WorldWideScience

Sample records for biogenesis cell growth

  1. Auxin Transport and Ribosome Biogenesis Mutant/Reporter Lines to Study Plant Cell Growth and Proliferation under Altered Gravity

    Science.gov (United States)

    Valbuena, Miguel A.; Manzano, Ana I.; van Loon, Jack JWA.; Saez-Vasquez, Julio; Carnero-Diaz, Eugenie; Herranz, Raul; Medina, F. J.

    2013-02-01

    We tested different Arabidopsis thaliana strains to check their availability for space use in the International Space Station (ISS). We used mutants and reporter gene strains affecting factors of cell proliferation and cell growth, to check variations induced by an altered gravity vector. Seedlings were grown either in a Random Positioning Machine (RPM), under simulated microgravity (μg), or in a Large Diameter Centrifuge (LDC), under hypergravity (2g). A combination of the two devices (μgRPM+LDC) was also used. Under all gravity alterations, seedling roots were longer than in control 1g conditions, while the levels of the nucleolar protein nucleolin were depleted. Alterations in the pattern of expression of PIN2, an auxin transporter, and of cyclin B1, a cell cycle regulator, were shown. All these alterations are compatible with previous space data, so the use of these strains will be useful in the next experiments in ISS, under real microgravity.

  2. Ribosome biogenesis in replicating cells: Integration of experiment and theory.

    Science.gov (United States)

    Earnest, Tyler M; Cole, John A; Peterson, Joseph R; Hallock, Michael J; Kuhlman, Thomas E; Luthey-Schulten, Zaida

    2016-10-01

    Ribosomes-the primary macromolecular machines responsible for translating the genetic code into proteins-are complexes of precisely folded RNA and proteins. The ways in which their production and assembly are managed by the living cell is of deep biological importance. Here we extend a recent spatially resolved whole-cell model of ribosome biogenesis in a fixed volume [Earnest et al., Biophys J 2015, 109, 1117-1135] to include the effects of growth, DNA replication, and cell division. All biological processes are described in terms of reaction-diffusion master equations and solved stochastically using the Lattice Microbes simulation software. In order to determine the replication parameters, we construct and analyze a series of Escherichia coli strains with fluorescently labeled genes distributed evenly throughout their chromosomes. By measuring these cells' lengths and number of gene copies at the single-cell level, we could fit a statistical model of the initiation and duration of chromosome replication. We found that for our slow-growing (120 min doubling time) E. coli cells, replication was initiated 42 min into the cell cycle and completed after an additional 42 min. While simulations of the biogenesis model produce the correct ribosome and mRNA counts over the cell cycle, the kinetic parameters for transcription and degradation are lower than anticipated from a recent analytical time dependent model of in vivo mRNA production. Describing expression in terms of a simple chemical master equation, we show that the discrepancies are due to the lack of nonribosomal genes in the extended biogenesis model which effects the competition of mRNA for ribosome binding, and suggest corrections to parameters to be used in the whole-cell model when modeling expression of the entire transcriptome. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 735-751, 2016. PMID:27294303

  3. Specialized membrane biogenesis in mammary epithelial cells

    International Nuclear Information System (INIS)

    The apical membrane of the mammary gland epithelial cell is highly differentiated and adapted to participate in the process of fat secretion. Certain of the apical membrane differentiation antigens are frequently expressed on membrane carcinoma cells, and knowledge of the normal mechanisms by which these antigens are regulated may have implications for a better understanding of tumor antigen expression. Because the apical membrane of the cell is lost during secretion, active membrane biosynthesis must accompany fat secretion, and the cell represents a good model for studying membrane biogenesis in polarized epithelial cells. Experiments have been carried out using primary cultures of cells established from mammary glands of late pregnant mice and also a mouse cell line, COMMA-1-D, that differentiates in an appropriate milieu. When fat globule membranes are purified from mouse milk and the protein composition analyzed by SDS-polyacrylamide gel electrophoresis, four major proteins are identifiable with molecular weights of 55, 67, 90, and 150 kDa. The 67-kDa component was identified as butyrophilin and the 150-kDa one as xanthine oxidase. In addition, a high molecular weight carbohydrate rich glycoprotein, PAS-O, is also present. 3 refs., 3 figs

  4. PICK1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation and decreased glucose tolerance

    OpenAIRE

    Holst, Birgitte; Madsen, Kenneth L.; Jansen, Anna M.; Jin, Chunyu; Rickhag, Karl Mattias; Lund, Viktor K.; Jensen, Morten; Bhatia, Vikram; Sørensen, Gunnar; Madsen, Andreas N.; Xue, Zhichao; Møller, Siri K; Woldbye, David; Qvortrup, Klaus; Huganir, Richard

    2013-01-01

    Secretory vesicles in endocrine cells store hormones such as growth hormone (GH) and insulin before their release into the bloodstream. The molecular mechanisms governing budding of immature secretory vesicles from the trans-Golgi network (TGN) and their subsequent maturation remain unclear. Here, we identify the lipid binding BAR (Bin/amphiphysin/Rvs) domain protein PICK1 (protein interacting with C kinase 1) as a key component early in the biogenesis of secretory vesicles in GH-producing ce...

  5. Yeast peroxisomes : function and biogenesis of a versatile cell organelle

    NARCIS (Netherlands)

    van der Klei, IJ; Veenhuis, M

    1997-01-01

    Yeast peroxisomes harbour enzymes involved in the metabolism of specific growth substrates, Sequestration of these enzymes increases the efficiency of such pathways. Currently, 16 genes involved in peroxisome biogenesis have been identified, and analysis of their products suggests novel mechanisms f

  6. PICK1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation and decreased glucose tolerance

    DEFF Research Database (Denmark)

    Holst, Birgitte; Madsen, Kenneth L; Jansen, Anna M;

    2013-01-01

    Secretory vesicles in endocrine cells store hormones such as growth hormone (GH) and insulin before their release into the bloodstream. The molecular mechanisms governing budding of immature secretory vesicles from the trans-Golgi network (TGN) and their subsequent maturation remain unclear. Here......, we identify the lipid binding BAR (Bin/amphiphysin/Rvs) domain protein PICK1 (protein interacting with C kinase 1) as a key component early in the biogenesis of secretory vesicles in GH-producing cells. Both PICK1-deficient Drosophila and mice displayed somatic growth retardation. Growth retardation...... supported by electron microscopy showing prominent reduction in secretory vesicle number. Evidence was also obtained for impaired insulin secretion associated with decreased glucose tolerance. PICK1 localized in cells to immature secretory vesicles, and the PICK1 BAR domain was shown by live imaging to...

  7. Biogenesis and Function of T Cell-Derived Exosomes.

    Science.gov (United States)

    Ventimiglia, Leandro N; Alonso, Miguel A

    2016-01-01

    Exosomes are a particular type of extracellular vesicle, characterized by their endosomal origin as intraluminal vesicles present in large endosomes with a multivesicular structure. After these endosomes fuse with the plasma membrane, exosomes are secreted into the extracellular space. The ability of exosomes to carry and selectively deliver bioactive molecules (e.g., lipids, proteins, and nucleic acids) confers on them the capacity to modulate the activity of receptor cells, even if these cells are located in distant tissues or organs. Since exosomal cargo depends on cell type, a detailed understanding of the mechanisms that regulate the biochemical composition of exosomes is fundamental to a comprehensive view of exosome function. Here, we review the latest advances concerning exosome function and biogenesis in T cells, with particular focus on the mechanism of protein sorting at multivesicular endosomes. Exosomes secreted by specific T-cell subsets can modulate the activity of immune cells, including other T-cell subsets. Ceramide, tetraspanins and MAL have been revealed to be important in exosome biogenesis by T cells. These molecules, therefore, constitute potential molecular targets for artificially modulating exosome production and, hence, the immune response for therapeutic purposes. PMID:27583248

  8. Cell wall structure and biogenesis in Aspergillus species.

    Science.gov (United States)

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2016-09-01

    Aspergillus species are among the most important filamentous fungi from the viewpoints of industry, pathogenesis, and mycotoxin production. Fungal cells are exposed to a variety of environmental stimuli, including changes in osmolality, temperature, and pH, which create stresses that primarily act on fungal cell walls. In addition, fungal cell walls are the first interactions with host cells in either human or plants. Thus, understanding cell wall structure and the mechanism of their biogenesis is important for the industrial, medical, and agricultural fields. Here, we provide a systematic review of fungal cell wall structure and recent findings regarding the cell wall integrity signaling pathways in aspergilli. This accumulated knowledge will be useful for understanding and improving the use of industrial aspergilli fermentation processes as well as treatments for some fungal infections. PMID:27140698

  9. Radiation induced mitochondrial biogenesis: limitations of metabolic viability based assays in measuring radiation induced cell death

    International Nuclear Information System (INIS)

    Many techniques based on metabolic viability of cells employing MTT and MTS assay are being widely used to measure the radiation and chemotherapeutics induced cell death, because of their high throughput capability. These assays are based on mitochondrial potential of cells to convert the substrate in to measurable products and remain dependent on this notion that all the cells untreated and treated will have equal mitochondrial content and metabolic potential. However, it is increasingly becoming clear that treatment induced changes in both mitochondrial content and metabolism can influence the metabolic viability of cells and radiation is a potential mitochondrial biogenesis inducer. Therefore, we tested if metabolic viability based assays are true measure of radiation induced cell death using the widely used cell lines like RAW264.7, HEK293, NIH3T3, J774.1, BMG-1, MDAMB231, MCF-7, A549 and HeLa. Cells were irradiated with gamma rays (60Co) and enumerated cell numbers (by hemocytometer) and metabolic viability using MTT assay at 24 and 48 hours after exposure. At all the absorbed doses (0-5 Gy), the extent of reduction in cell number was found to be larger than the decrease in formazan formation in all the cell lines tested. Further, this difference in the cell number and formazan formation varied significantly among the cell lines. To test if the increased formazan formation is due to increased mitochondrial content per cell, we analyzed the radiation induced mitochondrial biogenesis using mitochondria specific dye mitotracker red and found a 1.5 to 2 fold increase in mitochondrial content. These findings suggest that radiation induces mitochondrial biogenesis that enhances the metabolic potential leading to increased formazan formation. Therefore, conclusions drawn on radiation induced cytotoxicity based on metabolic viability assays are likely to be erroneous as it may not correlate with growth inhibition and/or loss of clonogenic survival. (author)

  10. Key Regulators of Mitochondrial Biogenesis are Increased in Kidneys of Growth Hormone Receptor Knockout (GHRKO) Mice

    OpenAIRE

    Gesing, Adam; Bartke, Andrzej; Wang, Feiya; Karbownik-Lewinska, Malgorzata; Masternak, Michal M.

    2011-01-01

    The growth hormone (GH) receptor knockout mice (GHRKO) are remarkably long-lived and highly insulin sensitive. Alterations in mitochondrial biogenesis are associated with aging and various metabolic derangements. We have previously demonstrated increased gene expression of key regulators of mitochondriogenesis in kidneys, hearts and skeletal muscles of GHRKO mice. The aim of the present study was to quantify the protein levels of the following regulators of mitochondriogenesis: peroxisome pro...

  11. PICK1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation and decreased glucose tolerance.

    Directory of Open Access Journals (Sweden)

    Birgitte Holst

    Full Text Available Secretory vesicles in endocrine cells store hormones such as growth hormone (GH and insulin before their release into the bloodstream. The molecular mechanisms governing budding of immature secretory vesicles from the trans-Golgi network (TGN and their subsequent maturation remain unclear. Here, we identify the lipid binding BAR (Bin/amphiphysin/Rvs domain protein PICK1 (protein interacting with C kinase 1 as a key component early in the biogenesis of secretory vesicles in GH-producing cells. Both PICK1-deficient Drosophila and mice displayed somatic growth retardation. Growth retardation was rescued in flies by reintroducing PICK1 in neurosecretory cells producing somatotropic peptides. PICK1-deficient mice were characterized by decreased body weight and length, increased fat accumulation, impaired GH secretion, and decreased storage of GH in the pituitary. Decreased GH storage was supported by electron microscopy showing prominent reduction in secretory vesicle number. Evidence was also obtained for impaired insulin secretion associated with decreased glucose tolerance. PICK1 localized in cells to immature secretory vesicles, and the PICK1 BAR domain was shown by live imaging to associate with vesicles budding from the TGN and to possess membrane-sculpting properties in vitro. In mouse pituitary, PICK1 co-localized with the BAR domain protein ICA69, and PICK1 deficiency abolished ICA69 protein expression. In the Drosophila brain, PICK1 and ICA69 co-immunoprecipitated and showed mutually dependent expression. Finally, both in a Drosophila model of type 2 diabetes and in high-fat-diet-induced obese mice, we observed up-regulation of PICK1 mRNA expression. Our findings suggest that PICK1, together with ICA69, is critical during budding of immature secretory vesicles from the TGN and thus for vesicular storage of GH and possibly other hormones. The data link two BAR domain proteins to membrane remodeling processes in the secretory pathway of

  12. Expression of Key Regulators of Mitochondrial Biogenesis in Growth Hormone Receptor Knockout (GHRKO) Mice is Enhanced but is Not Further Improved by Other Potential Life-Extending Interventions

    OpenAIRE

    Gesing, Adam; Masternak, Michal M.; Wang, Feiya; Joseph, Anna-Maria; Leeuwenburgh, Christiaan; Westbrook, Reyhan; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2011-01-01

    Mitochondrial biogenesis is essential for cell viability. Growth hormone receptor knockout (GHRKO), calorie restriction, and surgical visceral fat removal constitute experimental interventions to delay aging and increase life span. We examined the expression of known regulators of mitochondriogenesis: peroxisome proliferator–activated receptor γ co-activator 1α (PGC-1α), adenosine monophosphate (AMP)–activated protein kinase (AMPK), sirtuin-1 (SIRT-1) and sirtuin-3 (SIRT-3), endothelial nitri...

  13. Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone.

    Science.gov (United States)

    Whitney, Spencer M; Birch, Rosemary; Kelso, Celine; Beck, Jennifer L; Kapralov, Maxim V

    2015-03-17

    Enabling improvements to crop yield and resource use by enhancing the catalysis of the photosynthetic CO2-fixing enzyme Rubisco has been a longstanding challenge. Efforts toward realization of this goal have been greatly assisted by advances in understanding the complexities of Rubisco's biogenesis in plastids and the development of tailored chloroplast transformation tools. Here we generate transplastomic tobacco genotypes expressing Arabidopsis Rubisco large subunits (AtL), both on their own (producing tob(AtL) plants) and with a cognate Rubisco accumulation factor 1 (AtRAF1) chaperone (producing tob(AtL-R1) plants) that has undergone parallel functional coevolution with AtL. We show AtRAF1 assembles as a dimer and is produced in tob(AtL-R1) and Arabidopsis leaves at 10-15 nmol AtRAF1 monomers per square meter. Consistent with a postchaperonin large (L)-subunit assembly role, the AtRAF1 facilitated two to threefold improvements in the amount and biogenesis rate of hybrid L8(A)S8(t) Rubisco [comprising AtL and tobacco small (S) subunits] in tob(AtL-R1) leaves compared with tob(AtL), despite >threefold lower steady-state Rubisco mRNA levels in tob(AtL-R1). Accompanying twofold increases in photosynthetic CO2-assimilation rate and plant growth were measured for tob(AtL-R1) lines. These findings highlight the importance of ancillary protein complementarity during Rubisco biogenesis in plastids, the possible constraints this has imposed on Rubisco adaptive evolution, and the likely need for such interaction specificity to be considered when optimizing recombinant Rubisco bioengineering in plants. PMID:25733857

  14. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes

    OpenAIRE

    Tanya C. Burch; Rhim, Johng S.; Julius O Nyalwidhe

    2016-01-01

    Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells) and RC77T/E (malignant cells) were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mit...

  15. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms.

    Science.gov (United States)

    Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K; Osvath, Sarah R; Cárcamo-Oyarce, Gerardo; Gloag, Erin S; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G; Cavaliere, Rosalia; Ahrens, Christian H; Charles, Ian G; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B

    2016-01-01

    Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs. PMID:27075392

  16. Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: Modulation by antioxidants

    International Nuclear Information System (INIS)

    It has been proposed that homocysteine (Hcy)-induces endothelial dysfunction and atherosclerosis by generation of reactive oxygen species (ROS). A previous report has shown that Hcy promotes mitochondrial damage. Considering that oxidative stress can affect mitochondrial biogenesis, we hypothesized that Hcy-induced ROS in endothelial cells may lead to increased mitochondrial biogenesis. We found that Hcy-induced ROS (1.85-fold), leading to a NF-κB activation and increase the formation of 3-nitrotyrosine. Furthermore, expression of the mitochondrial biogenesis factors, nuclear respiratory factor-1 and mitochondrial transcription factor A, was significantly elevated in Hcy-treated cells. These changes were accompanied by increase in mitochondrial mass and higher mRNA and protein expression of the subunit III of cytochrome c oxidase. These effects were significantly prevented by pretreatment with the antioxidants, catechin and trolox. Taken together, our results suggest that ROS is an important mediator of mitochondrial biogenesis induced by Hcy, and that modulation of oxidative stress by antioxidants may protect against the adverse vascular effects of Hcy

  17. Peroxynitrite induced mitochondrial biogenesis following MnSOD knockdown in normal rat kidney (NRK cells

    Directory of Open Access Journals (Sweden)

    Akira Marine

    2014-01-01

    Full Text Available Superoxide is widely regarded as the primary reactive oxygen species (ROS which initiates downstream oxidative stress. Increased oxidative stress contributes, in part, to many disease conditions such as cancer, atherosclerosis, ischemia/reperfusion, diabetes, aging, and neurodegeneration. Manganese superoxide dismutase (MnSOD catalyzes the dismutation of superoxide into hydrogen peroxide which can then be further detoxified by other antioxidant enzymes. MnSOD is critical in maintaining the normal function of mitochondria, thus its inactivation is thought to lead to compromised mitochondria. Previously, our laboratory observed increased mitochondrial biogenesis in a novel kidney-specific MnSOD knockout mouse. The current study used transient siRNA mediated MnSOD knockdown of normal rat kidney (NRK cells as the in vitro model, and confirmed functional mitochondrial biogenesis evidenced by increased PGC1α expression, mitochondrial DNA copy numbers and integrity, electron transport chain protein CORE II, mitochondrial mass, oxygen consumption rate, and overall ATP production. Further mechanistic studies using mitoquinone (MitoQ, a mitochondria-targeted antioxidant and L-NAME, a nitric oxide synthase (NOS inhibitor demonstrated that peroxynitrite (at low micromolar levels induced mitochondrial biogenesis. These findings provide the first evidence that low levels of peroxynitrite can initiate a protective signaling cascade involving mitochondrial biogenesis which may help to restore mitochondrial function following transient MnSOD inactivation.

  18. Enhanced mitochondrial biogenesis contributes to Wnt induced osteoblastic differentiation of C3H10T1/2 cells.

    Science.gov (United States)

    An, Jee Hyun; Yang, Jae-Yeon; Ahn, Byung Yong; Cho, Sun Wook; Jung, Ju Yeon; Cho, Hwa Young; Cho, Young Min; Kim, Sang Wan; Park, Kyong Soo; Kim, Seong Yeon; Lee, Hong Kyu; Shin, Chan Soo

    2010-07-01

    Mitochondria play a key role in cell physiology including cell differentiation and proliferation. We investigated the changes of mitochondrial biogenesis during Wnt-induced osteoblastic differentiation of murine mesenchymal C3H10T1/2 cells. Scanning electron microscopy demonstrated that activation of Wnt signaling by Wnt-3A conditioned medicum (CM) resulted in significant increase in the number of mitochondria in C3H10T1/2 cells. In addition, the induction of alkaline phosphatase (ALP) activities by Wnt-3A CM was accompanied by significant increase in mitochondrial mass (pactivities as well as mitochondrial biogenesis markers. Upregulation of mitochondrial biogenesis by overexpression of mitochondrial transcription factor A (Tfam) significantly enhanced Wnt-induced osteogenesis as measured by ALP activities. In contrast, inhibition of mitochondrial biogenesis by treatment with Zidovudine (AZT) resulted in significant inhibition of ALP activities. Finally, ALP activities in human osteosarcoma cell line devoid of mitochondrial DNA (rho(0) cells) was significantly suppressed both in basal and Wnt-3A stimulated state compared to those from mitochondria-intact cells (rho+ cells). As a mechanism for Wnt-mediated mitochondrial biogenesis, we found that Wnt increased the expression of PGC-1alpha, a critical molecules in mitochondrial biogenesis, through Erk and p38 MAPK pathway independent of beta-catenin signaling. We also found that increased mitochondrial biogenesis is in turn positively regulating TOPflash reporter activity as well as beta-catenin levels. To summarize, mitochodrial biogenesis is upregulated by Wnt signaling and this upregulation contributes to the osteoblastic differentiation of mouse mesenchymal C3H10T1/2 cells. PMID:20399290

  19. Biogenesis and the growth of DNA-like polymer chains: a computer simulation

    International Nuclear Information System (INIS)

    We study, through computer simulation, a crucial step of Biogenesis, namely the growth of self-replicating codified DNA-like polymers starting from a mixture of oligomers. We have adopted the growth scheme that has been recently proposed by Ferreira and Tsallis which incorporates usual ideas of autocatalysis through complementary pairs and within which a central role is played by the hydrogen-like links (characterized by the probabilities pAT and pCG of chemical bonding of the A-T and C-G pairs respectively) between the two chains of the growing polymer. We find that the average equilibrium polymeric length ξ diverges, for any fixed ratio (1-pAT)/(1-p sub (CG)), as ξ ∝ 1/r1-pAT. Selection of patterns may happen at all stages and in particular at chemical equilibrium. Selection occurs via two different mechanisms: (i) away from the critical point pAT = pCG = 1 if pAT ≠ pCG; (ii) both on and away from the critical point if the initial concentrations of nucleotides (A, T, C and G or their precursors) are different. (author)

  20. Peroxisome biogenesis in mammalian cells: The impact of genes and environment.

    Science.gov (United States)

    Farr, Rebecca L; Lismont, Celien; Terlecky, Stanley R; Fransen, Marc

    2016-05-01

    The initiation and progression of many human diseases are mediated by a complex interplay of genetic, epigenetic, and environmental factors. As all diseases begin with an imbalance at the cellular level, it is essential to understand how various types of molecular aberrations, metabolic changes, and environmental stressors function as switching points in essential communication networks. In recent years, peroxisomes have emerged as important intracellular hubs for redox-, lipid-, inflammatory-, and nucleic acid-mediated signaling pathways. In this review, we focus on how nature and nurture modulate peroxisome biogenesis and function in mammalian cells. First, we review emerging evidence that changes in peroxisome activity can be linked to the epigenetic regulation of cell function. Next, we outline how defects in peroxisome biogenesis may directly impact cellular pathways involved in the development of disease. In addition, we discuss how changes in the cellular microenvironment can modulate peroxisome biogenesis and function. Finally, given the importance of peroxisome function in multiple aspects of health, disease, and aging, we highlight the need for more research in this still understudied field. This article is part of a Special Issue entitled: Peroxisomes edited by Ralf Erdmann. PMID:26305119

  1. Restrictive glycosylphosphatidylinositol anchor synthesis in cwh6/gpi3 yeast cells causes aberrant biogenesis of cell wall proteins.

    OpenAIRE

    Vossen, J.H.; Müller, W. H.; Lipke, P N; Klis, F. M.

    1997-01-01

    We previously reported that the defects in the Saccharomyces cerevisiae cwh6 Calcofluor white-hypersensitive cell wall mutant are caused by a mutation in SPT14/GPI3, a gene involved in glycosylphosphatidylinositol (GPI) anchor biosynthesis. Here we describe the effect of cwh6/spt14/gpi3 on the biogenesis of cell wall proteins. It was found that the release of precursors of cell wall proteins from the endoplasmic reticulum (ER) was retarded. This was accompanied by proliferation of ER structur...

  2. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes.

    Science.gov (United States)

    Burch, Tanya C; Rhim, Johng S; Nyalwidhe, Julius O

    2016-01-01

    Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells) and RC77T/E (malignant cells) were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mitochondria and the Mitochondrial Energy Metabolism RT(2) PCR arrays. Forty-seven genes were differentially regulated between the two cell lines. The interaction and regulatory networks of these genes were generated by Ingenuity Pathway Analysis. UCP2 was the most significantly upregulated gene in primary adenocarcinoma cells in the current study. The overexpression of UCP2 upon malignant transformation was further validated using human prostatectomy clinical specimens. Conclusions. This study demonstrates the overexpression of multiple genes that are involved in mitochondria biogenesis, bioenergetics, and modulation of apoptosis. These genes may play a role in malignant transformation and disease progression. The upregulation of some of these genes in clinical samples indicates that some of the differentially transcribed genes could be the potential targets for therapeutic interventions. PMID:27478826

  3. Mitochondria Biogenesis and Bioenergetics Gene Profiles in Isogenic Prostate Cells with Different Malignant Phenotypes

    Directory of Open Access Journals (Sweden)

    Tanya C. Burch

    2016-01-01

    Full Text Available Background. The most significant hallmarks of cancer are directly or indirectly linked to deregulated mitochondria. In this study, we sought to profile mitochondria associated genes in isogenic prostate cell lines with different tumorigenic phenotypes from the same patient. Results. Two isogenic human prostate cell lines RC77N/E (nonmalignant cells and RC77T/E (malignant cells were profiled for expression of mitochondrial biogenesis and energy metabolism genes by qRT-PCR using the Human Mitochondria and the Mitochondrial Energy Metabolism RT2 PCR arrays. Forty-seven genes were differentially regulated between the two cell lines. The interaction and regulatory networks of these genes were generated by Ingenuity Pathway Analysis. UCP2 was the most significantly upregulated gene in primary adenocarcinoma cells in the current study. The overexpression of UCP2 upon malignant transformation was further validated using human prostatectomy clinical specimens. Conclusions. This study demonstrates the overexpression of multiple genes that are involved in mitochondria biogenesis, bioenergetics, and modulation of apoptosis. These genes may play a role in malignant transformation and disease progression. The upregulation of some of these genes in clinical samples indicates that some of the differentially transcribed genes could be the potential targets for therapeutic interventions.

  4. VEGF stimulation of mitochondrial biogenesis: requirement of AKT3 kinase

    OpenAIRE

    Wright, Gary L.; Maroulakou, Ioanna G.; Eldridge, Juanita; Liby, Tiera L.; Sridharan, Vijayalakshmi; Tsichlis, Philip N.; Muise-Helmericks, Robin C.

    2008-01-01

    The growth factor, vascular endothelial growth factor (VEGF), induces angiogenesis and promotes endothelial cell (EC) proliferation. Affymetrix gene array analyses show that VEGF stimulates the expression of a cluster of nuclear-encoded mitochondrial genes, suggesting a role for VEGF in the regulation of mitochondrial biogenesis. We show that the serine threonine kinase Akt3 specifically links VEGF to mitochondrial biogenesis. A direct comparison of Akt1 vs. Akt3 gene silencing was performed ...

  5. Target-dependent biogenesis of cognate microRNAs in human cells.

    Science.gov (United States)

    Bose, Mainak; Bhattacharyya, Suvendra N

    2016-01-01

    Extensive research has established how miRNAs regulate target mRNAs by translation repression and/or endonucleolytic degradation in metazoans. However, information related to the effect of target mRNA on biogenesis and stability of corresponding miRNAs in animals is limited. Here we report regulated biogenesis of cognate miRNAs by their target mRNAs. Enhanced pre-miRNA processing by AGO-associated DICER1 contributes to this increased miRNP formation. The processed miRNAs are loaded onto AGO2 to form functionally competent miRISCs both in vivo and also in a cell-free in vitro system. Thus, we identify an additional layer of posttranscriptional regulation that helps the cell to maintain requisite levels of mature forms of respective miRNAs by modulating their processing in a target-dependent manner, a process happening for miR-122 during stress reversal in human hepatic cells. PMID:27448149

  6. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    OpenAIRE

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to...

  7. ADAR1 Activation Drives Leukemia Stem Cell Self-Renewal by Impairing Let-7 Biogenesis.

    Science.gov (United States)

    Zipeto, Maria Anna; Court, Angela C; Sadarangani, Anil; Delos Santos, Nathaniel P; Balaian, Larisa; Chun, Hye-Jung; Pineda, Gabriel; Morris, Sheldon R; Mason, Cayla N; Geron, Ifat; Barrett, Christian; Goff, Daniel J; Wall, Russell; Pellecchia, Maurizio; Minden, Mark; Frazer, Kelly A; Marra, Marco A; Crews, Leslie A; Jiang, Qingfei; Jamieson, Catriona H M

    2016-08-01

    Post-transcriptional adenosine-to-inosine RNA editing mediated by adenosine deaminase acting on RNA1 (ADAR1) promotes cancer progression and therapeutic resistance. However, ADAR1 editase-dependent mechanisms governing leukemia stem cell (LSC) generation have not been elucidated. In blast crisis chronic myeloid leukemia (BC CML), we show that increased JAK2 signaling and BCR-ABL1 amplification activate ADAR1. In a humanized BC CML mouse model, combined JAK2 and BCR-ABL1 inhibition prevents LSC self-renewal commensurate with ADAR1 downregulation. Lentiviral ADAR1 wild-type, but not an editing-defective ADAR1(E912A) mutant, induces self-renewal gene expression and impairs biogenesis of stem cell regulatory let-7 microRNAs. Combined RNA sequencing, qRT-PCR, CLIP-ADAR1, and pri-let-7 mutagenesis data suggest that ADAR1 promotes LSC generation via let-7 pri-microRNA editing and LIN28B upregulation. A small-molecule tool compound antagonizes ADAR1's effect on LSC self-renewal in stromal co-cultures and restores let-7 biogenesis. Thus, ADAR1 activation represents a unique therapeutic vulnerability in LSCs with active JAK2 signaling. PMID:27292188

  8. Direct relationship between the level of p53 stabilization induced by rRNA synthesis-inhibiting drugs and the cell ribosome biogenesis rate.

    Science.gov (United States)

    Scala, F; Brighenti, E; Govoni, M; Imbrogno, E; Fornari, F; Treré, D; Montanaro, L; Derenzini, M

    2016-02-25

    Many drugs currently used in chemotherapy work by hindering the process of ribosome biogenesis. In tumors with functional p53, the inhibition of ribosome biogenesis may contribute to the efficacy of this treatment by inducing p53 stabilization. As the level of stabilized p53 is critical for the induction of cytotoxic effects, it seems useful to highlight those cancer cell characteristics that can predict the degree of p53 stabilization following the treatment with inhibitors of ribosome biogenesis. In the present study we exposed a series of p53 wild-type human cancer cell lines to drugs such as actinomycin D (ActD), doxorubicin, 5-fluorouracil and CX-5461, which hinder ribosomal RNA (rRNA) synthesis. We found that the amount of stabilized p53 was directly related to the level of ribosome biogenesis in cells before the drug treatment. This was due to different levels of inactivation of the ribosomal proteins-MDM2 pathway of p53 digestion. Inhibition of rRNA synthesis always caused cell cycle arrest, independent of the ribosome biogenesis rate of the cells, whereas apoptosis occurred only in cells with a high rDNA transcription rate. The level of p53 stabilization induced by drugs acting in different ways from the inhibition of ribosome biogenesis, such as hydroxyurea (HU) and nutlin-3, was independent of the level of ribosome biogenesis in cells and always lower than that occurring after the inhibition of rRNA synthesis. Interestingly, in cells with a low ribosome biogenesis rate, the combined treatment with ActD and HU exerted an additive effect on p53 stabilization. These results indicated that (i) drugs inhibiting ribosome biogenesis may be highly effective in p53 wild-type cancers with a high ribosome biogenesis rate, as they induce apoptotic cell death, and (ii) the combination of drugs capable of stabilizing p53 through different mechanisms may be useful for treating cancers with a low ribosome biogenesis rate. PMID:25961931

  9. Cilostazol promotes mitochondrial biogenesis in human umbilical vein endothelial cells through activating the expression of PGC-1α

    International Nuclear Information System (INIS)

    Highlights: ► First time to show that cilostazol promotes the expressions of PGC-1α. ► First time to show that cilostazol stimulates mitochondrial biogenesis in HUVECs. ► PKA/CREB pathway mediates the effect of cilostazol on PGC-1α expression. ► Suggesting the roles of cilostazol in mitochondrial dysfunction related disease. -- Abstract: Mitochondrial dysfunction is frequently observed in vascular diseases. Cilostazol is a drug approved by the US Food and Drug Administration for the treatment of intermittent claudication. Cilostazol increases intracellular cyclic adenosine monophosphate (cAMP) levels through inhibition of type III phosphodiesterase. The effects of cilostazol in mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs) were investigated in this study. Cilostazol treated HUVECs displayed increased levels of ATP, mitochondrial DNA/nuclear DNA ratio, expressions of cytochrome B, and mitochondrial mass, suggesting an enhanced mitochondrial biogenesis induced by cilostazol. The promoted mitochondrial biogenesis could be abolished by Protein kinase A (PKA) specific inhibitor H-89, implying that PKA pathway played a critical role in increased mitochondrial biogenesis after cilostazol treatment. Indeed, expression levels of peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), NRF 1 and mitochondrial transcription factor A (TFAM) were significantly increased in HUVECs after incubation with cilostazol at both mRNA levels and protein levels. Importantly, knockdown of PGC-1α could abolish cilostazol-induced mitochondrial biogenesis. Enhanced expression of p-CREB and PGC-1α induced by cilostazol could be inhibited by H-89. Moreover, the increased expression of PGC-1α induced by cilostazol could be inhibited by downregulation of CREB using CREB siRNA at both mRNA and protein levels. All the results indicated that cilostazol promoted mitochondrial biogenesis through activating the expression of PGC-1α in

  10. Cilostazol promotes mitochondrial biogenesis in human umbilical vein endothelial cells through activating the expression of PGC-1α

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Luning [Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001 (China); Li, Qiang; Sun, Bei; Xu, Zhiying [Department of Cardiology, Yantaishan Hospital, Yantai, Shandong 264001 (China); Ge, Zhiming, E-mail: zhimingge2000@hotmail.com [Department of Cardiology, Qilu Hospital, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China)

    2013-03-29

    Highlights: ► First time to show that cilostazol promotes the expressions of PGC-1α. ► First time to show that cilostazol stimulates mitochondrial biogenesis in HUVECs. ► PKA/CREB pathway mediates the effect of cilostazol on PGC-1α expression. ► Suggesting the roles of cilostazol in mitochondrial dysfunction related disease. -- Abstract: Mitochondrial dysfunction is frequently observed in vascular diseases. Cilostazol is a drug approved by the US Food and Drug Administration for the treatment of intermittent claudication. Cilostazol increases intracellular cyclic adenosine monophosphate (cAMP) levels through inhibition of type III phosphodiesterase. The effects of cilostazol in mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs) were investigated in this study. Cilostazol treated HUVECs displayed increased levels of ATP, mitochondrial DNA/nuclear DNA ratio, expressions of cytochrome B, and mitochondrial mass, suggesting an enhanced mitochondrial biogenesis induced by cilostazol. The promoted mitochondrial biogenesis could be abolished by Protein kinase A (PKA) specific inhibitor H-89, implying that PKA pathway played a critical role in increased mitochondrial biogenesis after cilostazol treatment. Indeed, expression levels of peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), NRF 1 and mitochondrial transcription factor A (TFAM) were significantly increased in HUVECs after incubation with cilostazol at both mRNA levels and protein levels. Importantly, knockdown of PGC-1α could abolish cilostazol-induced mitochondrial biogenesis. Enhanced expression of p-CREB and PGC-1α induced by cilostazol could be inhibited by H-89. Moreover, the increased expression of PGC-1α induced by cilostazol could be inhibited by downregulation of CREB using CREB siRNA at both mRNA and protein levels. All the results indicated that cilostazol promoted mitochondrial biogenesis through activating the expression of PGC-1α in

  11. Mitochondrial biogenesis: pharmacological approaches.

    Science.gov (United States)

    Valero, Teresa

    2014-01-01

    Organelle biogenesis is concomitant to organelle inheritance during cell division. It is necessary that organelles double their size and divide to give rise to two identical daughter cells. Mitochondrial biogenesis occurs by growth and division of pre-existing organelles and is temporally coordinated with cell cycle events [1]. However, mitochondrial biogenesis is not only produced in association with cell division. It can be produced in response to an oxidative stimulus, to an increase in the energy requirements of the cells, to exercise training, to electrical stimulation, to hormones, during development, in certain mitochondrial diseases, etc. [2]. Mitochondrial biogenesis is therefore defined as the process via which cells increase their individual mitochondrial mass [3]. Recent discoveries have raised attention to mitochondrial biogenesis as a potential target to treat diseases which up to date do not have an efficient cure. Mitochondria, as the major ROS producer and the major antioxidant producer exert a crucial role within the cell mediating processes such as apoptosis, detoxification, Ca2+ buffering, etc. This pivotal role makes mitochondria a potential target to treat a great variety of diseases. Mitochondrial biogenesis can be pharmacologically manipulated. This issue tries to cover a number of approaches to treat several diseases through triggering mitochondrial biogenesis. It contains recent discoveries in this novel field, focusing on advanced mitochondrial therapies to chronic and degenerative diseases, mitochondrial diseases, lifespan extension, mitohormesis, intracellular signaling, new pharmacological targets and natural therapies. It contributes to the field by covering and gathering the scarcely reported pharmacological approaches in the novel and promising field of mitochondrial biogenesis. There are several diseases that have a mitochondrial origin such as chronic progressive external ophthalmoplegia (CPEO) and the Kearns- Sayre syndrome (KSS

  12. Rab3 proteins involved in vesicle biogenesis and priming in embryonic mouse chromaffin cells

    DEFF Research Database (Denmark)

    Schonn, Jean-Sébastien; van Weering, Jan R T; Mohrmann, Ralf;

    2010-01-01

    the size of the releasable vesicle pools but does not alter their fusion kinetics, consistent with an altered function in vesicle priming. The sustained release component has a sigmoid shape in ABCD(-/-) cells when normalized to the releasable pool size, indicating that vesicle priming follows at a...... higher rate after an initial delay. Rescue experiments showed that short-term (4-6 hours) overexpression of Rab3A or Rab3C suffices to rescue vesicle priming and secretion, but it does not restore the number of secretory vesicles. We conclude that Rab3 proteins play two distinct stimulating roles for...... LDCV fusion in embryonic chromaffin cells, by facilitating vesicle biogenesis and stabilizing the primed vesicle state....

  13. Biogenesis and dynamics of mitochondria during the cell cycle: significance of 3'UTRs.

    Directory of Open Access Journals (Sweden)

    Marta Martínez-Diez

    Full Text Available Nowadays, we are facing a renaissance of mitochondria in cancer biology. However, our knowledge of the basic cell biology and on the timing and mechanisms that control the biosynthesis of mitochondrial constituents during progression through the cell cycle of mammalian cells remain largely unknown. Herein, we document the in vivo changes on mitochondrial morphology and dynamics that accompany cellular mitosis, and illustrate the following key points of the biogenesis of mitochondria during progression of liver cells through the cycle: (i the replication of nuclear and mitochondrial genomes is synchronized during cellular proliferation, (ii the accretion of OXPHOS proteins is asynchronously regulated during proliferation being the synthesis of beta-F1-ATPase and Hsp60 carried out also at G2/M and, (iii the biosynthesis of cardiolipin is achieved during the S phase, although full development of the mitochondrial membrane potential (DeltaPsim is attained at G2/M. Furthermore, we demonstrate using reporter constructs that the mechanism regulating the accretion of beta-F1-ATPase during cellular proliferation is controlled at the level of mRNA translation by the 3'UTR of the transcript. The 3'UTR-driven synthesis of the protein at G2/M is essential for conferring to the daughter cells the original phenotype of the parental cell. Our findings suggest that alterations on this process may promote deregulated beta-F1-ATPase expression in human cancer.

  14. Decreased levels of proapoptotic factors and increased key regulators of mitochondrial biogenesis constitute new potential beneficial features of long-lived growth hormone receptor gene-disrupted mice.

    Science.gov (United States)

    Gesing, Adam; Masternak, Michal M; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Kopchick, John J; Bartke, Andrzej

    2013-06-01

    Decreased somatotrophic signaling is among the most important mechanisms associated with extended longevity. Mice homozygous for the targeted disruption of the growth hormone (GH) receptor gene (GH receptor knockout; GHRKO) are obese and dwarf, are characterized by a reduced weight and body size, undetectable levels of GH receptor, high concentration of serum GH, and greatly reduced plasma levels of insulin and insulin-like growth factor-I, and are remarkably long lived. Recent results suggest new features of GHRKO mice that may positively affect longevity-decreased levels of proapoptotic factors and increased levels of key regulators of mitochondrial biogenesis. The alterations in levels of the proapoptotic factors and key regulators of mitochondrial biogenesis were not further improved by two other potential life-extending interventions-calorie restriction and visceral fat removal. This may attribute the primary role to GH resistance in the regulation of apoptosis and mitochondrial biogenesis in GHRKO mice in terms of increased life span. PMID:23197187

  15. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells.

    Science.gov (United States)

    Ploper, Diego; Taelman, Vincent F; Robert, Lidia; Perez, Brian S; Titz, Björn; Chen, Hsiao-Wang; Graeber, Thomas G; von Euw, Erika; Ribas, Antoni; De Robertis, Edward M

    2015-02-01

    Canonical Wnt signaling plays an important role in development and disease, regulating transcription of target genes and stabilizing many proteins phosphorylated by glycogen synthase kinase 3 (GSK3). We observed that the MiT family of transcription factors, which includes the melanoma oncogene MITF (micropthalmia-associated transcription factor) and the lysosomal master regulator TFEB, had the highest phylogenetic conservation of three consecutive putative GSK3 phosphorylation sites in animal proteomes. This finding prompted us to examine the relationship between MITF, endolysosomal biogenesis, and Wnt signaling. Here we report that MITF expression levels correlated with the expression of a large subset of lysosomal genes in melanoma cell lines. MITF expression in the tetracycline-inducible C32 melanoma model caused a marked increase in vesicular structures, and increased expression of late endosomal proteins, such as Rab7, LAMP1, and CD63. These late endosomes were not functional lysosomes as they were less active in proteolysis, yet were able to concentrate Axin1, phospho-LRP6, phospho-β-catenin, and GSK3 in the presence of Wnt ligands. This relocalization significantly enhanced Wnt signaling by increasing the number of multivesicular bodies into which the Wnt signalosome/destruction complex becomes localized upon Wnt signaling. We also show that the MITF protein was stabilized by Wnt signaling, through the novel C-terminal GSK3 phosphorylations identified here. MITF stabilization caused an increase in multivesicular body biosynthesis, which in turn increased Wnt signaling, generating a positive-feedback loop that may function during the proliferative stages of melanoma. The results underscore the importance of misregulated endolysosomal biogenesis in Wnt signaling and cancer. PMID:25605940

  16. Triglyceride Blisters in Lipid Bilayers: Implications for Lipid Droplet Biogenesis and the Mobile Lipid Signal in Cancer Cell Membranes

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Duelund, Lars; Pakkanen, Kirsi Inkeri; Ipsen, John Hjort

    2010-01-01

    aggregates of unknown function present in malignant cells, and to the early biogenesis of lipid droplets accommodated between the two leaflets of the endoplasmic reticulum membrane. The TO aggregates give the bilayer a blister-like appearance, and will hinder the formation of multi-lamellar phases in model......, and possibly living membranes. The blisters will result in anomalous membrane probe partitioning, which should be accounted for in the interpretation of probe-related measurements....

  17. Effects of dairy consumption on SIRT1 and mitochondrial biogenesis in adipocytes and muscle cells

    Directory of Open Access Journals (Sweden)

    Bruckbauer Antje

    2011-12-01

    Full Text Available Abstract Background Recent data from this laboratory suggest that components of dairy foods may serve as activators of SIRT1 (Silent Information Regulator Transcript 1, and thereby participate in regulation of glucose and lipid metabolism. In this study, an ex-vivo/in-vitro approach was used to examine the integrated effects of dairy diets on SIRT1 activation in two key target tissues (adipose and muscle tissue. Methods Serum from overweight and obese subjects fed low or high dairy diets for 28 days was added to culture medium (similar to conditioned media to treat cultured adipocytes and muscle cells for 48 hours. Results Treatment with high dairy group conditioned media resulted in 40% increased SIRT1 gene expression in both tissues (p Conclusions These data indicate that dairy consumption leads to systemic effects, which may promote mitochondrial biogenesis in key target tissues such as muscle and adipose tissue both by direct activation of SIRT1 as well as by SIRT1-independent pathways.

  18. Biogenesis of iron-sulfur clusters in mammalian cells: new insights and relevance to human disease

    Directory of Open Access Journals (Sweden)

    Tracey A. Rouault

    2012-03-01

    Full Text Available Iron-sulfur (Fe-S clusters are ubiquitous cofactors composed of iron and inorganic sulfur. They are required for the function of proteins involved in a wide range of activities, including electron transport in respiratory chain complexes, regulatory sensing, photosynthesis and DNA repair. The proteins involved in the biogenesis of Fe-S clusters are evolutionarily conserved from bacteria to humans, and many insights into the process of Fe-S cluster biogenesis have come from studies of model organisms, including bacteria, fungi and plants. It is now clear that several rare and seemingly dissimilar human diseases are attributable to defects in the basic process of Fe-S cluster biogenesis. Although these diseases –which include Friedreich’s ataxia (FRDA, ISCU myopathy, a rare form of sideroblastic anemia, an encephalomyopathy caused by dysfunction of respiratory chain complex I and multiple mitochondrial dysfunctions syndrome – affect different tissues, a feature common to many of them is that mitochondrial iron overload develops as a secondary consequence of a defect in Fe-S cluster biogenesis. This Commentary outlines the basic steps of Fe-S cluster biogenesis as they have been defined in model organisms. In addition, it draws attention to refinements of the process that might be specific to the subcellular compartmentalization of Fe-S cluster biogenesis proteins in some eukaryotes, including mammals. Finally, it outlines several important unresolved questions in the field that, once addressed, should offer important clues into how mitochondrial iron homeostasis is regulated, and how dysfunction in Fe-S cluster biogenesis can contribute to disease.

  19. Enzymes in biogenesis of plant cell wall polysaccharides. Enzyme characterization using tracer techniques

    International Nuclear Information System (INIS)

    Enzymes and metabolic pathways, by which starch and cell wall polysaccharides are formed, were investigated in order to learn how these processes are regulated and to identify the enzymatic regulatory mechanisms involved. Germinating lily pollen was used for studies of cell wall formation, and pollen and maize endosperm for studies of starch biosynthesis. Hexokinase being the first step in conversion of hexoses to starch, wall polysaccharides and respiratory substrates, maize endosperm enzyme was assayed by its conversion of 14C-hexose to 14C-hexose-6-P, and rapid separation of the two labelled compounds on anion-exchange paper. This enzyme did not appear to be under tight regulation by feed-back inhibition or activation, nor to be severely inhibited by glucose-6-P or activated by citrate. ADP-glucose pyrophosphorylase and other pyrophosphorylases were assayed radiochemically with 14C-glucose-1-P (forward direction) or 32-PPsub(i) (reverse direction). They showed that the maize endosperm enzyme was activated by the glycolytic intermediates fructose-6-P and 3-phosphoglycerate, and that low levels of the enzyme were present in the high sucrose-low starch mutant named shrunken-2. Under optimal in-vitro assay conditions, the pollen enzyme reacted four times faster than the observed in-vivo rate of starch accumulation. Biogenesis of plant cell wall polysaccharides requires the conversion of hexose phosphates to various sugar nucleotides and utilization of the latter by the appropriate polysaccharide synthetases. Lily pollen possesses a β-1,3-glucan synthetase which is activated up to six-fold by β-linked oligosaccharides. Hence, the in-vivo activity of this enzyme may be modulated by such effector molecules

  20. Syringaresinol induces mitochondrial biogenesis through activation of PPARβ pathway in skeletal muscle cells.

    Science.gov (United States)

    Thach, Trung Thanh; Lee, Chan-Kyu; Park, Hyun Woo; Lee, Sang-Jun; Lee, Sung-Joon

    2016-08-15

    Activation of peroxisome proliferator-activated receptors (PPARs) plays a crucial role in cellular energy metabolism that directly impacts mitochondrial biogenesis. In this study, we demonstrate that syringaresinol, a pharmacological lignan extracted from Panax ginseng berry, moderately binds to and activates PPARβ with KD and EC50 values of 27.62±15.76μM and 18.11±4.77μM, respectively. Subsequently, the expression of peroxisome proliferator-activated receptor γ coactivator-1α together with PPARβ transcriptional targets, mitochondrial carnitine palmitoyltransferase 1 and uncoupling protein 2, was also enhanced in terms of both mRNA and protein levels. The activation of these proteins induced mitochondrial biogenesis by enrichment of mitochondrial replication and density within C2C12 myotubes. Importantly, knockdown of PPARβ reduced the syringaresinol-induced protein expression followed by the significant reduction of mitochondrial biogenesis. Taken together, our results indicate that syringaresinol induces mitochondrial biogenesis by activating PPARβ pathway. PMID:27450788

  1. Lysosome biogenesis/scattering increases host cell susceptibility to invasion by Trypanosoma cruzi metacyclic forms and resistance to tissue culture trypomastigotes.

    Science.gov (United States)

    Cortez, Cristian; Real, Fernando; Yoshida, Nobuko

    2016-05-01

    A fundamental question to be clarified concerning the host cell invasion by Trypanosoma cruzi is whether the insect-borne and mammalian-stage parasites use similar mechanisms for invasion. To address that question, we analysed the cell invasion capacity of metacyclic trypomastigotes (MT) and tissue culture trypomastigotes (TCT) under diverse conditions. Incubation of parasites for 1 h with HeLa cells in nutrient-deprived medium, a condition that triggered lysosome biogenesis and scattering, increased MT invasion and reduced TCT entry into cells. Sucrose-induced lysosome biogenesis increased HeLa cell susceptibility to MT and resistance to TCT. Treatment of cells with rapamycin, which inhibits mammalian target of rapamycin (mTOR), induced perinuclear lysosome accumulation and reduced MT invasion while augmenting TCT invasion. Metacylic trypomastigotes, but not TCT, induced mTOR dephosphorylation and the nuclear translocation of transcription factor EB (TFEB), a mTOR-associated lysosome biogenesis regulator. Lysosome biogenesis/scattering was stimulated upon HeLa cell interaction with MT but not with TCT. Recently, internalized MT, but not TCT, were surrounded by colocalized lysosome marker LAMP2 and mTOR. The recombinant gp82 protein, the MT-specific surface molecule that mediates invasion, induced mTOR dephosphorylation, nuclear TFEB translocation and lysosome biogenesis/scattering. Taken together, our data clearly indicate that MT invasion is mainly lysosome-dependent, whereas TCT entry is predominantly lysosome-independent. PMID:26572924

  2. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis.

    Science.gov (United States)

    Chen, Lyuqin; Tong, Jianhua; Xiao, Langtao; Ruan, Ying; Liu, Jingchun; Zeng, Minhuan; Huang, Hai; Wang, Jia-Wei; Xu, Lin

    2016-07-01

    Many plant organs have the ability to regenerate a new plant after detachment or wounding via de novo organogenesis. During de novo root organogenesis from Arabidopsis thaliana leaf explants, endogenic auxin is essential for the fate transition of regeneration-competent cells to become root founder cells via activation of WUSCHEL-RELATED HOMEOBOX 11 (WOX11). However, the molecular events from leaf explant detachment to auxin-mediated cell fate transition are poorly understood. In this study, we used an assay to determine the concentration of indole-3-acetic acid (IAA) to provide direct evidence that auxin is produced after leaf explant detachment, a process that involves YUCCA (YUC)-mediated auxin biogenesis. Inhibition of YUC prevents expression of WOX11 and fate transition of competent cells, resulting in the blocking of rooting. Further analysis showed that YUC1 and YUC4 act quickly (within 4 hours) in response to wounding after detachment in both light and dark conditions and promote auxin biogenesis in both mesophyll and competent cells, whereas YUC5, YUC8, and YUC9 primarily respond in dark conditions. In addition, YUC2 and YUC6 contribute to rooting by providing a basal auxin level in the leaf. Overall, our study indicates that YUC genes exhibit a division of labour during de novo root organogenesis from leaf explants in response to multiple signals. PMID:27255928

  3. Expression of key regulators of mitochondrial biogenesis in growth hormone receptor knockout (GHRKO) mice is enhanced but is not further improved by other potential life-extending interventions.

