, enabling maximum resource recovery/reuse while achieving enhanced methane production in wastewater treatment system.

  16. Polyhydroxyalkanoates in waste activated sludge enhances anaerobic methane production through improving biochemical methane potential instead of hydrolysis rate

    Science.gov (United States)

    Wang, Qilin; Sun, Jing; Zhang, Chang; Xie, Guo-Jun; Zhou, Xu; Qian, Jin; Yang, Guojing; Zeng, Guangming; Liu, Yiqi; Wang, Dongbo

    2016-01-01

    Anaerobic sludge digestion is the main technology for sludge reduction and stabilization prior to sludge disposal. Nevertheless, methane production from anaerobic digestion of waste activated sludge (WAS) is often restricted by the poor biochemical methane potential and slow hydrolysis rate of WAS. This work systematically investigated the effect of PHA levels of WAS on anaerobic methane production, using both experimental and mathematical modeling approaches. Biochemical methane potential tests showed that methane production increased with increased PHA levels in WAS. Model-based analysis suggested that the PHA-based method enhanced methane production by improving biochemical methane potential of WAS, with the highest enhancement being around 40% (from 192 to 274 L CH4/kg VS added; VS: volatile solid) when the PHA levels increased from 21 to 143 mg/g VS. In contrast, the hydrolysis rate (approximately 0.10 d-1) was not significantly affected by the PHA levels. Economic analysis suggested that the PHA-based method could save $1.2/PE/y (PE: population equivalent) in a typical wastewater treatment plant (WWTP). The PHA-based method can be easily integrated into the current WWTP to enhance methane production, thereby providing a strong support to the on-going paradigm shift in wastewater management from pollutant removal to resource recovery.

  17. Methane production and consumption in grassland and boreal ecosystems

    Science.gov (United States)

    Schimel, David S.; Burke, Ingrid C.; Johnston, Carol; Pastor, John

    1994-01-01

    The objectives of the this project were to develop a mechanistic understanding of methane production and oxidation suitable for incorporation into spatially explicit models for spatial extrapolation. Field studies were undertaken in Minnesota, Canada, and Colorado to explore the process controls over the two microbial mediated methane transformations in a range of environments. Field measurements were done in conjunction with ongoing studies in Canada (the Canadian Northern Wetlands Projects: NOWES) and in Colorado (The Shortgrass Steppe Long Term Ecological Research Project: LTER). One of the central hypotheses of the proposal was that methane production should be substrate limited, as well as being controlled by physical variables influencing microbial activity (temperature, oxidation status, and pH). Laboratory studies of peats from Canada and Minnesota (Northern and Southern Boreal) were conducted with amendments of a methanogenic substrate at multiple temperatures and at multiple pHs (the latter by titrating samples). The studies showed control by substrate, pH, and temperature in order in anaerobic samples. Field and laboratory manipulations of natural plant litter, rather than an acetogenic substrate, showed similarly large effects. The studies concluded that substrate is an important control over methanogenesis, that substrate availability in the field is closely coupled to the chemistry of the dominant vegetation influencing its decomposition rate, that most methane is produced from recent plant litter, and that landscape changes in pH are an important control, highly correlated with vegetation.

  18. Solar enriched methane production: Assessment of plant potentialities and applications

    Directory of Open Access Journals (Sweden)

    Vincenzo Piemonte

    2010-04-01

    Full Text Available The crucial environmental issue due to fossil fuel use in our society and industries and more and more perceived by the communities is stimulating the development of innovative technologies with the scope of reducing GHGs and pollutants emissions, improving plants efficiency and exploiting renewable energy sources. The idea proposed in the present work links this context: a novel hybrid plant for the production of a mixture of methane and hydrogen (20%vol, called enriched-methane, from a steam reforming reactor whose heat duty is supplied by a concentrating solar power (CSP plant by means of a molten salt stream is here conceived, modelled and assessed. The enriched-methane mixture can be applied in methane internal combustion engines (ICE reducing CO, CO2, unburned emissions and improving engine efficiency. Moreover, the residual sensible heat of solar-heated molten salt stream can be used to generate medium-pressure steam and to produce electricity by a steam-turbine. Therefore, the plant proposed is co-generative, producing both hydrogen and electricity from a solar source. The behaviour of methane steam reforming reactor is simulated by means of a 2D mathematical model and the design of a cogenerative solar plant is proposed, evaluating its potentialities in terms of MWh of electricity produced and number of vehicles fed by enriched-methane. A single CSP module (surface requirement = 1.5 hectares coupled with a 4-tubes-and-shell shaped reactor is able to produce 686 tons/year of hydrogen, equivalent to 3.430 tons/year of 20%vol H2-CH4 mixture and 3.097 MWh/year of clean electricity.

  19. Climate forcing, primary production and the distribution of Holocene biogenic sediments in the Gulf of California

    Science.gov (United States)

    Douglas, Robert; Gonzalez-Yajimovich, Oscar; Ledesma-Vazquez, Jorge; Staines-Urias, Francisca

    2007-01-01

    The Gulf of California is a marginal seaway under the influence of a monsoon climate that produces cool, dry winters and warm, humid summers. Winds, tidal mixing and coastal-trapped waves forced by climate and the Pacific Ocean control nutrient advection and primary productivity (PP). Strong northwest winds from the subtropical East Pacific High Pressure system begin in November and last until April and drive coastal upwelling along the mainland margin, especially in the central and southern Gulf. In the northern Gulf, particularly around the midrift island, tidal mixing and turbulence occurs year round, advecting nutrients into the mixed layer and high productivity. During summer and early fall months, winds are variable, of less intensity and mainly blow cross-basin except in the most northern Gulf. Summer PP is generally low in the central and southern Gulf except along the mainland where coastal-trapped waves associated with tropical surges and hurricanes generate mixing over the continental shelf. Mesoscale eddies or gyres often associated with jets and filaments extend to depths of 1000 m and transport nutrient-enriched upwelled waters and plankton detritus across the Gulf. The largest and most persistent gyres rotate in an anti-cyclonic direction (east to west) and are a principal source of the plankton export to the peninsula margin. Two major biogenic sediment patterns are present in core-top sediments. Hemipelagic biosiliceous-rich muds are accumulating beneath upwelling areas of high productivity in the central Gulf and along the mainland margin. Calcium carbonate- and organic carbon-rich (OC) sediments are concentrated along the peninsula margin, generally beneath lower productivity waters with the highest OC content in areas with the lowest productivity. The high, uniform biosiliceous content in Guaymas basin, extending southward into Carmen basin reflects the redistribution by mesoscale gyres of phytoplankon debris produced in mainland coastal

  20. Can aquatic worms enhance methane production from waste activated sludge?

    Science.gov (United States)

    Serrano, Antonio; Hendrickx, Tim L G; Elissen, Hellen H J; Laarhoven, Bob; Buisman, Cees J N; Temmink, Hardy

    2016-07-01

    Although literature suggests that aquatic worms can help to enhance the methane production from excess activated sludge, clear evidence for this is missing. Therefore, anaerobic digestion tests were performed at 20 and at 30°C with sludge from a high-loaded membrane bioreactor, the aquatic worm Lumbriculus variegatus, feces from these worms and with mixtures of these substrates. A significant synergistic effect of the worms or their feces on methane production from the high-loaded sludge or on its digestion rate was not observed. However, a positive effect on low-loaded activated sludge, which generally has a lower anaerobic biodegradability, cannot be excluded. The results furthermore showed that the high-loaded sludge provides an excellent feed for L. variegatus, which is promising for concepts where worm biomass is considered a resource for technical grade products such as coatings and glues. PMID:26998797

  1. The Influence of Pyrogenic, Biogenic and Anthropogenic Emissions on Ozone Production Downwind from Boreal Forest Fires

    Science.gov (United States)

    Finch, Douglas; Palmer, Paul

    2016-04-01

    Boreal forest fires emit pollutants that can have a strong influence on downwind surface ozone concentrations, with potential implications for exceeding air quality regulations. The influence of the mixing of pyrogenic, biogenic and anthropogenic emissions on ozone is not well understood. Using the nested 0.5° latitude x 0.667° longitude GEOS-Chem chemical transport model we track biomass burning plumes in North America. We identify the changes in key chemical reactions within these plumes as well as the sensitivity of ozone to the different emission sources. We illustrate the importance of this method using a case study of a multi-day forest fire during the BORTAS aircraft campaign over eastern Canada during summer 2011. We focus on emissions from the fire on the 17th of July and follow the plume for eight days. After the initial 24 hours of pyrogenic emissions the main source of VOCs is biogenic with increasing emissions from anthropogenic sources including outflow from Quebec City and Newfoundland. Using a Lagrangian framework, we show that the ozone production efficiency (OPE) of this plume decreases steadily as it moves away from the fire but increases rapidly as the plume reaches the east coast of Canada. Using a Eulerian framework we show that ozone mixing ratios of a east coast receptor region increase by approximately 15% even though the ozone tendency of the regional air mass is negative, which we find is due to the arrival of ozone precursors in the plume. We also consider the contribution of anthropogenic outflow over Nova Scotia that originates from the eastern seaboard of the United States to the local chemistry. Using these sensitivity model runs we generate a chemical reaction narrative for the plume trajectory that helps to understand the attribution of observed ozone variations.

  2. Methanogens rapidly transition from methane production to iron reduction.

    Science.gov (United States)

    Sivan, O; Shusta, S S; Valentine, D L

    2016-03-01

    Methanogenesis, the microbial methane (CH4 ) production, is traditionally thought to anchor the mineralization of organic matter as the ultimate respiratory process in deep sediments, despite the presence of oxidized mineral phases, such as iron oxides. This process is carried out by archaea that have also been shown to be capable of reducing iron in high levels of electron donors such as hydrogen. The current pure culture study demonstrates that methanogenic archaea (Methanosarcina barkeri) rapidly switch from methanogenesis to iron-oxide reduction close to natural conditions, with nitrogen atmosphere, even when faced with substrate limitations. Intensive, biotic iron reduction was observed following the addition of poorly crystalline ferrihydrite and complex organic matter and was accompanied by inhibition of methane production. The reaction rate of this process was of the first order and was dependent only on the initial iron concentrations. Ferrous iron production did not accelerate significantly with the addition of 9,10-anthraquinone-2,6-disulfonate (AQDS) but increased by 11-28% with the addition of phenazine-1-carboxylate (PCA), suggesting the possible role of methanophenazines in the electron transport. The coupling between ferrous iron and methane production has important global implications. The rapid transition from methanogenesis to reduction of iron-oxides close to the natural conditions in sediments may help to explain the globally-distributed phenomena of increasing ferrous concentrations below the traditional iron reduction zone in the deep 'methanogenic' sediment horizon, with implications for metabolic networking in these subsurface ecosystems and in past geological settings. PMID:26762691

  3. Methane production from bicarbonate and acetate in an anoxic marine sediment

    Science.gov (United States)

    Crill, P. M.; Martens, C. S.

    1986-01-01

    Methane production from C-14 labeled bicarbonate and acetate was measured over the top 28 cm of anoxic Cape Lookout Bight sediments during the summer of 1983. The depth distribution and magnitude of summed radioisotopically determined rates compare well with previous measurements of total methane production and the sediment-water methane flux. Methane production from CO2 reduction and acetate fermentation accounts for greater than 80 percent of the total production rate and sediment-water flux. Methane production from bicarbonate was found to occur in all depth intervals sampled except those in the top 2 cm, whereas significant methane production from acetate only occurred at depths below 10 cm where sulfate was exhausted. Acetate provided 20 to 29 percent of the measured methane production integrated over the top 30 cm of the sediments.

  4. Multiple sulfur and carbon isotope composition of sediments from the Belingwe Greenstone Belt (Zimbabwe): A biogenic methane regulation on mass independent fractionation of sulfur during the Neoarchean?

    Science.gov (United States)

    Thomazo, Christophe; Nisbet, Euan G.; Grassineau, Nathalie V.; Peters, Marc; Strauss, Harald

    2013-11-01

    To explore the linkage between mass-independent sulfur isotope fractionation (MIF-S) and δ13Corg excursions during the Neoarchean, as well as the contemporary redox state and biogeochemical cycling of carbon and sulfur, we report the results of a detailed carbon and multiple sulfur (δ34S, δ33S, δ36S) isotopic study of the ∼2.7 Ga Manjeri and ∼2.65 Ga Cheshire formations of the Ngezi Group (Belingwe Greenstone Belt, Zimbabwe). Multiple sulfur isotope data show non-zero Δ33S and Δ36S values for sediments older than 2.4 Ga (i.e. prior to the Great Oxidation Event, GOE), indicating MIF-S thought to be associated with low atmospheric oxygen concentration. However, in several 2.7-2.5 Ga Neoarchean localities, small-scale variations in MIF-S signal (magnitude) seem to correlate with negative excursion in δ13Corg, possibly reflecting a global connection between the relative reaction rate of different MIF-S source reaction and sulfur exit channels and the biogenic flux of methane into the atmosphere during periods of localized, microbiologically mediated, shallow surface-water oxygenation. The Manjeri Formation black shales studied here display a wide range of δ13Corg between -35.4‰ and -16.2‰ (average of -30.3 ± 6.0‰, 1σ), while the Cheshire Formation shales have δ13Corg between -47.7‰ and -35.1‰ (average -41.3 ± 3‰, 1σ). The δ34S values of sedimentary sulfides from Manjeri Formation vary between -15.15‰ and +2.37‰ (average -1.71 ± 4.76‰, 1σ), showing very small and mostly negative Δ33S values varying from -0.58‰ to 0.87‰ (average 0.02 ± 0.43‰, 1σ). Cheshire Formation black shale sulfide samples measured in this study have δ34S values ranging from -2.11‰ to 2.39‰ (average 0.25 ± 1.08‰, 1σ) and near zero and solely positive Δ33S anomalies between 0.14‰ and 1.17‰ (average 0.56 ± 0.29‰, 1σ). Moreover, Δ36S/Δ33S in the two formations are comparable with a slope of -1.38 (Manjeri Formation) and -1.67 (Cheshire

  5. Steam Methane Reforming System for Hydrogen Production: Advanced Exergetic Analysis

    OpenAIRE

    Morosuk, Tatiana; Boyano, Alicia; Blanco-Marigorta, Ana-Maria; Tsatsaronis, George

    2012-01-01

    Steam methane reforming (SMR) is one of the most promising processes for the production of hydrogen. Therefore, the overall thermodynamic efficiency of this process is of particular importance. The thermodynamic inefficiencies in a thermal system are related to exergy destruction and exergy loss. However, a conventional exergetic analysis cannot evaluate the mutual interdependencies among the system components nor the real potential for improving the energy conversion system being considered....

  6. Biogenic amine production by the wine Lactobacillus brevis IOEB 9809 in systems that partially mimic the gastrointestinal tract stress

    OpenAIRE

    Russo Pasquale; Fernández de Palencia Pilar; Romano Andrea; Fernández María; Lucas Patrick; Spano Giuseppe; López Paloma

    2012-01-01

    Abstract Background Ingestion of fermented foods containing high levels of biogenic amines (BA) can be deleterious to human health. Less obvious is the threat posed by BA producing organisms contained within the food which, in principle, could form BA after ingestion even if the food product itself does not initially contain high BA levels. In this work we have investigated the production of tyramine and putrescine by Lactobacillus brevis IOEB 9809, of wine origin, under simulated gastrointes...

  7. Bacteria isolated from Korean black raspberry vinegar with low biogenic amine production in wine.

    Science.gov (United States)

    Song, Nho-Eul; Cho, Hyoun-Suk; Baik, Sang-Ho

    2016-01-01

    A high concentration of histamine, one of the biogenic amines (BAs) usually found in fermented foods, can cause undesirable physiological side effects in sensitive humans. The objective of this study is to isolate indigenous Acetobacter strains from naturally fermented Bokbunja vinegar in Korea with reduced histamine production during starter fermentation. Further, we examined its physiological and biochemical properties, including BA synthesis. The obtained strain MBA-77, identified as Acetobacter aceti by 16S rDNA homology and biochemical analysis and named A. aceti MBA-77. A. aceti MBA-77 showed optimal acidity % production at pH 5; the optimal temperature was 25°C. When we prepared and examined the BAs synthesis spectrum during the fermentation process, Bokbunja wine fermented with Saccharomyces cerevisiae showed that the histamine concentration increased from 2.72 of Bokbunja extract to 5.29mg/L and cadaverine and dopamine was decreased to 2.6 and 10.12mg/L, respectively. Bokbunja vinegar prepared by A. aceti MBA-77 as the starter, the histamine concentration of the vinegar preparation step was decreased up to 3.66mg/L from 5.29mg/L in the wine preparation step. To our knowledge, this is the first report to demonstrate acetic acid bacteria isolated from Bokbunja seed vinegar with low spectrum BA and would be useful for wellbeing vinegar preparation. PMID:26991285

  8. Bacteria isolated from Korean black raspberry vinegar with low biogenic amine production in wine

    Directory of Open Access Journals (Sweden)

    Nho-Eul Song

    2016-06-01

    Full Text Available Abstract A high concentration of histamine, one of the biogenic amines (BAs usually found in fermented foods, can cause undesirable physiological side effects in sensitive humans. The objective of this study is to isolate indigenous Acetobacter strains from naturally fermented Bokbunja vinegar in Korea with reduced histamine production during starter fermentation. Further, we examined its physiological and biochemical properties, including BA synthesis. The obtained strain MBA-77, identified as Acetobacter aceti by 16S rDNA homology and biochemical analysis and named A. aceti MBA-77. A. aceti MBA-77 showed optimal acidity % production at pH 5; the optimal temperature was 25 °C. When we prepared and examined the BAs synthesis spectrum during the fermentation process, Bokbunja wine fermented with Saccharomyces cerevisiae showed that the histamine concentration increased from 2.72 of Bokbunja extract to 5.29 mg/L and cadaverine and dopamine was decreased to 2.6 and 10.12 mg/L, respectively. Bokbunja vinegar prepared by A. aceti MBA-77 as the starter, the histamine concentration of the vinegar preparation step was decreased up to 3.66 mg/L from 5.29 mg/L in the wine preparation step. To our knowledge, this is the first report to demonstrate acetic acid bacteria isolated from Bokbunja seed vinegar with low spectrum BA and would be useful for wellbeing vinegar preparation.

  9. Determination of biogenic amine profiles in conventional and organic cocoa-based products.

    Science.gov (United States)

    Restuccia, Donatella; Spizzirri, U Gianfranco; Puoci, Francesco; Picci, Nevio

    2015-01-01

    Cocoa contains many compounds such as biogenic amines (BAs), known to influence consumer health. Spermidine, spermidine, putrescine, histamine, tyramine, β-phenylethylamine, cadaverine and serotonine have been found in several cocoa-based products using HPLC with UV detection after derivatisation with dansyl-chloride. Once optimised in terms of linearity, percentage recovery, LOD, LOQ and repeatability, this method was applied to real samples. Total concentrations of BAs ranged from 5.7 to 79.0 µg g(-)(1) with wide variations depending on the type of sample. BAs present in all samples were in decreasing order: histamine (1.9-38.1 µg g(-)(1)) and tyramine (1.7-31.7 µg g(-)(1)), while putrescine (0.9-32.7 µg g(-)(1)), spermidine (1.0-9.7 µg g(-)(1)) and spermidine (0.6-9.3 µg g(-)(1)) were present in most of the samples. Cadaverine, serotonine and β-phenylethylamine were present in a few samples at much lower concentrations. Organic samples always contained much lower levels of BAs than their conventional counterparts and, generally speaking, the highest amounts of BAs were found in the most processed products. PMID:25833003

  10. Biogenic amine production by Lactococcus lactis subsp. cremoris strains in the model system of Dutch-type cheese.

    Science.gov (United States)

    Flasarová, Radka; Pachlová, Vendula; Buňková, Leona; Menšíková, Anna; Georgová, Nikola; Dráb, Vladimír; Buňka, František

    2016-03-01

    The aim of this study was to compare the biogenic amine production of two starter strains of Lactococcus lactis subsp. cremoris (strains from the Culture Collection of Dairy Microorganisms - CCDM 824 and CCDM 946) with decarboxylase positive activity in a model system of Dutch-type cheese during a 90-day ripening period at 10°C. During ripening, biogenic amine and free amino acid content, microbiological characteristics and proximate chemical properties were observed. By the end of the ripening period, the putrescine content in both samples with the addition of the biogenic amine producing strain almost evened out and the concentration of putrescine was >800mg/kg. The amount of tyramine in the cheeses with the addition of the strain of CCDM 824 approached the limit of 400mg/kg by the end of ripening. In the cheeses with the addition of the strain of CCDM 946 it even exceeded 500mg/kg. In the control samples, the amount of biogenic amines was insignificant. PMID:26471528

  11. Ruminal Methane Production on Simple Phenolic Acids Addition in in Vitro Gas Production Method

    Directory of Open Access Journals (Sweden)

    A. Jayanegara

    2009-04-01

    Full Text Available Methane production from ruminants contributes to total global methane production, which is an important contributor to global warming. In this experiment, six sources of simple phenolic acids (benzoic, cinnamic, phenylacetic, caffeic, p-coumaric and ferulic acids at two different levels (2 and 5 mM added to hay diet were evaluated for their potential to reduce enteric methane production using in vitro Hohenheim gas production method. The measured variables were gas production, methane, organic matter digestibility (OMD, and short chain fatty acids (SCFA. The results showed that addition of cinnamic, caffeic, p-coumaric and ferulic acids at 5 mM significantly (P p-coumaric > ferulic > cinnamic. The addition of simple phenols did not significantly decrease OMD. Addition of simple phenols tends to decrease total SCFA production. It was concluded that methane decrease by addition of phenolic acids was relatively small, and the effect of phenolic acids on methane decrease depended on the source and concentration applied.

  12. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments

  13. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants

    DEFF Research Database (Denmark)

    Madsen, Jørgen; Bjerg, Bjarne Schmidt; Hvelplund, Torben;

    2010-01-01

    This technical note presents a simple, fast, reliable and cheap method to estimate the methane (CH4) production from animals by using the CH4 and carbon dioxide (CO2) concentrations in air near the animals combined with an estimation of the total CO2 production from information on intake of...... metabolizable energy or heat producing units. By using portable equipment to analyse the air in stables or near individual animals it is possible to calculate the proportion of the carbon that is not metabolized to CO2, but excreted as the greenhouse gas CH4. The CH4/CO2 proportion in itself gives useful...... information and can be seen on the spot when measuring. A more detailed use of the data in combination with feedstuff analysis can be used to estimate the quantitative CH4 production from the animals as the CO2 excretion can be calculated from the intake of metabolizable energy minus the energy in the weight...

  14. Screening of biogenic amine production by lactic acid bacteria isolated from grape musts and wine

    OpenAIRE

    Moreno-Arribas, M. Victoria; Polo, María Carmen; Jorganes, Felisa; Muñoz, Rosario

    2003-01-01

    The potential to produce the biogenic amines tyramine, histamine and putrescine, was investigated for lactic acid bacteria (LAB) of various origin, including commercial malolactic starter cultures, type strains and 78 strains isolated from Spanish grape must and wine. The presence of biogenic amines in a decarboxylase synthetic broth was determined by reverse-phase high performance liquid chromatography (RP-HPLC). Tyramine was the main amine formed by the LAB strains investigated. ...

  15. Hydrogen and chemicals production by plasma reforming methane

    International Nuclear Information System (INIS)

    Low temperature plasmas have excellent potential as on board transportation reformers for fuel cells. Because of their low temperature operation, they start up and shut down rapidly, and little energy is lost in waste heat that cannot easily be recovered from high temperature processes. Their use of electricity to drive reactions certainly requires good efficiency, but may simplify on-board systems. Partial oxidation has been shown to operate effectively as has steam reforming under these conditions. Hydrogen, COx, and C2s are the primary products of plasma reforming of methane. In this paper, the major reaction pathways and the results of the partial oxidation and steam reforming of methane will be discussed. (author)

  16. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    Science.gov (United States)

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. PMID:26836846

  17. The influence of petroleum products on the methane fermentation process.

    Science.gov (United States)

    Choromański, Paweł; Karwowska, Ewa; Łebkowska, Maria

    2016-01-15

    In this study the influence of the petroleum products: diesel fuel and spent engine oil on the sewage sludge digestion process and biogas production efficiency was investigated. Microbiological, chemical and enzymatic analyses were applied in the survey. It was revealed that the influence of the petroleum derivatives on the effectiveness of the methane fermentation of sewage sludge depends on the type of the petroleum product. Diesel fuel did not limit the biogas production and the methane concentration in the biogas, while spent engine oil significantly reduced the process efficacy. The changes in physical-chemical parameters, excluding COD, did not reflect the effect of the tested substances. The negative influence of petroleum products on individual bacterial groups was observed after 7 days of the process, while after 14 days probably some adaptive mechanisms appeared. The dehydrogenase activity assessment was the most relevant parameter to evaluate the effect of petroleum products contamination. Diesel fuel was probably used as a source of carbon and energy in the process, while the toxic influence was observed in case of spent engine oil. PMID:26378365

  18. Investigations concerning the process stability of methane fermentations exposed to transitory substrate disturbances and concerning the utilization of biogenic-organic solids through anaerobic thermophilic hydrolysis and acidification

    International Nuclear Information System (INIS)

    In the food industry, anaerobic methods are increasingly being used for the cleaning of waste water with a high organic pollution load and for the utilization of solid organic production residues. As a function of discontinuous production processes and often campaign-like production cycles, waste water from the food-processing industry varies in both quality and quantity. Such variations in waste water supplied to a methane reactor constitute a threat to the microbiological balance as the slowly growing acetogenous and methanogenous bacteria are sensitive to changes in their medium. In order, therefore, to investigate the process stability of methane fermentations, the first part of this work deals with the simulation of transitory, strong variations due to the supply of concentrated, acidified and non-acidified substrates. Parameters used to assess the influence of such strong variations were the conventional process parameters redox-potential, biogas production and composition, volatile fatty acids and dissolved organic carbon as well as, additionally, partial hydrogen pressure in biogas and the content of the coenzyme F420 in the biomass. (orig.)

  19. Biofilm-forming capacity in biogenic amine-producing bacteria isolated from dairy products.

    Directory of Open Access Journals (Sweden)

    Maria eDiaz

    2016-05-01

    Full Text Available Biofilms on the surface of food industry equipment are reservoirs of potentially food-contaminating bacteria - both spoilage and pathogenic. However, the capacity of biogenic amine (BA-producers to form biofilms has remained largely unexamined. BAs are low molecular weight, biologically active compounds that in food can reach concentrations high enough to be a toxicological hazard. Fermented foods, especially some types of cheese, accumulate the highest BA concentrations of all. The present work examines the biofilm-forming capacity of 56 BA-producing strains belonging to three genera and 10 species (12 Enterococcus faecalis, 6 Enterococcus faecium, 6 Enterococcus durans, 1 Enterococcus hirae, 12 Lactococcus lactis, 7 Lactobacillus vaginalis, 2 Lactobacillus curvatus, 2 Lactobacillus brevis, 1 Lactobacillus reuteri and 7 Lactobacillus parabuchneri, all isolated from dairy products. Strains of all the tested species - except for L. vaginalis - were able to produce biofilms on polystyrene and adhered to stainless steel. However, the biomass produced in biofilms was strain-dependent. These results suggest that biofilms may provide a route via which fermented foods can become contaminated by BA-producing microorganisms.

  20. Effects of condensation products of biogenic amines on human platelet function

    International Nuclear Information System (INIS)

    Condensation products (CP) are formed by the reaction of biogenic amines with aldehydes and alpha-keto acids. The purpose of this investigation was to examine the effects of CP on platelet function in vitro. The effect of CP on platelet aggregation was examined. Epinephrine-induced aggregation was inhibited, suggesting CP antagonistic activity on the platelet alpha2-adrenergic receptors. Adenosine-diphosphate (ADP), collagen and arachidonic acid induced aggregation was inhibited only at high concentrations. Inhibition of epinephrine and ADP aggregation was reversible, suggesting CP are competitive inhibitors of these agonists. Binding affinities for the platelet alpha2-adrenergic receptor were determined using [3H]-yohimbine, a specific alpha2-receptor antagonist. The order of potency for CP inhibition of [3H]-yohimbine binding paralleled that determined for inhibition of epinephrine-induced aggregation. Platelet uptake of serotonin (5-HT) was competitively inhibited by CP, with the exception of salsolinol, which appears to be stimulatory. Release of 5-HT from platelets was induced by CP, with betacarbolines being more potent than tetrahydroisoquinolines. Evidence suggests that CP cause release by displacement of 5-HT from intraplatelet storage sites since this effect can be inhibited by imipramine, thus preventing accumulation of CP by platelets

  1. Biofilm-Forming Capacity in Biogenic Amine-Producing Bacteria Isolated from Dairy Products

    Science.gov (United States)

    Diaz, Maria; Ladero, Victor; del Rio, Beatriz; Redruello, Begoña; Fernández, María; Martin, M. Cruz; Alvarez, Miguel A.

    2016-01-01

    Biofilms on the surface of food industry equipment are reservoirs of potentially food-contaminating bacteria—both spoilage and pathogenic. However, the capacity of biogenic amine (BA)-producers to form biofilms has remained largely unexamined. BAs are low molecular weight, biologically active compounds that in food can reach concentrations high enough to be a toxicological hazard. Fermented foods, especially some types of cheese, accumulate the highest BA concentrations of all. The present work examines the biofilm-forming capacity of 56 BA-producing strains belonging to three genera and 10 species (12 Enterococcus faecalis, 6 Enterococcus faecium, 6 Enterococcus durans, 1 Enterococcus hirae, 12 Lactococcus lactis, 7 Lactobacillus vaginalis, 2 Lactobacillus curvatus, 2 Lactobacillus brevis, 1 Lactobacillus reuteri, and 7 Lactobacillus parabuchneri), all isolated from dairy products. Strains of all the tested species - except for L. vaginalis—were able to produce biofilms on polystyrene and adhered to stainless steel. However, the biomass produced in biofilms was strain-dependent. These results suggest that biofilms may provide a route via which fermented foods can become contaminated by BA-producing microorganisms. PMID:27242675

  2. Investigation of methane production and consumption by use of stable isotopes

    International Nuclear Information System (INIS)

    The oil spills are becoming increasingly common, methane, one of the products of biodegradation of oil, diffuses into the groundwater. This poster discusses the use of stable carbon and hydrogen isotope ratios of dissolved methane in water to understand dynamics of methane. 5 figs

  3. Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives

    OpenAIRE

    Eerten-Jansen, van, M.C.A.A.; Heijne, ter, A.; C J N Buisman; Hamelers, H.V.M.

    2012-01-01

    A methane-producing microbial electrolysis cell (MEC) is a technology to convert CO2 into methane, using electricity as an energy source and microorganisms as the catalyst. A methane-producing MEC provides the possibility to increase the fuel yield per hectare of land area, when the CO2 produced in biofuel production processes is converted to additional fuel methane. Besides increasing fuel yield per hectare of land area, this also results in more efficient use of land area, water, and nutrie...

  4. CHANGES IN COUNTS OF MICROORGANISMS AND BIOGENIC AMINES PRODUCTION DURING THE MANUFACTURE OF FERMENTED SAUSAGES POLIČAN

    OpenAIRE

    Libor Kalhotka; Olga Cwiková; Veronika Čírtková(Kovářová); Zuzana Matoušová; Jitka Přichystalová

    2012-01-01

    Poličan is classic raw fermented sausage with low acidity. Dry fermented sausages Poličan were used for the analysis and drawn once a week during production from ripening chambers of meat-packing plants. Those sausages ripened for 35 days under controlled temperature and humidity conditions. The aim of this article is to evaluate microorganisms accompanying ripening of fermented sausages Poličan and characterize relationships between activity of microorganisms and content of biogenic amines. ...

  5. Methane impurity production in the fusion reactor environment

    International Nuclear Information System (INIS)

    Fusion requires temperatures of the order of 108 degrees C. In order to attain the required temperature it will be essential to minimise the energy losses from the plasma. Impurities are a major cause of plasma cooling. Ionization of impurity species in the plasma leads to a subsequent decay and emission of radiation. The most common low Z contaminants to be consideed are water and methane produced by reaction of hydrogen isotopes with oxygen and carbon. This review focuses on the methane production problem. We will be concerned with the sources of carbon in the reactor and also with the reactivity of carbon with hydrogen molecules, atoms and ions and the synergistic effects which can arise from coincident fluxes of electrons and photons and the effects of radiation-induced damage of the materials involved. While the reactor first wall will provide the most hostile environment for methane producton, most of the reactions discussed can occur in breeder blankets and also in other tritium facilities such as fuel handling, purification and storage facilities

  6. Control of Methane Production and Exchange in Northern Peatlands

    Science.gov (United States)

    Crill, Patrick

    1997-01-01

    This proposal has successfully supported studies that have developed unique long ten-n datasets of methane (CH4) emissions and carbon dioxide (CO2) exchange in order to quantify the controls on CH4 production and exchange especially the linkages to the carbon cycle in northern peatlands. The primary research site has been a small fen in southeastern New Hampshire where a unique multi-year data baseline of CH4 flux measurements was begun (with NASA funding) in 1989. The fen has also been instrumented for continuous hydrological and meteorological observations and year-round porewater sampling. Multiyear datasets of methane flux are very valuable and very rare. Datasets using the same sampling techniques at the same sites are the only way to assess the effect of the integrated ecosystem response to climatological variability. The research has had two basic objectives: 1. To quantify the effect of seasonal and interannual variability on CH4flux. 2. To examine process level controls on methane dynamics.

  7. Stable isotope and water quality analysis of coal bed methane production waters and gases from the Bowen Basin, Australia

    International Nuclear Information System (INIS)

    Coal bed methane (CBM) is a significant growing industry in Queensland's energy sector. It is, however, a relatively new industry with little local water quality data and stable isotope compositions of production waters and gases available in the public domain. This study aims to determine whether water quality and stable isotope data can be correlated with gas and groundwater production and flow pathways, and identify zones of recharge and water mixing. Stable isotope analysis and accessory water quality tests were conducted on CBM production gas and water samples collected from two CBM producing bituminous coal seams within a single field in the Bowen Basin. In the production field, the reservoir seams are gently folded with eastwardly dipping fold axes, and compartmentalised by an ENE normal fault on the flank of a broad central anticline that contains minor faults. For one seam, splitting and a change in coal quality parallels the fault and fold axes. Although virgin reservoir conditions were similar, differing production performance north and south of the main fault suggests it acts as a barrier to water and gas flow along strike. The stable isotope analysis on the production water showed that waters with more positive (delta)D and (delta)18O compositions were associated with areas of higher water production and shallower depths, whereas more negative (delta)D and (delta)18O compositions were associated with lower water production and high gas production. The gas isotope analysis showed that production gases had both biogenic and thermogenic origins and that secondary biogenic gas generated through CO2 reduction comprises a significant portion of the CBM produced from this field. More negative CH4(delta)13C values characterize the zones of meteoric recharge in shallow, up-dip areas. Gas production data and CO2(delta)13C values suggest that this may result from 13CH4 stripping by the recharge waters and/or increased biogenic activity in this area. Smaller CO2

  8. Enhanced methane productivity from lignocellulosic biomasses using aqueous ammonia soaking pretreatment

    OpenAIRE

    Jurado, Esperanza; Skiadas, Ioannis; Gavala, Hariklia N.

    2012-01-01

    The continuously increasing demand for renewable energy sources, such as methane, renders anaerobic digestion to one of the most promising technologies for renewable energy production. In fact, anaerobic digestion for methane production has become a major part of the rapidly growing renewable energy sector. Biogas is part of a rapidly growing renewable energy sector, which expands at a rate of 20-30 % globally [1]. However, the increasing demand for methane production cannot be satisfied by t...

  9. Effect of inclusion of Myristica fragrans on methane production, rumen fermentation parameters and methanogens population

    OpenAIRE

    Sirohi, S. K.; P P Chaudhary; Navneet Goel

    2012-01-01

    Aim: The present study was done to evaluate the effect of Myristica fragrans fruit active compounds addition on methane production in vitro. Materials and Methods: Methanolic extract of Myristica fragrans fruit powder was prepared and checked for its inhibitory action on methane production in diet containing roughage 50 percent and concentrate 50 percent respectively. Methane production was estimated by Gas Chromatography. Results: It has been shown that supplementation of Myristica fragrans ...

  10. Progresses in the stable isotope studies of microbial processes associated with wetland methane production

    International Nuclear Information System (INIS)

    Methane emissions from wetlands play a key role in regulating global atmospheric methane concentration, so better understanding of microbial processes for the methane emission in wetlands is critical for developing process models and reducing uncertainty in global methane emission inventory. In this review, we describe basic microbial processes for wetland methane production and then demonstrate how stable isotope fractionation and stable isotope probing can be used to investigate the mechanisms underlying different methanogenic pathways and to quantify microbial species involved in wetland methane production. When applying stable isotope technique to calculate contributions of different pathways to the total methane production in various wetlands, the technical challenge is how to determine isotopic fractionation factors for the acetate derived methane production and carbon dioxide derived methane production. Although the application of stable isotope probing techniques to study the actual functions of different microbial organisms to methane production process is significantly superior to the traditional molecular biology method, the combination of these two technologies will be crucial for direct linking of the microbial community and functional structure with the corresponding metabolic functions, and provide new ideas for future studies. (authors)

  11. Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia.

    Science.gov (United States)

    Yang, Zhiman; Guo, Rongbo; Xu, Xiaohui; Wang, Lin; Dai, Meng

    2016-09-01

    Using batch and repeated batch cultivations, this study investigated the effects of bioaugmentation with enriched microbial consortia (named as EMC) on methane production from effluents of hydrogen-producing stage of potato slurry, as well as on the indigenous bacterial community. The results demonstrated that the improved methane production and shift of the indigenous bacterial community structure were dependent on the EMC/sludge ratio and bioaugmentation patterns. The methane yield and production rate in repeated batch bioaugmentation pattern of EMC were, respectively, average 15% and 10% higher than in one-time bioaugmentation pattern of EMC. DNA-sequencing approach showed that the enhanced methane production in the repeated batch bioaugmentation pattern of EMC mainly resulted from the enriched iron-reducing bacteria and the persistence of the introduced Syntrophomonas, which led to a rapid degradation of individual VFAs to methane. The findings contributed to understanding the correlation between the bioaugmentation of microbial consortia, community shift, and methane production. PMID:27262722

  12. Development of methane conversion improvement method by recycling of residual methane for steam reforming as a part of R and D of HTGR-hydrogen production system

    International Nuclear Information System (INIS)

    The purpose of the present study is to improve methane conversion for an HTGR-steam reforming system by recycling of residual methane. The residual methane in a product gas after steam reforming was recycled with a gas separator of polyimide membrane. Gas separation characteristics of the separator were investigated experimentally and numerically, and an experimental study on recycling system was carried out. The results showed that the recycling system improves apparent methane conversion, ratio of methane conversion to methane supply from a cylinder, from 20 to 32% compared with those without recycling. (author)

  13. Modeling methane emissions by cattle production systems in Mexico

    Science.gov (United States)

    Castelan-Ortega, O. A.; Ku Vera, J.; Molina, L. T.

    2013-12-01

    Methane emissions from livestock is one of the largest sources of methane in Mexico. The purpose of the present paper is to provide a realistic estimate of the national inventory of methane produced by the enteric fermentation of cattle, based on an integrated simulation model, and to provide estimates of CH4 produced by cattle fed typical diets from the tropical and temperate climates of Mexico. The Mexican cattle population of 23.3 million heads was divided in two groups. The first group (7.8 million heads), represents cattle of the tropical climate regions. The second group (15.5 million heads), are the cattle in the temperate climate regions. This approach allows incorporating the effect of diet on CH4 production into the analysis because the quality of forages is lower in the tropics than in temperate regions. Cattle population in every group was subdivided into two categories: cows (COW) and other type of cattle (OTHE), which included calves, heifers, steers and bulls. The daily CH4 production by each category of animal along an average production cycle of 365 days was simulated, instead of using a default emission factor as in Tier 1 approach. Daily milk yield, live weight changes associated with the lactation, and dry matter intake, were simulated for the entire production cycle. The Moe and Tyrrell (1979) model was used to simulate CH4 production for the COW category, the linear model of Mills et al. (2003) for the OTHE category in temperate regions and the Kurihara et al. (1999) model for the OTHE category in the tropical regions as it has been developed for cattle fed tropical diets. All models were integrated with a cow submodel to form an Integrated Simulation Model (ISM). The AFRC (1993) equations and the lactation curve model of Morant and Gnanasakthy (1989) were used to construct the cow submodel. The ISM simulates on a daily basis the CH4 production, milk yield, live weight changes associated with lactation and dry matter intake. The total daily CH

  14. Economic evaluation of coalbed methane production in China

    International Nuclear Information System (INIS)

    Roaring natural gas demand, energy security and environment protection concerns coupled with stringent emission reduction requirement have made China's abundant coalbed methane (CBM) resource an increasingly valuable energy source. However, not all of China's CBM resource is economic to develop under current technological condition and economic situation. In order to locate the CBM resource with economic viability to develop in China, economic evaluation of CBM production is conducted by applying net present value (NPV) method. The results indicate that more than half of CBM resource in China is economic to develop. It shows that CBM price, production rate and operating costs are the three major factors with most impact on the economic viability of the CBM development in target areas in China. The result also demonstrates that the economic limit production is roughly 1200 cubic meters per day. These economic evaluation results provide important information for both CBM companies and China government.

  15. Decreasing methane production in hydrogenogenic UASB reactors fed with cheese whey

    International Nuclear Information System (INIS)

    One of the problems in fermentative hydrogen producing reactors, inoculated with pre-treated anaerobic granular sludge, is the eventual methane production by hydrogen-consuming methanogens. In this study, strategies such as reduction of pH and HRT, organic shock loads and repeated biomass heat treatment were applied to hydrogenogenic UASB reactors fed with cheese whey, that showed methane production after certain time of continuous operation (between 10 and 60 days). The reduction of pH to 4.5 not only decreased methane production but also hydrogen production. Organic shock load (from 20 to 30 g COD/L-d) was the more effective strategy to decrease the methane production rate (75%) and to increase the hydrogen production rate (172%), without stopping reactor operation. Repeated heat treatment of the granular sludge was the only strategy that inhibited completely methane production, leading to high volumetric hydrogen production rates (1.67 L H2/L-d), however this strategy required stopping reactor operation; in addition homoacetogenesis, another hydrogen-consuming pathway, was not completely inhibited. This work demonstrated that it was possible to control the methane activity in hydrogen producing reactors using operational strategies. - Highlights: • Operational strategies control methane in hydrogen production from cheese whey. • Organic shock load increased the hydrogen production rate. • Operation pH below 5 decreased both the hydrogen and methane production. • Second biomass heat treatment inhibits completely methanogenesis. • Homoacetogens play a negative role in fermentative hydrogen production

  16. Hydrogen and methane production from household solid waste in the two-stage fermentation process

    DEFF Research Database (Denmark)

    Lui, D.; Liu, D.; Zeng, Raymond Jianxiong;

    2006-01-01

    A two-stage process combined hydrogen and methane production from household solid waste was demonstrated working successfully. The yield of 43 mL H-2/g volatile solid (VS) added was generated in the first hydrogen production stage and the methane production in the second stage was 500 mL CH4/g VS...

  17. Equations of state of detonation products: ammonia and methane

    Science.gov (United States)

    Lang, John; Dattelbaum, Dana; Goodwin, Peter; Garcia, Daniel; Coe, Joshua; Leiding, Jeffery; Gibson, Lloyd; Bartram, Brian

    2015-06-01

    Ammonia (NH3) and methane (CH4) are two principal product gases resulting from explosives detonation, and the decomposition of other organic materials under shockwave loading (such as foams). Accurate thermodynamic descriptions of these gases are important for understanding the detonation performance of high explosives. However, shock compression data often do not exist for molecular species in the dense gas phase, and are limited in the fluid phase. Here, we present equation of state measurements of elevated initial density ammonia and methane gases dynamically compressed in gas-gun driven plate impact experiments. Pressure and density of the shocked gases on the principal Hugoniot were determined from direct particle velocity and shock wave velocity measurements recorded using optical velocimetry (Photonic Doppler velocimetry (PDV) and VISAR (velocity interferometer system for any reflector)). Streak spectroscopy and 5-color pyrometry were further used to measure the emission from the shocked gases, from which the temperatures of the shocked gases were estimated. Up to 0.07 GPa, ammonia was not observed to ionize, with temperature remaining below 7000 K. These results provide quantitative measurements of the Hugoniot locus for improving equations of state models of detonation products.

  18. Biogenic gas in the Cambrian-Ordovcian Alum Shale (Denmark and Sweden)

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, H.M.; Wirth, R.; Biermann, S.; Arning, E.T. [Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ, Potsdam (Germany); Krueger, M.; Straaten, N. [BGR Hannover (Germany); Bechtel, A. [Montanuniv. Leoben (Austria); Berk, W. van [Technical Univ. of Clausthal (Germany); Schovsbo, N.H. [Geological Survey of Denmark and Greenland - GEUS, Copenhagen (Denmark); Crabtree, Stephen [Gripen Gas (Sweden)

    2013-08-01

    Shale gas is mainly produced from thermally mature black shales. However, biogenic methane also represents a resource which is often underestimated. Today biogenic methane is being produced from the Upper Devonian Antrim Shale in the Michigan Basin which was the most successfully exploited shale gas system during the 1990-2000 decade in the U.S.A. before significant gas production from the Barnett Shale started (Curtis et al., 2008). The Cambro-Ordovician Alum Shale in northern Europe has thermal maturities ranging from overmature in southern areas (Denmark and southern Sweden) to immature conditions (central Sweden). Biogenic methane is recorded during drilling in central Sweden. The immature Alum Shale in central Sweden has total organic carbon (TOC) contents up to 20 wt%. The hydrogen index HI ranges from 380 to 560 mgHC/gTOC at very low oxygen index (OI) values of around 4 mg CO{sub 2}/gTOC, Tmax ranges between 420 - 430 C. The organic matter is highly porous. In general, the Alum Shale is a dense shale with intercalated sandy beds which may be dense due to carbonate cementation. Secondary porosity is created in some sandy beds due to feldspar dissolution and these beds serve as gas conduits. Methane production rates with shale as substrate in the laboratory are dependent on the kind of hydrocarbon-degrading microbial enrichment cultures used in the incubation experiments, ranging from 10-620 nmol/(g*d). In these experiments, the CO{sub 2} production rate was always higher than for methane. Like the northern part of North America, also Northern European has been covered by glaciers during the Pleistocene and similar geological processes may have developed leading to biogenic shale gas formation. For the Antrim Shale one hypothesis suggests that fresh waters, recharged from Pleistocene glaciation and modern precipitation, suppressed basinal brine salinity along the northern margins of the Michigan Basin to greater depths and thereby enhancing methanogenesis

  19. Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production

    OpenAIRE

    Nguyen, S.H.; Li, L.; Hegarty, R S

    2015-01-01

    Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunatio...

  20. Effect of Dietary Monensin or Chlortetracycline on Methane Production from Cattle Waste

    OpenAIRE

    Varel, V. H.; Hashimoto, A. G.

    1981-01-01

    Wastes from feedlot cattle fed finishing diets containing either monensin, chlortetracycline, or no antibiotic were investigated as substrates for methane production. We used continuously mixed anaerobic fermentors with 3-liter working volumes at 35 and 55°C; these fermentors were fed once per day. Within a few days after waste from animals fed monensin was added, the volume of methane produced began to decrease in the 55°C fermentors. After 9 days of daily feeding, methane production was sev...

  1. Hydrogen production from methane using oxygen-permeable ceramic membranes

    Science.gov (United States)

    Faraji, Sedigheh

    Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest in membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like hydrogen. However, hydrogen generation by this method has not yet been commercialized and suffers from low membrane stability, low membrane oxygen flux, high membrane fabrication costs, and high reaction temperature requirements. In this dissertation, hydrogen production from methane on two different types of ceramic membranes (dense SFC and BSCF) has been investigated. The focus of this research was on the effects of different parameters to improve hydrogen production in a membrane reactor. These parameters included operating temperature, type of catalyst, membrane material, membrane thickness, membrane preparation pH, and feed ratio. The role of the membrane in the conversion of methane and the interaction with a Pt/CeZrO2 catalyst has been studied. Pulse studies of reactants and products over physical mixtures of crushed membrane material and catalyst have clearly demonstrated that a synergy exists between the membrane and the catalyst under reaction conditions. The degree of catalyst/membrane interaction strongly impacts the conversion of methane and the catalyst performance. During thermogravimetric analysis, the onset temperature of oxygen release for BSCF was observed to be lower than that for SFC while the amount of oxygen release was significantly greater. Pulse injections of CO2 over crushed membranes at 800°C have shown more CO2 dissociation on the BSCF membrane than the SFC membrane, resulting in higher CO formation on the BSCF membrane. Similar to the CO2 pulses, when CO was injected on the samples at 800°C, CO2 production was higher on BSCF than SFC. It was found that hydrogen consumption on BSCF particles is 24 times higher than that on SFC particles. Furthermore, Raman spectroscopy and temperature programmed desorption studies of

  2. Raman analysis on methane production from natural gas hydrate by carbon dioxide–methane replacement

    International Nuclear Information System (INIS)

    Using CO2–CH4 (carbon dioxide–methane) replacement to produce CH4 from NGH (natural gas hydrate) is not only a new CH4 production technology but also a direct way to disposal CO2 by CO2 hydrates. Although there are many studies focusing on the mechanism of CH4 replacement in hydrates by CO2, the mechanism of the replacement is still not clear. In this work, the replacement process and hydrate structure change are tracked and investigated by Raman and NMR (nuclear magnetic resonance) spectra. By comprehensively analyzing the Raman and NMR spectra, we infer the mechanism of the replacement and the hydrate structures. Conclusions are drawn as, on one hand, CH4 molecules are fully replaced with the gas–solid interface, but partly replaced in deeply inner hydrates by CO2 molecules; on the other hand, the CO2 hydrate and CH4 hydrate coexist in a type of structure I (sI) and there is no structure transformation during the replacement. The research results are important to further confirm the mechanism of the replacement and reveal factors restraining efficiency of the CH4 production. - Highlights: • CH4 and CO2 coexist in sI hydrates. • Only CH4 molecules in 51262 cages are replaced. • Replacement includes processes of CH4 hydrate dissociation and CO2 hydrate formation. • Gas diffusion in hydrate is a key to replacement efficiency

  3. Biogenic oxidized organic functional groups in aerosol particles from a mountain forest site and their similarities to laboratory chamber products

    Directory of Open Access Journals (Sweden)

    R. E. Schwartz

    2010-06-01

    Full Text Available Submicron particles collected at Whistler, British Columbia, at 1020 m a.s.l. during May and June 2008 on Teflon filters were analyzed by Fourier transform infrared (FTIR and X-ray fluorescence (XRF techniques for organic functional groups (OFG and elemental composition. Organic mass (OM concentrations ranged from less than 0.5 to 3.1 μg m−3, with a project mean and standard deviation of 1.3±1.0 μg m−3 and 0.21±0.16 μg m−3 for OM and sulfate, respectively. On average, organic hydroxyl, alkane, and carboxylic acid groups represented 34%, 33%, and 23% of OM, respectively. Ketone, amine and organosulfate groups constituted 6%, 5%, and <1% of the average organic aerosol composition, respectively. Measurements of volatile organic compounds (VOC, including isoprene and monoterpenes from biogenic VOC (BVOC emissions and their oxidation products (methyl-vinylketone / methacrolein, MVK/MACR, were made using co-located proton transfer reaction mass spectrometry (PTR-MS. We present chemically-specific evidence of OFG associated with BVOC emissions. Positive matrix factorization (PMF analysis attributed 65% of the campaign OM to biogenic sources, based on the correlations of one factor to monoterpenes and MVK/MACR. The remaining fraction was attributed to anthropogenic sources based on a correlation to sulfate. The functional group composition of the biogenic factor (consisting of 32% alkane, 25% carboxylic acid, 21% organic hydroxyl, 16% ketone, and 6% amine groups was similar to that of secondary organic aerosol (SOA reported from the oxidation of BVOCs in laboratory chamber studies, providing evidence that the magnitude and chemical composition of biogenic SOA simulated in the laboratory is similar to that found in actual atmospheric conditions. The biogenic factor OM is also correlated to dust elements, indicating that dust may act as a non-acidic SOA sink. This role is supported by the organic functional

  4. Effects of mixing on methane production during thermophilic anaerobic digestion of manure

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Buendia, Inmaculada M.; Ellegaard, Lars;

    2008-01-01

    methane production was investigated in three lab-scale continuously stirred tank reactors. On comparison to continuous mixing, intermittent and minimal mixing strategies improved methane productions by 1.3% and 12.5%, respectively. Pilot-scale studies also supported the lab-scale results with an average 7...

  5. 11C-methane production in small volume, high pressure gas targets

    International Nuclear Information System (INIS)

    The parameters affecting the production of 11C-methane, in situ, in small volume, high-pressure gas targets include target chamber size and material. The results are based on experiments that varied the target gas composition, the target material and geometry. Methane production yields were typically 65% of the yields of 11CO2 in the same target chamber. (orig.)

  6. Natural carbon isotopes used to study methane consumption and production in soil

    DEFF Research Database (Denmark)

    Ambus, Per; Andersen, Bertel Lohmann; Kemner, Marianne; Sorensen, B.; Wille, J.

    2002-01-01

    Changes in the isotopic composition of carbon can be used to reveal simultaneous occurrence of methane production and oxidation in soil. The method is conducted in laboratory jar experiments as well as in the field by using flux chambers. Simultaneous occurrence of production and oxidation of...... methane was suggested....

  7. Hydrogen production by methane reforming based on micro-gap discharge

    International Nuclear Information System (INIS)

    Based on micro-gap strong ionization discharge, this paper presents a study of hydrogen production by methane reforming at room temperature and atmospheric pressure without catalyst. Influence rules of conversion of methane and production of hydrogen were studied by changing discharge power and feed gas flow rate. Results show that when the discharge power was about 341 W, the discharge gap was 0.47 mm and the flow rate of feed gas was 100 mL min−1, the conversion of methane and yield of hydrogen reached optimization. The conversion rate of methane and the highest yield of hydrogen were 68.14 % and 51.34 %, respectively.

  8. Temperature regulates methane production through the function centralization of microbial community in anaerobic digestion.