    Science.gov (United States)

    Gesing, Adam; Masternak, Michal M; Wang, Feiya; Joseph, Anna-Maria; Leeuwenburgh, Christiaan; Westbrook, Reyhan; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Bartke, Andrzej

    2011-10-01

    Mitochondrial biogenesis is essential for cell viability. Growth hormone receptor knockout (GHRKO), calorie restriction, and surgical visceral fat removal constitute experimental interventions to delay aging and increase life span. We examined the expression of known regulators of mitochondriogenesis: peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), adenosine monophosphate (AMP)-activated protein kinase (AMPK), sirtuin-1 (SIRT-1) and sirtuin-3 (SIRT-3), endothelial nitric oxide synthase (eNOS), nuclear respiratory factor-1, mitochondrial transcription factor A (TFAM), and mitofusin-2 (MFN-2) in the skeletal muscles and hearts of control and calorie-restricted female GHRKO mice and in the kidneys of male GHRKOs after visceral fat removal or sham surgery. Expression of PGC-1α in skeletal muscles, AMPK, SIRT-1, SIRT-3, eNOS, and MFN-2 in the heart and PGC-1α, AMPK, SIRT-3, eNOS, and MFN-2 in kidneys was increased in GHRKO mice but was not affected by calorie restriction or visceral fat removal. GHRKO mice have increased expression of key regulators of mitochondriogenesis, which is not improved further by calorie restriction or visceral fat removal. PMID:21788651

  4. The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone

    International Nuclear Information System (INIS)

    The fundamental question of how and which neuronal specific transcription factors tailor mitochondrial biogenesis and bioenergetics to the need of developing neuronal cells has remained largely unexplored. In this study, we report that the neurogenic basic helix-loop-helix transcription factor NeuroD6 possesses mitochondrial biogenic properties by amplifying the mitochondrial DNA content and TFAM expression levels, a key regulator for mitochondrial biogenesis. NeuroD6-mediated increase in mitochondrial biogenesis in the neuronal progenitor-like PC12-NEUROD6 cells is concomitant with enhanced mitochondrial bioenergetic functions, including increased expression levels of specific subunits of respiratory complexes of the electron transport chain, elevated mitochondrial membrane potential and ATP levels produced by oxidative phosphorylation. Thus, NeuroD6 augments the bioenergetic capacity of PC12-NEUROD6 cells to generate an energetic reserve, which confers tolerance to the mitochondrial stressor, rotenone. We found that NeuroD6 induces an adaptive bioenergetic response throughout rotenone treatment involving maintenance of the mitochondrial membrane potential and ATP levels in conjunction with preservation of the actin network. In conclusion, our results support the concept that NeuroD6 plays an integrative role in regulating and coordinating the onset of neuronal differentiation with acquisition of adequate mitochondrial mass and energetic capacity to ensure energy demanding events, such as cytoskeletal remodeling, plasmalemmal expansion, and growth cone formation. -- Highlights: ► NeuroD6 induces mitochondrial biogenesis in neuroprogenitor-like cells. ► NeuroD6 augments the bioenergetic reserve of the neuronal PC12-NeuroD6 cells. ► NeuroD6 increases the mitochondrial membrane potential and ATP levels. ► NeuroD6 confers tolerance to rotenone via an adaptive mitochondrial response.

  5. The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Kristin Kathleen; Uittenbogaard, Martine [Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, DC (United States); Chiaramello, Anne, E-mail: achiaram@gwu.edu [Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, DC (United States)

    2012-10-15

    The fundamental question of how and which neuronal specific transcription factors tailor mitochondrial biogenesis and bioenergetics to the need of developing neuronal cells has remained largely unexplored. In this study, we report that the neurogenic basic helix-loop-helix transcription factor NeuroD6 possesses mitochondrial biogenic properties by amplifying the mitochondrial DNA content and TFAM expression levels, a key regulator for mitochondrial biogenesis. NeuroD6-mediated increase in mitochondrial biogenesis in the neuronal progenitor-like PC12-NEUROD6 cells is concomitant with enhanced mitochondrial bioenergetic functions, including increased expression levels of specific subunits of respiratory complexes of the electron transport chain, elevated mitochondrial membrane potential and ATP levels produced by oxidative phosphorylation. Thus, NeuroD6 augments the bioenergetic capacity of PC12-NEUROD6 cells to generate an energetic reserve, which confers tolerance to the mitochondrial stressor, rotenone. We found that NeuroD6 induces an adaptive bioenergetic response throughout rotenone treatment involving maintenance of the mitochondrial membrane potential and ATP levels in conjunction with preservation of the actin network. In conclusion, our results support the concept that NeuroD6 plays an integrative role in regulating and coordinating the onset of neuronal differentiation with acquisition of adequate mitochondrial mass and energetic capacity to ensure energy demanding events, such as cytoskeletal remodeling, plasmalemmal expansion, and growth cone formation. -- Highlights: Black-Right-Pointing-Pointer NeuroD6 induces mitochondrial biogenesis in neuroprogenitor-like cells. Black-Right-Pointing-Pointer NeuroD6 augments the bioenergetic reserve of the neuronal PC12-NeuroD6 cells. Black-Right-Pointing-Pointer NeuroD6 increases the mitochondrial membrane potential and ATP levels. Black-Right-Pointing-Pointer NeuroD6 confers tolerance to rotenone via an adaptive

  6. Monitoring cell growth.

    Science.gov (United States)

    Strober, W

    2001-05-01

    This appendix provides two protocols for monitoring cell growth. Counting cells using a hemacytometer is tedious but it allows one to effectively distinguish live cells from dead cells (using Trypan Blue exclusion). In addition, this procedure is less subject to errors due to cell clumping or heterogeneity of cell size. The use of an electronic cell counter is quicker and easier than counting cells using a hemacytometer. However, an electronic cell counter as currently constructed does not distinguish live from dead cells in a reliable fashion and is subject to error due to the presence of cell clumps. Overall, the electronic cell counter is best reserved for repetitive and rapid counting of fresh peripheral blood cells and should be used with caution when counting cell populations derived from tissues. PMID:18432653

  7. Lipoamide Acts as an Indirect Antioxidant by Simultaneously Stimulating Mitochondrial Biogenesis and Phase II Antioxidant Enzyme Systems in ARPE-19 Cells.

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    Full Text Available In our previous study, we found that pretreatment with lipoamide (LM more effectively than alpha-lipoic acid (LA protected retinal pigment epithelial (RPE cells from the acrolein-induced damage. However, the reasons and mechanisms for the greater effect of LM than LA are unclear. We hypothesize that LM, rather than the more direct antioxidant LA, may act more as an indirect antioxidant. In the present study, we treated ARPE-19 cells with LA and LM and compared their effects on activation of mitochondrial biogenesis and induction of phase II enzyme systems. It is found that LM is more effective than LA on increasing mitochondrial biogenesis and inducing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2 and its translocation to the nucleus, leading to an increase in expression or activity of phase II antioxidant enzymes (NQO-1, GST, GCL, catalase and Cu/Zn SOD. Further study demonstrated that mitochondrial biogenesis and phase II enzyme induction are closely coupled via energy requirements. These results suggest that LM, compared with the direct antioxidant LA, plays its protective effect on oxidative damage more as an indirect antioxidant to simultaneously stimulate mitochondrial biogenesis and induction of phase II antioxidant enzymes.

  8. Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis

    International Nuclear Information System (INIS)

    Methamphetamine (METH) is an abused drug that may cause psychiatric and neurotoxic damage, including degeneration of monoaminergic terminals and apoptosis of non-monoaminergic cells in Brain. The cellular and molecular mechanisms underlying these METH-induced neurotoxic effects remain to be clarified. In this study, we performed a time course assessment to investigate the effects of METH on intracellular oxidative stress and mitochondrial alterations in a human dopaminergic neuroblastoma SH-SY5Y cell line. We characterized that METH induces a temporal sequence of several cellular events including, firstly, a decrease in mitochondrial membrane potential within 1 h of the METH treatment, secondly, an extensive decline in mitochondrial membrane potential and increase in the level of reactive oxygen species (ROS) after 8 h of the treatment, thirdly, an increase in mitochondrial mass after the drug treatment for 24 h, and finally, a decrease in mtDNA copy number and mitochondrial proteins per mitochondrion as well as the occurrence of apoptosis after 48 h of the treatment. Importantly, vitamin E attenuated the METH-induced increases in intracellular ROS level and mitochondrial mass, and prevented METH-induced cell death. Our observations suggest that enhanced oxidative stress and aberrant mitochondrial biogenesis may play critical roles in METH-induced neurotoxic effects

  9. Mitochondrial transcription factor A regulated ionizing radiation-induced mitochondrial biogenesis in human lung adenocarcinoma A549 cells

    International Nuclear Information System (INIS)

    Mitochondrial transcription factor A (TFAM), the first well-characterized transcription factor from vertebrate mitochondria, is closely related to mitochondrial DNA (mtDNA) maintenance and repair. Recent evidence has shown that the ratio of mtDNA to nuclearDNA (nDNA) is increased in both human cells and murine tissues after ionizing radiation (IR). However, the underlying mechanism has not as yet been clearly identified. In the present study, we demonstrated that in human lung adenocarcinoma A549 cells, expression of TFAM was upregulated, together with the increase of the relative mtDNA copy number and cytochrome c oxidase (COX) activity after α-particle irradiation. Furthermore, short hairpin RNA (shRNA)-mediated TFAM knockdown inhibited the enhancement of the relative mtDNA copy number and COX activity caused by α-particles. Taken together, our data suggested that TFAM plays a crucial role in regulating mtDNA amplification and mitochondrial biogenesis under IR conditions. (author)

  10. Golgi Biogenesis

    OpenAIRE

    Wang, Yanzhuang; Seemann, Joachim

    2011-01-01

    The kinase MEK1 stimulates disassembly of the Golgi at mitosis to facilitate its partitioning into daughter cells. SNARE proteins then promote fusion of the resulting vesicles to regenerate a functional Golgi apparatus at the end of mitosis.

  11. Plasma membrane biogenesis in eukaryotic cells: translocation of newly synthesized lipid.

    OpenAIRE

    Mills, J T; Furlong, S T; Dawidowicz, E A

    1984-01-01

    We examined the transfer of sterols and phospholipids from their site of synthesis to the plasma membrane of Acanthamoeba castellanii. Cells were labeled with [3H]acetate, and plasma membrane fractions were isolated under conditions that minimize the nonspecific exchange of lipids between subcellular membrane fractions. Sterols and phospholipids were purified from both whole-cell homogenates and isolated plasma membrane. In whole cells, 3H-labeled lipids were formed, with no apparent time lag...

  12. Cellulose biogenesis in Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, R.L.

    1993-12-31

    Organisms that synthesize cellulose can be found amongst the bacteria, protistans, fungi, and animals, but it is in plants that the importance of cellulose in function (as the major structural constituent of plant cell walls) and economic use (as wood and fiber) can be best appreciated. The structure of cellulose and its biosynthesis have been the subjects of intense investigation. One of the most important insights gained from these studies is that the synthesis of cellulose by living organisms involves much more than simply the polymerization of glucose into a (1{r_arrow}4)-{beta}-linked polymer. The number of glucoses in a polymer (the degree of polymerization), the crystalline form assumed by the glucan chains when they crystallize to form a microfibril, and the dimensions and orientation of the microfibrils are all subject to cellular control. Instead of cellulose biosynthesis, a more appropriate term might be cellulose biogenesis, to emphasize the involvement of cellular structures and mechanisms in controlling polymerization and directing crystallization and deposition. Dictyostelium discoideum is uniquely suitable for the study of cellulose biogenesis because of its amenability to experimental study and manipulation and the extent of our knowledge of its basic cellular mechanisms (as will be evident from the rest of this volume). In this chapter, I will summarize what is known about cellulose biogenesis in D. discoideum, emphasizing its potential to illuminate our understanding both of D. discoideum development and plant cellulose biogenesis.

  13. Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2011-11-01

    Full Text Available As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium and prototrophic (minimal medium culture conditions. The differential patterns of genetic interactions detected among > 235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens and an important target.

  14. 3-Sulfanylhexanol precursor biogenesis in grapevine cells: the stimulating effect of Botrytis cinerea.

    Science.gov (United States)

    Thibon, Cécile; Cluzet, Stéphanie; Mérillon, Jean Michel; Darriet, Philippe; Dubourdieu, Denis

    2011-02-23

    Volatile thiols, compounds that contribute strongly to the varietal aroma, are present in much higher concentrations in sweet wines than in dry wines. This positive effect, due to the presence of Botrytis cinerea on the berries, in fact results from a strong enrichment of cysteine S-conjugate precursors in botrytized berries. In the present study, a convenient model was investigated to reproduce and therefore study this phenomenon. A Vitis vinifera cell culture was used as a simple model, and we focused on S-3-(hexan-1-ol)-l-cysteine (P-3SH), the cysteinylated precursor of 3-sulfanylhexanol. We demonstrated that grapevine cells were able to produce P-3SH and that the presence of B. cinerea considerably increased the precursor level (up to 1000-fold). This positive result was determined to be due to metabolites secreted by the fungus. These molecules were temperature sensitive, unstable over time, and their production was activated in the presence of grapevine cells. Moreover, part of the pathway leading to P-3SH was deciphered: it was directly derived from the cleavage of S-3-(hexan-1-ol)-l-glutathione, which itself was generated after a conjugation of glutathione on (E)-2-hexenal. PMID:21235257

  15. Deficiency of the ribosome biogenesis gene Sbds in hematopoietic stem and progenitor cells causes neutropenia in mice by attenuating lineage progression in myelocytes.

    Science.gov (United States)

    Zambetti, Noemi A; Bindels, Eric M J; Van Strien, Paulina M H; Valkhof, Marijke G; Adisty, Maria N; Hoogenboezem, Remco M; Sanders, Mathijs A; Rommens, Johanna M; Touw, Ivo P; Raaijmakers, Marc H G P

    2015-10-01

    Shwachman-Diamond syndrome is a congenital bone marrow failure disorder characterized by debilitating neutropenia. The disease is associated with loss-of-function mutations in the SBDS gene, implicated in ribosome biogenesis, but the cellular and molecular events driving cell specific phenotypes in ribosomopathies remain poorly defined. Here, we established what is to our knowledge the first mammalian model of neutropenia in Shwachman-Diamond syndrome through targeted downregulation of Sbds in hematopoietic stem and progenitor cells expressing the myeloid transcription factor CCAAT/enhancer binding protein α (Cebpa). Sbds deficiency in the myeloid lineage specifically affected myelocytes and their downstream progeny while, unexpectedly, it was well tolerated by rapidly cycling hematopoietic progenitor cells. Molecular insights provided by massive parallel sequencing supported cellular observations of impaired cell cycle exit and formation of secondary granules associated with the defect of myeloid lineage progression in myelocytes. Mechanistically, Sbds deficiency activated the p53 tumor suppressor pathway and induced apoptosis in these cells. Collectively, the data reveal a previously unanticipated, selective dependency of myelocytes and downstream progeny, but not rapidly cycling progenitors, on this ubiquitous ribosome biogenesis protein, thus providing a cellular basis for the understanding of myeloid lineage biased defects in Shwachman-Diamond syndrome. PMID:26185170

  16. Genome-wide analysis of effectors of peroxisome biogenesis.

    Directory of Open Access Journals (Sweden)

    Ramsey A Saleem

    Full Text Available Peroxisomes are intracellular organelles that house a number of diverse metabolic processes, notably those required for beta-oxidation of fatty acids. Peroxisomes biogenesis can be induced by the presence of peroxisome proliferators, including fatty acids, which activate complex cellular programs that underlie the induction process. Here, we used multi-parameter quantitative phenotype analyses of an arrayed mutant collection of yeast cells induced to proliferate peroxisomes, to establish a comprehensive inventory of genes required for peroxisome induction and function. The assays employed include growth in the presence of fatty acids, and confocal imaging and flow cytometry through the induction process. In addition to the classical phenotypes associated with loss of peroxisomal functions, these studies identified 169 genes required for robust signaling, transcription, normal peroxisomal development and morphologies, and transmission of peroxisomes to daughter cells. These gene products are localized throughout the cell, and many have indirect connections to peroxisome function. By integration with extant data sets, we present a total of 211 genes linked to peroxisome biogenesis and highlight the complex networks through which information flows during peroxisome biogenesis and function.

  17. Regulation of ribosome biogenesis in maize embryonic axes during germination.

    Science.gov (United States)

    Villa-Hernández, J M; Dinkova, T D; Aguilar-Caballero, R; Rivera-Cabrera, F; Sánchez de Jiménez, E; Pérez-Flores, L J

    2013-10-01

    Ribosome biogenesis is a pre-requisite for cell growth and proliferation; it is however, a highly regulated process that consumes a great quantity of energy. It requires the coordinated production of rRNA, ribosomal proteins and non-ribosomal factors which participate in the processing and mobilization of the new ribosomes. Ribosome biogenesis has been studied in yeast and animals; however, there is little information about this process in plants. The objective of the present work was to study ribosome biogenesis in maize seeds during germination, a stage characterized for its fast growth, and the effect of insulin in this process. Insulin has been reported to accelerate germination and to induce seedling growth. It was observed that among the first events reactivated just after 3 h of imbibition are the rDNA transcription and the pre-rRNA processing and that insulin stimulates both of them (40-230%). The transcript of nucleolin, a protein which regulates rDNA transcription and pre-rRNA processing, is among the messages stored in quiescent dry seeds and it is mobilized into the polysomal fraction during the first hours of imbibition (6 h). In contrast, de novo ribosomal protein synthesis was low during the first hours of imbibition (3 and 6 h) increasing by 60 times in later stages (24 h). Insulin increased this synthesis (75%) at 24 h of imbibition; however, not all ribosomal proteins were similarly regulated. In this regard, an increase in RPS6 and RPL7 protein levels was observed, whereas RPL3 protein levels did not change even though its transcription was induced. Results show that ribosome biogenesis in the first stages of imbibition is carried out with newly synthesized rRNA and ribosomal proteins translated from stored mRNA. PMID:23806421

  18. Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients.

    Science.gov (United States)

    Gu, Bai-Wei; Apicella, Marisa; Mills, Jason; Fan, Jian-Meng; Reeves, Dara A; French, Deborah; Podsakoff, Gregory M; Bessler, Monica; Mason, Philip J

    2015-01-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure syndrome characterized by the presence of short telomeres at presentation. Mutations in ten different genes, whose products are involved in the telomere maintenance pathway, have been shown to cause DC. The X-linked form is the most common form of the disease and is caused by mutations in the gene DKC1, encoding the protein dyskerin. Dyskerin is required for the assembly and stability of telomerase and is also involved in ribosomal RNA (rRNA) processing where it converts specific uridines to pseudouridine. DC is thought to result from failure to maintain tissues, like blood, that are renewed by stem cell activity, but research into pathogenic mechanisms has been hampered by the difficulty of obtaining stem cells from patients. We reasoned that induced pluripotent stem (iPS) cells from X-linked DC patients may provide information about the mechanisms involved. Here we describe the production of iPS cells from DC patients with DKC1 mutations Q31E, A353V and ΔL37. In addition we constructed "corrected" lines with a copy of the wild type dyskerin cDNA expressed from the AAVS1 safe harbor locus. We show that in iPS cells with DKC1 mutations telomere maintenance is compromised with short telomere lengths and decreased telomerase activity. The degree to which telomere lengths are affected by expression of telomerase during reprograming, or with ectopic expression of wild type dyskerin, is variable. The recurrent mutation A353V shows the most severe effect on telomere maintenance. A353V cells but not Q31E or ΔL37 cells, are refractory to correction by expression of wild type DKC1 cDNA. Because dyskerin is involved in both telomere maintenance and ribosome biogenesis it has been postulated that defective ribosome biogenesis and translation may contribute to the disease phenotype. Evidence from mouse and zebra fish models has supported the involvement of ribosome biogenesis but primary cells from human

  19. Tgf-β1 inhibits Cftr biogenesis and prevents functional rescue of ΔF508-Cftr in primary differentiated human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Steven M Snodgrass

    Full Text Available CFTR is an integral transmembrane glycoprotein and a cAMP-activated Cl(- channel. Mutations in the CFTR gene lead to Cystic Fibrosis (CF-an autosomal recessive disease with majority of the morbidity and mortality resulting from airway infection, inflammation, and fibrosis. The most common disease-associated mutation in the CFTR gene-deletion of Phe508 (ΔF508 leads to a biosynthetic processing defect of CFTR. Correction of the defect and delivery of ΔF508-CFTR to the cell surface has been highly anticipated as a disease modifying therapy. Compared to promising results in cultured cell this approach was much less effective in CF patients in an early clinical trial. Although the cause of failure to rescue ΔF508-CFTR in the clinical trial has not been determined, presence of factor(s that interfere with the rescue in vivo could be considered. The cytokine TGF-β1 is frequently elevated in CF patients. TGF-β1 has pleiotropic effects in different disease models and genetic backgrounds and little is known about TGF-β1 effects on CFTR in human airway epithelial cells. Moreover, there are no published studies examining TGF-β1 effects on the functional rescue of ΔF508-CFTR. Here we found that TGF-β1 inhibits CFTR biogenesis by reducing mRNA levels and protein abundance in primary differentiated human bronchial epithelial (HBE cells from non-CF individuals. TGF-β1 inhibits CFTR biogenesis without compromising the epithelial phenotype or integrity of HBE cells. TGF-β1 also inhibits biogenesis and impairs the functional rescue of ΔF508-CFTR in HBE cells from patients homozygous for the ΔF508 mutation. Our data indicate that activation of TGF-β1 signaling may inhibit CFTR function in non-CF individuals and may interfere with therapies directed at correcting the processing defect of ΔF508-CFTR in CF patients.

  20. Role of the Group B antigen of Streptococcus agalactiae: a peptidoglycan-anchored polysaccharide involved in cell wall biogenesis.

    Directory of Open Access Journals (Sweden)

    Élise Caliot

    Full Text Available Streptococcus agalactiae (Group B streptococcus, GBS is a leading cause of infections in neonates and an emerging pathogen in adults. The Lancefield Group B carbohydrate (GBC is a peptidoglycan-anchored antigen that defines this species as a Group B Streptococcus. Despite earlier immunological and biochemical characterizations, the function of this abundant glycopolymer has never been addressed experimentally. Here, we inactivated the gene gbcO encoding a putative UDP-N-acetylglucosamine-1-phosphate:lipid phosphate transferase thought to catalyze the first step of GBC synthesis. Indeed, the gbcO mutant was unable to synthesize the GBC polymer, and displayed an important growth defect in vitro. Electron microscopy study of the GBC-depleted strain of S. agalactiae revealed a series of growth-related abnormalities: random placement of septa, defective cell division and separation processes, and aberrant cell morphology. Furthermore, vancomycin labeling and peptidoglycan structure analysis demonstrated that, in the absence of GBC, cells failed to initiate normal PG synthesis and cannot complete polymerization of the murein sacculus. Finally, the subcellular localization of the PG hydrolase PcsB, which has a critical role in cell division of streptococci, was altered in the gbcO mutant. Collectively, these findings show that GBC is an essential component of the cell wall of S. agalactiae whose function is reminiscent of that of conventional wall teichoic acids found in Staphylococcus aureus or Bacillus subtilis. Furthermore, our findings raise the possibility that GBC-like molecules play a major role in the growth of most if not all beta-hemolytic streptococci.

  1. Biogenesis and fate of the cell-cell adhesion molecule, agglutinin, during gametogenesis and fertilization of Chlamydomonas reinhardtii

    International Nuclear Information System (INIS)

    Fertilization in Chlamydomonas begins with the species-specific recognition and adhesion between gametes of opposite mating types via agglutinin molecules on the flagellar surface. This adhesion generates a cAMP-mediated sexual signal that initiates the subsequent events of call wall release, mating structure activation, and cell fusion. Although flagella of paired gametes remain attached to each other until the zygote forms, the process is dynamic. Engaged agglutinins rapidly become inactivated and turnover, requiring the constant supply of new agglutinins to replace the lost molecules. A population of cell body associated agglutinins has been postulated to the pool of agglutinins recruited during this turnover. Cell body agglutinins, therefore were identified, purified, localized within the cells and compared to flagellar agglutinins. The relationship between these two agglutinin populations was also examined. Cell body agglutinins were biochemically indistinguishable from the flagellar form with respect to their Mr, sedimentation coefficient, and hydrophobicity elution properties. Functionally, however, these molecules were inactive in situ. The calculated surface density of agglutinins in the cell body and flagellar domains was similar and thus could not explain their functional difference, but two domains contiguous and yet distinctive suggested they may be separated by a functional barrier. To test this, a method was developed, using a monoclonal antibody and cycloheximide, that removed the flagellar agglutinins so movement between the domains could be monitored. Mobilization of agglutinins onto the flagella did not occur unless sexual signaling was induced with cAMP and papaverine

  2. crRNA biogenesis

    NARCIS (Netherlands)

    Charpentier, E.; Oost, van der J.; White, M.

    2013-01-01

    Mature crRNAs are key elements in CRISPR-Cas defense against genome invaders. These short RNAs are composed of unique repeat/spacer sequences that guide the Cas protein(s) to the cognate invading nucleic acids for their destruction. The biogenesis of mature crRNAs involves highly precise processing

  3. The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells.

    Science.gov (United States)

    Qi, Hongying; Watanabe, Toshiaki; Ku, Hsueh-Yen; Liu, Na; Zhong, Mei; Lin, Haifan

    2011-02-01

    Despite exciting progress in understanding the Piwi-interacting RNA (piRNA) pathway in the germ line, less is known about this pathway in somatic cells. We showed previously that Piwi, a key component of the piRNA pathway in Drosophila, is regulated in somatic cells by Yb, a novel protein containing an RNA helicase-like motif and a Tudor-like domain. Yb is specifically expressed in gonadal somatic cells and regulates piwi in somatic niche cells to control germ line and somatic stem cell self-renewal. However, the molecular basis of the regulation remains elusive. Here, we report that Yb recruits Armitage (Armi), a putative RNA helicase involved in the piRNA pathway, to the Yb body, a cytoplasmic sphere to which Yb is exclusively localized. Moreover, co-immunoprecipitation experiments show that Yb forms a complex with Armi. In Yb mutants, Armi is dispersed throughout the cytoplasm, and Piwi fails to enter the nucleus and is rarely detectable in the cytoplasm. Furthermore, somatic piRNAs are drastically diminished, and soma-expressing transposons are desilenced. These observations indicate a crucial role of Yb and the Yb body in piRNA biogenesis, possibly by regulating the activity of Armi that controls the entry of Piwi into the nucleus for its function. Finally, we discovered putative endo-siRNAs in the flamenco locus and the Yb dependence of their expression. These observations further implicate a role for Yb in transposon silencing via both the piRNA and endo-siRNA pathways. PMID:21106531

  4. MicroRNA regulation of stem cell differentiation and diseases of the bone and adipose tissue: Perspectives on miRNA biogenesis and cellular transcriptome.

    Science.gov (United States)

    Martin, E C; Qureshi, A T; Dasa, V; Freitas, M A; Gimble, J M; Davis, T A

    2016-05-01

    MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through targeting and suppression of mRNAs. miRNAs have been under investigation for the past twenty years and there is a large breadth of information on miRNAs in diseases such as cancer and immunology. Only more recently have miRNAs shown promise as a mechanism for intervention with respect to diseases of the bone and adipose tissue. In mesenchymal stem cell (MSC) differentiation, alterations in miRNA expression patterns can differentially promote an osteogenic, adipogenic, or myogenic phenotype. This manuscript reviews the current literature with respect to miRNAs in the context of MSC function with a particular focus on novel avenues for the examination of miRNA associated with bone and adipose tissue biology and disease. Specifically we highlight the need for a greater depth of investigation on MSCs with respect to miRNA biogenesis, processing, strand selection, and heterogeneity. We discuss how these mechanisms facilitate both altered miRNA expression and function. PMID:25726914

  5. Platycodon grandiflorum A. De Candolle Ethanolic Extract Inhibits Adipogenic Regulators in 3T3-L1 Cells and Induces Mitochondrial Biogenesis in Primary Brown Preadipocytes.

    Science.gov (United States)

    Kim, Hye-Lin; Park, Jinbong; Park, Hyewon; Jung, Yunu; Youn, Dong-Hyun; Kang, JongWook; Jeong, Mi-Young; Um, Jae-Young

    2015-09-01

    This study was designed to evaluate the effects of Platycodon grandiflorum A. DC. ethanolic extract (PG) on obesity in brown/white preadipocytes. The effect of PG on the differentiation and mitochondrial biogenesis of brown adipocytes is still not examined. An in vivo study showed that PG induced weight loss in mice with high-fat-diet-induced obesity. PG successfully suppressed the differentiation of 3T3-L1 cells by down-regulating cellular induction of the peroxisome proliferators activated receptor γ (PPARγ), CCAAT enhancer binding protein α (C/EBPα), lipin-1, and adiponectin but increasing expression of silent mating type information regulation 2 homologue 1 (SIRT1) and the phosphorylation of AMP-activated protein kinase α (AMPKα). The effect of PG on the adipogenic factors was compared with that of its bioactive compound platycodin D. In addition, PG increased expressions of mitochondria-related genes, including uncoupling protein 1 (UCP1), peroxisome proliferator activated receptor-coactivator 1 α (PGC1α), PR domain containing 16 (PRDM16), SIRT3, nuclear respiratory factor (NRF), and cytochrome C (CytC) in primary brown adipocytes. These results indicate that PG stimulates the differentiation of brown adipocytes through modulation of mitochondria-related genes and could offer clinical benefits as a supplement to treat obesity. PMID:26244589

  6. Menin-mediated regulation of miRNA biogenesis uncovers the IRS2 pathway as a target for regulating pancreatic beta cells

    Science.gov (United States)

    Gurung, Buddha; Katona, Bryson W.; Hua, Xianxin

    2014-01-01

    Menin, a protein encoded by the MEN1 gene, is mutated in patients with multiple endocrine neoplasia type 1 (MEN1). Menin acts as a tumor suppressor in endocrine organs while it is also required for transformation of a subgroup of leukemia. The recently solved crystal structure of menin with different binding partners reveals that menin is a key scaffold protein that cross-talks with various partners, including transcription factors, to regulate gene transcription. Our recent findings unravel a previously undiscovered mechanism for menin-mediated control of gene expression via processing of certain microRNA’s, thus adding to the plethora of ways in which menin regulates gene expression. By interacting with ARS2, an RNA binding protein, menin facilitates the processing of pri-let 7a and pri-miR155 to pre-let 7a and pre-miR155 respectively. Consistently, excision of the Men1 gene results in upregulation of IRS2, a let-7a target. As IRS2 is known to mediate both insulin signaling and insulin-induced cell proliferation, and let-7a targets include oncogenes like RAS and HMGA2, a deeper understanding of the menin-ARS2 complex in regulating miRNA biogenesis will yield further insights into the pathogenesis of the MEN1 syndrome and other menin-associated malignancies. PMID:25594065

  7. PEX16: a multifaceted regulator of peroxisome biogenesis

    Directory of Open Access Journals (Sweden)

    Peter eKim

    2013-09-01

    Full Text Available Peroxisomes are formed by two distinct pathways: the growth and fission of mature peroxisomes and de novo synthesis at the endoplasmic reticulum (ER. While many of the molecular mechanisms underlying these two pathways remain to be elucidated, it is generally accepted that their relative contribution to peroxisome formation may vary depending on the species, cell type and/or physiological status of the organism. One pertinent example of the apparent differences in the regulation of peroxisome biogenesis among evolutionarily diverse species is the involvement of the peroxin PEX16. In Yarrowia lipolytica, for instance, PEX16 is an intraperoxisomal peripheral membrane protein that participates in peroxisomal fission. By contrast, Human PEX16 is an integral membrane protein that is thought to function at the ER during the early stages of de novo peroxisome formation and also recruits peroxisomal membrane proteins directly to mature peroxisomes. Similarly, PEX16 in the plant Arabidopsis thaliana is speculated to be a PMP receptor at the ER and peroxisomes, and is also required for the formation of other ER-derived organelles, such as oil and protein bodies. Here we briefly review the current knowledge of Y. lipolytica, human and A. thaliana PEX16 in the context of our overall understanding of peroxisome biogenesis and the role of the ER in this process in these three divergent species.

  8. Oncostatin M regulates membrane traffic and stimulates bile canalicular membrane biogenesis in HepG2 cells

    NARCIS (Netherlands)

    Van der Wouden, Johanna M.; Van IJzendoorn, Sven C.D.; Hoekstra, Dick

    2002-01-01

    Hepatocytes are the major epithelial cells of the liver and they display membrane polarity: the sinusoidal membrane representing the basolateral surface, while the bile canalicular membrane is typical of the apical membrane. In polarized HepG2 cells an endosomal organelle, SAC, fulfills a prominent

  9. The effect of ethidium bromide and chloramphenicol on mitochondrial biogenesis in primary human fibroblasts

    International Nuclear Information System (INIS)

    The expression of mitochondrial components is controlled by an intricate interplay between nuclear transcription factors and retrograde signaling from mitochondria. The role of mitochondrial DNA (mtDNA) and mtDNA-encoded proteins in mitochondrial biogenesis is, however, poorly understood and thus far has mainly been studied in transformed cell lines. We treated primary human fibroblasts with ethidium bromide (EtBr) or chloramphenicol for six weeks to inhibit mtDNA replication or mitochondrial protein synthesis, respectively, and investigated how the cells recovered from these insults two weeks after removal of the drugs. Although cellular growth and mitochondrial gene expression were severely impaired after both inhibitor treatments we observed marked differences in mitochondrial structure, membrane potential, glycolysis, gene expression, and redox status between fibroblasts treated with EtBr and chloramphenicol. Following removal of the drugs we further detected clear differences in expression of both mtDNA-encoded genes and nuclear transcription factors that control mitochondrial biogenesis, suggesting that the cells possess different compensatory mechanisms to recover from drug-induced mitochondrial dysfunction. Our data reveal new aspects of the interplay between mitochondrial retrograde signaling and the expression of nuclear regulators of mitochondrial biogenesis, a process with direct relevance to mitochondrial diseases and chloramphenicol toxicity in humans. -- Highlights: ► Cells respond to certain environmental toxins by increasing mitochondrial biogenesis. ► We investigated the effect of Chloramphenicol and EtBr in primary human fibroblasts. ► Inhibiting mitochondrial protein synthesis or DNA replication elicit different effects. ► We provide novel insights into the cellular responses toxins and antibiotics.

  10. The effect of ethidium bromide and chloramphenicol on mitochondrial biogenesis in primary human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Li-Pin; Ovchinnikov, Dmitry; Wolvetang, Ernst, E-mail: e.wolvetang@uq.edu.au

    2012-05-15

    The expression of mitochondrial components is controlled by an intricate interplay between nuclear transcription factors and retrograde signaling from mitochondria. The role of mitochondrial DNA (mtDNA) and mtDNA-encoded proteins in mitochondrial biogenesis is, however, poorly understood and thus far has mainly been studied in transformed cell lines. We treated primary human fibroblasts with ethidium bromide (EtBr) or chloramphenicol for six weeks to inhibit mtDNA replication or mitochondrial protein synthesis, respectively, and investigated how the cells recovered from these insults two weeks after removal of the drugs. Although cellular growth and mitochondrial gene expression were severely impaired after both inhibitor treatments we observed marked differences in mitochondrial structure, membrane potential, glycolysis, gene expression, and redox status between fibroblasts treated with EtBr and chloramphenicol. Following removal of the drugs we further detected clear differences in expression of both mtDNA-encoded genes and nuclear transcription factors that control mitochondrial biogenesis, suggesting that the cells possess different compensatory mechanisms to recover from drug-induced mitochondrial dysfunction. Our data reveal new aspects of the interplay between mitochondrial retrograde signaling and the expression of nuclear regulators of mitochondrial biogenesis, a process with direct relevance to mitochondrial diseases and chloramphenicol toxicity in humans. -- Highlights: ► Cells respond to certain environmental toxins by increasing mitochondrial biogenesis. ► We investigated the effect of Chloramphenicol and EtBr in primary human fibroblasts. ► Inhibiting mitochondrial protein synthesis or DNA replication elicit different effects. ► We provide novel insights into the cellular responses toxins and antibiotics.

  11. Biogenesis, delivery, and function of extracellular RNA

    Directory of Open Access Journals (Sweden)

    James G. Patton

    2015-08-01

    Full Text Available The Extracellular RNA (exRNA Communication Consortium was launched by the National Institutes of Health to focus on the extent to which RNA might function in a non-cell-autonomous manner. With the availability of increasingly sensitive tools, small amounts of RNA can be detected in serum, plasma, and other bodily fluids. The exact mechanism(s by which RNA can be secreted from cells and the mechanisms for the delivery and uptake by recipient cells remain to be determined. This review will summarize current knowledge about the biogenesis and delivery of exRNA and outline projects seeking to understand the functional impact of exRNA.

  12. MHC class II-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis.

    NARCIS (Netherlands)

    Buschow, S.I.; Balkom, B.W.M. van; Aalberts, M.; Heck, A.J.R. van; Wauben, M.; Stoorvogel, W.

    2010-01-01

    Professional antigen-presenting cells secrete major histocompatibility complex class II (MHC II) carrying exosomes with unclear physiological function(s). Exosomes are first generated as the intraluminal vesicles (ILVs) of a specific type of multivesicular body, and are then secreted by fusion of th

  13. Impaired Chloroplast Biogenesis in Immutans, an Arabidopsis Variegation Mutant, Modifies Developmental Programming, Cell Wall Composition and Resistance to Pseudomonas syringae

    Science.gov (United States)

    Pogorelko, Gennady V.; Kambakam, Sekhar; Nolan, Trevor; Foudree, Andrew; Zabotina, Olga A.; Rodermel, Steven R.

    2016-01-01

    The immutans (im) variegation mutation of Arabidopsis has green- and white- sectored leaves due to action of a nuclear recessive gene. IM codes for PTOX, a plastoquinol oxidase in plastid membranes. Previous studies have revealed that the green and white sectors develop into sources (green tissues) and sinks (white tissues) early in leaf development. In this report we focus on white sectors, and show that their transformation into effective sinks involves a sharp reduction in plastid number and size. Despite these reductions, cells in the white sectors have near-normal amounts of plastid RNA and protein, and surprisingly, a marked amplification of chloroplast DNA. The maintenance of protein synthesis capacity in the white sectors might poise plastids for their development into other plastid types. The green and white im sectors have different cell wall compositions: whereas cell walls in the green sectors resemble those in wild type, cell walls in the white sectors have reduced lignin and cellulose microfibrils, as well as alterations in galactomannans and the decoration of xyloglucan. These changes promote susceptibility to the pathogen Pseudomonas syringae. Enhanced susceptibility can also be explained by repressed expression of some, but not all, defense genes. We suggest that differences in morphology, physiology and biochemistry between the green and white sectors is caused by a reprogramming of leaf development that is coordinated, in part, by mechanisms of retrograde (plastid-to-nucleus) signaling, perhaps mediated by ROS. We conclude that variegation mutants offer a novel system to study leaf developmental programming, cell wall metabolism and host-pathogen interactions. PMID:27050746

  14. Effect of the three-dimensional organization of liver cells on the biogenesis of the γ-glutamyltransferase fraction pattern.

    Science.gov (United States)

    Corti, Alessandro; Fierabracci, Vanna; Caponi, Laura; Paolicchi, Aldo; Lorenzini, Evelina; Campani, Daniela; Belcastro, Eugenia; Franzini, Maria

    2016-07-01

    Context Four gamma-glutamyltransferase (GGT) fractions with different molecular weights (big-, medium-, small- and free-GGT) are detectable in human plasma. Objective Verify if liver cells can release all four GGT fractions and if the spatial cell organization influences their release. Methods Hepatoma (HepG2) and melanoma (Me665/2/60) cells were cultured as monolayers or spheroids. GGT released in culture media was analysed by gel-filtration chromatography. Results HepG2 and Me665/2/60 monolayers released the b-GGT fraction, while significative levels of s-GGT and f-GGT were detectable only in media of HepG2-spheroids. Bile acids alone or in combination with papain promoted the conversion of b-GGT in s-GGT or f-GGT, respectively. Conclusions GGT is usually released as b-GGT, while s-GGT and f-GGT are likely to be produced in the liver extracellular environment by the combined action of bile acids and proteases. PMID:27027926

  15. Homeostatic restitution of cell membranes. Nuclear membrane lipid biogenesis and transport of protein from cytosol to intranuclear spaces.

    Directory of Open Access Journals (Sweden)

    Amalia Slomiany, Maria Grabska, Bronislaw L. Slomiany

    2006-01-01

    Full Text Available Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860. In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN, the outer nuclear membrane (ONM, the inner nuclear membrane (INM and the cell cytosol (CC. In contrast to Endoplasmic Reticulum (ER which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC, phosphatidylinositol (PI, phosphatidylinositol phosphates (PIPs and phosphatidic acid (PA. The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of

  16. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology.

    Science.gov (United States)

    Wideman, Jeremy G; Muñoz-Gómez, Sergio A

    2016-08-01

    The ER-mitochondria organizing network (ERMIONE) in Saccharomyces cerevisiae is involved in maintaining mitochondrial morphology and lipid homeostasis. ERMES and MICOS are two scaffolding complexes of ERMIONE that contribute to these processes. ERMES is ancient but has been lost in several lineages including animals, plants, and SAR (stramenopiles, alveolates and rhizaria). On the other hand, MICOS is ancient and has remained present in all organisms bearing mitochondrial cristae. The ERMIONE precursor evolved in the α-proteobacterial ancestor of mitochondria which had the central subunit of MICOS, Mic60. The subsequent evolution of ERMIONE and its interactors in eukaryotes reflects the integrative co-evolution of mitochondria and their hosts and the adaptive paths that some lineages have followed in their specialization to certain environments. By approaching the ERMIONE from a perspective of comparative evolutionary cell biology, we hope to shed light on not only its evolutionary history, but also how ERMIONE components may function in organisms other than S. cerevisiae. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. PMID:26825688

  17. On size and growth of cells

    CERN Document Server

    Boudaoud, A

    2002-01-01

    Understanding how growth induces form is a longstanding biological question. Many studies concentrated on the shapes of plant cells, fungi or bacteria. Some others have shown the importance of the mechanical properties of bacterial walls and plant tissues in pattern formation. Here I sketch a simple physical picture of cell growth. The study is focussed on isolated cells that have walls. They are modeled as thin elastic shells containing a liquid, which pressure drives the growth as generally admitted for bacteria or plant cells. Requiring mechanical equilibrium leads to estimations of typical cell sizes, in quantitative agreement with compiled data including bacteria, cochlear outer hair, fungi, yeast, root hair and giant alga cells.

  18. Mitochondrial biogenesis in the pulmonary vasculature during inhalation lung injury and fibrosis

    Science.gov (United States)

    Cell survival and injury repair is facilitated by mitochondrial biogenesis; however, the role of this process in lung repair is unknown. We evaluated mitochondrial biogenesis in the mouse lung in two injuries that cause acute inflammation and in two that cause chronic inflammatio...

  19. Nonequilibrium mechanisms underlying de novo biogenesis of Golgi cisternae

    CERN Document Server

    Sachdeva, Himani; Rao, Madan

    2016-01-01

    A central issue in cell biology is the physico-chemical basis of organelle biogenesis in intracellular trafficking pathways, its most impressive manifestation being the biogenesis of Golgi cisternae. At a basic level, such morphologically and chemically distinct compartments should arise from an interplay between the molecular transport and chemical maturation. Here, we formulate analytically tractable, minimalist models, that incorporate this interplay between transport and chemical progression in physical space, and explore the conditions for de novo biogenesis of distinct cisternae. We propose new quantitative measures that can discriminate between the various models of transport in a qualitative manner- this includes measures of the dynamics in steady state and the dynamical response to perturbations of the kind amenable to live-cell imaging.

  20. Decreased Levels of Proapoptotic Factors and Increased Key Regulators of Mitochondrial Biogenesis Constitute New Potential Beneficial Features of Long-lived Growth Hormone Receptor Gene–Disrupted Mice

    OpenAIRE

    Gesing, Adam; Masternak, Michal M.; Lewinski, Andrzej; Karbownik-Lewinska, Malgorzata; Kopchick, John J.; Bartke, Andrzej

    2012-01-01

    Decreased somatotrophic signaling is among the most important mechanisms associated with extended longevity. Mice homozygous for the targeted disruption of the growth hormone (GH) receptor gene (GH receptor knockout; GHRKO) are obese and dwarf, are characterized by a reduced weight and body size, undetectable levels of GH receptor, high concentration of serum GH, and greatly reduced plasma levels of insulin and insulin-like growth factor-I, and are remarkably long lived. Recent results sugges...

  1. Thermodynamics of irreversible plant cell growth

    Directory of Open Access Journals (Sweden)

    Mariusz Pietruszka

    2011-04-01

    Full Text Available The time-irreversible cell enlargement of plant cells at a constant temperature results from two independent physical processes, e.g. water absorption and cell wall yielding. In such a model cell growth starts with reduction in wall stress because of irreversible extension of the wall. The water absorption and physical expansion are spontaneous consequences of this initial modification of the cell wall (the juvenile cell vacuolate, takes up water and expands. In this model the irreversible aspect of growth arises from the extension of the cell wall. Such theory expressed quantitatively by time-dependent growth equation was elaborated by Lockhart in the 60's.The growth equation omit however a very important factor, namely the environmental temperature at which the plant cells grow. In this paper we put forward a simple phenomenological model which introduces into the growth equation the notion of temperature. Moreover, we introduce into the modified growth equation the possible influence of external growth stimulator or inhibitor (phytohormones or abiotic factors. In the presence of such external perturbations two possible theoretical solutions have been found: the linear reaction to the application of growth hormones/abiotic factors and the non-linear one. Both solutions reflect and predict two different experimental conditions, respectively (growth at constant or increasing concentration of stimulator/inhibitor. The non-linear solution reflects a common situation interesting from an environmental pollution point of view e.g. the influence of increasing (with time concentration of toxins on plant growth. Having obtained temperature modified growth equations we can draw further qualitative and, especially, quantitative conclusions about the mechanical properties of the cell wall itself. This also concerns a new and interesting result obtained in our model: We have calculated the magnitude of the cell wall yielding coefficient (T [m3 J-1•s-1] in

  2. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors.

    Science.gov (United States)

    Zhang, Gao; Frederick, Dennie T; Wu, Lawrence; Wei, Zhi; Krepler, Clemens; Srinivasan, Satish; Chae, Young Chan; Xu, Xiaowei; Choi, Harry; Dimwamwa, Elaida; Ope, Omotayo; Shannan, Batool; Basu, Devraj; Zhang, Dongmei; Guha, Manti; Xiao, Min; Randell, Sergio; Sproesser, Katrin; Xu, Wei; Liu, Jephrey; Karakousis, Giorgos C; Schuchter, Lynn M; Gangadhar, Tara C; Amaravadi, Ravi K; Gu, Mengnan; Xu, Caiyue; Ghosh, Abheek; Xu, Weiting; Tian, Tian; Zhang, Jie; Zha, Shijie; Liu, Qin; Brafford, Patricia; Weeraratna, Ashani; Davies, Michael A; Wargo, Jennifer A; Avadhani, Narayan G; Lu, Yiling; Mills, Gordon B; Altieri, Dario C; Flaherty, Keith T; Herlyn, Meenhard

    2016-05-01

    Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi. PMID:27043285

  3. Molecular probes for imaging cell growth and cell differentiation

    International Nuclear Information System (INIS)

    This paper summarizes PET/SPECT probes for the in vivo imaging of cell behavior such as cell growth, differentiation, migration, adhesion, angiogenesis, and apoptosis. These probes may be indispensable for the fundamental research of regenerative medicine. (author)

  4. The Biogenesis of Nascent Circular RNAs

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2016-04-01

    Full Text Available Steady-state circular RNAs (circRNAs have been mapped to thousands of genomic loci in mammals. We studied circRNA processing using metabolic tagging of nascent RNAs with 4-thiouridine (4sU. Strikingly, the efficiency of circRNA processing from pre-mRNA is extremely low endogenously. Additional studies revealed that back-splicing outcomes correlate with fast RNA Polymerase II elongation rate and are tightly controlled by cis-elements in vivo. Additionally, prolonged 4sU labeling in cells shows that circRNAs are largely processed post-transcriptionally and that circRNAs are stable. Circular RNAs that are abundant at a steady-state level tend to accumulate. This is particularly true in cells, such as neurons, that have slow division rates. This study uncovers features of circRNA biogenesis by investigating the link between nascent circRNA processing and transcription.

  5. NUCLEAR PORE COMPLEX BIOGENESIS

    OpenAIRE

    Fernandez-Martinez, Javier; Rout, Michael P.

    2009-01-01

    Nuclear pore complexes (NPCs) are the sole mediators of transport between the nucleus and the cytoplasm. NPCs have a life cycle: they assemble, disassemble, turn over and age. The molecular mechanisms governing these different vital steps are beginning to emerge, suggesting key roles for the core structural scaffold of the NPC and auxiliary factors in the assembly of this large macromolecular complex, and connections between NPC maintenance, NPC turnover, and ageing of the cell.

  6. The pituitary growth hormone cell in space

    Science.gov (United States)

    Hymer, Wesley C.; Grindeland, R.

    1989-01-01

    Growth hormone (GH), produced and secreted from specialized cells in the pituitary gland, controls the metabolism of protein, fat, and carbohydrate. It is also probably involved in the regulation of proper function of bone, muscle and immune systems. The behavior of the GH cell system was studied by flying either isolated pituitary cells or live rats. In the latter case, pituitary GH cells are prepared on return to earth and then either transplanted into hypophysectomized rats or placed into cell culture so that function of GH cells in-vivo vs. in-vitro can be compared. The results from three flights to date (STS-8, 1983; SL-3, 1985; Cosmos 1887, 1987) established that the ability of GH cells to release hormone, on return to earth, is compromised. The mechanism(s) responsible for this attenuation response is unknown. However, the data are sufficiently positive to indicate that the nature of the secretory defect resides directly within the GH cells.

  7. Growth of gold nanoparticles in human cells.

    Science.gov (United States)

    Anshup, Anshup; Venkataraman, J Sai; Subramaniam, Chandramouli; Kumar, R Rajeev; Priya, Suma; Kumar, T R Santhosh; Omkumar, R V; John, Annie; Pradeep, T

    2005-12-01

    Gold nanoparticles of 20-100 nm diameter were synthesized within HEK-293 (human embryonic kidney), HeLa (human cervical cancer), SiHa (human cervical cancer), and SKNSH (human neuroblastoma) cells. Incubation of 1 mM tetrachloroaurate solution, prepared in phosphate buffered saline (PBS), pH 7.4, with human cells grown to approximately 80% confluency yielded systematic growth of nanoparticles over a period of 96 h. The cells, stained due to nanoparticle growth, were adherent to the bottom of the wells of the tissue culture plates, with their morphology preserved, indicating that the cell membrane was intact. Transmission electron microscopy of ultrathin sections showed the presence of nanoparticles within the cytoplasm and in the nucleus, the latter being much smaller in dimension. Scanning near field microscopic images confirmed the growth of large particles within the cytoplasm. Normal cells gave UV-visible signatures of higher intensity than the cancer cells. Differences in the cellular metabolism of cancer and noncancer cells were manifested, presumably in their ability to carry out the reduction process. PMID:16316080

  8. ERES : sites for autophagosome biogenesis and maturation?

    NARCIS (Netherlands)

    Sanchez-Wandelmer, Jana; Ktistakis, Nicholas T; Reggiori, Fulvio

    2015-01-01

    Autophagosomes are the hallmark of autophagy, but despite their central role in this degradative pathway that involves vesicle transport to lysosomes or vacuoles, the mechanism underlying their biogenesis still remains largely unknown. Our current concepts about autophagosome biogenesis are based on

  9. Growth and form of melanoma cell colonies

    OpenAIRE

    Baraldi, Massimiliano Maria; Alemi, Alexander A.; Sethna, James P.; Caracciolo, Sergio; La Porta, Caterina A. M.; Zapperi, Stefano

    2013-01-01

    We study the statistical properties of melanoma cell colonies grown in vitro by analyzing the results of crystal violet assays at different concentrations of initial plated cells and for di?erent growth times. The distribution of colony sizes is described well by a continuous time branching process. To characterize the shape fluctuations of the colonies, we compute the distribution of eccentricities. The experimental results are compared with numerical results for models of random division of...

  10. Hypoxia Mediated Downregulation of miRNA Biogenesis Promotes Tumor Progression

    OpenAIRE

    Rupaimoole, Rajesha; Wu, Sherry Y.; Pradeep, Sunila; Ivan, Cristina; Pecot, Chad V.; Gharpure, Kshipra M.; Nagaraja, Archana S; Armaiz-Pena, Guillermo N.; McGuire, Michael; Zand, Behrouz; Dalton, Heather J.; Filant, Justyna; Miller, Justin Bottsford; Lu, Chunhua; Sadaoui, Nouara C.

    2014-01-01

    Cancer-related deregulation of miRNA biogenesis has been suggested, but the underlying mechanisms remain elusive. Here, we report a previously unrecognized effect of hypoxia in the downregulation of Drosha and Dicer in cancer cells that leads to dysregulation of miRNA biogenesis and increased tumor progression. We show that hypoxia mediated downregulation of Drosha is dependent on ETS1/ELK1 transcription factors. Moreover, mature miRNA array and deep sequencing studies reveal altered miRNA ma...

  11. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  12. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis.

    Science.gov (United States)

    Van Vranken, Jonathan G; Jeong, Mi-Young; Wei, Peng; Chen, Yu-Chan; Gygi, Steven P; Winge, Dennis R; Rutter, Jared

    2016-01-01

    Mitochondrial fatty acid synthesis (FASII) and iron sulfur cluster (FeS) biogenesis are both vital biosynthetic processes within mitochondria. In this study, we demonstrate that the mitochondrial acyl carrier protein (ACP), which has a well-known role in FASII, plays an unexpected and evolutionarily conserved role in FeS biogenesis. ACP is a stable and essential subunit of the eukaryotic FeS biogenesis complex. In the absence of ACP, the complex is destabilized resulting in a profound depletion of FeS throughout the cell. This role of ACP depends upon its covalently bound 4'-phosphopantetheine (4-PP)-conjugated acyl chain to support maximal cysteine desulfurase activity. Thus, it is likely that ACP is not simply an obligate subunit but also exploits the 4-PP-conjugated acyl chain to coordinate mitochondrial fatty acid and FeS biogenesis. PMID:27540631

  13. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.;

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that coll...... cell wall insertion to produce curved growth. Our study suggests that bacteria may use the cytoskeleton for mechanical control of growth to alter morphology......The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure that...

  14. Bounds on bacterial cell growth rates

    CERN Document Server

    Landy, Jonathan

    2013-01-01

    Recent experiments have shown that rod-like bacteria in nutrient-rich media grow in length at an exponential rate. Here, I point out that it is the elongated shape of these bacteria that allows for this behavior. Further, I show that when a bacterium's growth is limited by some nutrient -- taken in by the cell through a diffusion-to-capture process -- its growth is suppressed: In three-dimensional geometries, the length $L$ is bounded by $\\log L \\lesssim t^{1/2}$, while in two dimensions the length is bounded by a power-law form. Fits of experimental growth curves to these predicted, sub-exponential forms could allow for direct measures of quantities relating to cellular metabolic rates.

  15. Growth and form of melanoma cell colonies

    International Nuclear Information System (INIS)

    We study the statistical properties of melanoma cell colonies grown in vitro by analyzing the results of crystal violet assays at different concentrations of initial plated cells and for different growth times. The distribution of colony sizes is described well by a continuous time branching process. To characterize the shape fluctuations of the colonies, we compute the distribution of eccentricities. The experimental results are compared with numerical results for models of random division of elastic cells, showing that experimental results are best reproduced by restricting cell division to the outer rim of the colony. Our results serve to illustrate the wealth of information that can be extracted by a standard experimental method such as the crystal violet assay. (paper)

  16. Circadian rhythm and cell population growth

    CERN Document Server

    Clairambault, Jean; Lepoutre, Thomas

    2010-01-01

    Molecular circadian clocks, that are found in all nucleated cells of mammals, are known to dictate rhythms of approximately 24 hours (circa diem) to many physiological processes. This includes metabolism (e.g., temperature, hormonal blood levels) and cell proliferation. It has been observed in tumor-bearing laboratory rodents that a severe disruption of these physiological rhythms results in accelerated tumor growth. The question of accurately representing the control exerted by circadian clocks on healthy and tumour tissue proliferation to explain this phenomenon has given rise to mathematical developments, which we review. The main goal of these previous works was to examine the influence of a periodic control on the cell division cycle in physiologically structured cell populations, comparing the effects of periodic control with no control, and of different periodic controls between them. We state here a general convexity result that may give a theoretical justification to the concept of cancer chronothera...

  17. Selenium supplementation induces mitochondrial biogenesis in trophoblasts

    Czech Academy of Sciences Publication Activity Database

    Khera, A.; Dong, L. F.; Holland, O.; Vanderlelie, J.; Pasdar, E.A.; Neužil, Jiří; Perkins, A.V.

    2015-01-01

    Roč. 36, č. 8 (2015), s. 363-369. ISSN 0143-4004 Institutional support: RVO:86652036 Keywords : Selenium * Reactive oxygen species * Mitochondrial biogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.710, year: 2014

  18. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    International Nuclear Information System (INIS)

    Highlights: ► MSC like cells were derived from hESC by a simple and reproducible method. ► Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. ► MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  19. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....

  20. Coordination of plant mitochondrial biogenesis: keeping pace with cellular requirements.

    Directory of Open Access Journals (Sweden)

    Elina eWelchen

    2014-01-01

    Full Text Available Plant mitochondria are complex organelles that carry out numerous metabolic processes related with the generation of energy for cellular functions and the synthesis and degradation of several compounds. Mitochondria are semiautonomous and dynamic organelles changing in shape, number and composition depending on tissue or developmental stage. The biogenesis of functional mitochondria requires the coordination of genes present both in the nucleus and the organelle. In addition, due to their central role, all processes held inside mitochondria must be finely coordinated with those in other organelles according to cellular demands. Coordination is achieved by transcriptional control of nuclear genes encoding mitochondrial proteins by specific transcription factors that recognize conserved elements in their promoter regions. In turn, the expression of most of these transcription factors is linked to developmental and environmental cues, according to the availability of nutrients, light-dark cycles and warning signals generated in response to stress conditions. Among the signals impacting in the expression of nuclear genes, retrograde signals that originate inside mitochondria help to adjust mitochondrial biogenesis to organelle demands. Adding more complexity, several nuclear encoded proteins are dual localized to mitochondria and either chloroplasts or the nucleus. Dual targeting might establish a crosstalk between the nucleus and cell organelles to ensure a fine coordination of cellular activities. In this article, we discuss how the different levels of coordination of mitochondrial biogenesis interconnect to optimize the function of the organelle according to both internal and external demands.

  1. The Arabidopsis gene DIG6 encodes a large 60S subunit nuclear export GTPase 1 that is involved in ribosome biogenesis and affects multiple auxin-regulated development processes

    KAUST Repository

    Zhao, Huayan

    2015-08-13

    The circularly permuted GTPase large subunit GTPase 1 (LSG1) is involved in the maturation step of the 60S ribosome and is essential for cell viability in yeast. Here, an Arabidopsis mutant dig6 (drought inhibited growth of lateral roots) was isolated. The mutant exhibited multiple auxin-related phenotypes, which included reduced lateral root number, altered leaf veins, and shorter roots. Genetic mapping combined with next-generation DNA sequencing identified that the mutation occurred in AtLSG1-2. This gene was highly expressed in regions of auxin accumulation. Ribosome profiling revealed that a loss of function of AtLSG1-2 led to decreased levels of monosomes, further demonstrating its role in ribosome biogenesis. Quantitative proteomics showed that the expression of certain proteins involved in ribosome biogenesis was differentially regulated, indicating that ribosome biogenesis processes were impaired in the mutant. Further investigations showed that an AtLSG1-2 deficiency caused the alteration of auxin distribution, response, and transport in plants. It is concluded that AtLSG1-2 is integral to ribosome biogenesis, consequently affecting auxin homeostasis and plant development.

  2. Sphingosine-1-phosphate in cell growth and cell death.

    Science.gov (United States)

    Spiegel, S; Cuvillier, O; Edsall, L C; Kohama, T; Menzeleev, R; Olah, Z; Olivera, A; Pirianov, G; Thomas, D M; Tu, Z; Van Brocklyn, J R; Wang, F

    1998-06-19

    Recent evidence suggests that branching pathways of sphingolipid metabolism may mediate either apoptotic or mitogenic responses depending on the cell type and the nature of the stimulus. While ceramide has been shown to be an important regulatory component of apoptosis induced by tumor necrosis factor alpha and Fas ligand, sphingosine-1-phosphate (SPP), a further metabolite of ceramide, has been implicated as a second messenger in cellular proliferation and survival induced by platelet-derived growth factor, nerve growth factor, and serum. SPP protects cells from apoptosis resulting from elevations of ceramide. Inflammatory cytokines stimulate sphingomyelinase, but not ceramidase, leading to accumulation of ceramide, whereas growth signals also leading to accumulation of ceramide, whereas growth signals also stimulate ceramidase and sphingosine kinase leading to increased SPP levels. We propose that the dynamic balance between levels of sphingolipid metabolites, ceramide, and SPP, and consequent regulation of different family members of mitogen-activated protein kinases (JNK versus ERK), is an important factor that determines whether a cell survives or dies. PMID:9668339

  3. The Biogenesis of Lysosomes and Lysosome-Related Organelles

    Science.gov (United States)

    Luzio, J. Paul; Hackmann, Yvonne; Dieckmann, Nele M.G.; Griffiths, Gillian M.

    2014-01-01

    Lysosomes were once considered the end point of endocytosis, simply used for macromolecule degradation. They are now recognized to be dynamic organelles, able to fuse with a variety of targets and to be re-formed after fusion events. They are also now known to be the site of nutrient sensing and signaling to the cell nucleus. In addition, lysosomes are secretory organelles, with specialized machinery for regulated secretion of proteins in some cell types. The biogenesis of lysosomes and lysosome-related organelles is discussed, taking into account their dynamic nature and multiple roles. PMID:25183830

  4. Biogenesis and architecture of arterivirus replication organelles.

    Science.gov (United States)

    van der Hoeven, Barbara; Oudshoorn, Diede; Koster, Abraham J; Snijder, Eric J; Kikkert, Marjolein; Bárcena, Montserrat

    2016-07-15

    All eukaryotic positive-stranded RNA (+RNA) viruses appropriate host cell membranes and transform them into replication organelles, specialized micro-environments that are thought to support viral RNA synthesis. Arteriviruses (order Nidovirales) belong to the subset of +RNA viruses that induce double-membrane vesicles (DMVs), similar to the structures induced by e.g. coronaviruses, picornaviruses and hepatitis C virus. In the last years, electron tomography has revealed substantial differences between the structures induced by these different virus groups. Arterivirus-induced DMVs appear to be closed compartments that are continuous with endoplasmic reticulum membranes, thus forming an extensive reticulovesicular network (RVN) of intriguing complexity. This RVN is remarkably similar to that described for the distantly related coronaviruses (also order Nidovirales) and sets them apart from other DMV-inducing viruses analysed to date. We review here the current knowledge and open questions on arterivirus replication organelles and discuss them in the light of the latest studies on other DMV-inducing viruses, particularly coronaviruses. Using the equine arteritis virus (EAV) model system and electron tomography, we present new data regarding the biogenesis of arterivirus-induced DMVs and uncover numerous putative intermediates in DMV formation. We generated cell lines that can be induced to express specific EAV replicase proteins and showed that DMVs induced by the transmembrane proteins nsp2 and nsp3 form an RVN and are comparable in topology and architecture to those formed during viral infection. Co-expression of the third EAV transmembrane protein (nsp5), expressed as part of a self-cleaving polypeptide that mimics viral polyprotein processing in infected cells, led to the formation of DMVs whose size was more homogenous and closer to what is observed upon EAV infection, suggesting a regulatory role for nsp5 in modulating membrane curvature and DMV formation. PMID

  5. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis by reactive oxygen species in ionizing radiation-induced premature senescence

    International Nuclear Information System (INIS)

    The aim of this study was to determine whether an increase of ROS level in cellular senescence induced by IR could mediate mtDNA deletion via impairment of mitochondria biogenesis in IMR-90 human lung fibroblast cells. Our results showed that IR induced cellular senescence, intracellular ROS, and mtDNA deletion, and in particular, suppressed the expression of mitochondrial biogenesis genes (NRF-1, TFAM). Furthermore, these IR-induced events were abolished using a potent antioxidant, NAC, which suggests that ROS is a key cause of mtDNA deletion in IR-induced cellular senescence, and that the alteration of mitochondrial biogenesis may mediate these processes

  6. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis by reactive oxygen species in ionizing radiation-induced premature senescence

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyeon Soo; Jung, U Hee; Jo, Sung Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The aim of this study was to determine whether an increase of ROS level in cellular senescence induced by IR could mediate mtDNA deletion via impairment of mitochondria biogenesis in IMR-90 human lung fibroblast cells. Our results showed that IR induced cellular senescence, intracellular ROS, and mtDNA deletion, and in particular, suppressed the expression of mitochondrial biogenesis genes (NRF-1, TFAM). Furthermore, these IR-induced events were abolished using a potent antioxidant, NAC, which suggests that ROS is a key cause of mtDNA deletion in IR-induced cellular senescence, and that the alteration of mitochondrial biogenesis may mediate these processes

  7. Milk stimulates growth of prostate cancer cells in culture.

    Science.gov (United States)

    Tate, Patricia L; Bibb, Robert; Larcom, Lyndon L

    2011-11-01

    Concern has been expressed about the fact that cows' milk contains estrogens and could stimulate the growth of hormone-sensitive tumors. In this study, organic cows' milk and two commercial substitutes were digested in vitro and tested for their effects on the growth of cultures of prostate and breast cancer cells. Cows' milk stimulated the growth of LNCaP prostate cancer cells in each of 14 separate experiments, producing an average increase in growth rate of over 30%. In contrast, almond milk suppressed the growth of these cells by over 30%. Neither cows' milk nor almond milk affected the growth of MCF-7 breast cancer cells or AsPC-1 pancreatic cancer cells significantly. Soy milk increased the growth rate of the breast cancer cells. These data indicate that prostate and breast cancer patients should be cautioned about the possible promotional effects of commercial dairy products and their substitutes. PMID:22043817

  8. Increased biogenesis of glucagon-containing secretory granules and glucagon secretion in BIG3-knockout mice

    Directory of Open Access Journals (Sweden)

    Hongyu Li

    2015-03-01

    Conclusions: Together with our previous studies, the current data reveal a conserved role for BIG3 in regulating alpha- and beta-cell functions. We propose that BIG3 negatively regulates hormone production at the secretory granule biogenesis stage and that such regulatory mechanism may be used in secretory pathways of other endocrine cells.

  9. A novel mechanism involved in the coupling of mitochondrial biogenesis to oxidative phosphorylation

    Directory of Open Access Journals (Sweden)

    Jelena Ostojić

    2014-01-01

    Full Text Available Mitochondria are essential organelles that are central to a multitude of cellular processes, including oxidative phosphorylation (OXPHOS, which produces most of the ATP in animal cells. Thus it is important to understand not only the mechanisms and biogenesis of this energy production machinery but also how it is regulated in both physiological and pathological contexts. A recent study by Ostojić et al. [Cell Metabolism (2013 18, 567-577] has uncovered a regulatory loop by which the biogenesis of a major enzyme of the OXPHOS pathway, the respiratory complex III, is coupled to the energy producing activity of the mitochondria.

  10. Serine Protease Autotransporters of Enterobacteriaceae (SPATEs: Biogenesis and Function

    Directory of Open Access Journals (Sweden)

    Nathalie Dautin

    2010-05-01

    Full Text Available Serine Protease Autotransporters of Enterobacteriaceae (SPATEs constitute a large family of proteases secreted by Escherichia coli and Shigella. SPATEs exhibit two distinct proteolytic activities. First, a C-terminal catalytic site triggers an intra-molecular cleavage that releases the N-terminal portion of these proteins in the extracellular medium. Second, the secreted N-terminal domains of SPATEs are themselves proteases; each contains a canonical serine-protease catalytic site. Some of these secreted proteases are toxins, eliciting various effects on mammalian cells. Here, we discuss the biogenesis of SPATEs and their function as toxins.

  11. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Skerker

    2005-10-01

    Full Text Available Two-component signal transduction systems, comprised of histidine kinases and their response regulator substrates, are the predominant means by which bacteria sense and respond to extracellular signals. These systems allow cells to adapt to prevailing conditions by modifying cellular physiology, including initiating programs of gene expression, catalyzing reactions, or modifying protein-protein interactions. These signaling pathways have also been demonstrated to play a role in coordinating bacterial cell cycle progression and development. Here we report a system-level investigation of two-component pathways in the model organism Caulobacter crescentus. First, by a comprehensive deletion analysis we show that at least 39 of the 106 two-component genes are required for cell cycle progression, growth, or morphogenesis. These include nine genes essential for growth or viability of the organism. We then use a systematic biochemical approach, called phosphotransfer profiling, to map the connectivity of histidine kinases and response regulators. Combining these genetic and biochemical approaches, we identify a new, highly conserved essential signaling pathway from the histidine kinase CenK to the response regulator CenR, which plays a critical role in controlling cell envelope biogenesis and structure. Depletion of either cenK or cenR leads to an unusual, severe blebbing of cell envelope material, whereas constitutive activation of the pathway compromises cell envelope integrity, resulting in cell lysis and death. We propose that the CenK-CenR pathway may be a suitable target for new antibiotic development, given previous successes in targeting the bacterial cell wall. Finally, the ability of our in vitro phosphotransfer profiling method to identify signaling pathways that operate in vivo takes advantage of an observation that histidine kinases are endowed with a global kinetic preference for their cognate response regulators. We propose that this

  12. Cell growth characterization using multi-electrode bioimpedance spectroscopy

    International Nuclear Information System (INIS)

    Cell growth characterization during culturing is an important issue in a variety of biomedical applications. In this study an electrical bioimpedance spectroscopy-based multi-electrode culture monitoring system was developed to characterize cell growth. A PC12 cell line was cultured for the cell growth study. The bioimpedance variations for PC12 cell growth within the initial 12 h were measured over a range between 1 kHz and 4 MHz at three different medium concentrations. Within this frequency range, the largest bioimpedance value was 1.9 times the smallest bioimpedance value. The phase angle decreased over the range from 1 to 10 kHz when cells were growing. Then, the phase angle approached a constant over the frequency range between 10 kHz and 2 MHz. Thereafter, the phase angle increased rapidly from 20 to 52 degrees during cell culturing between 8 and 12 h at 4 MHz. The maximum cell number after culturing for 12 h increased by 25.8% for the control sites with poly-D-lysine (PDL) pastes. For the normal growth factor, the cell number increased up to 4.78 times from 8 to 12 h, but only 0.96 and 1.60 times for the other two medium growth factors. The correlation coefficients between impedance and cell number were 0.868 (coating with PDL), and 0.836 (without PDL) for the normal concentration medium. Thus, impedance may be used as an index for cell growth characterization. (paper)

  13. Cell growth characterization using multi-electrode bioimpedance spectroscopy

    Science.gov (United States)

    Lu, Yi-Yu; Huang, Ji-Jer; Huang, Yu-Jie; Cheng, Kuo-Sheng

    2013-03-01

    Cell growth characterization during culturing is an important issue in a variety of biomedical applications. In this study an electrical bioimpedance spectroscopy-based multi-electrode culture monitoring system was developed to characterize cell growth. A PC12 cell line was cultured for the cell growth study. The bioimpedance variations for PC12 cell growth within the initial 12 h were measured over a range between 1 kHz and 4 MHz at three different medium concentrations. Within this frequency range, the largest bioimpedance value was 1.9 times the smallest bioimpedance value. The phase angle decreased over the range from 1 to 10 kHz when cells were growing. Then, the phase angle approached a constant over the frequency range between 10 kHz and 2 MHz. Thereafter, the phase angle increased rapidly from 20 to 52 degrees during cell culturing between 8 and 12 h at 4 MHz. The maximum cell number after culturing for 12 h increased by 25.8% for the control sites with poly-D-lysine (PDL) pastes. For the normal growth factor, the cell number increased up to 4.78 times from 8 to 12 h, but only 0.96 and 1.60 times for the other two medium growth factors. The correlation coefficients between impedance and cell number were 0.868 (coating with PDL), and 0.836 (without PDL) for the normal concentration medium. Thus, impedance may be used as an index for cell growth characterization.

  14. Cell Wall Nonlinear Elasticity and Growth Dynamics: How Do Bacterial Cells Regulate Pressure and Growth?

    Science.gov (United States)

    Deng, Yi

    In my thesis, I study intact and bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. I find strong evidence of power--law stress--stiffening in the E. coli cell wall, with an exponent of 1.22±0.12, such that the wall is significantly stiffer in intact cells (E = 23±8 MPa and 49±20 MPa in the axial and circumferential directions) than in unpressurized sacculi. These measurements also indicate that the turgor pressure in living cells E. coli is 29±3 kPa. The nonlinearity in cell elasticity serves as a plausible mechanism to balance the mechanical protection and tension measurement sensitivity of the cell envelope. I also study the growth dynamics of the Bacillus subtilis cell wall to help understand the mechanism of the spatiotemporal order of inserting new cell wall material. High density fluorescent markers are used to label the entire cell surface to capture the morphological changes of the cell surface at sub-cellular to diffraction-limited spatial resolution and sub-minute temporal resolution. This approach reveals that rod-shaped chaining B. subtilis cells grow and twist in a highly heterogeneous fashion both spatially and temporally. Regions of high growth and twisting activity have a typical length scale of 5 μm, and last for 10-40 minutes. Motivated by the quantification of the cell wall growth dynamics, two microscopy and image analysis techniques are developed and applied to broader applications beyond resolving bacterial growth. To resolve densely distributed quantum dots, we present a fast and efficient image analysis algorithm, namely Spatial Covariance Reconstruction (SCORE) microscopy that takes into account the blinking statistics of the fluorescence emitters. We achieve sub-diffraction lateral resolution of 100 nm from 5 to 7 seconds of imaging, which is at least an order of magnitude faster than single-particle localization based methods

  15. Dysregulation of microRNA biogenesis machinery in cancer.

    Science.gov (United States)

    Hata, Akiko; Kashima, Risa

    2016-01-01

    MicroRNAs (miRNAs) are integral to the gene regulatory network. A single miRNA is capable of controlling the expression of hundreds of protein coding genes and modulate a wide spectrum of biological functions, such as proliferation, differentiation, stress responses, DNA repair, cell adhesion, motility, inflammation, cell survival, senescence and apoptosis, all of which are fundamental to tumorigenesis. Overexpression, genetic amplification, and gain-of-function mutation of oncogenic miRNAs ("onco-miRs") as well as genetic deletion and loss-of-function mutation of tumor suppressor miRNAs ("suppressor-miRs") are linked to human cancer. In addition to the dysregulation of a specific onco-miR or suppressor-miRs, changes in global miRNA levels resulting from a defective miRNA biogenesis pathway play a role in tumorigenesis. The function of individual onco-miRs and suppressor-miRs and their target genes in cancer has been described in many different articles elsewhere. In this review, we primarily focus on the recent development regarding the dysregulation of the miRNA biogenesis pathway and its contribution to cancer. PMID:26628006

  16. Effect of nerve growth factor and fibroblast growth factor on PC12 cells: inhibition by orthovanadate

    OpenAIRE

    1993-01-01

    Sodium orthovanadate, an inhibitor of protein tyrosine phosphatases, causes increased levels of tyrosine phosphorylation and blocks, at noncytotoxic concentrations, the differentiative response of rat pheochromocytoma (PC12) cells to beta-nerve growth factor (beta NGF) and basic fibroblast growth factor (bFGF) in a reversible manner. It also prevents growth factor-induced neurite proliferation in primed cells and causes the retraction of previously formed neurites, even in the presence of bet...

  17. Can Insulin Production Suppress β Cell Growth?

    Science.gov (United States)

    De Vas, Matias; Ferrer, Jorge

    2016-01-12

    While insulin has mitogenic effects in many cell types, its effects on β cells remain elusive. In this issue of Cell Metabolism, Szabat et al. (2015) genetically block insulin production in adult β cells and show that this leads to a relief of ER stress, AKT activation, and increased β cell proliferation. PMID:26771111

  18. MHC class II molecules regulate growth in human T cells

    DEFF Research Database (Denmark)

    Nielsen, M; Odum, Niels; Bendtzen, K;

    1994-01-01

    modulate several T cell responses. Here, we studied further the role of class II molecules in the regulation of T cell growth. Costimulation of class II molecules by immobilized HLA-DR mAb significantly enhanced interleukin (IL)-2-supported T cell growth of the majority of CD4+, CD45RAlow, ROhigh T cell......-like) as well as T cells producing both cytokines (THO-like) responded to class II mAb. The costimulatory effect was not restricted to IL-2-driven T cell growth, since TCR/CD3-induced T cell activation was also enhanced by HLA-DR mAb. Moreover, class II costimulation potentiated CD28-mAb-induced T cell...

  19. Outer membrane lipoprotein biogenesis: Lol is not the end.

    Science.gov (United States)

    Konovalova, Anna; Silhavy, Thomas J

    2015-10-01

    Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology. PMID:26370942

  20. Dihydroartemisinin is an inhibitor of ovarian cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    Yang JIAO; Chun-min GE; Qing-hui MENG; Jian-ping CAO; Jian TONG; Sai-jun FAN

    2007-01-01

    Aim: To investigate the anticancer activity of dihydroartemisinin (DHA), a deriva-tive of antimalaria drug artemisinin in a panel of human ovarian cancer cell lines. Methods: Cell growth was determined by the MTT viability assay. Apoptosis and cell cycle progression were evaluated by a DNA fragmentation gel electro-phoresis, flow cytometry assay, and TUNEL assay; protein and mRNA expression were analyzed by Western blotting and RT-PCR assay. Results: Artemisinin and its derivatives, including artesunate, arteether, artemether, arteannuin, and DHA, exhibit anticancer growth activities in human ovarian cancer cells. Among them, DHA is the most effective in inhibiting cell growth. Ovarian cancer cell lines are more sensitive (5-10-fold) to DHA treatment compared to normal ovarian cell lines. DHA at micromolar dose levels exhibits a dose- and time-dependent cyto-toxicity in ovarian cancer cell lines. Furthermore, DHA induced apoptosis and G2 cell cycle arrest, accompanied by a decrease of Bcl-xL and Bcl-2 and an increase of Bax and Bad. Conclusion: The promising results show for the first time that DHA inhibits the growth of human ovarian cancer cells. The selective inhibition of ovarian cancer cell growth, apoptosis induction, and G2 arrest provide in vitro evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of ovarian cancer.

  1. Oil Body Biogenesis during Brassica napus Embryogenesis

    Institute of Scientific and Technical Information of China (English)

    Yu-Qing He; Yan Wu

    2009-01-01

    Although the oil body is known to be an important membrane enclosed compartment for oil storage in seeds, we have little understanding about its biogenesis during embryogenesis. In the present study we investigated the oil body emergence and variations in Brassica napus cv. Topas. The results demonstrate that the oil bodies could be detected already at the heart stage, at the same time as the embryos began to tum green, and the starch grains accumulated in the chloroplast stroma. In comparison, we have studied the development of oil bodies between Arabidopsis thaliana wild type (Col) and the low-seed-oil mutant wrinkled1-3. We observed that the oil body development in the embryos of Col is similar to that of B. napus cv. Topas, and that the size of the oil bodies was obviously smaller in the embryos of wrinkled1-3. Our results suggest that the oil body biogenesis might be coupled with the embryo chloroplast.

  2. The circadian clock coordinates ribosome biogenesis.

    Directory of Open Access Journals (Sweden)

    Céline Jouffe

    Full Text Available Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis.

  3. Ribosome biogenesis during skeletal muscle hypertrophy

    OpenAIRE

    von Walden, Ferdinand

    2014-01-01

    Muscle adaptation to chronic resistance exercise (RE) is the result of a cumulative effect on gene expression and protein content. Following a bout of RE, muscle protein synthesis increases and, if followed by consecutive bouts (training), protein accretion and muscle hypertrophy develops. The protein synthetic capacity of the muscle is dictated by ribosome content. Therefore, the general aim of this thesis is to investigate the regulation of ribosome biogenesis during skeletal muscle hypertr...

  4. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  5. Endothelial cell-derived interleukin-6 regulates tumor growth

    International Nuclear Information System (INIS)

    Endothelial cells play a complex role in the pathobiology of cancer. This role is not limited to the making of blood vessels to allow for influx of oxygen and nutrients required for the high metabolic demands of tumor cells. Indeed, it has been recently shown that tumor-associated endothelial cells secrete molecules that enhance tumor cell survival and cancer stem cell self-renewal. The hypothesis underlying this work is that specific disruption of endothelial cell-initiated signaling inhibits tumor growth. Conditioned medium from primary human dermal microvascular endothelial cells (HDMEC) stably transduced with silencing RNA for IL-6 (or controls) was used to evaluate the role of endothelial-derived IL-6 on the activation of key signaling pathways in tumor cells. In addition, these endothelial cells were co-transplanted with tumor cells into immunodefficient mice to determine the impact of endothelial cell-derived IL-6 on tumor growth and angiogenesis. We observed that tumor cells adjacent to blood vessels show strong phosphorylation of STAT3, a key mediator of tumor progression. In search for a possible mechanism for the activation of the STAT3 signaling pathway, we observed that silencing interleukin (IL)-6 in tumor-associated endothelial cells inhibited STAT3 phosphorylation in tumor cells. Notably, tumors vascularized with IL-6-silenced endothelial cells showed lower intratumoral microvessel density, lower tumor cell proliferation, and slower growth than tumors vascularized with control endothelial cells. Collectively, these results demonstrate that IL-6 secreted by endothelial cells enhance tumor growth, and suggest that cancer patients might benefit from targeted approaches that block signaling events initiated by endothelial cells

  6. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette;

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood litt...

  7. Targeting Btk with ibrutinib inhibit gastric carcinoma cells growth

    Science.gov (United States)

    Wang, Jin Dao; Chen, Xiao Ying; Ji, Ke Wei; Tao, Feng

    2016-01-01

    Bruton’s tyrosine kinase (Btk) is a member of the Tec-family non-receptor tyrosine kinases family. It has previously been reported to be expressed in B cells and has an important role in B-cell malignancies. While the roles of Btk in the pathogenesis of certain B-cell malignancies are well established, the functions of Btk in gastric carcinoma have never been investigated. Herein, we found that Btk is over-expressed in gastric carcinoma tissues and gastric cancer cells. Knockdown of Btk expression selectively inhibits the growth of gastric cancer cells, but not that of the normal gastric mucosa epithelial cell, which express very little Btk. Inhibition of Btk by its inhibitor ibrutinib has an additive inhibitory effect on gastric cancer cell growth. Treatment of gastric cancer cells, but not immortalized breast epithelial cells with ibrutinib results in effective cell killing, accompanied by the attenuation of Btk signals. Ibrutinib also induces apoptosis in gastric carcinoma cells as well as is a chemo-sensitizer for docetaxel (DTX), a standard of care for gastric carcinoma patients. Finally, ibrutinib markedly reduces tumor growth and increases tumor cell apoptosis in the tumors formed in mice inoculated with the gastric carcinoma cells. Given these promising preclinical results for ibrutinib in gastric carcinoma, a strategy combining Btk inhibitor warrants attention in gastric cancer. PMID:27508020

  8. Cell adhesion and growth on ion-implanted polymer surface

    International Nuclear Information System (INIS)

    The adhesion and growth of endothelial cells on ion-implanted polystyrene and segmented polyurethane surface were investigated. Ions of Na+, N2+, O2+, Ar+ and Kr+ were implanted to the polymer surface with ion fluences between 1 x 1015 and 3 x 1017 ions/cm2 at energy of 150 KeV at room temperature. Ion-implanted polymers were characterized by FT-IR-ATR an Raman spectroscopies. The adhesion and proliferation of bovine aorta endothelial cells on ion-implanted polymer surface were observed by an optical microscope. The rate of growth of BAECs on ion-implanted PSt was faster than that on non-implanted PSt. Complete cell adhesion and growth were observed on ion-implanted SPU, whereas the adhesion and growth of BAECs on the non-implanted SPU was not observed. It was attempted to control the cell culture on the ion-implanted domain fabricated using a mask. (author)

  9. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1984-01-01

    A multiphase study was conducted to examine the properties of growth hormone cells. Topics investigated included: (1) to determine if growth hormone (GH) cells contained within the rat pituitary gland can be separated from the other hormone producing cell types by continuous flow electrophoresis (CFE); (2) to determine what role, if any, gravity plays in the electrophoretic separation of GH cells; (3) to compare in vitro GH release from rat pituitary cells previously exposed to microgravity conditions vs release from cells not exposed to microgravity; (4) to determine if the frequency of different hormone producing pituitary cell types contained in cell suspensions can be quantitated by flow cytometry; and (5) to determine if GH contained within the human post mortem pituitary gland can be purified by CFE. Specific experimental procedures and results are included.

  10. Exosome Biogenesis, Regulation, and Function in Viral Infection

    Directory of Open Access Journals (Sweden)

    Marta Alenquer

    2015-09-01

    Full Text Available Exosomes are extracellular vesicles released upon fusion of multivesicular bodies(MVBs with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs duringthe process of MVB formation. Exosomes were shown to contain selectively sorted functionalproteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in thephysiology of the healthy and diseased organism. Challenges in the field include the identificationof mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles andthe understanding of the underlying processes directing MVBs for degradation or fusion with theplasma membrane. The investigation into the formation and roles of exosomes in viral infection is inits early years. Although still controversial, exosomes can, in principle, incorporate any functionalfactor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation.This review initially focuses on the composition and biogenesis of exosomes. It then explores theregulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system,which is tightly regulated and able to respond to several stimuli that lead to alterations in thecomposition of its sub-compartments. We discuss the current knowledge of how these changesaffect exosomal release. We then summarize how different viruses exploit specific proteins ofendocytic sub-compartments and speculate that it could interfere with exosome function, althoughno direct link between viral usage of the endocytic system and exosome release has yet beenreported. Many recent reports have ascribed functions to exosomes released from cells infectedwith a variety of animal viruses, including viral spread, host immunity, and manipulation of themicroenvironment, which are discussed. Given the ever-growing roles and importance of exosomesin viral infections, understanding what regulates their composition and levels, and

  11. Adaptation to optimal cell growth through self-organized criticality.

    Science.gov (United States)

    Furusawa, Chikara; Kaneko, Kunihiko

    2012-05-18

    A simple cell model consisting of a catalytic reaction network is studied to show that cellular states are self-organized in a critical state for achieving optimal growth; we consider the catalytic network dynamics over a wide range of environmental conditions, through the spontaneous regulation of nutrient transport into the cell. Furthermore, we find that the adaptability of cellular growth to reach a critical state depends only on the extent of environmental changes, while all chemical species in the cell exhibit correlated partial adaptation. These results are in remarkable agreement with the recent experimental observations of the present cells. PMID:23003193

  12. Insulin-like growth factor binding protein-5 influences pancreatic cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    Sarah K Johnson; Randy S Haun

    2009-01-01

    AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).METHODS: The effects of IGFBP-5 on cell growth were assessed by stable transfection of BxPC-3 and PANC-1 cell lines and measuring cell number and DNA synthesis. Alterations in the cell cycle were assessed by flow cytometry and immunoblot analyses.Changes in cell survival and signal transduction were evaluated after mitogen activated protein kinase and phosphatidylinositol 3-kinase (PI3K) inhibitor treatment.RESULTS: After serum depr ivat ion, IGFBP-5 expression increased both cell number and DNA synthesis in BxPC-3 cells, but reduced cell number in PANC-1 cells. Consistent with this observation, cell cycle analysis of IGFBP-5-expressing cells revealed accelerated cell cycle progression in BxPC-3 and G2/M arrest of PANC-1 cells. Signal transduction analysis revealed that Akt activation was increased in BxPC-3, but reduced in PANC-1 cells that express IGFBP-5. Inhibition of PI3K with LY294002 suppressed extracellular signal-regulated kinase-1 and -2 (ERK1/2) activation in BxPC-3, but enhanced ERK1/2 activation in PANC-1 cells that express IGFBP-5. When MEK1/2 was blocked, Akt activation remained elevated in IGFBP-5 expressing PaC cells; however, inhibition of PI3K or MEK1/2 abrogated IGFBP-5-mediated cell survival.CONCLUSION: These results indicate that IGFBP-5 expression affects the cell cycle and survival signal pathways and thus it may be an important mediator of PaC cell growth.

  13. Peptide immobilized on gold particles enhances cell growth

    OpenAIRE

    Gong, Jiansheng; Ito, Yoshihiro

    2008-01-01

    A multivalent ligand of thrombopoietin (TPO) was prepared by immobilization of mimetic peptides on gold particles. An effective peptide ligand containing cysteine was designed to enhance the growth of TPO-sensitive cells. The peptide was then immobilized on gold particles by self assembly. The multivalent ligand enhanced the growth of TPO-dependent cells and its activity was more than that of the monovalent ligand.

  14. Fibronectin promotes rat Schwann cell growth and motility

    OpenAIRE

    Baron-Van Evercooren, Anne; Kleinman, Hinda K.; Seppa, H. E.; Rentier, Bernard; Dubois-Dalcq, Monique

    1982-01-01

    Techniques are now available for culturing well characterized and purified Schwann cells. Therefore, we investigated the role of fibronectin in the adhesion, growth, and migration of cultured rat Schwann cells. Double-immunolabeling shows that, in primary cultures of rat sciatic nerve, Schwann cells (90%) rarely express fibronectin, whereas fibroblasts (10%) exhibit a granular cytoplasmic and fibrillar surface-associated fibronectin. Secondary cultures of purified Schwann cells do not express...

  15. A Neutral Theory of Biogenesis

    Science.gov (United States)

    Ferracin, Alessandro

    1981-12-01

    The selective Darwinian theory of chemical evolution is critically reviewed and the tentative conclusion is reached that neither the theoretical analyses nor the experiments with phages can really prove it. An alternative proposal is put forth which considers the possibility that the biogenetic process has been driven by stochastic forces, e.g. it took place in the absence of Darwinian selection which, in turn, started only when the first protocells came into existence. The dynamics of the early self-organization of living structures should be understood in terms of self-assembly. The complexification of living matter is thus not represented as a gradual phenomenon but as a series of abrupt and relatively fast transitions consisting in the aggregation of pre-systems which had evolved by their own. The shift towards new and variegated states proposed by the bifurcation theory are not considered particularly relevant for reasons reported in the text, nor is it believed that dissipation can entirely account for the order observed in living cells.

  16. Critical telomerase activity for uncontrolled cell growth.

    Science.gov (United States)

    Wesch, Neil L; Burlock, Laura J; Gooding, Robert J

    2016-01-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed. PMID:27500377

  17. Critical telomerase activity for uncontrolled cell growth

    Science.gov (United States)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  18. Canonical and alternate functions of the microRNA biogenesis machinery.

    Science.gov (United States)

    Chong, Mark M W; Zhang, Guoan; Cheloufi, Sihem; Neubert, Thomas A; Hannon, Gregory J; Littman, Dan R

    2010-09-01

    The canonical microRNA (miRNA) biogenesis pathway requires two RNaseIII enzymes: Drosha and Dicer. To understand their functions in mammals in vivo, we engineered mice with germline or tissue-specific inactivation of the genes encoding these two proteins. Changes in proteomic and transcriptional profiles that were shared in Dicer- and Drosha-deficient mice confirmed the requirement for both enzymes in canonical miRNA biogenesis. However, deficiency in Drosha or Dicer did not always result in identical phenotypes, suggesting additional functions. We found that, in early-stage thymocytes, Drosha recognizes and directly cleaves many protein-coding messenger RNAs (mRNAs) with secondary stem-loop structures. In addition, we identified a subset of miRNAs generated by a Dicer-dependent but Drosha-independent mechanism. These were distinct from previously described mirtrons. Thus, in mammalian cells, Dicer is required for the biogenesis of multiple classes of miRNAs. Together, these findings extend the range of function of RNaseIII enzymes beyond canonical miRNA biogenesis, and help explain the nonoverlapping phenotypes caused by Drosha and Dicer deficiency. PMID:20713509

  19. Tracking the Biogenesis and Inheritance of Subpellicular Microtubule in Trypanosoma brucei with Inducible YFP-α-Tubulin

    Directory of Open Access Journals (Sweden)

    Omar Sheriff

    2014-01-01

    Full Text Available The microtubule cytoskeleton forms the most prominent structural system in Trypanosoma brucei, undergoing extensive modifications during the cell cycle. Visualization of tyrosinated microtubules leads to a semiconservative mode of inheritance, whereas recent studies employing microtubule plus end tracking proteins have hinted at an asymmetric pattern of cytoskeletal inheritance. To further the knowledge of microtubule synthesis and inheritance during T. brucei cell cycle, the dynamics of the microtubule cytoskeleton was visualized by inducible YFP-α-tubulin expression. During new flagellum/flagellum attachment zone (FAZ biogenesis and cell growth, YFP-α-tubulin was incorporated mainly between the old and new flagellum/FAZ complexes. Cytoskeletal modifications at the posterior end of the cells were observed with EB1, a microtubule plus end binding protein, particularly during mitosis. Additionally, the newly formed microtubules segregated asymmetrically, with the daughter cell inheriting the new flagellum/FAZ complex retaining most of the new microtubules. Together, our results suggest an intimate connection between new microtubule formation and new FAZ assembly, consequently leading to asymmetric microtubule inheritance and cell division.

  20. Nerve growth factor-induced alteration in the response of PC12 pheochromocytoma cells to epidermal growth factor

    OpenAIRE

    Huff, K; End, D; Guroff, G

    1981-01-01

    PC12 cells, which differentiate morphologically and biochemically into sympathetic neruonlike cells in response to nerve growth fact, also respond to epidermal growth factor. The response to epidermal growth factor is similar in certain respects to the response to nerve growth fact. Both peptides produce rapid increases in cellular adhesion and 2-deoxyglucose uptake and both induce ornithine decarboxylase. But nerve growth factor causes a decreased cell proliferation and a marked hypertrophy ...

  1. Prolonged cyclic strain inhibits human endothelial cell growth.

    Science.gov (United States)

    Peyton, Kelly J; Liu, Xiao-ming; Durante, William

    2016-01-01

    The vascular endothelium is continuously exposed to cyclic mechanical strain due to the periodic change in vessel diameter as a result of pulsatile blood flow. Since emerging evidence indicates the cyclic strain plays an integral role in regulating endothelial cell function, the present study determined whether application of a physiologic regimen of cyclic strain (6% at 1 hertz) influences the proliferation of human arterial endothelial cells. Prolonged exposure of human dermal microvascular or human aortic endothelial cells to cyclic strain for up to 7 days resulted in a marked decrease in cell growth. The strain-mediated anti-proliferative effect was associated with the arrest of endothelial cells in the G2/M phase of the cell cycle, did not involve cell detachment or cytotoxicity, and was due to the induction of p21. Interestingly, the inhibition in endothelial cell growth was independent of the strain regimen since prolonged application of constant or intermittent 6% strain was also able to block endothelial cell proliferation. The ability of chronic physiologic cyclic strain to inhibit endothelial cell growth represents a previously unrecognized mechanism by which hemodynamic forces maintain these cells in a quiescent, non-proliferative state. PMID:26709656

  2. Myristoylated CIL-7 regulates ciliary extracellular vesicle biogenesis.

    Science.gov (United States)

    Maguire, Julie E; Silva, Malan; Nguyen, Ken C Q; Hellen, Elizabeth; Kern, Andrew D; Hall, David H; Barr, Maureen M

    2015-08-01

    The cilium both releases and binds to extracellular vesicles (EVs). EVs may be used by cells as a form of intercellular communication and mediate a broad range of physiological and pathological processes. The mammalian polycystins (PCs) localize to cilia, as well as to urinary EVs released from renal epithelial cells. PC ciliary trafficking defects may be an underlying cause of autosomal dominant polycystic kidney disease (PKD), and ciliary-EV interactions have been proposed to play a central role in the biology of PKD. In Caenorhabditis elegans and mammals, PC1 and PC2 act in the same genetic pathway, act in a sensory capacity, localize to cilia, and are contained in secreted EVs, suggesting ancient conservation. However, the relationship between cilia and EVs and the mechanisms generating PC-containing EVs remain an enigma. In a forward genetic screen for regulators of C. elegans PKD-2 ciliary localization, we identified CIL-7, a myristoylated protein that regulates EV biogenesis. Loss of CIL-7 results in male mating behavioral defects, excessive accumulation of EVs in the lumen of the cephalic sensory organ, and failure to release PKD-2::GFP-containing EVs to the environment. Fatty acylation, such as myristoylation and palmitoylation, targets proteins to cilia and flagella. The CIL-7 myristoylation motif is essential for CIL-7 function and for targeting CIL-7 to EVs. C. elegans is a powerful model with which to study ciliary EV biogenesis in vivo and identify cis-targeting motifs such as myristoylation that are necessary for EV-cargo association and function. PMID:26041936

  3. Role of growth factors in the growth of normal and transformed cells

    International Nuclear Information System (INIS)

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both 125I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product

  4. In vitro effects of recombinant human growth hormone on growth of human gastric cancer cell line BGC823 cells

    Institute of Scientific and Technical Information of China (English)

    Jia-Yong Chen; Dao-Ming Liang; Ping Gan; Yi Zhang; Jie Lin

    2004-01-01

    AIM: To study the effects of recombinant human growth hormone (rhGH) on growth of human gastric cancer cell line in vitro.METHODS: Experiment was divided into control group,rhGH group, oxaliplatin (L-OHP) group and rhGH+L-OHP group. Cell inhibitory rate, cell cycle, cell proliferation index (PI) and DNA inhibitory rate of human gastric cancer line BGC823, at different concentrations of rhGH treatment were studied by cell culture, MTT assay and flow cytometry.RESULTS: The distinctly accelerated effects of rhGH on multiplication of BGC823 cell line were not found in vitro.There was no statistical significance between rhGH group and control group, or between rhGH+L-OHP group and LOHP group (P>0.05). The cell growth curve did not rise.Cell inhibitory rate and cells arrested in G0-G1 phase were obviously increased. Meanwhile, cells in S phase and PI were distinctly decreased and DNA inhibitory rate was obviously increased in rhGH+L-OHP group in comparison with control group and rhGH group, respectively (P<0.01).Cell inhibitory rate showed an increasing trend and PI showed a decreasing trend in rhGH+L-OHP group compared with L-OHP group.CONCLUSION: In vitro rhGH does not accelerate the multiplication of human gastric cancer cells. It may increase the therapeutic efficacy when it is used in combination with anticancer drugs.

  5. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    ammonium malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities...

  6. Nerve Growth Factor in Cancer Cell Death and Survival

    International Nuclear Information System (INIS)

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75NTR, a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75NTR. For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75NTR. This latter signaling through p75NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer

  7. Preparing T Cell Growth Factor from Rat Splenocytes

    OpenAIRE

    Beeton, Christine; Chandy, K. George

    2007-01-01

    Maintenance of antigen-specific T cell lines or clones in culture requires rounds of antigen-induced activation separated by phases of cell expansion 1,2. Addition of interleukin 2 to the culture media during the expansion phase is necessary to prevent cell death and sufficient to maintain short-term T cell lines but has been shown to increase Th1 polarization 3. Replacement of interleukin 2 by T cell growth factor (TCGF) which contains a mix of cytokines is more effective than interleukin 2...

  8. Radiomimetic effect of cisplatin on cucumber root development: the relationship between cell division and cell growth

    International Nuclear Information System (INIS)

    Cisplatin [DDP, cis-dichlorodiammine platinum (II)], a strong cytostatic and antineoplastic agent, was tested on seedlings of cucumber Cucumis sativus L. for its general effect on root development and its particular effects on root cell division and cell growth. DDP was characterized as a radiomimetic compound since both DDP (1·3 × 10-5 M) and γ-irradiation (2·5-10 kGy) drastically and irreversibly stopped development of embryonic lateral root primordia (LRPs) in the radicle by inhibiting both mitotic activity and cell growth. In 20% of the LRPs of DDP-treated roots, cells did not divide at all. Dividing cells completed no more than two cell cycles. These effects were specific because when DDP was available to the roots only at the onset of cell division, cell proliferation and cell growth were similar to that produced by constant incubation. Neither DDP nor γ-irradiation affected non-meristematic cell elongation. It was concluded that cell growth of meristematic cells is closely related to cell division. However, non-meristematic cell growth is independent of DNA damage. This suggests DDP as a tool to reveal these autonomous processes in plants development and to detect tissue compartments in mature plant embryos which contain potentially non-meristematic cells. (author)

  9. Unravelling the mechanisms regulating muscle mitochondrial biogenesis.

    Science.gov (United States)

    Hood, David A; Tryon, Liam D; Carter, Heather N; Kim, Yuho; Chen, Chris C W

    2016-08-01

    Skeletal muscle is a tissue with a low mitochondrial content under basal conditions, but it is responsive to acute increases in contractile activity patterns (i.e. exercise) which initiate the signalling of a compensatory response, leading to the biogenesis of mitochondria and improved organelle function. Exercise also promotes the degradation of poorly functioning mitochondria (i.e. mitophagy), thereby accelerating mitochondrial turnover, and preserving a pool of healthy organelles. In contrast, muscle disuse, as well as the aging process, are associated with reduced mitochondrial quality and quantity in muscle. This has strong negative implications for whole-body metabolic health and the preservation of muscle mass. A number of traditional, as well as novel regulatory pathways exist in muscle that control both biogenesis and mitophagy. Interestingly, although the ablation of single regulatory transcription factors within these pathways often leads to a reduction in the basal mitochondrial content of muscle, this can invariably be overcome with exercise, signifying that exercise activates a multitude of pathways which can respond to restore mitochondrial health. This knowledge, along with growing realization that pharmacological agents can also promote mitochondrial health independently of exercise, leads to an optimistic outlook in which the maintenance of mitochondrial and whole-body metabolic health can be achieved by taking advantage of the broad benefits of exercise, along with the potential specificity of drug action. PMID:27470593

  10. Meloxicam inhibits the growth of colorectal cancer cells.

    Science.gov (United States)

    Goldman, A P; Williams, C S; Sheng, H; Lamps, L W; Williams, V P; Pairet, M; Morrow, J D; DuBois, R N

    1998-12-01

    Cyclooxygenase-2 has been reported to play an important role in colorectal carcinogenesis. The effects of meloxicam (a COX-2 inhibitor) on the growth of two colon cancer cell lines that express COX-2 (HCA-7 and Moser-S) and a COX-2 negative cell line (HCT-116) were evaluated. The growth rate of these cells was measured following treatment with meloxicam. HCA-7 and Moser-S colony size were significantly reduced following treatment with meloxicam; however, there was no significant change in HCT-116 colony size with treatment. In vivo studies were performed to evaluate the effect of meloxicam on the growth of HCA-7 cells when xenografted into nude mice. We observed a 51% reduction in tumor size after 4 weeks of treatment. Analysis of COX-1 and COX-2 protein levels in HCA-7 tumor lysates revealed a slight decrease in COX-2 expression levels in tumors taken from mice treated with meloxicam and no detectable COX-1 expression. Here we report that meloxicam significantly inhibited HCA-7 colony and tumor growth but had no effect on the growth of the COX-2 negative HCT-116 cells. PMID:9886578

  11. Signaling Pathways in Exosomes Biogenesis, Secretion and Fate

    Directory of Open Access Journals (Sweden)

    Carla Emiliani

    2013-03-01

    Full Text Available Exosomes are small extracellular vesicles (30–100 nm derived from the endosomal system, which have raised considerable interest in the last decade. Several studies have shown that they mediate cell-to-cell communication in a variety of biological processes. Thus, in addition to cell-to-cell direct interaction or secretion of active molecules, they are now considered another class of signal mediators. Exosomes can be secreted by several cell types and retrieved in many body fluids, such as blood, urine, saliva and cerebrospinal fluid. In addition to proteins and lipids, they also contain nucleic acids, namely mRNA and miRNA. These features have prompted extensive research to exploit them as a source of biomarkers for several pathologies, such as cancer and neurodegenerative disorders. In this context, exosomes also appear attractive as gene delivery vehicles. Furthermore, exosome immunomodulatory and regenerative properties are also encouraging their application for further therapeutic purposes. Nevertheless, several issues remain to be addressed: exosome biogenesis and secretion mechanisms have not been clearly understood, and physiological functions, as well as pathological roles, are far from being satisfactorily elucidated.