    Science.gov (United States)

    Lin, Qiang; De Vrieze, Jo; He, Guihua; Li, Xiangzhen; Li, Jiabao

    2016-09-01

    Temperature is crucial for the performance of anaerobic digestion process. In this study of anaerobic digestion of swine manure, the relationship between the microbial gene expression and methane production at different temperatures (25-55°C) was revealed through metatranscriptomic analysis. Daily methane production and total biogas production increased with temperature up to 50°C, but decreased at 55°C. The functional gene expression showed great variation at different temperatures. The function centralization (opposite to alpha-diversity), assessed by the least proportions of functional pathways contributing for at least 50% of total reads positively correlated to methane production. Temperature regulated methane production probably through reducing the diversity of functional pathways, but enhancing central functional pathways, so that most of cellular activities and resource were invested in methanogenesis and related pathways, enhancing the efficiency of conversion of substrates to methane. This research demonstrated the importance of function centralization for efficient system functioning. PMID:27236402

  9. Haloalkaline Bioconversions for Methane Production from Microalgae Grown on Sunlight.

    Science.gov (United States)

    Daelman, Matthijs R J; Sorokin, Dimitry; Kruse, Olaf; van Loosdrecht, Mark C M; Strous, Marc

    2016-06-01

    Microalgal biomass can be converted to biofuels to replace nonsustainable fossil fuels, but the widespread use of microalgal biofuels remains hampered by the high energetic and monetary costs related to carbon dioxide supply and downstream processing. Growing microalgae in mixed culture biofilms reduces energy demands for mixing, maintaining axenic conditions, and biomass concentration. Furthermore, maintaining a high pH improves carbon dioxide absorption rates and inorganic carbon solubility, thus overcoming the carbon limitation and increasing the volumetric productivity of the microalgal biomass. Digesting the microalgal biomass anaerobically at high pH results in biogas that is enriched in methane, while the dissolved carbon dioxide is recycled to the phototrophic reactor. All of the required haloalkaline conversions are known in nature. PMID:26968613

  10. Methods for Detecting Microbial Methane Production and Consumption by Gas Chromatography

    Science.gov (United States)

    Aldridge, Jared T.; Catlett, Jennie L.; Smith, Megan L.; Buan, Nicole R.

    2016-01-01

    Methane is an energy-dense fuel but is also a greenhouse gas 25 times more detrimental to the environment than CO2. Methane can be produced abiotically by serpentinization, chemically by Sabatier or Fisher-Tropsh chemistry, or biotically by microbes (Berndt et al., 1996; Horita and Berndt, 1999; Dry, 2002; Wolfe, 1982; Thauer, 1998; Metcalf et al., 2002). Methanogens are anaerobic archaea that grow by producing methane gas as a metabolic byproduct (Wolfe, 1982; Thauer, 1998). Our lab has developed and optimized three different gas chromatograph-utilizing assays to characterize methanogen metabolism (Catlett et al., 2015). Here we describe the end point and kinetic assays that can be used to measure methane production by methanogens or methane consumption by methanotrophic microbes. The protocols can be used for measuring methane production or consumption by microbial pure cultures or by enrichment cultures.

  11. Evidence for methane production by the marine algae Emiliania huxleyi

    Science.gov (United States)

    Lenhart, Katharina; Klintzsch, Thomas; Langer, Gerald; Nehrke, Gernot; Bunge, Michael; Schnell, Sylvia; Keppler, Frank

    2016-06-01

    Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters, but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, regional and temporal oversaturation of surface waters occurs frequently. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labeled carbon substrates, namely bicarbonate and a position-specific 13C-labeled methionine (R-S-13CH3). The CH4 production was 0.7 µg particular organic carbon (POC) g-1 d-1, or 30 ng g-1 POC h-1. After supplementation of the cultures with the 13C-labeled substrate, the isotope label was observed in headspace CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that the widespread marine algae Emiliania huxleyi might contribute to the observed spatially and temporally restricted CH4 oversaturation in ocean surface waters.

  12. Steam Methane Reforming System for Hydrogen Production: Advanced Exergetic Analysis

    Directory of Open Access Journals (Sweden)

    Tatiana Morosuk

    2012-02-01

    Full Text Available Steam methane reforming (SMR is one of the most promising processes for the production of hydrogen. Therefore, the overall thermodynamic efficiency of this process is of particular importance. The thermodynamic inefficiencies in a thermal system are related to exergy destruction and exergy loss. However, a conventional exergetic analysis cannot evaluate the mutual interdependencies among the system components nor the real potential for improving the energy conversion system being considered. One of the tools under development for the improvement of energy conversion systems from the thermodynamic viewpoint is the advanced exergetic analysis. In this paper, the avoidable part of the exergy destruction is estimated and the interactions among components of the overall system are evaluated in terms of endogenous and exogenous exergy destruction. The assumptions required for these calculations are discussed in detail, especially for those components that are typically used in chemical processes. Results of this paper suggest options for increasing the thermodynamic efficiency of hydrogen production by steam-methane reforming.

  13. Methane production from oleate : assessing the bioaugmentation potential of Syntrophomonas zehnderi

    OpenAIRE

    Cavaleiro, A. J.; Sousa, D.Z.; Alves, M. M.

    2010-01-01

    The potential for improving long-chain fatty acids (LCFA) conversion to methane was evaluated by bioaugmenting a non-acclimated anaerobic granular sludge with Syntrophomonas zehnderi. Batch bioaugmentation assays were performed with and without the solid microcarrier sepiolite, using 1 mM oleate as sole carbon and energy source. When S. zehnderi was added to the anaerobic sludge methane production from oleate was faster. High methane yields, i.e. 89 ± 5% and 72 ± 1%, were obser...

  14. Production of carbon molecular sieves from palm shell through carbon deposition from methane

    OpenAIRE

    Mohammadi Maedeh; Najafpour Ghasem D.; Mohamed Abdul Rahman

    2011-01-01

    The possibility of production of carbon molecular sieve (CMS) from palm shell as a waste lignocellulosic biomass was investigated. CMS samples were prepared through heat treatment processes including carbonization, physiochemical activation and chemical vapor deposition (CVD) from methane. Methane was pyrolyzed to deposit fine carbon on the pore mouth of palm shell-based activated carbon to yield CMS. All the deposition experiments were performed at 800 ºC, while the methane flow rate (...

  15. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production

    OpenAIRE

    Catlett, Jennie L.; Ortiz, Alicia M.; Buan, Nicole R.

    2015-01-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron trans...

  16. Anaerobic digestion of maize hybrids for methane production

    Directory of Open Access Journals (Sweden)

    P. Vindis

    2010-05-01

    Full Text Available Purpose: This research project was aimed at optimising anaerobic digestion of maize and find out which maturity class of corn and which hybrid of a particular maturity class produces the highest rate of biogas and biomethane. Also the chemical composition of gases was studied.Design/methodology/approach: Biogas and biomethane production and composition in mesophilic (35 degrees C conditions were measured and compared. The corn hybrids of FAO 300 - FAO 600 maturity class were tested. Experiments took place in the lab, for 35 days within four series of experiments with four repetitions according to the method DIN 38 414.Findings: Results show that the highest maturity classes of corn (FAO 500 increases the amount of biogas and biomethane. The greatest gain of biogas, biomethane according to maturity class is found with hybrids of FAO 400 and FAO 500 maturity class. Among the corn hybrids of maturity class FAO 300 - FAO 400, the hybrid PR38F70 gives the greatest production of biogas and biomethane. Among the hybrids of maturity class FAO 400 - FAO 500, the greatest amount of biogas and biomethane was produced by the hybrid PIXXIA (FAO 420. Among the hybrids of maturity class FAO 500 - FAO 600 the hybrid CODISTAR (FAO 500 the highest production of biomethane. Production of biomethane, which has the main role in the production of biogas varied with corn hybrids from 50-60 % of the whole amount of produced gas.Research limitations/implications: Economic efficiency of anaerobic digestion depends on the optimum methane production and optimum anaerobic digestion process.Practical implications: The results reached serve to plan the electricity production in the biogas production plant and to achieve the highest biomethane yield per hectare of maize hybrid.Originality/value: Late ripening varieties (FAO ca. 600 make better use of their potential to produce biomass than medium or early ripening varieties.

  17. Methane production through anaerobic digestion of dedicated energy crops

    OpenAIRE

    Di Girolamo, Giuseppe

    2014-01-01

    Methane yield of ligno-cellulosic substrates (i.e. dedicated energy crops and agricultural residues) may be limited by their composition and structural features. Hence, biomass pre-treatments are envisaged to overcome this constraint. This thesis aimed at: i) assessing biomass and methane yield of dedicated energy crops; ii) evaluating the effects of hydrothermal pre-treatments on methane yield of Arundo; iii) investigating the effects of NaOH pre-treatments and iv) acid pre-treatments on che...

  18. Marine biomass system: anaerobic digestion and production of methane

    Energy Technology Data Exchange (ETDEWEB)

    Haven, K.F.; Henriquez, M.; Ritschard, R.L.

    1979-04-01

    Two approaches to kelp conversion to methane are described. First, a large (10.56 mi/sup 2/) oceanic farm using an artificial substrate and an upwelling system to deliver nutrient-rich deep ocean water to the kelp bed is described. This system can yield as much as 50 tons of kelp (dry ash free - DAF) per acre-year. Kelp are harvested by a specially designed 30,000 DWT ship and delivered to an onshore processing plant as a ground kelp slurry. The second system involves the use of a natrual coastal kelp bed. Growth rates in this bed are stimulated by a nutrient rich sewer outfall. A conceptual model is presented for calculation of the growth rate of kelp in this natural bed which can reach 15 tons (DAF) per acre-year. The harvest activity and processing plant are similar to those for oceanic farm system. In the next section of this report, the overall concept of kelp production and conversion to methane is discussed. In Section III the general design of the ocean farm system is presented and discussed while Section IV contains a similar description for the natural bed system. Section V presents the capital requirements and operational labor, resources and material requirements. Section VI describes the environmental residuals created by the operation of either system and, to the extent possible, quantifies the rate at which these residuals are generated. In addition to the technical data reported herein, cost data have been generated for the various processes and components utilized in each solar technology. The requirements for costing information basically arise from the need to compute parameters such as investment demands, employment patterns, material demands and residual levels associated with each technology for each of several national and regional scenarios.

  19. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance

    OpenAIRE

    Rainer Roehe; Dewhurst, Richard J.; Carol-Anne Duthie; Rooke, John A.; Nest McKain; Dave W Ross; Hyslop, Jimmy J; Anthony Waterhouse; Freeman, Tom C.; Mick Watson; John Wallace, R.

    2016-01-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to i...

  20. Enhancing methane production in a farm-scale biogas production system

    OpenAIRE

    Kaparaju, Prasad

    2003-01-01

    This work highlights the application of biogas technology in a farm biogas system to generate renewable energy and to reduce environmental impacts and GHG emissions from high strength organic wastes ranging from agricultural, animal wastes and agro-industrial organic wastes. In addition, the thesis also emphasizes various measures to enhance methane production especially in a farm-scale biogas production system through co-digestion of manure and industrial organic waste/energy crops and recov...

  1. Optimal year-round operation for methane production from CO2 and water using wind energy

    International Nuclear Information System (INIS)

    In this paper, we present the optimal year-round production of synthetic methane from water electrolysis using wind energy, and CO2 from power plants. The plant consists of a wind farm, a system of electrolyzers which produces oxygen and hydrogen from water, a series of equipment used to purify and store the oxygen; and the purification of hydrogen using a deoxygenation reactor and its reaction with CO2 to produce synthetic methane. We operate the plant over a year, considering monthly variability in wind velocity for constant methane production, and for variable methane production. We formulate the problem as a multiperiod NLP. The investment of a plant devoted to synthetic natural gas production is 375 M€ for a production cost of synthetic methane of 13.1 €/MMBTU, a price that is currently over the selling price of natural gas. If the plant operates at constant methane production rate, the investment and production costs are almost double, but we can obtain credit from the electricity produced; 2.9 kg of CO2 per kg of CH4 produced can be reused by this process. - Highlights: • CO2 can be reused as carbon source mitigating GHG emissions. • Wind energy is widely available to produce electricity but cannot be stored. • The production of chemicals from wind allows energy storage. • Synthetic methane is produced using CO2 and electrolytic hydrogen. • Current low cost of natural gas makes this option non-competitive

  2. Hydrogen production by radio frequency plasma stimulation in methane hydrate at atmospheric pressure

    OpenAIRE

    Putra, Andi Erwin Eka

    2013-01-01

    Methane hydrate, formed by injecting methane into 100 g of shaved ice at a pressure of 7 MPa and reactor temperature of 0 ??C, was decomposed by applying 27.12 MHz radio frequency plasma in order to produce hydrogen. The process involved the stimulation of plasma in the methane hydrate with a variable input power at atmospheric pressure. It was observed that production of CH4 is optimal at a slow rate of CH4 release from the methane hydrate, as analyzed by in light of the steam...

  3. Migration of methane into groundwater from leaking production wells near Lloydminster

    International Nuclear Information System (INIS)

    The problem of migration of methane from leaking oil and gas wells into aquifers in the Lloydminster area in Saskatchewan, was discussed. A study was conducted to determine if the methane in shallow aquifers near the leaking wells, came from the wells or occurred naturally. Migration rate in aquifers, concentration gradients and approximate flux rates of methane from leaking wells to shallow aquifers, were studied. The methods of investigation included drilling of test holes at selected sites, installation of monitoring wells, purging of wells, pumping tests and water level monitoring, sampling and analyses for dissolved methane. The relatively high methane concentrations in many of the monitoring wells indicated the presence of a methane plume that has migrated from the production well. It was suggested that other leaky well sites in the area should be investigated to determine if similar plumes were present. 18 refs., 5 tabs., 13 figs

  4. Optimization of a regional production of bioalcohol from biogenic residues; Optimierung der regionalen Bioalkoholherstellung aus biogenen Reststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Michael; Fleischer, Sven; Senn, Thomas [Hohenheim Univ. (Germany). Inst. fuer Lebensmittelwissenschaft und Biotechnologie

    2011-07-01

    For some time, one increasingly discusses on the production of ethanol from cellulosic materials. The techniques developed so far are based on concepts resulting from the thirties of the twentieth century. Under this aspect, the author of the contribution under consideration reports on an optimization of the regional production of bioethanol from biogenic raw materials. It has succeeded to design an ethanol process in combination with the biogas production. In this ethanol process, raw materials containing starch and cellulose are processed simultaneously. Still 10-11 percent by volume of ethanol can be achieved in mashing. The released pentoses and non-digested cellulose can be converted in the biogas plant to biogas and used for energy.

  5. Relationships linking primary production, sea ice melting, and biogenic aerosol in the Arctic

    Science.gov (United States)

    Becagli, S.; Lazzara, L.; Marchese, C.; Dayan, U.; Ascanius, S. E.; Cacciani, M.; Caiazzo, L.; Di Biagio, C.; Di Iorio, T.; di Sarra, A.; Eriksen, P.; Fani, F.; Giardi, F.; Meloni, D.; Muscari, G.; Pace, G.; Severi, M.; Traversi, R.; Udisti, R.

    2016-07-01

    This study examines the relationships linking methanesulfonic acid (MSA, arising from the atmospheric oxidation of the biogenic dimethylsulfide, DMS) in atmospheric aerosol, satellite-derived chlorophyll a (Chl-a), and oceanic primary production (PP), also as a function of sea ice melting (SIM) and extension of the ice free area in the marginal ice zone (IF-MIZ) in the Arctic. MSA was determined in PM10 samples collected over the period 2010-2012 at two Arctic sites, Ny Ålesund (78.9°N, 11.9°E), Svalbard islands, and Thule Air Base (76.5°N, 68.8°W), Greenland. PP is calculated by means of a bio-optical, physiologically based, semi-analytical model in the potential source areas located in the surrounding oceanic regions (Barents and Greenland Seas for Ny Ålesund, and Baffin Bay for Thule). Chl-a peaks in May in the Barents sea and in the Baffin Bay, and has maxima in June in the Greenland sea; PP follows the same seasonal pattern of Chl-a, although the differences in absolute values of PP in the three seas during the blooms are less marked than for Chl-a. MSA shows a better correlation with PP than with Chl-a, besides, the source intensity (expressed by PP) is able to explain more than 30% of the MSA variability at the two sites; the other factors explaining the MSA variability are taxonomic differences in the phytoplanktonic assemblages, and transport processes from the DMS source areas to the sampling sites. The taxonomic differences are also evident from the slopes of the correlation plots between MSA and PP: similar slopes (in the range 34.2-36.2 ng m-3of MSA/(gC m-2 d-1)) are found for the correlation between MSA at Ny Ålesund and PP in Barents Sea, and between MSA at Thule and PP in the Baffin Bay; conversely, the slope of the correlation between MSA at Ny Ålesund and PP in the Greenland Sea in summer is smaller (16.7 ng m-3of MSA/(gC m-2 d-1)). This is due to the fact that DMS emission from the Barents Sea and Baffin Bay is mainly related to the MIZ

  6. Key factors influencing the potential of catch crops for methane production

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Fernandez-Varela, Raquel; Uellendahl, Hinrich

    2014-01-01

    Catch crops are grown in crop rotation primarily for soil stabilization. The excess biomass of catch crops was investigated for its potential as feedstock for biogas production. Ten variables affecting catch crop growth and methane potential were evaluated. Field trials and methane potential were...

  7. Enhanced methane productivity from swine manure fibers by aqueous ammonia soaking pretreatment

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Skiadas, Ioannis; Gavala, Hariklia N.

    2011-01-01

    The necessity of increasing the methane productivity of manure based biogas plants has triggered the development of new separation technologies for being applied before anaerobic digestion of the manure. Thus, manure solid and liquid fractions could be used to centralized biogas plants for methane...

  8. Semi-industrial production of methane from textile wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Opwis, Klaus; Mayer-Gall, Thomas; Gutmann, Jochen S. [Deutsches Textilforschungszentrum Nord-West e.V., Krefeld (DE)] (and others)

    2012-12-15

    The enzymatic desizing of starch-sized cotton fabrics leads to wastewaters with an extremely high chemical oxygen demand due to its high sugar content. Nowadays, these liquors are still disposed without use, resulting in a questionable ecological pollution and high emission charges for cotton finishing manufacturers. In this paper, an innovative technology for the production of energy from textile wastewaters from cotton desizing was developed. Such desizing liquors were fermented by methane-producing microbes to biogas. For this purpose, a semi-industrial plant with a total volume of more than 500 L was developed and employed over a period of several weeks. The robust and trouble-free system produces high amounts of biogas accompanied by a significant reduction of the COD of more than 85%. With regard to growing standards and costs for wastewater treatment and disposal, the new process can be an attractive alternative for textile finishing enterprises in wastewater management, combining economic and ecological benefits. Moreover, the production of biogas from textile wastewaters can help to overcome the global energy gap within the next decades, especially with respect to the huge dimension of cotton pretreatment and, therefore, huge desizing activities worldwide.

  9. Prospects for biogenic natural gas. Pt. I. Production from wet and dry biomass; Perspektiven fuer Bio-Erdgas. T. I.. Bereitstellung aus nasser und trockener Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Leible, Ludwig; Kaelber, Stefan; Kappler, Gunnar [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (DE). Inst. fuer Technikfolgenabschaetzung und Systemanalyse (ITAS); Eltrop, Ludger; Stenull, Maria [Stuttgart Univ. (DE). Inst. fuer Energiewirtschaft und Rationelle Energieanwendung (IER); Lansche, Jens [Hohenheim Univ., Stuttgart (Germany). Inst. fuer Agrartechnik; Poboss, Norman [Stuttgart Univ. (DE). Inst. fuer Feuerungs- und Kraftwerkstechnik (IFK); Stuermer, Bernd; Kelm, Tobias [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany); Koeppel, Wolfgang [Deutsche Vereinigung des Gas- und Wasserfaches e.V. (DVGW), Forschungsstelle am Engler-Bunte-Institut (EBI), Karlsruhe (Germany)

    2012-07-01

    Biogenic natural gas offers as substitute for natural gas (SNG) various opportunities for different types of biomass for a more efficient handling and energy use in the power, heat and fuel sector. Part I of this publication deals with techno-economic aspects of SNG production based on biogas and thermo-chemically produced gas. Associated GHG emissions are discussed as well. Part II focuses on the utilization of biogenic natural gas for heat, power and fuel production. A comparison with fossil natural gas and the direct use of biogas or thermo-chemically produced gas is included. (orig.)

  10. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    Science.gov (United States)

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill. PMID:26601890

  11. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production

    DEFF Research Database (Denmark)

    Liu, Wenzong; Cai, Weiwei; Guo, Zechong;

    2016-01-01

    Methane production rate (MPR) in waste activated sludge (WAS) digestion processes is typically limitedby the initial steps of complex organic matter degradation, leading to a limited MPR due to sludgefermentation speed of solid particles. In this study, a novel microbial electrolysis AD reactor (ME....../m3 reactor/d in AD). The methane production yield reached 116.2 mg/g VSS in the ME-ADreactor. According to balance calculation on electron transfer and methane yield, the increasedmethane production was mostly dependent on electron contribution through the ME system. Thus, theuse of the novel ME...

  12. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Frison, A.;

    2016-01-01

    , enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55 °C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas......Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from...

  13. Enhanced methane productivity from lignocellulosic biomasses using aqueous ammonia soaking pretreatment

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Skiadas, Ioannis; Gavala, Hariklia N.

    2012-01-01

    energy sector. Biogas is part of a rapidly growing renewable energy sector, which expands at a rate of 20-30 % globally [1]. However, the increasing demand for methane production cannot be satisfied by the use of anaerobic digestion only from waste/wastewater treatment. Energy crops as well...... dramatically increase the production of methane. In the present study, aqueous ammonia soaking (AAS) and subsequent ammonia removal has been successfully applied as a method to disrupt lignocellulosic structure and increase methane potential and biogas productivity using wheat straw, miscantus and willow...

  14. Comparison of methods for estimating production of methane from whole plant maize silage

    Directory of Open Access Journals (Sweden)

    Zbigniew Podkówka

    2014-12-01

    Full Text Available Laboratory methods to measure the amount of methane gas evolved in the fermentation process require specialized equipment and are long-lasting and expensive. Therefore a number of methods are developed to estimate the efficiency of biogas and methane from the chemical composition of the substrate. The aim of this study was to compare different methods to estimate the efficiency of methane from the silages made from whole plant corn. The study was based on test results of silage from whole plant corn included in various publications, which deal with the production of methane (determined by fermentation “Bacht System” and complete chemical composition. On the basis of chemical composition methane production was determined due to different methods. Methods allow, with high accuracy, to calculate the yield of methane from silage from whole maize plant used as a mono-substrate for biogas. Estimation of methane production from the gross energy gives inflated results. For practice the most useful is to estimate the yield of methane from the dry weight content, due to the ease of determination.

  15. Low temperature production and exhalation of methane from serpentinized rocks on Earth: a potential analog for methane production on Mars

    OpenAIRE

    Etiope, G.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Ehlmann, B.; Schoell, M.

    2013-01-01

    We evaluate, based on terrestrial analogs, the potential flux, origin and isotopic signature of methane (CH4) from serpentinized or serpentinizing rocks on Mars. The Tekirova ophiolites, in Turkey, have been shown to release, either via focused vents or through diffuse microseepage, substantial amounts of CH4 which could be produced via catalyzed abiotic methanation (Sabatier reaction) at low temperatures (

  16. NREL Advancements in Methane Conversion Lead to Cleaner Air, Useful Products

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    Researchers at NREL leveraged the recent on-site development of gas fermentation capabilities and novel genetic tools to directly convert methane to lactic acid using an engineered methanotrophic bacterium. The results provide proof-of-concept data for a gas-to-liquids bioprocess that concurrently produces fuels and chemicals from methane. NREL researchers developed genetic tools to express heterologous genes in methanotrophic organisms, which have historically been difficult to genetically engineer. Using these tools, researchers demonstrated microbial conversion of methane to lactate, a high-volume biochemical precursor predominantly utilized for the production of bioplastics. Methane biocatalysis offers a means to concurrently liquefy and upgrade natural gas and renewable biogas, enabling their utilization in conventional transportation and industrial manufacturing infrastructure. Producing chemicals and fuels from methane expands the suite of products currently generated from biorefineries, municipalities, and agricultural operations, with the potential to increase revenue and significantly reduce greenhouse gas emissions.

  17. Methane Production and Transport within the Marsh Biome of Biosphere 2

    Science.gov (United States)

    Molnar, Jennifer; Goodridge, Kelven

    1997-01-01

    In recent decades, the concentration of methane in the earth's atmosphere increased 1-2% annually. It's rate of increases, combined with methane's effectiveness as a greenhouse gas, has led to an intensive research effort to determine the sources and sinks of the gas in the environment. Biosphere 2 offers a unique opportunity to contribute to the effort because it lacks a major photochemical sink present in the Earth's atmosphere. Researchers can therefore concentrate on biological processes involved in methane cycles. Wetlands are a large source of atmospheric methane, due to anoxic conditions in the sediments and the abundance of organic materials. In order to determine if these conditions in Biosphere 2 also promote methane production, this study looked for the fluxes of methane and methods of transport of the gas from from the water and sediments to the atmosphere in the Marsh Biome. Fluxes of methane from the sediments and waters were measured using static chambers, peepers, and leaf bags. Fluxes and vertical profiles of methane in the sediments show that substantial amounts of methane are being produced in the marsh and are being transported into the Biosphere 2 environment.

  18. Does Dietary Mitigation of Enteric Methane Production Affect Rumen Function and Animal Productivity in Dairy Cows?

    Science.gov (United States)

    Veneman, Jolien B.; Muetzel, Stefan; Hart, Kenton J.; Faulkner, Catherine L.; Moorby, Jon M.; Perdok, Hink B.; Newbold, Charles J.

    2015-01-01

    It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; Pmethane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations. PMID:26509835

  19. Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production

    Science.gov (United States)

    Nguyen, S. H.; Li, L.; Hegarty, R. S.

    2016-01-01

    Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0). On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as NaNO3) was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary

  20. Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production.

    Science.gov (United States)

    Nguyen, S H; Li, L; Hegarty, R S

    2016-06-01

    Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0). On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as NaNO3) was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary

  1. Biogeochemistry of Microbial Coal-Bed Methane

    Science.gov (United States)

    Strąpoć, Dariusz; Mastalerz, Maria; Dawson, Katherine; Macalady, Jennifer; Callaghan, Amy V.; Wawrik, Boris; Turich, Courtney; Ashby, Matthew

    2011-05-01

    Microbial methane accumulations have been discovered in multiple coal-bearing basins over the past two decades. Such discoveries were originally based on unique biogenic signatures in the stable isotopic composition of methane and carbon dioxide. Basins with microbial methane contain either low-maturity coals with predominantly microbial methane gas or uplifted coals containing older, thermogenic gas mixed with more recently produced microbial methane. Recent advances in genomics have allowed further evaluation of the source of microbial methane, through the use of high-throughput phylogenetic sequencing and fluorescent in situ hybridization, to describe the diversity and abundance of bacteria and methanogenic archaea in these subsurface formations. However, the anaerobic metabolism of the bacteria breaking coal down to methanogenic substrates, the likely rate-limiting step in biogenic gas production, is not fully understood. Coal molecules are more recalcitrant to biodegradation with increasing thermal maturity, and progress has been made in identifying some of the enzymes involved in the anaerobic degradation of these recalcitrant organic molecules using metagenomic studies and culture enrichments. In recent years, researchers have attempted lab and subsurface stimulation of the naturally slow process of methanogenic degradation of coal.

  2. Biogeochemistry of microbial coal-bed methane

    Science.gov (United States)

    Strc, D.; Mastalerz, Maria; Dawson, K.; MacAlady, J.; Callaghan, A.V.; Wawrik, B.; Turich, C.; Ashby, M.

    2011-01-01

    Microbial methane accumulations have been discovered in multiple coal-bearing basins over the past two decades. Such discoveries were originally based on unique biogenic signatures in the stable isotopic composition of methane and carbon dioxide. Basins with microbial methane contain either low-maturity coals with predominantly microbial methane gas or uplifted coals containing older, thermogenic gas mixed with more recently produced microbial methane. Recent advances in genomics have allowed further evaluation of the source of microbial methane, through the use of high-throughput phylogenetic sequencing and fluorescent in situ hybridization, to describe the diversity and abundance of bacteria and methanogenic archaea in these subsurface formations. However, the anaerobic metabolism of the bacteria breaking coal down to methanogenic substrates, the likely rate-limiting step in biogenic gas production, is not fully understood. Coal molecules are more recalcitrant to biodegradation with increasing thermal maturity, and progress has been made in identifying some of the enzymes involved in the anaerobic degradation of these recalcitrant organic molecules using metagenomic studies and culture enrichments. In recent years, researchers have attempted lab and subsurface stimulation of the naturally slow process of methanogenic degradation of coal. Copyright ?? 2011 by Annual Reviews. All rights reserved.

  3. Potential and existing mechanisms of enteric methane production in ruminants

    Directory of Open Access Journals (Sweden)

    Junyi Qiao

    2014-10-01

    Full Text Available Enteric methane (CH4 emissions in ruminants have attracted considerable attention due to their impact on greenhouse gases and the contribution of agricultural practices to global warming. Over the last two decades, a number of approaches have been adopted to mitigate CH4 emissions. However, the mechanisms of methanogenesis have still not been fully defined. According to the genome sequences of M. ruminantium in the rumen and of M. AbM4 in the abomasum, the pathways of carbon dioxide (CO2 reduction and formate oxidation to CH4 have now been authenticated in ruminants. Furthermore, in the light of species or genera description of methanogens, the precursors of methanogenesis discovered in the rumen and research advances in related subjects, pathways of acetate dissimilation via Methanosarcina and Methanosaeta as well as metabolism of methanol to CH4 might be present in the rumen, although neither process has yet been experimentally demonstrated in the rumen. Herein the research advances in methanogenesic mechanisms including existing and potential mechanisms are reviewed in detail. In addition, further research efforts to understand the methanogenesis mechanism should focus on isolation and identification of more specific methanogens, and their genome sequences. Such increased knowledge will provide benefits in terms of improved dietary energy utilization and a reduced contribution of enteric CH4 emissions to total global greenhouse gas emissions from the ruminant production system.

  4. Evaluation of Phytoremediation of Coal Bed Methane Product Water and Waters of Quality Similar to that Associated with Coal Bed Methane Reserves of the Powder River Basin, Montana and Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    James Bauder

    2008-09-30

    U.S. emphasis on domestic energy independence, along with advances in knowledge of vast biogenically sourced coalbed methane reserves at relatively shallow sub-surface depths with the Powder River Basin, has resulted in rapid expansion of the coalbed methane industry in Wyoming and Montana. Techniques have recently been developed which constitute relatively efficient drilling and methane gas recovery and extraction techniques. However, this relatively efficient recovery requires aggressive reduction of hydrostatic pressure within water-saturated coal formations where the methane is trapped. Water removed from the coal formation during pumping is typically moderately saline and sodium-bicarbonate rich, and managed as an industrial waste product. Current approaches to coalbed methane product water management include: surface spreading on rangeland landscapes, managed irrigation of agricultural crop lands, direct discharge to ephermeral channels, permitted discharge of treated and untreated water to perennial streams, evaporation, subsurface injection at either shallow or deep depths. A Department of Energy-National Energy Technology Laboratory funded research award involved the investigation and assessment of: (1) phytoremediation as a water management technique for waste water produced in association with coalbed methane gas extraction; (2) feasibility of commercial-scale, low-impact industrial water treatment technologies for the reduction of salinity and sodicity in coalbed methane gas extraction by-product water; and (3) interactions of coalbed methane extraction by-product water with landscapes, vegetation, and water resources of the Powder River Basin. Prospective, greenhouse studies of salt tolerance and water use potential of indigenous, riparian vegetation species in saline-sodic environments confirmed the hypothesis that species such as Prairie cordgrass, Baltic rush, American bulrush, and Nuttall's alkaligrass will thrive in saline-sodic environments

  5. EMG System for Production of Methane From Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sustainable Innovations, LLC, is developing an Electrochemical Methane Generator (EMG), which comprises a novel method of converting CO2 and H2O to hydrocarbon...

  6. The effects of acid deposition on sulfate reduction and methane production in peatlands

    Science.gov (United States)

    Murray, Georgia L.; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Peatlands, as fens and bods, make up a large percentage of northern latitude terrestrial environments. They are organic rich and support an active community of anaerobic bacteria, such as methanogenic and sulfate-reducing bacteria. The end products of these microbial activities, methane and hydrogen sulfide, are important components in the global biogeochemical cycles of carbon and sulfur. Since these two bacterial groups compete for nutritional substrates, increases in sulfate deposition due to acid rain potentially can disrupt the balance between these processes leading to a decrease in methane production and emission. This is significant because methane is a potent greenhouse gas that effects the global heat balance. A section of Mire 239 in the Experimental Lakes Area, in Northwestern Ontario, was artificially acidified and rates of sulfate reduction and methane production were measured with depth. Preliminary results suggested that methane production was not affected immediately after acidification. However, concentrations of dissolved methane decreased and dissolved sulfide increased greatly after acidification and both took several days to recover. The exact mechanism for the decrease in methane was not determined. Analyses are under way which will be used to determine rates of sulfate reduction. These results will be available by Spring and will be discussed.

  7. Characteristics of the organic fraction of municipal solid waste and methane production: A review.

    Science.gov (United States)

    Campuzano, Rosalinda; González-Martínez, Simón

    2016-08-01

    Anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) is a viable alternative for waste stabilization and energy recovery. Biogas production mainly depends on the type and amount of organic macromolecules. Based on results from different authors analysing OFMSW from different cities, this paper presents the importance of knowing the OFMSW composition to understand how anaerobic digestion can be used to produce methane. This analysis describes and discusses physical, chemical and bromatological characteristics of OFMSW reported by several authors from different countries and cities and their relationship to methane production. The main conclusion is that the differences are country and not city dependant. Cultural habits and OFMSW management systems do not allow a generalisation but the individual analysis for specific cities allow understanding the general characteristics for a better methane production. Not only are the OFMSW characteristics important but also the conditions under which the methane production tests were performed. PMID:27236403

  8. ADM1-based modeling of methane production from acidified sweet sorghum extractin a two stage process

    DEFF Research Database (Denmark)

    Antonopoulou, Georgia; Gavala, Hariklia N.; Skiadas, Ioannis;

    2012-01-01

    The present study focused on the application of the Anaerobic Digestion Model 1 οn the methane production from acidified sorghum extract generated from a hydrogen producing bioreactor in a two-stage anaerobic process. The kinetic parameters for hydrogen and volatile fatty acids consumption were...... 12% for the methane production rate at the HRT of 20d while the deviation values for the 15 and 10 d HRT were 1.9% and 1.1%, respectively. The model predictions regarding pH, methane percentage in the gas phase and COD removal were in very good agreement with the experimental data with a deviation...

  9. Methane Hydrate Production Using Mixture of CO2 and N2.

    OpenAIRE

    Sapate, Aruna Mahaveer

    2015-01-01

    Gas Hydrates (GHs) are naturally occurring solid, crystalline compounds in which natural gas is trapped inside the cage like structures formed by water molecules. Lately a novel technology has been developed for the production of methane from in-situ GHs by injection of CO2. Addition of N2 to CO2 for hydrate production has an advantage of both higher methane recovery and CO2 sequestration. Injected CO2/N2 mixture into in-situ methane hydrate replaces the CH4 molecules in the hydrate cage and ...

  10. Study on Production of Hydrogen from Methane for Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    宋正昶; 李传统

    2001-01-01

    The hydrogen production from methane for proton exchange membrane fuel cell (PEMFC) was studied experimentally. The conversion rate of methane under different steam-carbon ratios, the effect of the different excess air ratios on the constituents of the gas produced, the permeability of hydrogen under different pressure differences, and the effect of different system pressure on the reaction enthalpy of hydrogen were obtained. The results lay the basis for the production of hydrogen applicable to PEMFC, moreover, provide a new way for the comprehensive utilization of the coal bed methane.

  11. 水产品生物胺检测技术的研究进展%Development of research on biogenic amine determination method in aquatic products

    Institute of Scientific and Technical Information of China (English)

    王艳; 张建友; 刘书来; 丁玉庭

    2009-01-01

    生物胺是低分子量含氮有机化合物,广泛存在于蛋白质丰富的食品中.摄入过量的生物胺会对人体产生危害,且生物胺含量与水产品质量具有一定的正相关性.该文对近年来水产品生物胺的检测技术进行了综述,重点介绍了高效液相色谱、毛细管电泳、薄层色谱和电化学生物传感器等在水产品生物胺检测中的应用.%Biogenic amines are organic bases with low molecular weight, occurred in the foods that have abundant proteins.Taking excessive biogenic amines could cause toxicity to human.And the amount of biogenic amines shows positive correlation to the quality of aquatic food.The determination methods of biogenic amines and their applications in foods in recent years were reviewed in this paper.And the application of HPLC, EC, TLC and electrochemical biosensor in detection of biogenic amine in aquatic products was the key point.

  12. Effect of inclusion of Myristica fragrans on methane production, rumen fermentation parameters and methanogens population

    Directory of Open Access Journals (Sweden)

    S K Sirohi

    2012-12-01

    Full Text Available Aim: The present study was done to evaluate the effect of Myristica fragrans fruit active compounds addition on methane production in vitro. Materials and Methods: Methanolic extract of Myristica fragrans fruit powder was prepared and checked for its inhibitory action on methane production in diet containing roughage 50 percent and concentrate 50 percent respectively. Methane production was estimated by Gas Chromatography. Results: It has been shown that supplementation of Myristica fragrans reduces the methane production up to 48 percent as compared to control diet without supplementation of Myristica fragrans. Similarly real time quantification of mcr-A gene also shown the significant (P<0.05 reduction in the number of methanogens. Myristica fragrans appeared to reduce methane production by inhibiting methanogens directly. However, digestibility of dry matter also decreased due to myristica fragrans supplementation in total mixed diet, which may affect the production of volatile acid production. Conclusion: The active compounds extracted in methanol of Myristica fragrans emerged out to be a useful natural plant source for the inhibition of methanogenesis and its supplementation in animal feed may proves to be an effective measure to control methane emission from ruminants. [Vet. World 2012; 5(6.000: 335-340

  13. New strategies for optimal methane production from long chain fatty acids

    OpenAIRE

    Cavaleiro, A. J.; Salvador, A. F.; Silva, Sérgio; Pereira, M.A.; Sousa, D.Z.; Alves, M. M.

    2012-01-01

    High methane production can be expected from biodegradation of long chain fatty acids (LCFA) in anaerobic bioreactors; however, in practice, this process is limited by LCFA accumulation onto the sludge. To optimize methane production from LCFA-rich wastewater, two novel strategies were tested: (i) bioreactor start-up based on the alternation of continuous-feeding phases with batch-degradation phases, and (ii) bioreactor bioaugmentation with the LCFAdegrading bacterium Syntrophomonas zehnderi....

  14. Magnetite nanoparticles facilitate methane production from ethanol via acting as electron acceptors

    OpenAIRE

    Zhiman Yang; Xiaoshuang Shi; Chuanshui Wang; Lin Wang; Rongbo Guo

    2015-01-01

    Potential for interspecies hydrogen transfer within paddy soil enrichments obtained via addition of magnetite nanoparticles and ethanol (named as PEM) was investigated. To do this, PEM derived from rice field of Hangzhou (named as PEM-HZ) was employed, because it offered the best methane production performance. Methane production and Fe (III) reduction proceeded in parallel in the presence of magnetite. Inhibition experiments with 2-bromoethane sulfonate (BES) or phosphate showed that intersp...

  15. Microbial diversity and dynamics during methane production from municipal solid waste

    International Nuclear Information System (INIS)

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  16. Microbial diversity and dynamics during methane production from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Bareither, Christopher A., E-mail: christopher.bareither@colostate.edu [Civil and Environmental Engineering, Colorado State University, Ft. Collins, CO 80532 (United States); Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Wolfe, Georgia L., E-mail: gwolfe@wisc.edu [Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 (United States); McMahon, Katherine D., E-mail: tmcmahon@engr.wisc.edu [Bacteriology, Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States); Benson, Craig H., E-mail: chbenson@wisc.edu [Civil and Environmental Engineering, Geological Engineering, University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-10-15

    Highlights: ► Similar bacterial communities developed following different start-up operation. ► Total methanogens in leachate during the decelerated methane phase reflected overall methane yield. ► Created correlations between methanogens, methane yield, and available substrate. ► Predominant bacteria identified with syntrophic polysaccharide degraders. ► Hydrogenotrophic methanogens were dominant in the methane generation process. - Abstract: The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and

  17. Enhancing methane production in a farm-scale biogas production system

    Energy Technology Data Exchange (ETDEWEB)

    Kaparaju, P.

    2003-07-01

    Biogas technology with utilisation of biogas is increasingly applied in the agricultural sector to produce renewable energy and to minimise environmental emissions both resulting in reduction in greenhouse gas (GHG) emissions. The main objective of this thesis was to evaluate methods to enhance the methane production in a farm-scale biogas production system. Semi-continuous digestion of pig and dairy cow manures produced methane yields (m{sup 3} kg{sup -1} volatile solids (VS)) of about 0.31 and 0.14 respectively at 2 kgVS m{sup -3} d{sup -1} loading rate, 30 d hydraulic retention time (HRT) and 6.0% feed VS while in batches yields were 0.14, and 0.36 m3 kg{sup -1} VS for dairy cow and pig and manures respectively. These yields were lower than the theoretical yield of 0.4 m3 kg{sup -1} VS reported for cow manure. Possible co-substrates to enhance the methane production were investigated. Methane yields (m{sup 3} kg{sup -1} VS) in batch assays were 0.14 to 0.35 for three different energy crops and 0.32-0.39 for confectionery by-products. On full-scale application, cow manure alone and co-digestion with energy crops produced 0.22 m{sup 3} CH{sub 4} kg{sup -1} VS and co-digestion with confectionery by-products (20% of feed biomass) about 0.28 m{sup 3} kg{sup -1} VS. Laboratory co-digestion of pig manure with potato tuber or its industrial by- products (potato peel or potato stillage) at loading rate of 2 kg VS m-3 d-1 produced methane yields (m{sup 3} kg{sup -1} VS) of about 0.22 at 85:15 and 0.31 at 80:20 feed VS ratio (VS% pig manure to potato co-substrate) compared to 0.14 for pig manure alone. The batch incubation of digested materials from a farm biogas digester (35 deg C) and its associated post-storage tank indicated that both materials could still produce up to 0.20 m{sup 3} kg{sup -1} VS. The amount and rate was highly dependent on temperature. These results suggest that the untapped methane potential in the digested manure cannot effectively be recovered at

  18. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis.

    Science.gov (United States)

    Siegert, Michael; Yates, Matthew D; Call, Douglas F; Zhu, Xiuping; Spormann, Alfred; Logan, Bruce E

    2014-04-01

    In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals (ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide), and carbon fiber brushes. Assuming a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production rates were insufficient to explain methane production. At -600 mV, platinum on carbon black had the highest abiotic hydrogen gas formation rate (1600 ± 200 nmol cm(-3) d(-1)) and the highest biotic methane production rate (250 ± 90 nmol cm(-3) d(-1)). At -550 mV, plain graphite (76 nmol cm(-3) d(-1)) performed similarly to platinum (73 nmol cm(-3) d(-1)). Coulombic recoveries, based on the measured current and evolved gas, were initially greater than 100% for all materials except platinum, suggesting that cathodic corrosion also contributed to electromethanogenic gas production. PMID:24741468

  19. Comparison of Nonprecious Metal Cathode Materials for Methane Production by Electromethanogenesis.

    KAUST Repository

    Siegert, Michael

    2014-02-18

    In methanogenic microbial electrolysis cells (MMCs), CO2 is reduced to methane using a methanogenic biofilm on the cathode by either direct electron transfer or evolved hydrogen. To optimize methane generation, we examined several cathode materials: plain graphite blocks, graphite blocks coated with carbon black or carbon black containing metals (platinum, stainless steel or nickel) or insoluble minerals (ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide), and carbon fiber brushes. Assuming a stoichiometric ratio of hydrogen (abiotic):methane (biotic) of 4:1, methane production with platinum could be explained solely by hydrogen production. For most other materials, however, abiotic hydrogen production rates were insufficient to explain methane production. At -600 mV, platinum on carbon black had the highest abiotic hydrogen gas formation rate (1600 ± 200 nmol cm(-3) d(-1)) and the highest biotic methane production rate (250 ± 90 nmol cm(-3) d(-1)). At -550 mV, plain graphite (76 nmol cm(-3) d(-1)) performed similarly to platinum (73 nmol cm(-3) d(-1)). Coulombic recoveries, based on the measured current and evolved gas, were initially greater than 100% for all materials except platinum, suggesting that cathodic corrosion also contributed to electromethanogenic gas production.

  20. Methane from CO₂: Influence of different CO₂ concentrations in the flush gas on the methane production in BMP tests.

    Science.gov (United States)

    Koch, Konrad; Huber, Bettina; Fernández, Yadira Bajón; Drewes, Jörg E

    2016-03-01

    The influence of carbon dioxide (CO2) in the headspace gas on the specific methane (CH4) production of blank samples with just inoculum during Biochemical Methane Potential (BMP) tests was studied. The headspace of the bottles had been flushed with 15 different ratios of CO2 and N2 prior to incubation, while they were treated otherwise identically. The results revealed that the CH4 yield increased linearly with higher ratio of CO2 in the flush gas reaching a 30% higher yield at pure CO2 relative to pure N2 headspace conditions. However, a slightly distinct lag is noticeable during the initial phase of the degradation process at high ratios of CO2, hypothesizing a reversible disturbance of the biocenosis. Further experiments and analyses need to be performed to elucidate the underlying mechanisms. PMID:26818184

  1. Biochemical methane production potential from different components of fraction of municipal solid waste

    OpenAIRE

    de Andrés Pérez de Rada, Mª Magdalena

    2009-01-01

    - Issues of management of the organic fraction of municipal solid waste (biogas production in landfills, leachates with high concentrations of organics, odour problems). - Porribility of energy production from this fraction by mean of Anaerobic digestion. - Evaluation of the biogas and methane potential productions from single components of the organic fraction of MSW by mean of lab test. - Modelling of cumulative production.

  2. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion

    DEFF Research Database (Denmark)

    Bruhn, Annette; Dahl, Jonas; Bangsø Nielsen, Henrik;

    2011-01-01

    The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating a...... production potential of 45 T (TS) ha−1 y−1. Biogas production from fresh and macerated U. lactuca yielded up to 271 ml CH4 g−1 VS, which is in the range of the methane production from cattle manure and land based energy crops, such as grass-clover. Drying of the biomass resulted in a 5–9-fold increase in...... weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production...

  3. Implementation and verification of an analytical method for the quantification of biogenic amines in seafood products

    OpenAIRE

    Olajos, Ildikó, 1976-

    2015-01-01

    Rotamín (e. biogenic amines, BA) eru hitaþolin, lífræn basísk efni með hátt suðumark sem myndast í matvælum af völdum örvera vegna ensímatískra efnabreytinga á náttúrulegum amínósýrum. BA eru áhættuþáttur varðandi matvælaöryggi þar sem þau geta valdið ofnæmisviðbrögðum hjá mönnum. BA má finna í ýmsum matvælum, sérstaklega fisk af scombroid tegund (t.d. makríl, túnfisk, síld) sem ekki hefur verið rétt meðhöndlaður eða geymdur við réttar aðstæður. BA brotna ekki niður við eldun og greinast ekki...

  4. Assessment of wet explosion as a pretreatment method to enhance methane production from agricultural residues and energy crops

    DEFF Research Database (Denmark)

    Wang, Guangtao; Gavala, Hariklia N.; Skiadas, Ioannis; Ahring, Birgitte Kiær

    2011-01-01

    In the present study, wet explosion has been studied as a pretreatment method for increasing the methane yield from wheat straw, miscantus and willow. Among the three biomasses tested, wheat straw and miscanthus were the most promising in terms of methane production, yielding around 265 mL of...... not necessarily imply increased methane yield....

  5. Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs

    OpenAIRE

    Ren, T.; Patel, M K; de Blok, K

    2008-01-01

    While most olefins (e.g., ethylene and propylene) are currently produced through steam cracking routes, they can also possibly be produced from natural gas (i.e., methane) via methanol and oxidative coupling routes. We reviewed recent data in the literature and then compared the energy use, CO2 emissions and production costs of methane-based routes with those of steam cracking routes. We found that methane-based routes use more than twice as much process energy than state-of-the-art steam cra...

  6. Estimating methane releases from natural gas production and transmission in Russia

    Science.gov (United States)

    Dedikov, J. V.; Akopova (Vniigaz), G. S.; Gladkaja (Vniigaz), N. G.; Piotrovskij (Tyumentransgaz), A. S.; Markellov (Volgotransgaz), V. A.; Salichov (Yamburggazdabuicha), S. S.; Kaesler, H.; Ramm, A.; Müller von Blumencron, A.; Lelieveld, J.

    Methane releases from the RAO Gazprom gas production and transmission facilities in Russia were determined in an extensive measurement program carried out in 1996 and 1997. Subsequently, the measurements were extrapolated to the Russian scale. The results show that methane releases from gas transmission are less than 1% of throughput. Methane loss from gas production in northwestern Siberia appears to be relatively small, generally less than 0.1%. The largest methane emissions result from venting during maintenance and repairs, leaks from valves on transmission lines, and from compressor stations. The measurements show that, in the case of leaks, a limited number of major ones accounts for most of the methane releases. Methane emissions expressed as a percentage of the gas volume produced or transported are (rounded figures): production and processing 0.1%, pipelines 0.2%, compressor stations 0.7%, so that the total release by production and transmission in Russia amounts to about 1.0%, i.e. ˜5.4×10 9 m 3/a (˜4 Tg/a). This is consistent with our previous preliminary estimates, indicating that maximum emissions are 1.5-1.8%/a. However, this is generally lower than most other estimates and speculations.

  7. Comparison between ensilage and fungal pretreatment for storage of giant reed and subsequent methane production.

    Science.gov (United States)

    Liu, Shan; Xu, Fuqing; Ge, Xumeng; Li, Yebo

    2016-06-01

    Ensilage and fungal pretreatment of giant reed harvested from August through December were compared based on their effects on feedstock preservation, glucose yield, and subsequent methane production via anaerobic digestion (AD). Compared to fungal pretreatment, ensilage obtained lower total solids (hemicellulose degradation, except for giant reed harvested in August. Ensilage increased glucose and methane yields by 7-15% and 4-14%, respectively, for giant reed harvested from August through December. Fungal pretreatment failed for giant reed harvested in August and October with reduced glucose yields, and was effective for that harvested in November and December, with about 20% increases in glucose yield. However, hydrocarbon losses during fungal pretreatment offset the increased glucose yield, resulting in decreased methane yields by AD. In summary, ensilage was found to be more suitable than fungal pretreatment for giant reed storage and its methane production via AD. PMID:26974356

  8. The Potential Role of Seaweeds in the Natural Manipulation of Rumen Fermentation and Methane Production

    Science.gov (United States)

    Maia, Margarida R. G.; Fonseca, António J. M.; Oliveira, Hugo M.; Mendonça, Carla; Cabrita, Ana R. J.

    2016-01-01

    This study is the first to evaluate the effects of five seaweeds (Ulva sp., Laminaria ochroleuca, Saccharina latissima, Gigartina sp., and Gracilaria vermiculophylla) on gas and methane production and ruminal fermentation parameters when incubated in vitro with two substrates (meadow hay and corn silage) for 24 h. Seaweeds led to lower gas production, with Gigartina sp. presenting the lowest value. When incubated with meadow hay, Ulva sp., Gigartina sp. and G. vermiculophylla decreased methane production, but with corn silage, methane production was only decreased by G. vermiculophylla. With meadow hay, L. ochroleuca and S. latissima promoted similar methane production as the control, but with corn silage, L. ochroleuca increased it. With the exception of S. latissima, all seaweeds promoted similar levels of total volatile fatty acid production. The highest proportion of acetic acid was produced with Ulva sp., G. vermiculophylla, and S. latissima; the highest proportion of butyric acid with the control and L. ochroleuca; and the highest proportion of iso-valeric acid with Gigartina sp. These results reveal the potential of seaweeds to mitigate ruminal methane production and the importance of the basal diet. To efficiently use seaweeds as feed ingredients with nutritional and environmental benefits, more research is required to determine the mechanisms underlying seaweed and substrate interactions. PMID:27572486

  9. Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

    OpenAIRE

    Yunfei Yan; Hongliang Guo; Li Zhang; Junchen Zhu; Zhongqing Yang; Qiang Tang; Xin Ji

    2014-01-01

    A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spaci...

  10. Global warming and carbon dynamics in permafrost soils: methane production and oxidation

    OpenAIRE

    Dirk Wagner; Susanne Liebner;  ,

    2009-01-01

    The Arctic plays a key role in the Earths climate system, because global warming is predicted to be most pronounced at high latitudes, and one third of the global carbon pool is stored in ecosystems of the northern latitudes. The degradation of permafrost and the associated intensified release of methane, a climate-relevant trace gas, represent potential environmental hazards. The microorganisms driving methane production and oxidation in Arctic permafrost soils have remained poorly investiga...

  11. Role of Methane Capture for Sustainable Biodiesel Production from Palm Oil: A Life Cycle Assessment Approach

    OpenAIRE

    Hermawan Prasetya; Yandra Arkeman; Erliza Hambali

    2013-01-01

    Palm Oil Mill Effluent (POME) is one of the major wastes generated by palm oil milling which is a part of palm oil diesel production chain. POME contain of methane (about 60-70 %), which contribute to Greenhouse Gas (GHG) Emission. Due to reduction GHG emission is one of indicator bioenergy sustainability, some alternatives have been implementing to reduction it. One of the alternatives is implementing of methane capture technology which able to capture and/or utilize it for energy source. In...

  12. Methane and ethane from global oil and gas production: bottom-up simulations over three decades

    OpenAIRE

    Höglund-Isaksson, L.

    2016-01-01

    Existing bottom-up emission inventories of historical methane and ethane emissions from global oil and gas systems do not well explain year-on-year variations estimated by top-down models from atmospheric measurements. This paper develops a bottom-up methodology which allows for country- and year specific source attribution of methane and ethane emissions from global oil and natural gas production for the period 1980 to 2012. The analysis rests on country-specific simulations of associated ga...

  13. Hydrogen and methane production from desugared molasses using a two‐stage thermophilic anaerobic process

    DEFF Research Database (Denmark)

    Kongjan, Prawit; O-Thong, Sompong; Angelidaki, Irini

    2013-01-01

    3380 mL CH4/day/L, corresponding to a yield of 239 mL CH4/g VS. Aceticlastic Methanosarcina mazei was the dominant methanogen in the methanogenesis stage. This work demonstrates that biohydrogen production can be very efficiently coupled with a subsequent step of methane production using desugared......Hydrogen and methane production from desugared molasses by a two‐stage thermophilic anaerobic process was investigated in a series of two up‐flow anaerobic sludge blanket (UASB) reactors. The first reactor that was dominated with hydrogen‐producing bacteria of Thermoanaerobacterium...... thermosaccharolyticum and Thermoanaerobacterium aciditolerans could generate a high hydrogen production rate of 5600 mL H2/day/L, corresponding to a yield of 132 mL H2/g volatile solid (VS). The effluent from the hydrogen reactor was further converted to methane in the second reactor with the optimal production rate of...

  14. Role of Methane Capture for Sustainable Biodiesel Production from Palm Oil: A Life Cycle Assessment Approach

    Directory of Open Access Journals (Sweden)

    Hermawan Prasetya

    2013-01-01

    Full Text Available Palm Oil Mill Effluent (POME is one of the major wastes generated by palm oil milling which is a part of palm oil diesel production chain. POME contain of methane (about 60-70 %, which contribute to Greenhouse Gas (GHG Emission. Due to reduction GHG emission is one of indicator bioenergy sustainability, some alternatives have been implementing to reduction it. One of the alternatives is implementing of methane capture technology which able to capture and/or utilize it for energy source. In this paper, Life Cycle Assessment (LCA was employed to identify role of methane capture technology in sustainability of palm oil biodiesel production. By employed cradle to gate LCA on biggest producer of palm oil biodiesel in Indonesia, GHG emission is 23.00 g CO2eq per Mega Joule (MJ biodiesel production with methane capture, and 40.79 g CO2eq per MJ biodiesel without methane capture. From this result, it was concluded that implementation of methane capture could reduce GHG emission significantly (more than 70 %.

  15. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean

    Directory of Open Access Journals (Sweden)

    E. Damm

    2010-03-01

    Full Text Available A methane surplus relative to the atmospheric equilibrium is a frequently observed feature of ocean surface water. Despite the common fact that biological processes are responsible for its origin, the formation of methane in aerobic surface water is still poorly understood. We report on methane production in the central Arctic Ocean, which was exclusively detected in Pacific derived water but not nearby in Atlantic derived water. The two water masses are distinguished by their different nitrate to phosphate ratios. We show that methane production occurs if nitrate is depleted but phosphate is available as a P source. Apparently the low N:P ratio enhances the ability of bacteria to compete for phosphate while the phytoplankton metabolite dimethylsulfoniopropionate (DMSP is utilized as a C source. This was verified by experimentally induced methane production in DMSP spiked Arctic sea water. Accordingly we propose that methylated compounds may serve as precursors for methane and thermodynamic calculations show that methylotrophic methanogenesis can provide energy in aerobic environments.

  16. Methane sources and production in the northern Cascadia margin gas hydrate system

    Science.gov (United States)

    Pohlman, J.W.; Kaneko, M.; Heuer, V.B.; Coffin, R.B.; Whiticar, M.

    2009-01-01

    -enrichment. The magnitude of the 13C-enrichment of CO2 correlates with decreasing sedimentation rates and a diminishing occurrence of stratigraphic gas hydrate. We suggest the decreasing sedimentation rates increase the exposure time of sedimentary organic matter to aerobic and anaerobic degradation, during burial, thereby reducing the availability of metabolizable organic matter available for methane production. This process is reflected in the occurrence and distribution of gas hydrate within the northern Cascadia margin accretionary prism. Our observations are relevant for evaluating methane production and the occurrence of stratigraphic gas hydrate within other convergent margins.

  17. Microbial and chemical factors influencing methane production in laboratory incubations of low-rank subsurface coals

    Science.gov (United States)

    Harris, Stephen H.; Smith, Richard L.; Barker, Charles E.

    2008-01-01

    Lignite and subbituminous coals were investigated for their ability to support microbial methane production in laboratory incubations. Results show that naturally-occurring microorganisms associated with the coals produced substantial quantities of methane, although the factors influencing this process were variable among different samples tested. Methanogenic microbes in two coals from the Powder River Basin, Wyoming, USA, produced 140.5-374.6 mL CH4/kg ((4.5-12.0 standard cubic feet (scf)/ton) in response to an amendment of H2/CO2. The addition of high concentrations (5-10 mM) of acetate did not support substantive methane production under the laboratory conditions. However, acetate accumulated in control incubations where methanogenesis was inhibited, indicating that acetate was produced and consumed during the course of methane production. Acetogenesis from H2/CO2 was evident in these incubations and may serve as a competing metabolic mode influencing the cumulative amount of methane produced in coal. Two low-rank (lignite A) coals from Fort Yukon, Alaska, USA, demonstrated a comparable level of methane production (131.1-284.0 mL CH4/kg (4.2-9.1 scf/ton)) in the presence of an inorganic nutrient amendment, indicating that the source of energy and organic carbon was derived from the coal. The concentration of chloroform-extractable organic matter varied by almost three orders of magnitude among all the coals tested, and appeared to be related to methane production potential. These results indicate that substrate availability within the coal matrix and competition between different groups of microorganisms are two factors that may exert a profound influence on methanogenesis in subsurface coal beds.

  18. The carbon isotope biogeochemistry of methane production in anoxic sediments. 1: Field observations

    Science.gov (United States)

    Blair, Neal E.; Boehme, Susan E.; Carter, W. Dale, Jr.

    1993-01-01

    The natural abundance C-13/C-12 ratio of methane from anoxic marine and freshwater sediments in temperate climates varies seasonally. Carbon isotopic measurements of the methanogenic precursors, acetate and dissolved inorganic carbon, from the marine sediments of Cape Lookout Bight, North Carolina were used to determine the sources of the seasonal variations at that site. Movement of the methanogenic zone over an isotopic gradient within the dissolved CO2 pool appears to be the dominant control of the methane C-13/C-12 ratio from February to June. The onset of acetoclastic methane-production is a second important controlling process during mid-summer. An apparent temperature dependence on the fractionation factor for CO2-reduction may have a significant influence on the isotopic composition of methane throughout the year.

  19. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær; Lyberatos, G.

    2006-01-01

    The present study investigates the thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid. residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp; b) anaerobic bio-production of hydrogen from the...... were performed. The hydrogen potential of the olive pulp amounted to 1.6 mmole H-2 per g TS. The methane potential of the raw olive pulp and hydrogen-effluent was as high as 19 mmole CH4 per g TS suggesting that: a) olive pulp is a suitable substrate for methane production; and b) biohydrogen...

  20. Coalbed methane production base established in Southeast Kansas

    International Nuclear Information System (INIS)

    This paper reports that revenue from coalbed methane gas sales is growing and currently far exceeds that of what little conventional gas is produced in southeastern Kansas. And this only 2-1/2 years after Stroud Oil Properties, Wichita, brought in the first coalbed methane well in the Sycamore Valley in Montgomery County 6 miles north of Independence. Another operator contributing to the success is Conquest Oil, Greeley, Colo. Conquest acquired a lease with 20 old wells near Sycamore, recompleted five of them in Weir coal, and has installed a compressor. It hopes to being selling a combined 300 Mcfd soon. Great Eastern Energy, Denver, reportedly can move 2 MMcfd from its Sycamore Valley holdings. The fever is spreading into Northeast Kansas, where a venture headed by Duncan Energy Co. and Farleigh Oil Properties, also of Denver, plan 12 coalbed methane wildcats. The two companies received in October 1991 from the Kansas Corporation Commission (KCC) a 40 acre well spacing for seven counties and an exclusion from burdensome gas testing procedures. The test procedures are on the books but not applicable to coal gas wells

  1. High-time resolved measurements of biogenic and anthropogenic secondary organic aerosol precursors and products in urban air

    Science.gov (United States)

    Flores, Rosa M.; Doskey, Paul V.

    2016-04-01

    Volatile organic compounds (VOCs), which are present in the atmosphere entirely in the gas phase are directly emitted by biogenic (~1089 Tg yr-1) and anthropogenic sources (~185 Tg yr-1). However, the sources and molecular speciation of intermediate VOCs (IVOCs), which are for the most part also present almost entirely in the gas phase, are not well characterized. The VOCs and IVOCs participate in reactions that form ozone and semivolatile OC (SVOC) that partition into the aerosol phase. Formation and evolution of secondary organic aerosol (SOA) are part of a complex dynamic process that depends on the molecular speciation and concentration of VOCs, IVOCs, primary organic aerosol (POA), and the level of oxidants (NO3, OH, O3). The current lack of understanding of OA properties and their impact on radiative forcing, ecosystems, and human health is partly due to limitations of models to predict SOA production on local, regional, and global scales. More accurate forecasting of SOA production requires high-temporal resolution measurement and molecular characterization of SOA precursors and products. For the subject study, the IVOCs and aerosol-phase organic matter were collected using the high-volume sampling technique and were analyzed by multidimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToFMS). The IVOCs included terpenes, terpenoids, n-alkanes, branched alkanes, isoprenoids, alkylbenzenes, cycloalkylbenzenes, PAH, alkyl PAH, and an unresolved complex mixture (UCM). Diurnal variations of OA species containing multiple oxygenated functionalities and selected SOA tracers of isorprene, α-pinene, toluene, cyclohexene, and n-dodecane oxidation were also quantified. The data for SOA precursor and oxidation products presented here will be useful for evaluating the ability of molecular-specific SOA models to forecast SOA production in and downwind of urban areas.

  2. Potential of biogas and methane production from anaerobic digestion of poultry slaughterhouse effluent

    Directory of Open Access Journals (Sweden)

    Natália da Silva Sunada

    2012-11-01

    Full Text Available The objective of this study was to evaluate the efficiency of anaerobic digestion on the treatment of effluent from poultry slaughterhouse. The experiment was conducted at the Laboratory of Waste Recycling from Animal Production/FCA/UFGD. During four weeks, eight experimental digesters, semi-continuous models, were loaded and set according to the hydraulic retention time (HRT of 7, 14, 21 and 28 days, and according to the solid fraction treatment, separated with 1 mm sieve or without separation. The average weekly production of biogas and methane as well as the methane concentrations, the potential production per amount of chemical oxygen demand (COD added and reduced, the concentrations of N, P and K at the beginning and end of process, and the most likely numbers of total and thermotolerant coliforms were evaluated. For data analysis, a completely randomized design was performed in a 4 × 2 factorial arrangement (4 HRT: 7, 14, 21 and 28 days and separation with 1 mm sieve or without separation, with repetition over time. The highest production of biogas and methane was statistically significant for the HRT of 7 and 14 days (5.29 and 2.38 L of biogas and 4.28 and 1.73 L of methane, respectively. There was an interaction between HRT and the separation of the solid with sieve and the highest production was obtained in the treatment without separation. Similar behavior was observed for the potential production with a maximum of 0.41 m³ methane.kg-1 COD added with an HRT of 7 days without separation of the solid fraction. The separation of the solid fraction is not recommended in the pretreatment of liquid effluent from poultry slaughterhouse, once the potential for production and production of methane and biogas were reduced with this treatment.

  3. Assessment of animal productivity and methane production using an associative feeding strategy

    International Nuclear Information System (INIS)

    Methane production from ruminants is a loss of digestible energy thereby reducing animal productivity and is contributing to environmental pollution. In order to develop a beneficial strategy for improving animal productivity while conserving the environment the present study was conducted to evaluate the effect of a concentrate feeding strategy on the animal productivity and rumen methane production. In this experiment two feeding regimes, Diet-1 and Diet-2, were either fodder alone and with a 10% inclusion of concentrates in the forage diet feed as a phased sequence of 45 days of fodder alone and then 45 days of fodder plus concentrate. The diets were fed to four animal groups comprising of 5 animals in each. Throughout the experimental period, a fresh, chopped fodder of similar age (50-65 days age) was offered to the animals. Average dry matter (DM), crude protein (CP), crude fibre (CF), ash and ether extract contents of the fodder were 21, 9.3, 31.7, 10.1 and 3.1%, respectively. Diet2 included a concentrate containing 88.0, 16.0, 8.1, 10.0, and 12.1% DM, CP, CF, Ash and EE, respectively. A decrease of 8.2 and 39.5% in group A and B with only minor a minor change in group C and D for feed intake was observed when the animals where feed Diet2. Weight gain for the four groups were 133, 422, 111 and 600 g per animal per day on Diet1 and 244, 688, 177 and 888 g per animal per day on Diet2 for groups A, B, C and D, respectively. With supplementation feeding strategy, there was an increase of 45.4, 38.7, 3.7 and 32.4% in weigh gain over fodder alone diet for groups A, B, C and D, respectively. This was associated with an improvement of 49.7, 62.9, 38.5 and 32% in feed to gain ratio for groups A, B, C and D, respectively. The DM digestibility was 22.9, 4.6, 4.7 and 8.4% higher in groups A, B, C and D, respectively when the groups were feed the fodder diets supplemented with concentrates. On fodder alone, the molar concentration of acetate, propionate, butyrate and

  4. Screening of biogenic amine production by coagulase-negative staphylococci isolated during industrial Spanish dry-cured ham proceses

    OpenAIRE

    Landeta, Gerardo; Rivas, Blanca de las; Alfonso V Carrascosa; Muñoz, Rosario

    2007-01-01

    The potential to produce biogenic amines was investigated for 56 coagulase-negative staphylococci isolated during industrial Spanish dry-cured ham processes. The presence of biogenic amines from bacterial cultures was determined by thin-layer chromatography. The percentage of strains that decarboxylated amino acids was very low (3.6%). The only staphylococci with aminogenic capacity were an histamine-producing Staphylococcus capitis strain, and a Staphylococcus lugdunensis strain tha...

  5. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær;

    2006-01-01

    The present study investigates the thermophilic biohydrogen and methane production from olive pulp, which is the semi-solid. residue coming from the two-phase processing of olives. It focussed on: a) production of methane from the raw olive pulp; b) anaerobic bio-production of hydrogen from the...

  6. Microbial Methane Production Associated with Carbon Steel Corrosion in a Nigerian Oil Field.

    Science.gov (United States)

    Mand, Jaspreet; Park, Hyung S; Okoro, Chuma; Lomans, Bart P; Smith, Seun; Chiejina, Leo; Voordouw, Gerrit

    2015-01-01

    Microbially influenced corrosion (MIC) in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC. PMID:26793176

  7. Microbial methane production associated with carbon steel corrosion in a Nigerian oil field

    Directory of Open Access Journals (Sweden)

    Jaspreet eMand

    2016-01-01

    Full Text Available Microbially influenced corrosion (MIC in oil field pipeline systems can be attributed to many different types of hydrogenotrophic microorganisms including sulfate reducers, methanogens and acetogens. Samples from a low temperature oil reservoir in Nigeria were analyzed using DNA pyrotag sequencing. The microbial community compositions of these samples revealed an abundance of anaerobic methanogenic archaea. Activity of methanogens was demonstrated by incubating samples anaerobically in a basal salts medium, in the presence of carbon steel and carbon dioxide. Methane formation was measured in all enrichments and correlated with metal weight loss. Methanogens were prominently represented in pipeline solids samples, scraped from the inside of a pipeline, comprising over 85% of all pyrosequencing reads. Methane production was only witnessed when carbon steel beads were added to these pipeline solids samples, indicating that no methane was formed as a result of degradation of the oil organics present in these samples. These results were compared to those obtained for samples taken from a low temperature oil field in Canada, which had been incubated with oil, either in the presence or in the absence of carbon steel. Again, methanogens present in these samples catalyzed methane production only when carbon steel was present. Moreover, acetate production was also found in these enrichments only in the presence of carbon steel. From these studies it appears that carbon steel, not oil organics, was the predominant electron donor for acetate production and methane formation in these low temperature oil fields, indicating that the methanogens and acetogens found may contribute significantly to MIC.

  8. Natural carbon isotopes used to study methane consumption and production in soil

    DEFF Research Database (Denmark)

    Ambus, Per; Andersen, Bertel Lohmann; Kemner, Marianne;

    2002-01-01

    Changes in the isotopic composition of carbon can be used to reveal simultaneous occurrence of methane production and oxidation in soil. The method is conducted in laboratory jar experiments as well as in the field by using flux chambers. Simultaneous occurrence of production and oxidation...

  9. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment.

    Science.gov (United States)

    Tsapekos, P; Kougias, Panagiotis G; Frison, A; Raga, R; Angelidaki, I

    2016-09-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank. PMID:27268439

  10. Monitoring of biogenic amines in cheeses manufactured at small-scale farms and in fermented dairy products in the Czech Republic.

    Science.gov (United States)

    Buňková, Leona; Adamcová, Gabriela; Hudcová, Kateřina; Velichová, Helena; Pachlová, Vendula; Lorencová, Eva; Buňka, František

    2013-11-01

    The aim of the study was the monitoring of six biogenic amines (histamine, tyramine, phenylethylamine, tryptamine, putrescine, and cadaverine) and two polyamines (spermidine and spermine) in 112 samples of dairy products purchased in the Czech Republic, namely in 55 cheeses made in small-scale farms and in 57 fermented dairy products. The products were tested at the end of their shelf-life period. Neither tryptamine nor phenylethylamine was detected in the monitored samples; histamine was found only in four cheese samples containing up to 25mg/kg. The contents of spermine and spermidine were low and did not exceed the values of 35 mg/kg. Significant amounts of tyramine, putrescine, and cadaverine occurred especially in cheeses produced from ewe's milk or in long-term ripened cheeses. In about 10% of the tested cheeses, the total concentration of all the monitored biogenic amines and polyamines exceeded the level of 200mg/kg, which can be considered toxicologically significant. In fermented dairy products, the tested biogenic amines occurred in relatively low amounts (generally up to 30 mg/kg) that are regarded safe for the consumer's health. PMID:23768392

  11. A model for methane production in anaerobic digestion of swine wastewater.

    Science.gov (United States)

    Yang, Hongnan; Deng, Liangwei; Liu, Gangjin; Yang, Di; Liu, Yi; Chen, Ziai

    2016-10-01

    A study was conducted using a laboratory-scale anaerobic sequencing batch digester to investigate the quantitative influence of organic loading rates (OLRs) on the methane production rate during digestion of swine wastewater at temperatures between 15 °C and 35 °C. The volumetric production rate of methane (Rp) at different OLRs and temperatures was obtained. The maximum volumetric methane production rates (Rpmax) were 0.136, 0.796, 1.294, 1.527 and 1.952 LCH4 L(-1) d(-1) at corresponding organic loading rates of 1.2, 3.6, 5.6, 5.6 and 7.2 g volatile solids L(-1) d(-1), respectively, which occurred at 15, 20, 25, 30 and 35 °C, respectively. A new model was developed to describe the quantitative relationship between Rp and OLR. In addition to the maximum volumetric methane production rate (Rpmax) and the half-saturation constant (KLR) commonly used in previous models such as the modified Stover-Kincannon model and Deng model, the new model introduced a new index (KD) that denoted the speed of volumetric methane production rate approaching the maximum as a function of temperature. The new model more satisfactorily described the influence of OLR on the rate of methane production than other models as confirmed by higher determination coefficients (R(2)) (0.9717-0.9900) and lower bias between the experimental and predicted data in terms of the root mean square error and the Akaike Information Criterion. Data from other published research also validated the applicability and generality of the new kinetic model to different types of wastewater. PMID:27395030

  12. Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens

    OpenAIRE

    Byrne, J M; Muhamadali, H.; Coker, V. S.; Cooper, J.; Lloyd, J. R.

    2015-01-01

    Although there are numerous examples of large-scale commercial microbial synthesis routes for organic bioproducts, few studies have addressed the obvious potential for microbial systems to produce inorganic functional biomaterials at scale. Here we address this by focusing on the production of nanoscale biomagnetite particles by the Fe(III)-reducing bacterium Geobacter sulfurreducens, which was scaled up successfully from laboratory- to pilot plant-scale production, while maintaining the surf...

  13. Association between the Levels of Biogenic Amines and Superoxide Anion Production in Brain Regions of Rats after Subchronic Exposure to TCDD

    OpenAIRE

    Byers, James P.; Masters, Karilane; Sarver, Jeffrey G.; Hassoun, Ezdihar A.

    2006-01-01

    The effects of TCDD on the distribution of biogenic amines and production of superoxide anion (SA) in different brain regions of rats have been studied after subchronic exposure. Groups of females Sprague-Dawley rats were administered daily dose of 46 ng TCDD/kg/day (treated groups), or the vehicle used to dissolve TCDD (control group), for 90 days. The rats were sacrificed at the end of the exposure period and their brains were dissected into different regions including, hippocampus (H), cer...

  14. Experimental evaluation of methane dry reforming process on a membrane reactor to hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fabiano S.A.; Benachour, Mohand; Abreu, Cesar A.M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. of Chemical Engineering], Email: f.aruda@yahoo.com.br

    2010-07-01

    In a fixed bed membrane reactor evaluations of methane-carbon dioxide reforming over a Ni/{gamma}- Al{sub 2}O{sub 3} catalyst were performed at 773 K, 823 K and 873 K. A to convert natural gas into syngas a fixed-bed reactor associate with a selective membrane was employed, where the operating procedures allowed to shift the chemical equilibrium of the reaction in the direction of the products of the process. Operations under hydrogen permeation, at 873 K, promoted the increase of methane conversion, circa 83%, and doubled the yield of hydrogen production, when compared with operations where no hydrogen permeation occurred. (author)

  15. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Directory of Open Access Journals (Sweden)

    Rainer Roehe

    2016-02-01

    Full Text Available Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e

  16. Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance.

    Science.gov (United States)

    Roehe, Rainer; Dewhurst, Richard J; Duthie, Carol-Anne; Rooke, John A; McKain, Nest; Ross, Dave W; Hyslop, Jimmy J; Waterhouse, Anthony; Freeman, Tom C; Watson, Mick; Wallace, R John

    2016-02-01

    Methane produced by methanogenic archaea in ruminants contributes significantly to anthropogenic greenhouse gas emissions. The host genetic link controlling microbial methane production is unknown and appropriate genetic selection strategies are not developed. We used sire progeny group differences to estimate the host genetic influence on rumen microbial methane production in a factorial experiment consisting of crossbred breed types and diets. Rumen metagenomic profiling was undertaken to investigate links between microbial genes and methane emissions or feed conversion efficiency. Sire progeny groups differed significantly in their methane emissions measured in respiration chambers. Ranking of the sire progeny groups based on methane emissions or relative archaeal abundance was consistent overall and within diet, suggesting that archaeal abundance in ruminal digesta is under host genetic control and can be used to genetically select animals without measuring methane directly. In the metagenomic analysis of rumen contents, we identified 3970 microbial genes of which 20 and 49 genes were significantly associated with methane emissions and feed conversion efficiency respectively. These explained 81% and 86% of the respective variation and were clustered in distinct functional gene networks. Methanogenesis genes (e.g. mcrA and fmdB) were associated with methane emissions, whilst host-microbiome cross talk genes (e.g. TSTA3 and FucI) were associated with feed conversion efficiency. These results strengthen the idea that the host animal controls its own microbiota to a significant extent and open up the implementation of effective breeding strategies using rumen microbial gene abundance as a predictor for difficult-to-measure traits on a large number of hosts. Generally, the results provide a proof of principle to use the relative abundance of microbial genes in the gastrointestinal tract of different species to predict their influence on traits e.g. human metabolism

  17. Net biogenic silica production and nitrate regeneration determine the strength of the silica pump in the Eastern Equatorial Pacific

    Science.gov (United States)

    Demarest, Mark S.; Brzezinski, Mark A.; Nelson, David M.; Krause, Jeffrey W.; Jones, Janice L.; Beucher, Charlotte P.

    2011-03-01

    The high-nitrate, low-silicic acid character of the eastern equatorial Pacific (EEP) has been attributed to the preferential export of diatom biogenic silica (bSiO 2) over particulate organic nitrogen due to less efficient recycling of Si in surface waters. To gain insight into the strength of this silica pump, we examined [Si(OH) 4] and [bSiO 2] distributions and net bSiO 2 production rates in two regions of the EEP, one spanning the equator from 4°N to 3.25°S at 140°W and the other along a tropical instability wave (TIW) at 0.5°N between 132.5 and 123.4°W, ending within a cold vortex at 1.75°N by 125°W. Large uncertainty in the net bSiO 2 production rate measurement precluded a detailed examination of trends at high spatial resolution, but averaged data revealed clear differences in Si cycling between these two sampling areas. Surface [Si(OH) 4] generally remained at levels area. In contrast, integrated net bSiO 2 production rates were five times higher on average in the zonal sampling area, exhibiting a mean of 1.45 mmol Si m -2 d -1 within the euphotic zone that declined by only ˜15% to a depth of 300 m, suggesting a significant potential for silica export to deeper waters along the TIW. In total, the fraction of bSiO 2 produced in the euphotic zone that was supported by new inputs of Si(OH) 4 was at least 3.7 times greater on average than the fraction of inorganic nitrogen taken up as NO3-, consistent with expectations for a silica pump. However, the mean integrated rate of NO3- uptake exceeded that of new Si(OH) 4 uptake by at least five times, implying preferential nitrate depletion in contradiction to nutrient distributions that indicated preferential Si(OH) 4 drawdown. This discrepancy can be resolved if, on average, ˜70% of the nitrate taken up was regenerated in the euphotic zone rather than being supplied by 'new' upwelled sources. These results suggest that the silica pump in the EEP arises only in part from the less efficient recycling of

  18. Fungal degradation of coal as a pretreatment for methane production

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  19. Status of research on biogenic coalbed gas generation mechanisms

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Biogenic coalbed gas,how it is generated and the geochemical characteristics of the gas are gaining global attention.The ways coalbed gas is generated,the status of research on the generation mechanism and the methods of differentiating between biogenic gasses are discussed.The generation of biogenic coalbed methane is consistent with anaerobic fermentation theory.Commercial biogenic coalbed gas reservoirs are mainly generated by the process of CO2 reduction.The substrates used by the microbes living in the...

  20. A novel method to determine simultaneously methane production during in vitro gas production using fully automated equipment

    NARCIS (Netherlands)

    Pellikaan, W.F.; Hendriks, W.H.; Uwimanaa, G.; Bongers, L.J.G.M.; Becker, P.M.; Cone, J.W.

    2011-01-01

    An adaptation of fully automated gas production equipment was tested for its ability to simultaneously measure methane and total gas. The simultaneous measurement of gas production and gas composition was not possible using fully automated equipment, as the bottles should be kept closed during the i

  1. Isotopic evidence for biogenic molecular hydrogen production in the Atlantic Ocean

    Science.gov (United States)

    Walter, S.; Kock, A.; Steinhoff, T.; Fiedler, B.; Fietzek, P.; Kaiser, J.; Krol, M.; Popa, M. E.; Chen, Q.; Tanhua, T.; Röckmann, T.

    2016-01-01

    Oceans are a net source of molecular hydrogen (H2) to the atmosphere. The production of marine H2 is assumed to be mainly biological by N2 fixation, but photochemical pathways are also discussed. We present measurements of mole fraction and isotopic composition of dissolved and atmospheric H2 from the southern and northern Atlantic between 2008 and 2010. In total almost 400 samples were taken during 5 cruises along a transect between Punta Arenas (Chile) and Bremerhaven (Germany), as well as at the coast of Mauritania.The isotopic source signatures of dissolved H2 extracted from surface water are highly deuterium-depleted and correlate negatively with temperature, showing δD values of (-629 ± 54) ‰ for water temperatures at (27 ± 3) °C and (-249 ± 88) ‰ below (19 ± 1) °C. The results for warmer water masses are consistent with the biological production of H2. This is the first time that marine H2 excess has been directly attributed to biological production by isotope measurements. However, the isotope values obtained in the colder water masses indicate that beside possible biological production, a significant different source should be considered.The atmospheric measurements show distinct differences between both hemispheres as well as between seasons. Results from the global chemistry transport model TM5 reproduce the measured H2 mole fractions and isotopic composition well. The climatological global oceanic emissions from the GEMS database are in line with our data and previously published flux calculations. The good agreement between measurements and model results demonstrates that both the magnitude and the isotopic signature of the main components of the marine H2 cycle are in general adequately represented in current atmospheric models despite a proposed source different from biological production or a substantial underestimation of nitrogen fixation by several authors.

  2. Hydrogen and methane production from condensed molasses fermentation soluble by a two-stage anaerobic process

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chiu-Yue; Liang, You-Chyuan; Lay, Chyi-How [Feng Chia Univ., Taichung, Taiwan (China). Dept. of Environmental Engineering and Science; Chen, Chin-Chao [Chungchou Institute of Technology, Taiwan (China). Environmental Resources Lab.; Chang, Feng-Yuan [Feng Chia Univ., Taichung, Taiwan (China). Research Center for Energy and Resources

    2010-07-01

    The treatment of condensed molasses fermentation soluble (CMS) is a troublesome problem for glutamate manufacturing factory. However, CMS contains high carbohydrate and nutrient contents and is an attractive and commercially potential feedstock for bioenergy production. The aim of this paper is to produce hydrogen and methane by two-stage anaerobic fermentation process. The fermentative hydrogen production from CMS was conducted in a continuously-stirred tank bioreactor (working volume 4 L) which was operated at a hydraulic retention time (HRT) of 8 h, organic loading rate (OLR) of 120 kg COD/m{sup 3}-d, temperature of 35 C, pH 5.5 and sewage sludge as seed. The anaerobic methane production was conducted in an up-flow bioreactor (working volume 11 L) which was operated at a HRT of 24 -60 hrs, OLR of 4.0-10 kg COD/m{sup 3}-d, temperature of 35 C, pH 7.0 with using anaerobic granule sludge from fructose manufacturing factory as the seed and the effluent from hydrogen production process as the substrate. These two reactors have been operated successfully for more than 400 days. The steady-state hydrogen content, hydrogen production rate and hydrogen production yield in the hydrogen fermentation system were 37%, 169 mmol-H{sub 2}/L-d and 93 mmol-H{sub 2}/g carbohydrate{sub removed}, respectively. In the methane fermentation system, the peak methane content and methane production rate were 66.5 and 86.8 mmol-CH{sub 4}/L-d with methane production yield of 189.3 mmol-CH{sub 4}/g COD{sub removed} at an OLR 10 kg/m{sup 3}-d. The energy production rate was used to elucidate the energy efficiency for this two-stage process. The total energy production rate of 133.3 kJ/L/d was obtained with 5.5 kJ/L/d from hydrogen fermentation and 127.8 kJ/L/d from methane fermentation. (orig.)

  3. The prediction of methane production of Holstein cows by several equations.

    Science.gov (United States)

    Wilkerson, V A; Casper, D P; Mertens, D R

    1995-11-01

    Ruminants are one of many sources contributing to atmospheric methane. The accuracy of seven published equations for methane prediction was evaluated using a data file consisting of 16 experiments (602 observations). Methane energy emissions ranged from .89 to 7.21 Mcal/d for Holstein cows. The DMI ranged from 9.7 to 28.7 kg/d for lactating cows and 4.0 to 12.9 kg/d for nonlactating cows. Mean dietary concentrations of ADF, CP, and ether extract were similar for lactating and nonlactating cows (20.9, 16.5, and 3.0% for lactating cows versus 21.2, 15.7, and 2.9% for nonlactating cows, respectively). Milk production ranged from 2.7 to 55.9 kg/d. Prediction equations were ranked by correlation coefficients and error of prediction. Prediction of methane energy loss from lactating and nonlactating Holstein cows with equations based on the daily total intake or intake of digested cellulose, hemicellulose, and nonfiber carbohydrates (OM - NDF - CP - ether extract) provided the highest correlation coefficients for reproducibility and the lowest errors of prediction. Predictions were poor for lactating cows when a quadratic function of DMI was used. In general, equations estimated methane production more accurately and precisely for nonlactating than for lactating cows. PMID:8747332

  4. Methane production by treating vinasses from hydrous ethanol using a modified UASB reactor

    Directory of Open Access Journals (Sweden)

    España-Gamboa Elda I

    2012-11-01

    Full Text Available Abstract Background A modified laboratory-scale upflow anaerobic sludge blanket (UASB reactor was used to obtain methane by treating hydrous ethanol vinasse. Vinasses or stillage are waste materials with high organic loads, and a complex composition resulting from the process of alcohol distillation. They must initially be treated with anaerobic processes due to their high organic loads. Vinasses can be considered multipurpose waste for energy recovery and once treated they can be used in agriculture without the risk of polluting soil, underground water or crops. In this sense, treatment of vinasse combines the elimination of organic waste with the formation of methane. Biogas is considered as a promising renewable energy source. The aim of this study was to determine the optimum organic loading rate for operating a modified UASB reactor to treat vinasse generated in the production of hydrous ethanol from sugar cane molasses. Results The study showed that chemical oxygen demand (COD removal efficiency was 69% at an optimum organic loading rate (OLR of 17.05 kg COD/m3-day, achieving a methane yield of 0.263 m3/kg CODadded and a biogas methane content of 84%. During this stage, effluent characterization presented lower values than the vinasse, except for potassium, sulfide and ammonia nitrogen. On the other hand, primers used to amplify the 16S-rDNA genes for the domains Archaea and Bacteria showed the presence of microorganisms which favor methane production at the optimum organic loading rate. Conclusions The modified UASB reactor proposed in this study provided a successful treatment of the vinasse obtained from hydrous ethanol production. Methanogen groups (Methanobacteriales and Methanosarcinales detected by PCR during operational optimum OLR of the modified UASB reactor, favored methane production.

  5. Isotopic evidence for biogenic molecular hydrogen production in the Atlantic Ocean

    OpenAIRE

    Walter, S.; Kock, A.; Steinhoff, T.; B. Fiedler; P. Fietzek; J. Kaiser; Krol, M.; POPA M. E.; Chen, Q.; Tanhua, T.; Röckmann, T.

    2016-01-01

    Oceans are a net source of molecular hydrogen (H2) to the atmosphere. The production of marine H2 is assumed to be mainly biological by N2 fixation, but photochemical pathways are also discussed. We present measurements of mole fraction and isotopic composition of dissolved and atmospheric H2 from the southern and northern Atlantic between 2008 and 2010. In total almost 400 samples were taken during five cruises along a transect between Punta Arenas (Chile) and Bremerhaven (...

  6. Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens.

    Science.gov (United States)

    Byrne, J M; Muhamadali, H; Coker, V S; Cooper, J; Lloyd, J R

    2015-06-01

    Although there are numerous examples of large-scale commercial microbial synthesis routes for organic bioproducts, few studies have addressed the obvious potential for microbial systems to produce inorganic functional biomaterials at scale. Here we address this by focusing on the production of nanoscale biomagnetite particles by the Fe(III)-reducing bacterium Geobacter sulfurreducens, which was scaled up successfully from laboratory- to pilot plant-scale production, while maintaining the surface reactivity and magnetic properties which make this material well suited to commercial exploitation. At the largest scale tested, the bacterium was grown in a 50 l bioreactor, harvested and then inoculated into a buffer solution containing Fe(III)-oxyhydroxide and an electron donor and mediator, which promoted the formation of magnetite in under 24 h. This procedure was capable of producing up to 120 g of biomagnetite. The particle size distribution was maintained between 10 and 15 nm during scale-up of this second step from 10 ml to 10 l, with conserved magnetic properties and surface reactivity; the latter demonstrated by the reduction of Cr(VI). The process presented provides an environmentally benign route to magnetite production and serves as an alternative to harsher synthetic techniques, with the clear potential to be used to produce kilogram to tonne quantities. PMID:25972437

  7. Evidence for methane production by marine algae (Emiliana huxleyi) and its implication for the methane paradox in oxic waters

    Science.gov (United States)

    Lenhart, K.; Klintzsch, T.; Langer, G.; Nehrke, G.; Bunge, M.; Schnell, S.; Keppler, F.

    2015-12-01

    Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, frequently regional and temporal oversaturation of surface waters occurs. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labelled carbon substrates, namely bicarbonate and a position-specific 13C-labelled methionine (R-S-13CH3). The CH4 production was 0.7 μg POC g-1 d-1, or 30 ng g-1 POC h-1. After supplementation of the cultures with the 13C labelled substrate, the isotope label was observed in headspace-CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that marine algae such as Emiliania huxleyi contribute to the observed spatial and temporal restricted CH4 oversaturation in ocean surface waters.

  8. Effects of Fe and Mn in Paddy Soils Derived from Different Parent Materials on Methane Production and Emission

    Institute of Scientific and Technical Information of China (English)

    LIU Ke-Xing; LIAO Zong-Wen; WANG Sheng-Chun; YOU Zhi-Lin

    2003-01-01

    Three types of paddy soils, derived from granite, Quaternary red clay and basalt, respectively, were selected to study the effects of Fe and Mn in paddy soils on methane production and emission through pot and incubation experiments. The results indicated that the difference of Fe and Mn in paddy soils was one of the important factors causing obvious differences in methane emission from different soil types. Soil Fe and Mn affecting methane emission from the paddy soils was likely through affecting soil Eh and forming Fe and Mn plaques on rice roots. Different rates and valences of added Fe and Mn significantly affected methane production from paddy soils. Therefore, this study enhanced understanding of processes controlling methane emission from paddy soils and may help to improve modeling and estimating regional and global methane emission from paddy soils.

  9. The indirect global warming potential and global temperature change potential due to methane oxidation

    International Nuclear Information System (INIS)

    Methane is the second most important anthropogenic greenhouse gas in the atmosphere next to carbon dioxide. Its global warming potential (GWP) for a time horizon of 100 years is 25, which makes it an attractive target for climate mitigation policies. Although the methane GWP traditionally includes the methane indirect effects on the concentrations of ozone and stratospheric water vapour, it does not take into account the production of carbon dioxide from methane oxidation. We argue here that this CO2-induced effect should be included for fossil sources of methane, which results in slightly larger GWP values for all time horizons. If the global temperature change potential is used as an alternative climate metric, then the impact of the CO2-induced effect is proportionally much larger. We also discuss what the correction term should be for methane from anthropogenic biogenic sources.

  10. CO2 sequestration by methanogens in activated sludge for methane production

    International Nuclear Information System (INIS)

    Highlights: • Methane (CH4) produced stems from CO2 sequestration by methanogens. • Enriched methanogens from WAS was dominated by an active archaeal community. • CO2 which has a single carbon atom is a profitable resource for energy production. - Abstract: Carbon dioxide (CO2) is the main greenhouse gas; hence, processes are needed to remove it from the environment. Here, CO2 was used as the substrate to generate methane (CH4) by using enriched methanogens after anaerobic enrichment of waste activated sludge (WAS); therefore, we demonstrate that methanogens from WAS have significant potential for converting the greenhouse gas CO2 into the fuel methane. Methane production was found to increase 70 fold by active methanogens in the enriched methanogens culture after 3 days in the presence of H2 and CO2. Throughout the process, CO2 was completely consumed after 4 days of incubation in the vials after sparging with a mixture of H2 and CO2, resulting in significant biological CO2 sequestration by methanogens. Using a mixture of H2 and 13CO2, we also demonstrated that the methane produced is due to the utilization of CO2. Microbial community studies via by quantitative real time PCR (qRT-PCR) indicate the dominance of archaea in the enriched methanogens culture of WAS. Archaeal community studies of the enriched methanogens via high-throughput 16S rRNA sequencing also showed that the archaea consist mainly of hydrogenotrophic and aceticlastic methanogens such as Methanobacteriaceae, Methanospirillaceae and Methanosarcinaceae spp. which are actively grown in H2 and CO2. We envision that CO2 gas from power plants can be directed to enriched methanogens of WAS to prevent release of this greenhouse gas while generating a useful biofuel (methane) or other valuable products using this single carbon atom

  11. Nanostructural control of methane release in kerogen and its implications to wellbore production decline

    Science.gov (United States)

    Ho, Tuan Anh; Criscenti, Louise J.; Wang, Yifeng

    2016-06-01

    Despite massive success of shale gas production in the US in the last few decades there are still major concerns with the steep decline in wellbore production and the large uncertainty in a long-term projection of decline curves. A reliable projection must rely on a mechanistic understanding of methane release in shale matrix–a limiting step in shale gas extraction. Using molecular simulations, we here show that methane release in nanoporous kerogen matrix is characterized by fast release of pressurized free gas (accounting for ~30–47% recovery) followed by slow release of adsorbed gas as the gas pressure decreases. The first stage is driven by the gas pressure gradient while the second stage is controlled by gas desorption and diffusion. We further show that diffusion of all methane in nanoporous kerogen behaves differently from the bulk phase, with much smaller diffusion coefficients. The MD simulations also indicate that a significant fraction (3–35%) of methane deposited in kerogen can potentially become trapped in isolated nanopores and thus not recoverable. Our results shed a new light on mechanistic understanding gas release and production decline in unconventional reservoirs. The long-term production decline appears controlled by the second stage of gas release.

  12. Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition

    International Nuclear Information System (INIS)

    Highlights: • Methane production of microalgae biomass is hampered by their cell wall. • Pretreatment should be designed in accordance to the microalgae specie. • Fresh Chlamydomonas reinhardtii exhibited high anaerobic biodegradability. • Chlorella vulgaris anaerobic biodegradability was enhanced by 50% using protease pretreatment. - Abstract: The effect of enzymatic hydrolysis on microalgae organic matter solubilisation and methane production was investigated in this study. Even though both biomasses, Chlamydomonas reinhardtii and Chlorella vulgaris, exhibited similar macromolecular distribution, their cell wall composition provided different behaviors. The addition of carbohydrolase (Viscozyme) and protease (Alcalase) resulted in high carbohydrates and protein solubilisation on both biomasses (86–96%). Despite the high carbohydrate solubilisation with the carbohydrolase, methane production was enhanced by 14% for C. vulgaris, while hydrolyzed C. reinhardtii did not show any improvement. The addition of protease to C. reinhardtii increased methane production by 1.17-fold. The low enhancement achieved together with the inherent high biodegradability of this biomass would not justify the cost associated to the enzyme addition. On the other hand, C. vulgaris hydrolyzed with the protease resulted in 86% anaerobic biodegradability compared to 54% of the raw biomass. Therefore, the application of protease prior anaerobic digestion of C. vulgaris could be a promising approach to decrease the energetic input required for cell wall disruption

  13. Methane Production and Consumption in Loess Soil at Different Slope Position

    Directory of Open Access Journals (Sweden)

    Małgorzata Brzezińska

    2012-01-01

    Full Text Available Methane (CH4 production and consumption and soil respiration in loess soils collected from summit (Top, back slope (Middle, and slope bottom (Bottom positions were assessed in laboratory incubations. The CH4 production potential was determined under conditions which can occur in the field (relatively short-term flooding periods with initially ambient O2 concentrations, and the CH4 oxidation potential was estimated in wet soils enriched with CH4. None of the soils tested in this study emitted a significant amount of CH4. In fact, the Middle and Bottom soils, especially at the depth of 20–40 cm, were a consistent sink of methane. Soils collected at different slope positions significantly differed in their methanogenic, methanotrophic, and respiration activities. In comparison with the Top position (as reference soil, methane production and both CO2 production and O2 consumption under flooding were significantly stimulated in the soil from the Middle slope position (P<0.001, while they were reduced in the Bottom soil (not significantly, by 6 to 57%. All upper soils (0–20 cm completely oxidized the added methane (5 kPa during 9–11 days of incubation. Soils collected from the 20–40 cm at the Middle and Bottom slope positions, however, consumed significantly more CH4 than the Top soil (P<0.001.

  14. The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells.

    KAUST Repository

    Siegert, Michael

    2014-01-01

    High current densities in microbial electrolysis cells (MECs) result from the predominance of various Geobacter species on the anode, but it is not known if archaeal communities similarly converge to one specific genus. MECs were examined here on the basis of maximum methane production and current density relative to the inoculum community structure. We used anaerobic digester (AD) sludge dominated by acetoclastic Methanosaeta, and an anaerobic bog sediment where hydrogenotrophic methanogens were detected. Inoculation using solids to medium ratio of 25% (w/v) resulted in the highest methane production rates (0.27 mL mL(-1) cm(-2), gas volume normalized by liquid volume and cathode projected area) and highest peak current densities (0.5 mA cm(-2)) for the bog sample. Methane production was independent of solid to medium ratio when AD sludge was used as the inoculum. 16S rRNA gene community analysis using pyrosequencing and quantitative PCR confirmed the convergence of Archaea to Methanobacterium and Methanobrevibacter, and of Bacteria to Geobacter, despite their absence in AD sludge. Combined with other studies, these findings suggest that Archaea of the hydrogenotrophic genera Methanobacterium and Methanobrevibacter are the most important microorganisms for methane production in MECs and that their presence in the inoculum improves the performance.

  15. Assessment of Methane Emissions from Oil and Gas Production Pads using Mobile Measurements

    Science.gov (United States)

    Journal Article Abstract --- "A mobile source inspection approach called OTM 33A was used to quantify short-term methane emission rates from 218 oil and gas production pads in Texas, Colorado, and Wyoming from 2010 to 2013. The emission rates were log-normally distributed with ...

  16. Methane production and methanogenic Archaea in the digestive tracts of millipedes (Diplopoda)

    Czech Academy of Sciences Publication Activity Database

    Šustr, Vladimír; Chroňáková, Alica; Semanová, Stanislava; Tajovský, Karel; Šimek, Miloslav

    2014-01-01

    Roč. 9, č. 7 (2014), e102659. E-ISSN 1932-6203 R&D Projects: GA ČR GA526/09/1570 Institutional support: RVO:60077344 Keywords : methane production * methanogenic Archaea * digestive tracts of millipedes Subject RIV: EG - Zoology Impact factor: 3.234, year: 2014

  17. Gas Production Potential in the Landfill of Tehran by Landfill Methane Outreach Program

    Directory of Open Access Journals (Sweden)

    Pazoki

    2015-10-01

    Full Text Available Background Landfilling is the most common way of municipal solid waste (MSW disposal in Iran. Many countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings as well as the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. Landfill gas (LFG consists of 50% - 60 vol% methane and 30% - 40 vol% carbon dioxide as well as trace amounts of numerous chemical compounds such as aromatics, chlorinated organic compounds and sulfur compounds. Landfill methane outreach program (LMOP is a voluntary assistance program which helps reduce methane emissions from landfills by encouraging the recovery and the beneficial use of LFG as an energy resource. Objectives In this study, the volume of LFG of Tehran by landfill methane outreach program (LMOP software was calculated. In addition, the relationship between the time of gas collection system operation and the volume of LFG production was evaluated. Materials and Methods The LMOP software was used. The available information and some presumptions were used to operate the software. The composition of the solid waste collected from the landfill of Tehran had specific details. A large amount of it was organic materials, which was about 67.8%. These materials have a good potential to produce gas. In addition, LMOP Colombia model uses the first-order equations in all the analytical equations. Furthermore, it is assumed that the landfill operation time is 30 years and the process is considered in two conditions; first, the gas was recovered in 2000, and second, the process started in 2015. Results The modeling results showed that for the gas recovery starting in 2000 and 2015, the power generation would be 2

  18. Effect of Buffalo Dung to the Water Ratio on Production of Methane through Anaerobic Digestion

    OpenAIRE

    Abdul Razaque Sahito; Rasool Bux Mahar; Farooq Ahmed

    2014-01-01

    Generation of methane from animal dung through AD (Anaerobic Digestion) is the most feasible way to get energy from it. Pakistan has about 70 million heads of cattle and buffalos, and about 90 million heads of sheep and goats. The dung from these animals can overcome the energy crisis and can fulfill the future energy demands of Pakistan. In present study, buffalo dung is used as the substrate for anaerobic digestion process, whereas the production of methane was analyzed as the function of b...

  19. The Kinetics of Methane Production from Co-digestion of Cattle Manure

    OpenAIRE

    Zh.K. Bakhov; K.U. Korazbekova; K.M. Lakhanova

    2014-01-01

    In this article, the kinetics of methane production from co-digestion of liquid manure from cattle with the addition of winemaking waste, food waste and biowaste was investigated in order to describe and evaluate methanogenesis in terms of growth curve of methanogenic bacteria. Experiments were carried out in «Hohenheim» biogas yield testing system at the temperature of 37°C. The cumulative methane yield was 0.330±0.038, 0.277±0.041, 0.148±0.013 and 0...

  20. Analyzing the Dynamics of the Bio-methane Production Chain and the Effectiveness of Subsidization Schemes under Uncertainty

    OpenAIRE

    Eker, S.; Van Daalen, C.

    2014-01-01

    Bio-methane is a renewable gas option that can be injected to the natural gas grids to increase the sustainability of the energy system and to deal with natural gas supply problems. However, being based on several factors such as resource availability, competition between bio-methane and electricity sectors for biogas and biomass supply, demand, capacity installation and profitability, the future dynamics of bio-methane production is uncertain. In this study, we investigated the dynamics of b...

  1. Enhanced hydrogen production from methane steam reforming using a new thin layered structural coating on a metal substrate

    OpenAIRE

    Lugo, Michael; Tiliakos, Nickolas; Wilde, Juray De; Gill, Rajinder; W. Davis, Andrew; Soltani, Elaine C.; Modroukas, Dean; Castaldi, Marco J.; AICHE 2015 Annual Meeting

    2015-01-01

    The recent increase in the availability of hydrocarbons, especially methane, from shale gas exploration has led to renewed interest in converting or upgrading methane to higher value chemicals. Steam reforming is still the most developed and widely practiced industrial process for converting methane to hydrogen/syngas and its derivatives. It has no oxygen requirement and the most favorable H2/CO ratio for methanol and ammonia production of all available technologies. However, opportunities st...

  2. Hydrogen production by thermal decomposition of methane: a proposal for an experimental programme

    International Nuclear Information System (INIS)

    Today, steam reforming of methane is the most common hydrogen production technology. The produced CO2 must be separated and processed for its final disposal in order to reduce its environmental impact. On the other hand, in a natural gas (methane) pyrolysis, only black carbon and hydrogen are produced according to the reaction CH4 = C + 2H2. Theoretically, methane bubbled in a liquid metal heated to about 800 deg C could decompose over 90% of the methane with only negligible CO2 emissions anticipated. However, the complexity of the phenomena should be noted as related to heat transfer from liquid metal to a bubbling gas, fluid dynamics of bubbles in a liquid metal, mass transfer and kinetics of reaction. These must be carefully evaluated in order to make possible a reliable scale up to an industrial scale process. In order to test the process, an experimental device, in which methane is bubbled into a molten lead bath, will be realised at the ENEA site of Brasimone. The guidelines for the design are presented and discussed. (authors)

  3. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  4. Prediction of methane emissions from beef cattle in tropical production systems

    Energy Technology Data Exchange (ETDEWEB)

    McCrabb, G.J.; Hunter, R.A. [CSIRO, Rockhampton, Qld. (Australia). Division of Tropical Agriculture

    1999-07-01

    The northern beef cattle herd accounts for more than half of Australia's beef cattle population, and is a major source of anthropogenic methane emissions for Australia. National Greenhouse Gas Inventory predictions of methane output from Australian beef cattle are based on a predictive equation developed for British breeds of sheep and cattle offered temperate forage-based diets. However, tropical forage diets offered to cattle in northern Australia differ markedly from temperate forage-based diets used in the United Kingdom to develop the predictive equations. The paper reviews recent respiration chamber measurements of daily methane production for Brahman cattle offered a tropical forage or high grain diet, and compares them with values predicted using methodologies of the Australian National Greenhouse Gas Inventory Committee and the Intergovernmental Panel on Climate Change. It is concluded that a reliable inventory of methane emissions for cattle in northern Australia can only be achieved after a wider range of tropical forage species has been investigated. Some opportunities for reducing methane emissions of beef cattle by dietary manipulation are discussed.

  5. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    Science.gov (United States)

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. PMID:26724182

  6. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    DEFF Research Database (Denmark)

    Rafique, Rashad; Poulsen, Tjalfe; Nizami, Abdul-Sattar;

    2010-01-01

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental...... deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre...... on biogas and methane potential in the temperature range (25-100 degrees C). Maximum enhancement is observed at 70 degrees C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 degrees C), with maximum enhancement at 100...

  7. Novel Earth Observation products to characterise wetland xxtent and methane dynamics: the ESA ALANIS-Methane Project

    OpenAIRE

    Hayman, Garry; Bartsch, Annett; Prigent, Catherine; Aires, Felipe; Buchwitz, Michael; Burrows, John; Schneising, Oliver; Blyth, Eleanor; Clark, Douglas B.; O'Connor, Fiona; Gedney, Nicola

    2011-01-01

    The role of wetlands in the global methane cycle is the subject of much current interest. Wetlands are generally accepted as being the largest, but least well quantified, single source of methane (CH4), with emission estimates ranging from 100-231 Tg yr-1. Since the late 1970s, there have been significant inter-annual variations in the growth rate of atmospheric methane, which has been linked to the variability in wetland CH4 emissions. Although the emissions of methane from the wetland...

  8. Methane and carbon dioxide production from simulated anaerobic degradation of cattle carcasses

    International Nuclear Information System (INIS)

    Highlights: ► This study evaluates methane and carbon dioxide production after land burial of cattle carcasses. ► Disposal of animal mortalities is often overlooked in evaluating the environmental impacts of animal production. ► we quantify annual emissions from cattle carcass disposal in the United States as 1.6 Tg CO2 equivalents. - Abstract: Approximately 2.2 million cattle carcasses require disposal annually in the United States. Land burial is a convenient disposal method that has been widely used in animal production for disposal of both daily mortalities as well as during catastrophic mortality events. To date, greenhouse gas production after mortality burial has not been quantified, and this study represents the first attempt to quantify greenhouse gas emissions from land burial of animal carcasses. In this study, anaerobic decomposition of both homogenized and unhomogenized cattle carcass material was investigated using bench-scale reactors. Maximum yields of methane and carbon dioxide were 0.33 and 0.09 m3/kg dry material, respectively, a higher methane yield than that previously reported for municipal solid waste. Variability in methane production rates were observed over time and between reactors. Based on our laboratory data, annual methane emissions from burial of cattle mortalities in the United States could total 1.6 Tg CO2 equivalents. Although this represents less than 1% of total emissions produced by the agricultural sector in 2009, greenhouse gas emissions from animal carcass burial may be significant if disposal of swine and poultry carcasses is also considered.

  9. Effects of rutin and buckwheat seeds on energy metabolism and methane production in dairy cows.

    Science.gov (United States)

    Stoldt, Ann-Kathrin; Derno, Michael; Das, Gürbüz; Weitzel, Joachim M; Wolffram, Siegfried; Metges, Cornelia C

    2016-03-01

    Flavonoids are secondary plant metabolites with several health promoting effects. As dairy cows often suffer from metabolic imbalance and health problems, interest is growing in health improvements by plant substances such as flavonoids. Our group has recently shown that the flavonoids quercetin and rutin (a glucorhamnoside of quercetin) are bioavailable in cows when given via a duodenal fistula or orally, respectively, affect glucose metabolism, and have beneficial effects on liver health. Furthermore, flavonoids may reduce rumen methane production in vitro through their antibacterial properties. To test the hypothesis that rutin has effects on energy metabolism, methane production, and production performance in dairy cows, we fed rutin trihydrate at a dose of 100mg/kg of body weight to a group of 7 lactating dairy cows for 2 wk in a crossover design. In a second experiment, 2 cows were fed the same ration but were supplemented with buckwheat seeds (Fagopyrum tartaricum), providing rutin at a dose comparable to the first experiment. Two other cows receiving barley supplements were used as controls in a change-over mode. Blood samples were taken weekly and respiration measurements were performed at the end of each treatment. Supplementation of pure rutin, but not of rutin contained in buckwheat seeds, increased the plasma quercetin content. Methane production and milk yield and composition were not affected by rutin treatment in either form. Plasma glucose, β-hydroxybutyrate, and albumin were increased by pure rutin treatment, indicating a possible metabolic effect of rutin on energy metabolism of dairy cows. In addition, we did not show that in vivo ruminal methane production was reduced by rutin. In conclusion, we could not confirm earlier reports on in vitro methane reduction by rutin supplementation in dairy cows in established lactation. PMID:26805964

  10. Methane Production in Microbial Reverse-Electrodialysis Methanogenesis Cells (MRMCs) Using Thermolytic Solutions

    KAUST Repository

    Luo, Xi

    2014-08-05

    The utilization of bioelectrochemical systems for methane production has attracted increasing attention, but producing methane in these systems requires additional voltage to overcome large cathode overpotentials. To eliminate the need for electrical grid energy, we constructed a microbial reverse- electrodialysis methanogenesis cell (MRMC) by placing a reverse electrodialysis (RED) stack between an anode with exoelectrogenic microorganisms and a methanogenic biocathode. In the MRMC, renewable salinity gradient energy was converted to electrical energy, thus providing the added potential needed for methane evolution from the cathode. The feasibility of the MRMC was examined using three different cathode materials (stainless steel mesh coated with platinum, SS/Pt; carbon cloth coated with carbon black, CC/CB; or a plain graphite fiber brush, GFB) and a thermolytic solution (ammonium bicarbonate) in the RED stack. A maximum methane yield of 0.60 ± 0.01 mol-CH 4/mol-acetate was obtained using the SS/Pt biocathode, with a Coulombic recovery of 75 ± 2% and energy efficiency of 7.0 ± 0.3%. The CC/CB biocathode MRMC had a lower methane yield of 0.55 ± 0.02 mol-CH4/mol-acetate, which was twice that of the GFB biocathode MRMC. COD removals (89-91%) and Coulombic efficiencies (74-81%) were similar for all cathode materials. Linear sweep voltammetry and electrochemical impedance spectroscopy tests demonstrated that cathodic microorganisms enhanced electron transfer from the cathode compared to abiotic controls. These results show that the MRMC has significant potential for production of nearly pure methane using low-grade waste heat and a source of waste organic matter at the anode. © 2014 American Chemical Society.