  12. Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia

    Directory of Open Access Journals (Sweden)

    Mehta Suresh L

    2012-07-01

    Full Text Available Abstract Background Mitochondrial dysfunction is one of the major events responsible for activation of neuronal cell death pathways during cerebral ischemia. Trace element selenium has been shown to protect neurons in various diseases conditions. Present study is conducted to demonstrate that selenium preserves mitochondrial functional performance, activates mitochondrial biogenesis and prevents hypoxic/ischemic cell damage. Results The study conducted on HT22 cells exposed to glutamate or hypoxia and mice subjected to 60-min focal cerebral ischemia revealed that selenium (100 nM pretreatment (24 h significantly attenuated cell death induced by either glutamate toxicity or hypoxia. The protective effects were associated with reduction of glutamate and hypoxia-induced ROS production and alleviation of hypoxia-induced suppression of mitochondrial respiratory complex activities. The animal studies demonstrated that selenite pretreatment (0.2 mg/kg i.p. once a day for 7 days ameliorated cerebral infarct volume and reduced DNA oxidation. Furthermore, selenite increased protein levels of peroxisome proliferator-activated receptor-γ coactivator 1alpha (PGC-1α and nuclear respiratory factor 1 (NRF1, two key nuclear factors that regulate mitochondrial biogenesis. Finally, selenite normalized the ischemia-induced activation of Beclin 1 and microtubule-associated protein 1 light chain 3-II (LC3-II, markers for autophagy. Conclusions These results suggest that selenium protects neurons against hypoxic/ischemic damage by reducing oxidative stress, restoring mitochondrial functional activities and stimulating mitochondrial biogenesis.

  13. Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.

    Science.gov (United States)

    Wang, Tao; Xie, Zi-ping; Huang, Zhan-sen; Li, Hao; Wei, An-yang; Di, Jin-ming; Xiao, Heng-jun; Zhang, Zhi-gang; Cai, Liu-hong; Tao, Xin; Qi, Tao; Chen, Di-ling; Chen, Jun

    2015-10-01

    In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer. PMID:26489631

  14. Complementary RNA and Protein Profiling Identifies Iron as a Key Regulator of Mitochondrial Biogenesis

    Directory of Open Access Journals (Sweden)

    Jarred W. Rensvold

    2013-01-01

    Full Text Available Mitochondria are centers of metabolism and signaling whose content and function must adapt to changing cellular environments. The biological signals that initiate mitochondrial restructuring and the cellular processes that drive this adaptive response are largely obscure. To better define these systems, we performed matched quantitative genomic and proteomic analyses of mouse muscle cells as they performed mitochondrial biogenesis. We find that proteins involved in cellular iron homeostasis are highly coordinated with this process and that depletion of cellular iron results in a rapid, dose-dependent decrease of select mitochondrial protein levels and oxidative capacity. We further show that this process is universal across a broad range of cell types and fully reversed when iron is reintroduced. Collectively, our work reveals that cellular iron is a key regulator of mitochondrial biogenesis, and provides quantitative data sets that can be leveraged to explore posttranscriptional and posttranslational processes that are essential for mitochondrial adaptation.

  15. Two distinct arginine methyltransferases are required for biogenesis of Sm-class ribonucleoproteins

    Science.gov (United States)

    Gonsalvez, Graydon B.; Tian, Liping; Ospina, Jason K.; Boisvert, François-Michel; Lamond, Angus I.; Matera, A. Gregory

    2007-01-01

    Small nuclear ribonucleoproteins (snRNPs) are core components of the spliceosome. The U1, U2, U4, and U5 snRNPs each contain a common set of seven Sm proteins. Three of these Sm proteins are posttranslationally modified to contain symmetric dimethylarginine (sDMA) residues within their C-terminal tails. However, the precise function of this modification in the snRNP biogenesis pathway is unclear. Several lines of evidence suggest that the methyltransferase protein arginine methyltransferase 5 (PRMT5) is responsible for sDMA modification of Sm proteins. We found that in human cells, PRMT5 and a newly discovered type II methyltransferase, PRMT7, are each required for Sm protein sDMA modification. Furthermore, we show that the two enzymes function nonredundantly in Sm protein methylation. Lastly, we provide in vivo evidence demonstrating that Sm protein sDMA modification is required for snRNP biogenesis in human cells. PMID:17709427

  16. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    Directory of Open Access Journals (Sweden)

    Jean-Claude Mollet

    2013-03-01

    Full Text Available The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed.

  17. Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins

    DEFF Research Database (Denmark)

    Woetmann, Anders; Lovato, Paola; Eriksen, Karsten W; Krejsgaard, Thorbjørn; Labuda, Tord; Zhang, Qian; Mathiesen, Anne-Merethe; Geisler, Carsten; Svejgaard, Arne; Wasik, Mariusz A; Odum, Niels

    2007-01-01

    malignant CTCL cells express MHC class II molecules that are high-affinity receptors for SE. Although treatment with SE has no direct effect on the growth of the malignant CTCL cells, the SE-treated CTCL cells induce vigorous proliferation of the SE-responsive nonmalignant T cells. In turn, the nonmalignant......-promoting effect depends on direct cell-cell contact and soluble factors such as interleukin-2. In conclusion, we demonstrate that SE triggers a bidirectional cross talk between nonmalignant T cells and malignant CTCL cells that promotes growth of the malignant cells. This represents a novel mechanism by which...

  18. The chromaffin cell: paradigm in cell, developmental and growth factor biology.

    OpenAIRE

    Unsicker, K

    1993-01-01

    This article reviews the chromaffin cell in relation to studies that have elucidated fundamental phenomena in cell biology (the molecular anatomy of exocytosis) and developmental neuroscience (the principle of neuropoiesis in the development of the sympathoadrenal cell lineage). A final section addresses growth factor synthesis and storage in chromaffin cells and their implications for the treatment of neurological disorders, such as Parkinson's disease.

  19. eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference

    Science.gov (United States)

    Yi, Tingfang; Arthanari, Haribabu; Akabayov, Barak; Song, Huaidong; Papadopoulos, Evangelos; Qi, Hank H.; Jedrychowski, Mark; Güttler, Thomas; Guo, Cuicui; Luna, Rafael E.; Gygi, Steven P.; Huang, Stephen A.; Wagner, Gerhard

    2015-05-01

    MicroRNA (miRNA) biogenesis and miRNA-guided RNA interference (RNAi) are essential for gene expression in eukaryotes. Here we report that translation initiation factor eIF1A directly interacts with Ago2 and promotes Ago2 activities in RNAi and miR-451 biogenesis. Biochemical and NMR analyses demonstrate that eIF1A binds to the MID domain of Ago2 and this interaction does not impair translation initiation. Alanine mutation of the Ago2-facing Lys56 in eIF1A impairs RNAi activities in human cells and zebrafish. The eIF1A-Ago2 assembly facilitates Dicer-independent biogenesis of miR-451, which mediates erythrocyte maturation. Human eIF1A (heIF1A), but not heIF1A(K56A), rescues the erythrocyte maturation delay in eif1axb knockdown zebrafish. Consistently, miR-451 partly compensates erythrocyte maturation defects in zebrafish with eif1axb knockdown and eIF1A(K56A) expression, supporting a role of eIF1A in miRNA-451 biogenesis in this model. Our results suggest that eIF1A is a novel component of the Ago2-centred RNA-induced silencing complexes (RISCs) and augments Ago2-dependent RNAi and miRNA biogenesis.

  20. Biogenesis of Salmonella enterica Serovar Typhimurium Membrane Vesicles Provoked by Induction of PagC▿

    OpenAIRE

    Kitagawa, Ryo; Takaya, Akiko; Ohya, Mai; Mizunoe, Yoshimitsu; Takade, Akemi; Yoshida, Shin-ichi; Isogai, Emiko; Yamamoto, Tomoko

    2010-01-01

    Gram-negative bacteria ubiquitously release membrane vesicles (MVs) into the extracellular milieu. Although MVs are the product of growing bacteria, not of cell lysis or death, the regulatory mechanisms underlying MV formation remained unknown. We have found that MV biogenesis is provoked by the induction of PagC, a Salmonella-specific protein whose expression is activated by conditions that mimic acidified macrophage phagosomes. PagC is a major constituent of Salmonella MVs, and increased ex...

  1. Three peroxisome protein packaging pathways suggested by selective permeabilization of yeast mutants defective in peroxisome biogenesis.

    OpenAIRE

    Zhang, J W; Luckey, C; Lazarow, P B

    1993-01-01

    We have identified five complementation groups of peroxisome biogenesis (peb) mutants in Saccharomyces cerevisiae by a positive selection procedure. Three of these contained morphologically recognizable peroxisomes, and two appeared to lack the organelle altogether. The packaging of peroxisomal proteins in these mutants has been analyzed with a new gentle cell fractionation procedure. It employs digitonin titration for the selective permeabilization of yeast plasma and intracellular membranes...

  2. A Novel Regulator Couples Sporogenesis and Trehalose Biogenesis in Aspergillus nidulans

    OpenAIRE

    Ni, Min; Yu, Jae-Hyuk

    2007-01-01

    Trehalose is a compatible osmolyte produced by bacteria, fungi, insects and plants to protect the integrity of cells against various environmental stresses. Spores, the reproductive, survival and infection bodies of fungi require high amounts of trehalose for long-term survival. Here, via a gain-of-function genetic screen, we identify the novel regulator VosA that couples the formation of spores and focal trehalose biogenesis in the model fungus Aspergillus nidulans. The vosA gene is expresse...

  3. Positive selection of novel peroxisome biogenesis-defective mutants of the yeast Pichia pastoris

    OpenAIRE

    Johnson, Monique A.; Waterham, Hans R.; Ksheminska, Galyna P.; Fayura, Liubov R.; Cereghino, Joan Lin; Stasyk, Oleh V.; Veenhuis, Marten; Kulachkovsky, Aleksander R.; Sibirny, Andrei A.; Cregg, James M

    1999-01-01

    We have developed two novel schemes for the direct selection of peroxisome-biogenesis-defective (pex) mutants of the methylotrophic yeast Pichia pastoris. Both schemes take advantage of our observation that methanol-induced pex mutants contain little or no alcohol oxidase (AOX) activity. AOX is a peroxisomal matrix enzyme that catalyzes the first step in the methanol-utilization pathway. One scheme utilizes allyl alcohol, a compound that is not toxic to cells but is oxidized by AOX to acrolei...

  4. The role of stem cells in midgut growth and regeneration.

    Science.gov (United States)

    Hakim, R S; Baldwin, K M; Loeb, M

    2001-06-01

    The Manduca sexta (L.) [Lepidoptera: Sphingidae] and Heliothis virescens (F.) [Lepidoptera: Noctuidae] midguts consist of a pseudostratified epithelium surrounded by striated muscle and tracheae. This epithelium contains goblet, columnar, and basal stem cells. The stem cells are critically important in that they are capable of massive proliferation and differentiation. This growth results in a fourfold enlargement of the midgut at each larval molt. The stem cells are also responsible for limited cell replacement during repair. While the characteristics of the stem cell population vary over the course of an instar, stem cells collected early in an instar and those collected late can start in vitro cultures. Cultures of larval stem, goblet, and columnar cells survive in vitro for several mo through proliferation and differentiation of the stem cells. One of the two polypeptide differentiation factors which have been identified and characterized from the culture medium has now been shown to be present in midgut in vivo. Thus the ability to examine lepidopteran midgut stem cell growth in vitro and in vivo is proving to be effective in determining the basic features of stem cell action and regulation. PMID:11515964

  5. Purification and cultivation of human pituitary growth hormone secreting cells

    Science.gov (United States)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  6. [RNA interference: biogenesis molecular mechanisms and its applications in cervical cancer].

    Science.gov (United States)

    Peralta-Zaragoza, Oscar; Bermúdez-Morales, Víctor Hugo; Madrid-Marina, Vicente

    2010-01-01

    RNAi (RNA interference) is a natural process by which eukaryotic cells silence gene expression through small interference RNAs (siRNA) which are complementary to messenger RNA (mRNA). In this process, the siRNA that are 21-25 nucleotides long and are known as microRNA (miRNA), either associate with the RNA-induced silencing complex (RISC), which targets and cleaves the complementary mRNAs by the endonucleolytic pathway, or repress the translation. It is also possible to silence exogenous gene expression during viral infections by using DNA templates to transcribe siRNA with properties that are identical to those of bioactive microRNA. Persistent human papillomavirus (HPV) infection is the main etiological agent during cervical cancer development and the HPV E6 and E7 oncogenes, which induce cellular transformation and immortalization, represent strategic targets to be silenced with siRNA. In several in vitro and in vivo studies, it has been demonstrated that the introduction of siRNA directed against the E6 and E7 oncogenes in human tumoral cervical cells transformed by HPV, leads to the efficient silencing of HPV E6 and E7 oncogene expression, which induces the accumulation of the products of the p53 and pRb tumor suppressor genes and activates the mechanism of programmed cell death by apoptosis; thus, the progression of the tumoral growth process may be prevented. The goal of this review is to analyze the microRNA biogenesis process in the silencing of gene expression and to discuss the different protocols for the use of siRNA as a potential gene therapy strategy for the treatment of cervical cancer. PMID:20415061

  7. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected with a...... monoclonal mouse antibody and EGF with polyclonal rabbit antiserum. Thirty-five of the tumours were positive for TGF-alpha and 26 of the tumours for EGF. None of the poorly differentiated tumours was positive for EGF, but they all were for TGF-alpha. In sections including normal differentiated oral mucosa......, the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells...

  8. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    Institute of Scientific and Technical Information of China (English)

    Fang Liu; Haiwei Zhang; Kaiming Zhang; Xinyu Wang; Shipu Li; Yixia Yin

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Sc hwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more signiifcantly promoted Schwann cell migration than the highest FK506 concentration (100μmol/L). Rapamycin promoted the secretion of nerve growth factors and upregulated growth-associated protein 43 expression in Schwann cells, but did not signiifcantly affect Schwann cell proliferation. Therefore, rapamycin has potential application in peripheral nerve regeneration therapy.

  9. Growth Control in Colon Epithelial Cells: Gadolinium Enhances Calcium-Mediated Growth Regulation

    OpenAIRE

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K.; Varani, James

    2012-01-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1–5 µM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable ef...

  10. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  11. Morphological and Cell Growth Assessment in Near Dense Hydroxyapatite Scaffold

    OpenAIRE

    Florencia Edith Wiria; Bee Yen Tay; Elaheh Ghassemieh

    2013-01-01

    This paper reports the preliminary results on the morphology of low porosity hydroxyapatite scaffold and its compatibility as a substrate for osteoblast cells. Although having low porosity, the hydroxyapatite scaffold was found to be capable of sustaining cell growth and thus assisting bone ingrowth. Due to the low porosity nature, the scaffold provides higher strength and therefore more suitable for applications with load-bearing requirements such as spinal spacer. The hydroxyapatite scaffol...

  12. Insulin-like Growth Factor Binding Protein 7 Mediates Glioma Cell Growth and Migration

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2008-12-01

    Full Text Available Insulin-like growth factor binding protein 7 (IGFBP-7 is the only member of the IGFBP superfamily that binds strongly to insulin, suggesting that IGFBP-7 may have different functions from other IGFBPs. Unlike other IGFBPs, the expression and functions of IGFBP-7 in glioma tumors have not been reported. Using cDNA microarray analysis, we found that expression of IGFBP-7 correlated with the grade of glioma tumors and the overall patient survival. This finding was further validated by real-time reverse transcription-polymerase chain reaction and Western blot analysis. We used RNAi to examine the role of IGFBP-7 in glioma cells, inhibiting IGFBP-7 expression by short interfering RNA transfection. Cell proliferation was suppressed after IGFBP-7 expression was inhibited for 5 days, and glioma cell growth was stimulated consistently by the addition of recombinant IGFBP-7 protein. Moreover, glioma cell migration was attenuated by IGFBP-7 depletion but enhanced by IGFBP-7 overexpression and addition. Overexpression of AKT1 in IGFBP-7-overxpressed cells attenuated the IGFBP-7-promoted migration and further enhanced inhibition of IGFBP-7 depletion on the migration. Phosphorylation of AKT and Erk1/2 was also inversely regulated by IGFBP-7 expression. These two factors together suggest that IGFBP-7 can regulate glioma cell migration through the AKT-ERK pathway, thereby playing an important role in glioma growth and migration.

  13. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    Energy Technology Data Exchange (ETDEWEB)

    Peres, Elodie A.; Valable, Samuel [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Guillamo, Jean-Sebastien [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Departement de Neurologie, CHU de Caen (France); Marteau, Lena [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Bernaudin, Jean-Francois [Service d' Histologie-Biologie Tumorale, ER2UPMC, Universite Paris 6, Hopital Tenon, Paris (France); Roussel, Simon [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Lechapt-Zalcman, Emmanuele [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Service d' Anatomie Pathologique, CHU de Caen (France); Bernaudin, Myriam [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France); Petit, Edwige, E-mail: epetit@cyceron.fr [CERVOxy team ' Hypoxia and cerebrovascular pathophysiology' , UMR 6232 CI-NAPS, Universite de Caen Basse-Normandie, Universite Paris-Descartes, CNRS, CEA. G.I.P. CYCERON, Caen (France)

    2011-10-01

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  14. Targeting the erythropoietin receptor on glioma cells reduces tumour growth

    International Nuclear Information System (INIS)

    Hypoxia has been shown to be one of the major events involved in EPO expression. Accordingly, EPO might be expressed by cerebral neoplastic cells, especially in glioblastoma, known to be highly hypoxic tumours. The expression of EPOR has been described in glioma cells. However, data from the literature remain descriptive and controversial. On the basis of an endogenous source of EPO in the brain, we have focused on a potential role of EPOR in brain tumour growth. In the present study, with complementary approaches to target EPO/EPOR signalling, we demonstrate the presence of a functional EPO/EPOR system on glioma cells leading to the activation of the ERK pathway. This EPO/EPOR system is involved in glioma cell proliferation in vitro. In vivo, we show that the down-regulation of EPOR expression on glioma cells reduces tumour growth and enhances animal survival. Our results support the hypothesis that EPOR signalling in tumour cells is involved in the control of glioma growth.

  15. Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth

    DEFF Research Database (Denmark)

    Green, M R; Basketter, D A; Couchman, J R;

    1983-01-01

    EGF. EGF receptors are detected on the epithelial cells overlying the basement membranes of the epidermis, sebaceous gland, and regions of the hair follicle all of which have proliferative capacity. In marked contrast, tissues which have started to differentiate and lost their growth potential, carry...... in the spatial and temporal control of epithelial proliferation....

  16. Inhibition of Cell Growth and Telomerase Activity in Osteosarcoma Cells by DN-hTERT

    Institute of Scientific and Technical Information of China (English)

    XU Tao; RAO Yaojian; ZHU Wentao; GUO Fengjin

    2006-01-01

    In order to study the effects of dominant negative human telomerase reverse transcriptase (DN-hTERT) on cell growth and telomerase activity in osteosarcoma cell line MG63, MG63 cells were transfected with DN-hTERT-IRES2-EGFP9 (DN) or IRES2-EGF (I, blank vector) with lipofectamine 2000. The stably transfected cells were selected with G-418. Cell growth properties were examined under a fluorescence microscope. The hTERT mRNA expression was detected by reverse transcription-polymerase chain reaction (RT-PCR). Telomerase activities were measured by TRAP-ELISE. The tumorigenicity was studied with tumor xenografts by subcutaneous injection of cancer cells into nude mice. The results showed that cell growth was suppressed in MG63 cells transfected with DN-hTERT. The hTERT mRNA was increased in N-hTERT transfected-MG63 cells (MG63/DN). The telomerase activity was 2.45±0.11 in MG63/DN cells, while 3.40±0.12 in the cells transfected with blank vector (MG63/I), (P<0.05); DN-hTERT-expressing clones did not form tumors in 2 weeks, but the ratio of tumorigenesis was 30 % in nude mice bearing MG63/I (P<0.01). It was concluded that DN-hTERT could specifically inhibit the cell growth and telomerase activity in MG63 cells.

  17. STAMP alters the growth of transformed and ovarian cancer cells

    International Nuclear Information System (INIS)

    Steroid receptors play major roles in the development, differentiation, and homeostasis of normal and malignant tissue. STAMP is a novel coregulator that not only enhances the ability of p160 coactivator family members TIF2 and SRC-1 to increase gene induction by many of the classical steroid receptors but also modulates the potency (or EC50) of agonists and the partial agonist activity of antisteroids. These modulatory activities of STAMP are not limited to gene induction but are also observed for receptor-mediated gene repression. However, a physiological role for STAMP remains unclear. The growth rate of HEK293 cells stably transfected with STAMP plasmid and overexpressing STAMP protein is found to be decreased. We therefore asked whether different STAMP levels might also contribute to the abnormal growth rates of cancer cells. Panels of different stage human cancers were screened for altered levels of STAMP mRNA. Those cancers with the greatest apparent changes in STAMP mRNA were pursued in cultured cancer cell lines. Higher levels of STAMP are shown to have the physiologically relevant function of reducing the growth of HEK293 cells but, unexpectedly, in a steroid-independent manner. STAMP expression was examined in eight human cancer panels. More extensive studies of ovarian cancers suggested the presence of higher levels of STAMP mRNA. Lowering STAMP mRNA levels with siRNAs alters the proliferation of several ovarian cancer tissue culture lines in a cell line-specific manner. This cell line-specific effect of STAMP is not unique and is also seen for the conventional effects of STAMP on glucocorticoid receptor-regulated gene transactivation. This study indicates that a physiological function of STAMP in several settings is to modify cell growth rates in a manner that can be independent of steroid hormones. Studies with eleven tissue culture cell lines of ovarian cancer revealed a cell line-dependent effect of reduced STAMP mRNA on cell growth rates. This cell

  18. Reactive Oxygen Species-Mediated Control of Mitochondrial Biogenesis

    Directory of Open Access Journals (Sweden)

    Edgar D. Yoboue

    2012-01-01

    Full Text Available Mitochondrial biogenesis is a complex process. It necessitates the contribution of both the nuclear and the mitochondrial genomes and therefore crosstalk between the nucleus and mitochondria. It is now well established that cellular mitochondrial content can vary according to a number of stimuli and physiological states in eukaryotes. The knowledge of the actors and signals regulating the mitochondrial biogenesis is thus of high importance. The cellular redox state has been considered for a long time as a key element in the regulation of various processes. In this paper, we report the involvement of the oxidative stress in the regulation of some actors of mitochondrial biogenesis.

  19. Systems-biology dissection of eukaryotic cell growth

    OpenAIRE

    Andrews Justen; Przytycka Teresa M

    2010-01-01

    Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  20. Toxicology across scales: Cell population growth in vitro predicts reduced fish growth.

    Science.gov (United States)

    Stadnicka-Michalak, Julita; Schirmer, Kristin; Ashauer, Roman

    2015-08-01

    Environmental risk assessment of chemicals is essential but often relies on ethically controversial and expensive methods. We show that tests using cell cultures, combined with modeling of toxicological effects, can replace tests with juvenile fish. Hundreds of thousands of fish at this developmental stage are annually used to assess the influence of chemicals on growth. Juveniles are more sensitive than adult fish, and their growth can affect their chances to survive and reproduce. Thus, to reduce the number of fish used for such tests, we propose a method that can quantitatively predict chemical impact on fish growth based on in vitro data. Our model predicts reduced fish growth in two fish species in excellent agreement with measured in vivo data of two pesticides. This promising step toward alternatives to fish toxicity testing is simple, inexpensive, and fast and only requires in vitro data for model calibration. PMID:26601229

  1. Effect of acute exercise on prostate cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Helene Rundqvist

    Full Text Available Physical activity is associated with reduced risk of several cancers, including aggressive prostate cancer. The mechanisms mediating the effects are not yet understood; among the candidates are modifications of endogenous hormone levels. Long-term exercise is known to reduce serum levels of growth stimulating hormones. In contrast, the endocrine effects of acute endurance exercise include increased levels of mitogenic factors such as GH and IGF-1. It can be speculated that the elevation of serum growth factors may be detrimental to prostate cancer progression into malignancy. The incentive of the current study is to evaluate the effect of acute exercise serum on prostate cancer cell growth. We designed an exercise intervention where 10 male individuals performed 60 minutes of bicycle exercise at increasing intensity. Serum samples were obtained before (rest serum and after completed exercise (exercise serum. The established prostate cancer cell line LNCaP was exposed to exercise or rest serum. Exercise serum from 9 out of 10 individuals had a growth inhibitory effect on LNCaP cells. Incubation with pooled exercise serum resulted in a 31% inhibition of LNCaP growth and pre-incubation before subcutaneous injection into SCID mice caused a delay in tumor formation. Serum analyses indicated two possible candidates for the effect; increased levels of IGFBP-1 and reduced levels of EGF. In conclusion, despite the fear of possible detrimental effects of acute exercise serum on tumor cell growth, we show that even the short-term effects seem to add to the overall beneficial influence of exercise on neoplasia.

  2. Two-dimensional diffusion limited system for cell growth

    International Nuclear Information System (INIS)

    A new cell system, the ''sandwich'' system, was developed to supplement multicellular spheroids as tumor analogues. Sandwiches allow new experimental approaches to questions of diffusion, cell cycle effects and radiation resistance in tumors. In this thesis the method for setting up sandwiches is described both theoretically and experimentally followed by its use in x-ray irradiation studies. In the sandwich system, cells are grown in a narrow gap between two glass slides. Where nutrients and waste products can move into or out of the local environment of the cells only by diffusing through the narrow gap between the slides. Due to the competition between cells, self-created gradients of nutrients and metabolic products are set up resulting in a layer of cells which resembles a living spheroid cross section. Unlike the cells of the spheroid, however, cells in all regions of the sandwich are visible. Therefore, the relative sizes of the regions and their time-dependent growth can be monitored visually without fixation or sectioning. The oxygen and nutrient gradients can be ''turned off'' at any time without disrupting the spatial arrangement of the cells by removing the top slide of the assembly and subsequently turned back on if desired. Removal of the top slide also provides access to all the cells, including those near the necrotic center, of the sandwich. The cells can then be removed for analysis outside the sandwich system. 61 refs., 17 figs

  3. Two-dimensional diffusion limited system for cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Hlatky, L.

    1985-11-01

    A new cell system, the ''sandwich'' system, was developed to supplement multicellular spheroids as tumor analogues. Sandwiches allow new experimental approaches to questions of diffusion, cell cycle effects and radiation resistance in tumors. In this thesis the method for setting up sandwiches is described both theoretically and experimentally followed by its use in x-ray irradiation studies. In the sandwich system, cells are grown in a narrow gap between two glass slides. Where nutrients and waste products can move into or out of the local environment of the cells only by diffusing through the narrow gap between the slides. Due to the competition between cells, self-created gradients of nutrients and metabolic products are set up resulting in a layer of cells which resembles a living spheroid cross section. Unlike the cells of the spheroid, however, cells in all regions of the sandwich are visible. Therefore, the relative sizes of the regions and their time-dependent growth can be monitored visually without fixation or sectioning. The oxygen and nutrient gradients can be ''turned off'' at any time without disrupting the spatial arrangement of the cells by removing the top slide of the assembly and subsequently turned back on if desired. Removal of the top slide also provides access to all the cells, including those near the necrotic center, of the sandwich. The cells can then be removed for analysis outside the sandwich system. 61 refs., 17 figs.

  4. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. PMID:26976217

  5. Automated inference procedure for the determination of cell growth parameters

    Science.gov (United States)

    Harris, Edouard A.; Koh, Eun Jee; Moffat, Jason; McMillen, David R.

    2016-01-01

    The growth rate and carrying capacity of a cell population are key to the characterization of the population's viability and to the quantification of its responses to perturbations such as drug treatments. Accurate estimation of these parameters necessitates careful analysis. Here, we present a rigorous mathematical approach for the robust analysis of cell count data, in which all the experimental stages of the cell counting process are investigated in detail with the machinery of Bayesian probability theory. We advance a flexible theoretical framework that permits accurate estimates of the growth parameters of cell populations and of the logical correlations between them. Moreover, our approach naturally produces an objective metric of avoidable experimental error, which may be tracked over time in a laboratory to detect instrumentation failures or lapses in protocol. We apply our method to the analysis of cell count data in the context of a logistic growth model by means of a user-friendly computer program that automates this analysis, and present some samples of its output. Finally, we note that a traditional least squares fit can provide misleading estimates of parameter values, because it ignores available information with regard to the way in which the data have actually been collected.

  6. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available BACKGROUND: The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines. METHODOLOGY/PRINCIPAL FINDINGS: In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. CONCLUSIONS/SIGNIFICANCE: These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  7. FH535 inhibited metastasis and growth of pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Wu MY

    2015-07-01

    Full Text Available Meng-Yao Wu,1,* Rong-Rui Liang,1,* Kai Chen,1 Meng Shen,1 Ya-Li Tian,1,2 Dao-Ming Li,1 Wei-Ming Duan,1 Qi Gui,1 Fei-Ran Gong,3 Lian Lian,1,2 Wei Li,1,6 Min Tao1,4–61Department of Oncology, The First Affiliated Hospital of Soochow University, 2Department of Oncology, Suzhou Xiangcheng People’s Hospital, 3Department of Hematology, The First Affiliated Hospital of Soochow University, 4Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, 5Institute of Medical Biotechnology, Soochow University, Suzhou, 6PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, People’s Republic of China*These authors contributed equally to this workAbstract: FH535 is a small-molecule inhibitor of the Wnt/β-catenin signaling pathway, which a substantial body of evidence has proven is activated in various cancers, including pancreatic cancer. Activation of the Wnt/β-catenin pathway plays an important role in tumor progression and metastasis. We investigated the inhibitory effect of FH535 on the metastasis and growth of pancreatic cancer cells. Western blotting and luciferase reporter gene assay indicated that FH535 markedly inhibited Wnt/β-catenin pathway viability in pancreatic cancer cells. In vitro wound healing, invasion, and adhesion assays revealed that FH535 significantly inhibited pancreatic cancer cell metastasis. We also observed the inhibitory effect of FH535 on pancreatic cancer cell growth via the tetrazolium and plate clone formation assays. Microarray analyses suggested that changes in the expression of multiple genes could be involved in the anti-cancer effect of FH535 on pancreatic cancer cells. Our results indicate for the first time that FH535 inhibits pancreatic cancer cell metastasis and growth, providing new insight into therapy of pancreatic cancer.Keywords: pancreatic cancer, FH535, β-catenin, metastasis, growth

  8. The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus.

    Directory of Open Access Journals (Sweden)

    John N Griffin

    2015-03-01

    Full Text Available The production of ribosomes is ubiquitous and fundamental to life. As such, it is surprising that defects in ribosome biogenesis underlie a growing number of symptomatically distinct inherited disorders, collectively called ribosomopathies. We previously determined that the nucleolar protein, NOL11, is essential for optimal pre-rRNA transcription and processing in human tissue culture cells. However, the role of NOL11 in the development of a multicellular organism remains unknown. Here, we reveal a critical function for NOL11 in vertebrate ribosome biogenesis and craniofacial development. Nol11 is strongly expressed in the developing cranial neural crest (CNC of both amphibians and mammals, and knockdown of Xenopus nol11 results in impaired pre-rRNA transcription and processing, increased apoptosis, and abnormal development of the craniofacial cartilages. Inhibition of p53 rescues this skeletal phenotype, but not the underlying ribosome biogenesis defect, demonstrating an evolutionarily conserved control mechanism through which ribosome-impaired craniofacial cells are removed. Excessive activation of this mechanism impairs craniofacial development. Together, our findings reveal a novel requirement for Nol11 in craniofacial development, present the first frog model of a ribosomopathy, and provide further insight into the clinically important relationship between specific ribosome biogenesis proteins and craniofacial cell survival.

  9. Purification and Cultivation of Human Pituitary Growth Hormones Secreting Cells

    Science.gov (United States)

    Hymer, W. C.; Todd, P.; Grindeland, R.; Lanham, W.; Morrison, D.

    1985-01-01

    The rat and human pituitary gland contains a mixture of hormone producing cell types. The separation of cells which make growth hormone (GH) is attempted for the purpose of understanding how the hormone molecule is made within the pituitary cell; what form(s) it takes within the cell; and what form(s) GH assumes as it leaves the cell. Since GH has a number of biological targets (e.g., muscle, liver, bone), the assessment of the activities of the intracellular/extracellular GH by new and sensitive bioassays. GH cells contained in the mixture was separated by free flow electrophoresis. These experiments show that GH cells have different electrophoretic mobilities. This is relevant to NASA since a lack of GH could be a prime causative factor in muscle atrophy. Further, GH has recently been implicated in the etiology of motion sickness in space. Continous flow electrophoresis experiment on STS-8 showed that GH cells could be partially separated in microgravity. However, definitive cell culture studies could not be done due to insufficient cell recoveries.

  10. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    International Nuclear Information System (INIS)

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1

  11. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zheng, Ruimao, E-mail: rmzheng@pku.edu.cn [Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zhu, Shigong, E-mail: sgzhu@bjmu.edu.cn [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China)

    2014-07-18

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1.

  12. Wall relaxation and the driving forces for cell expansive growth

    Science.gov (United States)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  13. miR-526a regulates apoptotic cell growth in human carcinoma cells.

    Science.gov (United States)

    Yang, Xiaoli; Wang, Cui; Xu, Changzhi; Yan, Zhifeng; Wei, Congwen; Guan, Kai; Ma, Shengli; Cao, Ye; Liu, Liping; Zou, Deyong; He, Xiang; Zhang, Buchang; Ma, Qingjun; Zheng, Zirui

    2015-09-01

    MicroRNAs (miRNAs) play vital roles in the regulation of cell cycle, cell growth, apoptosis, and tumorigenesis. Our previous studies showed that miR-526a positively regulated innate immune response by suppressing CYLD expression, however, the functional relevance of miR-526a expression and cell growth remains to be evaluated. In this study, miR-526a overexpression was found to promote cancer cell proliferation, migration, and anchor-independent colony formation. The molecular mechanism(s) of miR-526a-mediated growth stimulation is associated with rapid cell cycle progression and inhibition of cell apoptosis by targeting CYLD. Taken together, these results provide evidence to show the stimulatory role of miR-526a in tumor migration and invasion through modulation of the canonical NF-κB signaling pathway. PMID:26002288

  14. Autoradiographic investigations on cell shape-mediated growth regulation of lens epithelial cells in culture

    International Nuclear Information System (INIS)

    An autoradiographic method is described which is well suited for the determination of the labelling index in flattened as well as rounded cells. Using this method DNA synthesis of lens epithelial cells in culture was found to be dependent on cell attachment, cell flattening and intact microfilaments. Thus previous results on cell shape-mediated growth regulation could be confirmed. Moreover, considering the labelling index it was possible to conclude that cell rounding or a disintegration of microfilaments did not impair ongoing DNA synthesis but did prevent cells from entering the S-phase of the cycle. (author)

  15. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  16. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    International Nuclear Information System (INIS)

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK

  17. 42% 500X Bi-Facial Growth Concentrator Cells

    Science.gov (United States)

    Wojtczuk, S.; Chiu, P.; Zhang, X.; Pulver, D.; Harris, C.; Siskavich, B.

    2011-12-01

    Data are presented from three-junction concentrator photovoltaic cells using a new cell architecture (1.9 eV InGaP top cell lattice-matched to a 1.42 eV GaAs middle cells on one side of a infrared-transparent GaAs wafer with a lattice-mismatched 0.95 eV InGaAs bottom cell grown isolated on the wafer backside). The cell uses a new epitaxial bifacial growth (BFG) technique. The impetus is to replace the 0.67 eV Ge bottom cell in the standard three junction InGaP/GaAs/Ge tandems with a higher bandgap 0.95 eV InGaAs cell that boosts the bottom cell voltage by about 40% while maintaining a simple high-yield cell process without use of complex large area epitaxial liftoff or wafer bonding steps used to make similar cell stacks. Efficiency was independently-verified by NREL for a 1 cm×1 cm cell (42.3% at 406 suns, with Voc 3.452V, 87.1% FF and 1xJsc of 14.07 mA/cm2, at 25 °C AM1.5D, 100 mW/cm2), which was the world record at the time of the CPV-7 conference. No degradation was seen during concentrated solar operation after a 2000 hr 165C burn-in and PbSn solder tests. Average efficiency of 1 cm2 cells designed for 500 suns at 1018 suns was 40.5% (Spire test, 25 °C, spectrally corrected flash simulator). Measured efficiency temperature coefficient for gen2 cells is -0.06%/°C, similar to InGaP/GaAs/Ge tandems.

  18. On the Non-observability of Recent Biogenesis

    OpenAIRE

    Lineweaver, Charles H.; Davis, Tamara M.

    2003-01-01

    In a previous paper we addressed the question "Does the Rapid Appearance of Life on Earth Suggest that Life is Common in the Universe?" The non-observability of recent biogenesis is a self-selection effect that needs to be considered if inferences are to be drawn from the rapidity of terrestrial biogenesis. We discuss several approaches that have been proposed to take this effect into account.

  19. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis are mediated by reactive oxygen species in ionizing radiation-induced premature senescence

    International Nuclear Information System (INIS)

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated β-galactosidase (SA-β-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and H2O2-treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and H2O2-treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-β-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

  20. Mitochondrial DNA deletion and impairment of mitochondrial biogenesis are mediated by reactive oxygen species in ionizing radiation-induced premature senescence

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyeon Soo; Jung, U Hee; Jo, Sung Kee [Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Young Sang [College of Natural Sciences, Chungnam National University, Daejeon (Korea, Republic of)

    2011-09-15

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging, and contributes to harmful effects in cultured cells and animal tissues. mtDNA biogenesis genes (NRF-1, TFAM) are essential for the maintenance of mtDNA, as well as the transcription and replication of mitochondrial genomes. Considering that oxidative stress is known to affect mitochondrial biogenesis, we hypothesized that ionizing radiation (IR)-induced reactive oxygen species (ROS) causes mtDNA deletion by modulating the mitochondrial biogenesis, thereby leading to cellular senescence. Therefore, we examined the effects of IR on ROS levels, cellular senescence, mitochondrial biogenesis, and mtDNA deletion in IMR-90 human lung fibroblast cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated at 4 or 8 Gy. Old cells at PD55, and H2O2-treated young cells at PD 39, were compared as a positive control. The IR increased the intracellular ROS level, senescence-associated {beta}-galactosidase (SA-{beta}-gal) activity, and mtDNA common deletion (4977 bp), and it decreased the mRNA expression of NRF-1 and TFAM in IMR-90 cells. Similar results were also observed in old cells (PD 55) and H{sub 2}O{sub 2}-treated young cells. To confirm that a increase in ROS level is essential for mtDNA deletion and changes of mitochondrial biogenesis in irradiated cells, the effects of N-acetylcysteine (NAC) were examined. In irradiated and H{sub 2}O{sub 2}-treated cells, 5 mM NAC significantly attenuated the increases of ROS, mtDNA deletion, and SA-{beta}-gal activity, and recovered from decreased expressions of NRF-1 and TFAM mRNA. These results suggest that ROS is a key cause of IR-induced mtDNA deletion, and the suppression of the mitochondrial biogenesis gene may mediate this process.

  1. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  2. Aspects of plant cell growth and the actin cytoskeleton: lessons from root hairs

    OpenAIRE

    Ruijter, de, A.

    1999-01-01

    The main topic the thesis addresses is the role of the actin cytoskeleton in the growth process of plant cells. Plant growth implies a combination of cell division and cell expansion. The cytoskeleton, which exists of microtubules and actin filaments, plays a major role in both processes. Before cell growth takes place, a new cell is formed by cell division. The orientation of the division plane most often predicts the orientation of cell expansion, and a correct positioning of the division p...

  3. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  4. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing-Ping; Lin, Kai-Han; Liu, Chun-Yen; Yu, Ya-Chu; Wu, Pei-Tsun [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China); Chiu, Chien-Chih [Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Su, Chun-Li [Department of Human Development and Family Studies, National Taiwan Normal University, Taipei, Taiwan (China); Chen, Kwun-Min [Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan (China); Fang, Kang, E-mail: kangfang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei, Taiwan (China)

    2013-11-15

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment.

  5. Teroxirone inhibited growth of human non-small cell lung cancer cells by activating p53

    International Nuclear Information System (INIS)

    In this work, we demonstrated that the growth of human non-small-cell-lung-cancer cells H460 and A549 cells can be inhibited by low concentrations of an epoxide derivative, teroxirone, in both in vitro and in vivo models. The cytotoxicity was mediated by apoptotic cell death through DNA damage. The onset of ultimate apoptosis is dependent on the status of p53. Teroxirone caused transient elevation of p53 that activates downstream p21 and procaspase-3 cleavage. The presence of caspase-3 inhibitor reverted apoptotic phenotype. Furthermore, we showed the cytotoxicity of teroxirone in H1299 cells with stable ectopic expression of p53, but not those of mutant p53. A siRNA-mediated knockdown of p53 expression attenuated drug sensitivity. The in vivo experiments demonstrated that teroxirone suppressed growth of xenograft tumors in nude mice. Being a potential therapeutic agent by restraining cell growth through apoptotic death at low concentrations, teroxirone provides a feasible perspective in reversing tumorigenic phenotype of human lung cancer cells. - Highlights: • Teroxirone repressed tumor cell growth in nude mice of human lung cancer cells. • The apoptotic cell death reverted by caspase-3 inhibitor is related to p53 status. • Teroxirone provides a good candidate for lung cancer treatment

  6. Cell Growth on Different Types of Ultrananocrystalline Diamond Thin Films

    Directory of Open Access Journals (Sweden)

    Orlando Auciello

    2012-08-01

    Full Text Available Unique functional materials provide a platform as scaffolds for cell/tissue regeneration. Investigation of cell-materials’ chemical and biological interactions will enable the application of more functional materials in the area of bioengineering, which provides a pathway to the novel treatment for patients who suffer from tissue/organ damage and face the limitation of donation sources. Many studies have been made into tissue/organ regeneration. Development of new substrate materials as platforms for cell/tissue regeneration is a key research area. Studies discussed in this paper focus on the investigation of novel ultrananocrystalline diamond (UNCD films as substrate/scaffold materials for developmental biology. Specially designed quartz dishes have been coated with different types of UNCD films and cells were subsequently seeded on those films. Results showed the cells’ growth on UNCD-coated culture dishes are similar to cell culture dishes with little retardation, indicating that UNCD films have no or little inhibition on cell proliferation and are potentially appealing as substrate/scaffold materials. The mechanisms of cell adhesion on UNCD surfaces are proposed based on the experimental results. The comparisons of cell cultures on diamond-powder-seeded culture dishes and on UNCD-coated dishes with matrix-assisted laser desorption/ionization—time-of-flight mass spectroscopy (MALDI-TOF MS and X-ray photoelectron spectroscopy (XPS analyses provided valuable data to support the mechanisms proposed to explain the adhesion and proliferation of cells on the surface of the UNCD platform.

  7. Methyl Jasmonate Represses Growth and Affects Cell Cycle Progression in Cultured Taxus Cells

    OpenAIRE

    Patil, Rohan A.; Lenka, Sangram K.; Normanly, Jennifer; Walker, Elsbeth L.; Roberts, Susan C.

    2014-01-01

    Methyl jasmonate (MeJA) elicitation is an effective strategy to induce and enhance synthesis of the anticancer agent paclitaxel (Taxol®) in Taxus cell suspension cultures; however, concurrent decreases in growth are often observed, which is problematic for large scale bioprocessing. Here, increased accumulation of paclitaxel in Taxus cuspidata suspension cultures with MeJA elicitation was accompanied by a concomitant decrease in cell growth, evident within the first three days post-elicitatio...

  8. Controlled Cell Growth and Cell Migration in Periodic Mesoporous Organosilica/Alginate Nanocomposite Hydrogels.

    Science.gov (United States)

    Seda Kehr, Nermin; Riehemann, Kristina

    2016-01-21

    Nanocomposite (NC) hydrogels with different periodic mesoporous organosilica (PMO) concentrations and a NC hydrogel bilayer with various PMO concentrations inside the layers of the hydrogel matrix are prepared. The effect of the PMO concentration on cell growth and migration of cells is reported. The cells migrate in the bilayer NC hydrogel towards higher PMO concentrations and from cell culture plates to NC hydrogel scaffolds. PMID:26648333

  9. Roles of CUP-5, the Caenorhabditis elegans orthologue of human TRPML1, in lysosome and gut granule biogenesis

    Directory of Open Access Journals (Sweden)

    Fares Hanna

    2010-06-01

    Full Text Available Abstract Background CUP-5 is a Transient Receptor Potential protein in C. elegans that is the orthologue of mammalian TRPML1. Loss of TRPML1 results in the lysosomal storage disorder Mucolipidosis type IV. Loss of CUP-5 results in embryonic lethality and the accumulation of enlarged yolk granules in developing intestinal cells. The embryonic lethality of cup-5 mutants is rescued by mutations in mrp-4, which is required for gut granule differentiation. Gut granules are intestine-specific lysosome-related organelles that accumulate birefringent material. This link between CUP-5 and gut granules led us to determine the roles of CUP-5 in lysosome and gut granule biogenesis in developing intestinal cells. Results We show that CUP-5 protein localizes to lysosomes, but not to gut granules, in developing intestinal cells. Loss of CUP-5 results in defects in endo-lysosomal transport in developing intestinal cells of C. elegans embryos. This ultimately leads to the appearance of enlarged terminal vacuoles that show defective lysosomal degradation and that have lysosomal and endosomal markers. In contrast, gut granule biogenesis is normal in the absence of CUP-5. Furthermore, loss of CUP-5 does not result in inappropriate fusion or mixing of content between lysosomes and gut granules. Conclusions Using an in vivo model of MLIV, we show that there is a defect in lysosomal transport/biogenesis that is earlier than the presumed function of TRPML1 in terminal lysosomes. Our results indicate that CUP-5 is required for the biogenesis of lysosomes but not of gut granules. Thus, cellular phenotypes in Mucolipidosis type IV are likely not due to defects in lysosome-related organelle biogenesis, but due to progressive defects in lysosomal transport that lead to severe lysosomal dysfunction.

  10. Ribosome Biogenesis Factor Bmsl-like Is Essential for Liver Development in Zebrafish

    Institute of Scientific and Technical Information of China (English)

    Yong Wang; Yue Luo; Yunhan Hong; Jinrong Peng; Lijan Lo

    2012-01-01

    Ribosome biogenesis in the nucleolus requires numerous nucleolar proteins and small non-coding RNAs.Among them is ribosome biogenesis factor Bmsl,which is highly conserved from yeast to human.In yeast,Bmsl initiates ribosome biogenesis through recruiting Rcll to pre-ribosomes.However,little is known about the biological function of Bmsl in vertebrates.Here we report that Bmsl plays an essential role in zebrafish liver development.We identified a zebrafish bmsllsq163 mutant which carries a T to A mutation in the gene bmsl-like (bmsll).This mutation results in L152 to Q152 substitution in a GTPase motif in Bmsll.Surprisingly,bmsllsq163 mutation confers hypoplasia specifically in the liver,exocrine pancreas and intestine after 3 days post-fertilization (dpf).Consistent with the bmsllsq163 mutant phenotypes,whole-mount in situ hybridization (WISH) on wild type embryos showed that bmsll transcripts are abundant in the entire digestive tract and its accessory organs.Immunostaining for phospho-Histone 3 (P-H3) and TUNEL assay revealed that impairment of hepatoblast proliferation rather than cell apoptosis is one of the consequences of bmsllsq163 giving rise to an underdeveloped liver.Therefore,our findings demonstrate that Bmsll is necessary for zebrafish liver development.

  11. Effects of space flight exposure on cell growth, tumorigenicity and gene expression in cancer cells

    Science.gov (United States)

    Yang, Cheng; Li, Yuehui; Zhang, Zhijie; Luo, Chen; Tong, Yongqing; Zhou, Guohua; Xie, Pingli; Hu, Jinyue; Li, Guancheng

    2008-12-01

    It is well recognized that harsh outer space environment, consisting of microgravity and radiation, poses significant health risks for human cells. To investigate potential effects of the space environment exposure on cancer cells we examined the biological changes in Caski cells carried by the "Shen Zhou IV" spaceship. After exposure for 7 days in spaceflight, 1440 survival subclonal cell lines were established and 4 cell lines were screened. 44F10 and 17E3 were selected because of their increased cell proliferation and tumorigenesis, while 48A9 and 31F2 had slower cytological events. Experiments with cell proliferation assay, flow cytometry, soft agar assay, tumorigenesis assay and DNA microarray analysis have shown that selected cell lines presented multiple biological changes in cell morphology, cell growth, tumorigenicity and gene expression. These results suggest that space environment exposure can make significant biological impact on cancer cells and provide an entry point to find the immunological target of tumorigenesis.

  12. Endothelial AMPK activation induces mitochondrial biogenesis and stress adaptation via eNOS-dependent mTORC1 signaling.

    Science.gov (United States)

    Li, Chunying; Reif, Michaella M; Craige, Siobhan M; Kant, Shashi; Keaney, John F

    2016-05-01

    Metabolic stress sensors like AMP-activated protein kinase (AMPK) are known to confer stress adaptation and promote longevity in lower organisms. This study demonstrates that activating the metabolic stress sensor AMP-activated protein kinase (AMPK) in endothelial cells helps maintain normal cellular function by promoting mitochondrial biogenesis and stress adaptation. To better define the mechanisms whereby AMPK promotes endothelial stress resistance, we used 5-aminoimidazole-4-carboxamide riboside (AICAR) to chronically activate AMPK and observed stimulation of mitochondrial biogenesis in wild type mouse endothelium, but not in endothelium from endothelial nitric oxide synthase knockout (eNOS-null) mice. Interestingly, AICAR-enhanced mitochondrial biogenesis was blocked by pretreatment with the mammalian target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin. Further, AICAR stimulated mTORC1 as determined by phosphorylation of its known downstream effectors in wild type, but not eNOS-null, endothelial cells. Together these data indicate that eNOS is needed to couple AMPK activation to mTORC1 and thus promote mitochondrial biogenesis and stress adaptation in the endothelium. These data suggest a novel mechanism for mTORC1 activation that is significant for investigations in vascular dysfunction. PMID:26989010

  13. Growth hormone action in rat insulinoma cells expressing truncated growth hormone receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Allevato, G; Dyrberg, Thomas;

    1991-01-01

    Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation of...... the GH receptor. Two mutated cDNAs encoding truncated GH receptors, GH-R1-294 and GH-R1-454, respectively, were generated by site-directed mutagenesis and transfected into the RIN cells. Both receptor mutants were expressed on the cell surface and displayed normal GH binding affinity. Whereas GH-R1......-638 had a molecular mass of about 110 kDa, GH-R1-294 and GH-R1-454 showed molecular masses of 49 and 80 kDa, respectively. Cells expressing GH-R1-454 internalized GH to a similar extent as cells transfected with the full length receptor and the parent cell line, but GH-R1-294-expressing cells showed a...

  14. Cell transfection as a tool to study growth hormone action

    DEFF Research Database (Denmark)

    Norstedt, G; Enberg, B; Francis, S;

    1994-01-01

    of cellular function that mimic those of the endogenous GHR. GHR cDNA transfected cells also offer a system where the mechanism of GH action can be studied. Such a system has been used to demonstrate that the GHR itself becomes tyrosine phosphorylated and that further phosphorylation of downstream...... proteins is important in GH action. The GH signals are transmitted to the nucleus and GH regulated genes have now begun to be characterized. The ability to use cell transfection for mechanistic studies of GH action will be instrumental to define domains within the receptor that are of functional importance......The isolation of growth hormone receptor (GHR) cDNA clones has made possible the transfection of GHRs into cultured cells. Our aim in this minireview is to show how the application of such approaches have benefited GHR research. GH stimulation of cells expressing GHR cDNAs can cause an alteration...

  15. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth.