  11. Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection.

    Science.gov (United States)

    Haas, Y de; Windig, J J; Calus, M P L; Dijkstra, J; Haan, M de; Bannink, A; Veerkamp, R F

    2011-12-01

    Mitigation of enteric methane (CH₄) emission in ruminants has become an important area of research because accumulation of CH₄ is linked to global warming. Nutritional and microbial opportunities to reduce CH₄ emissions have been extensively researched, but little is known about using natural variation to breed animals with lower CH₄ yield. Measuring CH₄ emission rates directly from animals is difficult and hinders direct selection on reduced CH₄ emission. However, improvements can be made through selection on associated traits (e.g., residual feed intake, RFI) or through selection on CH₄ predicted from feed intake and diet composition. The objective was to establish phenotypic and genetic variation in predicted CH₄ output, and to determine the potential of genetics to reduce methane emissions in dairy cattle. Experimental data were used and records on daily feed intake, weekly body weights, and weekly milk production were available from 548 heifers. Residual feed intake (MJ/d) is the difference between net energy intake and calculated net energy requirements for maintenance as a function of body weight and for fat- and protein-corrected milk production. Predicted methane emission (PME; g/d) is 6% of gross energy intake (Intergovernmental Panel on Climate Change methodology) corrected for energy content of methane (55.65 kJ/g). The estimated heritabilities for PME and RFI were 0.35 and 0.40, respectively. The positive genetic correlation between RFI and PME indicated that cows with lower RFI have lower PME (estimates ranging from 0.18 to 0.84). Hence, it is possible to decrease the methane production of a cow by selecting more-efficient cows, and the genetic variation suggests that reductions in the order of 11 to 26% in 10 yr are theoretically possible, and could be even higher in a genomic selection program. However, several uncertainties are discussed; for example, the lack of true methane measurements (and the key assumption that methane

  12. High rate production of hydrogen/methane from various substrates and wastes.

    Science.gov (United States)

    Nishio, Naomichi; Nakashimada, Yutaka

    2004-01-01

    To treat soluble and solid wastes and recover energy from them, high rate methane fermentation, especially using the UASB (upflow anaerobic sludge blanket) reactor, and hydrogen fermentation using various microorganisms and microbial consortia have been investigated intensively in Japan. In this chapter, recent works on high rate methane fermentation in Japan are reviewed, focusing on: 1) basic studies into the applicability of the UASB reactor for various substrates such as propionate, lactate, ethanol, glucose and phenol; 2) its applications to unfeasible conditions, such as lipid and protein containing wastes, low temperature and high salt-containing wastes; 3) progress made in the field of advanced UASB reactors, and; 4) research into methane fermentation from solid wastes, such as from cellulosic materials, municipal sewage sludge, and mud sediments. Following this, although hydrogen fermentation with photosynthetic microorganisms or anaerobic bacteria was researched, for this review we have focused on fermentative hydrogen production using strictly or facultative anaerobes and microbial consortia in Japan, since high rate production of hydrogen-methane via a two-stage process was judged to be more attractive for biological hydrogen production and wastewater treatments. PMID:15453185

  13. Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis.

    Science.gov (United States)

    Cai, Weiwei; Han, Tingting; Guo, Zechong; Varrone, Cristiano; Wang, Aijie; Liu, Wenzong

    2016-05-01

    Anaerobic digestion (AD) represents a potential way to achieve energy recovery from waste organics. In this study, a novel bioelectrochemically-assisted anaerobic reactor is assembled by two AD systems separated by anion exchange membrane, with the cathode placing in the inside cylinder (cathodic AD) and the anode on the outside cylinder (anodic AD). In cathodic AD, average methane production rate goes up to 0.070mLCH4/mL reactor/day, which is 2.59times higher than AD control reactor (0.027m(3)CH4/m(3)/d). And COD removal is increased ∼15% over AD control. When changing to sludge fermentation liquid, methane production rate has been further increased to 0.247mLCH4/mL reactor/day (increased by 51.53% comparing with AD control). Energy recovery efficiency presents profitable gains, and economic revenue from increased methane totally self-cover the cost of input electricity. The study indicates that cathodic AD could cost-effectively enhance methane production rate and degradation of glucose and fermentative liquid. PMID:26913643

  14. Low temperature calcium hydroxide treatment enhances anaerobic methane production from (extruded) biomass.

    Science.gov (United States)

    Khor, Way Cern; Rabaey, Korneel; Vervaeren, Han

    2015-01-01

    Ca(OH)2 treatment was applied to enhance methane yield. Different alkali concentration, incubation temperature and duration were evaluated for their effect on methane production and COD conversion efficiency from (non-)extruded biomass during mesophilic anaerobic digestion at lab-scale. An optimum Ca(OH)2 pretreatment for grass is found at 7.5% lime loading at 10°C for 20h (37.3% surplus), while mild (50°C) and high temperatures perform sub-optimal. Ca(OH)2 post-treatment after fast extrusion gives an additional surplus compared to extruded material of 15.2% (grass), 11.2% (maize straw) and 8.2% (sprout stem) regarding methane production. COD conversion improves accordingly, with additional improvements of 10.3% (grass), 9.0% (maize straw) and 6.8% (sprout stem) by Ca(OH)2 post-treatment. Therefore, Ca(OH)2 pretreatment and post-treatment at low temperature generate an additional effect regarding methane production and COD conversion efficiency. Fast extrusion gives a higher energy efficiency ratio compared to slow extrusion. PMID:25461001

  15. Dynamical Effects and Product Distributions in Simulated CN + Methane Reactions.

    Science.gov (United States)

    Preston, Thomas J; Hornung, Balázs; Pandit, Shubhrangshu; Harvey, Jeremy N; Orr-Ewing, Andrew J

    2016-07-14

    Dynamics of collisions between structured molecular species quickly become complex as molecules become large. Reactions of methane with halogen and oxygen atoms serve as model systems for polyatomic molecule chemical dynamics, and replacing the atomic reagent with a diatomic radical affords further insights. A new, full-dimensional potential energy surface for collisions between CN + CH4 to form HCN + CH3 is developed and then used to perform quasi-classical simulations of the reaction. Coupled-cluster energies serve as input to an empirical valence bonding (EVB) model, which provides an analytical function for the surface. Efficient sampling permits simulation of velocity-map ion images and exploration of dynamics over a range of collision energies. Reaction populates HCN vibration, and energy partitioning changes with collision energy. The reaction cross-section depends on the orientation of the diatomic CN radical. A two-dimensional extension of the cone of acceptance for an atom in the line-of-centers model appropriately describes its reactivity. The simulation results foster future experiments and diatomic extensions to existing atomic models of chemical collisions and reaction dynamics. PMID:26812395

  16. CYANOBACTERIA FOR MITIGATING METHANE EMISSION FROM SUBMERGED PADDY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Upasana Mishra; Shalini Anand [Department of Environmental Studies, Inderprastha Engineering College, Sahibabad, Ghaziabad (India)

    2008-09-30

    Atmospheric methane, a potent greenhouse gas with high absorption potential for infrared radiation, is responsible for one forth of the total anticipated warming. It is forming a major part of green house gases, next after carbon dioxide. Its concentration has been increasing alarmingly on an average at the rate of one percent per year. Atmospheric methane, originating mainly from biogenic sources such as paddy fields, natural wetlands and landfills, accounts for 15-20% of the world's total anthropogenic methane emission. With intensification of rice cultivation in coming future, methane emissions from paddy fields are anticipated to increase. India's share in world's rice production is next after to China and likewise total methane emission from paddy fields also. Methane oxidation through planktophytes, particularly microalgae which are autotrophic and abundant in rice rhizospheres, hold promise in controlling methane emission from submerged paddy fields. The present study is focused on the role of nitrogen fixing, heterocystous cyanobacteria and Azolla (a water fern harboring a cyanobacterium Anabaena azollae) as biological sink for headspace concentration of methane in flooded soils. In this laboratory study, soil samples containing five potent nitrogen fixer cyanobacterial strains from paddy fields, were examined for their methane reducing potential. Soil sample without cyanobacterial strain was tested and taken as control. Anabaena sp. was found most effective in inhibiting methane concentration by 5-6 folds over the control. Moist soil cores treated with chemical nitrogen, urea, in combination with cyanobacteria mixture, Azolla microphylla or cyanobacteria mixture plus Azolla microphylla exhibited significance reduction in the headspace concentration of methane than the soil cores treated with urea alone. Contrary to other reports, this study also demonstrates that methane oxidation in soil core samples from paddy fields was stimulated by

  17. Methane production rates from natural organics of glacial lake clay and granitic groundwater

    International Nuclear Information System (INIS)

    Engineered barrier materials are an integral part of the proposed Canadian concept for the disposal of used nuclear fuel or high level waste. Components of these barriers, such as the buffer and backfill clays surrounding the waste containers in a vault, and granitic groundwater, naturally contain small quantities of organic material (up to about 1.2 wt%). Despite high temperatures, space and water limitations and radiation effects, the question remains whether gas could be produced from these organics as a result of biological processes. Degradation of organic carbon by microbes can produce gases such as carbon dioxide (C02) and methane (CH4). This work demonstrates that methane is produced in natural systems containing 2. In deep fracture zone groundwater, the largest methane production rate was 0.19 mole %/day or 5 μg CH4/L groundwater per day, at STP. This can be compared with the methane production rate of 1 μg CH4/(kg clay · day) at STP in an earlier experiment containing added organic material. Using this rate of 5 pg CH4/(L groundwater · day) (3.75 μg C/(L groundwater · day)), all of the organic C in the groundwater, assuming it is equally bioavailable, would have been converted to CH4 during the timeframe of this experiment. Enhanced methane production occurred with an increase in natural organic carbon, an increase in the microbe population and with the addition of Fe. Steady-state methane production rates of 10 to 25 μg CH4/ L groundwater per day have been repeatedly observed in clay-free systems. The effects of microbial metabolism, the requirement for a facilitating consortium, the Eh, the pH, the salinity, the groundwater sulphate concentration, the presence of methanotrophs and the sorption effects of clay interlayers are discussed as possible explanations for the inhibition of methanogenesis and methane production in the presence of clay and crushed granite. (author). 49 refs., 11 tabs., 12 figs

  18. Potential methane production and oxidation in soil reclamation covers of an oil sands mining site in Alberta, Canada

    Science.gov (United States)

    Pum, Lisa; Reichenauer, Thomas; Germida, Jim

    2015-04-01

    Anthropogenic activities create a number of significant greenhouse gases and thus potentially contribute to global warming. Methane production is significant in some agricultural production systems and from wetlands. In soil, methane can be oxidised by methanotrophic bacteria. However, little is known about methane production and oxidation in oil sand reclamation covers. The purpose of this study was to investigate methane production and oxidation potential of tailing sands and six different reclamation layers of oil sands mining sites in Alberta, Canada. Methane production and oxidation potential were investigated in laboratory scale microcosms through continuous headspace analysis using gas chromatography. Samples from a reclamation layer were collected at the Canadian Natural Resources Limited (CNRL) reclamation site at depths of 0-10 cm, 10-20 cm and 20-40 cm in October 2014. In addition, tailing sands provided by Suncor Energy Inc. and soil from a CNRL wetland were studied for methane production. Samples were dried, crushed and sieved to 4 mm, packed into serum bottle microcosms and monitored for eight weeks. Methane production potential was assessed by providing an anoxic environment and by adjusting the samples to a moisture holding capacity of 100 %. Methane oxidation potential was examined by an initial application of 2 vol % methane to the microcosms and by adjusting the samples to a moisture holding capacity of 50 %. Microcosm headspace gas was analysed for methane, carbon dioxide, nitrous oxide and oxygen. All experiments were carried out in triplicates, including controls. SF6 and Helium were used as internal standards to detect potential leaks. Our results show differences for methane production potential between the soil depths, tailing sands and wetlands. Moreover, there were differences in the methane oxidation potential of substrate from the three depths investigated and between the reclamation layers. In conclusion, the present study shows that

  19. Evaluation of feeds from tropical origin for in vitro methane production potential and rumen fermentation in vitro

    Directory of Open Access Journals (Sweden)

    Kaushik Pal

    2015-09-01

    Full Text Available Enteric methane arising due to fermentation of feeds in the rumen contributes substantially to the greenhouse gas emissions. Thus, like evaluation of chemical composition and nutritive values of feeds, methane production potential of each feed should be determined. This experiment was conducted to evaluate several feeds for methane production potential and rumen fermentation using in vitro gas production technique so that low methane producing feeds could be utilized to feed ruminants. Protein- and energy-rich concentrates (n=11, cereal and grass forages (n=11, and different straws and shrubs (n=12, which are commonly fed to ruminants in India, were collected from a number of locations. Gas production kinetics, methane production, degradability and rumen fermentation greatly varied (p<0.01 among feeds depending upon the chemical composition. Methane production (mL/g of degraded organic matter was lower (p<0.01 for concentrate than forages, and straws and shrubs. Among shrubs and straws, methane production was lower (p<0.01 for shrubs than straws. Methane production was correlated (p<0.05 with concentrations of crude protein (CP, ether extract and non-fibrous carbohydrate (NFC negatively, and with neutral detergent (NDF and acid detergent fiber (ADF positively. Potential gas production was negatively correlated (p=0.04 with ADF, but positively (p<0.01 with NFC content. Rate of gas production and ammonia concentration were influenced by CP content positively (p<0.05, but by NDF and ADF negatively (p<0.05. Total volatile fatty acid concentration and organic matter degradability were correlated (p<0.05 positively with CP and NFC content, but negatively with NDF and ADF content. The results suggest that incorporation of concentrates and shrubs replacing straws and forages in the diets of ruminants may decrease methane production.

  20. Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process

    OpenAIRE

    Luo, Gang; Xie, Li; Zhou, Qi; Angelidaki, Irini

    2011-01-01

    The present study investigated a two-stage anaerobic hydrogen and methane process for increasing bioenergy production from organic wastes. A two-stage process with hydraulic retention time (HRT) 3d for hydrogen reactor and 12d for methane reactor, obtained 11% higher energy compared to a single-stage methanogenic process (HRT 15d) under organic loading rate (OLR) 3gVS/(Ld). The two-stage process was still stable when the OLR was increased to 4.5gVS/(Ld), while the single-stage process failed....

  1. Conversion of crude oil to methane by a microbial consortium enriched from oil reservoir production waters

    OpenAIRE

    Berdugo-Clavijo, Carolina; Lisa M. Gieg

    2014-01-01

    The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heav...

  2. Effects of probiotics on the faecal production of hydrogen and methane in patients with meteorism

    DEFF Research Database (Denmark)

    Schrøder, Julie Bernstorf; Jespersen, Lene; Westermann, Peter;

    Meteorism is a dominating problem in the western world, especially in women. The condition is very difficult to quantify, and effective and documented therapies are not avaiable. We wanted to develop a method for measuring anaerobic production of hydrogen and methane in faeces, and to correlate the...... results with patients symptoms. We wanted to investigate, if a change in the flora in the colon would have an effect on gas production and symptoms....

  3. Modeling of non-methane volatile organic compound emissions in Polish industry sector: sugar production

    OpenAIRE

    Charkovska, Nadiya

    2013-01-01

    The main greenhouse gas emission sources have been analyzed and the mathematical model of emission processes during the production of sugar in Poland has been developed. As a result of numerical experiments the estimates of non-methane volatile organic compound emissions in production of sugar on the level of voivodeships and individual plants have been obtained. Results of spatial inventory of greenhouse gas emissions are displayed as digital maps.

  4. Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs

    International Nuclear Information System (INIS)

    While most olefins (e.g., ethylene and propylene) are currently produced through steam cracking routes, they can also possibly be produced from natural gas (i.e., methane) via methanol and oxidative coupling routes. We reviewed recent data in the literature and then compared the energy use, CO2 emissions and production costs of methane-based routes with those of steam cracking routes. We found that methane-based routes use more than twice as much process energy than state-of-the-art steam cracking routes do (the energy content of products is excluded). The methane-based routes can be economically attractive in remote, gas-rich regions where natural gas is available at low prices. The development of liquefied natural gas (LNG) may increase the prices of natural gas in these locations. Oxidative coupling routes are currently still immature due to low ethylene yields and other problems. While several possibilities for energy efficiency improvement do exist, none of the natural gas-based routes is likely to become more energy efficient or to lead to less CO2 emissions than steam cracking routes do

  5. Rerouting Cellular Electron Flux To Increase the Rate of Biological Methane Production.

    Science.gov (United States)

    Catlett, Jennie L; Ortiz, Alicia M; Buan, Nicole R

    2015-10-01

    Methanogens are anaerobic archaea that grow by producing methane, a gas that is both an efficient renewable fuel and a potent greenhouse gas. We observed that overexpression of the cytoplasmic heterodisulfide reductase enzyme HdrABC increased the rate of methane production from methanol by 30% without affecting the growth rate relative to the parent strain. Hdr enzymes are essential in all known methane-producing archaea. They function as the terminal oxidases in the methanogen electron transport system by reducing the coenzyme M (2-mercaptoethane sulfonate) and coenzyme B (7-mercaptoheptanoylthreonine sulfonate) heterodisulfide, CoM-S-S-CoB, to regenerate the thiol-coenzymes for reuse. In Methanosarcina acetivorans, HdrABC expression caused an increased rate of methanogenesis and a decrease in metabolic efficiency on methylotrophic substrates. When acetate was the sole carbon and energy source, neither deletion nor overexpression of HdrABC had an effect on growth or methane production rates. These results suggest that in cells grown on methylated substrates, the cell compensates for energy losses due to expression of HdrABC with an increased rate of substrate turnover and that HdrABC lacks the appropriate electron donor in acetate-grown cells. PMID:26162885

  6. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste.

    Science.gov (United States)

    Sunyoto, Nimas M S; Zhu, Mingming; Zhang, Zhezi; Zhang, Dongke

    2016-11-01

    Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates was studied using bench-scale bioreactors. The cultures with biochar additions were placed in 100ml reactors and incubated at 35°C and pH 5 for hydrogen production. The residual cultures were then used for methane production, incubated at 35°C and pH 7. Daily yields of hydrogen and methane and weekly yield of volatile fatty acids (VFA) were measured. The hydrogen and methane production potentials, rate and lag phases of the two phases were analysed using the Gompertz model. The results showed that biochar addition increased the maximum production rates of hydrogen by 32.5% and methane 41.6%, improved hydrogen yield by 31.0% and methane 10.0%, and shortened the lag phases in the two phases by 36.0% and 41.0%, respectively. Biochar addition also enhanced VFA generation during hydrogen production and VFA degradation in methane production. PMID:27474855

  7. Primary production control of methane emission from wetlands

    Science.gov (United States)

    Whiting, G. J.; Chanton, J. P.

    1993-01-01

    Based on simultaneous measurements of CO2 and CH4 exchange in wetlands extending from subarctic peatlands to subtropical marshes, a positive correlation between CH4 emission and net ecosystem production is reported. It is suggested that net ecosystem production is a master variable integrating many factors which control CH4 emission in vegetated wetlands. It is found that about 3 percent of the daily net ecosystem production is emitted back to the atmosphere as CH4. With projected stimulation of primary production and soil microbial activity in wetlands associated with elevated atmospheric CO2 concentration, the potential for increasing CH4 emission from inundated wetlands, further enhancing the greenhouse effect, is examined.

  8. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure

    Energy Technology Data Exchange (ETDEWEB)

    Panichnumsin, Pornpan [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Thungkru, Bangkok 10140 (Thailand); Excellent Center of Waste Utilization and Management, National Center for Genetic Engineering and Biotechnology, Bangkhuntien, Bangkok 10150 (Thailand); Nopharatana, Annop [Pilot Plant Development and Training Institute, King Mongkut' s University of Technology Thonburi, Bangkhuntien, Bangkok 10150 (Thailand); Ahring, Birgitte [AAU, Copenhagen Institute of Technology, Lautrupvang 15, 2750 Ballerup (Denmark); Chaiprasert, Pawinee [School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, Bangkhuntien, Bangkok 10150 (Thailand)

    2010-08-15

    Cassava pulp is a major by-product produced in a cassava starch factory, containing 50-60% of starch (dry basis). Therefore, in this study we are considering its potential as a raw material substrate for the production of methane. To ensure sufficient amounts of nutrients for the anaerobic digestion process, the potential of co-digestion of cassava pulp (CP) with pig manure (PM) was further examined. The effect of the co-substrate mixture ratio was carried out in a semi-continuously fed stirred tank reactor (CSTR) operated under mesophilic condition (37 C) and at a constant OLR of 3.5 kg VS m{sup -3} d{sup -1} and a HRT of 15 days. The results showed that co-digestion resulted in higher methane production and reduction of volatile solids (VS) but lower buffering capacity. Compared to the digestion of PM alone, the specific methane yield increased 41% higher when co-digested with CP in concentrations up to 60% of the incoming VS. This was probably due to an increase in available easily degradable carbohydrates as the CP ratio in feedstock increased. The highest methane yield and VS removal of 306 mL g{sup -1} VS{sub added} and 61%, respectively, were achieved with good process stability (VFA:Alkalinity ratio < 0.1) when CP accounted for 60% of the feedstock VS. A further increase of CP of the feedstock led to a decrease in methane yield and solid reductions. This appeared to be caused by an extremely high C:N ratio of the feedstock resulting in a deficiency of ammonium nitrogen for microbial growth and buffering capacity. (author)

  9. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure

    International Nuclear Information System (INIS)

    Cassava pulp is a major by-product produced in a cassava starch factory, containing 50-60% of starch (dry basis). Therefore, in this study we are considering its potential as a raw material substrate for the production of methane. To ensure sufficient amounts of nutrients for the anaerobic digestion process, the potential of co-digestion of cassava pulp (CP) with pig manure (PM) was further examined. The effect of the co-substrate mixture ratio was carried out in a semi-continuously fed stirred tank reactor (CSTR) operated under mesophilic condition (37 oC) and at a constant OLR of 3.5 kg VS m-3 d-1 and a HRT of 15 days. The results showed that co-digestion resulted in higher methane production and reduction of volatile solids (VS) but lower buffering capacity. Compared to the digestion of PM alone, the specific methane yield increased 41% higher when co-digested with CP in concentrations up to 60% of the incoming VS. This was probably due to an increase in available easily degradable carbohydrates as the CP ratio in feedstock increased. The highest methane yield and VS removal of 306 mL g-1 VSadded and 61%, respectively, were achieved with good process stability (VFA:Alkalinity ratio < 0.1) when CP accounted for 60% of the feedstock VS. A further increase of CP of the feedstock led to a decrease in methane yield and solid reductions. This appeared to be caused by an extremely high C:N ratio of the feedstock resulting in a deficiency of ammonium nitrogen for microbial growth and buffering capacity.

  10. Conversion of Crude Oil to Methane by a Microbial Consortium Enriched From Oil Reservoir Production Waters

    Directory of Open Access Journals (Sweden)

    LisaGieg

    2014-05-01

    Full Text Available The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls, corresponding to the detection of an alkyl succinate synthase gene (assA in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic versus sessile within a subsurface crude oil reservoir.

  11. The distribution of methane in groundwater in Alberta (Canada) and associated aqueous geochemistry conditions

    Science.gov (United States)

    Humez, Pauline; Mayer, Bernhard; Nightingale, Michael; Becker, Veith; Kingston, Andrew; Taylor, Stephen; Millot, Romain; Kloppmann, Wolfram

    2016-04-01

    Development of unconventional energy resources such as shale gas and coalbed methane has generated some public concern with regard to the protection of groundwater and surface water resources from leakage of stray gas from the deep subsurface. In terms of environmental impact to and risk assessment of shallow groundwater resources, the ultimate challenge is to distinguish: (a) natural in-situ production of biogenic methane, (b) biogenic or thermogenic methane migration into shallow aquifers due to natural causes, and (c) thermogenic methane migration from deep sources due to human activities associated with the exploitation of conventional or unconventional oil and gas resources. We have conducted a NSERC-ANR co-funded baseline study investigating the occurrence of methane in shallow groundwater of Alberta (Canada), a province with a long record of conventional and unconventional hydrocarbon exploration. Our objective was to assess the occurrence and sources of methane in shallow groundwaters and to also characterize the hydrochemical environment in which the methane was formed or transformed through redox processes. Ultimately our aim was to determine whether methane was formed in-situ or whether it migrated from deeper formations into shallow aquifers. Combining hydrochemical and dissolved and free geochemical gas data from 372 groundwater samples obtained from 186 monitoring wells of the provincial groundwater observation well network (GOWN) in Alberta, it was found that methane is ubiquitous in groundwater in Alberta and is predominantly of biogenic origin. The highest concentrations of dissolved biogenic methane (> 0.01 mM or > 0.2 mg/L), characterized by δ13CCH4 values < -55‰, occurred in anoxic Na-Cl, Na-HCO3 and Na-HCO3-Cl type groundwater with negligible concentrations of nitrate and sulfate suggesting that methane was formed in-situ under methanogenic conditions consistent with the redox ladder concept. Despite quite variable gas concentrations and a

  12. Laboratory-scale bioaugmentation relieves acetate accumulation and stimulates methane production in stalled anaerobic digesters.

    Science.gov (United States)

    Town, Jennifer R; Dumonceaux, Tim J

    2016-01-01

    An imbalance between acidogenic and methanogenic organisms during anaerobic digestion can result in increased accumulation of volatile fatty acids, decreased reactor pH, and inhibition of methane-producing Archaea. Most commonly the result of organic input overload or poor inoculum selection, these microbiological and biochemical changes severely hamper reactor performance, and there are a few tools available to facilitate reactor recovery. A small, stable consortium capable of catabolizing acetate and producing methane was propagated in vitro and evaluated as a potential bioaugmentation tool for stimulating methanogenesis in acidified reactors. Replicate laboratory-scale batch digesters were seeded with a combination of bioethanol stillage waste and a dairy manure inoculum previously observed to result in high volatile fatty acid accumulation and reactor failure. Experimental reactors were then amended with the acetoclastic consortium, and control reactors were amended with sterile culture media. Within 7 days, bioaugmented reactors had significantly reduced acetate accumulation and the proportion of methane in the biogas increased from 0.2 ± 0 to 74.4 ± 9.9 % while control reactors showed no significant reduction in acetate accumulation or increase in methane production. Organisms from the consortium were enumerated using specific quantitative PCR assays to evaluate their growth in the experimental reactors. While the abundance of hydrogenotrophic microorganisms remained stable during the recovery period, an acetoclastic methanogen phylogenetically similar to Methanosarcina sp. increased more than 100-fold and is hypothesized to be the primary contributor to reactor recovery. Genomic sequencing of this organism revealed genes related to the production of methane from acetate, hydrogen, and methanol. PMID:26481626

  13. Optimisation of bio methane production admixing organic fraction of municipal solid waste and sewage sludge

    International Nuclear Information System (INIS)

    Optimisation of bio methane production was carried out using the co-blended organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS). The co-blending was evaluated at a range of carbon to nitrogen ratios (C:N) using a standard biochemical methane potential (BMP) test. OFMSW has a very high C:N ratio of around 30 and is predominantly carbon whereas by contrast, waste activated sludge has a low ratio of around 4.9 and comprises nitrogen. Co-blending of OFMSW with the thickened sludge from wastewater increases both the amount and the methane produced during anaerobic digestion. The optimum blend occurs at a C:N ratio of 15 which is achieved with 30% of organic fraction of municipal solid waste. The highest methane yield of 161 mL/g VS removed was also observed at C:N 15. The highest destruction of volatile solids of 85% was achieved at C:N of 20 followed by C:N 30 and 15. No inhibition was observed by ammonia at any C:N ratio's. (author)

  14. Flux and energy dependence of methane production from graphite due to H+ impact

    International Nuclear Information System (INIS)

    Carbon is in widespread use for limiter surfaces, as well as first wall coatings in current tokamaks. Chemical erosion via methane formation, due to energetic H+ impact, is expected to contribute to the total erosion rate of carbon from these surfaces. Experimental results are presented for the methane yield from pyrolytic graphite due to H+ exposure, using a mass analyzed ion beam. H+ energies of 0.1-3 keV and flux densities of ∼ 5x1013 to l016 H+/cm2s were used. The measured methane yield (CH4/H+) initially increases with flux density, then reaches a maximum, which is followed by a gradual decrease. The magnitude of the maximum yield and the flux density at which it occurs depends on the graphite temperature. The yields obtained at temperatures corresponding to yield maxima at specific flux densities also show an initial increase, followed by a shallow maximum and a gradual decrease as a function of flux density; the maximum occurs at ∼1015 H+/cm2s. Also presented are results on the methane production dependence on ion energy over the range 0.1 to 3 keV, and graphite temperature dependence measurements

  15. Synthesis gas production through redox cycles of bimetallic oxides and methane

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.I.S.; Vigil, M.D.D.; Gutierrez, J.S.; Collins-Martinez, V.; Ortiz, A.L. [Centro de Investigacion en Materiales Avanzados, Chihuahua, Chih (Mexico). Dept. de Quimica de Materiales

    2009-01-15

    High-purity hydrogen is required by fuel cells to produce electricity with high efficiency and reduced emissions. Therefore, new and cost effective technologies must be developed that can produce hydrogen to supply the increased demand of the current world market. These new technologies have to overcome several challenges such as large size, weight and cost, high temperature requirements for the process and other associated obstacles such as slow start-ups, storage and transportation issues. Hydrogen production through the partial oxidation of methane (POX) is a well known technology at industrial scale. This paper examined the synthesis, characterization and evaluation of iron (Fe) cerium (Ce) zirconium (Zr) with different Fe to CeZr ratios as oxygen carrier to produce syngas through the partial oxidation of methane. The paper also examined the effect of adding nickel (Ni) to FeCeZr as a catalyst to promote the partial oxidation and the proper assessment of the carbon formation within the reaction system. The paper described the experiment with particular reference to synthesis, characterization and reaction evaluation. The results were presented using X-ray diffraction; crystallite size and BET surface area; reaction evaluation by TGA; and evaluation of the partial oxidation of methane. Experimental values showed a clear trend towards the partial oxidation of methane reaction with samples containing Ni. 28 tabs., 4 tabs., 2 figs.

  16. Effect of Coexistent Hydrogen on the Selective Production of Ethane by Dehydrogenative Methane Coupling through Dielectric-Barrier Discharge under Ordinary Pressure at an Ambient Temperature

    OpenAIRE

    Katsuya Konno; Kaoru Onoe; Yasuyuki Takiguchi; Tatsuaki Yamaguchi

    2014-01-01

    The effect of coexistence of hydrogen on the product selectivity to ethane from methane by dielectric-barrier discharge (DBD) reactor was examined experimentally under ordinary pressure without use of catalyst and external heating. By the dilution of methane with hydrogen, both the increase of methane conversion and the decrease of alkene production were observed, improving the selectivities to ethane by ca. 70%.

  17. Effects of Oxytetracycline on Methane Production and the Microbial Communities During Anaerobic Digestion of Cow Manure

    Institute of Scientific and Technical Information of China (English)

    KE Xin; WANG Chun-yong; LI Run-dong; ZHANG Yun

    2014-01-01

    The effects of different concentrations of oxytetracycline (OTC) on the dynamics of bacterial and archaeal communities during the mesophilic anaerobic digestion (37°C) of cow manure were investigated. Before anaerobic digestion, OTC was added to digesters at concentrations of 20, 50, and 80 mg L-1, respectively. Compared with no-antibiotic control, all methane productions underwent different levels of inhibition at different concentrations of OTC. Changes in the bacterial and archaeal communities were discussed by using PCR-denaturing gradient gel electrophoresis (DGGE). Results showed that OTC affected the richness and diversity of bacterial and archaeal communities. The bacterial genus Flavobacterium and an uncultured bacterium (JN256083.1) were detected throughout the entire process of anaerobic digestion and seemed to be the functional bacteria. Methanobrevibacter boviskoreani and an uncultured archaeon (FJ230982.1) dominated the archaeal communities during anaerobic digestion. These microorganisms may have high resistance to OTC and may play vital roles in methane production.

  18. Effect of fat supplementation and stage of lactation on methane production in dairy cows

    DEFF Research Database (Denmark)

    Alstrup, Lene; Hellwing, Anne Louise Frydendahl; Lund, Peter;

    2015-01-01

    decreased milk yield, both measured as kg milk and kg energy corrected milk (ECM). Fat supplementation increased milk yield compared to CON, however ECM yield was not affected. Milk protein concentration decreased with fat supplementation. Methane production increased with DIM when measured in L/d, L/kg DMI......The aim was to determine the effect of fat supplementation on methane (CH4) production and to study if the effect persists over time as lactation progresses. Rumen microbial protein synthesis and thereby milk yield may be reduced when fermentable organic matter (OM) is replaced by nonfermentable...... treatments: Control (CON), CON supplemented with whole cracked rapeseed (WCR), CON supplemented with vegetable rumen protected fat (Lipmix 40/60, Lipitec, NLM Vantinge Aps, Ringe, Denmark) (RPF), and RPF supplemented with HMBi (MetaSmart, Adisseo, France) (RPFA). All diets contained maize silage (230 g...

  19. Autonomous ground penetrating radar (GPR) measurements for exploring biogenic gas dynamics of peat soils in a northern peatland

    Science.gov (United States)

    Wright, W. J.; Comas, X.; Heij, G.; Slater, L. D.; Schafer, K. V.; Reeve, A. S.

    2012-12-01

    It is widely accepted that northern peat soils are responsible for up to 10% of methane flux to the atmosphere yet act as a net sink for as much as 75% of the global mass of atmospheric carbon. A better understanding of the processes by which peat soils store and release carbon products must be gained in order to more accurately model the contributions that peatlands make to global atmospheric carbon budgets. Rapid ebullition events of biogenic methane and carbon dioxide gases from peat soils are currently not well understood, particularly since the timing of the releases are poorly constrained. Ground penetrating radar (GPR) is a geophysical tool that has successfully been used in the past to non-invasively investigate the release of biogenic gasses from peat soils. In the work presented here, measurement frequency is expanded by including daily arrays of common offset and common midpoint GPR measurements combined with hourly autonomous GPR measurements to investigate biogenic gas dynamics during times of variable atmospheric pressure in a northern peatland in Maine. Geophysical data were supported by peat matrix deformation measurements using terrestrial LiDAR (TLS) and direct gas flux measurements using gas traps combined with time-lapse cameras at the sub-daily scale. A vertical array of moisture probes was also used to further constrain GPR measurements. Results from this study show the viability of autonomous GPR methods for improving temporal resolution of geophysical data in order to better understand the dynamics of biogenic gas releases from peat soils.

  20. Partial Regeneration of Ni-Based Catalysts for Hydrogen Production via Methane Cracking

    OpenAIRE

    KOÇ, Reyyan; ALPER, Erdoğan; CROISET, Eric; Elkamel, Ali

    2008-01-01

    Methane cracking has the potential to produce high purity, carbon monoxide-free hydrogen suitable for application in PEM fuel cells. The 2 products of the reaction are molecular hydrogen and solid carbon. The carbon appears in the form of carbon filaments whose growth is hindered by carbon encapsulation leading to total deactivation of the catalyst. Several attempts have been made to regenerate the catalyst, mainly by gasifying the carbon filament in air or steam. Our work on 5-wt%...

  1. Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10 °C.

    Science.gov (United States)

    Liu, Dandan; Zhang, Lei; Chen, Si; Buisman, Cees; Ter Heijne, Annemiek

    2016-08-01

    Anaerobic digestion at low temperature is an attractive technology especially in moderate climates, however, low temperature results in low microbial activity and low rates of methane formation. This study investigated if bioelectrochemical systems (BESs) can enhance methane production from organic matter in low-temperature anaerobic digestion (AD). A bioelectrochemical reactor was operated with granular activated carbon as electrodes at 10 °C. Our results showed that bioelectrochemical systems can enhance CH4 yield, accelerate CH4 production rate and increase acetate removal efficiency at 10 °C. The highest CH4 yield of 31 mg CH4-COD/g VSS was achieved in the combined BES-AD system at a cathode potential of -0.90 V (Ag/AgCl), which was 5.3-6.6 times higher than that in the AD reactor at 10 °C. CH4 production rate achieved in the combined BES-AD system at 10 °C was only slightly lower than that in the AD reactor at 30 °C. The presence of an external circuit between the acetate-oxidizing bioanode and methane-producing cathode provided an alternative pathway from acetate via electrons to methane, potentially via hydrogen. This alternative pathway seems to result in higher CH4 production rates at low temperature compared with traditional methanogenesis from acetate. Integration of BES with AD could therefore be an attractive alternative strategy to enhance the performance of anaerobic digestion in cold areas. PMID:27117912

  2. Methane production and small intestinal bacterial overgrowth in children living in a slum

    OpenAIRE

    Carolina Santos Mello; Soraia Tahan; Lígia Cristina FL Melli; Mirian Silva do Carmo Rodrigues; Ricardo Martin Pereira de Mello; Isabel Cristina Affonso Scaletsky; Mauro Batista de Morais

    2012-01-01

    AIM: To analyze small intestinal bacterial overgrowth in school-aged children and the relationship between hydrogen and methane production in breath tests. METHODS: This transversal study included 85 children residing in a slum and 43 children from a private school, all aged between 6 and 10 years, in Osasco, Brazil. For characterization of the groups, data regarding the socioeconomic status and basic housing sanitary conditions were collected. Anthropometric data was obtained in children fro...

  3. Temperature response of methane production in liquid manures and co-digestates

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Olsen, Anna Berg; Petersen, Søren O.

    2016-01-01

    Intensification of livestock production makes correct estimation of methanogenesis in liquidmanure increasingly important for inventories of CH4 emissions. Such inventories currently rely on fixed methane conversion factors as knowledge gaps remain with respect to detailed temperature responses o...... and rice paddies (89.3 kJmol−1). This supports that the derived temperature sensitivity parameters may be applicable to dynamic modelling of CH4 emissions from livestock manure....

  4. Genetic resources for methane production from biomass described with the Gene Ontology

    OpenAIRE

    Purwantini, Endang; Torto-Alalibo, Trudy; Lomax, Jane; Setubal, João C.; Tyler, Brett M.; Mukhopadhyay, Biswarup

    2014-01-01

    Methane (CH4) is a valuable fuel, constituting 70–95% of natural gas, and a potent greenhouse gas. Release of CH4 into the atmosphere contributes to climate change. Biological CH4 production or methanogenesis is mostly performed by methanogens, a group of strictly anaerobic archaea. The direct substrates for methanogenesis are H2 plus CO2, acetate, formate, methylamines, methanol, methyl sulfides, and ethanol or a secondary alcohol plus CO2. In numerous anaerobic niches in nature, methanogene...

  5. Anaerobic Hydrogen and Methane Production from Dairy Processing Waste: Experiment and Modeling

    OpenAIRE

    Zhong, Jianming

    2016-01-01

    Dairy processing waste (DPW) can cause many environmental problems if not treated well. Various wastewater treatment technologies have been applied to reduce the organics and inorganics in DPW. The overall objective of this research was to develop cost effective anaerobic digestion technology for hydrogen and methane production from DPW. This search included three phases of studies. In phase 1, we investigated continuous fermentations of algae, lawn grass clippings and DPW, commingled and ...

  6. Efficient methane production from Lipid-Rich Wastewater in high-rate anaerobic treatment

    International Nuclear Information System (INIS)

    Anaerobic digestion allows, simultaneously, wastewater treatment and production of biogas, a renewable energy source. The energy yield of this process is higher for more reduced compounds, such as long chain fatty acids (LCFA), the main products of lipids hydrolysis. However, LCFA conversion to biogas is not always complete, and tends to decrease with the increase of the organic loading rate applied (OLR). Recent results obtained in our research group showed that efficient methane production from lipid-rich wastewater can be accomplished if acclimation of the inoculum is performed through discontinuous or pulsed feeding of fat. (Author)

  7. Formation Mechanism, Detection and Control of Biogenic Amines in Traditional Fermented Meat Products%传统发酵肉制品中生物胺形成机理及检测控制技术

    Institute of Scientific and Technical Information of China (English)

    王永丽; 李锋; 陈肖; 黎良浩; 章建浩

    2013-01-01

    Biogenic amines which are present in a wide of animals,plants and microorganisms,are essential for many physiological functions.However,the excessive accumulation of biogenic amines would lead to some potential health risks.Extensive investigations have been conducted in order to illustrate the formation mechanism of biogenic amines in meat products in the past decades.This paper summarizes the research progress in the production conditions of biogenic amines in traditional fermented meat products,microorganism involved in biogenic amines accumulation and biological control over their formation.These illustrations will contribute to our theoretical understanding of the accumulation mechanism of biogenic amines in foods,and provide more knowledge for biological control over the formation of biogenic amines in traditionally Chinese fermented meat products while effectively reducing food safety risks.%生物胺是动植物和多数微生物体内正常的生理成分,过量生物胺则会对人体健康产生潜在的安全隐患.国内外对于肉制品中生物胺的产生机制进行了大量的研究.本文综述传统发酵肉制品中生物胺产生积累的机理条件、与生物胺积累有关的微生物以及相关生物控制方法等方面的研究进展,以期寻找生物胺形成积累的原因,为研究探索传统中式发酵肉制品中生物胺的控制方法提供参考,有效降低食品安全风险.

  8. Toward a Functional Definition of Methane Super-Emitters: Application to Natural Gas Production Sites.

    Science.gov (United States)

    Zavala-Araiza, Daniel; Lyon, David; Alvarez, Ramón A; Palacios, Virginia; Harriss, Robert; Lan, Xin; Talbot, Robert; Hamburg, Steven P

    2015-07-01

    Emissions from natural gas production sites are characterized by skewed distributions, where a small percentage of sites-commonly labeled super-emitters-account for a majority of emissions. A better characterization of super-emitters is needed to operationalize ways to identify them and reduce emissions. We designed a conceptual framework that functionally defines superemitting sites as those with the highest proportional loss rates (methane emitted relative to methane produced). Using this concept, we estimated total methane emissions from natural gas production sites in the Barnett Shale; functionally superemitting sites accounted for roughly three-fourths of total emissions. We discuss the potential to reduce emissions from these sites, under the assumption that sites with high proportional loss rates have excess emissions resulting from abnormal or otherwise avoidable operating conditions, such as malfunctioning equipment. Because the population of functionally superemitting sites is not expected to be static over time, continuous monitoring will likely be necessary to identify them and improve their operation. This work suggests that achieving and maintaining uniformly low emissions across the entire population of production sites will require mitigation steps at a large fraction of sites. PMID:26148555

  9. Magnetite nanoparticles facilitate methane production from ethanol via acting as electron acceptors

    Science.gov (United States)

    Yang, Zhiman; Shi, Xiaoshuang; Wang, Chuanshui; Wang, Lin; Guo, Rongbo

    2015-11-01

    Potential for interspecies hydrogen transfer within paddy soil enrichments obtained via addition of magnetite nanoparticles and ethanol (named as PEM) was investigated. To do this, PEM derived from rice field of Hangzhou (named as PEM-HZ) was employed, because it offered the best methane production performance. Methane production and Fe (III) reduction proceeded in parallel in the presence of magnetite. Inhibition experiments with 2-bromoethane sulfonate (BES) or phosphate showed that interspecies hydrogen transfer and Fe (III) reduction also occurred in methane production from ethanol. 16S rRNA-based Illumina sequencing results showed that Dechloromonas, Thauera, Desulfovibrio and Clostridium were the dominant putative Fe (III) -reducers, and that hydrogenotrophic Methanobacterium accounted for about 88% of the total archaeal community. These results indicated that magnetite nanoparticles that acted as electron acceptor could facilitate rapid oxidation of ethanol by members of the Fe (III) -reducers in PEM-HZ and establishment of the syntrophic relationship of Fe (III) -reducers with Methanobacterium via interspecies hydrogen transfer. Our results could offer a model to understand the microbial interaction with magnetite from a novel angle during methanogenesis.

  10. Anaerobic digestion of maize hybrids for methane production

    OpenAIRE

    P. Vindis; B. Mursec; M. Janzekovic; D. Stajnko; F. Cus

    2010-01-01

    Purpose: This research project was aimed at optimising anaerobic digestion of maize and find out which maturity class of corn and which hybrid of a particular maturity class produces the highest rate of biogas and biomethane. Also the chemical composition of gases was studied.Design/methodology/approach: Biogas and biomethane production and composition in mesophilic (35 degrees C) conditions were measured and compared. The corn hybrids of FAO 300 - FAO 600 maturity class were tested. Experime...

  11. Anaerobic treatment of glycol contaminated wastewater for methane production

    OpenAIRE

    Agbalakwe, Ekene

    2011-01-01

    Glycols are usually used in the offshore gas industry as hydrate inhibitor in gas pipelines laid deep under the sea. Glycols, in its use, are contaminated by dissolved salts from formation water together with scaling and corrosion products from the pipeline. This results to generation of wastewater containing glycols. Anaerobic treatment may represent an alternative to the aerobic treatment of glycol wastewater. Laboratory-scale studies were carried out to investigate the treatability of glyc...

  12. An Ecosystem Simulation Model for Methane Production and Emission from Wetlands

    Science.gov (United States)

    Potter, C. S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Previous experimental studies suggest that methane emission from wetland is influenced by multiple interactive pathways of gas production and transport through soil and sediment layers to the atmosphere. The objective of this study is to evaluate a new simulation model of methane production and emission in wetland soils that was developed initially to help identify key processes that regulate methanogenesis and net flux of CH4 to the air, but which is designed ultimately for regional simulation using remotely sensed inputs for land cover characteristics. The foundation for these computer simulations is based on a well-documented model (CASA) of ecosystem production and carbon cycling in the terrestrial blaspheme. Modifications to represent flooded wetland soils and anaerobic decomposition include three new sub-models for: (1) layered soil temperature and water table depth (WTD) as a function of daily climate drivers, (2) CH4 production within the anoxic soil layer as a function of WTD and CO2 production under poorly drained conditions, and (3) CH4 gaseous transport pathways (molecular diffusion, ebullition, and plant vascular transport) as a function of WTD and ecosystem type. The model was applied and tested using climate and ecological data to characterize tundra wetland sites near Fairbanks, Alaska studied previously by Whalen and Reeburgh. Comparison of model predictions to measurements of soil temperature and thaw depth, water-table depth, and CH4 emissions over a two year period suggest that inter-site differences in soil physical conditions and methane fluxes could be reproduced accurately for selected periods. Day-to-day comparison of predicted emissions to measured CH4 flux rates reveals good agreement during the early part of the thaw season, but the model tends to underestimate production of CH4 during the months of July and August in both test years. Important seasonal effects, including that of falling WTD during these periods, are apparently

  13. Slow Transit Constipation Associated With Excess Methane Production and Its Improvement Following Rifaximin Therapy: A Case Report

    OpenAIRE

    Ghoshal, Uday C; Srivastava, Deepakshi; Verma, Abhai; Misra, Asha

    2011-01-01

    Constipation, a common problem in gastroenterology practice, may result from slow colonic transit. Therapeutic options for slow transit constipations are limited. Excessive methane production by the methanogenic gut flora, which is more often found in patients with constipation, slows colonic transit. Thus, reduction in methane production with antibiotic treatment directed against methanogenic flora of the gut may accelerate colonic transit resulting in improvement in constipation. However, t...

  14. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts

    OpenAIRE

    Irene Lock Sow Mei; S.S.M. Lock; Dai-Viet N. Vo; Bawadi Abdullah

    2016-01-01

    Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both catalytic activity and operational lifetime have been developed. In this study, the effect of palladium (Pd) as a promoter onto Ni supported on alumina catalyst has been investigated by u...

  15. Effect of coal matrix swelling on enhanced coalbed methane production. A field and laboratory study. Geologica Ultraiectina (315)

    OpenAIRE

    Bergen, F. van

    2009-01-01

    Carbon capture and storage (CCS) is considered a key technology to reduce worldwide emissions of carbon dioxide (CO2). One CCS option is to inject CO2 into subsurface coal beds. When combined with simultaneous, enhanced, production of methane naturally present in the coal, this process is referred to as enhanced coalbed methane production (ECBM). However, ECBM is not yet a well-established, mature technology. Demonstration projects are essential for testing the applicability of the ECBM techn...

  16. Diamond dissolution and the production of methane and other carbon-bearing species in hydrothermal diamond-anvil cells

    Science.gov (United States)

    Chou, I.-Ming; Anderson, Alan J.

    2009-01-01

    Raman analysis of the vapor phase formed after heating pure water to near critical (355-374 ??C) temperatures in a hydrothermal diamond-anvil cell (HDAC) reveals the synthesis of abiogenic methane. This unexpected result demonstrates the chemical reactivity of diamond at relatively low temperatures. The rate of methane production from the reaction between water and diamond increases with increasing temperature and is enhanced by the presence of a metal gasket (Re, Ir, or Inconel) which is compressed between the diamond anvils to seal the aqueous sample. The minimum detection limit for methane using Raman spectroscopy was determined to be ca. 0.047 MPa, indicating that more than 1.4 nanograms (or 8.6 ?? 10-11 mol) of methane were produced in the HDAC at 355 ??C and 30 MPa over a period of ten minutes. At temperatures of 650 ??C and greater, hydrogen and carbon dioxide were detected in addition to methane. The production of abiogenic methane, observed in all HDAC experiments where a gasket was used, necessitates a reexamination of the assumed chemical systems and intensive parameters reported in previous hydrothermal investigations employing diamonds. The results also demonstrate the need to minimize or eliminate the production of methane and other carbonic species in experiments by containing the sample within a HDAC without using a metal gasket.

  17. Use of 13C-Labeled Substrates to Determine Relative Methane Production Rates in Hypersaline Microbial Communities

    Science.gov (United States)

    Kelley, C. A.; Bebout, B.; Chanton, J.

    2015-12-01

    Rates and pathways of methane production were determined from photosynthetic soft microbial mats and gypsum-encrusted endoevaporites collected in hypersaline environments from California, Mexico and Chile, as well as an organic-rich mud from a pond in the El Tatio volcanic fields, Chile. Samples (mud, homogenized soft mats and endoevaporites) were incubated anaerobically with deoxygenated site water, and the increase in methane concentration through time in the headspaces of the incubation vials was used to determine methane production rates. To ascertain the substrates used by the methanogens, 13C-labeled methylamines, methanol, dimethylsulfide, acetate or bicarbonate were added to the incubations (one substrate per vial) and the stable isotopic composition of the resulting methane was measured. The vials amended with 13C-labeled methylamines produced the most 13C-enriched methane, generally followed by the 13C-labeled methanol-amended vials. The stable isotope data and the methane production rates were used to determine first order rate constants for each of the substrates at each of the sites. Estimates of individual substrate use revealed that the methylamines produced 55 to 92% of the methane generated, while methanol was responsible for another 8 to 40%.

  18. An integrated system for hydrogen and methane production during landfill leachate treatment

    International Nuclear Information System (INIS)

    'Full text': The patent-pending integrated waste-to-energy system comprises both a novel biohydrogen reactor with a gravity settler (Biohydrogenator, Hafez et al., 2009), followed by a second stage conventional anaerobic digester for the production of methane gas. This chemical-free process has been tested with a synthetic wastewater/leachate solution, and was operated at 37oC for 45 days. The biohydrogenator (system (A), stage 1) steadily produced hydrogen with no methane during the experimental period. The maximum hydrogen yield was 400 ml H2 / g glucose with an average of 345 ml H2 / g glucose, as compared to 141 and 118 ml H2 / g glucose for two consecutive runs done in parallel using a conventional continuously stirrer tank reactor (System (B)). The maximum and average hydrogen production rates in system (A) were 22 and 19 L H2/d, the maximum yield was 2.8 mol H2 /mol glucose higher than 1.6-2.3 mol H2 /mol glucose reported for continuous-flow reactors. The methane yield for the second stage in system (A) approached a maximum value of 426 ml CH4/ gCOD removed. (author)

  19. Biological hydrogen and methane production from bagasse bioethanol fermentation residues using a two-stage bioprocess.

    Science.gov (United States)

    Cheng, Hai-Hsuan; Whang, Liang-Ming; Chung, Man-Chien; Chan, Kun-Chi

    2016-06-01

    This study investigated the recovery of H2 and CH4 from bagasse bioethanol fermentation residues (bagasse BEFR) using a two-stage bioprocess. In the hydrogen fermentation bioreactor (HFB), carbohydrate removal efficiency was maintained at 82-93% and the highest hydrogen yield was 8.24mL/gCOD at volumetric loading rate (VLR) of 80kgCOD/m(3)/day. The results indicated a positive correlation between hydrogen yield and butyrate-to-acetate ratio, which might be due to the mechanisms of lactate/acetate utilization for hydrogen production and acetogenesis occurring in the HFB. Remaining volatile fatty acids and alcohols in the HFB effluent were further utilized for methane production in methane fermentation bioreactor (MFB), in which the highest methane yield of 345.2mL/gCOD was attained at VLR of 2.5kgCOD/m(3)/day. Overall, the two-stage bioprocess achieved a maximum COD removal of 81% from bagasse BEFR, and converted 0.3% and 72.8% of COD in the forms of H2 and CH4, respectively. PMID:26774443

  20. Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis

    DEFF Research Database (Denmark)

    Cai, Weiwei; Han, Tingting; Guo, Zechong;

    2016-01-01

    Anaerobic digestion (AD) represents a potential way to achieve energy recovery from waste organics. In this study, a novel bioelectrochemically-assisted anaerobic reactor is assembled by two AD systems separated by anion exchange membrane, with the cathode placing in the inside cylinder (cathodic...... AD) and the anode on the outside cylinder (anodic AD). In cathodic AD, average methane production rate goes up to 0.070 mL CH4/mL reactor/day, which is 2.59 times higher than AD control reactor (0.027 m3 CH4/m3/d). And COD removal is increased ~15% over AD control. When changing to sludge...... fermentation liquid, methane production rate has been further increased to 0.247 mL CH4/mL reactor/day (increased by 51.53% comparing with AD control). Energy recovery efficiency presents profitable gains, and economic revenue from increased methane totally self-cover the cost of input electricity. The study...

  1. Estimating methane production rates in bogs and landfills by deuterium enrichment of pore water

    Science.gov (United States)

    Siegel, D.I.; Chanton, J.P.; Glaser, P.H.; Chasar, L.S.; Rosenberry, D.O.

    2001-01-01

    Raised bogs and municipal waste landfills harbor large populations of methanogens within their domed deposits of anoxic organic matter. Although the methane emissions from these sites have been estimated by various methods, limited data exist on the activity of the methanogens at depth. We therefore analyzed the stable isotopic signature of the pore waters in two raised bogs from northern Minnesota to identify depth intervals in the peat profile where methanogenic metabolism occurs. Methanogenesis enriched the deuterium (2H) content of the deep peat pore waters by as much as +11% (Vienna Standard Mean Sea Water), which compares to a much greater enrichment factor of +70% in leachate from New York City's Fresh Kills landfill. The bog pore waters were isotopically dated by tritium (3H) to be about 35 years old at 1.5 m depth, whereas the landfill leachate was estimated as ~ 17 years old from Darcy flow calculations. According to an isotopic mass balance the observed deuterium enrichment indicates that about 1.2 g of CH4m-3 d-1 were produced within the deeper peat, compared to about 2.8 g CH4 m-3 d-1 in the landfill. The values for methane production in the bog peat are substantially higher than the flux rates measured at the surface of the bogs or at the landfill, indicating that deeper methane production may be much higher than was previously assumed.

  2. Methane emissions from process equipment at natural gas production sites in the United States: liquid unloadings.

    Science.gov (United States)

    Allen, David T; Sullivan, David W; Zavala-Araiza, Daniel; Pacsi, Adam P; Harrison, Matthew; Keen, Kindal; Fraser, Matthew P; Daniel Hill, A; Lamb, Brian K; Sawyer, Robert F; Seinfeld, John H

    2015-01-01

    Methane emissions from liquid unloadings were measured at 107 wells in natural gas production regions throughout the United States. Liquid unloadings clear wells of accumulated liquids to increase production, employing a variety of liquid lifting mechanisms. In this work, wells with and without plunger lifts were sampled. Most wells without plunger lifts unload less than 10 times per year with emissions averaging 21,000-35,000 scf methane (0.4-0.7 Mg) per event (95% confidence limits of 10,000-50,000 scf/event). For wells with plunger lifts, emissions averaged 1000-10,000 scf methane (0.02-0.2 Mg) per event (95% confidence limits of 500-12,000 scf/event). Some wells with plunger lifts are automatically triggered and unload thousands of times per year and these wells account for the majority of the emissions from all wells with liquid unloadings. If the data collected in this work are assumed to be representative of national populations, the data suggest that the central estimate of emissions from unloadings (270 Gg/yr, 95% confidence range of 190-400 Gg) are within a few percent of the emissions estimated in the EPA 2012 Greenhouse Gas National Emission Inventory (released in 2014), with emissions dominated by wells with high frequencies of unloadings. PMID:25488307

  3. Combustible gas production (methane) and biodegradation of solid and liquid mixtures of meat industry wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, A.; Al-Kassir, A.; Cuadros, F.; Lopez-Rodriguez, F. [School of Engineering, University of Extremadura, Avda. De Elva, s/n, 06071, Badajoz (Spain); Mohamad, A.A. [Department of Mechanical and Manufacturing Engineering, University of Calgary, 2500 University Dr. N.W., Calgary, Alberta (Canada)

    2010-05-15

    This work is devoted to determine the optimal operational conditions on the methane production as well as on the biodegradation obtained from the anaerobic codigestion of solid (fat, intestines, rumen, bowels, whiskers, etc.) and liquid (blood, washing water, manure, etc.) wastes of meat industry, particularly the ones rising from the municipal slaughterhouse of Badajoz (Spain). The experiments were performed using a 2 l capacity discontinuous digester at 38 C. The loading rate were 0.5, 1, 2, 3, and 4.5 g COD for wastewater (washing water and blood; Mixture 1), and 0.5, 1, 2, 3, and 4 g COD for the co-digestion of a mixture of 97% liquid effluent and 3% solid wastes v/v (Mixture 2) which represents the annual mean composition of the waste generated by the slaughterhouse. The maximal biodegradation rates obtained were: Mixture 1, 56.9% for a COD load of 1 g; and Mixture 2, 19.1% for a COD load of 2 g. For both mixtures, the greatest methane production was for the maximum COD load (4.5 g for Mixture 1, and 4 g for Mixture 2), at which values the amounts of methane obtained during and at the end of the co-digestion were practically indistinguishable between the two mixtures. The results will be used to design, construct, and establish the optimal operating conditions of a continuous complete-mixture biodigester. (author)

  4. Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio.

    Science.gov (United States)

    Dai, Xiaohu; Li, Xiaoshuai; Zhang, Dong; Chen, Yinguang; Dai, Lingling

    2016-09-01

    It is necessary to find an appropriate strategy to simultaneously enhance the methane production and methane content in biogas from waste activated sludge (WAS) and grass co-digestion. In this study an efficient strategy, i.e., adjusting the initial pH 12 and C/N ratio 17/1, for simultaneous enhancement of methane production and methane content in biogas from WAS and perennial ryegrass co-digestion was reported. Experimental results indicated that the maximal methane production was 310mL/gVSadd at the optimum conditions after 30-d anaerobic digestion, which was, respectively, about 1.5- and 3.8-fold of the sole WAS and sole perennial ryegrass anaerobic digestion. Meanwhile, the methane content in biogas was about 74%, which was much higher than that of sole WAS (64%) or sole perennial ryegrass (54%) anaerobic digestion. PMID:27259187

  5. Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

    Directory of Open Access Journals (Sweden)

    Yunfei Yan

    2014-01-01

    Full Text Available A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

  6. A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition.

    Science.gov (United States)

    Shen, Yi; Lua, Aik Chong

    2016-01-15

    A new type of porous carbon with an interconnected trimodal pore system is synthesized by a nanocasting method using nanoparticulated bimodal micro-mesoporous silica particles as the template. The synthesized template and carbon material are characterized using transmission electron microscopy (TEM), field emission electron scanning microscopy (FESEM) and nitrogen adsorption-desorption test. The synthesized carbon material has an extremely high surface area, a large pore volume and an interconnected pore structure, which could provide abundant active sites and space for chemical reactions and minimize the diffusion resistance of the reactants. The resulting carbon is used as the catalyst for hydrogen production by the thermal decomposition of methane. The catalytic results show that the as-synthesized carbon in this study produces much higher methane conversion and hydrogen yield than the commercial carbon materials. PMID:26433477

  7. Syngas production via methane steam reforming with oxygen: plasma reactors versus chemical reactors

    International Nuclear Information System (INIS)

    Steam reforming with oxygen (SRO) is a combination of non-catalytic partial oxidation and steam reforming of methane, industrially used for syngas production. There are several models of the chemical reactors used for this purpose but in the last decade a new direction has developed - plasma devices. The aim of the present paper is to make a comparative analysis between the autothermal reformers, including their improved variants, and the plasma reactors. The study is conceived in terms of advantages and disadvantages coming from the exploitation parameters, methane conversion, selectivity, energy efficiency and investment costs. Although SRO by means of chemical reactors may be the most efficient, plasma reactors represent an incisive approach by their simplicity, compactness and low price. (author)

  8. Slow Transit Constipation Associated With Excess Methane Production and Its Improvement Following Rifaximin Therapy: A Case Report

    Science.gov (United States)

    Srivastava, Deepakshi; Verma, Abhai; Misra, Asha

    2011-01-01

    Constipation, a common problem in gastroenterology practice, may result from slow colonic transit. Therapeutic options for slow transit constipations are limited. Excessive methane production by the methanogenic gut flora, which is more often found in patients with constipation, slows colonic transit. Thus, reduction in methane production with antibiotic treatment directed against methanogenic flora of the gut may accelerate colonic transit resulting in improvement in constipation. However, there is not much data to prove this hypothesis. We, therefore, report a patient with slow transit constipation associated with high methane production both in fasting state and after ingestion of glucose, whose constipation improved after treatment with non-absorbable antibiotic, rifaximin, which reduced breath methane values. PMID:21602997

  9. Potential for CO2 sequestration and Enhanced Coalbed Methane production in the Netherlands

    International Nuclear Information System (INIS)

    The technical and economic feasibility of ECBM (Enhanced Coal Bed Methane) in the Netherlands are explored. The potential and the economic performance are worked out for several ECBM recovery concepts and technological issues are outlined. The research includes the following main activities: Inventory of CO2 sources in the Netherlands and techno-economic analysis of CO2 removal and transport. Several scenarios for CO2 transport of different capacities and distances will be assessed. ECBM production locations are determined by analysis of coal reserves and their characteristics. Four potential areas are assessed: one in eastern Gelderland, two in Limburg and one in Zeeland. Description of ECBM theory and production technology resulting in a time dependent model for ECBM production and CO2 injection. Selection and description of various ECBM production/CO2 sequestration systems. Systems considered include direct delivery of methane to the natural gas grid, production of power (on various scales) and hydrogen. Information from the location assessment is combined with modelling results. Costs of CO2 sequestration are calculated for various scales and configurations. Evaluation of main uncertainties, environmental impacts and sensitivity analyses. Comparison of CBM production systems with reference systems and exploration of potential implementation schemes in the Dutch context. 72 refs

  10. Optimal scheduling for enhanced coal bed methane production through CO2 injection

    International Nuclear Information System (INIS)

    Highlights: • A novel deterministic optimization model for CO2-ECBM production scheduling. • Maximize the total profit from both sales of natural gas and CO2 credits trading in the carbon market. • A stochastic model incorporating uncertainties and dynamics of NG price and CO2 credit. - Abstract: Enhanced coal bed methane production with CO2 injection (CO2-ECBM) is an effective technology for accessing the natural gas embedded in the traditionally unmineable coal seams. The revenue via this production process is generated not only by the sales of coal bed methane, but also by trading CO2 credits in the carbon market. As the technology of CO2-ECBM becomes mature, its commercialization opportunities are also springing up. This paper proposes applicable mathematical models for CO2-ECBM production and compares the impacts of their production schedules on the total profit. A novel basic deterministic model for CO2-ECBM production including the technical and chemical details is proposed and then a multistage stochastic programming model is formulated in order to address uncertainties of natural gas price and CO2 credit. Both models are nonlinear programming problems, which are solved by commercial nonlinear programming software BARON via GAMS. Numerical experiments show the benefits (e.g., expected profit gain) of using stochastic models versus deterministic models

  11. Straw application in paddy soil enhances methane production also from other carbon sources

    Directory of Open Access Journals (Sweden)

    Q. Yuan

    2013-08-01

    Full Text Available Flooded rice fields are an important source of the greenhouse gas methane. Methane is produced from rice straw (RS, soil organic matter (SOM, and rice root organic carbon (ROC. Addition of RS is widely used for ameliorating soil fertility. However, this practice provides additional substrate for CH4 production and results in increased CH4 emission. Here, we found that decomposing RS is not only a substrate of CH4 production, but in addition stimulates CH4 production from SOM and ROC. Apart from accelerating the creation of reduced conditions in the soil environment, RS decomposition exerted a positive priming effect on SOM-derived CH4 production. In particular, hydrogenotrophic methanogenesis from SOM-derived CO2 was stimulated, presumably by H2 released from RS decomposition. On the other hand, the positive priming effect of RS on ROC-derived CH4 production was probably caused by the significant increase of the abundance of methanogenic archaea in the RS treatment compared with the untreated control. Our results show that traditional management of rice residues exerts a positive feedback on CH4 production from rice fields, thus exacerbating its effect on the global CH4 budget.

  12. Methane production by sheep consuming diets with different levels of eucalyptus essential oil

    International Nuclear Information System (INIS)

    Public concern over use of antibiotics in livestock production has increased in recent years because of possible contribution of antibiotics to emergence of antibiotic resistant bacteria, and their transmission from livestock to humans. Consequently, ruminant microbiologists and nutritionists have been exploring alternative methods of favourably altering ruminal fermentation thereby enhancing the efficiency of utilization of feed energy while decreasing methane emissions. However, there have only been limited studies conducted to investigate the effects of essential oils on growth performance, digestive functions, rumen microbial activity and methane production in ruminants. The present study was designed to evaluate the potential effect of eucalyptus essential oils (EUEO, Eucalyptus citriodora) on intake, digestion, rumen fermentation and methane production in sheep. The experiment was conducted during November and January (early summer) 2007-2008 at the Center for Nuclear Energy in Agriculture, Laboratory of Animal Nutrition, University of Sao Paulo, Brazil. Twelve Santa Ines sheep were allocated into 3 groups (59.7 ± 12.16 kg of live weight). The control group (CON) received only the basal diet (Tifton-85 hay-Cynodon sp, concentrate mixture, molasses and mineral mixture), the second group (EUEO I) received the basal diet plus 10 mL of EUEO/head/d while, the third group (EUEO II) received the basal diet plus 20 mL of EUEO/head/d. The EUEO was obtained from the Distillery Tres Barras Company, Sao Paulo, Brazil. All animals were fed the basal diet twice daily at 08:00 and 16:00 h. Four open-circuit respiration chambers were used. Dry gas meters were pitted in the pipe work between the chambers and the air suction pumps (60 l/min) to measure the total volume of gas passing through each chamber. Methane volume was adjusted to standard temperature and pressure. Data were subjected to analysis of variance using the General Linear Model procedure of the SAS. The model

  13. Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007-2014): top-down estimate from ethane and methane column observations

    Science.gov (United States)

    Hausmann, Petra; Sussmann, Ralf; Smale, Dan

    2016-03-01

    Harmonized time series of column-averaged mole fractions of atmospheric methane and ethane over the period 1999-2014 are derived from solar Fourier transform infrared (FTIR) measurements at the Zugspitze summit (47° N, 11° E; 2964 m a.s.l.) and at Lauder (45° S, 170° E; 370 m a.s.l.). Long-term trend analysis reveals a consistent renewed methane increase since 2007 of 6.2 [5.6, 6.9] ppb yr-1 (parts-per-billion per year) at the Zugspitze and 6.0 [5.3, 6.7] ppb yr-1 at Lauder (95 % confidence intervals). Several recent studies provide pieces of evidence that the renewed methane increase is most likely driven by two main factors: (i) increased methane emissions from tropical wetlands, followed by (ii) increased thermogenic methane emissions due to growing oil and natural gas production. Here, we quantify the magnitude of the second class of sources, using long-term measurements of atmospheric ethane as a tracer for thermogenic methane emissions. In 2007, after years of weak decline, the Zugspitze ethane time series shows the sudden onset of a significant positive trend (2.3 [1.8, 2.8] × 10-2 ppb yr-1 for 2007-2014), while a negative trend persists at Lauder after 2007 (-0.4 [-0.6, -0.1] × 10-2 ppb yr-1). Zugspitze methane and ethane time series are significantly correlated for the period 2007-2014 and can be assigned to thermogenic methane emissions with an ethane-to-methane ratio (EMR) of 12-19 %. We present optimized emission scenarios for 2007-2014 derived from an atmospheric two-box model. From our trend observations we infer a total ethane emission increase over the period 2007-2014 from oil and natural gas sources of 1-11 Tg yr-1 along with an overall methane emission increase of 24-45 Tg yr-1. Based on these results, the oil and natural gas emission contribution (C) to the renewed methane increase is deduced using three different emission scenarios with dedicated EMR ranges. Reference scenario 1 assumes an oil and gas emission combination with EMR = 7

  14. Utilization of coal mine methane for methanol and SCP production. Topical report, May 5, 1995--March 4, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The feasibility of utilizing a biological process to reduce methane emissions from coal mines and to produce valuable single cell protein (SCP) and/or methanol as a product has been demonstrated. The quantities of coal mine methane from vent gas, gob wells, premining wells and abandoned mines have been determined in order to define the potential for utilizing mine gases as a resource. It is estimated that 300 MMCFD of methane is produced in the United States at a typical concentration of 0.2-0.6 percent in ventilation air. Of this total, almost 20 percent is produced from the four Jim Walter Resources (JWR) mines, which are located in very gassy coal seams. Worldwide vent gas production is estimated at 1 BCFD. Gob gas methane production in the U.S. is estimated to be 38 MMCFD. Very little gob gas is produced outside the U.S. In addition, it is estimated that abandoned mines may generate as much as 90 MMCFD of methane. In order to make a significant impact on coal mine methane emissions, technology which is able to utilize dilute vent gases as a resource must be developed. Purification of the methane from the vent gases would be very expensive and impractical. Therefore, the process application must be able to use a dilute methane stream. Biological conversion of this dilute methane (as well as the more concentrated gob gases) to produce single cell protein (SCP) and/or methanol has been demonstrated in the Bioengineering Resources, Inc. (BRI) laboratories. SCP is used as an animal feed supplement, which commands a high price, about $0.11 per pound.

  15. Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox

    Science.gov (United States)

    Damm, E.; Thoms, S.; Beszczynska-Möller, A.; Nöthig, E. M.; Kattner, G.

    2015-09-01

    Summer sea ice cover in the Arctic Ocean has undergone a reduction in the last decade exposing the sea surface to unforeseen environmental changes. Melting sea ice increases water stratification and induces nutrient limitation, which is also known to play a crucial role in methane formation in oxygenated surface water. We report on an excess of methane in the marginal ice zone in the western Fram Strait. Our study is based on measurements of oxygen, methane, DMSP, nitrate and phosphate concentrations as well as on phytoplankton composition and light transmission, conducted along the 79°N oceanographic transect, in the western part of the Fram Strait and in Northeast Water Polynya region off Greenland. Between the eastern Fram Strait, where Atlantic water enters from the south and the western Fram Strait, where Polar water enters from the north, different nutrient limitations occurred and consequently different bloom conditions were established. Ongoing sea ice melting enhances the environmental differences between both water masses and initiates regenerated production in the western Fram Strait. We show that in this region methane is in situ produced while DMSP (dimethylsulfoniopropionate) released from sea ice may serve as a precursor for the methane formation. The methane production occured despite high oxygen concentrations in this water masses. As the metabolic activity (respiration) of unicellular organisms explains the presence of anaerobic conditions in the cellular environment we present a theoretical model which explains the maintenance of anaerobic conditions for methane formation inside bacterial cells, despite enhanced oxygen concentrations in the environment.

  16. Development of a combined bio-hydrogen- and methane-production unit using dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Brunstermann, R.; Widmann, R. [Duisburg-Essen Univ. (Germany). Dept. of Urban Water and Waste Management

    2010-07-01

    Hydrogen is regarded as a source of energy of the future. Currently, hydrogen is produced, predominantly, by electrolysis of water by using electricity or by stream reforming of natural gas. So both methods are based on fossil fuels. If the used electricity is recovered from renewable recourses, hydrogen produced by water electrolysis may be a clean solution. At present, the production of hydrogen by biological processes finds more and more attention world far. The biology provides a wide range of approaches to produce hydrogen, including bio-photolysis as well as photo-fermentation and dark-fermentation. Currently these biological technologies are not suitable for solving every day energy problems [1]. But the dark-fermentation is a promising approach to produce hydrogen in a sustainable way and was already examined in some projects. At mesophilic conditions this process provides a high yield of hydrogen by less energy demand, [2]. Short hydraulic retention times (HRT) and high metabolic rates are advantages of the process. The incomplete transformation of the organic components into various organic acids is a disadvantage. Thus a second process step is required. Therefore the well known biogas-technique is used to degrade the organic acids predominantly acetic and butyric acid from the hydrogen-production unit into CH{sub 4} and CO{sub 2}. This paper deals with the development of a combined hydrogen and methane production unit using dark fermentation at mesophilic conditions. The continuous operation of the combined hydrogen and methane production out of DOC loaded sewages and carbohydrate rich biowaste is necessary for the examination of the technical and economical implementation. The hydrogen step shows as first results hydrogen concentration in the biogas between 40 % and 60 %.The operating efficiency of the combined production of hydrogen and methane shall be checked as a complete system. (orig.)

  17. Evaluation of gas production from methane hydrates using depressurization, thermal stimulation and combined methods

    International Nuclear Information System (INIS)

    Graphical abstract: The schematic diagram of hydrate decomposition process and the gas production by using different methods. - Highlights: • Three gas production methods were evaluated with different hydrate saturations. • The roles of temperature, pressure, sensible heat and heat transfer were analyzed. • The driving force of hydrate dissociation at different stages was analyzed. • The combined method effectively improved the gas production and energy efficiency. - Abstract: To investigate the gas production from methane hydrate-bearing sediments, the gas production processes from methane hydrate in porous media using depressurization, two-cycle warm-water injection and a combination of the two methods were characterized in this study. The methane hydrates were formed in porous media with various initial hydrate saturation (Shi) in a pressure vessel. The percentage of gas production, rate of gas production, and energy efficiency were obtained and compared using the three methods. The driving force of the hydrate dissociation at different stages of depressurization was analyzed and ice formation during the gas production was observed. For the two-cycle warm-water-injection method, the percentage of gas production and the energy efficiency increased with increasing of Shi. However, due to the large amount of warm water needed to heat the porous media at the dissociation site, the percentage of gas production was lower than the other two methods under the same experimental conditions. The experimental results proved that the combined method had obvious advantages for hydrate exploitation over the depressurization and warm-water-injection method in terms of the energy efficiency, percentage of gas production and average rate of gas production, and with increasing of Shi, the advantages are enhanced. For the Shi of 51.61%, the percentage of gas production reaches 74.87%, which had increments of 18.63% and 31.19% compared with the depressurization and warm

  18. Anaerobic Biological Treatment of Vinasse for Environmental Compliance and Methane Production.

    Science.gov (United States)

    Albanez, R; Chiaranda, B C; Ferreira, R G; França, A L P; Honório, C D; Rodrigues, J A D; Ratusznei, S M; Zaiat, M

    2016-01-01

    The energy crisis resulted in increasing awareness that alternative sources of energy should be considered. During this time, Brazil implemented ethanol production from sugarcane as biofuel. However, during this process, large amounts of residues are generated, such as vinasse. This residue can be treated anaerobically to generate methane as a source of bioenergy with the use of sequencing batch reactors operated with immobilized biomass (AnSBBR). In this work, tests were conducted in an AnSBBR laboratory-scale reactor, and the main results regarding the kinetic model fitting and performance of substrate consumption (83 %), methane content in the biogas (77 %), applied organic load (5.54 g COD L(-1) day(-1)), methane productivity (973 N-mL CH4 L(-1) day(-1)), and yield (9.47 mol CH4 kg COD(-1)) show that AnSBBR is a promising technological alternative. After tests conducted in a laboratory-scale reactor, an industrial reactor was scaled and was also operated in a sequencing batch with immobilized biomass (AnSBBR) for the anaerobic treatment of vinasse with the goal of generating methane and environmental suitability to further disposal in soil. The calculations were performed based on data from a sugar and alcohol plant located in São Paulo, Brazil. This study proposes to the operation of the industrial scale reactor was the association of four AnSBBR (each one with a volume of 15849 m(3)) operating in parallel (with a feeding and discharge time of 4 h and a reaction time of 8 h), with the goal of adapting the treatment system from a discontinuous operation to a continuous operation. In this industrial scenario, the methane production was estimated at 1.65 × 10(6) mol CH4 day(-1), and the energy was approximately 17 MW, increasing the possible energy recovery contained in sugarcane from 93 to 96 %. PMID:26400496

  19. Methane as a biomarker in the search for extraterrestrial life: Lessons learned from Mars analog hypersaline environments

    Science.gov (United States)

    Bebout, B.; Tazaz, A.; Kelley, C. A.; Poole, J. A.; Davila, A.; Chanton, J.

    2010-12-01

    -60 ‰ to -30 ‰, while the hydrogen isotopic composition (δ2H) ranged from about -350 to -300‰. These isotopic values are outside the range generally considered to be biogenic, however incubations of the sediments and salt crusts revealed that the methane is indeed produced there. The highest rate of methane production was 20 nmol/g/d, in a gypsum crust with endolithic microbial communities. Currently we are studying the mechanisms that control the isotopic signatures of methane in these environments. These studies are of special relevance given the projected analysis of Mars atmospheric methane by the Mars Science Laboratory in 2012, and by the ExoMars Trace Gas Orbiter in 2017.

  20. Utilisation of biogenic residues and wastes in thermochemical systems for the production of fuels. Project results; Einsatz von biogenen Rest- und Abfallstoffen in der Schnellpyrolyse zur Kraftstoffbereitstellung. Projektergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Kroeger, Michael; Zech, Konstantin; Liemen, Franziska [DBFZ DeutschesBiomasseForschungsZentrum gGmbH, Leipzig (Germany)] [and others

    2012-12-15

    For the production of alternative fuels, biogenic residues and waste materials were thermochemically converted by fast pyrolysis in a joint project between the Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH (DBFZ) and the Karlsruhe Institute of Technology (KIT). The project work goes from the investigation and selection of possible residual feedstock, e.g. waste wood, bark, varieties of oilseed straw and driftwood and its potential, over the conversion of selected feedstocks by fast pyrolysis to the energetic use of the products to generate electricity and heat. The researched process chain was put to subject of an ecological and economic evaluation for an integral view of the process and feedstock utilised. Besides research and experimental activities of the project, a database on biomass pyrolysis tests has been established for public use. (orig.)

  1. Production of carbon molecular sieves from palm shell through carbon deposition from methane

    Directory of Open Access Journals (Sweden)

    Mohammadi Maedeh

    2011-01-01

    Full Text Available The possibility of production of carbon molecular sieve (CMS from palm shell as a waste lignocellulosic biomass was investigated. CMS samples were prepared through heat treatment processes including carbonization, physiochemical activation and chemical vapor deposition (CVD from methane. Methane was pyrolyzed to deposit fine carbon on the pore mouth of palm shell-based activated carbon to yield CMS. All the deposition experiments were performed at 800 ºC, while the methane flow rate (100, 200, 300 mL min-1 CH4 diluted in 500 mL min-1 N2 and deposition time (30 to 60 min were the investigated parameters. The textural characteristics of the CMSs were assessed by N2 adsorption. The largest BET surface area (752 m2 g-1, micropore surface area (902.2 m2 g-1 and micropore volume (0.3466 cm3 g-1 was obtained at the CH4 flow rate of 200 mL min-1 and deposition time of 30 min. However, prolonging the deposition time to 45 min yielded in a micropouros CMS with a narrow pore size distribution.

  2. Methane Production from Protozoan Endosymbionts Following Stimulation of Microbial Metabolism within Subsurface Sediments

    Directory of Open Access Journals (Sweden)

    DawnElenaHolmes

    2014-08-01

    Full Text Available Previous studies have suggested that protozoa prey on Fe(III- and sulfate-reducing bacteria that are enriched when acetate is added to uranium contaminated subsurface sediments to stimulate U(VI reduction. In order to determine whether protozoa continue to impact subsurface biogeochemistry after these acetate amendments have stopped, 18S rRNA and ß-tubulin sequences from this phase of an in situ uranium bioremediation field experiment were analyzed. Sequences most similar to Metopus species predominated, with the majority of sequences most closely related to M. palaeformis, a cilitated protozoan known to harbor methanogenic symbionts. Quantification of mcrA mRNA transcripts in the groundwater suggested that methanogens closely related to Metopus endosymbionts were metabolically active at this time. There was a strong correlation between the number of mcrA transcripts from the putative endosymbiotic methanogen and Metopus ß-tubulin mRNA transcripts during the course of the field experiment, suggesting that the activity of the methanogens was dependent upon the activity of the Metopus species. Addition of the eukaryotic inhibitors cyclohexamide and colchicine to laboratory incubations of acetate-amended subsurface sediments significantly inhibited methane production and there was a direct correlation between methane concentration and Metopus ß-tubulin and putative symbiont mcrA gene copies. These results suggest that, following the stimulation of subsurface microbial growth with acetate, protozoa harboring methanogenic endosymbionts become important members of the microbial community, feeding on moribund biomass and producing methane.

  3. Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process

    DEFF Research Database (Denmark)

    Luo, Gang; Xie, Li; Zhou, Qi;

    2011-01-01

    The present study investigated a two-stage anaerobic hydrogen and methane process for increasing bioenergy production from organic wastes. A two-stage process with hydraulic retention time (HRT) 3d for hydrogen reactor and 12d for methane reactor, obtained 11% higher energy compared to a single......-stage methanogenic process (HRT 15d) under organic loading rate (OLR) 3gVS/(Ld). The two-stage process was still stable when the OLR was increased to 4.5gVS/(Ld), while the single-stage process failed. The study further revealed that by changing the HRThydrogen:HRTmethane ratio of the two-stage process from 3...

  4. Influence of Oxygenated Compounds on Reaction Products in a Microwave Plasma Methane Pyrolysis Assembly for Post-Processing of Sabatier Methane

    Science.gov (United States)

    Mansell, J. Matthew; Abney, Morgan B.

    2012-01-01

    The state-of-the-art Carbon Dioxide Reduction Assembly (CRA) was delivered to the International Space Station (ISS) in April 2010. The system is designed to accept carbon dioxide from the Carbon Dioxide Removal Assembly and hydrogen from the Oxygen Generation Assembly. The two gases are reacted in the CRA in a Sabatier reactor to produce water and methane. Venting of methane results in an oxygen resupply requirement of about 378 lbs per crew member per year. If the oxygen is supplied as water, the total weight for resupply is about 476 lb per crew member per year. For long-term missions beyond low Earth orbit, during which resupply capabilities will be further limited, recovery of hydrogen from methane is highly desirable. For this purpose, NASA is pursuing development of a Plasma Pyrolysis Assembly (PPA) capable of recovering hydrogen from methane. Under certain conditions, water vapor and carbon dioxide (nominally intended to be separated from the CRA outlet stream) may be present in the PPA feed stream. Thus, testing was conducted in 2010 to determine the effect of these oxygenated compounds on PPA performance, particularly the effect of inlet carbon dioxide and water variations on the PPA product stream. This paper discusses the test set-up, analysis, and results of this testing.

  5. Microbial penetration through Berea sandstone and the effect of nitrate on biogenic sulfide production: their relevance to microbial enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Jenneman, G.E.

    1985-01-01

    Penetration times, and penetration rates, for a motile Bacillus strain growing in nutrient-saturated Berea sandstone cores were determined. The rate of penetration was essentially independent of permeability above 100 mD and rapidly declined for permeabilities below 100 mD. The maximum observed penetration rate was 0.47 cm/h and the slowest was 0.06 xm/h. The motile Enterobacter aerrogenes penetrated Berea sandstone cores 3-8 times faster than the non-motile Klebsiella pneumoniae strain when cores of comparable length of permeability were used. Results from energy dispersion spectroscopy, and electron microscopy of autoclaved and dry-heat sterilized rock revealed that changes in mineral content and clay morphology of autoclaved rock could account for faster penetration of bacteria through autoclaved versus dry-heat sterilized rock. However, changes in permeability, porosity, and pore throat size of rock sterilized by the two methods were not sufficient to account for differences in penetration times. The addition of 58.8 mM nitrate was found to inhibit biogenic sulfide production in sewage sludge (10% v/v) amended with 20 mM sulfate and either acetate, glucose, or hydrogen as energy sources. Lesser amounts of nitrate (5.9 mM and 19.5 mM), as well as, increasing amounts of sewage sludge resulted in only transient inhibition of sulfide production. The addition of 156 mM sulfate and 58.8 mM nitrate to 10% sewage sludge or pond sediment slurries resulted in no sulfide inhibition. The prolonged inhibition of sulfide production was attributed to an increase in oxidation-reduction potential due to production of biogenic nitrous oxide. These oxidized conditions appeared to have a cytotoxic affect on sulfate-reducing populations.

  6. Hydrolysis rates, methane production and nitrogen solubilisation of grey waste components during anaerobic degradation.

    Science.gov (United States)

    Jokela, J P Y; Vavilin, V A; Rintala, J A

    2005-03-01

    Municipal grey waste (i.e. the remaining fraction in municipal waste management systems in which putrescibles (biowaste) and other recyclables (paper, metals, glass) are source-segregated) was manually sorted into six main fractions on the basis of composition and also separated by sieving (100 mm mesh size) into two fractions, oversized and undersized, respectively. In practice, in waste management plant the oversized fraction is (or will be) used to produce refuse-derived fuel and the undersized landfilled after biological stabilisation. The methane yields and nitrogen solubilisation of the grey waste and the different fractions (all studied samples were first milled to 5 mm particle samples) were determined in a 237-day methane production batch assay and in a water elution test, respectively. The grey waste was found to contained remnants of putrescibles and also a high amount of other biodegradable waste, including packaging, cartons and cardboard, newsprint, textiles and diapers. These waste fractions comprised 41%-w/w of the grey waste and produced 40-210 m3 methane (total solids (TS))(-1) and less than 0.01 g NH4-N kg TS(added)(-1) except diapers which produced 9.8 g NH4-N kg TS(added)(-1) in the batch assays. In the case of the two sieved fractions and on mass bases, most of the methane originated from the oversized fraction, whereas most of the NH4-N was solublised from the undersized fraction. The first-order kinetic model described rather well the degradation of each grey waste fraction and component, showing the different components to be in the range 0.021-0.058 d(-1), which was around one-sixth of the values reported for the source-segregated putrescible fraction of MSW. PMID:15491833

  7. The cumulative methane production from dairy cattle slurry can be explained by its volatile solid, temperature and length of storage.

    Science.gov (United States)

    Sawamoto, Takuji; Nakamura, Megumi; Nekomoto, Kenji; Hoshiba, Shinji; Minato, Keiko; Nakayama, Motoo; Osada, Takashi

    2016-06-01

    In order to refine the national estimate of methane emission from stored cattle slurry, it is important to comprehend the basic characteristics of methane production. Two dairy cattle slurries were obtained from livestock farms located in Hokkaido (a northern island) and Kyushu (a southern island). The slurries were diluted with water into three levels: undiluted, three times diluted, and 10 times diluted. Three hundred mL of the slurries were put into a bottle with a headspace volume of 2.0 L, which was filled with nitrogen gas and then sealed by butyl rubber. Four levels of temperature were used for incubation: 35, 25, 15 and 5 °C. The time course of the cumulative methane production per volatile solid (VS) was satisfactorily expressed by an asymptotic regression model. The effect of dilution on the methane production per VS was not distinctive, but that of temperature was of primary importance. In particular, higher temperature yields a higher potential production and a shorter time when the cumulative production reaches half of the potential production. The inclusive and simple models obtained in this study indicate that the cumulative methane production from stored cattle slurry can be explained by VS, temperature and length of storage. PMID:26387490

  8. Methane/CO{sub 2} sorption modeling for coalbed methane production and CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Satya Harpalani; Basanta K. Prusty; Pratik Dutta [Southern Illinois University-Carbondale, Carbondale, IL (United States). Department of Mining and Mineral Resources Engineering

    2006-08-15

    A thorough study of the sorption behavior of coals to methane and carbon dioxide (CO{sub 2}) is critical for carbon sequestration in coal seams and enhanced coalbed methane recovery. This paper discusses the results of an ad/de-sorption study of methane and CO{sub 2}, in single gas environment, on a set of coal samples taken from the San Juan and Illinois Basins. The results indicate that, under similar temperature and pressure conditions, coals exhibit higher affinity to CO{sub 2} as compared to methane and that the preferential sorption ratio varies between 2:1 and 4:1. Furthermore, the experimental data were modeled using Langmuir, BET, and Dubinin-Polanyi equations. The accuracy of the models in quantifying coal-gas sorption was compared using an error analysis technique. The Dubinin-Radushkevich equation failed to model the coal-gas sorption behavior satisfactorily. For methane, Langmuir, BET, and Dubinin-Astakhov (D-A) equations all performed satisfactorily within comparable accuracy. However, for CO{sub 2}, the performance of the D-A equation was found to be significantly better than the other two. Overall, the D-A equation fitted the experimental sorption data the best, followed by the Langmuir and BET equations. Since the D-A equation is capable of deriving isotherms for any temperature using a single isotherm, thus providing added flexibility to model the temperature variation due to injection/depletion, this is the recommended model to use. 49 refs., 9 figs., 5 tabs.

  9. Experimental study on gas production from methane hydrate in porous media by SAGD method

    International Nuclear Information System (INIS)

    Highlights: ► A novel three-dimensional 117.8-L pressure vessel is developed. ► Dual horizontal wells are used as the injection and production wells. ► Evaluation of gas production of SAGD with different Qinj is proposed. ► With the injected hot water flowing sideways, the hot water chamber is expanding. ► The resistance ratio at the point in the near-well region decrease early. - Abstract: A 117.8 L three-dimensional pressure vessel is used to study the methane hydrate dissociation with the steam assisted gravity drainage (SAGD) method. It is called the Pilot-Scale Hydrate Simulator (PHS). This study proposes the evaluation and the comparisons of the gas production performance by SAGD method from the methane hydrate reservoir with different steam injection rates. It indicates that the experiment could be divided into three main stages: the original gas releasing stage, the original and the hydrate-originating gas releasing stage, and the hydrate-originating gas releasing stage (the SAGD process). Furthermore, the temperature change consists of the four periods: decreasing dramatically, keeping stable, rising gradually, and keeping steady. With the injected steam flowing downwards and sideways, the steam chamber is expanding. The gas production rate increases with the steam injection rate, while the Energy Efficiency Ratio (EER) and gas-to-water ratios are improved by the decrease of the steam injection rate

  10. Effects of Flavonoids on Rumen Fermentation Activity, Methane Production, and Microbial Population

    Directory of Open Access Journals (Sweden)

    Ehsan Oskoueian

    2013-01-01

    Full Text Available This research was carried out to evaluate the effects of flavone, myricetin, naringin, catechin, rutin, quercetin, and kaempferol at the concentration of 4.5% of the substrate (dry matter basis on the rumen microbial activity in vitro. Mixture of guinea grass and concentrate (60 : 40 was used as the substrate. The results showed that all the flavonoids except naringin and quercetin significantly ( decreased the dry matter degradability. The gas production significantly ( decreased by flavone, myricetin, and kaempferol, whereas naringin, rutin, and quercetin significantly ( increased the gas production. The flavonoids suppressed methane production significantly (. The total VFA concentration significantly ( decreased in the presence of flavone, myricetin, and kaempferol. All flavonoids except naringin and quercetin significantly ( reduced the carboxymethyl cellulase, filter paperase, xylanase, and β-glucosidase activities, purine content, and the efficiency of microbial protein synthesis. Flavone, myricetin, catechin, rutin, and kaempferol significantly ( reduced the population of rumen microbes. Total populations of protozoa and methanogens were significantly ( suppressed by naringin and quercetin. The results of this research demonstrated that naringin and quercetin at the concentration of 4.5% of the substrate (dry matter basis were potential metabolites to suppress methane production without any negative effects on rumen microbial fermentation.

  11. Anaerobic digestion of corn stovers for methane production in a novel bionic reactor.

    Science.gov (United States)

    Zhang, Meixia; Zhang, Guangming; Zhang, Panyue; Fan, Shiyang; Jin, Shuguang; Wu, Dan; Fang, Wei

    2014-08-01

    To improve the biogas production from corn stovers, a new bionic reactor was designed and constructed. The bionic reactor simulated the rumen digestion of ruminants. The liquid was separated from corn stovers and refluxed into corn stovers again, which simulated the undigested particles separated from completely digested materials and fed back again for further degradation in ruminant stomach. Results showed that the bionic reactor was effective for anaerobic digestion of corn stovers. The liquid amount and its reflux showed an obvious positive correlation with biogas production. The highest biogas production rate was 21.6 ml/gVS-addedd, and the total cumulative biogas production was 256.5 ml/gVS-added. The methane content in biogas ranged from 52.2% to 63.3%. The degradation of corn stovers were greatly enhanced through simulating the animal digestion mechanisms in this bionic reactor. PMID:24923659

  12. Methane production from sweet sorghum residues via a two-stage process

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelatou, K.; Dravillas, K.; Lyberatos, G. [University of Patras (Greece). Department of Chemical Engineering, Laboratory of Biochemical Engineering and Environmental Technology

    2003-07-01

    The start-up of a two-stage reactor configuration for the anaerobic digestion of sweet sorghum residues was evaluated. The sweet sorghum residues were a waste stream originating from the alcoholic fermentation of sweet sorghum and the subsequent distillation step. This waste stream contained high concentration of solid matter (9% TS) and thus could be characterized as a semi-solid, not easily biodegradable wastewater with high COD (115 g/l). The application of the proposed two-stage configuration (consisting of one thermophilic hydrolyser and one mesophilic methaniser) achieved a methane production of 16 l/l wastewater under a hydraulic retention time of 19 d. (author)

  13. Enhancement of methane production from long chain fatty acid based effluents

    OpenAIRE

    Cavaleiro, A. J.; Pereira, M.A.; Alves, M. M.

    2008-01-01

    Two anaerobic sludges previously loaded with oleate and palmitate accumulated 4570 ± 257 and 5200 ± 9 mgCOD-LCFA gVSS−1, respectively. These sludges were incubated in batch assays and methane production was recorded after addition of 100–900 mg L−1 of oleate and palmitate, respectively. The batch assays were conducted before and after allowing the depletion of the biomass-associated LCFA. The presence of biomass-associated LCFA decreased the capacity of both sludges to convert the added LCFA ...

  14. Effect of Temperature and Retention Time on Methane Production from Beef Cattle Waste

    OpenAIRE

    Varel, V. H.; Hashimoto, A. G.; Chen, Y R

    1980-01-01

    The effect of temperature and retention time on the rate of methane production from waste of beef cattle fed a finishing diet was investigated by using continuously mixed 3-liter working volume anaerobic fermentors. The temperatures ranged from 30 to 65°C with 5°C increments between fermentors. The fermentors were fed once per day with 6% volatile solids (organic matter). Retention time for each temperature was varied from 18 to 2.5 days. After 3-volume turnovers, samples were obtained on 4 c...

  15. Biogenic Impact on Materials

    Science.gov (United States)

    Stephan, Ina; Askew, Peter; Gorbushina, Anna; Grinda, Manfred; Hertel, Horst; Krumbein, Wolfgang; Müller, Rolf-Joachim; Pantke, Michael; Plarre, Rüdiger (Rudy); Schmitt, Guenter; Schwibbert, Karin

    Materials as constituents of products or components of technical systems rarely exist in isolation and many must cope with exposure in the natural world. This chapter describes methods that simulate how a material is influenced through contact with living systems such as microorganisms and arthropods. Both unwanted and desirable interactions are considered. This biogenic impact on materials is intimately associated with the environment to which the material is exposed (Materials-Environment Interaction, Chap. 15). Factors such as moisture, temperature and availability of food sources all have a significant influence on biological systems. Corrosion (Chap. 12) and wear (Chap. 13) can also be induced or enhanced in the presence of microorganisms. Section 14.1 introduces the categories between desired (biodegradation) and undesired (biodeterioration) biological effects on materials. It also introduces the role of biocides for the protection of materials. Section 14.2 describes the testing of wood as a building material especially against microorganisms and insects. Section 14.3 characterizes the test methodologies for two other groups of organic materials, namely polymers (Sect. 14.3.1) and paper and textiles (Sect. 14.3.2). Section 14.4 deals with the susceptibility of inorganic materials such as metals (Sect. 14.4.1), concrete (Sect. 14.4.2) and ceramics (Sect. 14.4.3) to biogenic impact. Section 14.5 treats the testing methodology concerned with the performance of coatings and coating materials. In many of these tests specific strains of organisms are employed. It is vital that these strains retain their ability to utilize/attack the substrate from which they were isolated, even when kept for many years in the laboratory. Section 14.6 therefore considers the importance of maintaining robust and representative test organisms that are as capable of utilizing a substrate as their counterparts in nature such that realistic predictions of performance can be made.

  16. Biogenic amines in raw and processed seafood

    OpenAIRE

    Pierina eVisciano; Maria eSchirone; Rosanna eTofalo; Giovanna eSuzzi

    2012-01-01

    The presence of biogenic amines in raw and processed seafood, associated with either time/temperature conditions or food technologies is discussed in the present paper from a safety and prevention point of view. In particular, storage temperature, handling practices, presence of microbial populations with decarboxylase activity and availability of free amino acids are considered the most important factors affecting the production of biogenic amines in raw seafood. On the other hand, some foo...

  17. Air-adapted Methanosarcina acetivorans shows high methane production and develops resistance against oxygen stress.

    Directory of Open Access Journals (Sweden)

    Ricardo Jasso-Chávez

    Full Text Available Methanosarcina acetivorans, considered a strict anaerobic archaeon, was cultured in the presence of 0.4-1% O2 (atmospheric for at least 6 months to generate air-adapted cells; further, the biochemical mechanisms developed to deal with O2 were characterized. Methane production and protein content, as indicators of cell growth, did not change in air-adapted cells respect to cells cultured under anoxia (control cells. In contrast, growth and methane production significantly decreased in control cells exposed for the first time to O2. Production of reactive oxygen species was 50 times lower in air-adapted cells versus control cells, suggesting enhanced anti-oxidant mechanisms that attenuated the O2 toxicity. In this regard, (i the transcripts and activities of superoxide dismutase, catalase and peroxidase significantly increased; and (ii the thiol-molecules (cysteine + coenzyme M-SH + sulfide and polyphosphate contents were respectively 2 and 5 times higher in air-adapted cells versus anaerobic-control cells. Long-term cultures (18 days of air-adapted cells exposed to 2% O2 exhibited the ability to form biofilms. These data indicate that M. acetivorans develops multiple mechanisms to contend with O2 and the associated oxidative stress, as also suggested by genome analyses for some methanogens.

  18. Enhancement of methane production and bio-stabilisation of municipal solid waste in anaerobic bioreactor landfill.

    Science.gov (United States)

    Mali Sandip, T; Khare Kanchan, C; Biradar Ashok, H

    2012-04-01

    The aim of the experiment was to enhance biodegradation and methane production of municipal solid waste (MSW). Two groups of simulated anaerobic bioreactor landfill were used; one group of mixed MSW with three bioreactors (R1, R2 and R3) and second group was compostable MSW with two bioreactors (R4 and R5). The different combinations of operational parameters were aeration with addition of aerobic microbial culture, anaerobic sludge, coarse gravel mixing, intermediate soil cover and varied leachate recirculation rate. The results observed at the end of 270days prevail that the process combination of above operational parameters adopted in compostable MSW bioreactor was more efficient approach for stabilization of MSW. It has accelerated the methane production rate (141.28Lkg(-1)dry waste) by 25%. It was also observed that the degradation time of MSW was reduced by 25% compared to maximum values quoted in the literature. The nonlinear regression of the cumulative biogas production and digestion time shows that Gompertz growth equation fits the results well. PMID:22342079

  19. 水产品中生物胺检测方法的研究进展%Research Progress of Detecting Methods for Biogenic Amine in Aquatic Product

    Institute of Scientific and Technical Information of China (English)

    程丽林; 聂小宝; 张长峰; 王国利

    2012-01-01

    综述了高效液相色谱、薄层色谱、毛细管电泳、电化学生物传感器等主要检测技术在水产品生物胺检测中的研究进展,介绍了生物胺的形成及抑制机理,探讨了该领域存在的问题,并展望了未来的研究前景.%The recent progress of main techniques for detecting biogenic amine in aquatic products was summarized. These techniques included HPLC, TLC, EC and electrochemical biosensor, etc. Furthermore, the formation and inhibition mechanisms of biological amine were introduced, and the present problems in this domain were analyzed. Finally, its research was prospected.

  20. Methane production of two roughage and total mixed ration as influenced by cellulase and xylanase enzyme addition

    Directory of Open Access Journals (Sweden)

    Belete Shenkute Gemeda

    2015-02-01

    Full Text Available In recent decades supplementation of animal feeds with exogenous fibrolytic enzymes has substantially improved digestibility and animal performance. However, information related to associated methane production is limited and inconsistent. This study evaluated the effect of cellulase and xylanase enzymes on in vitro methane production of Eragrostis curvula hay, maize (Zea mays stover and a total mixed ration (TMR at seven levels of the two enzymes. Feed samples were incubated for 2, 12, 24 and 48 h in an in vitro batch culture with buffer and rumen fluid, and fibrolytic enzymes. Gas production was measured using a pressure transducer connected to a data tracker, while methane gas was analysed using a gas chromatograph which was calibrated with standard CH4 and CO2. Increases in the level of enzyme application resulted in increases in gas volume, total volatile fatty acid (VFA production, dry matter (DM disappearance and associated increases in methane production. The linear increase in percentage and volume of methane production in tandem with increases in level of enzyme application might be due to increased fermentation, and organic matter degradability that resulted in a shift in VFA production towards acetate. Considering the efficiency of DM and neutral detergent fiber degradation and production of associated VFA with levels of enzymes, the use of 1 mg g−1 DM of enzyme can be a good option for the feeds tested. However, they cannot decrease methane production. It will be very important to consider other hydrogen sinks that can capture directly extra H+ produced by the addition of enzyme so that their supplementation could be very efficient and environmentally sound.

  1. Experimental and Mathematical Modelling for Methane Biogas Production from Mixing of Real Municipal Solid Waste and Sewage Sludge

    OpenAIRE

    Faiza E. Gharib*; Ahmed Hassoon Ali; , Wisam Ali Hussein

    2014-01-01

    Biogas (methane) production from batch anaerobic digesters containing varying ratio of organic fraction municipal solid waste and sewage sludge, pH, temperature and total solid are studied for a period of 30 days. It was observed that biogas production was optimized when waste and inoculum were mixed in a ratio of 5:1.At temperature, total solid and pH of 35oC, 10 % and of 7.5 respectively. The maximum accumulative methane production is 450 mL/gm V.S. First order model was deve...

  2. Microbial Oxidation of Gaseous Hydrocarbons: Production of Methylketones from Corresponding n-Alkanes by Methane-Utilizing Bacteria

    OpenAIRE

    Patel, Ramesh N.; Hou, C T; Laskin, A. I.; Felix, A.; Derelanko, P

    1980-01-01

    Cell suspensions of methane-utilizing bacteria grown on methane oxidized n-alkanes (propane, butane, pentane, hexane) to their corresponding methylketones (acetone, 2-butanone, 2-pentanone, 2-hexanone). The product methylketones accumulated extracellularly. The rate of production of methylketones varied with the organism used for oxidation; however, the average rate of acetone, 2-butanone, 2-pentanone, and 2-hexanone production was 1.2, 1.0, 0.15, and 0.025 μmol/h per 5.0 mg of protein in cel...

  3. Assessing national livestock populations for the production of methane emission inventories

    Energy Technology Data Exchange (ETDEWEB)

    De Jode, A. [Appropriate Technology International, Global Livestock Producers Program GLPP, Washington DC, WA (United States)

    1995-12-31

    In an effort to accurately assess national methane (CH{sub 4}) production levels, many African countries are producing inventories of their national livestock populations. Conducting accurate livestock surveys is an expensive and time-consuming process, but is necessary because the most readily available data on livestock production are often incomplete or unsatisfactory. This paper looks at practical approaches to collecting data on livestock production and on the reproductive parameters for livestock, with special reference to African pastoralist populations, and makes qualified recommendations as to how inventory teams might be able to produce more accurate assessments of their total livestock populations. The methodology used during Nigeria`s National Livestock Census (1990-92) serves as a basis for a discussion of the issues. 2 figs., 1 tab., 9 refs.

  4. Anaerobic digestion of pre-fermented potato peel wastes for methane production.

    Science.gov (United States)

    Liang, Shaobo; McDonald, Armando G

    2015-12-01

    This study investigated the feasibility of anaerobic digestion (AD) of potato peel waste (PPW) and its lactic acid fermentation residue (PPW-FR) for methane (CH4) production. The experimental results showed that about 60-70% CH4 content was obtained. The digester using PPW-FR as feedstock exhibited better performance and produced a highest cumulative CH4 production of 273 L/kg VS fed, followed by 239 L/kg VS fed using PPW under the same conditions. However, with increasing solid loadings of PPW-FR feedstock from 6.4% to 9.1%, the CH4 production was inhibited. The generation, accumulation, and degradation of volatile fatty acids (VFAs) in digesters were also investigated in this research. PMID:26421481

  5. Evaluation of methane-utilising bacteria products as feed ingredients for monogastric animals

    DEFF Research Database (Denmark)

    Øverland, Margareth; Tauson, Anne-Helene; Shearer, Karl; Skrede, Anders

    2010-01-01

    Bacterial proteins represent a potential future nutrient source for monogastric animal production because they can be grown rapidly on substrates with minimum dependence on soil, water, and climate conditions. This review summarises the current knowledge on methane-utilising bacteria as feed...... ingredients for animals. We present results from earlier work and recent findings concerning bacterial protein, including the production process, chemical composition, effects on nutrient digestibility, metabolism, and growth performance in several monogastric species, including pigs, broiler chickens, mink...... Methylococcus capsulatus (Bath), is a promising source of protein based on criteria such as amino acid composition, digestibility, and animal performance and health. Future research challenges include modified downstream processing to produce value-added products, and improved understanding of factors...

  6. Understanding the anthropogenic influence on formation of biogenic secondary organic aerosols via analysis of organosulfates and related oxidation products

    Directory of Open Access Journals (Sweden)

    Q. T. Nguyen

    2014-01-01

    Full Text Available Anthropogenic emissions of sulfur dioxide (SO2 and nitrogen oxides (NOx may affect concentration levels and composition of biogenic secondary organic aerosols (BSOA through photochemical reactions with biogenic organic precursors to form organosulfates and nitrooxy organosulfates. We investigated this influence in a field study from 19 May–22 June 2011 at two sampling sites in Denmark. Within the study, we identified a substantial number of organic acids, organosulfates and nitrooxy organosulfates in the ambient urban curbside and semi-rural background air. A high degree of correlation in concentrations was found among a group of specific organic acids, organosulfates and nitrooxy organosulfates, which may originate from various precursors, suggesting a common mechanism or factor affecting their concentration levels at the sites. It was proposed that the formation of those species most likely occurred on a larger spatial scale with the compounds being long-range transported to the sites on the days with highest concentrations. The origin of the long-range transported aerosols was investigated using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT model in addition to modeled emissions of related precursors including isoprene and monoterpenes using the global Model of Emissions of Gases and Aerosols from Nature (MEGAN and SO2 emissions using the European Monitoring and Evaluation Program (EMEP database. The local impacts were also studied by examining the correlation between selected species which showed significantly enhanced concentrations at the urban curbside site and the local concentrations of various gases including SO2, ozone (O3, carbon monoxide (CO, NOx, aerosol acidity and other meteorological conditions. This investigation showed that an inter-play of the local parameters such as the aerosol acidity, NOx, relative humidity (RH, temperature and global radiation seemed to influence the concentration level of those

  7. Effect of industrial by-products containing electron acceptors on mitigating methane emission during rice cultivation

    International Nuclear Information System (INIS)

    Three industrial by-products (fly ash, phosphogypsum and blast furnace slag), were evaluated for their potential re-use as soil amendments to reduce methane (CH4) emission resulting from rice cultivation. In laboratory incubations, CH4 production rates from anoxic soil slurries were significantly reduced at amendment levels of 0.5%, 1%, 2% and 5% (wt wt-1), while observed CO2 production rates were enhanced. The level of suppression in methane production was the highest for phosphogypsum, followed by blast slag and then fly ash. In the greenhouse experiment, CH4 emission rates from the rice planted potted soils significantly decreased with the increasing levels (2-20 Mg ha-1) of the selected amendments applied, while rice yield simultaneously increased compared to the control treatment. At 10 Mg ha-1 application level of the amendments, total seasonal CH4 emissions were reduced by 20%, 27% and 25%, while rice grain yields were increased by 17%, 15% and 23% over the control with fly ash, phosphogypsum, and blast slag amendments, respectively. The suppression of CH4 production rates as well as total seasonal CH4 flux could be due to the increased concentrations of active iron, free iron, manganese oxides, and sulfate in the amended soil, which acted as electron acceptors and controlled methanogens' activity by limiting substrates availability. Among the amendments, blast furnace slag and fly ash contributed mainly to improve the soil nutrients balance and increased the soil pH level towards neutral point, but soil acidity was developed with phosphogypsum application. Conclusively, blast slag among the selected amendments would be a suitable soil amendment for reducing CH4 emissions as well as sustaining rice productivity.