    Science.gov (United States)

    Martin, Claire; Lafosse, Jean-Michel; Malavaud, Bernard; Cuvillier, Olivier

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK. PMID:19932089

  16. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    International Nuclear Information System (INIS)

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  17. Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Claire [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); Lafosse, Jean-Michel [CHU Toulouse, Hopital Rangueil, Service d' orthopedie et Traumatologie, Toulouse F-31000 (France); Malavaud, Bernard [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France); CHU Toulouse, Hopital Rangueil, Service d' Urologie et de Transplantation Renale, Toulouse F-31000 (France); Cuvillier, Olivier, E-mail: olivier.cuvillier@ipbs.fr [CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse F-31000 (France); Universite de Toulouse, UPS, IPBS, Toulouse F-31000 (France)

    2010-01-01

    Herein we report that the lipid kinase sphingosine kinase-1 (SphK1) is instrumental in mediating androgen-induced cell proliferation in osteoblasts. Dihydrotestosterone (DHT) triggered cell growth in steroid-deprived MC3T3 cells, which was associated with a rapid stimulation of SphK1 and activation of both Akt and ERK signaling pathways. This mechanism relied on functional androgen receptor/PI3K/Akt nongenotropic signaling as pharmacological antagonists could block SphK1 stimulation by DHT and its consequences. Finally, SphK1 inhibition not only abrogated DHT-induced ERK activation but also blocked cell proliferation, while ERK inhibition had no impact, suggesting that SphK1 was critical for DHT signaling yet independently of the ERK.

  18. radiochemical studies on the growth of myeloma cells

    International Nuclear Information System (INIS)

    cancer is a disease of unregulated cell growth. humans of all ages develop cancer, and a wide variety of organs are affected. multiple myeloma is a cancer in which antibody-producing plasma cells grow in an uncontrolled and invasive (malignant) manner. melphalan (DNA cross-linker), is one of the most widely used and effective drugs in the treatment of multiple myeloma. thalidomide as an immunomodulatory agent is clinically useful in a number of cancers. antitumor activity may be related to a number of known properties, including antitumor necrosis factor (TNF)-α and T-cell costimulatory and antiangiogenic effect. however, it may also involve direct antitumor effects. radiotherapy is an important modality in the treatment of cancer. the aim of radiotherapy is to deliver radiation doses and schedules that kill cancer cells, while preserving normal tissue function. the aim of these studies was to evaluate the therapeutic effects of some chemical substances (chemotherapy)such as melphalan and thalidomide and γ-radiation (radiotherapy)on the growth of myeloma cells. also some confirmatory tests such as β2-microglobulin, caspases enzymes 8 and 9 and flow cytometric analyses were performed for the obtained optimum doses.

  19. Growth inhibition by tyrosine kinase inhibitors in mesothelioma cell lines.

    Science.gov (United States)

    Nutt, Joyce E; O'Toole, Kieran; Gonzalez, David; Lunec, John

    2009-06-01

    Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma. PMID:19318229

  20. Disrupting the oncogenic synergism between nucleolin and Ras results in cell growth inhibition and cell death.

    Directory of Open Access Journals (Sweden)

    Sari Schokoroy

    Full Text Available BACKGROUND: The ErbB receptors, Ras proteins and nucleolin are major contributors to malignant transformation. The pleiotropic protein nucleolin can bind to both Ras protein and ErbB receptors. Previously, we have demonstrated a crosstalk between Ras, nucleolin and the ErbB1 receptor. Activated Ras facilitates nucleolin interaction with ErbB1 and stabilizes ErbB1 levels. The three oncogenes synergistically facilitate anchorage independent growth and tumor growth in nude mice. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we used several cancer cell lines. The effect of Ras and nucleolin inhibition was determined using cell growth, cell death and cell motility assays. Protein expression was determined by immunohistochemistry. We found that inhibition of Ras and nucleolin reduces tumor cell growth, enhances cell death and inhibits anchorage independent growth. Our results reveal that the combined treatment affects Ras and nucleolin levels and localization. Our study also indicates that Salirasib (FTS, Ras inhibitor reduces cell motility, which is not affected by the nucleolin inhibitor. CONCLUSIONS/SIGNIFICANCE: These results suggest that targeting both nucleolin and Ras may represent an additional avenue for inhibiting cancers driven by these oncogenes.

  1. Epidermal growth factor receptor expression in canine transitional cell carcinoma

    OpenAIRE

    HANAZONO, Kiwamu; Fukumoto, Shinya; KAWAMURA, Yoshio; ENDO, Yoshifumi; Kadosawa, Tsuyoshi; IWANO, Hidetomo; UCHIDE, Tsuyoshi

    2014-01-01

    Transitional cell carcinoma (TCC), a urinary bladder tumor with high mortality, is encountered commonly in dogs. Whereas overexpression of epidermal growth factor receptor (EGFR) is associated with development of human urinary bladder cancer, information on EGFR expression in canine TCC is lacking. In this study, EGFR protein and mRNA expression in canine normal bladder (n=5), polypoid cystitis (n=5) and TCC (n=25) were examined by immunohistochemistry and real-time polymerase chain reaction....

  2. Systems-biology dissection of eukaryotic cell growth

    Directory of Open Access Journals (Sweden)

    Andrews Justen

    2010-05-01

    Full Text Available Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  3. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    International Nuclear Information System (INIS)

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes

  4. Stochastic modeling of cell growth with symmetric or asymmetric division.

    Science.gov (United States)

    Marantan, Andrew; Amir, Ariel

    2016-07-01

    We consider a class of biologically motivated stochastic processes in which a unicellular organism divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically between its progeny. Assuming the final amount of the resource is controlled by a growth policy and subject to additive and multiplicative noise, we derive the recursive integral equation describing the evolution of the resource distribution over subsequent generations and use it to study the properties of stable resource distributions. We find conditions under which a unique stable resource distribution exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists) has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment equations to draw a stability phase diagram for the system that reveals the counterintuitive result that asymmetry serves to increase stability while at the same time widening the stable distribution. We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny as a form of damage control. In the appendixes, motivated by the asymmetric division of cell volume in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells follow different growth policies. PMID:27575162

  5. Stochastic modeling of cell growth with symmetric or asymmetric division

    Science.gov (United States)

    Marantan, Andrew; Amir, Ariel

    2016-07-01

    We consider a class of biologically motivated stochastic processes in which a unicellular organism divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically between its progeny. Assuming the final amount of the resource is controlled by a growth policy and subject to additive and multiplicative noise, we derive the recursive integral equation describing the evolution of the resource distribution over subsequent generations and use it to study the properties of stable resource distributions. We find conditions under which a unique stable resource distribution exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists) has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment equations to draw a stability phase diagram for the system that reveals the counterintuitive result that asymmetry serves to increase stability while at the same time widening the stable distribution. We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny as a form of damage control. In the appendixes, motivated by the asymmetric division of cell volume in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells follow different growth policies.

  6. Growth dynamics of cancer cell colonies and their comparison with noncancerous cells

    Science.gov (United States)

    Huergo, M. A. C.; Pasquale, M. A.; González, P. H.; Bolzán, A. E.; Arvia, A. J.

    2012-01-01

    The two-dimensional (2D) growth dynamics of HeLa (cervix cancer) cell colonies was studied following both their growth front and the pattern morphology evolutions utilizing large population colonies exhibiting linearly and radially spreading fronts. In both cases, the colony profile fractal dimension was df=1.20±0.05 and the growth fronts displaced at the constant velocity 0.90±0.05 μm min-1. Colonies showed changes in both cell morphology and average size. As time increased, the formation of large cells at the colony front was observed. Accordingly, the heterogeneity of the colony increased and local driving forces that set in began to influence the dynamics of the colony front. The dynamic scaling analysis of rough colony fronts resulted in a roughness exponent α = 0.50±0.05, a growth exponent β = 0.32±0.04, and a dynamic exponent z=1.5±0.2. The validity of this set of scaling exponents extended from a lower cutoff lc≈60 μm upward, and the exponents agreed with those predicted by the standard Kardar-Parisi-Zhang continuous equation. HeLa data were compared with those previously reported for Vero cell colonies. The value of df and the Kardar-Parisi-Zhang-type 2D front growth dynamics were similar for colonies of both cell lines. This indicates that the cell colony growth dynamics is independent of the genetic background and the tumorigenic nature of the cells. However, one can distinguish some differences between both cell lines during the growth of colonies that may result from specific cooperative effects and the nature of each biosystem.

  7. Oligodendroglial membrane dynamics in relation to myelin biogenesis.

    Science.gov (United States)

    Ozgen, Hande; Baron, Wia; Hoekstra, Dick; Kahya, Nicoletta

    2016-09-01

    In the central nervous system, oligodendrocytes synthesize a specialized membrane, the myelin membrane, which enwraps the axons in a multilamellar fashion to provide fast action potential conduction and to ensure axonal integrity. When compared to other membranes, the composition of myelin membranes is unique with its relatively high lipid to protein ratio. Their biogenesis is quite complex and requires a tight regulation of sequential events, which are deregulated in demyelinating diseases such as multiple sclerosis. To devise strategies for remedying such defects, it is crucial to understand molecular mechanisms that underlie myelin assembly and dynamics, including the ability of specific lipids to organize proteins and/or mediate protein-protein interactions in healthy versus diseased myelin membranes. The tight regulation of myelin membrane formation has been widely investigated with classical biochemical and cell biological techniques, both in vitro and in vivo. However, our knowledge about myelin membrane dynamics, such as membrane fluidity in conjunction with the movement/diffusion of proteins and lipids in the membrane and the specificity and role of distinct lipid-protein and protein-protein interactions, is limited. Here, we provide an overview of recent findings about the myelin structure in terms of myelin lipids, proteins and membrane microdomains. To give insight into myelin membrane dynamics, we will particularly highlight the application of model membranes and advanced biophysical techniques, i.e., approaches which clearly provide an added value to insight obtained by classical biochemical techniques. PMID:27141942

  8. Reciprocal regulation of protein synthesis and carbon metabolism for thylakoid membrane biogenesis.

    Directory of Open Access Journals (Sweden)

    Alexandra-Viola Bohne

    Full Text Available Metabolic control of gene expression coordinates the levels of specific gene products to meet cellular demand for their activities. This control can be exerted by metabolites acting as regulatory signals and/or a class of metabolic enzymes with dual functions as regulators of gene expression. However, little is known about how metabolic signals affect the balance between enzymatic and regulatory roles of these dual functional proteins. We previously described the RNA binding activity of a 63 kDa chloroplast protein from Chlamydomonas reinhardtii, which has been implicated in expression of the psbA mRNA, encoding the D1 protein of photosystem II. Here, we identify this factor as dihydrolipoamide acetyltransferase (DLA2, a subunit of the chloroplast pyruvate dehydrogenase complex (cpPDC, which is known to provide acetyl-CoA for fatty acid synthesis. Analyses of RNAi lines revealed that DLA2 is involved in the synthesis of both D1 and acetyl-CoA. Gel filtration analyses demonstrated an RNP complex containing DLA2 and the chloroplast psbA mRNA specifically in cells metabolizing acetate. An intrinsic RNA binding activity of DLA2 was confirmed by in vitro RNA binding assays. Results of fluorescence microscopy and subcellular fractionation experiments support a role of DLA2 in acetate-dependent localization of the psbA mRNA to a translation zone within the chloroplast. Reciprocally, the activity of the cpPDC was specifically affected by binding of psbA mRNA. Beyond that, in silico analysis and in vitro RNA binding studies using recombinant proteins support the possibility that RNA binding is an ancient feature of dihydrolipoamide acetyltransferases. Our results suggest a regulatory function of DLA2 in response to growth on reduced carbon energy sources. This raises the intriguing possibility that this regulation functions to coordinate the synthesis of lipids and proteins for the biogenesis of photosynthetic membranes.

  9. Insulin receptor substrate-1 (IRS-1 associates with small nucleolar RNA which contributes to ribosome biogenesis

    Directory of Open Access Journals (Sweden)

    Shin-IchiroTakahashi

    2014-03-01

    Full Text Available Insulin receptor substrates (IRSs are well known to play crucial roles in mediating intracellular signals of insulin-like growth factors (IGFs/insulin. Previously we showed that IRS-1 forms high molecular mass complexes containing RNAs. To identify RNAs in IRS-1 complexes, we performed UV cross-linking and immunoprecipitation (CLIP analysis using HEK293 cells expressing FLAG-IRS-1 and FLAG-IRS-2. We detected the radioactive signals in the immunoprecipitates of FLAG-IRS-1 proportional to the UV irradiation, but not in the immunoprecipitates of FLAG-IRS-2, suggesting the direct contact of RNAs with IRS-1. RNAs cross-linked to IRS-1 were then amplified by RT-PCR, followed by sequence analysis. We isolated sequence tags attributed to 25 messenger RNAs and 8 non-coding RNAs, including small nucleolar RNAs (snoRNAs. We focused on the interaction of IRS-1 with U96A snoRNA (U96A and its host Rack1 (receptor for activated C kinase 1 pre-mRNA. We confirmed the interaction of IRS-1 with U96A, and with RACK1 pre-mRNA by immunoprecipitation with IRS-1 followed by Northern blotting or RT-PCR analyses. Mature U96A in IRS-1-/- mouse embryonic fibroblasts was quantitatively less than WT. We also found that a part of nuclear IRS-1 is localized in the Cajal body, a nuclear subcompartment where snoRNA mature. The unanticipated function of IRS-1 in snoRNA biogenesis highlights the potential of RNA-associated IRS-1 complex to open a new line of investigation to dissect the novel mechanisms regulating IGFs/insulin-mediated biological events.

  10. Growth Control in Colon Epithelial Cells: Gadolinium Enhances Calcium-Mediated Growth Regulation

    Science.gov (United States)

    Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K.

    2013-01-01

    Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1–5 µM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet. PMID:23008064

  11. Models of lipid droplets growth and fission in adipocyte cells

    International Nuclear Information System (INIS)

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  12. Models of lipid droplets growth and fission in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2015-08-15

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  13. Cell responses to FGFR3 signalling: growth, differentiation and apoptosis

    International Nuclear Information System (INIS)

    FGFR3 is a receptor tyrosine kinase (RTK) of the FGF receptor family, known to have a negative regulatory effect on long bone growth. Fgfr3 knockout mice display longer bones and, accordingly, most germline-activating mutations in man are associated with dwarfism. Somatically, some of the same activating mutations are associated with the human cancers multiple myeloma, cervical carcinoma and carcinoma of the bladder. How signalling through FGFR3 can lead to either chondrocyte apoptosis or cancer cell proliferation is not fully understood. Although FGFR3 can be expressed as two main splice isoforms (IIIb or IIIc), there is no apparent link with specific cell responses, which may rather be associated with the cell type or its differentiation status. Depending on cell type, differential activation of STAT proteins has been observed. STAT1 phosphorylation seems to be involved in inhibition of chondrocyte proliferation while activation of the ERK pathway inhibits chondrocyte differentiation and B-cell proliferation (as in multiple myeloma). The role of FGFR3 in epithelial cancers (bladder and cervix) is not known. Some of the cell specificity may arise via modulation of signalling by crosstalk with other signalling pathways. Recently, inhibition of the ERK pathway in achondroplastic mice has provided hope for an approach to the treatment of dwarfism. Further understanding of the ability of FGFR3 to trigger different responses depending on cell type and cellular context may lead to treatments for both skeletal dysplasias and cancer

  14. Overexpression of TTRAP inhibits cell growth and induces apoptosis in osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Caihong Zhou

    2013-02-01

    Full Text Available TTRAP is a multi-functional protein that is involved in multipleaspects of cellular functions including cell proliferation,apoptosis and the repair of DNA damage. Here, we demonstratedthat the lentivirus-mediated overexpression of TTRAPsignificantly inhibited cell growth and induced apoptosis inosteosarcoma cells. The ectopic TTRAP suppressed the growthand colony formation capacity of two osteosarcoma cell lines,U2OS and Saos-2. Cell apoptosis was induced in U2OS cellsand the cell cycle was arrested at G2/M phase in Saos-2 cells.Exogenous expression of TTRAP in serum-starved U2OS andSaos-2 cells induced an increase in caspase-3/-7 activity and adecrease in cyclin B1 expression. In comparison with wild-typeTTRAP, mutations in the 5'-tyrosyl-DNA phosphodiesteraseactivity of TTRAP, in particular TTRAPE152A, showed decreasedinhibitory activity on cell growth. These results may aid inclarifying the physiological functions of TTRAP, especially itsroles in the regulation of cell growth and tumorigenesis. [BMBReports 2013; 46(2: 113-118

  15. Tomato waste: Carotenoids content, antioxidant and cell growth activities.

    Science.gov (United States)

    Stajčić, Sladjana; Ćetković, Gordana; Čanadanović-Brunet, Jasna; Djilas, Sonja; Mandić, Anamarija; Četojević-Simin, Dragana

    2015-04-01

    The carotenoid content, antioxidant and cell growth activities of tomato waste extracts, obtained from five different tomato genotypes, was investigated. High performance liquid chromatography was used to identify and quantify the main carotenoids present in tomato waste extracts. The antioxidant activity of tomato waste extracts was tested using spectrophotometric methods, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity and reducing power assay. The highest DPPH scavenging activity (IC50 = 0.057 mg/ml) was obtained for Bačka extract. The Knjaz extract showed the best reducing power (IC50 = 2.12 mg/ml). Cell growth effects were determined in HeLa, MCF7 and MRC-5 cell lines by sulforhodamine B test. Anti-proliferative effects were observed in all cell lines at higher concentrations (⩾ 0.125 mg/ml). The carotenoid contents exhibited a strong correlation with antioxidant and anti-proliferation activity. The results obtained indicated that tomato waste should be regarded as potential nutraceutic resource and may be used as a functional food ingredient. PMID:25442547

  16. Role of CaECM25 in cell morphogenesis, cell growth and virulence in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    ZHANG TingTing; LI WanJie; LI Di; WANG Yue; SANG JianLi

    2008-01-01

    Candida albicans is the most prominent opportunistic fungal pathogen in humans. Multiple factors are associated with the virulence of C. albicans, including morphogenesis, cell wall organization and growth rate. Here, we describe the identification and functional characterization of CaECM25, a gene that has not been reported before. We constructed Caecm25△/△ mutants and investigated the role of the gene In morphogenesis, cell wall organization and virulence. CaECM25 deletion resulted in defects in cell separation, a slower growth rate, reduced filamentous growth and attenuated adherence to plastic surfaces. The Caecm25△/△ mutant was also significantly less virulent than wild type when tested for systemic infection in mice. Therefore, CaECM25 plays important roles in morphogenesis, cell wall organization and virulence.

  17. Role of CaECM25 in cell morphogenesis, cell growth and virulence in Candida albicans

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Candida albicans is the most prominent opportunistic fungal pathogen in humans. Multiple factors are associated with the virulence of C. albicans, including morphogenesis, cell wall organization and growth rate. Here, we describe the identification and functional characterization of CaECM25, a gene that has not been reported before. We constructed Caecm25?/? mutants and investigated the role of the gene in morphogenesis, cell wall organization and virulence. CaECM25 deletion resulted in defects in cell separation, a slower growth rate, reduced filamentous growth and attenuated adherence to plastic surfaces. The Caecm25?/? mutant was also significantly less virulent than wild type when tested for systemic infection in mice. Therefore, CaECM25 plays important roles in morphogenesis, cell wall organization and virulence.

  18. Human keloid cell characterization and inhibition of growth with human Wharton's jelly stem cell extracts.

    Science.gov (United States)

    Fong, Chui-Yee; Biswas, Arijit; Subramanian, Arjunan; Srinivasan, Akshaya; Choolani, Mahesh; Bongso, Ariff

    2014-05-01

    Keloids are firm rubbery growths that grow beyond the boundaries of human wounds and their treatment has met with limited success. Their properties and growth behavior have not been properly characterized and it has been suggested that a benign neoplastic stem cell-like phenotype in an altered cytokine microenvironment drives their uncontrolled cell proliferation. Modification of the stem cell niche may be an attractive approach to its prevention. We studied the growth behavior, stemness, and tumorigenic characteristics of keloid cells in prolonged culture. Since human Wharton's jelly stem cells (hWJSCs) secrete high levels of cytokines and have anti-tumorigenic properties we explored its role on the inhibition of keloid growth in vitro. Keloid cells grew readily in both adherent and sphere culture and expressed high levels of mesenchymal CD and tumor-associated fibroblast (TAF) markers up to passage 10. When they were exposed to repeat doses of hWJSC conditioned medium (hWJSC-CM) and lysate (hWJSC-CL) every 72 h up to 9 days their growth was inhibited with a reduction in CD and TAF marker expression. On Days 3, 6, and 9 treated keloid cells showed linear decreases in cell proliferation (BrdU), increases in Annexin V-FITC and TUNEL-positive cells, interruptions of the cell cycle and inhibition of migration in scratch-wound assays. Immunocytochemistry and qRT-PCR confirmed a significant downregulation of TAF and anti-apoptotic-related gene (SURVIVIN) expression and upregulation of autophagy-related (BAX, ATG5, ATG7, BECLIN-1) gene expression. The results suggest that hWJSCs or molecules secreted by them may be of therapeutic value in the treatment of keloids. PMID:24265231

  19. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  20. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    OpenAIRE

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-01-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and sup...

  1. Adrenomedullin as a Growth and Cell Fate Regulatory Factor for Adult Neural Stem Cells

    OpenAIRE

    Sonia Martínez-Herrero; Ignacio M Larráyoz; Laura Ochoa-Callejero; Josune García-Sanmartín; Alfredo Martínez

    2012-01-01

    The use of stem cells as a strategy for tissue repair and regeneration is one of the biomedical research areas that has attracted more interest in the past few years. Despite the classic belief that the central nervous system (CNS) was immutable, now it is well known that cell turnover occurs in the mature CNS. Postnatal neurogenesis is subjected to tight regulation by many growth factors, cell signals, and transcription factors. An emerging molecule involved in this process is adrenomedullin...

  2. Cheiradone: a vascular endothelial cell growth factor receptor antagonist

    Directory of Open Access Journals (Sweden)

    Ahmed Nessar

    2008-01-01

    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing and pathological conditions (tumour development. Vascular endothelial growth factor (VEGF, fibroblast growth factor-2 (FGF-2 and epidermal growth factor (EGF are the major angiogenic regulators. We have identified a natural product (cheiradone isolated from a Euphorbia species which inhibited in vivo and in vitro VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in in vitro (proliferation, wound healing, invasion in Matrigel and tube formation and in vivo (the chick chorioallantoic membrane models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC50 was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated. Results Cheiradone inhibited all stages of VEGF-induced angiogenesis with IC50 values in the range 5.20–7.50 μM but did not inhibit FGF-2 or EGF-induced angiogenesis. It also inhibited VEGF binding to VEGF receptor-1 and 2 with IC50 values of 2.9 and 0.61 μM respectively. Conclusion Cheiradone inhibited VEGF-induced angiogenesis by binding to VEGF receptors -1 and -2 and may be a useful investigative tool to study the specific contribution of VEGF to angiogenesis and may have therapeutic potential.

  3. Metformin inhibits cell growth by upregulating microRNA-26a in renal cancer cells

    OpenAIRE

    Yang, Feng-Qiang; Wang, Ji-Jiao; Yan, Jia-Sheng; Huang, Jian-Hua; Li, Wei; Che, Jian-Ping; Wang, Guang-Chun; Liu, Min; Zheng, Jun-Hua

    2014-01-01

    Accumulating evidence suggests that metformin, a biguanide class of anti-diabetic drugs, possesses anti-cancer properties and may reduce cancer risk and improve prognosis. However, the mechanism by which metformin affects various cancers, including renal cancer still unknown. MiR-26a induces cell growth, cell cycle and cell apoptosis progression via direct targeting of Bcl-2, clyclin D1 and PTEN in cancer cells. In the present study, we used 786-O human renal cancer cell lines to study the ef...

  4. Entrainability of cell cycle oscillator models with exponential growth of cell mass.

    Science.gov (United States)

    Nakao, Mitsuyuki; Enkhkhudulmur, Tsog-Erdene; Katayama, Norihiro; Karashima, Akihiro

    2014-01-01

    Among various aspects of cell cycle, understanding synchronization mechanism of cell cycle is important because of the following reasons. (1)Cycles of cell assembly should synchronize to form an organ. (2) Synchronizing cell cycles are required to experimental analysis of regulatory mechanisms of cell cycles. (3) Cell cycle has a distinct phase relationship with the other biological rhythms such as circadian rhythm. However, forced as well as mutual entrainment mechanisms are not clearly known. In this study, we investigated entrainability of cell cycle models of yeast cell under the periodic forcing to both of the cell mass and molecular dynamics. Dynamics of models under study involve the cell mass growing exponentially. In our result, they are shown to allow only a limited frequency range for being entrained by the periodic forcing. In contrast, models with linear growth are shown to be entrained in a wider frequency range. It is concluded that if the cell mass is included in the cell cycle regulation, its entrainability is sensitive to a shape of growth curve assumed in the model. PMID:25571564

  5. Chromosome replication, cell growth, division and shape: a personal perspective.

    Science.gov (United States)

    Zaritsky, Arieh; Woldringh, Conrad L

    2015-01-01

    The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the bacterial cell division cycle (BCD), described as "The Central Dogma in Bacteriology," is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion) is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that the total amount of DNA associated with the replication terminus, so called "nucleoid complexity," is directly related to cell size and shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation) to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, e.g., stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids. PMID:26284044

  6. Cytokines and growth factors which regulate bone cell function

    Science.gov (United States)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  7. Knockdown of human Oxa1l impairs the biogenesis of F1Fo-ATP synthase and NADH:ubiquinone oxidoreductase.

    Science.gov (United States)

    Stiburek, Lukas; Fornuskova, Daniela; Wenchich, Laszlo; Pejznochova, Martina; Hansikova, Hana; Zeman, Jiri

    2007-11-23

    The Oxa1 protein is a founding member of the evolutionarily conserved Oxa1/Alb3/YidC protein family, which is involved in the biogenesis of membrane proteins in mitochondria, chloroplasts and bacteria. The predicted human homologue, Oxa1l, was originally identified by partial functional complementation of the respiratory growth defect of the yeast oxa1 mutant. Here we demonstrate that both the endogenous human Oxa1l, with an apparent molecular mass of 42 kDa, and the Oxa1l-FLAG chimeric protein localize exclusively to mitochondria in HEK293 cells. Furthermore, human Oxa1l was found to be an integral membrane protein, and, using two-dimensional blue native/denaturing PAGE, the majority of the protein was identified as part of a 600-700 kDa complex. The stable short hairpin (sh)RNA-mediated knockdown of Oxa1l in HEK293 cells resulted in markedly decreased steady-state levels and ATP hydrolytic activity of the F(1)F(o)-ATP synthase and moderately reduced levels and activity of NADH:ubiquinone oxidoreductase (complex I). However, no significant accumulation of corresponding sub-complexes could be detected on blue native immunoblots. Intriguingly, the achieved depletion of Oxa1l protein did not adversely affect the assembly or activity of cytochrome c oxidase or the cytochrome bc(1) complex. Taken together, our results indicate that human Oxa1l represents a mitochondrial integral membrane protein required for the correct biogenesis of F(1)F(o)-ATP synthase and NADH:ubiquinone oxidoreductase. PMID:17936786

  8. Cloning and analysis of genes regulating plant cell growth

    International Nuclear Information System (INIS)

    The aims of this work are to identify, clone and analyze genes involved in the regulation of plant cell growth. To do this, we have induced tumors on Arabidopsis thaliana by exposing seed or germinating seedlings to ionizing radiation. The tumors which developed on the plants derived from these seed were excised and established in culture. Unlike normal tissue explants, the tumors are able to grow on hormone-free medium suggesting changes in growth control (either hormonal or other) induced by the radiation exposure. This progress report describes work aimed at characterizing these tumors at the physiological and cellular levels and at determining the molecular basis of the changes leading to the tumorous phenotype

  9. Nonlinear Growth Kinetics of Breast Cancer Stem Cells: Implications for Cancer Stem Cell Targeted Therapy

    Science.gov (United States)

    Liu, Xinfeng; Johnson, Sara; Liu, Shou; Kanojia, Deepak; Yue, Wei; Singn, Udai; Wang, Qian; Wang, Qi; Nie, Qing; Chen, Hexin

    2013-08-01

    Cancer stem cells (CSCs) have been identified in primary breast cancer tissues and cell lines. The CSC population varies widely among cancerous tissues and cell lines, and is often associated with aggressive breast cancers. Despite of intensive research, how the CSC population is regulated within a tumor is still not well understood so far. In this paper, we present a mathematical model to explore the growth kinetics of CSC population both in vitro and in vivo. Our mathematical models and supporting experiments suggest that there exist non-linear growth kinetics of CSCs and negative feedback mechanisms to control the balance between the population of CSCs and that of non-stem cancer cells. The model predictions can help us explain a few long-standing questions in the field of cancer stem cell research, and can be potentially used to predict the efficicacy of anti-cancer therapy.

  10. Nerve growth factor: role in growth, differentiation and controlling cancer cell development.

    Science.gov (United States)

    Aloe, Luigi; Rocco, Maria Luisa; Balzamino, Bijorn Omar; Micera, Alessandra

    2016-01-01

    Recent progress in the Nerve Growth Factor (NGF) research has shown that this factor acts not only outside its classical domain of the peripheral and central nervous system, but also on non-neuronal and cancer cells. This latter observation has led to divergent hypothesis about the role of NGF, its specific distribution pattern within the tissues and its implication in induction as well as progression of carcinogenesis. Moreover, other recent studies have shown that NGF has direct clinical relevance in certain human brain neuron degeneration and a number of human ocular disorders. These studies, by suggesting that NGF is involved in a plethora of physiological function in health and disease, warrant further investigation regarding the true role of NGF in carcinogenesis. Based on our long-lasting experience in the physiopathology of NGF, we aimed to review previous and recent in vivo and in vitro NGF studies on tumor cell induction, progression and arrest. Overall, these studies indicate that the only presence of NGF is unable to generate cell carcinogenesis, both in normal neuronal and non-neuronal cells/tissues. However, it cannot be excluded the possibility that the co-expression of NGF and pro-carcinogenic molecules might open to different consequence. Whether NGF plays a direct or an indirect role in cell proliferation during carcinogenesis remains to demonstrate. PMID:27439311

  11. Growth and radiosensitivity of irradiated human glioma cell progeny

    Institute of Scientific and Technical Information of China (English)

    Chao Li; Li Li; Changshao Xu; Juying Zhou

    2008-01-01

    BACKGROUND: Progenitors of the immortalized human glioma cell line, SHG-44, are significantly less sensitive to irradiation. Two hypotheses regarding the mechanism of this effect exist: several studies have suggested that there is a subgroup with different radiosensitivities in identical cell group, and the progenitors of irradiate is a adaptive response subgroup, so its radiosensitivity is descend. A second hypothesis suggests that irradiated glioma progeny have a stronger ability to repair DNA damage. This would suggest that when progeny are continuously irradiated, resistance to irradiation-induced DNA increases, and radiosensitivity decreases.OBJECTIVE: To investigate radiosensitivity and growth features after irradiation to progeny of the human glioma cell line SHG-44.DESIGN, TIME AND SETTING: A randomized, controlled experiment, which was performed at the Department of Radiology Laboratory, the First Hospital Affiliated to Soochow University, between September 2004 and January 2006.MATERIALS: The glioma cell line SHG-44 was provided by the Institute of Neuroscience, First Affiliated Hospital of Suzhou University. Propidium iodide reagent was provided by Coulter Corporation. A linear accelerator, KD-2 type, was provided by Siemens, Germany. The flow cytometer EPICS-XL was provided by Coulter Corporation.METHODS: Brain glioma SHG-44 cells were divided into four groups: SHG-44, SHG-44-2, SHG-44-6, and SHG-44-10. The SHG-44-2, SHG-44-6, and SHG-44-10 cells were vertically irradiated with varying doses of 2,6 and 10 Gy by a linear accelerator (6 MVX). The cells were passaged for 15 generations and cultured in RPMI-1640 culture media.MAIN OUTCOME MEASURES: Community re-double time, mean lethal dose (D0), extrapolation number (N), fraction surviving fraction irradiated by 2 Gy dose (SF2), quasi-threshold dose (Dq), and cell cycle.RESULTS: The Population doubling time (PDT) of SHG-44-2, SHG-44-6, and SHG-44-10 cell groups was not significant (P=0.052). Compared to

  12. Chondromodulin-1 directly suppresses growth of human cancer cells

    International Nuclear Information System (INIS)

    Chondromodulin-1 (ChM1), an endogenous anti-angiogenic factor expressed in cartilage, has been suggested to inhibit invasion of endothelial cells into cartilage. In addition, the ectopic administration of ChM1 has been reported to suppress tumorigenesis in vivo. However, it is unclear whether the anti-tumor effect is due to not only the anti-vascularization effect of ChM1, but also its direct action against oncocytes. In the present study, we sought to determine whether ChM1 has a direct action on tumor cells. BrdU incorporation assay was performed on human umbilical vein endothelial cells (HUVECs), normal human dermal fibroblasts (NHDFs), HepG2 cells and HeLa cells in the presence or absence of recombinant human ChM1 (rhChM1). An adenovirus that expresses ChM1, Ad-ChM1, was established and applied to the tumor xenografted in vivo, and to in vitro tumor cells cultured on plates or in soft agar. Cell cycle-related proteins and the phosphorylation of Erk, Akt, and GSK3β, the downstream molecules of the extracellular matrix-integrin signaling pathways, in HepG2 cells treated with or without Ad-ChM1 were detected by western blot analysis. Luciferase reporter assays of STAT, GAS, and ISRE, which participate in another cytokine signaling pathway, ware performed in HepG2, HeLa, and HUVEC cells. ChM1 suppressed BrdU incorporation in HUVECs and in HepG2 cells dose-dependently, but did not suppress BrdU incorporation in NHDFs and HeLa cells cultured on plates. In soft agar, however, ChM1 suppressed the growth of HeLa cells, as well as HepG2 cells. Western blot analyses demonstrated that ChM1 decreased the levels of cyclin D1, cyclin D3, and cdk6 and increased those of p21cip1 without affecting the phosphorylation levels of Erk, Akt, and GSK3β in HepG2 cells. The luciferase reporter assay demonstrated that ChM1 suppressed the transcriptional activities of STAT and GAS but not of ISRE. ChM1 directly suppressed the proliferation of tumor cells in an anchorage

  13. Physical growth of children with sickle cell disease

    Directory of Open Access Journals (Sweden)

    Mukherjee Malay

    2004-01-01

    Full Text Available Anthropometric measurements were used to study the physical growth of 58 sickle cell disease(SS children with severe clinical manifestations and compared with 86 normal(AA children from Nagpur district of Maharashtra. Both sickle cell disease male and female children were shown to have statistically significant lower weights, heights, sitting heights, mid arm circumferences, skin fold thickness and body mass indexes but not upper/ lower segment ratio as compared to normal children with comparable sex and ages. No significant differences were observed between the male and female children with sickle cell disease or normal for any of the anthropometric measurements. A significant lower values of all the measurements except U/L ratio was observed in the age group of 11-14 years than the earlier age among the sickle cell disease children as compared to the normal children of the same age and sex groups. Thus, these results indicate that as a group, children with sickle cell disease weigh less, are shorter and undernourished as compared to normal children.

  14. In vivo roles of BamA, BamB and BamD in the biogenesis of BamA, a core protein of the β-barrel assembly machine of Escherichia coli.

    Science.gov (United States)

    Misra, Rajeev; Stikeleather, Ryan; Gabriele, Rebecca

    2015-03-13

    Assembly of the β-barrel outer membrane proteins (OMPs) is an essential cellular process in Gram-negative bacteria and in the mitochondria and chloroplasts of eukaryotes--two organelles of bacterial origin. Central to this process is the conserved β-barrel OMP that belongs to the Omp85 superfamily. In Escherichia coli, BamA is the core β-barrel OMP and, together with four outer membrane lipoproteins, BamBCDE, constitutes the β-barrel assembly machine (BAM). In this paper, we investigated the roles of BamD, an essential lipoprotein, and BamB in BamA biogenesis. Depletion of BamD caused impairment in BamA biogenesis and cessation of cell growth. These defects of BamD depletion were partly reversed by single-amino-acid substitutions mapping within the β-barrel domain of BamA. However, in the absence of BamB, the positive effects of the β-barrel substitutions on BamA biogenesis under BamD depletion conditions were nullified. By employing a BamA protein bearing one such substitution, F474L, it was demonstrated that the mutant BamA protein could not only assemble without BamD but also facilitate the assembly of wild-type BamA expressed in trans. Based on these data, we propose a model in which the Bam lipoproteins, which are localized to the outer membrane by the BAM-independent Lol pathway, aid in the creation of new BAM complexes by serving as outer membrane receptors and folding factors for nascent BamA molecules. The newly assembled BAM holocomplex then catalyzes the assembly of substrate OMPs and BamA. These in vivo findings are corroborated by recently published in vitro data. PMID:24792419

  15. Centriole Age Underlies Asynchronous Primary Cilium Growth in Mammalian Cells

    OpenAIRE

    Anderson, Charles T; Stearns, Tim

    2009-01-01

    Primary cilia are microtubule-based sensory organelles that are present in most mammalian tissues and play important roles in development and disease [1]. They are required for the Sonic hedgehog (Shh) [2-4] and PDGF [5] signalling pathways. Primary cilia grow from the older of the two centrioles of the centrosome, referred to as the mother centriole. In cycling cells the cilium typically grows in G1 and is lost before mitosis, but the regulation of its growth is poorly understood. Centriole ...

  16. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor α to epidermal growth factor receptors promotes cell proliferation

    International Nuclear Information System (INIS)

    The precursor for transforming growth factor α, pro-TGF-α, is a cell surface glycoprotein that can establish contact with epidermal growth factor (EGF) receptors on adjacent cells. To examine whether the pro-TGF-α/EGF receptor pair can simultaneously mediate cell adhesion and promote cell proliferation, the authors have expressed pro-TGF-α in a bone marrow stromal cell line labeled with [35S] cysteine. Expression of pro-TGF-α allows these cells to support long-term attachment of an EGF/interleukin-3-dependent hematopoietic progenitor cell line that expresses EGF receptors but is unable to adhere to normal stroma. This interaction is inhibited by soluble EGF receptor ligands. Further, the hematopoietic progenitor cells replicate their DNA while they are attached to the stromal cell layer and become foci of sustained cell proliferation. Thus, pro-TGF-α and the EGF receptor can function as mediators of intercellular adhesion and this interaction may promote a mitogenic response. They propose the term juxtacrine to designate this form of stimulation between adjacent cells

  17. Exercise induces mitochondrial biogenesis after brain ischemia in rats.

    Science.gov (United States)

    Zhang, Q; Wu, Y; Zhang, P; Sha, H; Jia, J; Hu, Y; Zhu, J

    2012-03-15

    Stroke is a major cause of death worldwide. Previous studies have suggested both exercise and mitochondrial biogenesis contribute to improved post-ischemic recovery of brain function. However, the exact mechanism underlying this effect is unclear. On the other hand, the benefit of exercise-induced mitochondrial biogenesis in brain has been confirmed. In this study, we attempted to determine whether treadmill exercise induces functional improvement through regulation of mitochondrial biogenesis after brain ischemia. We subjected adult male rats to ischemia, followed by either treadmill exercise or non-exercise and analyzed the effect of exercise on the amount of mitochondrial DNA (mtDNA), expression of mitochondrial biogenesis factors, and mitochondrial protein. In the ischemia-exercise group, only peroxisome proliferator activated receptor coactivator-1 (PGC-1) expression was increased significantly after 3 days of treadmill training. However, after 7 days of training, the levels of mtDNA, nuclear respiratory factor 1, NRF-1, mitochondrial transcription factor A, TFAM, and the mitochondrial protein cytochrome C oxidase subunit IV (COXIV) and heat shock protein-60 (HSP60) also increased above levels observed in non-exercised ischemic animals. These changes followed with significant changes in behavioral scores and cerebral infarct volume. The results indicate that exercise can promote mitochondrial biogenesis after ischemic injury, which may serve as a novel component of exercise-induced repair mechanisms of the brain. Understanding the molecular basis for exercise-induced neuroprotection may be beneficial in the development of therapeutic approaches for brain recovery from the ischemic injury. Based upon our findings, stimulation or enhancement of mitochondrial biogenesis may prove a novel neuroprotective strategy in the future. PMID:22266265

  18. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    International Nuclear Information System (INIS)

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 μm) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering

  19. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Wang Yijuan [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Deng, Tianzheng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Jin Fang [Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, 710032 (China); Liu Shouxin [Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi' an 710062 (China); Zhang Yongjie [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Feng Feng [Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China); Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi' an 710038 (China); Jin Yan [Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi' an 710032 (China); Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi' an 710032 (China)], E-mail: yanjin@fmmu.edu.cn

    2008-07-28

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 {mu}m) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering.

  20. Small GTPase Rab40c associates with lipid droplets and modulates the biogenesis of lipid droplets.

    Science.gov (United States)

    Tan, Ran; Wang, Weijie; Wang, Shicong; Wang, Zhen; Sun, Lixiang; He, Wei; Fan, Rong; Zhou, Yunhe; Xu, Xiaohui; Hong, Wanjin; Wang, Tuanlao

    2013-01-01

    The subcellular location and cell biological function of small GTPase Rab40c in mammalian cells have not been investigated in detail. In this study, we demonstrated that the exogenously expressed GFP-Rab40c associates with lipid droplets marked by neutral lipid specific dye Oil red or Nile red, but not with the Golgi or endosomal markers. Further examination demonstrated that Rab40c is also associated with ERGIC-53 containing structures, especially under the serum starvation condition. Rab40c is increasingly recruited to the surface of lipid droplets during lipid droplets formation and maturation in HepG2 cells. Rab40c knockdown moderately decreases the size of lipid droplets, suggesting that Rab40c is involved in the biogenesis of lipid droplets. Stimulation for adipocyte differentiation increases the expression of Rab40c in 3T3-L1 cells. Rab40c interacts with TIP47, and is appositionally associated with TIP47-labeled lipid droplets. In addition, over-expression of Rab40c causes the clustering of lipid droplets independent of its GTPase activity, but completely dependent of the intact SOCS box domain of Rab40c. In addition, Rab40c displayed self-interaction as well as interaction with TIP47 and the SOCS box is essential for its ability to induce clustering of lipid droplets. Our results suggest that Rab40c is a novel Rab protein associated with lipid droplets, and is likely involved in modulating the biogenesis of lipid droplets. PMID:23638186

  1. Autoregulation and multiple DNA interactions by a transcriptional regulatory protein in E. coli pili biogenesis.

    OpenAIRE

    Forsman, K; M. Göransson; Uhlin, B E

    1989-01-01

    An operon mediating biogenesis of digalactoside-binding pilus-adhesin of serotype F13 in uropathogenic Escherichia coli includes the regulatory gene papB. The papB gene product was found to act as transcriptional activator of an operon which includes the papB gene and several pap cistrons encoding the proteins of the pilus polymer. Studies of how pap gene expression was affected by increasing amounts of PapB protein in the cells showed that high levels did not stimulate transcription but caus...

  2. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Payton-Stewart, Florastina [Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA (United States); Tilghman, Syreeta L. [Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA (United States); Williams, LaKeisha G. [Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA (United States); Winfield, Leyte L., E-mail: lwinfield@spelman.edu [Department of Chemistry, Spelman College, Atlanta, GA (United States)

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  3. Tumor necrosis factor-α impairs adiponectin signalling, mitochondrial biogenesis, and myogenesis in primary human myotubes cultures.

    Science.gov (United States)

    Sente, Tahnee; Van Berendoncks, An M; Fransen, Erik; Vrints, Christiaan J; Hoymans, Vicky Y

    2016-05-01

    Skeletal muscle metabolic changes are common in patients with chronic heart failure (HF). Previously, we demonstrated a functional skeletal muscle adiponectin resistance in HF patients with reduced left ventricular ejection fraction (HFrEF). We aimed to examine the impact of adiponectin receptor 1 (AdipoR1) deficiency and TNF-α treatment on adiponectin signaling, proliferative capacity, myogenic differentiation, and mitochondrial biogenesis in primary human skeletal muscle cells. Primary cultures of myoblasts and myotubes were initiated from the musculus vastus lateralis of 10 HFrEF patients (left ventricular ejection fraction; 31.30 ± 2.89%) and 10 age- and gender-matched healthy controls. Healthy control cultures were transfected with siAdipoR1 and/or exposed to TNF-α (10 ng/ml; 72 h). Primary cultures from HFrEF patients preserved the features of adiponectin resistance in vivo. AdipoR1 mRNA was negatively correlated with time to reach maximal cell index (r = -0.7319, P = 0.003). SiRNA-mediated AdipoR1 silencing reduced pAMPK (P mitochondrial (FOXO3, P = 0.018) metabolism, impaired myogenesis (MyoD1, P = 0.053; myogenin, P = 0.048) and polarized cytokine secretion toward a growth-promoting phenotype (IL-10, IL-1β, IFN-γ, P < 0.05 for all; Meso Scale Discovery Technology). Major features of adiponectin resistance are retained in primary cultures from the skeletal muscle of HFrEF patients. In addition, our results suggest that an increased inflammatory constitution contributes to adiponectin resistance and confers alterations in skeletal muscle differentiation, growth, and function. PMID:26921438

  4. Why Cells Grow and Divide? General Growth Mechanism and How it Defines Cells’ Growth, Reproduction and Metabolic Properties

    Science.gov (United States)

    Shestopaloff, Yuri K.

    2015-02-01

    We consider a general growth mechanism, which acts at cellular level and above (organs, systems and whole organisms). Using its mathematical representation, the growth equation, we study the growth and division mechanisms of amoeba and fission yeast Schizosaccharomyces pombe. We show how this mechanism, together with biomolecular machinery, governs growth and reproduction of cells, and these organisms in particular. This mechanism provides revealing answers to fundamental questions of biology, like why cells grow and divide, why and when cells’ growth stops. It also sheds light on questions like why and how life originated and developed. Solving the growth equation, we obtain analytical expression for the growth curve of fission yeast as a function of geometrical characteristics and nutrient influxes for RNA and protein synthesis, and compare the computed growth curves with 85 experiments. Statistical evaluation shows that these growth curves correspond to experimental data significantly better than all previous approximations. Also, using the general growth mechanism, we show how metabolic characteristics of cells, their size and evolutionary traits relate, considering fission yeast. In particular, we found that fission yeast S. pombe consumes about 16-18 times more nutrients for maintenance needs than for biomass synthesis.

  5. Effects of different Helicobacter pylori culture filtrates on growth of gastric epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Guo Yan; Gang Zhao; Jin-Ping Ma; Shi-Rong Cai; Wen-Hua Zhan

    2008-01-01

    AIM: To study the effects of different Helicobacter pylori (H py/orl) culture filtrates on growth of gastric epithelial cells.METHODS: Broth culture filtrates of H pylori were prepared. Gastric epithelial cells were treated with the filtrates, and cell growth was determined by growth curve and flow cytometry. DNA damage of gastric epithelial cells was measured by single-cell microgel electrophoresis.RESULTS: Gastric epithelial cells proliferated actively when treated by CagA-gene-positive broth culture filtrates, and colony formation reached 40%. The number of cells in S phase increased compared to controls. Comet assay showed 41.2% comet cells in GES-1 cells treated with CagA-positive filtrates (P<0.05).CONCLUSION: CagA-positive filtrates enhance the changes in morphology and growth characteristics of human gastric epithelial tumor cells. DNA damage maybe one of the mechanisms involved in the growth changes.

  6. Nerve Growth Factor Modulate Proliferation of Cultured Rabbit Corneal Endothelial Cells and Epithelial Cells

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF.MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner.50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did.Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  7. Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology.

    Directory of Open Access Journals (Sweden)

    Guy eElston

    2014-08-01

    Full Text Available Here we review recent findings related to postnatal spinogenesis, dendritic and axon growth, pruning and electrophysiology of neocortical pyramidal cells in the developing primate brain. Pyramidal cells in sensory, association and executive cortex grow dendrites, spines and axons at different rates, and vary in the degree of pruning. Of particular note is the fact that pyramidal cells in primary visual area (V1 prune more spines than they grow during postnatal development, whereas those in inferotemporal (TEO and TE and granular prefrontal cortex (gPFC; Brodmann’s area 12 grow more than they prune. Moreover, pyramidal cells in TEO, TE and the gPFC continue to grow larger dendritic territories from birth into adulthood, replete with spines, whereas those in V1 become smaller during this time. The developmental profile of intrinsic axons also varies between cortical areas: those in V1, for example, undergo an early proliferation followed by pruning and local consolidation into adulthood, whereas those in area TE tend to establish their territory and consolidate it into adulthood with little pruning. We correlate the anatomical findings with the electrophysiological properties of cells in the different cortical areas, including membrane time constant, depolarizing sag, duration of individual action potentials, and spike-frequency adaptation. All of the electrophysiological variables ramped up before 7 months of age in V1, but continued to ramp up over a protracted period of time in area TE. These data suggest that the anatomical and electrophysiological profiles of pyramidal cells vary among cortical areas at birth, and continue to diverge into adulthood. Moreover, the data reveal that the use it or lose it notion of synaptic reinforcement may speak to only part of the story, use it but you still might lose it may be just as prevalent in the cerebral cortex.

  8. PNMA1 promotes cell growth in human pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Jiang, Shu-Heng; He, Ping; Ma, Ming-Ze; Wang, Yang; Li, Rong-Kun; Fang, Fang; Fu, Ying; Tian, Guang-Ang; Qin, Wen-Xin; Zhang, Zhi-Gang

    2014-01-01

    Paraneoplastic Ma1 (PNMA1) is a member of an expanding family of 'brain/testis' proteins involved in an autoimmune disorder defined as paraneoplastic neurological syndrome (PNS). Although it is widely studied in PNS, little is known about the underlying clinical significance and biological function of PNMA1 in tumors. Here, we find that elevated PNMA1 expression is more commonly observed in pancreatic ductal adenocarcinoma (PDAC) cell lines, compared with normal pancreatic cell and tissues from pancreatic ductal adenocarcinoma patient. Besides, higher PNMA1 expression is closely correlated with large tumor size. Suppression of endogenous PNMA1 expression decreases cell viability and promotes cell apoptosis. Subsequent studies reveal that the PI3K/AKT, MAPK/ERK pathway and members of the anti-apoptotic Bcl-2 family may be involved in the pro-survival and anti-apoptotic effect of PNMA1 on PDAC. Taken together, this study provides evidence that PNMA1 is involved in tumor growth of pancreatic carcinoma and PNMA1-related pathways might represent a new treatment strategy. PMID:25120759

  9. Inhibitory Effect of Melatonin on the Growth of H22 Hepatocarcinoma Cells by Inducing Apoptosis

    Institute of Scientific and Technical Information of China (English)

    泰莉; 王西明; 段秋红; 陈蓓蓓; 何善述

    2004-01-01

    Summary: Whether melatonin not only inhibits the growth of H22 hepatocarcinoma cells but also induces apoptosis in vitro was assessed. The anti-proliferative effects of melatonin on tumor cells was observed by MTT assay and tumor cells growth curve assay. And the apoptosis of the cells was studied by acridine orange fluorescence assay and flow cytometry. The cell cycle of the tumor cells was also observed by flow cytometry. It was found that melatonin could significantly inhibit the growth of H22 hepatocarcinoma cells. Incubated with melatonin, chromatin condensation of the tumor cells was observed by fluorescence microscopy. Compared with control, the percentage of apoptotic cells was increased, and the proportion of G0/S increased but that of G2/M decreased. It was suggested that melatonin could directly inhibit the growth of H22 hepatocarcinoma cells by inducing apoptosis and extending the length of cell cycle of the tumor cells.