  8. Discrimination of abiogenic and biogenic alkane gases

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We have combined the analytical data of the carbon isotope distribution pattern, R/Ra and CH4/3He values of abiogenic and biogenic (referring to the thermogenic and bacterial or microbial) alkane gases in China with those of alkane gases from USA, Russia, Germany, Australia and other countries. Four discrimination criteria are derived from this comparative study: 1) Carbon isotopic composition is generally greater than -30‰ for abiogenic methane and less than -30‰ for biogenic methane; 2) Abiogenic alkane gases have a carbon isotopic reversal trend (δ 13C1> δ 13C2> δ 13C3> δ 13C4) with δ 13C1>-30‰ in general; 3) Gases with R/Ra >0.5 and δ 13C11 δ 13C2>0 are of abiogenic origin; 4) Gases (meth- ane) with CH4/3He≤106 are of abiogenic origin, whereas gases with CH4/3He≥1011 are of biogenic origin.

  9. Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion

    International Nuclear Information System (INIS)

    Highlights: • Semi-continuous AD of untreated and enzymatically pretreated lipid extracted algae. • Coupled biodiesel and methane process yields 40% more energy than biodiesel alone. • Thermal pretreatment (150–170 °C) of whole algae was more effective than enzymatic. • Addition of 5% of AD effluent was optimal to support high growth of Nannochloropsis. • AD effluent can partly replace chemical fertilizer for algal growth. - Abstract: Sustainable mass production of algal biofuels requires a reduction in nutrient demand and efficient conversion into fuels of all biomass including lipid-extracted algal residues (LEA). This study evaluated methane production, nutrient recovery and recycling from untreated and enzymatically pretreated Nannochloropsis LEA using semi-continuous anaerobic digestion (AD). Additionally, this process was compared to methane generation from whole Nannochloropsis alga (WA) and thermally pretreated WA. The methane production from untreated LEA and WA reached up to 0.22 L and 0.24 L per gram of biomass volatile solids (VS), respectively, corresponding to only 36–38% of the theoretical potential. Additionally, observed VS reduction was only 40–50% confirming biomass recalcitrance to biodegradation. While enzymatic treatment hydrolyzed up to 65% of the LEA polysaccharides, the methane production increased by only 15%. Alternatively, WA thermal pretreatment at 150–170 °C enhanced methane production up to 40%. Overall, an integrated process of lipid conversion into biodiesel coupled with LEA conversion into methane generates nearly 40% more energy compared to methane production from WA, and about 100% more energy than from biodiesel alone. Additionally, the AD effluent contained up to 60–70% of the LEA phosphorus content, 30–50% of the nitrogen, sulfur, calcium and boron, 20% of the iron and cobalt, and 10% of manganese, zinc and copper, which can partially replace chemical fertilizers during algal cultivation. Consequently

  10. Methane production from food waste leachate in laboratory-scale simulated landfill.

    Science.gov (United States)

    Behera, Shishir Kumar; Park, Jun Mo; Kim, Kyeong Ho; Park, Hung-Suck

    2010-01-01

    Due to the prohibition of food waste landfilling in Korea from 2005 and the subsequent ban on the marine disposal of organic sludge, including leachate generated from food waste recycling facilities from 2012, it is urgent to develop an innovative and sustainable disposal strategy that is eco-friendly, yet economically beneficial. In this study, methane production from food waste leachate (FWL) in landfill sites with landfill gas recovery facilities was evaluated in simulated landfill reactors (lysimeters) for a period of 90 d with four different inoculum-substrate ratios (ISRs) on volatile solid (VS) basis. Simultaneous biochemical methane potential batch experiments were also conducted at the same ISRs for 30 d to compare CH(4) yield obtained from lysimeter studies. Under the experimental conditions, a maximum CH(4) yield of 0.272 and 0.294 L/g VS was obtained in the batch and lysimeter studies, respectively, at ISR of 1:1. The biodegradability of FWL in batch and lysimeter experiments at ISR of 1:1 was 64% and 69%, respectively. The calculated data using the modified Gompertz equation for the cumulative CH(4) production showed good agreement with the experimental result obtained from lysimeter study. Based on the results obtained from this study, field-scale pilot test is required to re-evaluate the existing sanitary landfills with efficient leachate collection and gas recovery facilities as engineered bioreactors to treat non-hazardous liquid organic wastes for energy recovery with optimum utilization of facilities. PMID:20227867

  11. Investigation of hydrogen and methane production when irradiation of bitumen B45 and bitumen B45 mixed with solid substances

    International Nuclear Information System (INIS)

    Radiolysis of the bitumen components on influence of ionizing radiation causing gases generation, chiefly hydrogen and methane has been investigated. To avoid formation of explosive mixtures of some gases, for example, hydrogen with air, and to avoid heating of mixtures of bitumen and radioactive wastes because of the heat generation during decay, there is necessary to have cooling of bituminized wastes and removal of the radiolysis products in the stores for bituminized radioactive wastes with high specific activity. Investigations has shown that with specific activity higher than 10 Ci/kg heat remowal and remowal af radiolysis products were necessary. Bitumen B45 and bitumen compounds based on it has been exposed both to external irradiation by Cobalt-60 and to internal irradiation by incorporated into bitumen and bitumen compounds Strontium-90, Cesium-137 and Polonium-270. Internal irradiation is modeling real conditions of bituminized radioactive wastes burial. Parameters of the bitumen B45 are given. After irradiation, by means of the gas chromatography method it has been determined that the main components of the gases produced were hydrogen and methane. Volume of hydrogen and methane produced, depending on absorbed dose has been determined and coefficients of the hydrogen and methane production have been calculated. The results of investigations of methane and hydrogene production coefficients dependance from different conditions during external and internal irradiation are given. (I.T.)

  12. Estimation of metabolic heat production and methane emission in Sahiwal and Karan Fries heifers under different feeding regimes

    Science.gov (United States)

    Kumar, Sunil; Singh, S. V.; Pandey, Priyanka; Kumar, Narendra; Hooda, O. K.

    2016-01-01

    Aim: The objective of this study was designed to estimate the metabolic heat production and methane emission in Sahiwal and Karan Fries (Holstein-Friesian X Tharparkar) heifers under two different feeding regimes, i.e., feeding regime-1 as per the National Research Council (NRC) (2001) and feeding regime-2 having 15% higher energy (supplementation of molasses) than NRC (2001). Materials and Methods: Six (n = 6) healthy heifers of Sahiwal and Karan Fries with 18-24 months of age were selected from Indian Council of Agricultural Research-National Dairy Research Institute, Karnal. An initial 15 days was maintained under feeding regime-1 and feeding regime-2 as adaptation period; actual experiment was conducted from 16th day onward for next 15 days. At the end of feeding regimes (on day 15th and 16th), expired air and volume were collected in Douglas bag for two consecutive days (morning [6:00 am] and evening [4:00 pm]). The fraction of methane and expired air volume were measured by methane analyzer and wet test meter, respectively. The oxygen consumption and carbon dioxide production were measured by iWorx LabScribe2. Results: The heat production (kcal/day) was significantly (p0.05). The energy loss as methane (%) from total heat production was significantly (penergy diet by supplementing molasses may reduce energy loss as methane and enhance the growth of Sahiwal and Karan Fries heifers. PMID:27284226

  13. Methane production and oxidation patterns along a hydrological gradient in Luther Bog, Ontario

    Science.gov (United States)

    Praetzel, Leandra; Berger, Sina; Blodau, Christian

    2016-04-01

    Methane emissions from natural peatlands contribute significantly to the global budget of atmospheric CH4. In the northern hemisphere, where climate models predict rising temperatures and precipitation rates, these emissions are likely to rise. So far, little is known about the change of processes of methane production and oxidation, which influence the total amount of methane emissions, in peatland soils under warmer and wetter climate conditions. Our work focuses on anaerobic CH4 production and aerobic CH4 oxidation processes along a hydrological gradient in an ombotrophic bog in Ontario, Canada that was induced by creation of a reservoir in 1952. Along this transect, four sites were established differing in hydrologic conditions and vegetation patterns. We examined depth profiles of CO2 and CH4 concentrations and delta 13C isotope ratios in the peat using silicon samplers, dialysis chambers and multi-level piezometers. Chamber flux measurements were used to determine carbon fluxes. Isotope mass balances were calculated based on 13C isotope ratios and concentration profiles. By this approach the contribution of anaerobic CH4 and CO2 production to the total ER flux and the amount of oxidised CH4 can be determined. In addition meteorological data, soil temperatures, moisture and water table levels were recorded. By raising data at different sites and dates and with the help of the additionally recorded parameters, we will be able to make predictions about changing CH4 production and oxidation processes due to changing climate conditions. Preliminary results show that CH4 concentrations in the soil profile are higher at the sites which are exposed to stronger water table fluctuations, whereas CO2 concentration levels are lower at these sites. At all sites, CO2 concentrations in the peat are increasing but CH4 profiles are fairly stable. Moreover, isotopic signatures of 13CH4 indicate that the importance of the production pathway changes with depth from acetoclastic

  14. Assessment of the genetic polymorphism and biogenic amine production of indigenous Oenococcus oeni strains isolated from Greek red wines.

    Science.gov (United States)

    Pramateftaki, P V; Metafa, M; Karapetrou, G; Marmaras, G

    2012-02-01

    In the warm climate country of Greece malolactic fermentation (MLF) has received limited attention. Molecular techniques and High Performance Liquid Chromatography (HPLC) were used to study the genetic polymorphism of autochthonous lactic acid bacteria developing towards the end of spontaneous MLF of Greek red wines and for the assessment of their potential to produce harmful biogenic amines. This research revealed that native Oenococcus oeni isolates are very much adapted to specific winery conditions since the majority of spontaneous MLF were driven mostly or exclusively by a single strain of O. oeni. Native O. oeni strains showed only limited dispersion since cluster analysis uncovered only few common genotypes among indigenous isolates from different wineries. The genotype of a frequently used malolactic starter was more than often detected among autochthonous isolates without nevertheless compromising the biodiversity of natural microflora residing in wineries but rather becoming a part of it. For the majority of the wine samples studied, MLF implementation and storage in bottles resulted in negligible changes on the levels of the BA histamine, tyramine, phenylethylamine, cadaverine as well as of ethylamine, methylamine, isobutylamine. We provide evidence that autochthonous O. oeni isolates can only contribute to putrescine accumulation in Greek wines but still the specific trait behaves as strain-specific with a limited dispersion. PMID:22029925

  15. Methane Pyrolysis for Hydrogen & Carbon Nanotube Recovery from Sabatier Products Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of a microgravity and hypogravity compatible catalytic methane pyrolysis reactor is proposed to recover hydrogen which is lost as methane in the...

  16. High Time Resolution Measurements of Methane Fluxes From Enteric Fermentation in Cattle Rumen

    Science.gov (United States)

    Floerchinger, C. R.; Herndon, S.; Fortner, E.; Roscioli, J. R.; Kolb, C. E.; Knighton, W. B.; Molina, L. T.; Zavala, M.; Castelán, O.; Ku Vera, J.; Castillo, E.

    2013-12-01

    Methane accounts for roughly 20% of the global radiative climate forcing in the last two and a half centuries. Methane emissions arise from a number of anthropogenic and biogenic sources. In some areas enteric fermentation in livestock produces over 90% of agricultural methane. In the spring of 2013, as a part of the Short Lived Climate Forcer-Mexico field campaign, the Aerodyne Mobile Laboratory in partnership with the Molina Center for the Environment studied methane production associated with enteric fermentation in the rumen of cattle. A variety of different breeds and stocks being raised in two agricultural and veterinary research facilities located in different areas of Mexico were examined. Methane fluxes were quantified using two methods: 1) an atmospherically stable gaseous tracer release was collocated with small herds in a pasture, allowing tracer ratio flux measurements; 2) respiratory CO2 was measured in tandem with methane in the breath of individual animals allowing methane production to be related to metabolism. The use of an extensive suite of very high time response instruments allows for differentiation of individual methane producing rumination events and respiratory CO2 from possible background interferences. The results of these studies will be presented and compared to data from traditional chamber experiments.

  17. Microbial methane formation from hard coal and timber in an abandoned coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, M.; Beckmann, S.; Engelen, B.; Thielemann, T.; Cramer, B.; Schippers, A.; Cypionka, H. [Federal Institute for Geoscience and Natural Resources BGR, Hannover (Germany)

    2008-07-01

    About 7% of the global annual methane emissions originate from coal mining. Also, mine gas has come into focus of the power industry and is being used increasingly for heat and power production. In many coal deposits worldwide, stable carbon and hydrogen isotopic signatures of methane indicate a mixed thermogenic and biogenic origin. In this study, we have measured in an abandoned coal mine methane fluxes and isotopic signatures of methane and carbon dioxide, and collected samples for microbiological and phylogenetic investigations. Mine timber and hard coal showed an in-situ production of methane with isotopic signatures similar to those of the methane in the mine atmosphere. Enrichment cultures amended with mine timber or hard coal as sole carbon sources formed methane over a period of nine months. Predominantly, acetoclastic methanogenesis was stimulated in enrichments containing acetate or hydrogen/carbon dioxide. Molecular techniques revealed that the archaeal community in enrichment cultures and unamended samples was dominated by members of the Methanosarcinales. The combined geochemical and microbiological investigations identify microbial methanogenesis as a recent source of methane in abandoned coal mines.

  18. The rumen microbial metagenome associated with high methane production in cattle

    OpenAIRE

    Wallace, R. John; John A Rooke; McKain, Nest; Duthie, Carol-Anne; Hyslop, Jimmy J.; Ross, David W.; Waterhouse, Anthony; Watson, Mick; Roehe, Rainer

    2015-01-01

    Background Methane represents 16 % of total anthropogenic greenhouse gas emissions. It has been estimated that ruminant livestock produce ca. 29 % of this methane. As individual animals produce consistently different quantities of methane, understanding the basis for these differences may lead to new opportunities for mitigating ruminal methane emissions. Metagenomics is a powerful new tool for understanding the composition and function of complex microbial communities. Here we have applied m...

  19. Effect of Coexistent Hydrogen on the Selective Production of Ethane by Dehydrogenative Methane Coupling through Dielectric-Barrier Discharge under Ordinary Pressure at an Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Katsuya Konno

    2014-01-01

    Full Text Available The effect of coexistence of hydrogen on the product selectivity to ethane from methane by dielectric-barrier discharge (DBD reactor was examined experimentally under ordinary pressure without use of catalyst and external heating. By the dilution of methane with hydrogen, both the increase of methane conversion and the decrease of alkene production were observed, improving the selectivities to ethane by ca. 70%.

  20. Influence of lignin on biochemical methane potential of biomass for biogas production

    DEFF Research Database (Denmark)

    Triolo, J M; Sommer, S G; Møller, H B;

    2011-01-01

    Biochemical methane potential (BMP) of biomass is of great importance in assessing biodegradability as well as predicting biogas yield for biogas production. Since the current BMP determination methods are costly and time-consuming, innovative techniques for predicting BMP are needed. The objective...... of this study was to examine the influence of fibrous fractions of biomass on BMP to develop an economical and easy-to-use predicting model of BMP, and hence the biodegradability of organic materials for biogas production. The model was developed either for energy crops or for animal manures, or as a...... combined model for these two biomass groups. Validation of the combined model was carried out using datasets from the literature. This study showed that lignin was not degraded during anaerobic digestion. Furthermore, lignin concentration in organic materials was the strongest predictor of BMP for all the...

  1. Quantifying Contribution of Synthrophic Acetate Oxidation to Methane Production in Thermophilic Anaerobic Reactors by Membrane Inlet Mass Spectrometry

    DEFF Research Database (Denmark)

    Mulat, Daniel Girma; Ward, Alastair James; Adamsen, Anders Peter S.;

    2014-01-01

    silage, and deep litter was incubated with 100 mM of [2-13C] sodium acetate under thermophilic anaerobic conditions. MIMS was used to measure the isotopic distribution of dissolved CO2 and CH4 during the degradation of acetate, while excluding interference from water by applying a cold trap. After 6 days...... a new approach for online quantification of the relative contribution of methanogenesis pathways to methane production with a time resolution shorter than one minute. The observed contribution of SAO-HM to methane production under the tested conditions challenges the current widely accepted anaerobic...

  2. Effects of Essential Oils on Methane Production and Fermentation by, and Abundance and Diversity of, Rumen Microbial Populations

    OpenAIRE

    Patra, Amlan K.; Yu, Zhongtang

    2012-01-01

    Five essential oils (EOs), namely, clove oil (CLO), eucalyptus oil (EUO), garlic oil (GAO), origanum oil (ORO), and peppermint oil (PEO), were tested in vitro at 3 different doses (0.25, 0.50, and 1.0 g/liter) for their effect on methane production, fermentation, and select groups of ruminal microbes, including total bacteria, cellulolytic bacteria, archaea, and protozoa. All the EOs significantly reduced methane production with increasing doses, with reductions by 34.4%, 17.6%, 42.3%, 87%, a...

  3. Genetic resources for methane production from biomass described with gene ontology

    Directory of Open Access Journals (Sweden)

    Endang ePurwantini

    2014-12-01

    Full Text Available Methane (CH4 is a valuable fuel, constituting 70-95% of natural gas, and a potent greenhouse gas. Release of CH4 into the atmosphere contributes to climate change. Biological CH4 production or methanogenesis is mostly performed by methanogens, a group of strictly anaerobic archaea. The direct substrates for methanogenesis are H2 plus CO2, acetate, formate, methylamines, methanol, methyl sulfides, and ethanol or a secondary alcohol plus CO2. In numerous anaerobic niches in nature, methanogenesis facilitates mineralization of complex biopolymers such as carbohydrates, lipids and proteins generated by primary producers. Thus, methanogens are critical players in the global carbon cycle. The same process is used in anaerobic treatment of municipal, industrial and agricultural wastes, reducing the biological pollutants in the wastes and generating methane. It also holds potential for commercial production of natural gas from renewable resources. This process operates in digestive systems of many animals, including cattle, and humans. In contrast, in deep-sea hydrothermal vents methanogenesis is a primary production process, allowing chemosynthesis of biomaterials from H2 plus CO2. In this report we present Gene Ontology (GO terms that can be used to describe processes, functions and cellular components involved in methanogenic biodegradation and biosynthesis of specialized coenzymes that methanogens use. Some of these GO terms were previously available and the rest were generated in our Microbial Energy Gene Ontology (MENGO project. A recently discovered non-canonical CH4 production process is also described. We have performed manual GO annotation of selected methanogenesis genes, based on experimental evidence, providing gold standards for machine annotation and automated discovery of methanogenesis genes or systems in diverse genomes. Most of the GO-related information presented in this report is available at the MENGO website (http://www.mengo.biochem.vt.edu/.

  4. Application of random pore model for synthesis gas production by nickel oxide reduction with methane

    International Nuclear Information System (INIS)

    Highlights: • Random pore model was modified for bulk flow effect in NiO + CH4 reaction. • The NiO + CH4 reaction produced synthesis gas with H2/CO ratio near two. • The structural changes and product layer resistance were accounted. • Inherent kinetic constants and concentration dependency were determined. • Conversion–time profiles were predicted well by the mathematical model. - Abstract: Recently, there is a great interest in the noncatalytic gas–solid reactions between methane, as an environmentally friendly reducing agent, and metal oxides to yield synthesis gas and the related metal at low temperatures. In the present work, reduction of nickel oxide with methane was investigated. It has been proven that it is possible to produce metallic nickel and synthesis gas, simultaneously. The thermogravimetry measurements and instantaneous mass spectrometry analysis of the gaseous products have been performed for the NiO + CH4 reaction. In addition, the complete mathematical model was developed by applying the random pore model to predict the conversion–time profiles at the temperature range of 600–750 °C. Some important parameters such as concentration dependency, external mass transfer resistance, solid structural changes, product layer resistance, and pore size distribution have been considered in this sophisticated mathematical model. In addition, the random pore model has been modified for consideration of the bulk flow effect. Results obtained from this kinetic study indicate that the model performs well in predicting the experimental data. However by neglecting the bulk flow effect, there are lower predicted rate constants for this reaction. The analysis of the gaseous products showed that the synthesis gas could be produced with a H2/CO ratio near two

  5. Genetic resources for methane production from biomass described with the Gene Ontology.

    Science.gov (United States)

    Purwantini, Endang; Torto-Alalibo, Trudy; Lomax, Jane; Setubal, João C; Tyler, Brett M; Mukhopadhyay, Biswarup

    2014-01-01

    Methane (CH4) is a valuable fuel, constituting 70-95% of natural gas, and a potent greenhouse gas. Release of CH4 into the atmosphere contributes to climate change. Biological CH4 production or methanogenesis is mostly performed by methanogens, a group of strictly anaerobic archaea. The direct substrates for methanogenesis are H2 plus CO2, acetate, formate, methylamines, methanol, methyl sulfides, and ethanol or a secondary alcohol plus CO2. In numerous anaerobic niches in nature, methanogenesis facilitates mineralization of complex biopolymers such as carbohydrates, lipids and proteins generated by primary producers. Thus, methanogens are critical players in the global carbon cycle. The same process is used in anaerobic treatment of municipal, industrial and agricultural wastes, reducing the biological pollutants in the wastes and generating methane. It also holds potential for commercial production of natural gas from renewable resources. This process operates in digestive systems of many animals, including cattle, and humans. In contrast, in deep-sea hydrothermal vents methanogenesis is a primary production process, allowing chemosynthesis of biomaterials from H2 plus CO2. In this report we present Gene Ontology (GO) terms that can be used to describe processes, functions and cellular components involved in methanogenic biodegradation and biosynthesis of specialized coenzymes that methanogens use. Some of these GO terms were previously available and the rest were generated in our Microbial Energy Gene Ontology (MENGO) project. A recently discovered non-canonical CH4 production process is also described. We have performed manual GO annotation of selected methanogenesis genes, based on experimental evidence, providing "gold standards" for machine annotation and automated discovery of methanogenesis genes or systems in diverse genomes. Most of the GO-related information presented in this report is available at the MENGO website (http

  6. Kinetics of methane production from the codigestion of switchgrass and Spirulina platensis algae.

    Science.gov (United States)

    El-Mashad, Hamed M

    2013-03-01

    Anaerobic batch digestion of four feedstocks was conducted at 35 and 50 °C: switchgrass; Spirulina platensis algae; and two mixtures of both switchgrass and S. platensis. Mixture 1 was composed of 87% switchgrass (based on volatile solids) and 13% S. platensis. Mixture 2 was composed of 67% switchgrass and 33% S. platensis. The kinetics of methane production from these feedstocks was studied using four first order models: exponential, Gompertz, Fitzhugh, and Cone. The methane yields after 40days of digestion at 35 °C were 355, 127, 143 and 198 ml/g VS, respectively for S. platensis, switchgrass, and Mixtures 1 and 2, while the yields at 50 °C were 358, 167, 198, and 236 ml/g VS, respectively. Based on Akaike's information criterion, the Cone model best described the experimental data. The Cone model was validated with experimental data collected from the digestion of a third mixture that was composed of 83% switchgrass and 17% S. platensis. PMID:23416617

  7. Comparison of Chlorella vulgaris and cyanobacterial biomass: cultivation in urban wastewater and methane production.

    Science.gov (United States)

    Mendez, Lara; Sialve, Bruno; Tomás-Pejó, Elia; Ballesteros, Mercedes; Steyer, Jean Philippe; González-Fernández, Cristina

    2016-05-01

    Anaerobic digestion of microalgae is hampered by its complex cell wall. Against this background, cyanobacteria cell walls render this biomass as an ideal substrate for overcoming this drawback. The aim of the present study was to compare the growth of two cyanobacteria (Aphanizomenon ovalisporum and Anabaena planctonica) and a microalga (Chlorella vulgaris) in urban wastewater when varying the temperature (22, 27 and 32 °C). Cyanobacterial optimal growth for both strains was attained at 22 °C, while C. vulgaris did not show remarkable differences among temperatures. For all the microorganisms, ammonium removal was higher than phosphate. Biomass collected was subjected to anaerobic digestion. Methane yield of C. vulgaris was 184.8 mL CH4 g COD in(-1) while with A. ovalisporum and A. planctonica the methane production was 1.2- and 1.4-fold higher. This study showed that cyanobacteria growth rates could be comparable to microalgae while presenting the additional benefit of an increased anaerobic digestibility. PMID:26837504

  8. Environmental evidence for net methane production and oxidation in putative ANaerobic MEthanotrophic (ANME) archaea

    DEFF Research Database (Denmark)

    Lloyd, Karen; Teske, Andreas; Alperin, Marc J.

    2011-01-01

    Uncultured ANaerobic MEthanotrophic (ANME) archaea are often assumed to be obligate methanotrophs that are incapable of net methanogenesis, and are therefore used as proxies for anaerobic methane oxidation in many environments in spite of uncertainty regarding their metabolic capabilities....... Anaerobic methane oxidation regulates methane emissions in marine sediments and appears to occur through a reversal of a methane-producing metabolism. We tested the assumption that ANME are obligate methanotrophs by detecting and quantifying gene transcription of ANME-1 across zones of methane oxidation...

  9. Measurement of ethylene and methane production in a temperate forest soil using inhibition of acetylene and carbon monoxide

    Institute of Scientific and Technical Information of China (English)

    XU XingKai; INUBUSHI Kazuyuki

    2008-01-01

    We studied in the laboratory the effects of acetylene (C2H2) concentrations on the accumulation and consumption of ethylene and methane in a temperate pine forest soil, and in situ ethylene and methane production and flush effects of nitrogen sources on both productions in the pine forest stand (Pinus sylvestris L.). The addition of C2H2 at concentrations more than 50 Pa C2H2 in the headspace caused a more than 95% reduction in rates of ethylene and methane consumption in forest soil compared to those with no C2H2. Furthermore, addition of acetylene within a range of 50 to 10, 000 Pa C2H2 induced a similar rate of methane accumulation in forest soil. Hence, it can be concluded that presence of more than 50 Pa C2H2 in the headspace is an effective method to measure methane production in forest soil. The addition of C2H2 at concentrations more than 50 Pa C2H2 induced an increasing concentration of ethylene in the headspace (P≤0.05), indicating the reduction of acetylene to ethylene in forest soil. Using inhibition of 0.5 kPa C2H2 in combination with 5 kPa carbon monoxide that inhibits the reduction of acetylene in a short term, it was observed that there was a larger in situ methane production rate (218±26 μg C m-2 h-1 (μg C per square meter per hour, the same below)) than in situethylene produc-tion rate (92 ± 6 μg C m-2 h-1) in the pine forest soil. The addition of nitrogen sources such as urea, urea plus a nitrification inhibitor dicyandiamide, and potassium nitrate, could induce a 5-fold greater in-crease in rates of in situ ethylene and methane production compared to those in the control, particu-larly in the latter (P≤0.05). The results can promote in situ measurement of ethylene and methane production in forest soils at different sites.

  10. Anaerobic membrane bioreactors and the influence of space velocity and biomass concentration on methane production for liquid dairy manure

    International Nuclear Information System (INIS)

    Two pilot-scale anaerobic membrane bioreactors (AnMBRs) and a control completely mixed digester (CMD) were constructed to evaluate the influence of space velocity and biomass concentration on methane production for sand separated dairy manure. A negative impact on methane production resulted with operating the AnMBR system at 972 μHz–2960 μHz but no impact was found when operating at 69 μHz and 312 μHz. Operating at 69 μHz–350 μHz is realistic for a field installation. Despite the higher biomass concentration, the methane production of the AnMBRs was nearly equal to the CMD. An AnMBR with 69 μHz was operated equivalent to a CMD by returning all permeate to the digester tank and removing excess biomass directly from the reactor tank resulting in a hydraulic retention time (HRT) equal to the solids retention time (SRT). When using sand separated dairy manure and an HRT (and equal SRT) of 12 d, both systems produced methane at an equal rate, suggesting that the pump/membrane system did not influence methane production. The most likely reason was mass transfer limitations of hydrolytic enzymes. Based on methane production and volatile fatty acids analysis, it appears the fermentable substrate available for degradation was similar. The AnMBR proved to have benefit as part of an integrated nutrient management system that produced water that is virtually free of particulate nutrients, especially phosphorus. This enables the irrigation of the water to crops that need nitrogen and the efficient movement of phosphorus, as a solid, to needed locations. - Highlights: • Manure AnMBRs with a high space velocity inhibit methane production. • Manure AnMBRs with a low space velocity perform similar to conventional digesters. • Decoupled HRT and SRT in manure AnMBRs do not increase methane production. • Ultrafiltration membranes effectively partitioned manure nutrients from the liquid. • Manure does not foul ultrafiltration membranes and require mild

  11. Redox controls on methane formation, migration and fate in shallow aquifers

    Science.gov (United States)

    Humez, Pauline; Mayer, Bernhard; Nightingale, Michael; Becker, Veith; Kingston, Andrew; Taylor, Stephen; Bayegnak, Guy; Millot, Romain; Kloppmann, Wolfram

    2016-07-01

    Development of unconventional energy resources such as shale gas and coalbed methane has generated some public concern with regard to the protection of groundwater and surface water resources from leakage of stray gas from the deep subsurface. In terms of environmental impact to and risk assessment of shallow groundwater resources, the ultimate challenge is to distinguish (a) natural in situ production of biogenic methane, (b) biogenic or thermogenic methane migration into shallow aquifers due to natural causes, and (c) thermogenic methane migration from deep sources due to human activities associated with the exploitation of conventional or unconventional oil and gas resources. This study combines aqueous and gas (dissolved and free) geochemical and isotope data from 372 groundwater samples obtained from 186 monitoring wells of the provincial Groundwater Observation Well Network (GOWN) in Alberta (Canada), a province with a long record of conventional and unconventional hydrocarbon exploration. We investigated whether methane occurring in shallow groundwater formed in situ, or whether it migrated into the shallow aquifers from elsewhere in the stratigraphic column. It was found that methane is ubiquitous in groundwater in Alberta and is predominantly of biogenic origin. The highest concentrations of biogenic methane (> 0.01 mM or > 0.2 mgL-1), characterized by δ13CCH4 values -54 ‰, potentially suggesting a thermogenic origin, but aqueous and isotope geochemistry data revealed that the elevated δ13CCH4 values were caused by microbial oxidation of biogenic methane or post-sampling degradation of low CH4 content samples rather than migration of deep thermogenic gas. A significant number of samples (39.2 %) contained methane with predominantly biogenic C isotope ratios (δ13CCH4 < -55 ‰) accompanied by elevated concentrations of ethane and sometimes trace concentrations of propane. These gases, observed in 28.1 % of the samples, bearing both biogenic (δ13C) and

  12. Experimental investigation into methane hydrate production during three-dimensional thermal huff and puff

    International Nuclear Information System (INIS)

    Highlights: ► The production behaviors of methane hydrate are obtained in the 3-D simulator. ► The huff and puff method is used for hydrate dissociation. ► The pressure, water and gas production, thermal and energy efficiencies are analyzed. ► The maximum decomposition boundary occurs in the thermal huff and puff process. -- Abstract: In this work, the decomposition behaviors of methane hydrate in the porous media are investigated in the three-dimensional cubic hydrate simulator (CHS) using the huff and puff method with a single well with the different injection temperatures and different injection time. The changes of the system pressure are analyzed by using the biggest increasing degree of the system pressure during injection stage (PII) and the biggest increasing degree of the system pressure during soaking stage (PIS), and the result shows that the injection time has more obvious effect on the system pressure than the injection temperature. The cumulative volume of the produced gas increases with the increases of the injection temperature and injection time. The higher injection temperature results in the smaller volume of the produced water; whereas the higher injection time results in the bigger volume of the produced water. In addition, increasing the injection temperature and injection time may not enhance the thermal efficiency and energy efficiency. The optimum period for the gas production is the first 4–5 cycles. The highest energy efficiency can be obtained at the injection temperature of 130 °C and the injection time of 5 min. Furthermore, the experiment verifies that a moving decomposition boundary occurs in the hydrate decomposition process, and there is a maximum decomposition boundary with the thermal huff and puff cycle. In addition, the injected heat does not diffuse isotropically.

  13. Production of synthesis gas and methane via coal gasification utilizing nuclear heat

    International Nuclear Information System (INIS)

    The steam gasificaton of coal requires a large amount of energy for endothermic gasification, as well as for production and heating of the steam and for electricity generation. In hydrogasification processes, heat is required primarily for the production of hydrogen and for preheating the reactants. Current developments in nuclear energy enable a gas cooled high temperature nuclear reactor (HTR) to be the energy source, the heat produced being withdrawn from the system by means of a helium loop. There is a prospect of converting coal, in optimal yield, into a commercial gas by employing the process heat from a gas-cooled HTR. The advantages of this process are: (1) conservation of coal reserves via more efficient gas production; (2) because of this coal conservation, there are lower emissions, especially of CO2, but also of dust, SO2, NO/sub x/, and other harmful substances; (3) process engineering advantages, such as omission of an oxygen plant and reduction in the number of gas scrubbers; (4) lower gas manufacturing costs compared to conventional processes. The main problems involved in using nuclear energy for the industrial gasification of coal are: (1) development of HTRs with helium outlet temperatures of at least 9500C; (2) heat transfer from the core of the reactor to the gas generator, methane reforming oven, or heater for the hydrogenation gas; (3) development of a suitable allothermal gas generator for the steam gasification; and (4) development of a helium-heated methane reforming oven and adaption of the hydrogasification process for operation in combination with the reactor. In summary, processes for gasifying coal that employ heat from an HTR have good economic and technical prospects of being realized in the future. However, time will be required for research and development before industrial application can take place. 23 figures, 4 tables. (DP)

  14. Source attribution of methane emissions from global oil and gas production: results of bottom-up simulations over three decades

    Science.gov (United States)

    Höglund-Isaksson, Lena

    2016-04-01

    Existing bottom-up emission inventories of historical methane and ethane emissions from global oil and gas systems do not well explain year-on-year variations estimated by top-down models from atmospheric measurements. This paper develops a bottom-up methodology which allows for country- and year specific source attribution of methane and ethane emissions from global oil and natural gas production for the period 1980 to 2012. The analysis rests on country-specific simulations of associated gas flows which are converted into methane and ethane emissions. The associated gas flows are constructed from country-specific information on oil and gas production and associated gas generation and recovery, and coupled with generic assumptions to bridge regional information gaps on the fractions of unrecovered associated gas that is vented instead of flared. Summing up emissions from associated gas flows with global estimates of emissions from unintended leakage and natural gas transmission and distribution, the resulting global emissions of methane and ethane from oil and gas systems are reasonably consistent with corresponding estimates from top-down models. Also revealed is that the fall of the Soviet Union in 1990 had a significant impact on methane and ethane emissions from global oil and gas systems.

  15. Energy production from agricultural residues: High methane yields in pilot-scale two-stage anaerobic digestion

    International Nuclear Information System (INIS)

    There is a large, unutilised energy potential in agricultural waste fractions. In this pilot-scale study, the efficiency of a simple two-stage anaerobic digestion process was investigated for stabilisation and biomethanation of solid potato waste and sugar beet leaves, both separately and in co-digestion. A good phase separation between hydrolysis/acidification and methanogenesis was achieved, as indicated by the high carbon dioxide production, high volatile fatty acid concentration and low pH in the acidogenic reactors. Digestion of the individual substrates gave gross energy yields of 2.1-3.4 kWh/kg VS in the form of methane. Co-digestion, however, gave up to 60% higher methane yield, indicating that co-digestion resulted in improved methane production due to the positive synergism established in the digestion liquor. The integrity of the methane filters (MFs) was maintained throughout the period of operation, producing biogas with 60-78% methane content. A stable effluent pH showed that the methanogenic reactors had good ability to withstand the variations in load and volatile fatty acid concentrations that occurred in the two-stage process. The results of this pilot-scale study show that the two-stage anaerobic digestion system is suitable for effective conversion of semi-solid agricultural residues as potato waste and sugar beet leaves

  16. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows.

    Science.gov (United States)

    Olijhoek, D W; Hellwing, A L F; Brask, M; Weisbjerg, M R; Højberg, O; Larsen, M K; Dijkstra, J; Erlandsen, E J; Lund, P

    2016-08-01

    Nitrate may lower methane production in ruminants by competing with methanogenesis for available hydrogen in the rumen. This study evaluated the effect of 4 levels of dietary nitrate addition on enteric methane production, hydrogen emission, feed intake, rumen fermentation, nutrient digestibility, microbial protein synthesis, and blood methemoglobin. In a 4×4 Latin square design 4 lactating Danish Holstein dairy cows fitted with rumen, duodenal, and ileal cannulas were assigned to 4 calcium ammonium nitrate addition levels: control, low, medium, and high [0, 5.3, 13.6, and 21.1g of nitrate/kg of dry matter (DM), respectively]. Diets were made isonitrogenous by replacing urea. Cows were fed ad libitum and, after a 6-d period of gradual introduction of nitrate, adapted to the corn-silage-based total mixed ration (forage:concentrate ratio 50:50 on DM basis) for 16d before sampling. Digesta content from duodenum, ileum, and feces, and rumen liquid were collected, after which methane production and hydrogen emissions were measured in respiration chambers. Methane production [L/kg of dry matter intake (DMI)] linearly decreased with increasing nitrate concentrations compared with the control, corresponding to a reduction of 6, 13, and 23% for the low, medium, and high diets, respectively. Methane production was lowered with apparent efficiencies (measured methane reduction relative to potential methane reduction) of 82.3, 71.9, and 79.4% for the low, medium, and high diets, respectively. Addition of nitrate increased hydrogen emissions (L/kg of DMI) quadratically by a factor of 2.5, 3.4, and 3.0 (as L/kg of DMI) for the low, medium, and high diets, respectively, compared with the control. Blood methemoglobin levels and nitrate concentrations in milk and urine increased with increasing nitrate intake, but did not constitute a threat for animal health and human food safety. Microbial crude protein synthesis and efficiency were unaffected. Total volatile fatty acid

  17. Biogenic amines in raw and processed seafood

    Directory of Open Access Journals (Sweden)

    Pierina eVisciano

    2012-06-01

    Full Text Available The presence of biogenic amines in raw and processed seafood, associated with either time/temperature conditions or food technologies is discussed in the present paper from a safety and prevention point of view. In particular, storage temperature, handling practices, presence of microbial populations with decarboxylase activity and availability of free amino acids are considered the most important factors affecting the production of biogenic amines in raw seafood. On the other hand, some food technological treatments such as salting, ripening, fermentation or marination can increase the levels of biogenic amines in processed seafood. The consumption of high amount of biogenic amines, above all histamine, can result in food borne poisoning which is a worldwide problem. The European Regulation established as maximum limits for histamine, in fishery products from fish species associated with high histidine amounts, values ranging from 100 to 200 mg/kg, while for products which have undergone enzyme maturation treatment in brine, the aforementioned limits rise to 200 and 400 mg/kg. Preventive measures and emerging methods aiming at controlling the production of biogenic amines are also reported for potential application in seafood industries.

  18. EVALUATION OF NUTRITIVE VALUE AND IN VITRO METHANE PRODUCTION OF FEEDSTUFFS FROM AGRICULTURAL AND FOOD INDUSTRY BY-PRODUCTS

    Directory of Open Access Journals (Sweden)

    B. Santoso

    2014-10-01

    Full Text Available The aim of this research was to evaluate the nutrient degradability, in vitro methane (CH4 production ofseveral agricultural and food industry by-products in relation to their chemical composition. Twenty-onesamples of 7 feedstuffs from agricultural and food industry by-products consisted of corn straw, potatostraw, rice straw, cocoa pod, sago waste, rice bran, soybean curd residue were evaluated by an in vitro gasproduction and nutrient degradability. The feedstuffs varied greatly in their crude protein (CP, neutraldetergent fiber (NDF and non-fiber carbohydrate (NFC contents. Crude protein ranged from 1.5 to 21.8%,NDF from 31.6 to 71.1% and NFC from 1.5 to 50.8%. Among the seven feedstuffs, soybean curd residuehad the highest CP content, on the other hand it had the lowest NDF content. Dry matter (DM and organicmatter (OM degradability were highest (P<0.01 in soybean curd residue among the feedstuffs. The CH4production was significantly higher (P<0.01 in rice straw, cocoa pod and corn straw as compared to sagowaste. There was a strong positive correlation (r = 0.60; P<0.01 between NDF concentration and CH4production. However, the total gas productions was negatively correlated (r = -0.75; P<0.01 with NDFcontent. The CH4 production of feedstuff is influenced by NDF content.

  19. Reducing methane production by supplementation of Terminalia chebula RETZ. containing tannins and saponins.

    Science.gov (United States)

    Anantasook, Nirawan; Wanapat, Metha; Gunun, Pongsatorn; Cherdthong, Anusorn

    2016-06-01

    This study investigates the effects of Terminalia chebula Retz. meal supplementation on rumen fermentation and methane (CH4 ) production by using an in vitro gas technique. The experimental design was a completely randomized design (CRD) and the dietary treatments were T. chebula supplementation at 0, 4, 8, 12, 16 and 20 mg with 0.5 g of roughage and concentrate ratio at 60:40. The results revealed that cumulative gas production (96 h of incubation) were higher (P  0.05). The NH3 -N concentrations tended to quadratically increase with increasing levels of T. chebula in the diet. In addition, total volatile fatty acids (VFA) and propionate concentrations were increased (P < 0.01), while acetate concentration, acetate-to-propionate ratio, CH4 production and protozoal populations were decreased (P < 0.01) when supplemented with T. chebula at 8, 12 and 16 mg, respectively. Based on this study, it could be concluded that supplementation of T. chebula at 12 mg could improve rumen fermentation by reducing CH4 production and protozoa populations, thus improving in vitro gas production and VFA profiles. PMID:27255184

  20. Emission and production of methane in the paddy fields of Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, K.; Minami, K. (National Institute of Agro-Environmental Sciences Tsukuba (Japan). Dept. of Environmental Management)

    1991-12-01

    Rates and variations of methane (CH{sub 4}) emission and production in the paddy fields in Japan were analyzed. CH{sub 4} emission from paddy fields showed strong seasonal variations, depending on soil Eh, water management, and mineral fertilizer applied. The emission rate widely varied with soil types during the cultivation period. Annual emission rates from paddy fields composed of Peat soil, Gley soil, and Andosols are estimated at 44.8, 8.0-27.0, and 0.6-12.6 g-CH{sub 4}/m{sup 2}, respectively. Application of rice straw with rates of 6-9 t/ha increased the CH{sub 4} emission rates by 1.8- to 3.5-fold. The CH{sub 2} production rates of paddy soils measured under the laboratory incubation experiments also showed seasonal variations, which were well correlated with the CH{sub 4} emission rates measured in the paddy fields. These results indicate that the seasonal variations of CH{sub 4} emission from paddy fields to the atmosphere are mainly brought about by the variation of CH{sub 4} production in paddy soils. However, the ratio of the production rates to the emission rates varied among soils, suggesting that physical and chemical properties of soils play a significant role for production and emission of CH{sub 4} in the paddy fields.

  1. Trimethylamine stimulated and dissolved organic matter inhibited methane production in sediment from the Poyang Lake, China.

    Science.gov (United States)

    Wang, Jiajia; Liu, Chunying; Gong, Xiaofeng; Liu, Yuanmu; Chen, Chunli

    2016-10-01

    Methane (CH4) emitted from wetlands contributes significantly to the greenhouse effect. The Poyang Lake, the largest freshwater lake in China, is fed by five rivers and connects to the Yangtze River. The area of the lake fluctuates dramatically between drawdown and flood periods with large areas of wetlands. In order to understand the CH4 production capacity and factors that influence CH4 production in the wetland, a static closed chamber combined with a gas chromatograph technique was used to investigate the influence of substrates and electron acceptors on methanogenesis. The results showed that CH4 production capacity of sediments from the Poyang Lake was [Formula: see text] and it was stimulated by trimethylamine (TMA) to a great extent. Incubation temperature played a vital role on CH4 production in sediments and the optimum temperature for methanogenesis was 35°C. Minimum CH4 production capacity occurred with the addition of FeCl3, and the inhibitory effects of electron acceptors decreased in the sequence: FeCl3 > MnO2 > DOM > Fe2O3. In this study, DOM was demonstrated as one of the inhibitors to methanogenesis and TMA was the main substrate of methanogens in the sediments of the Poyang Lake whose pH value is 7.83. PMID:26895174

  2. Potential of Immobilized Whole-Cell Methylocella tundrae as a Biocatalyst for Methanol Production from Methane.

    Science.gov (United States)

    Mardina, Primata; Li, Jinglin; Patel, Sanjay K S; Kim, In-Won; Lee, Jung-Kul; Selvaraj, Chandrabose

    2016-07-28

    Methanol is a versatile compound that can be biologically synthesized from methane (CH4) by methanotrophs using a low energy-consuming and environment-friendly process. Methylocella tundrae is a type II methanotroph that can utilize CH4 as a carbon and energy source. Methanol is produced in the first step of the metabolic pathway of methanotrophs and is further oxidized into formaldehyde. Several parameters must be optimized to achieve high methanol production. In this study, we optimized the production conditions and process parameters for methanol production. The optimum incubation time, substrate, pH, agitation rate, temperature, phosphate buffer and sodium formate concentration, and cell concentration were determined to be 24 h, 50% CH4, pH 7, 150 rpm, 30°C, 100 mM and 50 mM, and 18 mg/ml, respectively. The optimization of these parameters significantly improved methanol production from 0.66 to 5.18 mM. The use of alginate-encapsulated cells resulted in enhanced methanol production stability and reusability of cells after five cycles of reuse under batch culture conditions. PMID:27012239

  3. Low entropy methane power system for oil and gas production stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ospina-Racines, E.

    1968-10-01

    LNG = LEPS is a low entropy methane power system for oil and associated gas production stimulation. The patented system includes a power cycle established at each oil- producing well by installing a controlled PVT well completion method and vaporizing LNG in the gas cap in order to develop power and to operate the oil and gas reservoir as a huge natural thermo-dynamic system of stored energy. The power is used to flow the oil and associated gas to the well bore and then to the surface. It may be operated with transient storage of vaporized LNG tapped from a pipeline and converted into LNG, vaporized in the gas cap to store the gas and increase bottom-hole pressure, and to develop pressure drawdown to flow the oil and gas fluids to the well bore. This method makes it possible to maintain the reservoir pressure intact.

  4. Stable hydrogen production by methane steam reforming in a two zone fluidized bed reactor: Experimental assessment

    Science.gov (United States)

    Pérez-Moreno, L.; Soler, J.; Herguido, J.; Menéndez, M.

    2013-12-01

    The Two Zone Fluidized Bed Reactor concept is proposed for hydrogen production via the steam reforming of methane (SRM) including integrated catalyst regeneration. In order to study the effect of the contact mode, the oxidative SRM has been carried out over a Ni/Al2O3 catalyst using a fixed bed reactor (fBR), a conventional fluidized-bed reactor (FBR) and the proposed two-zone fluidized bed reactor (TZFBR). The technical feasibility of these reactors has been studied experimentally, investigating their performance (CH4 conversion, CO and H2 selectivity, and H2 global yield) and stability under different operating conditions. Coke generation in the process has been verified by several techniques. A stable performance was obtained in the TZFBR, where coke formation was counteracted with continuous catalyst regeneration. The viability of the TZFBR for carrying out this process with a valuable global yield to hydrogen is demonstrated.

  5. Mild alkaline pre-treatments loosen fibre structure enhancing methane production from biomass crops and residues

    International Nuclear Information System (INIS)

    Three ligno-cellulosic substrates representing varying levels of biodegradability (giant reed, GR; fibre sorghum, FS; barley straw, BS) were combined with mild alkaline pre-treatments (NaOH 0.05, 0.10 and 0.15 N at 25 °C for 24 h) plus untreated controls, to study pre-treatment effects on physical-chemical structure, anaerobic digestibility and methane output of the three substrates. In a batch anaerobic digestion (AD) assay (58 days; 35 °C; 4 g VS l−1), the most recalcitrant substrate (GR) staged the highest increase in cumulative methane yield: +30% with NaOH 0.15 N over 190 ml CH4 g−1 VS in untreated GR. Conversely, the least recalcitrant substrate (FS) exhibited the lowest gain (+10% over 248 ml CH4 g−1 VS), while an intermediate behaviour was shown by BS (+15% over 232 ml CH4 g−1 VS). Pre-treatments speeded AD kinetics and reduced technical digestion time (i.e., the time needed to achieve 80% methane potential), which are the premises for increased production capacity of full scale AD plants. Fibre components (cellulose, hemicellulose and acid insoluble lignin determined after acid hydrolysis) and substrate structure (Fourier transform infra-red spectroscopy and scanning electron microscopy) outlined reductions of the three fibre components after pre-treatments, supporting claims of loosened binding of lignin with cellulose and hemicellulose. Hence, mild alkaline pre-treatments were shown to improve the biodegradability of ligno-cellulosic substrates to an extent proportional to their recalcitrance. In turn, this contributes to mitigate the food vs. fuel controversy raised by the use of whole plant cereals (namely, maize) as feedstocks for biogas production. - Highlights: • Three ligno-cellulosic substrates were pre-treated with mild alkaline methods. • Giant reed pre-treated with NaOH 0.15 N showed highest increase in CH4 yield (30%). • Alkaline pre-treatments speeded process kinetics, cutting technical digestion time. • Changes

  6. Methanation; La methanisation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-07-01

    This issue of the Apesa newsletter deals with the methanation process and the production of biogas: the co-digestion, a tool for the management of organic effluents; the different steps of the methanation process; the worldwide biogas resources; comparative composition of biogas and natural gas; the processing of evaporation condensates from the paper industry; the processing of wine residuary liquors; the economics of methanation; the methanation process as a pre-process for sludges etc.. (J.S.)

  7. Effects of a combination of feed additives on methane production, diet digestibility, and animal performance in lactating dairy cows

    NARCIS (Netherlands)

    Zijderveld, van S.M.; Fonken, B.C.J.; Dijkstra, J.; Gerrits, W.J.J.; Perdok, H.B.; Fokkink, W.B.; Newbold, J.R.

    2011-01-01

    Two experiments were conducted to assess the effects of a mixture of dietary additives on enteric methane production, rumen fermentation, diet digestibility, energy balance, and animal performance in lactating dairy cows. Identical diets were fed in both experiments. The mixture of feed additives in

  8. Monitoring Production of Methane and Carbon Dioxide and Consumption of Oxygen at Spills of Gasoline at UST Release Sites

    Science.gov (United States)

    Methane is rarely measured at fuel spill sites, and most commonly the measurements are made on samples of ground water. Many ground water monitoring wells are intentionally screened across the water table. This was done to allow them to sample free product. However, if there is s...

  9. Anaerobic digestion of selected Italian agricultural and industrial residues (grape seeds and leather dust): combined methane production and digestate characterization.

    Science.gov (United States)

    Caramiello, C; Lancellotti, I; Righi, F; Tatàno, F; Taurino, R; Barbieri, L

    2013-01-01

    A combined experimental evaluation of methane production (obtained by anaerobic digestion) and detailed digestate characterization (with physical-chemical, thermo-gravimetric and mineralogical approaches) was conducted on two organic substrates, which are specific to Italy (at regional and national levels). One of the substrates was grape seeds, which have an agricultural origin, whereas the other substrate was vegetable-tanned leather dust, which has an industrial origin. Under the assumed experimental conditions of the performed lab-scale test series, the grape seed substrate exhibited a resulting net methane production of 175.0 NmL g volatile solids (VS)(-1); hence, it can be considered as a potential energy source via anaerobic digestion. Conversely, the net methane production obtained from the anaerobic digestion of the vegetable-tanned leather dust substrate was limited to 16.1 NmL gVS(-1). A detailed characterization of the obtained digestates showed that there were both nitrogen-containing compounds and complex organic compounds present in the digestate that was obtained from the mixture of leather dust and inoculum. As a general perspective of this experimental study, the application of diversified characterization analyzes could facilitate (1) a better understanding of the main properties of the obtained digestates to evaluate their potential valorization, and (2) a combination of the digestate characteristics with the corresponding methane productions to comprehensively evaluate the bioconversion process. PMID:24191456

  10. Forecasting gob gas venthole production performances using intelligent computing methods for optimum methane control in longwall coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Karacan, C. Oezgen [National Institute for Occupational Safety and Health (NIOSH), Pittsburgh Research Laboratory, Pittsburgh, PA 15236 (United States)

    2009-09-01

    Gob gas ventholes (GGV) are used to control methane inflows into a longwall operation by capturing it within the overlying fractured strata before it enters the work environment. Thus, it is important to understand the effects of various factors, such as drilling parameters, location of borehole, applied vacuum by exhausters and mining/panel parameters in order to be able to evaluate the performance of GGVs and to predict their effectiveness in controlling methane emissions. However, a practical model for this purpose currently does not exist. In this paper, we analyzed the total gas flow rates and methane percentages from 10 GGVs located on three adjacent panels operated in Pittsburgh coalbed in Southwestern Pennsylvania section of Northern Appalachian basin. The ventholes were drilled from different surface elevations and were located at varying distances from the start-up ends of the panels and from the tailgate entries. Exhauster pressures, casing diameters, location of longwall face and mining rates and production data were also recorded. These data were incorporated into a multilayer-perceptron (MLP) type artificial neural network (ANN) to model venthole production. The results showed that the two-hidden layer model predicted total production and the methane content of the GGVs with more than 90% accuracy. The ANN model was further used to conduct sensitivity analyses about the mean of the input variables to determine the effect of each input variable on the predicted production performance of GGVs. (author)

  11. A robust fuzzy-logic-based controller for bio-methane production in anaerobic fixed-film reactors

    OpenAIRE

    Robles Martinez, Angel; Latrille, Eric; Ruano, M.V.; Steyer, Jean-Philippe

    2015-01-01

    The main objective of this work was to develop a robust controller for bio-methane production in continuous anaerobic fixed-bed reactors. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated raw winery wastewater. The proposed controller regulated the flow-rate of wastewater entering the system as a function of the gaseous outflow rate of methane and the effluent Volatile Fatty Acids (VFA) concentratio...

  12. Influence of Co-substrates for the Methane Production Rate Kinetics in Anaerobic Fermentation of Pig Slurry

    OpenAIRE

    Karlygash Korazbekova; Zhumabek Bakhov; Botagos Mutaliyeva

    2015-01-01

    The influence of co-substrates on kinetics of methane production in anaerobic fermentation of pig slurry was studied by performing a series of laboratory experiments using food waste and biowaste as co-substrates. Experiments were performed in the laboratory reactors of «Hohenheim» biogas testing system in batch mode at the temperature of 37ºC. Given 40 g of fresh pig slurry was fed to each digester and mixed with co-substrates in the ration of 55:45% by organic dry matter content. Methane pr...

  13. Methane production in the biosphere; La produzione di metano nella biosfera: il ruolo degli animali da allevamento

    Energy Technology Data Exchange (ETDEWEB)

    Sauvant, D. [Stazione di Nutrizione e Alimentazione (Italy)

    1999-04-01

    Methane is a greenhouse gas. A part of methane production is of agricultural origin. The emissions related to animal organisms are evaluated and discussed. [Italian] Il metano e' una molecola che contribuisce all'effetto serra e alle conseguenze climatiche che ne derivano. Una parte di metano e' di orgine agricola, legata in particolare alla produzione animale. Questo breve documento vuole focalizzare le conoscenze su quest'ultimo aspetto, limitandosi alle emissioni attribuibili agli organismi animali, escludendo pero' i loro rifiuti.

  14. Potential of tropical plants to exert defaunating effects on the rumen and to reduce methane production

    International Nuclear Information System (INIS)

    This paper summarises the principal results obtained in Cuba concerning the potential of different tropical plants to exert defaunating effects in the rumen and to reduce methane (CH4) production. The plants studied were Sapindus saponaria, Morus alba, Trichanthera gigantea, Tithonia diversifolia, Gliricidia sepium Leucaena leucocephala, Stizolobium aterrimun and Arachis pintoi. Grasses used as forage in the assays to obtain grass:foliage mixtures were Pennisetum purpureum Cuba CT-115 or Star grass (Cynodon nlemfuensis). The experiments were conducted using an in vitro system. Gases produced in the fermentation process were collected at intervals of 4, 8, 12 and 24 h and CH4 production was determined by gas chromatography. Phytochemical analyses indicated the presence of tannins, saponins and others secondary compounds. Enterolobium and Leucaena had a high content of tannins and moderate levels of saponins. Morus contained moderate amounts of saponins. The inclusion of 15% Leucaena and Gliricidia, 20% Sapindus and Arachis as well as 40% S. aterrimum, negatively affected protozoal populations. The inclusion of 25% Sapindus, Morus and Trichantera foliages using P. purpureum as the pasture base reduced CH4 production significantly. The results suggest that the use of trees and shrubs to supplement low quality forages seems appropriate for reducing CH4 production and improving animal nutrition in tropical areas. (author)

  15. Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration

    International Nuclear Information System (INIS)

    Highlights: • A novel energy-saving H2 production process is exploited. • Heat integration technology is used to recover the wasted heat. • Heat coupling of heat exchangers is optimized in SMR and PSA sections. • Energy consumption is reduced to 39.5% that of the conventional process. - Abstract: Hydrogen has been widely researched as a promising alternative fuel. Steam methane reforming (SMR) coupled with pressure swing adsorption (PSA) is one of the most dominant processes for hydrogen production. In order to reduce the energy consumption, a novel energy saving SMR–PSA H2 production process by combining heat integration technology has been put forward. In SMR section, the waste heat of reformer and water–gas-shift (WGS) reactors is recovered to pre-heat feed gas and H2O. In the view of exergy, a compressor is used to achieve a well heat pairing of sensible and latent heat between hot and cold streams. In PSA section, the generated adsorption heat is recovered by heat pump and reused for regeneration of sorbent. In the total process, optimal heat coupling between hot and cold streams is realized. The simulation results indicated that the SMR and PSA sections in the optimized hydrogen production process can save 55.77 kJ/mol H2 and 6.01 kJ/mol H2, respectively. The total energy consumption of the novel SMR–PSA process can be reduced to 39.5% that of the conventional process

  16. Evaluation of the seismic reflection method as a monitoring tool during primary and enhanced coalbed methane production

    Science.gov (United States)

    Lespinasse Fung, Diane Jael

    In this thesis I present an evaluation of the seismic reflection method as a monitoring tool during coalbed methane (CBM) production and enhanced coalbed methane (ECBM) production by CO2 injection. This evaluation is based on a workflow previously developed for monitoring CO2 storage in the Big George coalbeds in the Powder River Basin. I study the changes in seismic and the AVO response associated with coalbeds during primary production using a data set from the Mannville coals, which represent one of the most important CBM resources in the Province of Alberta. Using published data, I perform a single well flow simulation to make an assessment of its production forecast in a 10 year period. The flow simulation provides information on methane saturation and reservoir pressure during production, while the changes in porosity and permeability due to depletion are estimated according to the Palmer and Mansoori permeability model. Using well log data of the Corbett Field and the results of the flow simulation, I complete a Gassmann fluid substitution to replace brine by a mixture of brine and methane in the pore space and estimate the variations in Vp, Vs and density due to changes in fluid saturation. I evaluate offset dependent synthetic seismograms before and after fluid substitution, and I use different coalbed thicknesses to establish resolution limits. To observe significant changes in the character and phase of the wavelet due to the replacement of brine by methane I find that coalbed thickness must be at least 10 m, also in terms of AVO I observe that there is a decrease in amplitude with offset caused by the presence of methane in the pore space. Using the same methodology and production data from the Fruitland Coals Fairway in the North of the San Juan Basin U.S.A, which is considered the most productive CBM reservoir in the world, I evaluate Elastic Impedance (EI) and Elastic Impedance Coefficient (EC) response during ECBM by CO2 injection. In this case, I

  17. Carbohydrate-enriched cyanobacterial biomass as feedstock for bio-methane production through anaerobic digestion

    DEFF Research Database (Denmark)

    Markou, Giorgos; Angelidaki, Irini; Georgakakis, Dimitris

    2013-01-01

    ) were used. The overall observation as the biomass carbohydrates increased was that bio-methane yield increased. The highest bio-methane yield in bioreactors with 60% carbohydrates was 203±10ml CH4 gCODinfl-1, while the lowest bio-methane yield in bioreactors with 20% carbohydrates was 123±10ml CH4 g......CODinfl-1. The trend of increasing bio-methane yield as carbohydrates content of the biomass increased was observed almost in all three HRT (15, 20 and 30days) studied and after thermal pre-treatment. However, thermal pre-treatment did not improve the bio-methane yield. Ammonia concentration had an overall...... trend to decrease as the biomass carbohydrates content increased. This study concludes that the increase of biomass carbohydrates through phosphorus limitation process is an attractive technique to improve the bio-methane yield....

  18. Biological Production of Methane from Lunar Mission Solid Waste: An Initial Feasibility Assessment

    Science.gov (United States)

    Strayer, Richard; Garland, Jay; Janine, Captain

    A preliminary assessment was made of the potential for biological production of methane from solid waste generated during an early planetary base mission to the moon. This analysis includes: 1) estimation of the amount of biodegradable solid waste generated, 2) background on the potential biodegradability of plastics given their significance in solid wastes, and 3) calculation of potential methane production from the estimate of biodegradable waste. The completed analysis will also include the feasibility of biological methane production costs associated with the biological processing of the solid waste. NASA workshops and Advanced Life Support documentation have estimated the projected amount of solid wastes generated for specific space missions. From one workshop, waste estimates were made for a 180 day transit mission to Mars. The amount of plastic packaging material was not specified, but our visual examination of trash returned from stocktickerSTS missions indicated a large percentage would be plastic film. This plastic, which is not biodegradable, would amount to 1.526 kgdw crew-1 d-1 or 6.10 kgdw d-1 for a crew of 4. Over a mission of 10 days this would amount to 61 kgdw of plastics and for an 180 day lunar surface habitation it would be nearly 1100 kgdw . Approx. 24 % of this waste estimate would be biodegradable (human fecal waste, food waste, and paper), but if plastic packaging was replaced with biodegradable plastic, then 91% would be biodegradable. Plastics are man-made long chain polymeric molecules, and can be divided into two main groups; thermoplastics and thermoset plastics. Thermoplastics comprise over 90% of total plastic use in the placecountry-regionUnited States and are derived from polymerization of olefins via breakage of the double bond and subsequent formation of additional carbon to carbon bonds. The resulting sole-carbon chain polymers are highly resistant to biodegradation and hydrolytic cleavage. Common thermoplastics include low

  19. Hydrogen and syngas production from two-step steam reforming of methane using CeO2 as oxygen carrier

    Institute of Scientific and Technical Information of China (English)

    Xing Zhu; Hua Wang; Yonggang Wei; Kongzhai Li; Xianming Cheng

    2011-01-01

    CeO2 oxygen carrier was prepared by precipitation method and tested by two-step steam reforming of methane (SRM).Two-step SRM for hydrogen and syngas generation is investigated in a fixed-bed reactor.Methane is directly converted to syngas at a H2/CO ratio close to 2∶ 1 at a high temperature (above 750 ℃) by the lattice oxygen of CeO2; methane cracking is found when the reduction degree of CeO2 was above 5.0% at 850 ℃ in methane isothermal reaction.CeO2-δ obtained from methane isothermal reaction can split water to generate CO-free hydrogen and renew its lattice oxygen at 700 ℃; simultaneously, deposited carbon is selectively oxidized to CO2 by steam following the reaction (C+2H2O→CO2+2H2).Slight deactivation in terms of amounts of desired products (syngas and hydrogen) is observed in ten repetitive two-step SRM process due to the carbon deposition on CeO2 surface as well as sintering of CeO2.

  20. Methane production improvement by modulation of solid phase immersion in dry batch anaerobic digestion process: Dynamic of methanogen populations.

    Science.gov (United States)

    André, L; Ndiaye, M; Pernier, M; Lespinard, O; Pauss, A; Lamy, E; Ribeiro, T

    2016-05-01

    Several 60L dry batch anaerobic digestion (AD) reactors were implemented with or without liquid reserve on cattle manure. The immersed part modulation of cattle manure increased the methane flow of about 13%. The quantitative real time PCR and the optimized DNA extraction were implemented and validated to characterize and quantify the methanogen dynamic in dry batch AD process. Final quantities of methanogens converged toward the same level in several inocula at the end of AD. Methanogen dynamic was shown by dominance of Methanosarcinaceae for acetotrophic methanogens and Methanobacteriales for the hydrogenotrophic methanogens. Overall, methanogens populations were stabilized in liquid phase, except Methanosaetaceae. Solid phase was colonized by Methanomicrobiales and Methanosarcinaceae populations giving a support to biofilm development. The methane increase could be explained by a raise of Methanosarcinaceae population in presence of a total contact between solid and liquid phases. Methanosarcinaceae was a bio-indicator of the methane production. PMID:26897414

  1. Methane production from mixed tropical savanna and forest vegetation in Venezuela

    OpenAIRE

    2006-01-01

    Measurements of methane concentrations in the boundary layer in the northern part of the Guayana shield, Venezuela, during the wet season (October 1988), showed the presence of substantial methane surface emissions. The measuring site is within the savanna climate region, but is affected by emissions from savanna and forest vegetation. From day versus night concentration measurements, with higher concentrations during night, a methane source strength near the site of 3?7×1011 molecules/cm2/s ...

  2. Methane production from mixed tropical savanna and forest vegetation in Venezuela

    OpenAIRE

    Crutzen, P. J.; Sanhueza, E.; C. A. M. Brenninkmeijer

    2006-01-01

    Measurements of methane concentrations in the boundary layer in the northern part of the Guayana shield, Venezuela, during the wet season (October 1988), showed the presence of substantial methane surface emissions. The measuring site is within the savanna climate region, but is affected by emissions from savanna and forest vegetation. From day versus night concentration measurements, with higher concentrations during night, a methane source strength near the site of 3&ndash...

  3. Ensiling of crops for biogas production: effects on methane yield and total solids determination

    OpenAIRE

    Kreuger Emma; Nges Ivo; Björnsson Lovisa

    2011-01-01

    Abstract Background Ensiling is a common method of preserving energy crops for anaerobic digestion, and many scientific studies report that ensiling increases the methane yield. In this study, the ensiling process and the methane yields before and after ensiling were studied for four crop materials. Results The changes in wet weight and total solids (TS) during ensiling were small and the loss of energy negligible. The methane yields related to wet weight and to volatile solids (VS) were not ...

  4. Methane emissions from cattle production – Issues in meeting the Kyoto targets.

    OpenAIRE

    Rolfe, John; Zeil, Veronika

    2001-01-01

    Methane is a greenhouse gas that is emitted mainly by livestock, and accounts for about 14% of national greenhouse gas emissions. If Australia is to meet the Kyoto targets, then greater attention is likely to be focused on ways that methane emissions can be reduced. The three main options to reduce methane emissions are to reduce livestock numbers (particularly in rangelands areas), reduce emissions per kilogram of beef produced (by improving feed efficiency and other factors), or to manipula...

  5. Biogenic methane from hydrothermal gasification of biomass; Biogenes Methan durch hydrothermale Vergasung von Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, M.; Vogel, F.

    2007-09-15

    This final report for the Swiss Federal Office of Energy (SFOE) reports on work done in the area of gasification of biomass. The use of dung, manure and sewage sludge as sources of energy is described and discussed. Hydrothermal gasification is proposed as an alternative to conventional gas-phase processes. The aim of the project in this respect is discussed. Here, a catalytic process that demonstrates the gasification of wet biomass to synthetic natural gas (SNG) in a continuously operating plant on a laboratory scale is being looked at. Difficulties encountered in preliminary tests are discussed. Long-term catalyst stability and the installations for the demonstration of the process are discussed, and gasification tests with ethanol are commented on.

  6. The relevance of methane emissions from beef production and the challenges of the Argentinean beef production platform.

    Science.gov (United States)

    Rearte, D H; Pordomingo, A J

    2014-11-01

    The livestock sector faces the challenge to respond to the growing demand for animal protein from an expanding population while reducing environmental impact through GHG emissions. Globally about 2.836 million tons of CO2-eq were emitted by the beef production sector equivalent to 46,2 kg CO2-eq per kg carcass weight (CW). From the 1.485 million cattle head spread out over the world, 82% are on extensive grazing systems while only 18% are on high productive intensive systems. Among the top ten beef exporter countries, five are located in Latin America accounting a quarter of the global stock and two of them, Argentina and Uruguay, produce on temperate pastures under grazing systems. In Argentina, the livestock area was reduced in favor of increasing the grain cropping area, which took place in the last two decades. Production systems were intensified to maintain cattle stock. Cattle programs changed from 100% pasture to pasture supplemented with cereal grains and conserved forages, and confinement on grain feeding for fattening was incorporated. Due to land sharing competition with cash crops, no increment of cattle stock is expected therefore improving production efficiency appears as the only way to increase beef production while reducing methane emissions intensity. Beef produced on intensive grazing systems on supplemented pastures maintained organoleptic, nutritional and lipid profile than that of beef produced on pure grazing systems. PMID:25027797

  7. Enrichment of specific electro-active microorganisms and enhancement of methane production by adding granular activated carbon in anaerobic reactors.

    Science.gov (United States)

    Lee, Jung-Yeol; Lee, Sang-Hoon; Park, Hee-Deung

    2016-04-01

    Direct interspecies electron transfer (DIET) via conductive materials can provide significant benefits to anaerobic methane formation in terms of production amount and rate. Although granular activated carbon (GAC) demonstrated its applicability in facilitating DIET in methanogenesis, DIET in continuous flow anaerobic reactors has not been verified. Here, evidences of DIET via GAC were explored. The reactor supplemented with GAC showed 1.8-fold higher methane production rate than that without GAC (35.7 versus 20.1±7.1mL-CH4/d). Around 34% of methane formation was attributed to the biomass attached to GAC. Pyrosequencing of 16S rRNA gene demonstrated the enrichment of exoelectrogens (e.g. Geobacter) and hydrogenotrophic methanogens (e.g. Methanospirillum and Methanolinea) from the biomass attached to GAC. Furthermore, anodic and cathodic currents generation was observed in an electrochemical cell containing GAC biomass. Taken together, GAC supplementation created an environment for enriching the microorganisms involved in DIET, which increased the methane production rate. PMID:26836607

  8. Atmospheric Methane Contributions From Fractured Bedrock Aquifers

    Science.gov (United States)

    Marrin, D. L.

    2013-05-01

    Groundwater is not normally considered as an important contributor of atmospheric methane because the organic carbon content of aquifers is too low to sustain significant methanogenesis. Also, groundwater-generated methane partitions into the gas phase of the overlying soil, where it either dissolves in the pore water or is oxidized to carbon dioxide by methanotrophs. There are, however, localized conditions (related to human activities and hydrogeologic conditions) under which atmospheric contributions of groundwater-generated methane occur at the ground surface. Storing and transporting liquid petroleum products in the subsurface has resulted in the local introduction of high concentrations of degradable organic carbon and the creation of redox conditions that favor methanogenesis over more oxidative biodegradation pathways. Groundwater overlain by fractured bedrock, rather than by unconsolidated porous media, creates a situation where CH4 migrates through discrete fractures, thus limiting the soil volume and the surface area available for methanotrophic activity. The spatial distribution of methane in thin surface soils overlying bedrock suggests that CH4 migrates via fracture networks and that CH4 oxidation is a factor of about 50 less than that measured in typical unconsolidated soils. Atmospheric flux rates associated with contaminated bedrock aquifers were on the order of several grams of carbon (as CH4) per square meter, which is less than that reported for well documented sources (e.g., rice paddies) and probably represents a minor worldwide contribution. Nonetheless, these aquifers can represent an important localized source, can shift soils from a sink to a source of methane, and can permit petroleum products to load carbon (as biogenic CH4 and CO2) to the atmosphere without ever being combusted.

  9. Agricultural methanization

    International Nuclear Information System (INIS)

    After having briefly outlined the interest of the development of methanization of agricultural by-products in the context of struggle against climate change, and noticed that France is only now developing this sector as some other countries already did, this publication describes the methanization process also called anaerobic digestion, which produces a digestate and biogas. Advantages for the agriculture sector are outlined, as well as drawbacks and recommendations (required specific technical abilities, an attention to the use of energetic crops, an improved economic balance which still depends on public subsidies, competition in the field of waste processing). Actions undertaken by the ADEME are briefly evoked

  10. Effect of phytochemical and coconut oil supplementation on rumen ecology and methane production in ruminants

    International Nuclear Information System (INIS)

    Four, native beef cattle were used to determine the effect of phytochemical and coconut oil on rumen ecology and ruminal methane gas. The animals were housed in individual pens and fed with rice straw and concentrate containing 7% coconut oil (CCO) or supplemented with 100g mangosteen peel powder (MSP, Garcinia Mangostana), 100g soap berry tree fruit (SBF, Sapindus rarak) or with no supplement (NS). Feeding regimes lasted for 3 weeks and sampling of feeds, rumen fluid and gas measurements were done during the last 3 days. Animals received SBF had lowest (P 0.75), however, CCO supplemented group had highest (P 0.75. The OM and NDF digestibility were found lowest (P 4 : BW, L/kg) was significantly highest (P 4:BW): %NDF digestibility), it was found that MSP supplemented group had lowest value but were not significantly different when compared with control and SBF supplemented groups. These results were similar with methane gas production per % NDF digestibility. Quantification of the three predominant cellulolytic bacteria by using real time PCR technique are shown. It was found that CCO supplementation influenced on three species (P < 0.05) and resulted in lower (P < 0.05) total cellulolytic bacterial population. These results reflected on lower OM and NDF digestibility. However, MSP supplemented group had greatest in cellulolytic bacteria population. Supplementation had resulted in variable population of cellulolytic bacteria (P < 0.05), which corresponded with Ngamsaeng et al., who reported that MSP supplementation increased (P < 0.05) bacterial population and total count of bacteria and was highest at 150 g/hd/d. Quantification of Methanogenes population was found that SBF and CCO supplementation could decrease the population, particularly, SBF supplementation had resulted in lowest value (P < 0.05). Based on this study, use of phytochemicals showed potential effect on rumen manipulation especially supplementation with 100 g of mangosteen peel powder

  11. Methane production from a field-scale biofilter designed for desulfurization of biogas stream.

    Science.gov (United States)

    Pirolli, Mateus; da Silva, Márcio Luís Busi; Mezzari, Melissa Paola; Michelon, William; Prandini, Jean Michel; Moreira Soares, Hugo

    2016-07-15

    The development of a simple and low maintenance field-scale biotrickling filter (BTF) for desulfurization of swine wastewater-derived biogas stream that was also capable of increasing biomethane concentrations was investigated. BTF was continuously fed with wastewater effluent from an air sparged nitrification-denitrification bioreactor installed downgradient from an UASB-type digester. BTF maximum removal efficiency (RE) of 99.8% was achieved with a maximum elimination capacity (EC) of 1,509 g H2S m(-3) h(-1). Average EC obtained with inlet biogas flow rates of 0.024, 0.036 and 0.048 m(3) h(-1) was 718, 1,013 and 438 g H2S m(-3) h(-1), respectively. SO4(-2) and S(0) were the major metabolites produced from biological conversion of H2S. Additionally to the satisfactory biodesulfurization capacity, an average increase in methane concentration of ≅ 3.8 ± 1.68 g m(-3) was measured in the filtered gas stream throughout 200 days of BTF operation. RT-PCR analyses of archaea communities in the biofilm confirmed dominance of hydrogenotrophic methanogens thus corroborating with the observed strong correlation between CO2 removal and CH4 production. Among the three major archaea orders investigated (i.e., Methanosarcinales, Methanobacteriales, and Methanomicrobiales), Methanobacteriales were encountered at highest concentrations (1.9 × 10(11) gene copies mL(-1)). The proposed BTF was robust efficiently removing H2S from biogas stream while concomitantly enhancing the concentration of valuable methane as source of renewable fuel. PMID:27093237

  12. Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review

    International Nuclear Information System (INIS)

    With the rapid development of industry, more and more waste gases are emitted into the atmosphere. In terms of total air emissions, CO2 is emitted in the greatest amount, accounting for 99 wt% of the total air emissions, therefore contributing to global warming, the so-called 'Greenhouse Effect'. The recovery and disposal of CO2 from flue gas is currently the object of great international interest. Most of the CO2 comes from the combustion of fossil fuels in power generation, industrial boilers, residential and commercial heating, and transportation sectors. Consequently, in the last years' interest in hydrogen as an energy carrier has significantly increased both for vehicle fuelling and stationary energy production from fuel cells. The benefits of a hydrogen energy policy are the reduction of the greenhouse effect, principally due to the centralization of the emission sources. Moreover, an improvement to the environmental benefits can be achieved if hydrogen is produced from renewable sources, as biomass. The present paper provides an overview of the steam methane reforming (SMR) process and methodologies for performances improvement such as hydrogen removal, by selective permeation through a membrane or simultaneous reaction of the targeted molecule with a chemical acceptor, and equilibrium shift by the addition of a CO2 acceptor to the reactor. In particular, attention was focused on the sorption-enhanced steam methane reforming (SE-SMR) process in which sorbents are added in order to enhance the reactions and realize in situ CO2 separation. The major operating parameters of SE-SMR are described by the authors in order to project and then realize the innovative carbonation reactor developed in previous studies

  13. Thermal regulation of methane hydrate dissociation: Implications for gas production models

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2005-01-01

    Thermal self-regulation of methane hydrate dissociation at pressure, temperature conditions along phase boundaries, illustrated by experiment in this report, is a significant effect with potential relevance to gas production from gas hydrate. In surroundings maintained at temperatures above the ice melting point, the temperature in the vicinity of dissociating methane hydrate will decrease because heat flow is insufficient to balance the heat absorbed by the endothermic reaction: CH4??nH2O (s) = CH4 (g) + nH2O (l). Temperature decreases until either all of the hydrate dissociates or a phase boundary is reached. At pressures above the quadruple point, the temperature-limiting phase boundary is that of the dissociation reaction itself. At lower pressures, the minimum temperature is limited by the H2O solid/liquid boundary. This change in the temperature-limiting phase boundary constrains the pressure, temperature conditions of the quadruple point for the CH4-H2O system to 2.55 ?? 0.02 MPa and 272.85 ?? 0.03 K. At pressures below the quadruple point, hydrate dissociation proceeds as the liquid H2O produced by dissociation freezes. In the laboratory experiments, dissociation is not impeded by the formation of ice byproduct per se; instead rates are proportional to the heat flow from the surroundings. This is in contrast to the extremely slow dissociation rates observed when surrounding temperatures are below the H2O solid/liquid boundary, where no liquid water is present. This "anomalous" or "self" preservation behavior, most pronounced near 268 K, cannot be accessed when surrounding temperatures are above the H2O solid/liquid boundary. ?? 2005 American Chemical Society.

  14. Co-production of hydrogen and carbon nanofibers from methane decomposition over zeolite Y supported Ni catalysts

    International Nuclear Information System (INIS)

    Highlights: • Methane cracking requires an optimum temperature range of 550–600 °C for H2 yield. • At 550 and 600 °C, catalyst showed longer activity for the whole test. • At 600 °C, a 614.25 gc/gNi of carbon was obtained using 30% Ni/Y zeolite catalysts. • Produced filamentous carbon has the same diameter as the metallic nickel itself. • VHSV has reverse and non-linear relevancy to the weight of Ni/Y zeolite catalyst. - Abstract: The objective of this paper is to study the influences of different operating conditions on the hydrogen formation and properties of accumulated carbon from methane decomposition using zeolite Y supported 15% and 30% Ni, respectively, at a temperature range between 500 and 650 °C in a pilot scale fixed bed reactor. The temperature ramp was showed a significant impact on the thermo-catalytic decomposition (TCD) of methane. An optimum temperature range of 550–600 °C were required to attain the maximum amount of methane conversion and revealed that at 550 and 600 °C, catalyst showed longer activity for the whole studied of experimental runs. Additionally, at 550 °C, the methane decomposition is two times longer for 30% Ni/Y zeolite than that for 15% Ni/Y zeolite catalyst, whereas it is almost three times higher at 500 °C. A maximum carbon yield of 614.25 and 157.54 gc/gNi were reported after end of the complete reaction at 600 °C with 30% and 15% Ni/Y zeolite catalyst, respectively. From BET, TPD, and XRD analysis, we had reported that how the chemistry between the TCD of methane and metal content of the catalysts could significantly affect the hydrogen production as well as carbon nano-fibers. TEM analysis ensured that the produced carbon had fishbone type structures with a hollow core and grew from crystallites of Ni anchored on the external surface of the catalysts and irrespective of the metal loadings, the whisker types of nano filaments were formed as confirmed from FESEM analysis. Nevertheless, the effect of

  15. Hydrogen and Carbon Black Production from the Degradation of Methane by Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Leila Cottet

    2014-05-01

    Full Text Available Methane gas (CH4 is the main inducer of the so called greenhouse gases effect. Recent scientific research aims to minimize the accumulation of this gas in the atmosphere and to develop processes capable of producing stable materials with added value. Thermal plasma technology is a promising alternative to these applications, since it allows obtaining H2 and solid carbon from CH4, without the parallel formation of byproducts such as CO2 and NOx. In this work, CH4 was degraded by thermal plasma in order to produce hydrogen (H2 and carbon black. The degradation efficiency of CH4, selectivity for H2 production as well as the characterization of carbon black were studied. The best results were obtained in the CH4 flow rate of 5 L min-1 the degradation percentage and the selectivity for H2 production reached 98.8 % and 48.4 %, respectively. At flow rates of less than 5 L min-1 the selectivity for H2 production increases and reaches 91.9 %. The carbon black has obtained amorphous with hydrophobic characteristics and can be marketed to be used in composite material, and can also be activated chemically and/or physically and used as adsorbent material.

  16. Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition

    Science.gov (United States)

    Ping, Dan; Wang, Chaoxian; Dong, Xinfa; Dong, Yingchao

    2016-04-01

    The co-production of COx-free hydrogen and carbon nanotubes (CNTs) was achieved on 3-dimensional (3D) macroporous nickel foam (NF) via methane catalytic decomposition (MCD) over nano-Ni catalysts using chemical vapor deposition (CVD) technique. By a simple coating of a NiO-Al2O3 binary mixture sol followed by a drying-calcination-reduction treatment, NF supported composite catalysts (denoted as NiyAlOx/NF) with Al2O3 transition-layer incorporated with well-dispersed nano-Ni catalysts were successfully prepared. The effects of Ni loading, calcination temperature and reaction temperature on the performance for simultaneous production of COx-free hydrogen and CNTs were investigated in detail. Catalysts before and after MCD were characterized by XRD, TPR, SEM, TEM, TG and Raman spectroscopy technology. Results show that increasing Ni loading, lowering calcination temperature and optimizing MCD reaction temperature resulted in high production efficiency of COx-free H2 and carbon, but broader diameter distribution of CNTs. Through detailed parameter optimization, the catalyst with a Ni/Al molar ratio of 0.1, calcination temperature of 550 °C and MCD temperature of 650 °C was favorable to simultaneously produce COx-free hydrogen with a growth rate as high as 10.3% and CNTs with uniform size on NF.

  17. Effect of organic load on the performance and methane production of an AnSBBR treating effluent from biodiesel production.

    Science.gov (United States)

    Bezerra, Roberto Antonio; Rodrigues, José Alberto Domingues; Ratusznei, Suzana Maria; Canto, Catarina Simone Andrade; Zaiat, Marcelo

    2011-09-01

    Currently, there is an increasing demand for the production of biodiesel and, consequently, there will be an increasing need to treat wastewaters resulting from the production process of this biofuel. The main objective of this work was, therefore, to investigate the effect of applied volumetric organic load (AVOL) on the efficiency, stability, and methane production of an anaerobic sequencing batch biofilm reactor applied to the treatment of effluent from biodiesel production. As inert support, polyurethane foam cubes were used in the reactor and mixing was accomplished by recirculating the liquid phase. Increase in AVOL resulted in a drop in organic matter removal efficiency and increase in total volatile acids in the effluent. AVOLs of 1.5, 3.0, 4.5 and 6.0 g COD L(-1) day(-1) resulted in removal efficiencies of 92%, 81%, 67%, and 50%, for effluent filtered samples, and 91%, 80%, 63%, and 47%, for non-filtered samples, respectively, whereas total volatile acids concentrations in the effluent amounted to 42, 145, 386 and 729 mg HAc L(-1), respectively. Moreover, on increasing AVOL from 1.5 to 4.5 g COD L(-1) day(-1) methane production increased from 29.5 to 55.5 N mL CH(4) g COD(-1). However, this production dropped to 36.0 N mL CH(4) g COD(-1) when AVOL was increased to 6.0 g COD L(-1) day(-1), likely due to the higher concentration of volatile acids in the reactor. Despite the higher concentration of volatile acids at the highest AVOL, alkalinity supplementation to the influent, in the form of sodium bicarbonate, at a ratio of 0.5-1.3 g NaHCO(3) g COD (fed) (-1) , was sufficient to maintain the pH near neutral and guarantee process stability during reactor operation. PMID:21494753

  18. Methane Emission and Milk Production of Dairy Cows Grazing Pastures Rich in Legumes or Rich in Grasses in Uruguay

    OpenAIRE

    Roberto Gratton; Valentin Picasso; Carolina Briano; Martin Manetti; Paula Juliarena; José Gere; Yoana Dini; Laura Astigarraga

    2012-01-01

    Simple Summary GHGs emissions are relevant in evaluating environmental impact of farming systems. Methane (CH4) produced by enteric fermentation accounts for half of all anthropogenic emissions of GHGs in Uruguay, where ruminant production is based on year round grazing of forages. Here we compared milk production and CH4 emissions by dairy cows grazing two contrasting mixed pastures (rich in legumes or rich in grasses) using the SF6 tracer technique adapted to collect breath samples over 5-d...

  19. Comparison of facility-level methane emission rates from natural gas production well pads in the Marcellus, Denver-Julesburg, and Uintah Basins

    Science.gov (United States)

    Omara, M.; Li, X.; Sullivan, M.; Subramanian, R.; Robinson, A. L.; Presto, A. A.

    2015-12-01

    The boom in shale natural gas (NG) production, brought about by advances in horizontal drilling and hydraulic fracturing, has yielded both economic benefits and concerns about environmental and climate impacts. In particular, leakages of methane from the NG supply chain could substantially increase the carbon footprint of NG, diminishing its potential role as a transition fuel between carbon intensive fossil fuels and renewable energy systems. Recent research has demonstrated significant variability in measured methane emission rates from NG production facilities within a given shale gas basin. This variability often reflect facility-specific differences in NG production capacity, facility age, utilization of emissions capture and control, and/or the level of facility inspection and maintenance. Across NG production basins, these differences in facility-level methane emission rates are likely amplified, especially if significant variability in NG composition and state emissions regulations are present. In this study, we measured methane emission rates from the NG production sector in the Marcellus Shale Basin (Pennsylvania and West Virginia), currently the largest NG production basin in the U.S., and contrast these results with those of the Denver-Julesburg (Colorado) and Uintah (Utah) shale basins. Facility-level methane emission rates were measured at 106 NG production facilities using the dual tracer flux (nitrous oxide and acetylene), Gaussian dispersion simulations, and the OTM 33A techniques. The distribution of facility-level average methane emission rate for each NG basin will be discussed, with emphasis on how variability in NG composition (i.e., ethane-to-methane ratios) and state emissions regulations impact measured methane leak rates. While the focus of this presentation will be on the comparison of methane leak rates among NG basins, the use of three complimentary top-down methane measurement techniques provides a unique opportunity to explore the

  20. Fermentative production of biohydrogen from biogenic raw materials and residues; Fermentative Produktion von Biowasserstoff aus biogenen Roh- und Reststoffen

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, M.; Rechtenbach, D.; Stegmann, R. [Technische Univ. Hamburg-Harburg (Germany). Inst. fuer AbfallRessourcenWirtschaft

    2006-07-01

    Hydrogen (H{sub 2}) is regarded as an energy resource of the future. Thermophilic laboratory studies were carried out on the fermentative production of biohydrogen in three test systems (500 ml Sensomat System, 6 l ATS and 30 l agitated reactor) at 60 C in batch or discontinuous operation using glucose and agricultural products as substrates. Fully digested, heat-pretreated sewage sludge, taken to represent a natural mixed culture, was used as inoculating agent. The highest specific hydrogen production rate was achieved in the agitated reactor with glucose at 5.5 pH, reaching 280 Nml H{sub 2}/ g ODM (112% conversion rate). Maize and potato starch reached 211 Nml H{sub 2}/ g ODM (75% conversion rate) and 123 Nml H{sub 2}/ g ODM (45% conversion rate). The two agricultural products sugar beet (192 Nml H{sub 2}/ g ODM (70% conversion rate) and fodder beet (185 Nml H{sub 2}/ g ODM (65% conversion rate) showed a high potential for biological hydrogen production. Potato, swede and maize and potato peel as a biowaste are also all promising hydrogen producers, reaching degradation rates of 60%, 50%, 49% and 30%, respectively. In discontinuous operation hydrogen production rates reached 0.6 Nl/(I{sub R})xd) to 1.3 Nl/(I{sub R})xd) and yields ranging from 83 to 445 Nml H{sub 2}/ g DM.

  1. Co and Cu ZSM-5 zeolites for the direct production of oxygenates from methane and oxygen

    NARCIS (Netherlands)

    Beznis, N.

    2010-01-01

    The direct partial oxidation of methane to oxygenates still remains one of the greatest challenges in catalysis. Metal-containing zeolites hold great potential for the direct partial oxidation of methane to oxygenates. The nature of the active sites in these materials is, however, still a matter of

  2. Constraining Methane Emissions from Natural Gas Production in Northeastern Pennsylvania Using Aircraft Observations and Mesoscale Modeling

    Science.gov (United States)

    Barkley, Z.; Davis, K.; Lauvaux, T.; Miles, N.; Richardson, S.; Martins, D. K.; Deng, A.; Cao, Y.; Sweeney, C.; Karion, A.; Smith, M. L.; Kort, E. A.; Schwietzke, S.

    2015-12-01

    Leaks in natural gas infrastructure release methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated fugitive emission rate associated with the production phase varies greatly between studies, hindering our understanding of the natural gas energy efficiency. This study presents a new application of inverse methodology for estimating regional fugitive emission rates from natural gas production. Methane observations across the Marcellus region in northeastern Pennsylvania were obtained during a three week flight campaign in May 2015 performed by a team from the National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division and the University of Michigan. In addition to these data, CH4 observations were obtained from automobile campaigns during various periods from 2013-2015. An inventory of CH4 emissions was then created for various sources in Pennsylvania, including coalmines, enteric fermentation, industry, waste management, and unconventional and conventional wells. As a first-guess emission rate for natural gas activity, a leakage rate equal to 2% of the natural gas production was emitted at the locations of unconventional wells across PA. These emission rates were coupled to the Weather Research and Forecasting model with the chemistry module (WRF-Chem) and atmospheric CH4 concentration fields at 1km resolution were generated. Projected atmospheric enhancements from WRF-Chem were compared to observations, and the emission rate from unconventional wells was adjusted to minimize errors between observations and simulation. We show that the modeled CH4 plume structures match observed plumes downwind of unconventional wells, providing confidence in the methodology. In all cases, the fugitive emission rate was found to be lower than our first guess. In this initial emission configuration, each well has been assigned the same fugitive emission rate, which can potentially impair our ability to match the observed spatial variability

  3. Characterization and validation of methane products from the Atmospheric Infrared Sounder (AIRS)

    Science.gov (United States)

    Xiong, Xiaozhen; Barnet, Chris; Maddy, Eric; Sweeney, Colm; Liu, Xingpin; Zhou, Lihang; Goldberg, Mitch

    2008-09-01

    This paper presents the characterization and validation of retrievals of atmospheric methane (CH4) vertical profiles by the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua platform. AIRS channels near 7.6 μm are used for CH4 retrieval, and they are most sensitive to the middle to upper troposphere, i.e., about 200-300 hPa in the tropics and 400-500 hPa in the polar region. The atmospheric temperature-humidity profiles, surface skin temperature, and emissivity required to derive CH4 are obtained from retrievals using separate AIRS channels and the Advanced Microwave Sounding Unit (AMSU). Comparison of AIRS retrieved profiles with some in situ aircraft CH4 profiles implied that the forward model used in the AIRS retrieval system V4.0 required a 2% increase in methane absorption coefficients for strong absorption channels, and this bias adjustment was implemented in the AIRS retrieval system V5.0. As a new operational product in V5.0, AIRS CH4 were validated using in situ aircraft observations at 22 sites of the NOAA Earth System Research Laboratory, Global Monitoring Division (NOAA/ESRL/GMD), ranging from the Arctic to the tropical South Pacific Ocean, but their altitudes are usually above 300 hPa. The results show the bias of the retrieved CH4 profiles for this version is -1.4˜0.1% and its RMS difference is about 0.5-1.6%, depending on altitude. These validation comparisons provide critical assessment of the retrieval algorithm and will continue using more in situ observations together with future improvement to the retrieval algorithm. AIRS CH4 products include not only the CH4 profile but also the information content. As examples, the products of AIRS CH4 in August 2004 and the difference of CH4 in May and September 2004 are shown. From these results a few features are evident: (1) a large AIRS CH4 plume southwest of the Tibetan plateau that may be associated with deep convection during the Asian summer monsoon; (2) high mixing ratios of AIRS CH4 in

  4. Biogenic isoprene and implications for oxidant levels in Beijing during the 2008 Olympic Games

    Science.gov (United States)

    Chang, Chih-Chung; Shao, Min; Chou, Charles C. K.; Liu, Shaw-Chen; Zhu, Tong; Lee, Kun-Zhang; Lai, Cheng-Hsun; Lin, Po-Hsiung; Wang*, Jia-Lin

    2014-05-01

    As the host of the 2008 Summer Olympic Games, Beijing implemented a series of stringent, short-term air quality control measures to reduce the emissions of anthropogenic air pollutants. Large reductions in the daily average concentrations of primary pollutants, e.g., non-methane hydrocarbons (NMHCs) and nitrogen oxides (NOx) of approximately 50% were observed at the air quality observatory of Peking University. Nevertheless, high levels of ozone were present during the control period. Although anthropogenic precursors were greatly reduced, the meteorological conditions in summer, including high temperature and light flux, are conducive to the production of large amounts of biogenic isoprene, which is extremely reactive. The diurnal pattern of isoprene showed daily maximum mixing ratios of 0.83 ppbv at noon and a minimum at night, reflecting its primarily biogenic properties. Using the ratio of isoprene to vehicle exhaust tracers, approximately 92% of the daytime isoprene was estimated from biogenic sources, and only 8% was attributed to vehicular emissions. In terms of OH reactivity and the ozone formation potential (OFP), biogenic isoprene with its midday surge can contribute approximately 20% of the total OFPs and 40-50% of the total OH reactivities of the 65 measured NMHCs during the midday hours. The discrepancy between decreased precursor levels and the observed high ozone was most likely caused by a combination of many factors. The changes in the partition among the components of oxidation products (O3, NO2 and NOz) and the contribution of air pollutants from regional sources outside Beijing should be two primary reasons. Furthermore, the influences of biogenic isoprene as well as the non-linearity of O3-VOC-NOx chemistry are other major concerns that can reduce the effectiveness of the control measures for decreasing ozone formation. Although anthropogenic precursors were greatly reduced during the Olympic Games, the presence of sufficient biogenic isoprene

  5. Biogenic isoprene and implications for oxidant levels in Beijing during the 2008 Olympic Games

    Directory of Open Access Journals (Sweden)

    C.-C. Chang

    2013-10-01

    Full Text Available As the host of the 2008 Summer Olympic Games, Beijing implemented a series of stringent, short-term air quality control measures to reduce the emissions of anthropogenic air pollutants. Large reductions in the daily average concentrations of primary pollutants, e.g., non-methane hydrocarbons (NMHCs and nitrogen oxides (NOx of approximately 50% were observed at the air quality observatory of Peking University. Nevertheless, high levels of ozone were present during the control period. Although anthropogenic precursors were greatly reduced, the meteorological conditions in summer, including high temperature and light flux, are conducive to the production of large amounts of biogenic isoprene, which is extremely reactive. The diurnal pattern of isoprene showed daily maximum mixing ratios of 0.83 ppbv at noon and a minimum at night, reflecting its primarily biogenic properties. Using the ratio of isoprene to vehicle exhaust tracers, approximately 92% of the daytime isoprene was estimated from biogenic sources, and only 8% was attributed to vehicular emissions. In terms of OH reactivity and the ozone formation potential (OFP, biogenic isoprene with its midday surge can contribute approximately 20% of the total OFPs and 40–50% of the total OH reactivities of the 65 measured NMHCs during the midday hours. The discrepancy between decreased precursor levels and the observed high ozone was most likely caused by a combination of many factors. The changes in the partition among the components of oxidation products (O3, NO2 and NOz and the contribution of air pollutants from regional sources outside Beijing should be two primary reasons. Furthermore, the influences of biogenic isoprene as well as the non-linearity of O3-VOC-NOx chemistry are other major concerns that can reduce the effectiveness of the control measures for decreasing ozone formation. Although anthropogenic precursors were greatly reduced during the Olympic Games, sufficient biogenic

  6. The Deep-Sea Natural Products, Biogenic Polyphosphate (Bio-PolyP and Biogenic Silica (Bio-Silica, as Biomimetic Scaffolds for Bone Tissue Engineering: Fabrication of a Morphogenetically-Active Polymer

    Directory of Open Access Journals (Sweden)

    Florian Draenert

    2013-03-01

    Full Text Available Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fabricate a template that is functioning in a way mimicking the morphogenetic, inductive role(s of the native extracellular matrix. In the last few years, two naturally occurring polymers that are produced by deep-sea sponges, the biogenic polyphosphate (bio-polyP and biogenic silica (bio-silica have also been identified as promoting morphogenetic on both osteoblasts and osteoclasts. These polymers elicit cytokines that affect bone mineralization (hydroxyapatite formation. In this manner, bio-silica and bio-polyP cause an increased release of BMP-2, the key mediator activating the anabolic arm of the hydroxyapatite forming cells, and of RANKL. In addition, bio-polyP inhibits the progression of the pre-osteoclasts to functionally active osteoclasts. Based on these findings, new bioinspired strategies for the fabrication of bone biomimetic templates have been developed applying 3D-printing techniques. Finally, a strategy is outlined by which these two morphogenetically active polymers might be used to develop a novel functionally active polymer.

  7. Widespread non-microbial methane production by organic compounds and the impact of environmental stresses

    Science.gov (United States)

    Wang, Zhi-Ping; Chang, Scott X.; Chen, Hua; Han, Xing-Guo

    2013-12-01

    Non-microbial methane (CH4) production is more pervasive in nature than previously thought, but it has received less attention than microbial CH4 production. Non-microbial CH4 is produced commonly by an instantaneous reaction involving organic compounds under environmental stresses, without enzymatic catalysis by methanogenic archaea. In addition to the widely known sources of non-microbial CH4, i.e., energy usage, biomass burning, and geological emissions, non-microbial CH4 emissions from plants, animals, fungi, soils, and surface waters of oceans have been recently reported. In most ecosystems, microbial and non-microbial CH4 production co-occur and/or alternate depending on the conditions, and thus CH4 emission in terrestrial ecosystems represents a mixture of microbial and non-microbial CH4 production. Global CH4 emission was estimated at 582 Tg yr- 1 over the 2000-2004 period, where geological sources of non-microbial CH4 were not included. When geological sources are included, total emissions will likely not increase but its partition among the individual sources would change, and emissions of non-microbial CH4 might account for approximately 40% of the global total. This fraction would slightly increase if non-microbial CH4 emissions of plants, animals, fungi and soils in terrestrial ecosystems and surface waters of oceans are considered, although no global estimates for those fractions currently exist. The stable isotope signatures of C and H in CH4 may be a useful tool for identifying the source of CH4. Based on this review of the literature, we conclude that non-microbial CH4 production may occur in any organism or dead organic matter when organic compounds are exposed to environmental stresses.

  8. Regulation of anaerobic methane oxidation in sediments of the Black Sea

    Directory of Open Access Journals (Sweden)

    N. J. Knab

    2009-08-01

    Full Text Available Anaerobic oxidation of methane (AOM and sulfate reduction (SRR were investigated in sediments of the western Black Sea, where upward methane transport is controlled by diffusion. To understand the regulation and dynamics of methane production and oxidation in the Black Sea, rates of methanogenesis, AOM, and SRR were determined using radiotracers in combination with pore water chemistry and stable isotopes. In the Danube Canyon and the Dnjepr palaeo-delta AOM did not consume methane effectively and upwards diffusing methane created an extended sulfate-methane transition zone (SMTZ that spread over more than 2.5 m and was located in brackish and limnic sediment. Measurable AOM rates occurred mainly in the lower part of the SMTZ, sometimes even at depths where sulfate seemed to be unavailable. The inefficiency of methane oxidation appears to be linked to the paleoceanographic history of the sediment, since in all cores methane was completely oxidized at the transition from the formerly oxic brackish clays to marine anoxic sediments. The upward tailing of methane was less pronounced in a core from the deep sea in the area of the Dnjepr Canyon, the only station with a SMTZ close to the marine deposits. Sub-surface sulfate reduction rates were mostly extremely low, and in the SMTZ were even lower than AOM rates. Rates of bicarbonate-based methanogenesis were below detection limit in two of the cores, but δ13C values of methane indicate a biogenic origin. The most δ13C- depleted isotopic signal of methane was found in the SMTZ of the core from the deep sea, most likely as a result of carbon recycling between AOM and methanogenesis.

  9. Dynamics of the methane profile through the water column of meromictic Fayetteville Green Lake, N.Y

    Science.gov (United States)

    McClure, B. E.; Havig, J. R.; Sowers, T. A.; Hamilton, T. L.; McCormick, M.; Kump, L. R.

    2013-12-01

    Green Lake in Fayetteville, N.Y. is a meromictic lake with a chemocline approximately 21 meters below the surface where redox chemistry shifts from micro-aerobic to euxinic, and a purple- and green- sulfur bacterial plate is a predominant feature. Historic data, mirrored by our recent (November 2012) high-resolution sampling and analysis, document a monimolimnion methane concentration profile that increases nearly linearly with depth to the bottom sediments. Gas chromatography (GC) and Flame Ionization Detection (FID) analyses reveal concentrations exceeding20 μM CH4 at 30 cm depth in the sediments, lower concentrations ranging from ~5 μM CH4 at 44 m to 1.5 μM CH4 at 21.75 m in the water column, and decreased concentrations with an average of 0.12 μM CH4 from 21 m through the chemocline and the oxic zone, demonstrating a diffusive trend from sediments to the chemocline. However, our findings exhibit a departure from linearity from 21-30 meters in which methane concentrations were higher than expected if the sediments were the sole source of methane. We incubated biomass collected from 24 m (June 2013) to examine the source of this unexpected ';hump' in methane concentrations in the water column. To date, no methane production has been observed. Isotopic analysis for δ 13C in CH4 of seven water samples collected from depths above, below and in the methane ';hump' indicate that methane present in the water column is biogenic. Furthermore, the δ 13C values observed, approximately -100‰, indicate biologically- mediated cycling of methane. δ13C values of dissolved inorganic carbon (DIC) indicate input of oxidized methane. These findings suggest that two sources of methane with similar isotopic compositions exist, one diffusing from lake-bottom sediments and the other laterally injected from seeps at or near the chemocline, with consumption near the base of the chemocline. Coupled geochemical analyses show that sulfide and ammonia exhibit a similar concentration

  10. Methane Production from Rice Straw Hydrolysate Treated with Dilute Acid by Anaerobic Granular Sludge.

    Science.gov (United States)

    Cheng, Jing-Rong; Liu, Xue-Ming; Chen, Zhi-Yi

    2016-01-01

    The traditional anaerobic digestion process of straw to biogas faces bottlenecks of long anaerobic digestion time, low digestion rate, less gas production, etc., while straw hydrolysate has the potential to overcome these drawbacks. In this study, the dilute sulphuric acid-treated hydrolysate of rice straw (DSARSH) containing high sulfate was firstly proved to be a feasible substrate for methane production under mesophilic digestion by granular sludge within a short digestion time. Batch anaerobic digestion process was operated under different initial chemical oxygen demand (COD) values at temperature of 37 °C with the pH of 8.5. Among the initial COD values ranging from 3000 to 11,000 mg/L, 5000 mg/L was proved to be the most appropriate considering high COD removal efficiency (94.17 ± 1.67 %), CH4 content (65.52 ± 3.12 %), and CH4 yield (0.346 ± 0.008 LCH4/g COD removed) within 120 h. Furthermore, when the studied system operated at the initial COD of 5000 mg/L, the sulfate removal ratio could reach 56.28 %. PMID:26378012

  11. Methane emission from sewers.

    Science.gov (United States)

    Liu, Yiwen; Ni, Bing-Jie; Sharma, Keshab R; Yuan, Zhiguo

    2015-08-15

    Recent studies have shown that sewer systems produce and emit a significant amount of methane. Methanogens produce methane under anaerobic conditions in sewer biofilms and sediments, and the stratification of methanogens and sulfate-reducing bacteria may explain the simultaneous production of methane and sulfide in sewers. No significant methane sinks or methanotrophic activities have been identified in sewers to date. Therefore, most of the methane would be emitted at the interface between sewage and atmosphere in gravity sewers, pumping stations, and inlets of wastewater treatment plants, although oxidation of methane in the aeration basin of a wastewater treatment plant has been reported recently. Online measurements have also revealed highly dynamic temporal and spatial variations in methane production caused by factors such as hydraulic retention time, area-to-volume ratio, temperature, and concentration of organic matter in sewage. Both mechanistic and empirical models have been proposed to predict methane production in sewers. Due to the sensitivity of methanogens to environmental conditions, most of the chemicals effective in controlling sulfide in sewers also suppress or diminish methane production. In this paper, we review the recent studies on methane emission from sewers, including the production mechanisms, quantification, modeling, and mitigation. PMID:25889543

  12. Influence of the immobilized yeast cells technology on the presence of biogenic amines in wine

    OpenAIRE

    Miličević, Borislav; Šubarić, Drago; Babić, Jurislav; Ačkar, Đurđica; Jozinović, Antun; Petošić, Emil; Matijević, Anita

    2014-01-01

    Biogenic amines are basic nitrogenous low molecular weight compounds with biological activity. Biogenic amines are important because they contain a health risk for sensitive humans. Biogenic amines in the wine can be formed from their precursors by various microorganisms present in the wine, at any stage of production. The aim of the present work was to study the changes of the content of biogenic amines in wines made from grape variety Frankovka and Pinot noir (Vitis vinifera L.) from Kutjev...

  13. Effects of multi-nutrient feed supplement in beef cattle on methane production, manure quality and rice yield

    International Nuclear Information System (INIS)

    The objective of the experiments was to determine the effect of a multi-nutrient feed supplement (MFS) on methane production, and the effect of processing on animal waste to produce compost to improve crop production. Methane is one of the gases that contribute towards global warming and a significant proportion of global methane is produced by rumen fermentation and the breakdown of animal waste. The first of the integrated experimental program carried was the effect of the additional MFS in corn leaf silage with concentrate diet compared to MFS in a low quality of basal diet (rice straw) with a concentrate in beef cattle. Rumen fermentation products including methane gas production were measured along with digestibility, and DLWG. The second phase of the experiment involved the measurement of manures for the nutrient content of the compost and the effect of compost applications on rice yield. The results of the Experiment 1 showed that MFS supplementation increase dry matter digestibility by 15.6%, feed consumption by 7.5%, DLWG by 200% and improve the feed conversion ratio by 187%. The enhanced nutrition improved microbial populations and decreasing methane product from 88.0 to 21.7 mM. The result of the in vitro study found that the feed commonly supplied by farmers to their animal could be improved by the use of MFS with methane production decreasing from 42 ml to 25 ml. An in vivo experiment using the same rations showed an increase of 5.9, 11.4, 6.6, 4.6, 26.4% in DM consumption, CP consumption, GE consumption, DM digestibility and DLWG, respectively, and improving feed efficiency by 21.3%. N total content of compost derived from control and MFS feeding treatments without and with improved manure management was 168, 156, 150 and 146 g/day. Compost application to paddy rice also increased rice yields 76.5% for dried rice harvesting, and 67.4% for dried rice milling. (author)

  14. Geothermal source potential and utilization for methane generation and alcohol production

    Energy Technology Data Exchange (ETDEWEB)

    Austin, J.C.

    1981-11-01

    A study was conducted to assess the technical and economic feasibility of integrating a geothermally heated anaerobic digester with a fuel alcohol plant and cattle feedlot. Thin stillage produced from the alcohol production process and manure collected from the cattle feedlot would be digested in anaerobic digesters to produce biogas, a mixture of methane and carbon dioxide, and residue. The energy requirements to maintain proper digester temperatures would be provided by geothermal water. The biogas produced in the digesters would be burned in a boiler to produce low-pressure steam which would be used in the alcohol production process. The alcohol plant would be sized so that the distiller's grains byproduct resulting from the alcohol production would be adequate to supply the daily cattle feed requirements. A portion of the digester residue would substitute for alfalfa hay in the cattle feedlot ration. The major design criterion for the integrated facilty was the production of adequate distiller's grain to supply the daily requirements of 1700 head of cattle. It was determined that, for a ration of 7 pounds of distiller's grain per head per day, a 1 million gpy alcohol facility would be required. An order-of-magnitude cost estimate was prepared for the proposed project, operating costs were calculated for a facility based on a corn feedstock, the economic feasibility of the proposed project was examined by calculating its simple payback, and an analysis was performed to examine the sensitivity of the project's economic viability to variations in feedstock costs and alcohol and distiller's grain prices.