  10. Melatonin enhances mitophagy and mitochondrial biogenesis in rats with carbon tetrachloride-induced liver fibrosis.

    Science.gov (United States)

    Kang, Jung-Woo; Hong, Jeong-Min; Lee, Sun-Mee

    2016-05-01

    Liver fibrosis leads to liver cirrhosis and failure, and no effective treatment is currently available. Growing evidence supports a link between mitochondrial dysfunction and liver fibrogenesis and mitochondrial quality control-based therapy has emerged as a new therapeutic target. We investigated the protective mechanisms of melatonin against mitochondrial dysfunction-involved liver fibrosis, focusing on mitophagy and mitochondrial biogenesis. Rats were treated with carbon tetrachloride (CCl4 ) dissolved in olive oil (0.5 mL/kg, twice a week, i.p.) for 8 wk. Melatonin was administered orally at 2.5, 5, and 10 mg/kg once a day. Chronic CCl4 exposure induced collagen deposition, hepatocellular damage, and oxidative stress, and melatonin attenuated these increases. Increases in mRNA and protein expression levels of transforming growth factor β1 and α-smooth muscle actin in response to CCl4 were attenuated by melatonin. Melatonin attenuated hallmarks of mitochondrial dysfunction, such as mitochondrial swelling and glutamate dehydrogenase release. Chronic CCl4 exposure impaired mitophagy and mitochondrial biogenesis, and melatonin attenuated this impairment, as indicated by increases in mitochondrial DNA and in protein levels of PTEN-induced putative kinase 1 (PINK1); Parkin; peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α); nuclear respiratory factor 1 (NRF1); and transcription factor A, mitochondrial (TFAM). CCl4 -mediated decreases in mitochondrial fission- and fusion-related proteins, such as dynamin-related protein 1 (DRP1) and mitofusin 2, were also attenuated by melatonin. Moreover, melatonin induced AMP-activated protein kinase (AMPK) phosphorylation. These results suggest that melatonin protects against liver fibrosis via upregulation of mitophagy and mitochondrial biogenesis, and may be useful as an anti-fibrotic treatment. PMID:26882442

  11. Glycogen Synthase Kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death

    Directory of Open Access Journals (Sweden)

    Colpo Anna

    2010-10-01

    Full Text Available Abstract Background Glycogen Synthase Kinase-3 (GSK-3 α and β are two serine-threonine kinases controlling insulin, Wnt/β-catenin, NF-κB signaling and other cancer-associated transduction pathways. Recent evidence suggests that GSK-3 could function as growth-promoting kinases, especially in malignant cells. In this study, we have investigated GSK-3α and GSK-3β function in multiple myeloma (MM. Methods GSK-3 α and β expression and cellular localization were investigated by Western blot (WB and immunofluorescence analysis in a panel of MM cell lines and in freshly isolated plasma cells from patients. MM cell growth, viability and sensitivity to bortezomib was assessed upon treatment with GSK-3 specific inhibitors or transfection with siRNAs against GSK-3 α and β isoforms. Survival signaling pathways were studied with WB analysis. Results GSK-3α and GSK-3β were differently expressed and phosphorylated in MM cells. Inhibition of GSK-3 with the ATP-competitive, small chemical compounds SB216763 and SB415286 caused MM cell growth arrest and apoptosis through the activation of the intrinsic pathway. Importantly, the two inhibitors augmented the bortezomib-induced MM cell cytotoxicity. RNA interference experiments showed that the two GSK-3 isoforms have distinct roles: GSK-3β knock down decreased MM cell viability, while GSK-3α knock down was associated with a higher rate of bortezomib-induced cytotoxicity. GSK-3 inhibition caused accumulation of β-catenin and nuclear phospho-ERK1, 2. Moreover, GSK-3 inhibition and GSK-3α knockdown enhanced bortezomib-induced AKT and MCL-1 protein degradation. Interestingly, bortezomib caused a reduction of GSK-3 serine phosphorylation and its nuclear accumulation with a mechanism that resulted partly dependent on GSK-3 itself. Conclusions These data suggest that in MM cells GSK-3α and β i play distinct roles in cell survival and ii modulate the sensitivity to proteasome inhibitors.

  12. Glycogen Synthase Kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death

    International Nuclear Information System (INIS)

    Glycogen Synthase Kinase-3 (GSK-3) α and β are two serine-threonine kinases controlling insulin, Wnt/β-catenin, NF-κB signaling and other cancer-associated transduction pathways. Recent evidence suggests that GSK-3 could function as growth-promoting kinases, especially in malignant cells. In this study, we have investigated GSK-3α and GSK-3β function in multiple myeloma (MM). GSK-3 α and β expression and cellular localization were investigated by Western blot (WB) and immunofluorescence analysis in a panel of MM cell lines and in freshly isolated plasma cells from patients. MM cell growth, viability and sensitivity to bortezomib was assessed upon treatment with GSK-3 specific inhibitors or transfection with siRNAs against GSK-3 α and β isoforms. Survival signaling pathways were studied with WB analysis. GSK-3α and GSK-3β were differently expressed and phosphorylated in MM cells. Inhibition of GSK-3 with the ATP-competitive, small chemical compounds SB216763 and SB415286 caused MM cell growth arrest and apoptosis through the activation of the intrinsic pathway. Importantly, the two inhibitors augmented the bortezomib-induced MM cell cytotoxicity. RNA interference experiments showed that the two GSK-3 isoforms have distinct roles: GSK-3β knock down decreased MM cell viability, while GSK-3α knock down was associated with a higher rate of bortezomib-induced cytotoxicity. GSK-3 inhibition caused accumulation of β-catenin and nuclear phospho-ERK1, 2. Moreover, GSK-3 inhibition and GSK-3α knockdown enhanced bortezomib-induced AKT and MCL-1 protein degradation. Interestingly, bortezomib caused a reduction of GSK-3 serine phosphorylation and its nuclear accumulation with a mechanism that resulted partly dependent on GSK-3 itself. These data suggest that in MM cells GSK-3α and β i) play distinct roles in cell survival and ii) modulate the sensitivity to proteasome inhibitors

  13. Silencing NOTCH signaling causes growth arrest in both breast cancer stem cells and breast cancer cells

    Science.gov (United States)

    Suman, S; Das, T P; Damodaran, C

    2013-01-01

    Background: Breast cancer stem cells (BCSCs) are characterized by high aldehyde dehydrogenase (ALDH) enzyme activity and are refractory to current treatment modalities, show a higher risk for metastasis, and influence the epithelial to mesenchymal transition (EMT), leading to a shorter time to recurrence and death. In this study, we focused on examination of the mechanism of action of a small herbal molecule, psoralidin (Pso) that has been shown to effectively suppress the growth of BSCSs and breast cancer cells (BCCs), in breast cancer (BC) models. Methods: ALDH− and ALDH+ BCCs were isolated from MDA-MB-231 cells, and the anticancer effects of Pso were measured using cell viability, apoptosis, colony formation, invasion, migration, mammosphere formation, immunofluorescence, and western blot analysis. Results: Psoralidin significantly downregulated NOTCH1 signaling, and this downregulation resulted in growth inhibition and induction of apoptosis in both ALDH− and ALDH+ cells. Molecularly, Pso inhibited NOTCH1 signaling, which facilitated inhibition of EMT markers (β-catenin and vimentin) and upregulated E-cadherin expression, resulting in reduced migration and invasion of both ALDH− and ALDH+ cells. Conclusion: Together, our results suggest that inhibition of NOTCH1 by Pso resulted in growth arrest and inhibition of EMT in BCSCs and BCCs. Psoralidin appears to be a novel agent that targets both BCSCs and BCCs. PMID:24129237

  14. NK4, an antagonist of hepatocyte growth factor (HGF), inhibits growth of multiple myeloma cells: molecular targeting of angiogenic growth factor.

    Science.gov (United States)

    Du, Wenlin; Hattori, Yutaka; Yamada, Taketo; Matsumoto, Kunio; Nakamura, Toshikazu; Sagawa, Morihiko; Otsuki, Takemi; Niikura, Takako; Nukiwa, Toshihiro; Ikeda, Yasuo

    2007-04-01

    Hepatocyte growth factor (HGF) promotes cell growth and motility and also increases neovascularization. Multiple myeloma (MM) cells produce HGF, and the plasma concentration of HGF is significantly elevated in patients with clinically active MM, suggesting that HGF might play a role in the pathogenesis of MM. NK4, an antagonist of HGF, is structurally homologous to angiostatin, and our previous report showed that NK4 inhibited the proliferation of vascular endothelial cells induced by HGF stimulation. The purposes of this study were to elucidate the contribution of HGF to the growth of MM cells as well as to investigate the possibility of the therapeutic use of NK4. In vitro study showed that NK4 protein stabilized the growth of MM cell lines and regulated the activation of c-MET, ERK1/2, STAT3, and AKT-1. Recombinant adenovirus containing NK4 cDNA (AdCMV.NK4) was injected intramuscularly into Icr/scid mice bearing tumors derived from HGF-producing MM cells. AdCMV.NK4 significantly inhibited the growth of these tumors in vivo. Histologic examination revealed that AdCMV.NK4 induced apoptosis of MM cells, accompanied by a reduction in neovascularization in the tumors. Thus, NK4 inhibited the growth of MM cells via antiangiogenic as well as direct antitumor mechanisms. The molecular targeting of HGF by NK4 could be applied as a novel therapeutic approach to MM. PMID:17179234

  15. Influence of different ammonium, lactate and glutamine concentrations on CCO cell growth

    OpenAIRE

    Slivac, Igor; Blajić, Višnja; Radošević, Kristina; Kniewald, Zlatko; Gaurina Srček, Višnja

    2010-01-01

    In this study the effects of ammonium and lactate on a culture of channel catfish ovary (CCO) cells were examined. We also made investigation on the influence of glutamine, since our previous research revealed that this amino acid stimulated CCO cell growth more than glucose in a concentration-dependent manner. The effect of ammonium in cell culture included the considerable decrease in cell growth rate with eventual growth arrest as well as the retardation of glucose consumption. At ammonium...

  16. Mesenchymal Stromal Cells Promote Tumor Growth through the Enhancement of Neovascularization

    OpenAIRE

    Suzuki, Kazuhiro; Sun, Ruowen; Origuchi, Makoto; Kanehira, Masahiko; Takahata, Takenori; ITOH, JUGOH; Umezawa, Akihiro; Kijima, Hiroshi; FUKUDA, SHINSAKU; SAIJO, YASUO

    2011-01-01

    Mesenchymal stromal cells (MSCs), also called mesenchymal stem cells, migrate and function as stromal cells in tumor tissues. The effects of MSCs on tumor growth are controversial. In this study, we showed that MSCs increase proliferation of tumor cells in vitro and promote tumor growth in vivo. We also further analyzed the mechanisms that underlie these effects. For use in in vitro and in vivo experiments, we established a bone marrow–derived mesenchymal stromal cell line from cells isolated...

  17. RASSF1A expression inhibits cell growth and enhances cell chemosensitivity to mitomycin in BEL-7402 hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    GUAN Hong-geng; XUE Wan-jiang; QIAN Hai-xin; ZHOU Xiao-jun; QIN Lei; LAN Jing

    2009-01-01

    Background The antitumor role of Ras association domain family 1A (RASSFIA) gene and its potential molecular mechanisms are not well understood. The objective of this study was to observe the antitumor ability of RASSFIA in hepatoceliular carcinoma, and study the mechanisms of cell apoptosis induced by RASSFIA.Methods After stably transfecting a RASSF1A (wild-type or mutant) expression vector into the BEL-7402 hepatocellular carcinoma cell line, RT-PCR and Westem blotting was used to detect the RASSF1A expression levels in recombinant cells. The effects of wild-type RASSF1A on cell growth were observed in vitro by analyzing cell proliferation rate, cell colony formation, and in vivo by analyzing tumorigenesis in nude mice. In addition, the effect of RASSF1A gene expression on the chemosensitivity of human hepatocellular carcinoma cells to antitumor drugs was examined by inhibition of cell proliferation and the percentage of apoptotic cells.Results Wild-type RASSF1A, not the mutant, suppressed cell growth in vitro and in vivo. Re-expression of wild-type RASSF1A could enhance the inhibition of cell proliferation and the percentage of apoptotic cells following cell treatment with mitomycin, but had no significant effect when combined with adriamycin, etoposide, 5-fluorouracil and cisplatJn treatment.Conclusion Wild-type RASSF1A inhibits cell growth and enhances cell chemosensitivity to mitomycin in hepatocellular carcinoma, suggesting that RASSF1A may serve as a new target for gene therapy in hepatocellular carcinoma patients.

  18. Fentanyl inhibits cell viability in human pancreatic cancer cell line and tumor growth in pancreatic cancer cell-transplanted mice

    OpenAIRE

    Miao, Jianxia; Wang, Liangrong; Chen, Lei; Yang, Tao; Jin, Lida; Lin, Lina

    2015-01-01

    Pancreatic cancer is a kind of devastating disease with a high mortality rate. Fentanyl has been widely applied to anesthesia and analgesia in pancreatic cancer therapy, and is also demonstrated to inhibit the growth of some kinds of cancer cells in existed studies. To investigate the functions of fentanyl in pancreatic cancer, we conducted a series of in vivo and in vitro experiments using human pancreatic cancer cells SW1990 and fentanyl treatment. The cells were transplanted to BALB/c nude...

  19. Mesenchymal stem cells with rhBMP-2 inhibits the growth of canine osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Grassi Rici Rose

    2012-02-01

    Full Text Available Abstract Background The bone morphogenetic proteins (BMPs belong to a unique group of proteins that includes the growth factor TGF-β. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs and belong to the University of São Paulo, College of Veterinary Medicine (FMVZ-USP stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p

  20. Analysis of Vero cell growth behavior on microcarrier by means of environmental scanning electron microscopy.

    Science.gov (United States)

    Shao, Manjun; Jiang, Lei; Cong, Wei; Ouyang, Fan

    2002-04-01

    By using environmental scanning electron microscopy, the morphological changes of Vero cells attached to and grown on the microcarrier Cytodex-3 were observed, and their behavior of adhesion, spreading and proliferation was analyzed. The effect of exogenous fibronectin/ laminin on adhesion and spreading of MCC/Vero cell was studied. The images of ESEM showed that expansion of cell growth was directed toward vacancy space. The growth curve and cell concentration change during the whole culture process were obtained from the statistical counting method based on ESEM images and the crystal violet method. The growth rate of Vero cells increases with increasing the concentration of cell inoculation, that is, the specific growth rate increases quickly with increasing the concentration of cell inoculation. When serum concentration in medium #199 ranged from 5% to 10%, experimental results indicated that serum concentration is one of the important factors influencing cell growth, particularly in the cell adhesion and spreading stage. PMID:18763074

  1. Analysis of Vero cell growth behavior on microcarrier by means of environmental scanning electron microscopy

    Institute of Scientific and Technical Information of China (English)

    邵曼君; 姜蕾; 丛威; 欧阳藩

    2002-01-01

    By using environmental scanning electron microscopy, the morphological changes of Vero cells attached to and grown on the microcarrier Cytodex-3 were observed, and their behavior of adhesion, spreading and proliferation was analyzed. The effect of exogenous fibronectin/ laminin on adhesion and spreading of MCC/Vero cell was studied. The images of ESEM showed that expansion of cell growth was directed toward vacancy space. The growth curve and cell concentration change during the whole culture process were obtained from the statistical counting method based on ESEM images and the crystal violet method. The growth rate of Vero cells increases with increasing the concentration of cell inoculation, that is, the specific growth rate increases quickly with increasing the concentration of cell inoculation. When serum concentration in medium #199 ranged from 5% to 10%, experimental results indicated that serum concentration is one of the important factors influencing cell growth, particularly in the cell adhesion and spreading stage.

  2. Growth hormone promotes skeletal muscle cell fusion independent of insulin-like growth factor 1 up-regulation

    OpenAIRE

    Sotiropoulos, Athanassia; Ohanna, Mickaël; Kedzia, Cécile; Menon, Ram K.; Kopchick, John J.; Kelly, Paul A; Pende, Mario

    2006-01-01

    Growth hormone (GH) participates in the postnatal regulation of skeletal muscle growth, although the mechanism of action is unclear. Here we show that the mass of skeletal muscles lacking GH receptors is reduced because of a decrease in myofiber size with normal myofiber number. GH signaling controls the size of the differentiated myotubes in a cell-autonomous manner while having no effect on size, proliferation, and differentiation of the myoblast precursor cells. The GH hypertrophic action ...

  3. Genomic Characterization of Non-Mucus-Adherent Derivatives of Lactobacillus rhamnosus GG Reveals Genes Affecting Pilus Biogenesis

    OpenAIRE

    Rasinkangas, Pia; Reunanen, Justus; Douillard, François P.; Ritari, Jarmo; Uotinen,Virva; Palva, Airi; de Vos, Willem M

    2014-01-01

    Lactobacillus rhamnosus GG is one of the best-characterized lactic acid bacteria and can be considered a probiotic paradigm. Comparative and functional genome analysis showed that L. rhamnosus GG harbors a genomic island including the spaCBA-srtC1 gene cluster, encoding the cell surface-decorating host-interacting pili. Here, induced mutagenesis was used to study pilus biogenesis in L. rhamnosus GG. A combination of two powerful approaches, mutation selection and next-generation sequencing, w...

  4. Structural, biophysical and functional characterization of Nop7-Erb1-Ytm1 complex and its implications in eukaryotic ribosome biogenesis

    OpenAIRE

    Wegrecki, Marcin

    2015-01-01

    [EN] Ribosome biogenesis is one of the most important and energy-consuming processes in the cell. However, the vast majority of the events and factors that are involved in the synthesis of ribosomal subunits are not well understood. Ribosome maturation comprises multiple steps of rRNA processing that require sequential association and dissociation of numerous assembly factors. These proteins establish a complex network of interactions that are essential for the pathway to continue. Extensive ...

  5. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    Science.gov (United States)

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  6. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    Science.gov (United States)

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  7. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Damodaran, Shima P; Eberhard, Stephan; Boitard, Laurent; Rodriguez, Jairo Garnica; Wang, Yuxing; Bremond, Nicolas; Baudry, Jean; Bibette, Jérôme; Wollman, Francis-André

    2015-01-01

    To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers) and a significant subpopulation of slowly dividing cells (slow-growers). These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes. PMID:25760649

  8. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  9. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonon, Anna; Mangolini, Alessandra [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Pinton, Paolo [Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, 44121 Ferrara (Italy); Senno, Laura del [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Aguiari, Gianluca, E-mail: dsn@unife.it [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy)

    2013-11-22

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G{sub 0}/G{sub 1} phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new

  10. Downregulation of Akt1 Inhibits Anchorage-Independent Cell Growth and Induces Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2001-01-01

    Full Text Available The serine/threonine kinases, Akti/PKBα, Akt2/PKBβ, and Akt3/PKBγ, play a critical role in preventing cancer cells from undergoing apoptosis. However, the function of individual Akt isoforms in the tumorigenicity of cancer cells is still not well defined. In the current study, we used an AM antisense oligonucleotide (AS to specifically downregulate Akti protein in both cancer and normal cells. Our data indicate that AM AS treatment inhibits the ability of MiaPaCa-2, H460, HCT-15, and HT1080 cells to grow in soft agar. The treatment also induces apoptosis in these cancer cells as demonstrated by FRCS analysis and a caspase activity assay. Conversely, Akti AS treatment has little effect on the cell growth and survival of normal human cells including normal human fibroblast (NHF, fibroblast from muscle (FBM, and mammary gland epithelial 184135 cells. In addition, AM AS specifically sensitizes cancer cells to typical chemotherapeutic agents. Thus, Akti is indispensable for maintaining the tumorigenicity of cancer cells. Inhibition of AM may provide a powerful sensitization agent for chemotherapy specifically in cancer cells.

  11. Folding and Biogenesis of Mitochondrial Small Tim Proteins

    Directory of Open Access Journals (Sweden)

    Efrain Ceh-Pavia

    2013-08-01

    Full Text Available Correct and timely folding is critical to the function of all proteins. The importance of this is illustrated in the biogenesis of the mitochondrial intermembrane space (IMS “small Tim” proteins. Biogenesis of the small Tim proteins is regulated by dedicated systems or pathways, beginning with synthesis in the cytosol and ending with assembly of individually folded proteins into functional complexes in the mitochondrial IMS. The process is mostly centered on regulating the redox states of the conserved cysteine residues: oxidative folding is crucial for protein function in the IMS, but oxidized (disulfide bonded proteins cannot be imported into mitochondria. How the redox-sensitive small Tim precursor proteins are maintained in a reduced, import-competent form in the cytosol is not well understood. Recent studies suggest that zinc and the cytosolic thioredoxin system play a role in the biogenesis of these proteins. In the IMS, the mitochondrial import and assembly (MIA pathway catalyzes both import into the IMS and oxidative folding of the small Tim proteins. Finally, assembly of the small Tim complexes is a multistep process driven by electrostatic and hydrophobic interactions; however, the chaperone function of the complex might require destabilization of these interactions to accommodate the substrate. Here, we review how folding of the small Tim proteins is regulated during their biogenesis, from maintenance of the unfolded precursors in the cytosol, to their import, oxidative folding, complex assembly and function in the IMS.

  12. Peroxisome Biogenesis Disorders: Biological, Clinical and Pathophysiological Perspectives

    Science.gov (United States)

    Braverman, Nancy E.; D'Agostino, Maria Daniela; MacLean, Gillian E.

    2013-01-01

    The peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive disorders in which peroxisome assembly is impaired, leading to multiple peroxisome enzyme deficiencies, complex developmental sequelae and progressive disabilities. Mammalian peroxisome assembly involves the protein products of 16 "PEX" genes;…

  13. DUSP10 regulates intestinal epithelial cell growth and colorectal tumorigenesis.

    Science.gov (United States)

    Png, C W; Weerasooriya, M; Guo, J; James, S J; Poh, H M; Osato, M; Flavell, R A; Dong, C; Yang, H; Zhang, Y

    2016-01-14

    Dual specificity phosphatase 10 (DUSP10), also known as MAP kinase phosphatase 5 (MKP5), negatively regulates the activation of MAP kinases. Genetic polymorphisms and aberrant expression of this gene are associated with colorectal cancer (CRC) in humans. However, the role of DUSP10 in intestinal epithelial tumorigenesis is not clear. Here, we showed that DUSP10 knockout (KO) mice had increased intestinal epithelial cell (IEC) proliferation and migration and developed less severe colitis than wild-type (WT) mice in response to dextran sodium sulphate (DSS) treatment, which is associated with increased ERK1/2 activation and Krüppel-like factor 5 (KLF5) expression in IEC. In line with increased IEC proliferation, DUSP10 KO mice developed more colon tumours with increased severity compared with WT mice in response to administration of DSS and azoxymethane (AOM). Furthermore, survival analysis of CRC patients demonstrated that high DUSP10 expression in tumours was associated with significant improvement in survival probability. Overexpression of DUSP10 in Caco-2 and RCM-1 cells inhibited cell proliferation. Our study showed that DUSP10 negatively regulates IEC growth and acts as a suppressor for CRC. Therefore, it could be targeted for the development of therapies for colitis and CRC. PMID:25772234

  14. Regulation of Transcription from Two ssrS Promoters in 6S RNA Biogenesis

    Science.gov (United States)

    Lee, Ji Young; Park, Hongmarn; Bak, Geunu; Kim, Kwang-sun; Lee, Younghoon

    2013-01-01

    ssrS-encoded 6S RNA is an abundant noncoding RNA that binds σ70-RNA polymerase and regulates expression at a subset of promoters in Escherichia coli. It is transcribed from two tandem promoters, ssrS P1 and ssrS P2. Regulation of transcription from two ssrS promoters in 6S RNA biogenesis was examined. Both P1 and P2 were growth phase-dependently regulated. Depletion of 6S RNA had no effect on growth-phase-dependent transcription from either promoter, whereas overexpression of 6S RNA increased P1 transcription and decreased P2 transcription, suggesting that transcription from P1 and P2 is subject to feedback activation and feedback inhibition, respectively. This feedback regulation disappeared in Δfis strains, supporting involvement of Fis in this process. The differential feedback regulation may provide a means for maintaining appropriate cellular concentrations of 6S RNA. PMID:23864284

  15. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Institute of Scientific and Technical Information of China (English)

    Liu-lin Xiong; Zhi-wei Chen; Ting-hua Wang

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promotein vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, lfuorescence mi-croscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These ifndings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  16. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M; Poulsen, H S

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... lung cancer cell lines express the EGF receptor....... demonstrated that the cells bound between 3 and 52 fmol/mg protein with a KD ranging from 0.5 x 10(-10) to 2.7 x 10(-10) M. EGF binding to the receptor was confirmed by affinity-labeling EGF to the EGF receptor. The cross-linked complex had a M(r) of 170,000-180,000. Northern blotting showed the expression of...

  17. Neural cell adhesion molecule differentially interacts with isoforms of the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Christensen, Claus; Berezin, Vladimir; Bock, Elisabeth

    2011-01-01

    The fibroblast growth factor receptor (FGFR) can be activated through direct interactions with various fibroblast growth factors or through a number of cell adhesion molecules, including the neural cell adhesion molecule (NCAM). We produced recombinant proteins comprising the ligand...... the expression pattern of various FGFR isoforms determines the cell context-specific effects of NCAM signaling through FGFR....

  18. Aspects of plant cell growth and the actin cytoskeleton: lessons from root hairs

    NARCIS (Netherlands)

    Ruijter, de N.C.A.

    1999-01-01

    The main topic the thesis addresses is the role of the actin cytoskeleton in the growth process of plant cells. Plant growth implies a combination of cell division and cell expansion. The cytoskeleton, which exists of microtubules and actin filaments, plays a major role in both processes. Before cel

  19. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Highlights: •Nebivolol may act as a partial agonist of β3-adrenergic receptor (AR). •Nebivolol stimulates mitochondrial DNA replication and protein expression. •Nebivolol promotes mitochondrial synthesis via activation of eNOS by β3-AR. -- Abstract: Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol’s role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors

  20. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chenglin; Chen, Dongrui; Xie, Qihai [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China); Yang, Ying, E-mail: yangying_sh@yahoo.com [Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China); Shen, Weili, E-mail: weili_shen@hotmail.com [State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025 (China)

    2013-08-16

    Highlights: •Nebivolol may act as a partial agonist of β3-adrenergic receptor (AR). •Nebivolol stimulates mitochondrial DNA replication and protein expression. •Nebivolol promotes mitochondrial synthesis via activation of eNOS by β3-AR. -- Abstract: Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol’s role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24 h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (l-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors.

  1. Mutants of Chlamydomonas: tools to study thylakoid membrane structure, function and biogenesis.

    Science.gov (United States)

    de Vitry, C; Vallon, O

    1999-06-01

    The unicellular green alga Chlamydomonas reinhardtii is a model system for the study of photosynthesis and chloroplast biogenesis. C. reinhardtii has a photosynthesis apparatus similar to that of higher plants and it grows at rapid rate (generation time about 8 h). It is a facultative phototroph, which allows the isolation of mutants unable to perform photosynthesis and its sexual cycle allows a variety of genetic studies. Transformation of the nucleus and chloroplast genomes is easily performed. Gene transformation occurs mainly by homologous recombination in the chloroplast and heterologous recombination in the nucleus. Mutants are precious tools for studies of thylakoid membrane structure, photosynthetic function and assembly. Photosynthesis mutants affected in the biogenesis of a subunit of a protein complex usually lack the entire complex; this pleiotropic effect has been used in the identification of the other subunits, in the attribution of spectroscopic signals and also as a 'genetic cleaning' process which facilitates both protein complex purification, absorption spectroscopy studies or freeze-fracture analysis. The cytochrome b6f complex is not required for the growth of C. reinhardtii, unlike the case of photosynthetic prokaryotes in which the cytochrome complex is also part of the respiratory chain, and can be uniquely studied in Chlamydomonas by genetic approaches. We describe in greater detail the use of Chlamydomonas mutants in the study of this complex. PMID:10433117

  2. Rab11a Is Essential for Lamellar Body Biogenesis in the Human Epidermis.

    Science.gov (United States)

    Reynier, Marie; Allart, Sophie; Gaspard, Elise; Moga, Alain; Goudounèche, Dominique; Serre, Guy; Simon, Michel; Leprince, Corinne

    2016-06-01

    Most of the skin barrier function is attributable to the outermost layer of the epidermis, the stratum corneum, which is composed of flattened, anucleated cells called corneocytes surrounded by a lipid-enriched lamellar matrix. The composition of the stratum corneum is directly dependent on the underlying granular keratinocytes, which are the last living cells in the stratified epidermis. Many components present in the intercorneocyte matrix are delivered by the underlying granular keratinocytes through a secretion process dependent on lysosome-related organelles called lamellar bodies. Because of the importance of lamellar bodies in the maintenance of the epidermal barrier, the mechanisms regulating their biogenesis must be better understood. In this study, we show that the Rab11a GTPase is highly expressed in terminally differentiated keratinocytes, where it is partly associated with lamellar bodies. Rab11a silencing in three-dimensional in vitro reconstructed human epidermis induces a barrier defect, a decrease in the amount of lipid found in the stratum corneum, a reduction in lamellar body density and secretion areas in granular keratinocytes, and the mis-sorting of lamellar body cargoes being driven to the lysosomal degradation pathway. Our results highlight the importance of Rab11a-dependent regulation of lamellar body biogenesis in keratinocytes and consequently on epidermal barrier homeostasis. PMID:26872604

  3. Control by fibroblast growth factor of differentiation in the BC3H1 muscle cell line

    OpenAIRE

    1985-01-01

    The regulation of creatine phosphokinase (CPK) expression by polypeptide growth factors has been examined in the clonal mouse muscle BC3H1 cell line. After arrest of cell growth by exposure to low concentrations of serum, BC3H1 cells accumulate high levels of muscle- specific proteins including CPK. The induction of this enzyme is reversible in the presence of high concentrations of fetal calf serum, which cause quiescent, differentiated cells to reenter the cell cycle. Under these conditions...

  4. Growth suppression by transforming growth factor beta 1 of human small-cell lung cancer cell lines is associated with expression of the type II receptor

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K;

    1994-01-01

    observed in two cell lines expressing only type III receptor and in TGF-beta-r negative cell lines. In two cell lines expressing all three receptor types, growth suppression was accompanied by morphological changes. To evaluate the possible involvement of the retinoblastoma protein (pRb) in mediating the...

  5. CTRP9 induces mitochondrial biogenesis and protects high glucose-induced endothelial oxidative damage via AdipoR1 -SIRT1- PGC-1α activation.

    Science.gov (United States)

    Cheng, Liang; Li, Bin; Chen, Xu; Su, Jie; Wang, Hongbing; Yu, Shiqiang; Zheng, Qijun

    2016-09-01

    Vascular lesions caused by endothelial dysfunction are the most common and serious complication of diabetes. The vasoactive potency of CTRP9 has been reported in our previous study via nitric oxide (NO) production. However, the effect of CTRP9 on vascular endothelial cells remains unknown. This study aimed to investigate the protection role of CTRP9 in the primary aortic vascular endothelial cells and HAECs under high-glucose condition. We found that the aortic vascular endothelial cells isolated from mice fed with a high fat diet generated more ROS production than normal cells, along with decreased mitochondrial biogenesis, which was also found in HAECs treated with high glucose. However, the treatment of CTPR9 significantly reduced ROS production and increased the activities of endogenous antioxidant enzymes, the expression of PGC-1α, NRF1, TFAM, ATP5A1 and SIRT1, and the activity of cytochrome c oxidase, indicating an induction of mitochondrial biogenesis. Furthermore, silencing the expression of SIRT1 in HAECs impeded the effect of CTRP9 on mitochondrial biogenesis, while silencing the expression of AdipoR1 in HAECs reversed the expression of SIRT1 and PGC-1α. Based on these findings, this study showed that CTRP9 might induce mitochondrial biogenesis and protect high glucose-induced endothelial oxidative damage via AdipoR1-SIRT1-PGC-1α signaling pathway. PMID:27349872

  6. TP508 accelerates fracture repair by promoting cell growth over cell death

    International Nuclear Information System (INIS)

    TP508 is a synthetic 23-amino acid peptide representing a receptor-binding domain of human thrombin. We have previously shown that a single injection of TP508 accelerates fracture healing in a rat femoral fracture model. To understand how TP508 acts at the protein level during fracture healing, we compared the translational profiles between saline-control and fractured femur at six time points after TP508 treatment using the second generation of BD ClontechTM Antibody Microarray. Here, we demonstrate that TP508 accelerates fracture healing by modulating expression levels of proteins primarily involved in the functional categories of cell cycle, cellular growth and proliferation, and cell death. The majority of those proteins are physically interrelated and functionally overlapped. The action of those proteins is highlighted by a central theme of promoting cell growth via balance of cell survival over cell death signals. This appears to occur through the stimulation of several bone healing pathways including cell cycle-G1/S checkpoint regulation, apoptosis, JAK/STAT, NF-κB, PDGF, PI3K/AKT, PTEN, and ERK/MAPK

  7. Transcriptional repression of the APC/C activator CCS52A1 promotes active termination of cell growth

    OpenAIRE

    Breuer, Christian; Morohashi, Kengo; Kawamura, Ayako; Takahashi, Naoki; Ishida, Takashi; Umeda, Masaaki; Grotewold, Erich; Sugimoto, Keiko

    2012-01-01

    Spatial and temporal control of cell growth is central for the morphogenesis of multicellular organisms. For some cell types that undergo extensive post-mitotic cell growth, such as neurons and hair cells, orchestrating the extent of post-mitotic cell growth with development is vital for their physiology and function. Previous studies suggested that the extent of cell growth is linked with an increase in ploidy by endoreduplication but how developmental signals control endocycling and cell gr...

  8. Transforming Growth Factor–β–Induced Differentiation of Airway Smooth Muscle Cells Is Inhibited by Fibroblast Growth Factor–2

    OpenAIRE

    Schuliga, Michael; Javeed, Aqeel; Harris, Trudi; Xia, Yuxiu; Qin, Chengxue; Wang, Zhexing; Zhang, Xuehua; Lee, Peter V. S.; Camoretti-Mercado, Blanca; Stewart, Alastair G.

    2013-01-01

    In asthma, basic fibroblast growth factor (FGF-2) plays an important (patho)physiological role. This study examines the effects of FGF-2 on the transforming growth factor–β (TGF-β)–stimulated differentiation of airway smooth muscle (ASM) cells in vitro. The differentiation of human ASM cells after incubation with TGF-β (100 pM) and/or FGF-2 (300 pM) for 48 hours was assessed by increases in contractile protein expression, actin-cytoskeleton reorganization, enhancements in cell stiffness, and ...

  9. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I)

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco A, H.; Cardona, W. [Universidad Andres Bello, Vina del Mar (Chile). Dept. de Ciencias Quimicas]. E-mail: hcarrasco@unab.cl; Espinoza C, L.; Gallardo, C.; Catalan M, K. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Quimica; Cardile, V.; Lombardo, L. [University of Catania (Italy). Dept. of Physiological Sciences; Cuellar F, M. [Universidad de Valparaiso (Chile). Facultad de Farmacia; Russo, A. [University of Catania (Italy). Dept. of Biological Chemistry, Medical Chemistry and Molecular Biology

    2008-07-01

    Eugenol (4-allyl-2-methoxyphenol) (1) has been reported to possess antioxidant and anticancer properties. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were synthesized. Eugenol was extracted from cloves oil and further, the eugenol analogues (2-6) were obtained through acetylation and nitration reactions. Eugenol (1) and its analogues (2-6) were examined by in vitro model of cancer using two human cancer cell lines: DU-145 (androgeninsensitive prostate cancer cells) and KB (oral squamous carcinoma cells). Cell viability, by tetrazolium salts assay, was measured. Lactic dehydrogenase (LDH) release was also investigated to evaluate the presence of cell toxicity as a result of cell disruption, subsequent to membrane rupture. In the examined cancer cells, all compounds showed cell-growth inhibition activity. The obtained results demonstrate that the compounds 5-allyl-3-nitrobenzene-1,2-diol (3) and 4-allyl- 2-methoxy-5-nitrophenyl acetate (5) were significantly (p < 0,001) more active than eugenol, with IC{sub 50} values in DU-145 cells of 19.02 x 10{sup -6} and 21.5 x 10{sup -6} mol L{sup -1}, respectively, and in KB cells of 18.11 x 10{sup -6} and 21.26 x 10{sup -6} mol L{sup -1}, respectively, suggesting that the presence of nitro and hydroxyl groups could be important in the activity of these compounds. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in KB and DU-145 cells. In fact, in our experimental conditions, no statistically significant increase in LDH release was observed in cancer cells treated with eugenol and its analogues. (author)

  10. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I)

    International Nuclear Information System (INIS)

    Eugenol (4-allyl-2-methoxyphenol) (1) has been reported to possess antioxidant and anticancer properties. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were synthesized. Eugenol was extracted from cloves oil and further, the eugenol analogues (2-6) were obtained through acetylation and nitration reactions. Eugenol (1) and its analogues (2-6) were examined by in vitro model of cancer using two human cancer cell lines: DU-145 (androgeninsensitive prostate cancer cells) and KB (oral squamous carcinoma cells). Cell viability, by tetrazolium salts assay, was measured. Lactic dehydrogenase (LDH) release was also investigated to evaluate the presence of cell toxicity as a result of cell disruption, subsequent to membrane rupture. In the examined cancer cells, all compounds showed cell-growth inhibition activity. The obtained results demonstrate that the compounds 5-allyl-3-nitrobenzene-1,2-diol (3) and 4-allyl- 2-methoxy-5-nitrophenyl acetate (5) were significantly (p 50 values in DU-145 cells of 19.02 x 10-6 and 21.5 x 10-6 mol L-1, respectively, and in KB cells of 18.11 x 10-6 and 21.26 x 10-6 mol L-1, respectively, suggesting that the presence of nitro and hydroxyl groups could be important in the activity of these compounds. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in KB and DU-145 cells. In fact, in our experimental conditions, no statistically significant increase in LDH release was observed in cancer cells treated with eugenol and its analogues. (author)

  11. Chimeric toxins inhibit growth of primary oral squamous cell carcinoma cells.

    Science.gov (United States)

    Bachran, Christopher; Heisler, Iring; Bachran, Diana; Dassler, Katrin; Ervens, Jürgen; Melzig, Matthias F; Fuchs, Hendrik

    2008-02-01

    Treatment of oral squamous cell carcinoma (OSCC) is currently based on surgery and radiotherapy. Prolongation of the survival time of patients with progressing tumors is infrequently achieved. To improve the therapeutic options, targeted therapies are a favorable alternative. Therefore, we analyzed the effect of a chimeric toxin (CT) named SE consisting of the epidermal growth factor and the plant protein toxin saporin from Saponaria officinalis. A second construct (SA2E) additionally contains a peptidic adapter designed to enhance efficacy of the CT in vivo and to reduce side effects. The IC(50) values for an OSCC cell line (BHY) were 0.27 nM and 0.73 nM for SE and SA2E, respectively, while fibroblasts remained unaffected. To investigate primary tumor cells, we developed a technique to analyze freshly prepared OSCC cells of 28 patients in a stem cell assay directly after surgery. Cells were treated for 1 h with the CTs, subsequently seeded into soft agar and colony growth determined after 1-2 weeks In spite of the short time of CT incubation, the amount of colonies was reduced to about 78% by 10 nM and to 69% by 100 nM of either toxin. A combined application of 10 nM SA2E with a saponin from Gypsophila paniculata reduced the amount of surviving cells to 68%. The results demonstrate the impact of the CTs on OSCC cells and depict that the stem cell assay is suitable to determine the potential of anti-tumor drugs before studies in vivo will be initiated. PMID:18059188

  12. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna;

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... 85 antimetabolites that can inhibit growth of, or even kill, any of the cell lines, while at the same time not being toxic for 83 different healthy human cell types. 60 of these antimetabolites were found to inhibit growth in all cell lines. Finally, we experimentally validated one of the predicted...... antimetabolites using two cell lines with different phenotypic origins, and found that it is effective in inhibiting the growth of these cell lines. Using immunohistochemistry, we also showed high or moderate expression levels of proteins targeted by the validated antimetabolite. Identified anti-growth factors...

  13. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells.

    Science.gov (United States)

    Li, Hui; Zhou, Fusheng; Du, Wenhui; Dou, Jinfa; Xu, Yu; Gao, Wanwan; Chen, Gang; Zuo, Xianbo; Sun, Liangdan; Zhang, Xuejun; Yang, Sen

    2016-05-01

    Melanoma, the most aggressive form of skin cancer, causes more than 40,000 deaths each year worldwide. And epidermoid carcinoma is another major form of skin cancer, which could be studied together with melanoma in several aspects. Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine, and its expression is associated with the chemotherapy resistance and prognosis in several human cancers. The present study aims to explore the potential role of ASNS in melanoma cells A375 and human epidermoid carcinoma cell line A431. We applied a lentivirus-mediated RNA interference (RNAi) system to study its function in cell growth of both cells. The results revealed that inhibition of ASNS expression by RNAi significantly suppressed the growth of melanoma cells and epidermoid carcinoma cells, and induced a G0/G1 cell cycle arrest in melanoma cells. Knockdown of ASNS in A375 cells remarkably downregulated the expression levels of CDK4, CDK6, and Cyclin D1, and upregulated the expression of p21. Therefore, our study provides evidence that ASNS may represent a potential therapeutic target for the treatment of melanoma. PMID:25858017

  14. The Extracellular Vesicles of the Helminth Pathogen, Fasciola hepatica: Biogenesis Pathways and Cargo Molecules Involved in Parasite Pathogenesis.

    Science.gov (United States)

    Cwiklinski, Krystyna; de la Torre-Escudero, Eduardo; Trelis, Maria; Bernal, Dolores; Dufresne, Philippe J; Brennan, Gerard P; O'Neill, Sandra; Tort, Jose; Paterson, Steve; Marcilla, Antonio; Dalton, John P; Robinson, Mark W

    2015-12-01

    Extracellular vesicles (EVs) released by parasites have important roles in establishing and maintaining infection. Analysis of the soluble and vesicular secretions of adult Fasciola hepatica has established a definitive characterization of the total secretome of this zoonotic parasite. Fasciola secretes at least two subpopulations of EVs that differ according to size, cargo molecules and site of release from the parasite. The larger EVs are released from the specialized cells that line the parasite gastrodermus and contain the zymogen of the 37 kDa cathepsin L peptidase that performs a digestive function. The smaller exosome-like vesicle population originate from multivesicular bodies within the tegumental syncytium and carry many previously described immunomodulatory molecules that could be delivered into host cells. By integrating our proteomics data with recently available transcriptomic data sets we have detailed the pathways involved with EV biogenesis in F. hepatica and propose that the small exosome biogenesis occurs via ESCRT-dependent MVB formation in the tegumental syncytium before being shed from the apical plasma membrane. Furthermore, we found that the molecular "machinery" required for EV biogenesis is constitutively expressed across the intramammalian development stages of the parasite. By contrast, the cargo molecules packaged within the EVs are developmentally regulated, most likely to facilitate the parasites migration through host tissue and to counteract host immune attack. PMID:26486420

  15. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells.

    OpenAIRE

    Billestrup, N; Møldrup, A; Serup, P.; Mathews, L S; Norstedt, G; Nielsen, J H

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, we have transfected a GH receptor cDNA under the transcriptional control of the human metallothionein promoter into RIN5-AH cells. The transfected cells were found to exhibit an increased expression of GH receptors and t...

  16. Study of wavy laminar growth of human urinary bladder cancer cell line in vitro

    Institute of Scientific and Technical Information of China (English)

    DENG Guo-hong; CONG Yan-guang; LIU Jun-kang; XU Qi-wang; YUAN Ze-tao

    2001-01-01

    To observe the ordered growth behavior of human urinary bladder cancer cell line (BIU) under culture in vitro. Methods: The suspension of BIU cells was spread locally in a culture container. When the cells grew along the wall to form a cellular colony, macroscopic and microscopic observations complemented with measurements of the parameters including expanding diameter, expanding rate, cell shape, average cell density, average cell size, dehydrogenase activity and sensitivity to pH were conducted dynamically. Results: During cell culture, obvious laminar characteristics appeared in localized growing BIU cell colonies and there was difference between the cells of different zones in shape, size, density, dehydrogenase activity and sensitivity to pH. Conclusion: Space closing and bio-dissipation result in self-organization of BIU cells with ordered growth behavior. The present experiment offers a simple, controllable model for the study of wavy growth of human cells.

  17. Heparin Binds Endothelial Cell Growth Factor, the Principal Endothelial Cell Mitogen in Bovine Brain

    Science.gov (United States)

    Maciag, Thomas; Mehlman, Tevie; Friesel, Robert; Schreiber, Alain B.

    1984-08-01

    Endothelial cell growth factor (ECGF), an anionic polypeptide mitogen, binds to immobilized heparin. The interaction between the acidic polypeptide and the anionic carbohydrate suggests a mechanism that is independent of ion exchange. Monoclonal antibodies to purified bovine ECGF inhibited the biological activity of ECGF in crude preparations of bovine brain. These data indicate that ECGF is the principal mitogen for endothelial cells from bovine brain, that heparin affinity chromatography may be used to purify and concentrate ECGF, and that the affinity of ECGF for heparin may have structural and perhaps biological significance.

  18. Metformin inhibits cell growth by upregulating microRNA-26a in renal cancer cells.

    Science.gov (United States)

    Yang, Feng-Qiang; Wang, Ji-Jiao; Yan, Jia-Sheng; Huang, Jian-Hua; Li, Wei; Che, Jian-Ping; Wang, Guang-Chun; Liu, Min; Zheng, Jun-Hua

    2014-01-01

    Accumulating evidence suggests that metformin, a biguanide class of anti-diabetic drugs, possesses anti-cancer properties and may reduce cancer risk and improve prognosis. However, the mechanism by which metformin affects various cancers, including renal cancer still unknown. MiR-26a induces cell growth, cell cycle and cell apoptosis progression via direct targeting of Bcl-2, clyclin D1 and PTEN in cancer cells. In the present study, we used 786-O human renal cancer cell lines to study the effects and mechanisms of metformin. Metformin treatment inhibited RCC cells proliferation by increasing expression of miR-26a in 786-O cells (P metformin. Also over-expression of miR-26a can inhibited cell proliferation by down-regulating Bcl-2, cyclin D1 and up-regulating PTEN expression. Therefore, these data for the first time provide novel evidence for a mechanism that the anticancer activities of metformin are due to upregulation of miR-26a and affect its downstream target gene. PMID:25419360

  19. Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth

    Science.gov (United States)

    Feillet, Celine; van der Horst, Gijsbertus T. J.; Levi, Francis; Rand, David A.; Delaunay, Franck

    2015-01-01

    Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumor growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer. PMID:26029155

  20. Coupling between the circadian clock and cell cycle oscillators: implication for healthy cells and malignant growth

    Directory of Open Access Journals (Sweden)

    Celine eFeillet

    2015-05-01

    Full Text Available Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumour growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer.

  1. Changes in responsiveness of rat tracheal epithelial cells to growth factors during preneoplastic transformation in cell culture

    International Nuclear Information System (INIS)

    Preneoplastic rat tracheal epithelial (RTE) cell lines require fewer growth factors for clonal proliferation in culture than normal cells. Serum-free media missing various combinations of growth factors (e.g., cholera toxin, serum albumin, epidermal growth factor, hydrocortisone) required for proliferation of normal, but not preneoplastic, RTE cells can be used to select for carcinogen-induced preneoplastic variants having an increased proliferative potential in culture. These results suggest that reductions in growth factor requirements are primary events in the carcinogenic process. (author)

  2. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    Science.gov (United States)

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors. PMID:1802921

  3. An experimental platform for studying growth and invasiveness of tumor cells within teratomas derived from human embryonic stem cells

    OpenAIRE

    Tzukerman, Maty; Rosenberg, Tzur; Ravel, Yael; Reiter, Irena; Coleman, Raymond; Skorecki, Karl

    2003-01-01

    There is currently no available experimental system wherein human cancer cells can be grown in the context of a mixed population of normal differentiated human cells for testing biological aspects of cancer cell growth (e.g., tumor cell invasion and angiogenesis) or response to anti-cancer therapies. When implanted into immunocompromised mice, human embryonic stem cells develop teratomas containing complex structures comprising differentiated cell types representing the major germ line-derive...

  4. Spatial Patterning of Newly-Inserted Material during Bacterial Cell Growth

    Science.gov (United States)

    Ursell, Tristan

    2012-02-01

    In the life cycle of a bacterium, rudimentary microscopy demonstrates that cell growth and elongation are essential characteristics of cellular reproduction. The peptidoglycan cell wall is the main load-bearing structure that determines both cell shape and overall size. However, simple imaging of cellular growth gives no indication of the spatial patterning nor mechanism by which material is being incorporated into the pre-existing cell wall. We employ a combination of high-resolution pulse-chase fluorescence microscopy, 3D computational microscopy, and detailed mechanistic simulations to explore how spatial patterning results in uniform growth and maintenance of cell shape. We show that growth is happening in discrete bursts randomly distributed over the cell surface, with a well-defined mean size and average rate. We further use these techniques to explore the effects of division and cell wall disrupting antibiotics, like cephalexin and A22, respectively, on the patterning of cell wall growth in E. coli. Finally, we explore the spatial correlation between presence of the bacterial actin-like cytoskeletal protein, MreB, and local cell wall growth. Together these techniques form a powerful method for exploring the detailed dynamics and involvement of antibiotics and cell wall-associated proteins in bacterial cell growth.[4pt] In collaboration with Kerwyn Huang, Stanford University.

  5. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available BACKGROUND: Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2. METHODOLOGY/PRINCIPAL FINDINGS: Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation. CONCLUSION/SIGNIFICANCE: These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  6. Control of Vascular Smooth Muscle Cell Growth by Connexin 43

    Directory of Open Access Journals (Sweden)

    Chintamani eJoshi

    2012-06-01

    Full Text Available Connexin 43 (Cx43, the principal gap junction protein in vascular smooth muscle cells (VSMCs, regulates movement of ions and other signaling molecules through gap junction intercellular communication (GJIC and plays important roles in maintaining normal vessel function; however, many of the signaling mechanisms controlling Cx43 in VSMCs are not clearly described. The goal of this study was to investigate mechanisms of Cx43 regulation with respect to VSMC proliferation. Treatment of rat primary VSMCs with the cAMP analog 8Br-cAMP, the soluble guanylate cyclase (sGC stimulator BAY 41-2272 (BAY, or the Cx inducer diallyl disulfide (DADS significantly reduced proliferation after 72 h compared to vehicle controls. Bromodeoxyuridine uptake revealed reduction (p<.001 in DNA synthesis after 6 h and flow cytometry showed reduced (40% S phase cell numbers after 16 h in DADS-treated cells compared to controls. Cx43 expression significantly increased after 270 min treatment with 8Br-cAMP, 8Br-cGMP, BAY or DADS. Inhibition of PKA, PKG or PKC reversed 8Br-cAMP-stimulated increases in Cx43 expression, whereas only PKG or PKC inhibition reversed 8Br-cGMP- and BAY-stimulated increases in total Cx43. Interestingly, stimulation of Cx43 expression by DADS was not dependent on PKA, PKG or PKC. Using fluorescence recovery after photobleaching, only 8Br-cAMP or DADS increased GJIC with 8Br-cAMP mediated by PKC and DADS mediated by PKG. Further, DADS significantly increased phosphorylation at the MAPK-sensitive serine (Ser255 and Ser279, the cell cycle regulatory kinase-sensitive Ser262 and the PKC-sensitive Ser368 after 30 min while 8Br-cAMP significantly increased phosphorylation only at Ser279 compared to controls. This study demonstrates that 8Br-cAMP- and DADS-enhanced GJIC rather than Cx43 expression and/or phosphorylation plays an important role in regulation of VSMC proliferation and provides new insights into the growth-regulatory capacities of Cx43 in VSMCs.

  7. Inducing effects of hepatocyte growth factor on the expression of vascular endothelial growth factor in human colorectal carcinoma cells through MEK and PI3K signaling pathways

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-hua; WEI Wei; XU Hao; WANG Yan-yan; WU Wen-xi

    2007-01-01

    Background Vascular endothelial growth factor plays a key role in human colorectal carcinoma invasion and metastasis. However, the regulation mechanism remains unknown. Recent studies have shown that several cytokines can regulate the expression of vascular endothelial growth factor in tumor cells. In this study, we investigated whether hepatocyte growth factor can regulate the expression of vascular endothelial growth factor in colorectal carcinoma cells.Methods Hepatocyte growth factor and vascular endothelial growth factor in human serum were measured by ELISA.The mRNA level of vascular endothelial growth factor was analyzed by reverse transcription-PCR. Western blot assay was performed to evaluate levels of c-Met and several other proteins involved in the MAPK and PI3K signaling pathways in colorectal carcinoma cells.Results Serum hepatocyte growth factor and vascular endothelial growth factor were significantly increased in colorectal carcinoma subjects. In vitro extraneous hepatocyte growth factor markedly increased protein and mRNA levels of vascular endothelial growth factor in colorectal carcinoma cells. Hepatocyte growth factor induced phosphorylation of c-Met, ERK1/2 and AKT in a dose-dependent manner. Specific inhibitors on MEK and PI3K inhibited the hepatocyte growth factor-induced expression of vascular endothelial growth factor in colorectal carcinoma cells.Conclusion This present study indicates that hepatocyte growth factor upregulates the expression of vascular endothelial growth factor in colorectal carcinoma cells via the MEK/ERK and PI3K/AKT signaling pathways.