  15. Enhanced coal bed methane production and sequestration of CO2 in unmineable coal

    Energy Technology Data Exchange (ETDEWEB)

    Locke, James [CONSOL Energy Inc., South Park, PA (United States); Winschel, Richard [CONSOL Energy Inc., South Park, PA (United States)

    2005-03-01

    The Marshall County Project was undertaken by CONSOL Energy Inc. (CONSOL) with partial funding from the U. S. Department of Energy’s (DOE) Carbon Storage Program (CSP). The project, initiated in October 2001, was conducted to evaluate opportunities for carbon dioxide CO2 sequestration in an unmineable coal seam in the Northern Appalachian Basin with simultaneous enhanced coal bed methane recovery. This report details the final results from the project that established a pilot test in Marshall County, West Virginia, USA, where a series of coal bed methane (CBM) production wells were developed in an unmineable coal seam (Upper Freeport (UF)) and the overlying mineable Pittsburgh (PIT) seam. The initial wells were drilled beginning in 2003, using slant-hole drilling procedures with a single production leg, in a down-dip orientation that provided limited success. Improved well design, implemented in the remaining wells, allowed for greater CBM production. The nearly-square-shaped project area was bounded by the perimeter production wells in the UF and PIT seams encompassing an area of 206 acres. Two CBM wells were drilled into the UF at the center of the project site, and these were later converted to serve as CO2 injection wells through which, 20,000 short tons of CO2 were planned to be injected at a maximum rate of 27 tons per day. A CO2 injection system comprised of a 50-ton liquid CO2 storage tank, a cryogenic pump, and vaporization system was installed in the center of the site and, after obtaining a Class II underground injection permit (UIC) permit from the West Virginia Department of Environmental Protection (WVDEP), CO2 injection, through the two center wells, into the UF was initiated in September 2009. Numerous complications limited CO2 injection continuity, but CO2 was injected until breakthrough was encountered in September 2013, at which point the project had achieved an injection total of 4,968 tons of CO2. During the injection and post

  16. Methane Emissions from Conventional and Unconventional Natural Gas Production Sites in the Marcellus Shale Basin.

    Science.gov (United States)

    Omara, Mark; Sullivan, Melissa R; Li, Xiang; Subramanian, R; Robinson, Allen L; Presto, Albert A

    2016-02-16

    There is a need for continued assessment of methane (CH4) emissions associated with natural gas (NG) production, especially as recent advancements in horizontal drilling combined with staged hydraulic fracturing technologies have dramatically increased NG production (we refer to these wells as "unconventional" NG wells). In this study, we measured facility-level CH4 emissions rates from the NG production sector in the Marcellus region, and compared CH4 emissions between unconventional NG (UNG) well pad sites and the relatively smaller and older "conventional" NG (CvNG) sites that consist of wells drilled vertically into permeable geologic formations. A top-down tracer-flux CH4 measurement approach utilizing mobile downwind intercepts of CH4, ethane, and tracer (nitrous oxide and acetylene) plumes was performed at 18 CvNG sites (19 individual wells) and 17 UNG sites (88 individual wells). The 17 UNG sites included four sites undergoing completion flowback (FB). The mean facility-level CH4 emission rate among UNG well pad sites in routine production (18.8 kg/h (95% confidence interval (CI) on the mean of 12.0-26.8 kg/h)) was 23 times greater than the mean CH4 emissions from CvNG sites. These differences were attributed, in part, to the large size (based on number of wells and ancillary NG production equipment) and the significantly higher production rate of UNG sites. However, CvNG sites generally had much higher production-normalized CH4 emission rates (median: 11%; range: 0.35-91%) compared to UNG sites (median: 0.13%, range: 0.01-1.2%), likely resulting from a greater prevalence of avoidable process operating conditions (e.g., unresolved equipment maintenance issues). At the regional scale, we estimate that total annual CH4 emissions from 88 500 combined CvNG well pads in Pennsylvania and West Virginia (660 Gg (95% CI: 500 to 800 Gg)) exceeded that from 3390 UNG well pads by 170 Gg, reflecting the large number of CvNG wells and the comparably large fraction of

  17. The trophic reliance of methane in the benthic food web: natural versus anthropogenic drivers

    OpenAIRE

    Belle, Simon Van; Millet, Laurent; Verneaux, Valerie; Etienne, Dambrine; Murgia, Laurie; Andrea LAMI; Musazzi, Simona; Parent, Claire; Magny, Michel

    2015-01-01

    It is now widely recognized that biogenic methane can contribute up to 80% of the chironomid biomass in case of hypoxic tropholytic zone. However, several studies have revealed that hypoxic deep conditions can appear more or less abruptly through time, suggesting that the biogenic methane contribution is not the 'reference' functioning in most lakes. This study aims at identifying the causes of the trophic reliance of methane ('TRM') activation, and to understand the environmental conditions ...

  18. Effects of a combination of feed additives on methane production, diet digestibility, and animal performance in lactating dairy cows.

    Science.gov (United States)

    van Zijderveld, S M; Fonken, B; Dijkstra, J; Gerrits, W J J; Perdok, H B; Fokkink, W; Newbold, J R

    2011-03-01

    Two experiments were conducted to assess the effects of a mixture of dietary additives on enteric methane production, rumen fermentation, diet digestibility, energy balance, and animal performance in lactating dairy cows. Identical diets were fed in both experiments. The mixture of feed additives investigated contained lauric acid, myristic acid, linseed oil, and calcium fumarate. These additives were included at 0.4, 1.2, 1.5, and 0.7% of dietary dry matter, respectively (treatment ADD). Experimental fat sources were exchanged for a rumen inert source of fat in the control diet (treatment CON) to maintain isolipidic rations. Cows (experiment 1, n=20; experiment 2, n=12) were fed restricted amounts of feed to avoid confounding effects of dry matter intake on methane production. In experiment 1, methane production and energy balance were studied using open-circuit indirect calorimetry. In experiment 2, 10 rumen-fistulated animals were used to measure rumen fermentation characteristics. In both experiments animal performance was monitored. The inclusion of dietary additives decreased methane emissions (g/d) by 10%. Milk yield and milk fat content tended to be lower for ADD in experiment 1. In experiment 2, milk production was not affected by ADD, but milk fat content was lower. Fat- and protein-corrected milk was lower for ADD in both experiments. Milk urea nitrogen content was lowered by ADD in experiment 1 and tended to be lower in experiment 2. Apparent total tract digestibility of fat, but not that of starch or neutral detergent fiber, was higher for ADD. Energy retention did not differ between treatments. The decrease in methane production (g/d) was not evident when methane emission was expressed per kilogram of milk produced. Feeding ADD resulted in increases of C12:0 and C14:0 and the intermediates of linseed oil biohydrogenation in milk in both experiments. In experiment 2, ADD-fed cows tended to have a decreased number of protozoa in rumen fluid when

  19. DEVELOPMENT OF A METHANE-FREE, CONTINUOUS BIOHYDROGEN PRODUCTION SYSTEM FROM PALM OIL MILL EFFLUENT (POME IN CSTR

    Directory of Open Access Journals (Sweden)

    MARIATUL FADZILLAH MANSOR

    2016-08-01

    Full Text Available This study aimed to develop the start-up experiment for producing biological hydrogen in 2 L continuous stirred tank reactor (CSTR from palm oil mill effluent (POME by the use of mixed culture sludge under non-sterile conditions. Besides using different source of starter culture, the effects of acid treated culture and various operating temperature from 35 °C to 55 °C were studied against the evolved gas in terms of volumetric H2 production rate (VHPR and soluble metabolite products (SMPs. The formation of methane was closely observed throughout the run. Within the studied temperature, VHPR was found as low as 0.71 L/L.d and ethanol was the main by-products (70-80% of total soluble metabolites. Attempts were made to produce biohydrogen without methane formation at higher thermophilic temperature (45-55 °C than the previous range. The average of 1.7 L H2 of 2 L working volume per day was produced at 55 oC with VHPR of 1.16 L/L.d. The results of soluble metabolites also are in agreement with the volatile fatty acids (VFAs which is higher than ethanol. Higher VFAs of 2269 mg/L was obtained with acetic acid being the main by-product. At this time methanogen has been deactivated and no methane was produced. From this study, it can be concluded that thermophilic environment may offer a better option in a way to eliminate methane from the biogas and at the same time improving hydrogen production rate as well.

  20. Anaerobic co-digestion of canola straw and buffalo dung: optimization of methane production in batch experiments

    International Nuclear Information System (INIS)

    In several regions of the Pakistan, crop cultivation is leading to the production crop residues and its disposal problems. It has been suggested that the co-digestion of the crop residues with the buffalo dung might be a disposal way for the wasted portion of the crops residue. The objective of present study was to optimize the anaerobic co-digestion of canola straw and the buffalo dung through batch experiments in order to obtain maximum methane production. The optimization was carried out in three stages. In first stage, the best canola straw to buffalo dung ratio was evaluated. In second stage, the best concentration of sodium hydrogen carbonate was assessedas the alkaline pretreatment chemical, whereas in the third stage most suitable particle size of the canola strawwas evaluated. The assessment criteria for the optimization of a co-digestion were cumulative methane production and ABD (Anaerobic Biodegradability). The results yield that anaerobic co-digestibility of the canola straw and the buffalo dung is obviously influenced by all the three factors of optimization. The maximum methane production was obtained as 911 NmL from the canola straw to buffalo dung ratio of 40:60, the alkaline doze of 0.6 gNaHCO/sub 3/ gVS and canola straw particle size of 2mm. However, because of the higher shredding cost to produce 2mm sized canola straw, particle size 4mm could be the best canola straw particle size. (author)

  1. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    Science.gov (United States)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  2. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge.

    Science.gov (United States)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-01-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them. PMID:27166174

  3. In vitro Fermentation, Digestion Kinetics and Methane Production of Oilseed Press Cakes from Biodiesel Production.

    Science.gov (United States)

    Olivares-Palma, S M; Meale, S J; Pereira, L G R; Machado, F S; Carneiro, H; Lopes, F C F; Maurício, R M; Chaves, A V

    2013-08-01

    Following the extraction of oil for biodiesel production, oilseed press cakes are high in fat. As the dietary supplementation of fat is currently considered the most promising strategy of consistently depressing methanogenesis, it follows that oilseed press cakes may have a similar potential for CH4 abatement. As such, this study aimed to characterise the nutritive value of several oilseed press cakes, glycerine and soybean meal (SBM) and to examine their effects on in vitro ruminal fermentation, digestion kinetics and CH4 production. Moringa press oil seeds exhibited the greatest in sacco effective degradability (ED) of DM and CP (pMoringa oilseed press cakes produced the lowest CH4 (mg/g digested DM) at 6 and 12 h of incubation (pmoringa oilseed press cake at 400 g/kg DM has the greatest potential of the oilseed press cakes examined in this study, to reduce CH4 production, without adversely affecting nutrient degradability. PMID:25049890

  4. Methane production and growth of microorganisms under different moisture conditions in soils with added chitin and without it

    Science.gov (United States)

    Manucharova, N. A.; Yaroslavtsev, A. M.; Kornyushenko, E. G.; Stepanov, A. L.; Smagin, A. V.; Zvyagintsev, D. G.; Sudnitsyn, I. I.

    2007-08-01

    The limits of soil moisture providing the possibility of methane production and growth of microorganisms in soils with added chitin and without it were determined. Samples of gray forest, soddy-podzolic, gley taiga, chestnut, and chernozemic soils were studied. It was found that methane emission increases significantly under a high soil moisture content in the presence of chitin. The increase of the soil moisture up to the maximum water-holding capacity enhanced the emission of methane by two-six times. The dynamics of the methane emission from the soils in the course of microbial successions initiated by the addition of chitin or by the soil moistening to different levels were studied by the gas-chromatographic method. The population density and biomass of fungal, bacterial, and actinomycetic complexes under different moister levels were studied by the method of luminescent microscopy. It was determined that many microorganisms participate in the transformation of chitin in the soil under conditions of oxygen deficiency (upon the increased moisture content). Prokaryotes dominated by actinomycetes were the group that increased its biomass most actively (the biomass doubling took place).

  5. Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system

    International Nuclear Information System (INIS)

    Highlights: • The production behaviors of methane hydrate are obtained in the 3-D simulator. • The thermal stimulation method with a five-spot well is used for hydrate production. • The water and gas production, efficiency, recovery, production rate are analyzed. • The effect of injection rate change on the production behavior is investigated. - Abstract: The cubic hydrate simulator (CHS) is used to study the methane hydrate production behaviors in porous media by the thermal stimulation with a five-spot well system. The hot water injection rates range from 10.0 to 40.0 ml/min. The thermal stimulation process is analyzed, and the conclusions are that the hydrate decomposition boundary moves from the central point to the surroundings gradually and finally covers almost the entire hydrate field in the CHS during the thermal stimulation process. The heat conduction plays a more significant role than the convection for the heat diffusion in the thermal stimulation process. The increasing injection rate of the hot water enhances the rate of hydrate decomposition, shortens the production time, and decreases the water production volumes, while it has little influence on the final gas production volumes. Furthermore, the change of the hot water injection rate (Rinj) has little influence on the final gas recovery, however, the higher Rinj leads to the higher average production rate and the lower energy efficiency

  6. Invited review: Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions.

    Science.gov (United States)

    Knapp, J R; Laur, G L; Vadas, P A; Weiss, W P; Tricarico, J M

    2014-01-01

    Many opportunities exist to reduce enteric methane (CH4) and other greenhouse gas (GHG) emissions per unit of product from ruminant livestock. Research over the past century in genetics, animal health, microbiology, nutrition, and physiology has led to improvements in dairy production where intensively managed farms have GHG emissions as low as 1 kg of CO2 equivalents (CO2e)/kg of energy-corrected milk (ECM), compared with >7 kg of CO2 e/kg of ECM in extensive systems. The objectives of this review are to evaluate options that have been demonstrated to mitigate enteric CH4 emissions per unit of ECM (CH4/ECM) from dairy cattle on a quantitative basis and in a sustained manner and to integrate approaches in genetics, feeding and nutrition, physiology, and health to emphasize why herd productivity, not individual animal productivity, is important to environmental sustainability. A nutrition model based on carbohydrate digestion was used to evaluate the effect of feeding and nutrition strategies on CH4/ECM, and a meta-analysis was conducted to quantify the effects of lipid supplementation on CH4/ECM. A second model combining herd structure dynamics and production level was used to estimate the effect of genetic and management strategies that increase milk yield and reduce culling on CH4/ECM. Some of these approaches discussed require further research, but many could be implemented now. Past efforts in CH4 mitigation have largely focused on identifying and evaluating CH4 mitigation approaches based on nutrition, feeding, and modifications of rumen function. Nutrition and feeding approaches may be able to reduce CH4/ECM by 2.5 to 15%, whereas rumen modifiers have had very little success in terms of sustained CH4 reductions without compromising milk production. More significant reductions of 15 to 30% CH4/ECM can be achieved by combinations of genetic and management approaches, including improvements in heat abatement, disease and fertility management, performance

  7. Methane production potentials in a thermokarst lake and its underlying permafrost

    Science.gov (United States)

    Heslop, J.; Walter Anthony, K. M.; Sepulveda-Jauregui, A.; Martinez-Cruz, K.

    2013-12-01

    Thermokarst lakes, formed in permafrost-thaw depressions, are known sources of atmospheric methane (CH4) and carbon dioxide (CO2) but the location of gas production in a thermokarst-lake environment is not well constrained. This study compares CH4 and CO2 production potentials of samples collected from various depths along a 5-m deep lake sediment core and an adjacent 40-m deep undisturbed permafrost profile, allowing for direct determination as to where CH4 and CO2 are originating within an active thermokarst-lake landscape. Vault Lake and Vault Creek Permafrost Tunnel are located approximately 40 km north of Fairbanks, Alaska in a region characterized by yedoma permafrost. The Vault Lake sediment core, collected in the center of a ~4000 m2 lake, captured the surface lake sediments, talik (thaw bulb), and the permafrost actively thawing beneath the lake for comparison to parallel permafrost soil samples from the Vault Creek Permafrost Tunnel. Samples were analyzed for bulk density, ice and water content, organic and inorganic carbon content, C:N ratios, and water-soluble organic C. Initial soil organic matter (SOM) composition was characterized using Fourier transform infrared (FTIR) spectroscopy and pyrolysis-gas chromatography/mass spectrometry (py-GC/MS). CH4 and CO2 production potentials and their stable carbon isotope values from 21 depths along the lake core and 17 depths along the permafrost tunnel were measured in anaerobic laboratory incubations. We incubated samples at four temperatures (0 C, 3 C, 10 C and 25 C) to test the potential response of methanogenesis to increasing temperature in scenarios of future climate warming. Preliminary results suggest methanogenesis is highest in the top 1 m of the Vault Lake core and at the base of the talik, which is the permafrost thaw front beneath the lake.

  8. Methane dry reforming catalysts for the production of hydrogen and carbon monoxide

    International Nuclear Information System (INIS)

    The reaction of carbon dioxide reforming of methane (dry reforming) is a very attractive way to convert low-cost reactants in synthesis gas (CO + H2).Moreover, the reaction also has very important environmental effects because both methane and carbon dioxide are greenhouse gases, and may become valuable raw materials. One of the advantages of the dry reforming compared with the conventional steam reforming is the low H2:CO relationship in the product, which is preferred for the synthesis of oxoalcohols and oxygenated compounds. Although noble metals based catalysts have been proved to be less sensitive to coke, the high cost and restricted availability limit their use in this process.From an industrial standpoint, it is more desirable to develop nickel-based catalysts, which are resistant to carbon deposition and exhibit stable operation for extended periods of time.In this work nickel-alumina catalysts, pure or promoted with rhodium or ruthenium, were prepared using different techniques, employing aluminum and nickel alkoxides, and characterized and selected according to their catalytic activity and coking resistance.These catalysts are to be used in an inert ceramic membrane reactor.The nickel precursor is a nickel alkoxide incorporated to the matrix precursor of alumina, which at the same time is an aluminum alkoxide.Under this scheme, catalysts with a 14% nickel charge were prepared using three preparation methods: pC0: characteristics: hydrolysis and acid peptization with HNO3. A1C0: characteristics: thermal decomposition. A1C0H: characteristics: thermal decomposition and subsequent hydrothermal treatment.To sum up, three Ni-A12O3 catalysts, three Ni-Rh-A12O3 catalysts, and three Ni-Ru-A12O3 catalysts were prepared.Each catalyst was prepared using the three methods: pC0-Ni-X, A1C0-Ni-X, and A1C0H-Ni-X, (X= Ru or Rh).The precursors of alumina and nickel were aluminum sec-butoxide and nickel 1-methoxide-2-propoxide. Microstructure characterization was studied by

  9. Exergoenvironmental analysis of a steam methane reforming process for hydrogen production

    International Nuclear Information System (INIS)

    Steam methane reforming (SMR) is one of the most promising processes for hydrogen production. Several studies have demonstrated its advantages from the economic viewpoint. Nowadays process development is based on technical and economical aspects; however, in the near future, the environmental impact will play a significant role in the design of such processes. In this paper, an SMR process is studied from the viewpoint of overall environmental impact, using an exergoenvironmental analysis. This analysis presents the combination of exergy analysis and life cycle assessment. Components where chemical reactions occur are the most important plant components from the exergoenvironmental point of view, because, in general, there is a high environmental impact associated with these components. This is mainly caused by the exergy destruction within the components, and this in turn is mainly due to the chemical reactions. The obtained results show that the largest potential for reducing the overall environmental impact is associated with the combustion reactor, the steam reformer, the hydrogen separation unit and the major heat exchangers. The environmental impact in these components can mainly be reduced by improving their exergetic efficiency. A sensitivity analysis for some important exergoenvironmental variables is also presented in the paper.

  10. How to reduce risk of climate change: Domestic hot water production methanization and programmed timing of heaters

    International Nuclear Information System (INIS)

    This paper first identifies a significant and deleterious trend, in terms of poor energy efficiency and high carbon dioxide emissions, towards the increased use of electric water heaters for sanitary hot water production in single family units. It then points out how the use of wall mounted methane fired boilers can result in overall energy savings (overall electric power consumption for domestic hot water production is estimated to represent one- quarter of Italy's total domestic power demand), as well as air pollution abatement. The feasibility of other methods of energy conservation and pollution abatement in domestic water heating are also examined. These include the use of solar hot water heaters, computerized timers which allow users to program the operation of their heating plants, and the adoption by residential communities of methane fuelled district heating plants

  11. Ecological, energetic and economical comparison of fermentation, composting and incineration of solid biogenic waste materials; Oekologischer, energetischer und oekonomischer Vergleich von Vergaerung, Kompostierung und Verbrennung fester biogener Abfallstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Edelmann, W. [Arbeitsgemeinschaft Bioenergie GmbH, Arbi, Baar (Switzerland); Schleiss, K. [Umwelt- und Kompostberatung Schleiss, Baar (Switzerland)

    2001-07-01

    This study compares different technologies for the treatment of biogenic wastes, including open windrow and enclosed tunnel composting, anaerobic digestion, the combination of both these methods and burning in waste incineration plants. The methods are compared from the points of view of environmental impact, energy use and production, and economics. The environmental impact, calculated for normalised quantities of waste using the 'Ecoindicator 95+' tool, are discussed and the methane and carbon dioxide emissions of the different methods of treatment are compared. Also, the considerable differences to be found in the energy balances of the different systems are discussed in the light of efforts to substitute nuclear and fossil-fuel generated power. Cost and energetic comparisons are also made between compost and artificial fertilisers. The report is concluded with recommendations for adapting bio-technological methods for the treatment of wastes with an emphasis on anaerobic processes.

  12. Novel CO2 Separation and Methanation for Oxygen and Fuel Production Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes a novel efficient, compact, and lightweight MicrolithREG-based CO2 separator and methanation reactor to separate CO2 from...

  13. Migration of methane into groundwater from leaking production wells near Lloydminster - report for phase 2 (1995)

    International Nuclear Information System (INIS)

    Results of the second phase of the study of methane migration from leaking oil and gas wells into aquifers in the Lloydminster area in Saskatchewan, carried out during 1995, were discussed. Five new sites were selected and nine additional monitoring wells were completed at the Lindbergh research site to study migration rate in aquifers, the concentration gradients and approximate flux rates of methane from leaking wells to shallow aquifers. The 1995 program was a continuation of investigations begun in 1994 (phase I). Methodology was identical to that employed in the previous year. In addition to carrying the investigation to new sites, a model for simulating methane migration in ground water was developed. A survey of methane in 23 water supply wells in the LLoydminster area was also conducted. 38 refs., 14 tabs., 17 figs

  14. BOREAS TGB-6 Soil Methane Oxidation and Production from NSA BP and Fen Sites

    Science.gov (United States)

    Deck, Bruce; Wahlen, Martin; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-6) team collected soil methane measurements at several sites in the Southern Study Area (SSA) and Northern Study Area (NSA). This data set contains soil methane consumption (bacterial CH4 oxidation) and associated C-13 fractionation effects in samples that were collected at various sites in 1994 and 1996 from enclosures (chambers). Methane C-13 data in soil gas samples from the NSA Young Jack Pine (YJP) and Old Jack Pine (OJP) sites for 1994 and 1996 are also given. Additional data on the isotopic composition of methane (carbon and hydrogen isotopes) produced in the NSA beaver ponds and fen bog in 1993 and 1994 are given as well. The data are stored in tabular ASCII files.

  15. Thermodynamic and kinetic processes associated with CO 2-sequestration and CO 2-enhanced coalbed methane production from unminable coal seams

    OpenAIRE

    Busch, Andreas

    2005-01-01

    The present thesis investigates the thermodynamic and kinetic processes associated with gas sorption (CO2, CH4) on coal. It is incorporated into a research field which studies CO2-sequestration in combination with CO2-enhanced coalbed methane production in unminable coal seams. This combination is regarded as a viable and promising option to reduce anthropogenic CO2-emissions. At the moment numerous world-wide research projects investigate the feasibility of this concept under different geolo...

  16. Influence of niche differentiation on the abundance of methanogenic archaea and methane production potential in natural wetland ecosystems across China

    OpenAIRE

    D. Liu; Ding, W.; Jia, Z; Cai, Z.

    2010-01-01

    Methane (CH4) emissions from natural wetland ecosystems exhibit large spatial variability. To understand the underlying factors that induce differences in CH4 emissions from natural wetlands around China, we measured the CH4 production potential and the abundance of methanogenic archaea in vertical profile soils sampled from the Poyang wetland in the subtropical zone, the Hongze wetland in the warm temperate zone, the Sanjia...

  17. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production

    Energy Technology Data Exchange (ETDEWEB)

    Solli, Linn, E-mail: linn.solli@bioforsk.no; Bergersen, Ove; Sørheim, Roald; Briseid, Tormod

    2014-08-15

    Highlights: • New results from continuous anaerobic co-digestion of fish waste silage (FWS) and cow manure (CM). • Co-digestion of FWS and CM has a high biogas potential. • Optimal mixing ratio of FWS/CM is 13–16/87–84 volume%. • High input of FWS leads to accumulation of NH4+ and VFAs and process failure. - Abstract: This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8 L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37 °C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% – 6% – 13% – 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS{sup −1}, obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids.

  18. Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production

    International Nuclear Information System (INIS)

    Highlights: • New results from continuous anaerobic co-digestion of fish waste silage (FWS) and cow manure (CM). • Co-digestion of FWS and CM has a high biogas potential. • Optimal mixing ratio of FWS/CM is 13–16/87–84 volume%. • High input of FWS leads to accumulation of NH4+ and VFAs and process failure. - Abstract: This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8 L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37 °C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% – 6% – 13% – 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS−1, obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids

  19. Sequential parametric optimization of methane production from different sources of forest raw material

    OpenAIRE

    Matsakas, Leonidas; Rova, Ulrika; Christakopoulos, Paul

    2015-01-01

    The increase in environmental problems and the shortage of fossil fuels have led to the need for action in the development of sustainable and renewable fuels. Methane is produced through anaerobic digestion of organic materials and is a biofuel with very promising characteristics. The success in using methane as a biofuel has resulted in the operation of several commercial-scale plants and the need to exploit novel materials to be used. Forest biomass can serve as an excellent candidate for u...

  20. H2 production by catalytic methane decomposition on Cu based catalyst

    International Nuclear Information System (INIS)

    The thermo-catalytic decomposition (TCD) of methane has been investigated in a laboratory scale fixed bed reactor using a copper dispersed on γ-alumina as a catalyst. The usefulness of a fluidized bed operation instead of a fixed bed one has been assessed in terms of methane to hydrogen conversion, amount of carbon accumulated on the catalyst, possibility of the catalyst regeneration. The results highlight some promising features in using fluidized bed reactors in the TCD process. (authors)

  1. Potential of tropical plants to exerting defaunating effects on the rumen and to reduce the methane production

    International Nuclear Information System (INIS)

    The objective of this work is to present a summary of the principal results obtained in Cuba in relation with the potential of different tropical plants used as animal feed, with possibilities of exerting defaunating effects on the rumen and to reduce the methane production. The assays were carried out in areas of the Institute of Animal Science located in 22 deg 53' of north latitude and 82 deg 02' western, 92 m over level sea. The plants studied were Sapindo saponaria, Morus alba, Trichanthera gigantea, Tithonia diversifolia, Gliricidia sepium,Leucaena leucocephala, Stysolobium aterrimun and Arachis pintoi. The leaves with petioles and young stems were collected simulating animal selection. Grasses used as forage in the assays to obtain mixes of grass: foliages were Pennisetum purpureum Cuba CT-115 or Star grass (Cynodon nlemfuensis). Phytochemistry screening was carried out. The experiments were conducted in vitro system. Rumen fluid was strained as inoculum from two rumen-fistulated crossbreed Zebu steer fed low quality forage. To determine methane production, the mixture of gases in the fermentative process was collected in each time at interval of 4, 8, 12 and 24 hours and the methane production were determined by flame ionization in gas chromatograph. The phytochemical analysis indicated the presence of tannins, saponins and others secondary compounds with antiprotozoal and antimethanogenic properties. It is believed that saponins, tannins and other secondary compounds present in many plants have effects of suppressing the methane production, reducing rumen protozoa counts, and changing rumen fermentation patterns (1). Enterolobium and Leucaena show high content of tannins and moderate levels of saponins. Morus alba presented moderate presence of saponins and triterpenes, while the content of secondary metabolites in Tithonia and Gliricidia were not very high. Studies in relation with the effect of inclusion of the foliages in the diet of grass forage on

  2. Chemical Composition of Gas-Phase Oxidation Products from Biogenic Sources in the Southeast US during SOAS

    Science.gov (United States)

    Stark, H.; Massoli, P.; Thompson, S.; Yatavelli, L. R.; Mohr, C.; Brophy, P.; Murschell, T.; Hu, W.; Canagaratna, M.; Krechmer, J.; Junninen, H.; Hakala, J. P.; Day, D. A.; Campuzano Jost, P.; Palm, B. B.; Ortega, A. M.; Kimmel, J.; Cubison, M.; Lopez-Hilfiker, F.; Thornton, J. A.; Baumann, K.; Edgerton, E.; Farmer, D.; Jimenez, J. L.; Jayne, J. T.; Worsnop, D. R.

    2013-12-01

    Reduced species emitted to the atmosphere are chemically transformed by atmospheric oxidants. The measurement of the large number of resulting oxidized compounds is crucial to understand and quantify these transformation processes. We analyzed datasets from four high-resolution time-of-flight chemical ionization mass spectrometers (HRToF-CIMS) during the Southern Oxidant and Aerosol Study (SOAS) in June and July 2013 at the Alabama Supersite in the Southeast U.S. These datasets allow specification and quantification of the multiple gas-phase compounds produced by chemical oxidation. The mass spectrometers used different reagent ions, nitrate (NO3-), acetate (CH3COO-), and iodide (I-). In this study, we will present the chemical composition of isoprene and terpene oxidation products as measured by the different techniques. When comparing the concentration and composition at different conditions (e.g., time of day, NOx levels, aerosol loading, RH), differences in gas-phase composition provide indications of both the changes in chemical processing arising from the different conditions as well as different sensitivities of the reagent ions. We will discuss these differences in terms of bulk chemical parameters such as carbon oxidation state, carbon number and oxygen-to-carbon ratio.

  3. EFFECT OF TARTARIC ACID ADDITION ON RUMEN FERMENTATION, METHANE PRODUCTION AND DIGESTIBILITY IN DIFFERENT DIETS CONTAINING WHEAT STRAW IN VITRO

    Directory of Open Access Journals (Sweden)

    S.K. SIROHI

    2012-05-01

    Full Text Available The aim of the current study was to evaluate the effect of tartaric acid addition in diets on in vitro methanogenesis and rumen fermentation. Different levels of tartaric acid (5, 10, and 15 ppm were tested for their effect on methanogenesis, rumen fermentation and digestibility in three wheat straw containing diets i.e. Low fiber diet (LFD, 40R:60C, medium fiber diet (MFD, 50R:50C and high fiber diet (HFD, 60R:40C. Evaluation of tartaric acid was carried out using in vitro gas production technique. Methane production and individual fatty acids were estimated by Gas Chromatography. Results of different levels of tartaric acid on in vitro methanogenesis indicated that the maximum methane reduction (22.60% in term of mM/gDM was observed in LFD at the supplementation dosage of 15 mM and a similar trend was seen, when methane was expressed in ml/gDM. Non-significant (P≤0.05 effect of tartaric acid addition on in vitro dry matter digestibility (IVDMD was observed in almost cases. Protozoal population decreased with increasing concentration of tartaric acid and maximum reduction (54.64% was in the MFD. Acetate to propionate ratio was decreased in tartaric acid supplemented diets which reflects increase in propionic acid production in comparison to control diet. Microbial biomass yield also increased due to the addition of tartaric acid in most of the diets.

  4. Effects of Fe2+, Co2+and Ni2+Ions on Biological Methane Production from Residual Heavy Oil

    Institute of Scientific and Technical Information of China (English)

    Liu Chunshuang; Ma Wenjuan; Zhao Dongfeng; Jia Kuili; Zhao Chaocheng

    2015-01-01

    On the basis of single factor tests, the effect of trace elements—Fe2+, Co2+and Ni2+ions—on biological methane production from heavy oil was investigated by the response surface method. A three-level Box-Behnken design was em-ployed to study the relationship between the independent variables and the dependent variable by applying initial Fe2+, Co2+and Ni2+concentration as the independent variables (factors) and using the methane production after 270 days of cultivation as the dependent variable (response). A prediction model of quadramatic polynomial regression equation was obtained. The results showed that the methane production could be as high as 240.69 µmol after optimization compared with 235.74 µmol obtained under un-optimized condition. Furthermore, the microbial communities before and after biodegradation were ana-lyzed by PCR-DGGE method. The dominant bands were recovered and sequenced. Three strains were obtained;the strain T1 has 97%similarity with Bacillus thermoamylovorans, the strain H3 has 97%similarity with Bacillus thermoamylovorans and the strain H4 has 99%similarity with Bacillus vietnamensis.

  5. Thermodynamic Investigation of Hydrogen Production by Methane Steam Reforming using Integrated Hydrogen-permselective Membrane Reactor with CO2 absorption

    International Nuclear Information System (INIS)

    The role of hydrogen as an energy carrier became more important to the future energy system. Methane steam reforming (MSR) is one of the most important chemical processes in hydrogen production. To improve the conversion of methane to hydrogen, a hydrogen-permselective membrane reactor with a carbon dioxide absorbent was proposed and investigated. The conversion at 893 K in the integrated reactor with CaO as absorbent was almost equal to that at above 1000 K in the conventional reactor. Exergy analyses indicated that the a large portion of exergy loss for hydrogen production was chemical exergy loss in the case without methane recycle, while thermal exergy loss in the case with recycle use. The exergy loss of this process using the hydrogen-permselective membrane reactor with the CaO-absorbent was estimated about 70% of that by the conventional catalytic reactor. Efficiencies of the integrated reactor process, based on the energy and exergy losses were compared with those of other hydrogen production processes. (authors)

  6. Recent Advances in Factors and Methods for Stimulation of Biomethane Production.

    Science.gov (United States)

    Thakur, Neha; Khardenavis, Anshuman; Purohit, Hemant J

    2015-01-01

    The role of methanogenesis in the global carbon cycle is very important for recycle of renewable biomass which, has the potential for contribution to independence from fossil fuels. Anaerobic microbes comprised of fermentative and acetogenic species decompose the complex biomass to hydrogen, formate and, acetate that are further metabolized to methane by methanogens. A general review of biogenic production of methane and methanogenic diversity involved is presented. This review gives an overview of recent patents on methane production and focuses mainly on different methods, systems and, microbial methanogenic community involved in anaerobic digestion that can be used for improved understanding of the microbial community function and relationships in methanogenesis. PMID:26825255

  7. Methane production induced by dimethylsulfide in surface water of an upwelling ecosystem

    Science.gov (United States)

    Florez-Leiva, Lennin; Damm, Ellen; Farías, Laura

    2013-05-01

    Coastal upwelling ecosystems are areas of high productivity and strong outgassing, where most gases, such as N2O and CH4, are produced in subsurface waters by anaerobic metabolisms. We describe seasonal CH4 variation as well as potential mechanisms producing CH4 in surface waters of the central Chile upwelling ecosystem (36°S). Surface waters were always supersaturated in CH4 (from 125% up to 550%), showing a clear seasonal signal triggered by wind driven upwelling processes (austral spring-summer period), that matched with the periods of high chlorophyll-a and dimethylsulfoniopropionate (DMSP) levels. Methane cycling experiments, with/without the addition of dimethylsulfide (including 13C-DMS) and acetylene (a nonspecific inhibitor of CH4 oxidation) along with monthly measurements of CH4, DMSP and other oceanographic variables revealed that DMS can be a CH4 precursor. Net CH4 cycling rates (control) fluctuated between -0.64 and 1.44 nmol L-1 d-1. After the addition of acetylene, CH4 cycling rates almost duplicated relative to the control, suggesting a strong methanotrophic activity. With a spike of DMS, the net CH4 cycling rate significantly increased relative to the acetylene and control treatment. Additionally, the δ13C values of CH4 at the end of the incubations (after addition of 13C enriched-DMS) were changed, reaching -32‰ PDB compared to natural values between -44‰ and -46‰ PDB. These findings indicate that, in spite of the strong CH4 consumption by methanotrophs, this upwelling area is an important source of CH4 to the atmosphere. The effluxes are derived partially from in situ surface production and seem to be related to DMSP/DMS metabolism.

  8. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

    International Nuclear Information System (INIS)

    Highlights: ► Methane generation may be modeled by means of modified product generation model of Romero García (1991). ► Organic matter content and particle size influence the kinetic parameters. ► Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 °C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, YpMAX and θMIN) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms (μmax) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d−1 (K = 1.391 d−1; YpMAX = 1.167 L CH4/gDOCc; θMIN = 7.924 days) vs. 0.135 d−1 (K = 1.282 d−1; YpMAX = 1.150 L CH4/gDOCc; θMIN = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

  9. Energy production from marine biomass: Fuel cell power generation driven by methane produced from seaweed

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, S.; Imou, K. [Univ. of Tokyo (Japan). Dept. of Biological and Environmental Engineering; Jonouchi, K. [Yanmar Co. Ltd., Osaka (Japan). Dept. of Human Resources

    2008-07-01

    Global warming has become one of the most serious environmental problems. To cope with the problem, it is necessary to substitute renewable energy for nonrenewable fossil fuel. Biomass, which is one of the renewable energies, is considered to be carbon-neutral, meaning that the net CO{sub 2} concentration in the atmosphere remains unchanged provided the CO{sub 2} emitted by biomass combustion and that fixed by photosynthesis are balanced. Biomass is also unique because it is the only organic matter among renewable energies. In other words, fuels and chemicals can be produced from biomass in addition to electricity and heat. Marine biomass has attracted less attention than terrestrial biomass for energy utilization so far, but is work considering especially for a country like Japan which has long available coastlines. This paper discusses the utilization of marine biomass as an energy resource in Japan. A marine biomass energy system in Japan was proposed consisting of seaweed cultivation (Laminaria japonica) at offshore marine farms, biogas production via methane fermentation of the seaweeds, and fuel cell power generation driven by the generated biogas. The authors estimated energy output, energy supply potential, and CO{sub 2} mitigation in Japan on the basis of the proposed system. As a result, annual energy production was estimated to be 1.02 x 10{sup 9} kWh/yr at nine available sites. Total CO{sub 2} mitigation was estimated to be 1.04 x 10{sup 6} tonnes per annum at the nine sites. However, the CO{sub 2} emission for the construction of relevant facilities is not taken into account in this paper. The estimated CO{sub 2} mitigation is equivalent to about 0.9% of the required CO{sub 2} mitigation for Japan per annum under the Kyoto Protocol framework.

  10. Bio-methanization of energy crops through mono-digestion for continuous production of renewable biogas

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, Burak [Lifetec Process Engineering, Hamburg University of Applied Sciences, Lohbruegger Kirchstrasse 65, 21033 Hamburg-Bergedorf (Germany); Bogazici University, Institute of Environmental Sciences, Bebek 34342, Istanbul (Turkey); Scherer, Paul [Lifetec Process Engineering, Hamburg University of Applied Sciences, Lohbruegger Kirchstrasse 65, 21033 Hamburg-Bergedorf (Germany)

    2009-12-15

    The aim of this laboratory-scale study was to investigate the long-term anaerobic fermentation of an extremely sour substrate, an energy crop, for continuous production of methane (CH{sub 4}) as a source of renewable energy. The sugar beet silage was used as the mono-substrate, which had a low pH of around 3.3-3.4, without the addition of manure. The mesophilic biogas digester was operated in a hydraulic retention time (HRT) range between 15 and 9.5 days, and an organic loading rate (OLR) range of between 6.33 and 10 g VS l{sup -1} d{sup -1}. The highest specific gas production rate (spec. GPR) and CH{sub 4} content were 0.67 l g VS{sup -1} d{sup -1} and 74%, respectively, obtained at an HRT of 9.5 days and OLR of 6.35 g VS l{sup -1} d{sup -1}. The digester worked within the neutral pH range as well. Since this substrate lacked the availability of macro and micro nutrients, and the buffering capacity as well, external supplementation was definitely required to provide a stable and efficient operation, as provided using NH{sub 4}Cl and KHCO{sub 3} in this case. The findings of this ongoing long-term fermentation of an extremely acidic biomass substrate without manure addition have reflected crucial information about how to appropriately maintain the operational and particularly the environmental parameters in an agricultural biogas plant. (author)

  11. Highly chlorinated unintentionally produced persistent organic pollutants generated during the methanol-based production of chlorinated methanes: A case study in China.

    Science.gov (United States)

    Zhang, Lifei; Yang, Wenlong; Zhang, Linli; Li, Xiaoxiu

    2015-08-01

    The formation of unintentionally produced persistent organic pollutants (POPs) may occur during various chlorination processes. In this study, emissions of unintentionally produced POPs during the methanol-based production of chlorinated methanes were investigated. High concentrations of highly chlorinated compounds such as decachlorobiphenyl, octachloronaphthalene, octachlorostyrene, hexachlorobutadiene, hexachlorocyclopentadiene, hexachlorobenzene, and pentachlorobenzene were found in the carbon tetrachloride byproduct of the methanol-based production of chlorinated methanes. The total emission amounts of hexachlorocyclopentadiene, hexachlorobutadiene, polychlorinated benzenes, polychlorinated naphthalenes, octachlorostyrene, and polychlorinated biphenyls released during the production of chlorinated methanes in China in 2010 were estimated to be 10080, 7350, 5210, 427, 212, and 167 kg, respectively. Moreover, polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) were formed unintentionally during chlorinated methanes production, the emission factor for PCDDs/DFs was 364 μg toxic equivalency quotient (TEQ) t(-1) product for residues, which should be added into the UNEP toolkit for updating. It was worth noting that a high overall toxic equivalency quotient from polychlorinated naphthalenes and PCDDs/DFs was generated from the chlorinated methanes production in China in 2010. The values reached 563 and 32.8 g TEQ, respectively. The results of the study indicate that more research and improved management systems are needed to ensure that the methanol-based production of chlorinated methanes can be achieved safely. PMID:25777670

  12. Emissions of biogenic volatile organic compounds and subsequent photochemical production of secondary organic aerosol in mesocosm studies of temperate and tropical plant species

    Directory of Open Access Journals (Sweden)

    K. P. Wyche

    2014-06-01

    Full Text Available Silver birch (Betula pendula and three Southeast Asian tropical plant species (Ficus cyathistipula, Ficus benjamina and Caryota millis from the pantropical fig and palm genera were grown in a purpose-built and environment-controlled whole-tree chamber. The volatile organic compounds emitted from these trees were characterised and fed into a linked photochemical reaction chamber where they underwent photooxidation under a range of controlled conditions (RH ∼65–89%, VOC/NOx ∼3–9 and NOx ∼2 ppbV. Both the gas phase and the aerosol phase of the reaction chamber were monitored in detail using a comprehensive suite of on-line and off-line, chemical and physical measurement techniques. Silver birch was found to be a high monoterpene and sesquiterpene, but low isoprene emitter, and its emissions were observed to produce measureable amounts of SOA via both nucleation and condensation onto pre-existing seed aerosol (YSOA 26–39%. In contrast, all three tropical species were found to be high isoprene emitters with trace emissions of monoterpenes and sesquiterpenes. In tropical plant experiments without seed aerosol there was no measurable SOA nucleation, but aerosol mass was shown to increase when seed aerosol was present. Although principally isoprene emitting, the aerosol mass produced from tropical fig was mostly consistent (i.e., in 78 out of 120 aerosol mass calculations using plausible parameter sets of various precursor specific yields with condensation of photooxidation products of the minor VOCs co-emitted; no significant aerosol yield from condensation of isoprene oxidation products was required in the interpretations of the experimental results. This finding is in line with previous reports of organic aerosol loadings consistent with production from minor biogenic VOCs co-emitted with isoprene in principally-isoprene emitting landscapes in Southeast Asia. Moreover, in general the amount of aerosol mass produced from the emissions of

  13. 肉制品中生物胺的控制技术及其检测方法的研究进展%Control Technology and Detection Methods for Biogenic Amines in Meat Products

    Institute of Scientific and Technical Information of China (English)

    郝小倩; 唐善虎; 李雪; 岑璐伽

    2012-01-01

    生物胺是氨基酸在脱羧酶作用下脱羧后的产物,是植物和微生物体内具有生物活性的含氮化合物,参与机体正常的生理调节,少量的生物胺也有利于人体和动物生理活动.但是,当人体摄入量过多时会引起食物中毒.作者就肉制品中生物胺技术控制和干预及检测方法进行了综述.%Biogenic amines are derived from amino acids after decarboxylation by decarboxylase and served as nitrogen compounds for biological activity in plants and microorganisms. A small amount of biogenic amines may also participate in normal physiological regulation in human and animal physiology. However, excessive intake can cause food poisoning. In this paper, the technical control, intervention and analysis methods for biogenic amines in meat products are reviewed.

  14. Daily methane production pattern of Welsh ponies fed a roughage diet with or without a cereal mixture.

    Science.gov (United States)

    Dansen, O; Pellikaan, W F; Hendriks, W H; Dijkstra, J; Jacobs, M P T; Everts, H; van Doorn, D A

    2015-04-01

    Methane production from Welsh ponies fed 2 isoenergetic diets (NE basis) at maintenance was studied in a crossover design with 4 mature geldings (230 ± 10.5 kg BW, mean ± SE). Treatments included a roughage-only (R) diet (5.1 kg DM/d) or a roughage plus cereal mix (RC) diet (2.5 kg DM hay/d plus 1.1 kg DM cereal mix/d). For both diets, the same grass hay was used (898 g DM/kg and 4.5 MJ NE/kg DM) and a commercial cereal mix was used in the RC diet (890 g DM/kg and 9.6 MJ NE/kg DM). Ponies were housed in pairs in climate-controlled respiration chambers. Carbon dioxide production (CO2), oxygen (O2) consumption, and CH4 production were measured over 3 consecutive days. Heat production (HP) rates were calculated from gaseous exchange. Feces were collected quantitatively to determine dietary nutrient digestibility. Dry matter intake differed between diets (P < 0.0001), but NE intake was equal for both diets (22.3 ± 0.07 MJ NEm/d). Organic matter digestibility was lower (P = 0.006) for the R diet (47.2%) than the RC diet (55.6%). Methane production was higher (P = 0.014) on the R diet (29.8 L · pony(-1) · d(-1)) compared to the RC diet (23.2 L · pony(-1) · d(-1)). Methane production expressed in liters/kilogram metabolic body weight (BW0.75) per day tended (P = 0.064) to decrease with 21% for the RC group compared with the R group. Heat production, O2 consumption, and CO2 production were not affected by diet. Diurnal patterns of CH4 production and HP were similar for both diets. Methane production increased slightly (P < 0.652) after feeding and was numerically lower for the RC diet for all time points throughout the day. For both diets, HP was higher after feeding than before feeding and decreased again within approximately 3 h after feeding. Isoenergetic replacement of roughage by a cereal mix reduces CH4 production in ponies. No clear diurnal pattern in CH4 emission can be discerned in ponies fed at maintenance. PMID:26020214

  15. Evidence for the microbial in situ conversion of oil to methane in the Dagang oilfield

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, N.; Richnow, H.H. [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; Cai, M. [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; University of Science and Technology, Beijing (China). School of Civil and Environment Engineering; Straaten, N.; Krueger, M. [Bundesanstalt fuer Geowissenschaften und Rohstoffe BGR Geozentrum (BGR), Hannover (Germany). Fachbereich Geochemie der Rohstoffe; Yao, Jun [University of Science and Technology, Beijing (China). School of Civil and Environment Engineering

    2013-08-01

    In situ biotransformation of oil to methane was investigated in a reservoir in Dagang, China using chemical fingerprinting, isotopic analyses, and molecular and biological methods. The reservoir is highly methanogenic despite chemical indications of advanced oil degradation, such as depletion of n-alkanes, alkylbenzenes, and light polycyclic aromatic hydrocarbon (PAHs) fractions or changes in the distribution of several alkylated polycyclic aromatic hydrocarbons. The degree of degradation strongly varied between different parts of the reservoir, ranging from severely degraded to nearly undegraded oil compositions. Geochemical data from oil, water and gas samples taken from the reservoir are consistent with in situ biogenic methane production linked to aliphatic and aromatic hydrocarbon degradation. Microcosms were inoculated with production and injection waters in order to characterize these processes in vitro. Subsequent degradation experiments revealed that autochthonous microbiota are capable of producing methane from {sup 13}C-labelled n-hexadecane or 2-methylnaphthalene, and suggest that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. The microbial communities from produced oil-water samples were composed of high numbers of microorganisms (on the order to 10{sup 7}), including methane-producing Archaea within the same order of magnitude. In summary, the investigated sections of the Dagang reservoir may have significant potential for testing the viability of in situ conversion of oil to methane as an enhanced recovery method, and biodegradation of the aromatic fractions of the oil may be an important methane source. (orig.)

  16. Regulation of anaerobic methane oxidation in sediments of the Black Sea

    Directory of Open Access Journals (Sweden)

    N. J. Knab

    2008-05-01

    Full Text Available Anaerobic oxidation of methane (AOM and sulfate reduction (SRR were investigated in sediments of the western Black Sea, where methane transport is controlled by diffusion. To understand the regulation and dynamics of methane production and oxidation in the Black Sea, rates of methanogenesis, AOM, and SRR were determined using radiotracers in combination with pore water chemistry and stable isotopes. On the shelf of the Danube paleo-delta and the Dnjepr Canyon, AOM did not consume methane effectively and upwards diffusing methane created an extended sulfate-methane transition zone (SMTZ that spread over more than 2.5 m and was located in formerly limnic sediment. Measurable AOM rates occurred mainly in the lower part of the SMTZ, sometimes even at depths where sulfate seemed to be unavailable. The inefficiency of methane oxidation appears to be linked to the limnic history of the sediment, since in all cores methane was completely oxidized at the limnic-marine transition. The upward tailing of methane was less pronounced in a core from the deep sea in the area of the Dnjepr Canyon, the only station with a SMTZ close to the marine deposits. Sulfate reduction rates were mostly extremely low, and in the SMTZ were even lower than AOM rates. Rates of bicarbonate-based methanogenesis were below detection limit in two of the cores, but δ13C values of methane indicate a biogenic origin. The most depleted δ13C-signal was found in the SMTZ of the core from the deep sea, most likely as a result of carbon recycling between AOM and methanogenesis.

  17. Effect of organic loading rate on methane and volatile fatty acids productions from anaerobic treatment of palm oil mill effluent in UASB and UFAF reactors

    OpenAIRE

    Sumate Chaiprapat; Poonsuk Prasertsan; Piyarat Boonsawang; Ronnachai Chaisri

    2007-01-01

    Anaerobic treatment of palm oil mill effluent (POME) with the separation of the acidogenic and methanogenic phase was studied in an up-flow anaerobic sludge blanket (UASB) reactor and an up-flowanaerobic filter (UFAF) reactor. Furthermore, the effect of OLR on methane and volatile fatty acid productions in UASB and UFAF reactors was investigated. In this research, UASB as acidogenic reactor wasused for volatile fatty acid production and UFAF as methanogenic reactor was used for methane produc...

  18. Methane Emission and Milk Production of Dairy Cows Grazing Pastures Rich in Legumes or Rich in Grasses in Uruguay.

    Science.gov (United States)

    Dini, Yoana; Gere, José; Briano, Carolina; Manetti, Martin; Juliarena, Paula; Picasso, Valentin; Gratton, Roberto; Astigarraga, Laura

    2012-01-01

    Understanding the impact of changing pasture composition on reducing emissions of GHGs in dairy grazing systems is an important issue to mitigate climate change. The aim of this study was to estimate daily CH₄ emissions of dairy cows grazing two mixed pastures with contrasting composition of grasses and legumes: L pasture with 60% legumes on Dry Matter (DM) basis and G pasture with 75% grasses on DM basis. Milk production and CH₄ emissions were compared over two periods of two weeks during spring using eight lactating Holstein cows in a 2 × 2 Latin square design. Herbage organic matter intake (HOMI) was estimated by chromic oxide dilution and herbage organic matter digestibility (OMD) was estimated by faecal index. Methane emission was estimated by using the sulfur hexafluoride (SF6) tracer technique adapted to collect breath samples over 5-day periods. OMD (0.71) and HOMI (15.7 kg OM) were not affected by pasture composition. Milk production (20.3 kg/d), milk fat yield (742 g/d) and milk protein yield (667 g/d) were similar for both pastures. This may be explained by the high herbage allowance (30 kg DM above 5 cm/cow) which allowed the cows to graze selectively, in particular in grass sward. Similarly, methane emission expressed as absolute value (368 g/d or 516 L/d) or expressed as methane yield (6.6% of Gross Energy Intake (GEI)) was not affected by treatments. In conclusion, at high herbage allowance, the quality of the diet selected by grazing cows did not differ between pastures rich in legumes or rich in grasses, and therefore there was no effect on milk or methane production. PMID:26486922

  19. Methane Emission and Milk Production of Dairy Cows Grazing Pastures Rich in Legumes or Rich in Grasses in Uruguay

    Directory of Open Access Journals (Sweden)

    Roberto Gratton

    2012-06-01

    Full Text Available Understanding the impact of changing pasture composition on reducing emissions of GHGs in dairy grazing systems is an important issue to mitigate climate change. The aim of this study was to estimate daily CH4 emissions of dairy cows grazing two mixed pastures with contrasting composition of grasses and legumes: L pasture with 60% legumes on Dry Matter (DM basis and G pasture with 75% grasses on DM basis. Milk production and CH4 emissions were compared over two periods of two weeks during spring using eight lactating Holstein cows in a 2 × 2 Latin square design. Herbage organic matter intake (HOMI was estimated by chromic oxide dilution and herbage organic matter digestibility (OMD was estimated by faecal index. Methane emission was estimated by using the sulfur hexafluoride (SF6 tracer technique adapted to collect breath samples over 5-day periods. OMD (0.71 and HOMI (15.7 kg OM were not affected by pasture composition. Milk production (20.3 kg/d, milk fat yield (742 g/d and milk protein yield (667 g/d were similar for both pastures. This may be explained by the high herbage allowance (30 kg DM above 5 cm/cow which allowed the cows to graze selectively, in particular in grass sward. Similarly, methane emission expressed as absolute value (368 g/d or 516 L/d or expressed as methane yield (6.6% of Gross Energy Intake (GEI was not affected by treatments. In conclusion, at high herbage allowance, the quality of the diet selected by grazing cows did not differ between pastures rich in legumes or rich in grasses, and therefore there was no effect on milk or methane production.

  20. Evidences of methane-derived authigenic carbonates from the sediments of the Krishna–Godavari Basin, eastern continental margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Kocherla, M.; Mazumdar, A.; Karisiddaiah, S.M.; Borole, D.V.; Rao, B.R.

    crystals are suggestive of anaerobic oxidation of methane (AOM). In this work a biogenic methane source has been tentatively concluded. Presence of certain geophysical features, viz. bottom simulating reflector, gas charged sediments and pock-marked sea...