  8. Membrane trafficking and organelle biogenesis in Giardia lamblia: use it or lose it.

    Science.gov (United States)

    Faso, Carmen; Hehl, Adrian B

    2011-04-01

    The secretory transport capacity of Giardia trophozoites is perfectly adapted to the changing environment in the small intestine of the host and is able to deploy essential protective surface coats as well as molecules which act on epithelia. These lumen-dwelling parasites take up nutrients by bulk endocytosis through peripheral vesicles or by receptor-mediated transport. The environmentally-resistant cyst form is quiescent but poised for activation following stomach passage. Its versatility and fidelity notwithstanding, the giardial trafficking systems appear to be the product of a general secondary reduction process geared towards minimization of all components and machineries identified to date. Since membrane transport is directly linked to organelle biogenesis and maintenance, less complexity also means loss of organelle structures and functions. A case in point is the Golgi apparatus which is missing as a steady-state organelle system. Only a few basic Golgi functions have been experimentally demonstrated in trophozoites undergoing encystation. Similarly, mitochondrial remnants have reached a terminally minimized state and appear to be functionally restricted to essential iron-sulfur protein maturation processes. Giardia's minimized organization combined with its genetic tractability provides unique opportunities to study basic principles of secretory transport in an uncluttered cellular environment. Not surprisingly, Giardia is gaining increasing attention as a model for the investigation of gene regulation, organelle biogenesis, and export of simple but highly protective cell wall biopolymers, a hallmark of all perorally transmitted protozoan and metazoan parasites. PMID:21296082

  9. Cyclovirobuxine D Attenuates Doxorubicin-Induced Cardiomyopathy by Suppression of Oxidative Damage and Mitochondrial Biogenesis Impairment

    Directory of Open Access Journals (Sweden)

    Qian Guo

    2015-01-01

    Full Text Available The clinical application of doxorubicin (DOX is compromised by its cardiac toxic effect. Cyclovirobuxine D (CVB-D is a steroid alkaloid extracted from a traditional Chinese medicine, Buxus microphylla. Our results showed that CVB-D pretreatment markedly attenuated DOX-induced cardiac contractile dysfunction and histological alterations. By using TUNEL assay and western blot analysis, we found that CVB-D pretreatment reduced DOX-induced apoptosis of myocardial cells and mitochondrial cytochrome c release to cytosol. CVB-D pretreatment ameliorated DOX-induced cardiac oxidative damage including lipid peroxidation and protein carbonylation and a decrease in the ratio of reduced glutathione (GSH to oxidized glutathione (GSSG. Moreover, CVB-D was found to prevent DOX-induced mitochondrial biogenesis impairment as evidenced by preservation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α and nuclear respiratory factor 1 (NRF1, as well as mitochondrial DNA copy number. These findings demonstrate that CVB-D protects against DOX-induced cardiomyopathy, at least in part, by suppression of oxidative damage and mitochondrial biogenesis impairment.

  10. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development.

    Science.gov (United States)

    Kobayashi, Koichi

    2016-07-01

    The lipid bilayer of the thylakoid membrane in plant chloroplasts and cyanobacterial cells is predominantly composed of four unique lipid classes; monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG). MGDG and DGDG are uncharged galactolipids that constitute the bulk of thylakoid membrane lipids and provide a lipid bilayer matrix for photosynthetic complexes as the main constituents. The glycolipid SQDG and phospholipid PG are anionic lipids with a negative charge on their head groups. SQDG and PG substitute for each other to maintain the amount of total anionic lipids in the thylakoid membrane, with PG having indispensable functions in photosynthesis. In addition to biochemical studies, extensive analyses of mutants deficient in thylakoid lipids have revealed important roles of these lipids in photosynthesis and thylakoid membrane biogenesis. Moreover, recent studies of Arabidopsis thaliana suggest that thylakoid lipid biosynthesis triggers the expression of photosynthesis-associated genes in both the nucleus and plastids and activates the formation of photosynthetic machineries and chloroplast development. Meanwhile, galactolipid biosynthesis is regulated in response to chloroplast functionality and lipid metabolism at transcriptional and post-translational levels. This review summarizes the roles of thylakoid lipids with their biosynthetic pathways in plants and discusses the coordinated regulation of thylakoid lipid biosynthesis with the development of photosynthetic machinery during chloroplast biogenesis. PMID:27114097

  11. Roles of Oxidative Stress, Apoptosis, PGC-1α and Mitochondrial Biogenesis in Cerebral Ischemia

    Directory of Open Access Journals (Sweden)

    Ding-I Yang

    2011-10-01

    Full Text Available The primary physiological function of mitochondria is to generate adenosine triphosphate through oxidative phosphorylation via the electron transport chain. Overproduction of reactive oxygen species (ROS as byproducts generated from mitochondria have been implicated in acute brain injuries such as stroke from cerebral ischemia. It was well-documented that mitochondria-dependent apoptotic pathway involves pro- and anti-apoptotic protein binding, release of cytochrome c, leading ultimately to neuronal death. On the other hand, mitochondria also play a role to counteract the detrimental effects elicited by excessive oxidative stress. Recent studies have revealed that oxidative stress and the redox state of ischemic neurons are also implicated in the signaling pathway that involves peroxisome proliferative activated receptor-γ (PPARγ co-activator 1α (PGC1-α. PGC1-α is a master regulator of ROS scavenging enzymes including manganese superoxide dismutase 2 and the uncoupling protein 2, both are mitochondrial proteins, and may contribute to neuronal survival. PGC1-α is also involved in mitochondrial biogenesis that is vital for cell survival. Experimental evidence supports the roles of mitochondrial dysfunction and oxidative stress as determinants of neuronal death as well as endogenous protective mechanisms after stroke. This review aims to summarize the current knowledge focusing on the molecular mechanisms underlying cerebral ischemia involving ROS, mitochondrial dysfunction, apoptosis, mitochondrial proteins capable of ROS scavenging, and mitochondrial biogenesis.

  12. The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis.

    Science.gov (United States)

    Domenech, Pilar; Reed, Michael B; Dowd, Cynthia S; Manca, Claudia; Kaplan, Gilla; Barry, Clifton E

    2004-05-14

    To study the role of MmpL8-mediated lipid transport in sulfatide biogenesis, we insertionally inactivated the mmpL8 gene in Mycobacterium tuberculosis. Characterization of this strain showed that the synthesis of mature sulfolipid SL-1 was interrupted and that a more polar sulfated molecule, termed SL-N, accumulated within the cell. Purification of SL-N and structural analysis identified this molecule as a family of 2,3-diacyl-alpha,alpha'-D-trehalose-2'-sulfates. This structure suggests that transport and biogenesis of SL-1 are coupled and that the final step in sulfatide biosynthesis may be the extra-cellular esterification of two trehalose 6-positions with hydroxyphthioceranic acids. To assess the effect of the loss of this anionic surface lipid on virulence, we infected mice via aerosol with the MmpL8 mutant and found that, although initial replication rates and containment levels were identical, compared with the wild type, a significant attenuation of the MmpL8 mutant strain in time-to-death was observed. Early in infection, differential expression of cytokines and cytokine receptors revealed that the mutant strain less efficiently suppresses key indicators of a Th1-type immune response, suggesting an immunomodulatory role for sulfatides in the pathogenesis of tuberculosis. PMID:15001577

  13. Structure of BamA, an essential factor in outer membrane protein biogenesis.

    Science.gov (United States)

    Albrecht, Reinhard; Schütz, Monika; Oberhettinger, Philipp; Faulstich, Michaela; Bermejo, Ivan; Rudel, Thomas; Diederichs, Kay; Zeth, Kornelius

    2014-06-01

    Outer membrane protein (OMP) biogenesis is an essential process for maintaining the bacterial cell envelope and involves the β-barrel assembly machinery (BAM) for OMP recognition, folding and assembly. In Escherichia coli this function is orchestrated by five proteins: the integral outer membrane protein BamA of the Omp85 superfamily and four associated lipoproteins. To unravel the mechanism underlying OMP folding and insertion, the structure of the E. coli BamA β-barrel and P5 domain was determined at 3 Å resolution. These data add information beyond that provided in the recently published crystal structures of BamA from Haemophilus ducreyi and Neisseria gonorrhoeae and are a valuable basis for the interpretation of pertinent functional studies. In an `open' conformation, E. coli BamA displays a significant degree of flexibility between P5 and the barrel domain, which is indicative of a multi-state function in substrate transfer. E. coli BamA is characterized by a discontinuous β-barrel with impaired β1-β16 strand interactions denoted by only two connecting hydrogen bonds and a disordered C-terminus. The 16-stranded barrel surrounds a large cavity which implies a function in OMP substrate binding and partial folding. These findings strongly support a mechanism of OMP biogenesis in which substrates are partially folded inside the barrel cavity and are subsequently released laterally into the lipid bilayer. PMID:24914988

  14. MIWI2 and MILI Have Differential Effects on piRNA Biogenesis and DNA Methylation

    Directory of Open Access Journals (Sweden)

    Sergei A. Manakov

    2015-08-01

    Full Text Available In developing male germ cells, prospermatogonia, two Piwi proteins, MILI and MIWI2, use Piwi-interacting RNA (piRNA guides to repress transposable element (TE expression and ensure genome stability and proper gametogenesis. In addition to their roles in post-transcriptional TE repression, both proteins are required for DNA methylation of TE sequences. Here, we analyzed the effect of Miwi2 deficiency on piRNA biogenesis and transposon repression. Miwi2 deficiency had only a minor impact on piRNA biogenesis; however, the piRNA profile of Miwi2-knockout mice indicated overexpression of several LINE1 TE families that led to activation of the ping-pong piRNA cycle. Furthermore, we found that MILI and MIWI2 have distinct functions in TE repression in the nucleus. MILI is responsible for DNA methylation of a larger subset of TE families than MIWI2 is, suggesting that the proteins have independent roles in establishing DNA methylation patterns.

  15. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy

    Science.gov (United States)

    Woldt, Estelle; Sebti, Yasmine; Solt, Laura A.; Duhem, Christian; Lancel, Steve; Eeckhoute, Jérôme; Hesselink, Matthijs K.C.; Paquet, Charlotte; Delhaye, Stéphane; Shin, Youseung; Kamenecka, Theodore M.; Schaart, Gert; Lefebvre, Philippe; Nevière, Rémi; Burris, Thomas P.; Schrauwen, Patrick; Staels, Bart; Duez, Hélène

    2013-01-01

    The nuclear receptor Rev-erb-α modulates hepatic lipid and glucose metabolism, adipogenesis and the inflammatory response in macrophages. We show here that Rev-erb-α is highly expressed in oxidative skeletal muscle and plays a role in mitochondrial biogenesis and oxidative function, in gain- and loss-of function studies. Rev-erb-α-deficiency in skeletal muscle leads to reduced mitochondrial content and oxidative function, resulting in compromised exercise capacity. This phenotype was recapitulated in isolated fibers and in muscle cells upon Rev-erbα knock-down, while Rev-erb-α over-expression increased the number of mitochondria with improved respiratory capacity. Rev-erb-α-deficiency resulted in deactivation of the Stk11–Ampk–Sirt1–Ppargc1-α signaling pathway, whereas autophagy was up-regulated, resulting in both impaired mitochondrial biogenesis and increased clearance. Muscle over-expression or pharmacological activation of Rev-erb-α increased respiration and exercise capacity. This study identifies Rev-erb-α as a pharmacological target which improves muscle oxidative function by modulating gene networks controlling mitochondrial number and function. PMID:23852339

  16. β-Hydroxy-β-methylbutyrate, mitochondrial biogenesis, and skeletal muscle health.

    Science.gov (United States)

    He, Xi; Duan, Yehui; Yao, Kang; Li, Fengna; Hou, Yongqing; Wu, Guoyao; Yin, Yulong

    2016-03-01

    The metabolic roles of mitochondria go far beyond serving exclusively as the major producer of ATP in tissues and cells. Evidence has shown that mitochondria may function as a key regulator of skeletal muscle fiber types and overall well-being. Maintaining skeletal muscle mitochondrial content and function is important for sustaining health throughout the lifespan. Of great importance, β-hydroxy-β-methylbutyrate (HMB, a metabolite of L-leucine) has been proposed to enhance the protein deposition and efficiency of mitochondrial biogenesis in skeletal muscle, as well as muscle strength in both exercise and clinical settings. Specifically, dietary supplementation with HMB increases the gene expression of peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α), which represents an upstream inducer of genes of mitochondrial metabolism, coordinates the expression of both nuclear- and mitochondrion-encoded genes in mitochondrial biogenesis. Additionally, PGC-1α plays a key role in the transformation of skeletal muscle fiber type, leading to a shift toward type I muscle fibers that are rich in mitochondria and have a high capacity for oxidative metabolism. As a nitrogen-free metabolite, HMB holds great promise to improve skeletal muscle mass and function, as well as whole-body health and well-being of animals and humans. PMID:26573541

  17. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    International Nuclear Information System (INIS)

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors

  18. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Carol Ann, E-mail: carol.greene@auckland.ac.nz; Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  19. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  20. Transfection of gene Livin α/β into A549 cells and separate effect on the cell growth

    Institute of Scientific and Technical Information of China (English)

    SUN Jian-guo; LIAO Rong-xia; CHEN Zheng-tang; WANG Zhi-xin; ZHANG Qing; HU Yi-de; WANG Dong-lin

    2005-01-01

    Objective:To express two Livin isoforms (Livin α & β genes) with transfection techniques in A549 cell line respectively in order to observe their effect on growth of cell line. Methods:Two eukaryotic expression vectors of Livin, pcDNA3.1-Livin α & β, were transfected into A549 cell line by electroporation. Then G418-resistant clones were screened. RT-PCR, Northern blot and immunofluorescence cytochemistry were used to detect Livin α & β expression level in the transfected cells. Finally, observation of cell morphology, growth curve assay and colony formation analysis were performed to explore the effect of Livin on growth of the cells. Results:Livin α & β were expressed in transfected A549 cells, and induced a faster cell growth, shorter doubling time and stronger cell colony forming ability, yet had no morphology change.Conclusion:Both isoforms can accelerate the growth of A549 cells, indicating a close relationship between Livin expression and the genesis and development of lung cancer. The expression of Livin α & β in A549 cells provides basis for further study of their different biological functions of anti-apoptosis and of their role in lung cancer cell resistance to radiotherapy and chemotherapy.

  1. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  2. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  3. Perfluorooctanoic acid stimulated mitochondrial biogenesis and gene transcription in rats

    International Nuclear Information System (INIS)

    Perfluorooctanoic acid (PFOA), used in the production of non-stick surface compounds, exhibits a worldwide distribution in the serum of humans and wildlife. In rodents PFOA transactivates PPARα and PPARγ nuclear receptors and increases mitochondrial DNA (mtDNA) copy number, which may be critical to the altered metabolic state of affected animals. A key regulator of mitochondrial biogenesis and transcription of mitochondrial genes is the PPARγ coactivator-1α (Pgc-1α) protein. The purpose of this study was to determine if Pgc-1α is implicated in the stimulation of mitochondrial biogenesis that occurs following the treatment of rats with PFOA. Livers from adult male Sprague-Dawley rats that received a 30 mg/kg daily oral dose of PFOA for 28 days were used for all experiments. Analysis of mitochondrial replication and transcription was performed by real time PCR, and proteins were detected using western blotting. PFOA treatment caused a transcriptional activation of the mitochondrial biogenesis pathway leading to a doubling of mtDNA copy number. Further, transcription of OXPHOS genes encoded by mtDNA was 3-4 times greater than that of nuclear encoded genes, suggestive of a preferential induction of mtDNA transcription. Western blot analysis revealed an increase in Pgc-1α, unchanged Tfam and decreased Cox II and Cox IV subunit protein expression. We conclude that PFOA treatment in rats induces mitochondrial biogenesis at the transcriptional level with a preferential stimulation of mtDNA transcription and that this occurs by way of activation of the Pgc-1α pathway. Implication of the Pgc-1α pathway is consistent with PPARγ transactivation by PFOA and reveals new understanding and possibly new critical targets for assessing or averting the associated metabolic disease.

  4. Regulation of chloroplast biogenesis: the immutans mutant of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Rodermel, Steven

    2015-11-16

    The immutans (im) variegation mutant of Arabidopsis is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GIGANTEA (GI), a central component of the circadian clock that plays a poorly-understood role in diverse plant developmental processes. imgi2 mutants are late-flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a developmental-specific de-repression of cytokinin signaling that involves crosstalk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, sex1, perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GIGANTEA and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.

  5. Altered Endosome Biogenesis in Prostate Cancer has Biomarker Potential

    OpenAIRE

    Johnson, Ian R D; Parkinson-Lawrence, Emma J.; Shandala, Tetyana; Weigert, Roberto; Lisa M Butler; Brooks, Doug A.

    2014-01-01

    Prostate cancer is the second most common form of cancer in males, affecting one in eight men by the time they reach the age of 70. Current diagnostic tests for prostate cancer have significant problems with both false negatives and false positives, necessitating the search for new molecular markers. A recent investigation of endosomal and lysosomal proteins revealed that the critical process of endosomal biogenesis might be altered in prostate cancer. Here, a panel of endosomal markers was e...

  6. Mitochondria biogenesis and the development of diabetic retinopathy

    OpenAIRE

    dos Santos, Julia M.; Tewari, Shikha; Goldberg, Andrew F. X.; Kowluru, Renu A.

    2011-01-01

    Retinal mitochondria become dysfunctional and their DNA (mtDNA) is damaged in diabetes. Biogenesis of mitochondria DNA is tightly controlled by nuclear-mitochondrial transcriptional factors, and translocation of transcription factor A (TFAM) to the mitochondria is essential for transcription and replication. Our aim is to investigate the effect of diabetes on nuclear-mitochondrial communication in the retina, and its role in the development of retinopathy. Damage of mtDNA, copy number and bio...

  7. Ca-alginate hydrogel mechanical transformations--the influence on yeast cell growth dynamics.

    Science.gov (United States)

    Pajić-Lijaković, Ivana; Plavsić, Milenko; Bugarski, Branko; Nedović, Viktor

    2007-05-01

    A mathematical model was formulated to describe yeast cell growth within the Ca-alginate microbead during air-lift bioreactor cultivation. Model development was based on experimentally obtained data for the intra-bead cell concentration profile, after reached the equilibrium state, as well as, total yeast cell concentration per microbed and microbead volume as function of time. Relatively uniform cell concentration in the carrier matrix indicated that no internal nutrient diffusion limitations, but microenvironmental restriction, affected dominantly the dynamics of cell growth. Also interesting phenomenon of very different rates of cell number growth during cultivation is observed. After some critical time, the growth rate of cell colonies decreased drastically, but than suddenly increased again under all other experimental condition been the same. It is interpreted as disintegration of gel network and opening new free space for growth of cell clusters. These complex phenomena are modeled using the thermodynamical, free energy formalism. The particular form of free energy functional is proposed to describe various kinds of interactions, which affected the dynamics of cell growth and cause pseudo-phase transition of hydrogel. The good agreement of experimentally obtained data and model predictions are obtained. In that way the model provides both, the quantitative tools for further technological optimization of the process and deeper insight into dynamics of cell growth mechanism. PMID:17331608

  8. Evidence for osmoregulation of cell growth and buoyant density in Escherichia coli.

    OpenAIRE

    Baldwin, W W; Kubitschek, H. E.

    1984-01-01

    The buoyant density of cells of Escherichia coli B/r NC32 increased with the osmolarity of the growth medium. Growth rate and its variability were also dependent upon the osmolarity of the medium. Maximum growth rates and minimum variability of these rates were obtained in Luria broth by addition of NaCl to a concentration of about 0.23 M.

  9. Rice Coleoptile Growth under Water and in Air-Possible Effect of Buoyancy on Growth and Cell Walls

    OpenAIRE

    Kah-Siew, Tan; Takayuki, Hoson; Seiichiro, Kamisaka; Yoshio, Masuda

    1992-01-01

    Maximum growth was achieved in rice coleoptiles (Oryza sativa L. cv. Sasanishiki) grown under water; they reached maximum length of 81.2 mm on day 5. The maximum length of coleoptiles grown in air or under water with air bubbling was 12.4 mm and 23.5 mm in day 5,respectively. Differences in coleoptile growth between air bubbling and air conditions, namely approximately 11 mm at day 5,could be due to buoyancy effect under water. Promoted growth under water was due to a decrease in cell wall ex...

  10. The miRNA biogenesis in marine bivalves.

    Science.gov (United States)

    Rosani, Umberto; Pallavicini, Alberto; Venier, Paola

    2016-01-01

    Small non-coding RNAs include powerful regulators of gene expression, transposon mobility and virus activity. Among the various categories, mature microRNAs (miRNAs) guide the translational repression and decay of several targeted mRNAs. The biogenesis of miRNAs depends on few gene products, essentially conserved from basal to higher metazoans, whose protein domains allow specific interactions with dsRNA. Here, we report the identification of key genes responsible of the miRNA biogenesis in 32 bivalves, with particular attention to the aquaculture species Mytilus galloprovincialis and Crassostrea gigas. In detail, we have identified and phylogenetically compared eight evolutionary conserved proteins: DROSHA, DGCR8, EXP5, RAN, DICER TARBP2, AGO and PIWI. In mussels, we recognized several other proteins participating in the miRNA biogenesis or in the subsequent RNA silencing. According to digital expression analysis, these genes display low and not inducible expression levels in adult mussels and oysters whereas they are considerably expressed during development. As miRNAs play an important role also in the antiviral responses, knowledge on their production and regulative effects can shed light on essential molecular processes and provide new hints for disease prevention in bivalves. PMID:26989613

  11. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake.

    Science.gov (United States)

    Abels, Erik R; Breakefield, Xandra O

    2016-04-01

    Extracellular vesicles are a heterogeneous group of membrane-limited vesicles loaded with various proteins, lipids, and nucleic acids. Release of extracellular vesicles from its cell of origin occurs either through the outward budding of the plasma membrane or through the inward budding of the endosomal membrane, resulting in the formation of multivesicular bodies, which release vesicles upon fusion with the plasma membrane. The release of vesicles can facilitate intercellular communication by contact with or by internalization of contents, either by fusion with the plasma membrane or by endocytosis into "recipient" cells. Although the interest in extracellular vesicle research is increasing, there are still no real standards in place to separate or classify the different types of vesicles. This review provides an introduction into this expanding and complex field of research focusing on the biogenesis, nucleic acid cargo loading, content, release, and uptake of extracellular vesicles. PMID:27053351

  12. DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal.

    Science.gov (United States)

    Britton, Sébastien; Dernoncourt, Emma; Delteil, Christine; Froment, Carine; Schiltz, Odile; Salles, Bernard; Frit, Philippe; Calsou, Patrick

    2014-08-01

    We previously identified the heterogeneous ribonucleoprotein SAF-A/hnRNP U as a substrate for DNA-PK, a protein kinase involved in DNA damage response (DDR). Using laser micro-irradiation in human cells, we report here that SAF-A exhibits a two-phase dynamics at sites of DNA damage, with a rapid and transient recruitment followed by a prolonged exclusion. SAF-A recruitment corresponds to its binding to Poly(ADP-ribose) while its exclusion is dependent on the activity of ATM, ATR and DNA-PK and reflects the dissociation from chromatin of SAF-A associated with ongoing transcription. Having established that SAF-A RNA-binding domain recapitulates SAF-A dynamics, we show that this domain is part of a complex comprising several mRNA biogenesis proteins of which at least two, FUS/TLS and TAFII68/TAF15, exhibit similar biphasic dynamics at sites of damage. Using an original reporter for live imaging of DNA:RNA hybrids (R-loops), we show a transient transcription-dependent accumulation of R-loops at sites of DNA damage that is prolonged upon inhibition of RNA biogenesis factors exclusion. We propose that a new component of the DDR is an active anti-R-loop mechanism operating at damaged transcribed sites which includes the exclusion of mRNA biogenesis factors such as SAF-A, FUS and TAF15. PMID:25030905

  13. FEM simulations and experimental studies of the temperature field in a large diamond crystal growth cell

    Institute of Scientific and Technical Information of China (English)

    Li Zhan-Chang; Jia Xiao-Peng; Huang Guo-Feng; Hu Mei-Hua; Li Yong; Yan Bing-Min; Ma Hong-An

    2013-01-01

    We investigate the temperature field variation in the growth region of a diamond crystal in a sealed cell during the whole process of crystal growth by using the temperature gradient method (TGM) at high pressure and high temperature (HPHT).We employ both the finite element method (FEM) and in situ experiments.Simulation results show that the temperature in the center area of the growth cell continues to decrease during the process of large diamond crystal growth.These results are in good agreement with our experimental data,which demonstrates that the finite element model can successfully predict the temperature field variations in the growth cell.The FEM simulation will be useful to grow larger high-quality diamond crystal by using the TGM.Furthermore,this method will be helpful in designing better cells and improving the growth process of gem-quality diamond crystal.

  14. FEM simulations and experimental studies of the temperature field in a large diamond crystal growth cell

    International Nuclear Information System (INIS)

    We investigate the temperature field variation in the growth region of a diamond crystal in a sealed cell during the whole process of crystal growth by using the temperature gradient method (TGM) at high pressure and high temperature (HPHT). We employ both the finite element method (FEM) and in situ experiments. Simulation results show that the temperature in the center area of the growth cell continues to decrease during the process of large diamond crystal growth. These results are in good agreement with our experimental data, which demonstrates that the finite element model can successfully predict the temperature field variations in the growth cell. The FEM simulation will be useful to grow larger high-quality diamond crystal by using the TGM. Furthermore, this method will be helpful in designing better cells and improving the growth process of gem-quality diamond crystal. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. A single dividing cell population with imbalanced fate drives oesophageal tumour growth.

    Science.gov (United States)

    Frede, Julia; Greulich, Philip; Nagy, Tibor; Simons, Benjamin D; Jones, Philip H

    2016-09-01

    Understanding the cellular mechanisms of tumour growth is key for designing rational anticancer treatment. Here we used genetic lineage tracing to quantify cell behaviour during neoplastic transformation in a model of oesophageal carcinogenesis. We found that cell behaviour was convergent across premalignant tumours, which contained a single proliferating cell population. The rate of cell division was not significantly different in the lesions and the surrounding epithelium. However, dividing tumour cells had a uniform, small bias in cell fate so that, on average, slightly more dividing than non-dividing daughter cells were generated at each round of cell division. In invasive cancers induced by Kras(G12D) expression, dividing cell fate became more strongly biased towards producing dividing over non-dividing cells in a subset of clones. These observations argue that agents that restore the balance of cell fate may prove effective in checking tumour growth, whereas those targeting cycling cells may show little selectivity. PMID:27548914

  16. Function of Membrane-Associated Proteoglycans in the Regulation of Satellite Cell Growth.

    Science.gov (United States)

    Song, Yan

    2016-01-01

    Muscle growth can be divided into embryonic and postnatal periods. During the embryonic period, mesenchymal stem cells proliferate and differentiate to form muscle fibers. Postnatal muscle growth (hypertrophy) is characterized by the enlargement of existing muscle fiber size. Satellite cells (also known as adult myoblasts) are responsible for hypertrophy. The activity of satellite cells can be regulated by their extracellular matrix (ECM). The ECM is composed of collagens, proteoglycans, non-collagenous glycoproteins, cytokines and growth factors. Proteoglycans contain a central core protein with covalently attached glycosaminoglycans (GAGs: chondroitin sulfate, keratan sulfate, dermatan sulfate, and heparan sulfate) and N- or O-linked glycosylation chains. Membrane-associated proteoglycans attach to the cell membrane either through a glycosylphosphatidylinositol anchor or transmembrane domain. The GAGs can bind proteins including cytokines and growth factors. Both cytokines and growth factors play important roles in regulating satellite cell growth and development. Cytokines are generally associated with immune cells. However, cytokines can also affect muscle cell development. For instance, interleukin-6, tumor necrosis factor-α, and leukemia inhibitory factor have been reported to affect the proliferation and differentiation of satellite cells and myoblasts. Growth factors are potent stimulators or inhibitors of satellite cell proliferation and differentiation. The proper function of some cytokines and growth factors requires an interaction with the cell membrane-associated proteoglycans to enhance the affinity to bind to their primary receptors to initiate downstream signal transduction. This chapter is focused on the interaction of membrane-associated proteoglycans with cytokines and growth factors, and their role in satellite cell growth and development. PMID:27003397

  17. Mitochondrial DNA (mtDNA) biogenesis: visualization and duel incorporation of BrdU and EdU into newly synthesized mtDNA in vitro.

    Science.gov (United States)

    Lentz, Stephen I; Edwards, James L; Backus, Carey; McLean, Lisa L; Haines, Kristine M; Feldman, Eva L

    2010-02-01

    Mitochondria are key regulators of cellular energy and are the focus of a large number of studies examining the regulation of mitochondrial dynamics and biogenesis in healthy and diseased conditions. One approach to monitoring mitochondrial biogenesis is to measure the rate of mitochondrial DNA (mtDNA) replication. We developed a sensitive technique to visualize newly synthesized mtDNA in individual cells to study mtDNA replication within subcellular compartments of neurons. The technique combines the incorporation of 5-bromo-2-deoxyuridine (BrdU) and/or 5-ethynyl-2'-deoxyuridine (EdU) into mtDNA, together with a tyramide signal amplification protocol. Employing this technique, we visualized and measured mtDNA biogenesis in individual cells. The labeling procedure for EdU allows for more comprehensive results by allowing the comparison of its incorporation with other intracellular markers, because it does not require the harsh acid or enzyme digests necessary to recover the BrdU epitope. In addition, the utilization of both BrdU and EdU permits sequential pulse-chase experiments to follow the intracellular localization of mtDNA replication. The ability to quantify mitochondrial biogenesis provides an essential tool for investigating the alterations in mitochondrial dynamics involved in the pathogenesis of multiple cellular disorders, including neuropathies and neurodegenerative diseases. PMID:19875847

  18. Inhibition of human gastric carcinoma cell growth by atofluding derivative N3-o-toluyl-fluorouracil

    Institute of Scientific and Technical Information of China (English)

    Jian Liu; Wei Tang; Xian-Jun Qu; Wen-Fang Xu; Shu-Xiang Cui; Yong Zhou; Yun-Xia Yuan; Ming-Hui Chen; Ruo-Han Wang; Ruo-Yan Gai; Masatoshi Makuuchi

    2006-01-01

    AIM:To evaluate the growth inhibition efficacy of atofluding derivative N3-o-toluyl-fluorouracil (TFU)on human gastric carcinoma cell lines SGC-7901 and MKN-45.METHODS:Cell growth inhibition by TFU was measured by MTT and clonogenic assays without or with liver microsomal enzymes. Xenografts of cancer cells in nude mice were employed to study the anti-proliferative effects of TFU in vivo,RESULTS:TFU inhibited the growth of SGC-7901 and MKN-45 cells. However, the inhibitory effects of TFU on cell growth were not significant. The inhibition rates were enhanced in the presence of liver microsomal enzymes, ranging 4.73%-48.57% in SGC-7901 cells and 9.0%-62.02% in MKN-45 cells. In vivo, TFU delayed the growth of SGC-7901 and MKN-45 cells in nude mice. The inhibition rates were 40.49%, 63.24%, and 75.98% in SGC-7901 cells and 40.76%, 61.41%, and 82.07% in MKN-45 cells when the oral doses were 25, 50, and 100 mg/kg, respectively. TFU treatment was generally well tolerated by mice with less than 20% reduction in body weight.CONCLUSION:TFU inhibits the growth of human gastric carcinoma cells. The inhibition rates are increased in the presence of liver microsomal enzymes. The efficacy of TFU may be associated with the sustaining release of 5-fluorouracil (5-FU) mediated by the enzymes.

  19. Growth control of the eukaryote cell: a systems biology study in yeast

    Directory of Open Access Journals (Sweden)

    Castrillo Juan I

    2007-04-01

    Full Text Available Abstract Background Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Results Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. Conclusion This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for

  20. Identification and Characterization of the Nickel Uptake System for Urease Biogenesis in Streptococcus salivarius 57.I

    Science.gov (United States)

    Chen, Yi-Ywan M.; Burne, Robert A.

    2003-01-01

    Ureases are multisubunit enzymes requiring Ni2+ for activity. The low pH-inducible urease gene cluster in Streptococcus salivarius 57.I is organized as an operon, beginning with ureI, followed by ureABC (structural genes), and ureEFGD (accessory genes). Urease biogenesis also requires a high-affinity Ni2+ uptake system. By searching the partial genome sequence of a closely related organism, Streptococcus thermophilus LMG18311, three open reading frame (ORFs) homologous to those encoding proteins involved in cobalamin biosynthesis and cobalt transport (cbiMQO) were identified immediately 3′ to the ure operon. To determine whether these genes were involved in urease biogenesis by catalyzing Ni2+ uptake in S. salivarius, regions 3′ to ureD were amplified by PCRs from S. salivarius by using primers identical to the S. thermophilus sequences. Sequence analysis of the products revealed three ORFs. Reverse transcriptase PCR was used to demonstrate that the ORFs are transcribed as part of the ure operon. Insertional inactivation of ORF1 with a polar kanamycin marker completely abolished urease activity and the ability to accumulate 63Ni2+ during growth. Supplementation of the growth medium with NiCl2 at concentrations as low as 2.5 μM partially restored urease activity in the mutant. Both wild-type and mutant strains showed enhanced urease activity when exogenous Ni2+ was provided at neutral pH. Enhancement of urease activity by adding nickel was regulated at the posttranslational level. Thus, ORF1, ORF2, and ORF3 are part of the ure operon, and these genes, designated ureM, ureQ, and ureO, respectively, likely encode a Ni2+-specific ATP-binding cassette transporter. PMID:14617641

  1. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Hwang, Pyoung-Han [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Yi, Ho-Keun [Department of Biochemistry, School of Dentistry, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Nam, Sang-Yun [Department of Alternative Therapy, School of Alternative Medicine and Health Science, Jeonju University, Jeonju 561-712 (Korea, Republic of); Lee, Dae-Yeol, E-mail: leedy@chonbuk.ac.kr [Department of Pediatrics, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of); Research Institute of Clinical Medicine, School of Medicine, Chonbuk National University, Jeonju 561-712 (Korea, Republic of)

    2009-07-17

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  2. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    International Nuclear Information System (INIS)

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell growth was inhibited by anti-IGF-IR antibodies. c-myb overexpression resulted in a significant increase in the expression of IGF-I, IGF-II, and IGF-IR, and a decrease in IGFBP-3 expression. By contrast, disruption of c-myb function by DN-myb overexpression resulted in significant reduction of IGF-I, IGF-II, IGF-IR, and elevation of IGFBP-3 expression. In addition, exogenous IGFBP-3 inhibited the proliferation of K562 cells, and c-myb induced cell growth was blocked by IGFBP-3 overexpression in a dose-dependent manner. The growth-promoting effects of c-myb were mediated through two major intracellular signaling pathways, Akt and Erk. Activation of Akt and Erk by c-myb was completely blocked by IGF-IR and IGFBP-3 antibodies. These findings suggest that c-myb stimulates cell growth, in part, by regulating expression of the components of IGF-IGFBP axis in K562 cells. In addition, disruption of c-myb function by DN-myb may provide a useful strategy for treatment of leukemia.

  3. Small GTPase Rab40c associates with lipid droplets and modulates the biogenesis of lipid droplets.

    Directory of Open Access Journals (Sweden)

    Ran Tan

    Full Text Available The subcellular location and cell biological function of small GTPase Rab40c in mammalian cells have not been investigated in detail. In this study, we demonstrated that the exogenously expressed GFP-Rab40c associates with lipid droplets marked by neutral lipid specific dye Oil red or Nile red, but not with the Golgi or endosomal markers. Further examination demonstrated that Rab40c is also associated with ERGIC-53 containing structures, especially under the serum starvation condition. Rab40c is increasingly recruited to the surface of lipid droplets during lipid droplets formation and maturation in HepG2 cells. Rab40c knockdown moderately decreases the size of lipid droplets, suggesting that Rab40c is involved in the biogenesis of lipid droplets. Stimulation for adipocyte differentiation increases the expression of Rab40c in 3T3-L1 cells. Rab40c interacts with TIP47, and is appositionally associated with TIP47-labeled lipid droplets. In addition, over-expression of Rab40c causes the clustering of lipid droplets independent of its GTPase activity, but completely dependent of the intact SOCS box domain of Rab40c. In addition, Rab40c displayed self-interaction as well as interaction with TIP47 and the SOCS box is essential for its ability to induce clustering of lipid droplets. Our results suggest that Rab40c is a novel Rab protein associated with lipid droplets, and is likely involved in modulating the biogenesis of lipid droplets.

  4. The role of vascular endothelial growth factor in the tissue specific in vivo growth of prostate cancer cells.

    Science.gov (United States)

    Krupski, T; Harding, M A; Herce, M E; Gulding, K M; Stoler, M H; Theodorescu, D

    2001-01-01

    Despite the fact that cancer cells can be found in many vascular beds, continued growth of the metastatic tumor focus exhibits a significant degree of 'organ tropism', with only certain organs exhibiting the ravages of metastatic disease. Since a limiting factor to the growth of metastases beyond 2 mm in diameter, may be a lack of angiogenesis, we sought to determine whether tumor overexpression of vascular endothelial growth factor (VEGF), a potent angiogenic factor related to prostate cancer metastasis, is causally related to organ specific tumor growth in a prostate cancer xenograft model. LnCaP-C4-2 is a subline of the human prostate cancer cell line LnCaP which unlike its parent, has a predilection for growth in bone, a common site for human prostate cancer metastasis. LnCaP-C4-2, is tumorigenic when injected intrafemorally in mice but requires co-injection of stromal components (Matrigel) to be tumorigenic in the subcutaneous site. Because of this site-specific tumorigenicity profile and relatively low VEGF mRNA and protein expression, this line was transfected with a full length cDNA encoding the 165 isoform of VEGF. Cells either overexpressing or not expressing the transfected gene were selected for study in vivo and in vitro. Overexpression of VEGF did not seem to affect in vitro cell growth. Such overexpression did affect tumorigenicity and in vivo tumor growth rates when cells were inoculated in the subcutaneus site. Interestingly, the dependency of subcutaneous tumorigenicity on Matrigel co-inoculation was still observed in cells overexpressing VEGF. In contrast to the impact that VEGF overexpression has on subcutaneous tumorigenicity, no such effect was observed when cells were inoculated in orthotopic/prostate (primary) or intrafemoral (metastatic) sites. In view of the importance of tumor-stromal interactions in growth of xenografts, we sought to determine if the host strain is important to the observed tumorigenicity effects of VEGF overexpression

  5. Retinoic acid. Inhibition of the clonal growth of human myeloid leukemia cells.

    OpenAIRE

    Douer, D; Koeffler, H P

    1982-01-01

    Vitamin A and its analogues (retinoids) affect normal and malignant hematopoietic cells. We examined the effect of retinoids on the clonal growth in vitro of myeloid leukemia cells. Retinoic acid inhibited the clonal growth of the KG-1, acute myeloblastic leukemia, and the HL-60, acute promyelocytic leukemia, human cell lines. The KG-1 cells were extremely sensitive to retinoic acid, with 50% of the colonies inhibited by 2.4-nM concentrations of the drug. A 50% growth inhibition of HL-60 was ...

  6. Growth and by-product profiles of Kluyveromyces marxianus cells immobilized in foamed alginate.

    Science.gov (United States)

    Wilkowska, Agnieszka; Kregiel, Dorota; Guneser, Onur; Karagul Yuceer, Yonca

    2015-01-01

    The aim of this research was to study how the yeast cell immobilization technique influences the growth and fermentation profiles of Kluyveromyces marxianus cultivated on apple/chokeberry and apple/cranberry pomaces. Encapsulation of the cells was performed by droplet formation from a foamed alginate solution. The growth and metabolic profiles were evaluated for both free and immobilized cells. Culture media with fruit waste produced good growth of free as well as immobilized yeast cells. The fermentation profiles of K. marxianus were different with each waste material. The most varied aroma profiles were noted for immobilized yeast cultivated on apple/chokeberry pomace. PMID:25277269

  7. Research on the Structure of Fish Collagen Nanofibers Influenced Cell Growth

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2013-01-01

    Full Text Available Electrospinning is highlighted in biomaterials field. The structures of nanofibers depend on various parameters, which are related closely to the bioactivity of biomaterials. The aim of this research is to analyze the structure of fish collagen nanofibers and to propose the new criterion for cell growth. This paper focused on the flow rate of solvent during the electrospinning. Through the cell culture, the relationship of the structure and cell growth is investigated. The results obtained in this study provide an understanding of the behaviors of cell growth under different structure of fish collagen nanofibers scaffold.

  8. Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kanayo [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Sakaguchi, Minoru, E-mail: sakaguti@gly.oups.ac.jp [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Tanaka, Satoshi [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan); Yoshimoto, Tadashi [Department of Life Science, Setsunan University, 17-8 Ikeda-Nakamachi, Neyagawa, Osaka 572-8508 (Japan); Takaoka, Masanori [Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094 (Japan)

    2014-01-03

    Highlights: •We examined the effects of prolyl oligopeptidase (POP) inhibition on p53 null gastric cancer cell growth. •POP inhibition-induced cell growth suppression was associated with an increase in a quiescent G{sub 0} state. •POP might regulate the exit from and/or reentry into the cell cycle. -- Abstract: Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes post-proline peptide bonds in peptides that are <30 amino acids in length. We recently reported that POP inhibition suppressed the growth of human neuroblastoma cells. The growth suppression was associated with pronounced G{sub 0}/G{sub 1} cell cycle arrest and increased levels of the CDK inhibitor p27{sup kip1} and the tumor suppressor p53. In this study, we investigated the mechanism of POP inhibition-induced cell growth arrest using a human gastric cancer cell line, KATO III cells, which had a p53 gene deletion. POP specific inhibitors, 3-((4-[2-(E)-styrylphenoxy]butanoyl)-L-4-hydroxyprolyl)-thiazolidine (SUAM-14746) and benzyloxycarbonyl-thioprolyl-thioprolinal, or RNAi-mediated POP knockdown inhibited the growth of KATO III cells irrespective of their p53 status. SUAM-14746-induced growth inhibition was associated with G{sub 0}/G{sub 1} cell cycle phase arrest and increased levels of p27{sup kip1} in the nuclei and the pRb2/p130 protein expression. Moreover, SUAM-14746-mediated cell cycle arrest of KATO III cells was associated with an increase in the quiescent G{sub 0} state, defined by low level staining for the proliferation marker, Ki-67. These results indicate that POP may be a positive regulator of cell cycle progression by regulating the exit from and/or reentry into the cell cycle by KATO III cells.

  9. Extracellular vesicle–depleted fetal bovine and human sera have reduced capacity to support cell growth

    Directory of Open Access Journals (Sweden)

    Erez Eitan

    2015-03-01

    Full Text Available Background: Fetal bovine serum (FBS is the most widely used serum supplement for mammalian cell culture. It supports cell growth by providing nutrients, growth signals, and protection from stress. Attempts to develop serum-free media that support cell expansion to the same extent as serum-supplemented media have not yet succeeded, suggesting that FBS contains one or more as-yet-undefined growth factors. One potential vehicle for the delivery of growth factors from serum to cultured cells is extracellular vesicles (EVs. Methods: EV-depleted FBS and human serum were generated by 120,000g centrifugation, and its cell growth–supporting activity was measured. Isolated EVs from FBS were quantified and characterized by nanoparticle tracking analysis, electron microscopy, and protein assay. EV internalization into cells was quantified using fluorescent plate reader analysis and microscopy. Results: Most cell types cultured with EV-depleted FBS showed a reduced growth rate but not an increased sensitivity to the DNA-damaging agent etoposide and the endoplasmic reticulum stress–inducing chemical tunicamycin. Supplying cells with isolated FBS-derived EVs enhanced their growth. FBS-derived EVs were internalized by mouse and human cells wherein 65±26% of them interacted with the lysosomes. EV-depleted human serum also exhibited reduced cell growth–promoting activity. Conclusions: EVs play a role in the cell growth and survival-promoting effects of FBS and human serum. Thus, it is important to take the effect of EV depletion under consideration when planning EV extraction experiments and while attempting to develop serum-free media that support rapid cell expansion. In addition, these findings suggest roles for circulating EVs in supporting cell growth and survival in vivo.

  10. Cell growth stimulating effect of Ganoderma lucidum spores and their potential application for Chinese hamster ovary K1 cell cultivation.

    Science.gov (United States)

    Li, Ding; Zhong, Qi; Liu, Tingting; Wang, Jufang

    2016-06-01

    In this work, water-soluble extracts of Ganoderma lucidum spores (Gls), a Chinese medicinal herb that possesses cell growth stimulating function, were found to be an effective growth factor for Chinese hamster ovary (CHO) cell cultivation. The Gls extract was prepared and supplemented to CHO K1 cell culture media with various serum levels. Our results obtained from both the static culture and the spinner-flask suspension culture showed that use of small-amount Gls extract effectively promoted cell growth and suppressed cell apoptosis induced by serum deprivation with normal cell cycle maintained in a low-serum medium. The low-serum medium containing 1 % (v/v) fetal bovine serum (FBS) and 0.01 % (w/v) Gls extract showed a comparable performance on both cell growth and fusion protein productivity with the conventional CHO culture medium containing 10 % (v/v) FBS and a commercial serum-free medium. This is the first study of the potential of Gls extracts for use as an alternative cell growth factor and nutrient for CHO cells. The findings have presented a new approach to economic cultivation of CHO cells for therapeutic protein production. PMID:26921102

  11. Optimization of Dairy Sludge for Growth of Rhizobium Cells

    OpenAIRE

    Ashok Kumar Singh; Gauri Singh; Digvijay Gautam; Manjinder Kaur Bedi

    2013-01-01

    In this study dairy sludge was evaluated as an alternative cultivation medium for Rhizobium. Growth of bacterial strains at different concentrations of Dairy sludge was monitored. Maximum growth of all strains was observed at 60% Dairy sludge concentration. At 60% optical density (OD) values are 0.804 for Rhizobium trifolii (MTCC905), 0.825 for Rhizobium trifolii (MTCC906), and 0.793 for Rhizobium meliloti (MTCC100). Growth pattern of strains was observed at 60% Dairy sludge along with differ...

  12. MiRNA Biogenesis and Intersecting Pathways

    DEFF Research Database (Denmark)

    Ben Chaabane, Samir

    MicroRNAs (miRNAs) are small non-coding RNAs that function as guide molecules in RNA silencing. Plant miRNAs are critical for plant growth, development and stress response, and are processed in Arabidopsis from primary miRNA transcripts (pri-miRNAs) by the endonuclease activity of the DICER-LIKE1...... (DCL1) protein complex. Mature miRNAs are loaded onto and guide an ARGONAUTE1 (AGO1) effector complex, leading to target mRNA silencing. The miRNA pathway is under tight temporal and spatial control and is regulated at multiple levels from transcription and precursor processing through miRNA mode of...... action and turnover. During my PhD period we have shown that the STA1 protein, a factor for pre-mRNA splicing and mRNA stability, is specifically involved in the splicing of pri-miRNAs and in the modulation of DCL1 transcript levels. Also, we established a novel and essential regulatory network in which...

  13. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, T.; Urade, M.; Sakuda, M.; Miyazaki, T.

    1986-05-01

    We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growth of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of /sup 125/I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound /sup 125/I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients.

  14. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection

    International Nuclear Information System (INIS)

    We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growth of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of 125I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound 125I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients

  15. Gremlin is overexpressed in lung adenocarcinoma and increases cell growth and proliferation in normal lung cells.

    Directory of Open Access Journals (Sweden)

    Michael S Mulvihill

    Full Text Available BACKGROUND: Gremlin, a member of the Dan family of BMP antagonists, is a glycosylated extracellular protein. Previously Gremlin has been shown to play a role in dorsal-ventral patterning, in tissue remodeling, and recently in angiogenesis. Evidence has previously been presented showing both over- and under-expression of Gremlin in different tumor tissues. Here, we sought to quantify expression of Gremlin in cancers of the lung and performed in vitro experiments to check whether Gremlin promotes cell growth and proliferation. METHODOLOGY/PRINCIPAL FINDINGS: Expression of Gremlin in 161 matched tumor and normal lung cancer specimens is quantified by quantitative real-time PCR and protein level is measured by immunohistochemistry. GREM1 was transfected into lung fibroblast and epithelial cell lines to assess the impact of overexpression of Gremlin in vitro. RESULTS: Lung adenocarcinoma but not squamous cell carcinoma shows a significant increase in Gremlin expression by mRNA and protein level. Lung fibroblast and epithelial cell lines transfected with GREM1 show significantly increased cell proliferation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that Gremlin acts in an oncogenic manner in lung adenocarcinoma and could hold promise as a new diagnostic marker or potential therapeutic target in lung AD or general thoracic malignancies.

  16. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth

    DEFF Research Database (Denmark)

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M;

    2009-01-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CC...

  17. Introduction of exogenous growth hormone receptors augments growth hormone-responsive insulin biosynthesis in rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, N; Møldrup, A; Serup, P;

    1990-01-01

    The stimulation of insulin biosynthesis in the pancreatic insulinoma cell line RIN5-AH by growth hormone (GH) is initiated by GH binding to specific receptors. To determine whether the recently cloned rat hepatic GH receptor is able to mediate the insulinotropic effect of GH, we have transfected ...

  18. Amphiregulin enhances regulatory T cell suppressive function via the epidermal growth factor receptor

    OpenAIRE

    Zaiss, Dietmar M.W.; van Loosdregt, Jorg; Gorlani, Andrea; Bekker, Cornelis P.J.; Gröne, Andrea; Sibilia, Maria; van Bergen en Henegouwen, Paul M. P.; Roovers, Rob C.; Coffer, Paul J.; Sijts, Alice J.A.M.

    2013-01-01

    Epidermal growth factor receptor (EGFR) is known to be critically involved in tissue development and homeostasis as well as in the pathogenesis of cancer. Here we showed that Foxp3+ regulatory T (Treg) cells express EGFR under inflammatory conditions. Stimulation with the EGF-like growth factor Amphiregulin (AREG) markedly enhanced Treg cell function in vitro, and in a colitis and tumor vaccination model we showed that AREG was critical for efficient Treg cell function in vivo. In addition, m...

  19. Expression of a hyperactive androgen receptor leads to androgen-independent growth of prostate cancer cells.

    Science.gov (United States)

    Hsieh, Chen-Lin; Cai, Changmeng; Giwa, Ahmed; Bivins, Aaronica; Chen, Shao-Yong; Sabry, Dina; Govardhan, Kumara; Shemshedini, Lirim

    2008-07-01

    Cellular changes that affect the androgen receptor (AR) can cause prostate cancer to transition from androgen dependent to androgen independent, which is usually lethal. One common change in prostate tumors is overexpression of the AR, which has been shown to lead to androgen-independent growth of prostate cancer cells. This led us to hypothesize that expression of a hyperactive AR would be sufficient for androgen-independent growth of prostate cancer cells. To test this hypothesis, stable lune cancer prostate (LNCaP) cell lines were generated, which express a virion phosphoprotein (VP)16-AR hybrid protein that contains full-length AR fused to the strong viral transcriptional activation domain VP16. This fusion protein elicited as much as a 20-fold stronger transcriptional activity than the natural AR. Stable expression of VP16-AR in LNCaP cells yielded androgen-independent cell proliferation, while under the same growth conditions the parental LNCaP cells exhibited only androgen-dependent growth. These results show that expression of a hyperactive AR is sufficient for androgen-independent growth of prostate cancer cells. To study the molecular basis of this enhanced growth, we measured the expression of soluble guanylyl cyclase-alpha1 (sGCalpha1), a subunit of the sGC, an androgen-regulated gene that has been shown to be involved in prostate cancer cell growth. Interestingly, the expression of sGCalpha1 is androgen independent in VP16-AR-expressing cells, in contrast to its androgen-induced expression in control LNCaP cells. RNA(I)-dependent inhibition of sGCalpha1 expression resulted in significantly reduced proliferation of VP16-AR cells, implicating an important role for sGCalpha1 in the androgen-independent growth of these cells. PMID:18469090

  20. Fatty acid control of growth of human cervical and endometrial cancer cells.

    OpenAIRE

    Gleeson, R P; Ayub, M.; Wright, J T; Wood, C B; Habib, N.A.; Soutter, W P; Sullivan, M. H.; White, J. O.

    1990-01-01

    Stearic acid and iodo-stearic and inhibited cell growth in a cervical cancer cell line (HOG-1) in a dose-related manner, with a half maximal effect at 50 microM stearic acid. Addition of oleic acid abrogated the effect of stearic acid. EGF-stimulated DNA synthesis and growth of HOG-1 cells was inhibited in the presence of stearic acid without any apparent effect on EGF receptor number or affinity.

  1. Influence of growth conditions on cell surface hydrophobicity of Candida albicans and Candida glabrata.

    OpenAIRE

    Hazen, K C; Plotkin, B. J.; Klimas, D M

    1986-01-01

    The effect of cultural conditions on cell surface hydrophobicity of Candida albicans and Candida glabrata was tested. C. albicans cells grown at room temperature were more hydrophobic than cells grown at 37 degrees C. No consistent pattern was observed with C. glabrata. Relative hydrophobicity was found to vary with the growth phase and growth medium for both species. The implications for pathogenesis studies are discussed.

  2. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth

    OpenAIRE

    Müller, Kerstin; Linkies, Ada; Vreeburg, Robert A. M.; Fry, Stephen C; Krieger-Liszkay, Anja; Leubner-Metzger, Gerhard

    2009-01-01

    Loosening of cell walls is an important developmental process in key stages of plant life cycles, including seed germination, elongation growth and fruit ripening. Here we report direct in vivo evidence for hydroxyl radical (•OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance (EPR)-spectroscopy to show that •OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativ...

  3. Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF - opioid growth factor receptor (OGFr axis

    Directory of Open Access Journals (Sweden)

    Donahue Renee N

    2009-10-01

    Full Text Available Abstract Background Carcinoma of the thyroid gland is an uncommon cancer, but the most frequent malignancy of the endocrine system. Most thyroid cancers are derived from the follicular cell. Follicular carcinoma (FTC is considered more malignant than papillary thyroid carcinoma (PTC, and anaplastic thyroid cancer (ATC is one of the most lethal human cancers. Opioid Growth Factor (OGF; chemical term - [Met5]-enkephalin and its receptor, OGFr, form an inhibitory axis regulating cell proliferation. Both the peptide and receptor have been detected in a wide variety of cancers, and OGF is currently used clinically as a biotherapy for some non-thyroid neoplasias. This study addressed the question of whether the OGF-OGFr axis is present and functional in human thyroid follicular cell - derived cancer. Methods Utilizing human ATC (KAT-18, PTC (KTC-1, and FTC (WRO 82-1 cell lines, immunohistochemistry was employed to ascertain the presence and location of OGF and OGFr. The growth characteristics in the presence of OGF or the opioid antagonist naltrexone (NTX, and the specificity of opioid peptides for proliferation of ATC, were established in KAT-18 cells. Dependence on peptide and receptor were investigated using neutralization studies with antibodies and siRNA experiments, respectively. The mechanism of peptide action on DNA synthesis and cell survival was ascertained. The ubiquity of the OGF-OGFr axis in thyroid follicular cell-derived cancer was assessed in KTC-1 (PTC and WRO 82-1 (FTC tumor cells. Results OGF and OGFr were present in KAT-18 cells. Concentrations of 10-6 M OGF inhibited cell replication up to 30%, whereas NTX increased cell growth up to 35% relative to cultures treated with sterile water. OGF treatment reduced cell number by as much as 38% in KAT-18 ATC in a dose-dependent and receptor-mediated manner. OGF antibodies neutralized the inhibitory effects of OGF, and siRNA knockdown of OGFr negated growth inhibition by OGF. Cell survival

  4. Influence of Carbon Monoxide on Growth and Apoptosis of Human Umbilical Artery Smooth Muscle Cells and Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Yajuan Li, Hai Wang, Bin Yang, Jichen Yang, Xiuyan Ruan, Yadong Yang, Edward K. Wakeland, Quanzhen Li, Xiangdong Fang

    2012-01-01

    Full Text Available Carbon monoxide (CO is a vasoactive molecule that is generated by vascular cells as a byproduct of heme catabolism and it plays an important physiological role in circulation system. In order to investigate whether exogenous CO can mediate the growth and proliferation of vascular cells, in this study, we used 250 parts per million (ppm of CO to treat human umbilical artery smooth muscle cell (hUASMC and human umbilical vein endothelial cell (HuVEC and further evaluated the growth and apoptosis status of SMC and HuVEC. After SMC and HuVEC were exposed to CO for 7-day, the growth of SMC and HuVEC was significantly inhibited by CO in vitro on day 5 of CO exposure. And CO blocked cell cycle progress of SMC and HuVEC, more SMC and HuVEC stagnated at G0/G1 phase by flow cytometric analysis. Moreover, CO treatment inhibited SMC and HuVEC apoptosis caused by hydrogen peroxide through decreasing caspase 3 and 9 activities. To confirm the molecular mechanism of CO effect on SMC and HuVEC growth, we compared the gene expression profile in SMC and CO-treated SMC, HuVEC and CO-treated HuVEC. By microarray analysis, we found the expression level of some genes which are related to cell cycle regulation, cell growth and proliferation, and apoptosis were changed during CO exposure. We further identified that the down-regulated CDK2 contributed to arresting cell growth and the down-regulated Caspase 3 (CASP3 and Caspase 9 (CASP9 were associated with the inhibition of cell apoptosis. Therefore, CO exerts a certain growth arrest on SMC and HuVEC by inhibiting cell cycle transition from G0/G1 phase to S phase and has regulatory effect on cell apoptosis by regulating the expression of apoptosis-associated genes.

  5. Effects of EPO Gene on Growth and Apoptosis of Lung Adenocarcinoma Cell Line A549

    Directory of Open Access Journals (Sweden)

    Jianqing WU

    2009-09-01

    Full Text Available Background and objective Published data on the association between erythropoietin (EPO and cancer cell are inconclusive. The aim of this study is to investigate the effect of erythropoietin (EPO on the growth and survival of lung adenocarcinoma cell line A549. Methods The recombinant plasmid pcDNA3.1(--hEPO was constructed and transfected into A549 cells by liposome protoco1. The Levels of EPO in culture supernatant were detected by ELISA. Effects of EPO gene on growth and survival of the transfected cells were evaluated by MTT assay and flow cytometry (FCM . Levels of vascular endothelial growth factor (VEGF were also evaluated by ELISA. Results The recombinant eukaryotic expression vector pcDNA3.1(--hEPO was successfully constructed. The growth of cells in hEPO transfected cells was significantly inhibited after transfection (P < 0.01. More cells were blocked in S phase in hEPO transfected group compared with control group (P < 0.05, and the apoptotic rate were also significantly higher than those of their controls (P < 0.01. Levels of VEGF in hEPO transfected cells were significantly lower than controls (P < 0.01. Conclusion Exogenous EPO gene expression in A549 cells can induce cell growth inhibition and apoptosis of A549 cells, and expression of VEGF can also be inhibited.

  6. Effect of tumor suppressor in lung cancer-1 on growth inhibition of MG63 cell line

    Institute of Scientific and Technical Information of China (English)

    Li Qin; Yang Lin; Wenjian Chen; Wentao Zhu

    2013-01-01

    Objective: The aim of this study was to establish the osteosarcoma cell sublines which stably expressing tumor suppressor in lung cancer-1 (TSLC1) gene and evaluate its effect on growth inhibition of human osteosarcoma cell line MG63. Methods: The recombinant plasmid pCI-TSLC1 was stably transfected into MG63 cells with Lipofectamine 2000. The positive clones were developed by selection by G418. Biological characteristics of one of the 6 cell lines which highly expressing TSLC1, namely, the M8T were studied. Cell growth was analyzed with MTT assay. 2 × 107 cells suspended in 0.2 mL phosphate buffered saline (PBS) were injected into the two flanks of 5-6-week-old female BALB/C nu/nu athymic nude mice. The volumes of subcutaneous of tumor growth were evaluated and calculated by the formula V= Length × Width × Height × 0.5 once a week. Results: The M8T cell subline which stably expressing TSLC1 was characterized by Western blot. The genetic stability and purity of M8T cells were stable. TSLC1 significantly suppressed the growth of M8T cells in vitro. Moreover, the tumorigenicity of M8T cells was suppressed in vivo. Conclusion: The osteosarcoma cell sublines M8T which stably expressing TSLC1 had been successfully established. The ability of growth and metastasis of M8T was significantly suppressed both in vitro and in vivo.

  7. Effects of transforming growth interacting factor on biological behaviors of gastric carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Zhong-Liang Hu; Ji-Fang Wen; De-Sheng Xiao; Hui Zhen; Chun-Yan Fu

    2005-01-01

    AIM:Transforming growth interacting factor (TGIF) is an inhibitor of both transforming growth factor β (TGF-β) and retinoid signaling pathways. Moreover, the activation of MAPK pathway can prolong its half-life. However, its role in carcinogenesis is still unknown. Thus we attempted to investigate the effect of TGIF on biologic behaviors of gastric carcinoma cells.METHODS: Gastric carcinoma cell line, SGC-7901, was stably transfected with plasmid PcDNA3.1-TGIF. Western blotting and cell immunohistochemistry screening for the highly expressing clone of TGIF were employed. The growth of transfected cells was investigated by MTT and colonyformation assays, and apoptosis was measured by flow cytometry (FCM) and transmission electron microscopy.Tumorigenicity of the transfectant cells was also analyzed.RESULTS: TGIF had no effect on the proliferation, cell cycle and apoptosis of SGC-7901 cells, but cellular organelles of cells transfected with TGIF were richer than those of vector control or parental cells. Its clones were smaller than the control ones in plate efficiency, and its tumor tissues also had no obvious necrosis compared with the vector control or parental cells. Moreover, TGIF could resist TGF-β mediated growth inhibition.CONCLUSION: TGIF may induce differentiation of stomach neoplastic cells. In addition, TGIF can counteract the growth inhibition induced by TGF-β.

  8. Growth of cultured porcine retinal pigment epithelial cells

    DEFF Research Database (Denmark)

    Wiencke, A.K.; Kiilgaard, Jens Folke; Nicolini, Jair;

    2003-01-01

    To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation.......To establish and characterize cultures of porcine retinal pigment epithelial (pRPE) cells in order to produce confluent monolayers of cells for transplantation....

  9. Analysis of a Stochastic Model for Bacterial Growth and the Lognormality of the Cell-Size Distribution

    Science.gov (United States)

    Yamamoto, Ken; Wakita, Jun-ichi

    2016-07-01

    This paper theoretically analyzes a phenomenological stochastic model for bacterial growth. This model comprises cell division and the linear growth of cells, where growth rates and cell cycles are drawn from lognormal distributions. We find that the cell size is expressed as a sum of independent lognormal variables. We show numerically that the quality of the lognormal approximation greatly depends on the distributions of the growth rate and cell cycle. Furthermore, we show that actual parameters of the growth rate and cell cycle take values that give a good lognormal approximation; thus, the experimental cell-size distribution is in good agreement with a lognormal distribution.

  10. Analysis of a stochastic model for bacterial growth and the lognormality in the cell-size distribution

    CERN Document Server

    Yamamoto, Ken

    2016-01-01

    This paper theoretically analyzes a phenomenological stochastic model for bacterial growth. This model comprises cell divisions and linear growth of cells, where growth rates and cell cycles are drawn from lognormal distributions. We derive that the cell size is expressed as a sum of independent lognormal variables. We show numerically that the quality of the lognormal approximation greatly depends on the distributions of the growth rate and cell cycle. Furthermore, we show that actual parameters of the growth rate and cell cycle take values which give good lognormal approximation, so the experimental cell-size distribution is in good agreement with a lognormal distribution.

  11. The Kinetic of Growth Cell of Neurospora Sitophila at Phythohormone Production Medium

    International Nuclear Information System (INIS)

    The study of growth cell kinetic of Neurospora Sitophila at Phythohormone production medium has been done. The growth of this mould at Mendel broth medium is affected by pH and glucose concentration. In the enriched medium by 2 % glucose content and pH 4.5 shows the optimal growth of cell with specific growth rate by 0.0785 per hour. The changing of pH connected with the growth cell curve, so this moment as an indicator of cell harvest time. At the stationary phase to dead phase is explained by pH changed between 2.80-2.85. This phase may be estimated as a time of Phythohormone synthesize by mold. (author)

  12. Perineural Growth in Head and Neck Squamous Cell Carcinoma: A Review

    Science.gov (United States)

    Roh, Joseph; Muelleman, Thomas; Tawfik, Ossama; Thomas, Sufi M

    2014-01-01

    Perineural growth is a unique route of tumor metastasis that is associated with poor prognosis in several solid malignancies. It is diagnosed by the presence of tumor cells inside the neural space seen on histological or imaging evaluations. Little is known about molecular mechanisms involved in the growth and spread of tumor cells in neural spaces. The poor prognosis associated with perineural growth and lack of targeted approaches necessitates the study of molecular factors involved in communication between tumor and neural cells. Perineural growth rates, shown to be as high as 63% in head and neck squamous cell carcinoma (HNSCC), correlate with increased local recurrence and decreased disease-free survival. Here we describe the literature on perineural growth in HNSCC. In addition, we discuss factors implicated in perineural growth of cancer. These factors include brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotropin-3 and -4, glial cell-line derived neurotrophic factor (GDNF), the neural cell adhesion molecule (NCAM), substance P (SP), and chemokines. We also explore the literature on membrane receptors, including the Trk family and the low-affinity nerve growth factor receptor. This review highlights areas for further study of the mechanisms of perineural invasion which may facilitate the identification of therapeutic targets in HNSCC. PMID:25456006

  13. Direct Image-Based Enumeration of Clostridium phytofermentans Cells on Insoluble Plant Biomass Growth Substrates.

    Science.gov (United States)

    Alvelo-Maurosa, Jesús G; Lee, Scott J; Hazen, Samuel P; Leschine, Susan B

    2016-02-01

    A dual-fluorescent-dye protocol to visualize and quantify Clostridium phytofermentans ISDg (ATCC 700394) cells growing on insoluble cellulosic substrates was developed by combining calcofluor white staining of the growth substrate with cell staining using the nucleic acid dye Syto 9. Cell growth, cell substrate attachment, and fermentation product formation were investigated in cultures containing either Whatman no. 1 filter paper, wild-type Sorghum bicolor, or a reduced-lignin S. bicolor double mutant (bmr-6 bmr-12 double mutant) as the growth substrate. After 3 days of growth, cell numbers in cultures grown on filter paper as the substrate were 6.0- and 2.2-fold higher than cell numbers in cultures with wild-type sorghum and double mutant sorghum, respectively. However, cells produced more ethanol per cell when grown with either sorghum substrate than with filter paper as the substrate. Ethanol yields of cultures were significantly higher with double mutant sorghum than with wild-type sorghum or filter paper as the substrate. Moreover, ethanol production correlated with cell attachment in sorghum cultures: 90% of cells were directly attached to the double mutant sorghum substrate, while only 76% of cells were attached to wild-type sorghum substrate. With filter paper as the growth substrate, ethanol production was correlated with cell number; however, with either wild-type or mutant sorghum, ethanol production did not correlate with cell number, suggesting that only a portion of the microbial cell population was active during growth on sorghum. The dual-staining procedure described here may be used to visualize and enumerate cells directly on insoluble cellulosic substrates, enabling in-depth studies of interactions of microbes with plant biomass. PMID:26637592

  14. Protein translocation and thylakoid biogenesis in cyanobacteria.

    Science.gov (United States)

    Frain, Kelly M; Gangl, Doris; Jones, Alexander; Zedler, Julie A Z; Robinson, Colin

    2016-03-01

    Cyanobacteria exhibit a complex form of membrane differentiation that sets them apart from most bacteria. Many processes take place in the plasma membrane, but photosynthetic light capture, electron transport and ATP synthesis take place in an abundant internal thylakoid membrane. This review considers how this system of subcellular compartmentalisation is maintained, and how proteins are directed towards the various subcompartments--specifically the plasma membrane, periplasm, thylakoid membrane and thylakoid lumen. The involvement of Sec-, Tat- and signal recognition particle- (SRP)-dependent protein targeting pathways is discussed, together with the possible involvement of a so-called 'spontaneous' pathway for the insertion of membrane proteins, previously characterised for chloroplast thylakoid membrane proteins. An intriguing aspect of cyanobacterial cell biology is that most contain only a single set of genes encoding Sec, Tat and SRP components, yet the proteomes of the plasma and thylakoid membranes are very different. The implications for protein sorting mechanisms are considered. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux. PMID:26341016

  15. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    Science.gov (United States)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  16. Growth Inhibition Effect of DL-Lysine Acetylalicylate on sw480 Colon Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Shu; TIAN Xiao-feng; WANG Li-ming

    2007-01-01

    Objective: To investigate the effect of DL-lysine acetylsalicylate on proliferation of colon carcinoma cells line sw480. Methods: After treatment of DL-lysine acetylsalicylate, the study was performed by observing sw480 colorectal cancer cells with phase contrast microscope, making growth curve, and examining the inhibition rate of sw480 cells with MTT assay. Results: The morphology of sw480 cells showed characteristics of apoptosis, the cell growth curve showed inhibited proliferation of sw480 cells when treated with DL-lysine acetylsalicylate (P<0.05). The rate of inhibition was upward when the drug concentration increased. Conclusion: DL-lysine acetylsalicylate for injection can inhibit the growth of sw480 colorectal cancer cells obviously in a dose dependent manner.

  17. Angiogenin mediates androgen-stimulated growth of prostate cancer cells and correlates with castration resistance

    OpenAIRE

    Li, Shuping; Hu, Miaofen G.; Sun, Yeqing; YOSHIOKA, NORIE; IBARAGI, SOICHIRO; Sheng, Jinghao; Sun, Guangjie; Kishimoto, Koji; Hu, Guo-fu

    2013-01-01

    Androgen receptor (AR) is a critical effector of prostate cancer (PCa) development and progression. Androgen-dependent PCa rely on the function of AR for growth and progression. Many castration-resistant PCa continue to depend on AR signaling for survival and growth. Ribosomal RNA (rRNA) is essential for both androgen-dependent and castration-resistant growth of PCa cells. During androgen-dependent growth of prostate cells, androgen-AR signaling leads to the accumulation of rRNA. However, the...

  18. Biogenesis and Membrane Targeting of Lipoproteins.

    Science.gov (United States)

    Narita, Shin-Ichiro; Tokuda, Hajime

    2010-09-01

    Bacterial lipoproteins represent a unique class of membrane proteins, which are anchored to membranes through triacyl chains attached to the amino-terminal cysteine. They are involved in various functions localized in cell envelope. Escherichia coli possesses more than 90 species of lipoproteins, most of which are localized in the outer membrane, with others being in the inner membrane. All lipoproteins are synthesized in the cytoplasm with an N-terminal signal peptide, translocated across the inner membrane by the Sec translocon to the periplasmic surface of the inner membrane, and converted to mature lipoproteins through sequential reactions catalyzed by three lipoprotein-processing enzymes: Lgt, LspA, and Lnt. The sorting of lipoproteins to the outer membrane requires a system comprising five Lol proteins. An ATP-binding cassette transporter, LolCDE, initiates the sorting by mediating the detachment of lipoproteins from the inner membrane. Formation of the LolA-lipoprotein complex is coupled to this LolCDE-dependent release reaction. LolA accommodates the amino-terminal acyl chain of lipoproteins in its hydrophobic cavity, thereby generating a hydrophilic complex that can traverse the periplasmic space by diffusion. Lipoproteins are then transferred to LolB on the outer membrane and anchored to the inner leaflet of the outer membrane by the action of LolB. In contrast, since LolCDE does not recognize lipoproteins possessing Asp at position +2, these lipoproteins remain anchored to the inner membrane. Genes for Lol proteins are widely conserved among gram-negative bacteria, and Lol-mediated outer membrane targeting of lipoproteins is considered to be the general lipoprotein localization mechanism. PMID:26443779

  19. Simultaneous Measurement of Growth and Movement of Cells Exploiting On-Chip Single-Cell Cultivation Assay

    Science.gov (United States)

    Umehara, Senkei; Hattori, Akihiro; Wakamoto, Yuichi; Yasuda, Kenji

    2004-03-01

    We have developed an on-chip single-cell microcultivation assay as a means of simultaneously observing the growth and movement of single bacterial cells during long-term cultivation. This assay enables the direct observation of single cells captured in microchambers fabricated on thin glass slides and having semipermeable membrane lids, in which the cells can swim within the space without escape for the long periods. Using this system, the relationship between the cell cycle and the tendency of movement was observed and it was found that the mean free path length did not change during the cell cycle, and that the growth and the swimming were not synchronized. The result indicates that the ability of movement of the cells was independent of the cell cycle.

  20. Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia.

    Science.gov (United States)

    Khanal, Ichha; Elbediwy, Ahmed; Diaz de la Loza, Maria Del Carmen; Fletcher, Georgina C; Thompson, Barry J

    2016-07-01

    In epithelial tissues, polarisation of microtubules and actin microvilli occurs along the apical-basal axis of each cell, yet how these cytoskeletal polarisation events are coordinated remains unclear. Here, we examine the hierarchy of events during cytoskeletal polarisation in Drosophila melanogaster epithelia. Core apical-basal polarity determinants polarise the spectrin cytoskeleton to recruit the microtubule-binding proteins Patronin (CAMSAP1, CAMSAP2 and CAMPSAP3 in humans) and Shortstop [Shot; MACF1 and BPAG1 (also known as DST) in humans] to the apical membrane domain. Patronin and Shot then act to polarise microtubules along the apical-basal axis to enable apical transport of Rab11 endosomes by the Nuf-Dynein microtubule motor complex. Finally, Rab11 endosomes are transferred to the MyoV (also known as Didum in Drosophila) actin motor to deliver the key microvillar determinant Cadherin 99C to the apical membrane to organise the biogenesis of actin microvilli. PMID:27231092

  1. Specific immunotherapy generates CD8(+) CD196(+) T cells to suppress lung cancer growth in mice.

    Science.gov (United States)

    Zhang, Jian; Liu, Jing; Chen, Huiguo; Wu, Weibin; Li, Xiaojun; Wu, Yonghui; Wang, Zhigang; Zhang, Kai; Li, Yun; Weng, Yimin; Liao, Hongying; Gu, Lijia

    2016-08-01

    That specific immunotherapy can inhibit cancer growth has been recognized; its efficiency is to be improved. This study aimed to inhibit lung cancer (LC) growth in a mouse model by using an LC-specific vaccination. In this study, a LC mouse model was created by adoptive transplantation with LC cells. The tumor-bearing mice were vaccinated with LC cell extracts plus adjuvant TNBS or adoptive transplantation with specific CD8(+) CD196(+) T cells. The results showed that the vaccination with LC extracts (LCE)/TNBS markedly inhibited the LC growth and induced CD8(+) CD196(+) T cells in LC tissue and the spleen. These CD8(+) CD196(+) T cells proliferated and produce high levels of perforin upon exposure to LCE and specifically induced LC cell apoptosis. Exposure to TNBS induced RAW264.7 cells to produce macrophage inflammatory protein-3α; the latter activated signal transducer and activator of transcription 3 and further induced perforin expression in the CD8(+) CD196(+) T cells. Adoptive transfer with specific CD8(+) CD196(+) T cells suppressed LC growth in mice. In conclusion, immunization with LC extracts and TNBS can induce LC-specific CD8(+) CD196(+) T cells in LC-bearing mice and inhibit LC growth. PMID:26910585

  2. Angiostatin inhibits pancreatic cancer cell proliferation and growth in nude mice

    Institute of Scientific and Technical Information of China (English)

    Ding-Zhong Yang; Jing He; Ji-Cheng Zhang; Zhuo-Ren Wang

    2005-01-01

    AIM: To observe the biologic behavior of pancreatic cancer cells in vitro and in vivo, and to explore the potential value of angiostatin gene therapy for pancreatic cancer.METHODS: The recombinant vector pcDNA3.1(+)-angiostatin was transfected into human pancreatic cancer cells PC-3 with Lipofectamine 2000, and paralleled with the vector and mock control. Angiostatin transcription and protein expression were determined by immunofluorescence and Western blot. The stable cell line was selected by G418. The supernatant was collected to treat endothelial cells. Cell proliferation and growth in vitro were observed under microscope. Cell growth curves were plotted.The troms-fected or untroms-fected cells overexpressing angiostatin vector were implanted subcutaneously into nude mice. The size of tumors was measured, and microvessel density count (MVD) in tumor tissues was assessed by immunohistochemistry with primary anti-CD34antibody.RESULTS: After transfected into PC-3 with Lipofectamine 2000 and selected by G418, macroscopic resistant cell clones were formed in the experimental group transfected with pcDNA 3.1(+)-angiostatin and vector control. But untreated cells died in the mock control. Angiostatin protein expression was detected in the experimental group by immunofluorescence and Western-blot. Cell proliferation and growth in vitro in the three groups were observed respectively under microscope. After treatment with supernatant, significant differences were observed in endothelial cell (ECV-304) growth in vitro. The cell proliferation and growth were inhibited. In nude mice model, markedly inhibited tumorigenesis and slowed tumor expansion were observed in the experimental group as compared to controls, which was parallel to the decreased microvessel density in and around tumor tissue.CONCLUSION: Angiostatin does not directly inhibit human pancreatic cancer cell proliferation and growth in vitro,but it inhibits endothelial cell growthin vitro. It exerts the anti

  3. The intrusive growth of initial cells in re-arangement of cells in cambium of Tilia cordata Mill.

    Directory of Open Access Journals (Sweden)

    Wiesław Włoch

    2014-02-01

    Full Text Available In the cambium of linden producing wood with short period of grain inclination change (2-4 years, the intensive reorientation of cells takes place. This is possible mainly through an intrusive growth of cell ends from one radial file entering space between tangential walls of neighboring file and through unequal periclinal divisions that occur in the "initial surface". The intrusive growth is located on the longitudinal edge of a fusiform cell close to the end, and causes deviation of cell ends in a neighbouring file from the initial surface. Unequal periclinal division divides a cell with a deviated end into two derivatives, unequal in size. The one of them, which inherits the deviated end, leaves the initial surface becoming a xylem or phloem mother cell. This means that the old end is eliminated. The intensity of intrusive growth and unequal periclinal divisions is decisive for the velocity of cambial cell reorientation. The oriented intrusive growth occurs only in the initial cells. For that reason, changes in cell-ends position do not occur within one packet of cells but are distinct between neighbouring packets.

  4. The Tetraspanin CD151 Is Required for Met-dependent Signaling and Tumor Cell Growth*

    Science.gov (United States)

    Franco, Mélanie; Muratori, Claudia; Corso, Simona; Tenaglia, Enrico; Bertotti, Andrea; Capparuccia, Lorena; Trusolino, Livio; Comoglio, Paolo M.; Tamagnone, Luca

    2010-01-01

    CD151, a transmembrane protein of the tetraspanin family, is implicated in the regulation of cell-substrate adhesion and cell migration through physical and functional interactions with integrin receptors. In contrast, little is known about the potential role of CD151 in controlling cell proliferation and survival. We have previously shown that β4 integrin, a major CD151 partner, not only acts as an adhesive receptor for laminins but also as an intracellular signaling platform promoting cell proliferation and invasive growth upon interaction with Met, the tyrosine kinase receptor for hepatocyte growth factor (HGF). Here we show that RNAi-mediated silencing of CD151 expression in cancer cells impairs HGF-driven proliferation, anchorage-independent growth, protection from anoikis, and tumor progression in xenograft models in vivo. Mechanistically, we found that CD151 is crucially implicated in the formation of signaling complexes between Met and β4 integrin, a known amplifier of HGF-induced tumor cell growth and survival. CD151 depletion hampered HGF-induced phosphorylation of β4 integrin and the ensuing Grb2-Gab1 association, a signaling pathway leading to MAPK stimulation and cell growth. Accordingly, CD151 knockdown reduced HGF-triggered activation of MAPK but not AKT signaling cascade. These results indicate that CD151 controls Met-dependent neoplastic growth by enhancing receptor signaling through β4 integrin-mediated pathways, independent of cell-substrate adhesion. PMID:20937830

  5. Tumor Cells Express FcγRl Which Contributes to Tumor Cell Growth and a Metastatic Phenotype

    OpenAIRE

    M. Bud Nelson; Nyhus, Julie K; Oravecz-Wilson, Katherine I; Emilio Barbera-Guillem

    2001-01-01

    High levels of circulating immune complexes containing tumor-associated antigens are associated with a poor prognosis for individuals with cancer. The ability of B cells, previously exposed to tumor-associated antigens, to promote both in vitro and in vivo tumor growth formed the rationale to evaluate the mechanism by which immune complexes may promote tumor growth. In elucidating this mechanism, FcγRl expression by tumor cells was characterized by flow cytometry, polymerase chain reaction, a...

  6. Tumor Cells Express FcγRI Which Contributes to Tumor Cell Growth and a Metastatic Phenotype

    OpenAIRE

    Nelson, M. Bud; Nyhus, Julie K; Oravecz-Wilson, Katherine I; Barbera-Guillem, Emilio

    2001-01-01

    High levels of circulating immune complexes containing tumor-associated antigens are associated with a poor prognosis for individuals with cancer. The ability of B cells, previously exposed to tumor-associated antigens, to promote both in vitro and in vivo tumor growth formed the rationale to evaluate the mechanism by which immune complexes may promote tumor growth. In elucidating this mechanism, FcγRI expression by tumor cells was characterized by flow cytometry, polymerase chain reaction, a...

  7. Amygdalin Blocks Bladder Cancer Cell Growth In Vitro by Diminishing Cyclin A and cdk2

    OpenAIRE

    Jasmina Makarević; Jochen Rutz; Eva Juengel; Silke Kaulfuss; Michael Reiter; Igor Tsaur; Georg Bartsch; Axel Haferkamp; Blaheta, Roman A.

    2014-01-01

    Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25-10 mg/ml) on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP). Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regu...

  8. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation

    DEFF Research Database (Denmark)

    Kratchmarova, Irina; Blagoev, Blagoy; Haack-Sorensen, M.; Kassem, Moustapha; Mann, Matthias

    2005-01-01

    Closely related signals often lead to very different cellular outcomes. We found that the differentiation of human mesenchymal stem cells into bone-forming cells is stimulated by epidermal growth factor (EGF) but not platelet-derived growth factor (PDGF). We used mass spectrometry-based proteomics...... it as a possible control point. Indeed, chemical inhibition of PI3K in PDGF-stimulated cells removed the differential effect of the two growth factors, bestowing full differentiation effect onto PDGF. Thus, quantitative proteomics can directly compare entire signaling networks and discover critical...

  9. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    International Nuclear Information System (INIS)

    The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7), a powerful, heparin-binding growth factor for breast epithelial cells. Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors

  10. Insights into mRNP biogenesis provided by new genetic interactions among export and transcription factors

    Directory of Open Access Journals (Sweden)

    Estruch Francisco

    2012-09-01

    Full Text Available Abstract Background The various steps of mRNP biogenesis (transcription, processing and export are interconnected. It has been shown that the transcription machinery plays a pivotal role in mRNP assembly, since several mRNA export factors are recruited during transcription and physically interact with components of the transcription machinery. Although the shuttling DEAD-box protein Dbp5p is concentrated on the cytoplasmic fibrils of the NPC, previous studies demonstrated that it interacts physically and genetically with factors involved in transcription initiation. Results We investigated the effect of mutations affecting various components of the transcription initiation apparatus on the phenotypes of mRNA export mutant strains. Our results show that growth and mRNA export defects of dbp5 and mex67 mutant strains can be suppressed by mutation of specific transcription initiation components, but suppression was not observed for mutants acting in the very first steps of the pre-initiation complex (PIC formation. Conclusions Our results indicate that mere reduction in the amount of mRNP produced is not sufficient to suppress the defects caused by a defective mRNA export factor. Suppression occurs only with mutants affecting events within a narrow window of the mRNP biogenesis process. We propose that reducing the speed with which transcription converts from initiation and promoter clearance to elongation may have a positive effect on mRNP formation by permitting more effective recruitment of partially-functional mRNP proteins to the nascent mRNP.

  11. Measurements of prolactin and growth hormone synthesis and secretion by rat pituitary cells in culture.

    Science.gov (United States)

    Gautvik, K M; Kriz, M

    1976-02-01

    A specific and sensitive immunoprecipitation method for measurements of biosynthesized radioactive prolactin and growth hormone is described. Antisera to rat prolactin and growth hormone were developed in the rabbit and monkey, respectively. The specificity of the immune sera was assessed by polyacylamide gel electrophoresis of the dissolved immunoprecipitates. The two antisera showed cross-reactions with the nonhomologous hormone of less than 1%. Separation of tritium-labelled prolactin and growth hormone by immunoprecipitation, followed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate was shown to be 95-57% complete. When both hormones were measured in the same microsample by sequential immunoprecipitation, the reaction was 97% complete for determination of intra- and extracellular prolactin and extracellular growth hormone, but 85% complete for determination of intracellular growth hormone. This method has been used to characterize the basal synthesis and secretion of prolactin and growth hormone in three different but related, pituitary cell strains. Radioactive prolactin and growth hormone was obtained from monolayer cultures when the cells were grown in the presence of [3H]L-leucine. The rate of prolactin synthesis and extracellular accumulation was higher than that of growth hormone in a cell strain which produced both hormones. In these cells prolactin synthesis represents 1-5%, and growth hormone 0.1-0.6% of total protein synthesis. PMID:942913

  12. Biogenesis and Functions of Exosomes and Extracellular Vesicles.

    Science.gov (United States)

    Dreyer, Florian; Baur, Andreas

    2016-01-01

    Research on extracellular vesicles (EVs) is a new and emerging field that is rapidly growing. Many features of these structures still need to be described and discovered. This concerns their biogenesis, their release and cellular entrance mechanisms, as well as their functions, particularly in vivo. Hence our knowledge on EV is constantly evolving and sometimes changing. In our review we summarize the most important facts of our current knowledge about extracellular vesicles and described some of the assumed functions in the context of cancer and HIV infection. PMID:27317183

  13. The Neurospora crassa dfg5 and dcw1 Genes Encode α-1,6-Mannanases That Function in the Incorporation of Glycoproteins into the Cell Wall

    OpenAIRE

    Abhiram Maddi; Ci Fu; Free, Stephen J.

    2012-01-01

    The covalent cross-linking of cell wall proteins into the cell wall glucan/chitin matrix is an important step in the biogenesis of the fungal cell wall. We demonstrate that the Neurospora crassa DFG5 (NCU03770) and DCW1 (NCU08127) enzymes function in vivo to cross-link glycoproteins into the cell wall. Mutants lacking DFG5 or DCW1 release slightly elevated levels of cell wall proteins into their growth medium. Mutants lacking both DFG5 and DCW1 have substantially reduced levels of cell wall p...

  14. Interleukin 1 is an autocrine regulator of human endothelial cell growth

    International Nuclear Information System (INIS)

    Proliferation of endothelial cells is regulated through the autocrine production of growth factors and the expression of cognate surface receptors. In this study, the authors demonstrate that interleukin 1 (IL-1) is an inhibitor of endothelial growth in vitro and in vivo. IL-1 arrested growing, cultured endothelial cells in G1 phase; inhibition of proliferation was dose dependent and occurred in parallel with occupancy of endothelial surface IL-1 receptors. In an angiogenesis model, IL-1 could inhibit fibroblast growth factor-induced vessel formation. The autocrine nature of the IL-1 effect on endothelial proliferation was demonstrated by the observation that occupancy of cell-surface receptors by endogenous IL-1 depressed cell growth. The potential significance of this finding was emphasized by the detection of IL-1 in the native endothelium of human umbilical veins. A mechanism by which IL-1 may exert its inhibitory effect on endothelial cell growth was suggested by studies showing that IL-1 decreased the expression of high-affinity fibroblast growth factor binding sites on endothelium. These results point to a potentially important role of IL-1 in regulating blood vessel growth the suggest that autocrine production of inhibitory factors may be a mechanism controlling proliferation of normal cells

  15. Role of calcium in growth inhibition induced by a novel cell surface sialoglycopeptide

    Science.gov (United States)

    Betz, N. A.; Westhoff, B. A.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Our laboratory has purified an 18 kDa cell surface sialoglycopeptide growth inhibitor (CeReS-18) from intact bovine cerebral cortex cells. Evidence presented here demonstrates that sensitivity to CeReS-18-induced growth inhibition in BALB-c 3T3 cells is influenced by calcium, such that a decrease in the calcium concentration in the growth medium results in an increase in sensitivity to CeReS-18. Calcium did not alter CeReS-18 binding to its cell surface receptor and CeReS-18 does not bind calcium directly. Addition of calcium, but not magnesium, to CeReS-18-inhibited 3T3 cells results in reentry into the cell cycle. A greater than 3-hour exposure to increased calcium is required for escape from CeReS-18-induced growth inhibition. The calcium ionophore ionomycin could partially mimic the effect of increasing extracellular calcium, but thapsigargin was ineffective in inducing escape from growth inhibition. Increasing extracellular calcium 10-fold resulted in an approximately 7-fold increase in total cell-associated 45Ca+2, while free intracellular calcium only increased approximately 30%. However, addition of CeReS-18 did not affect total cell-associated calcium or the increase in total cell-associated calcium observed with an increase in extracellular calcium. Serum addition induced mobilization of intracellular calcium and influx across the plasma membrane in 3T3 cells, and pretreatment of 3T3 cells with CeReS-18 appeared to inhibit these calcium mobilization events. These results suggest that a calcium-sensitive step exists in the recovery from CeReS-18-induced growth inhibition. CeReS-18 may inhibit cell proliferation through a novel mechanism involving altering the intracellular calcium mobilization/regulation necessary for cell cycle progression.

  16. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest

    Institute of Scientific and Technical Information of China (English)

    Long-Zhu Li; Hong-Xia Deng; Wen-Zhu Lou; Xue-Yan Sun; Meng-Wan Song; Jing Tao; Bing-Xiu Xiao; Jun-Ming Guo

    2012-01-01

    AIM: To investigate the growth effects of 4-phenyl butyric acid (PBA) on human gastric carcinoma cells and their mechanisms. METHODS: Moderately-differentiated human gastric carcinoma SGC-7901 and lowly-differentiated MGC-803 cells were treated with 5, 10, 20, 40, and 60 μmol/L PBA for 1-4 d. Cell proliferation was detected using the MTT colorimetric assay. Cell cycle distributions were examined using flow cytometry. RESULTS: The proliferation of gastric carcinoma cells was inhibited by PBA in a dose- and time-dependent fashion. Flow cytometry showed that SGC-7901 cells treated with low concentrations of PBA were arrested at the G0/G1 phase, whereas cells treated with high concentrations of PBA were arrested at the G2/M phase. Although MGC-803 cells treated with low concentrations of PBA were also arrested at the G0/G1 phase, cells treated with high concentrations of PBA were arrested at the S phase. CONCLUSION: The growth inhibitory effect of PBA on gastric cancer cells is associated with alteration of the cell cycle. For moderately-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and G2/M phases. For lowly-differentiated gastric cancer cells, the cell cycle was arrested at the G0/G1 and S phases.

  17. Phosphorus deficiency inhibits cell division but not growth in the dinoflagellate Amphidinium carterae

    Directory of Open Access Journals (Sweden)

    Meizhen eLi

    2016-06-01

    Full Text Available Phosphorus (P is an essential nutrient element for the growth of phytoplankton. How P deficiency affects population growth and the cell division cycle in dinoflagellates has only been studied in some species, and how it affects photosynthesis and cell growth remains poorly understood. In the present study, we investigated the impact of P deficiency on the cell division cycle, the abundance of the carbon-fixing enzyme Rubisco, and other cellular characteristics in the Gymnodiniales peridinin-plastid species Amphidinium carterae. We found that under P-replete condition, the cell cycle actively progressed in the culture in a 24-hour diel cycle with daily growth rates markedly higher than the P-deficient cultures, in which cells were arrested in the G1 phase and cell size significantly enlarged. The results suggest that, as in previously studied dinoflagellates, P deficiency likely disenables A. carterae to complete DNA duplication or check-point protein phosphorylation. We further found that under P-deficient condition, overall photosystem II quantum efficiency (Fv/Fm ratio and Rubisco abundance decreased but not significantly, while cellular contents of carbon, nitrogen, and proteins increased significantly. These observations indicated that under P-deficiency, this dinoflagellate was able to continue photosynthesis and carbon fixation, such that proteins and photosynthetically fixed carbon could accumulate resulting in continued cell growth in the absence of division. This is likely an adaptive strategy thereby P-limited cells can be ready to resume the cell division cycle upon resupply of phosphorus.

  18. Intratracheal Administration of Recombinant Human Keratinocyte Growth Factor Promotes Alveolar Epithelial Cell Proliferation during Compensatory Lung Growth in Rat

    International Nuclear Information System (INIS)

    Keratinocyte growth factor (KGF) is considered to be one of the most important mitogens for lung epithelial cells. The objectives of this study were to confirm the effectiveness of intratracheal injection of recombinant human KGF (rhKGF) during compensatory lung growth and to optimize the instillation protocol. Here, trilobectomy in adult rat was performed, followed by intratracheal rhKGF instillation with low (0.4 mg/kg) and high (4 mg/kg) doses at various time-points. The proliferation of alveolar cells was assessed by the immunostaining for proliferating cell nuclear antigen (PCNA) in the residual lung. We also investigated other immunohistochemical parameters such as KGF, KGF receptor and surfactant protein A as well as terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. Consequently, intratracheal single injection of rhKGF in high dose group significantly increased PCNA labeling index (LI) of alveolar cells in the remaining lung. Surprisingly, there was no difference in PCNA LI between low and high doses of rhKGF with daily injection, and PCNA LI reached a plateau level with 2 days-consecutive administration (about 60%). Our results indicate that even at low dose, daily intratracheal injection is effective to maintain high proliferative states during the early phase of compensatory lung growth

  19. Microcarrier culture of lepidopteran cell lines: implications for growth and recombinant protein production.

    Science.gov (United States)

    Ikonomou, Laertis; Drugmand, Jean-Christophe; Bastin, Georges; Schneider, Yves-Jacques; Agathos, Spiros N

    2002-01-01

    Several microcarrier systems were screened with Sf-9 and High-Five cell lines as to their ability to support cell growth and recombinant (beta-galactosidase) protein production. Growth of both cell lines on compact microcarriers, such as Cytodex-1 and glass beads, was minimal, as cells detached easily from the microcarrier surface and grew as single cells in the medium. Cell growth was also problematic on Cytopore-1 and -2 porous microcarriers. Cells remained attached for several days inside the microcarrier pores, but no cell division and proliferation were observed. On the contrary, insect cells grew well in the interior of Fibra-Cel disks mainly as aggregates at points of fiber intersection, reaching final (plateau) densities of about 4 x 10(6) (Sf-9) and 2.7 x 10(6) (High-Five) cells mL(-1) (8 x 10(6) and 5.5 x 10(6) cells per cm(2) of projected disk area, respectively). Their growth was described well by the logistic equation, which takes into account possible inhibition effects. Beta-Galactosidase (beta-gal) production of Sf-9 cells on Fibra-Cel disks (infected at 3.3 x 10(6) cells mL(-1)) was prolonged (192 h), and specific protein production was similar to that of high-density free cell infection. Cultispher-S microcarriers were found to be a very efficient system for the growth of High-Five cells, whereas no growth of Sf-9 cells took place for the same system. Concentrations of about 9 x 10(6) cells mL(-1) were reached within 120 h, with cell growth in both microcarriers and aggregates, appearance of cellular bridges between microcarriers and aggregates, and eventual formation of macroaggregates incorporating several microcarriers. Specific protein productions after beta-gal baculovirus infection at increasing cell concentrations were almost constant, thus leading to elevated volumetric protein production: final beta-gal titers of 946, 1728, and 1484 U mL(-1) were obtained for infection densities of 3.4, 7.2, and 8.9 x 10(6) cells mL(-1), respectively

  20. Intercellular redistribution of cAMP underlies selective suppression of cancer cell growth by connexin26.

    Directory of Open Access Journals (Sweden)

    Anjana Chandrasekhar

    Full Text Available Connexins (Cx, which constitute gap junction intercellular channels in vertebrates, have been shown to suppress transformed cell growth and tumorigenesis, but the mechanism(s still remain largely speculative. Here, we define the molecular basis by which Cx26, but less frequently Cx43 or Cx32, selectively confer growth suppression on cancer cells. Functional intercellular coupling is shown to be required, producing partial blocks of the cell cycle due to prolonged activation of several mitogenic kinases. PKA is both necessary and sufficient for the Cx26 induced growth inhibition in low serum and the absence of anchorage. Activation of PKA was not associated with elevated cAMP levels, but appeared to result from a redistribution of cAMP throughout the cell population, eliminating the cell cycle oscillations in cAMP required for efficient cell cycle progression. Cx43 and Cx32 fail to mediate this redistribution as, unlike Cx26, these channels are closed during the G2/M phase of the cell cycle when cAMP levels peak. Comparisons of tumor cell lines indicate that this is a general pattern, with growth suppression by connexins occurring whenever cAMP oscillates with the cell cycle, and the gap junction remain open throughout the cell cycle. Thus, gap junctional coupling, in the absence of any external signals, provides a general means to limit the mitotic rate of cell populations.

  1. Growth inhibiting effects of antisense eukaryotic expression vector of proliferating cell nuclear antigen gene on human bladder cancer cells

    Institute of Scientific and Technical Information of China (English)

    童强松; 曾甫清; 林晨; 赵军; 鲁功成

    2003-01-01

    Objective To explore the growth inhibiting effects on human bladder cancer by antisense RNA targeting the proliferating cell nuclear antigen (PCNA) gene. Methods The eukaryotic expression vector for antisense PCNA cDNA was constructed and transferred into a bladder cancer EJ cell line. The PCNA expression in the cancer cells was detected by RT-PCR and Western blotting assays. The in vitro proliferation activities of the transferred cells were observed by growth curve, tetrazolium bromide (MTT) colorimetry, tritiated thymidine (3H-TdR)incorporation, flow cytometry and clone formation testing, while its in vivo anti-tumor effects were detected on nude mice allograft models.Results After the antisense vector, pLAPSN, was transferred, cellular PCNA expression was inhibited at both protein and mRNA levels. The growth rates of EJ cells were reduced from 27.91% to 62.07% (P<0.01), with an inhibition of DNA synthesis rate by 52.31% (P<0.01). Transferred cells were blocked at G0/G1 phases in cell-cycle assay, with the clone formation ability decreased by 50.81% (P<0.01). The in vivo carcinogenic abilities of the transferred cancer cells were decreased by 54.23% (P<0.05). Conclusions Antisense PCNA gene transfer could inhibit the growth of bladder cancer cells in vitro and in vivo, which provided an ideal strategy for gene therapy of human cancers.

  2. Cellular Adhesion Tripeptide RGD Inhibits Growth of Human Ileocecal Adenocarcinoma Cells HCT-8 and Induces Apoptosis

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; ZENG Hong-bin; YANG Shao-juan; GAO Shen; HUANG Yi-bing; HOU Rui-zhen; ZHAO Mi-feng; XU Li; ZHANG Xue-zhong

    2007-01-01

    The tripeptide, Arg-Gly-Asp(RGD) motif is an integrin-recognition site found in adhesive proteins present in extracellular matrices(ECM) and in the blood. HCT-8 cells were treated with cellular adhesion tripeptide RGD at various concentrations. MTT assay was performed to examine the growth and proliferation of HCT-8 cells after treatment with RGD for 48 h. Haematoxylin and Eosin(HE) staining and electromicroscope were used to observe the morphology of apoptotic cells. Survivin and flow cytometry were also used to analyze the HCT-8 apoptosis. Cellular adhesion tripeptide RGD significantly inhibits the growth and proliferation of HCT-8 cells in a dose-dependent manner and induces apoptosis of HCT-8. These results indicate that cellular adhesion tripeptide RGD inhibits the growth and proliferation of tumor HCT-8 cell, probably by the aid of inducing apoptosis of HCT-8 cell.

  3. CAM and cell fate targeting: molecular and energetic insights into cell growth and differentiation.

    Science.gov (United States)

    Ventura, Carlo

    2005-09-01

    Evidence-based medicine is switching from the analysis of single diseases at a time toward an integrated assessment of a diseased person. Complementary and alternative medicine (CAM) offers multiple holistic approaches, including osteopathy, homeopathy, chiropractic, acupuncture, herbal and energy medicine and meditation, all potentially impacting on major human diseases. It is now becoming evident that acupuncture can modify the expression of different endorphin genes and the expression of genes encoding for crucial transcription factors in cellular homeostasis. Extremely low frequency magnetic fields have been found to prime the commitment to a myocardial lineage in mouse embryonic stem cells, suggesting that magnetic energy may direct stem cell differentiation into specific cellular phenotypes without the aid of gene transfer technologies. This finding may pave the way to novel approaches in tissue engineering and regeneration. Different ginseng extracts have been shown to modulate growth and differentiation in pluripotent cells and to exert wound-healing and antitumor effects through opposing activities on the vascular system, prompting the hypothesis that ancient compounds may be the target for new logics in cell therapy. These observations and the subtle entanglement among different CAM systems suggest that CAM modalities may deeply affect both the signaling and transcriptional level of cellular homeostasis. Such a perception holds promises for a new era in CAM, prompting reproducible documentation of biological responses to CAM-related strategies and compounds. To this end, functional genomics and proteomics and the comprehension of the cell signaling networks may substantially contribute to the development of a molecular evidence-based CAM. PMID:16136206

  4. CAM and Cell Fate Targeting: Molecular and Energetic Insights into Cell Growth and Differentiation

    Directory of Open Access Journals (Sweden)

    Carlo Ventura

    2005-01-01

    Full Text Available Evidence-based medicine is switching from the analysis of single diseases at a time toward an integrated assessment of a diseased person. Complementary and alternative medicine (CAM offers multiple holistic approaches, including osteopathy, homeopathy, chiropractic, acupuncture, herbal and energy medicine and meditation, all potentially impacting on major human diseases. It is now becoming evident that acupuncture can modify the expression of different endorphin genes and the expression of genes encoding for crucial transcription factors in cellular homeostasis. Extremely low frequency magnetic fields have been found to prime the commitment to a myocardial lineage in mouse embryonic stem cells, suggesting that magnetic energy may direct stem cell differentiation into specific cellular phenotypes without the aid of gene transfer technologies. This finding may pave the way to novel approaches in tissue engineering and regeneration. Different ginseng extracts have been shown to modulate growth and differentiation in pluripotent cells and to exert wound-healing and antitumor effects through opposing activities on the vascular system, prompting the hypothesis that ancient compounds may be the target for new logics in cell therapy. These observations and the subtle entanglement among different CAM systems suggest that CAM modalities may deeply affect both the signaling and transcriptional level of cellular homeostasis. Such a perception holds promises for a new era in CAM, prompting reproducible documentation of biological responses to CAM-related strategies and compounds. To this end, functional genomics and proteomics and the comprehension of the cell signaling networks may substantially contribute to the development of a molecular evidence–based CAM.

  5. Experimental studies on ultralow frequency pulsed gradient magnetic field inducing apoptosis of cancer cell and inhibiting growth of cancer cell

    Institute of Scientific and Technical Information of China (English)

    曾繁清; 郑从义; 张新晨; 李宗山; 李朝阳; 王川婴; 张新松; 黄晓玲; 张沪生

    2002-01-01

    The morphology characteristics of cell apoptosis of the malignant tumour cells in magnetic field-treated mouse was observed for the first time. The apoptotic cancer cell contracted, became rounder and divorced from adjacent cells; the heterochromatin condensed and coagulated together along the inner side of the nuclear membrane; the endoplasmic reticulums(ER) expanded and fused with the cellular membrane; many apoptotic bodies which were packed by the cellular membrane appeared and were devoured by some lymphocytes and plasma. Apoptosis of cancer cells was detected by terminal deoxynucleotidyl transferase mediated in situ nick end labeling(TUNEL). It was found that the number of apoptosis cancer cells of the sample treated by the magnetic field is more than that of the control sample. The growth of malignant tumour in mice was inhibited and the ability of immune cell to dissolve cancer cells was improved by ultralow frequency(ULF) pulsed gradient magnetic field; the nuclei DNA contents decreased, indicating that magnetic field can block DNA replication and inhibit mitosis of cancer cells. It was suggested that magnetic field could inhibit the metabolism of cancer cell, lower its malignancy, and restrain its rapid and heteromorphic growth. Since ULF pulsed gradient magnetic field can induce apoptosis of cancer cells and inhibit the growth of malignant tumour, it could be used as a new method to treat cancer.

  6. Autonomous growth potential of leukemia blast cells is associated with poor prognosis in human acute leukemias

    Directory of Open Access Journals (Sweden)

    Jakubowski Ann A

    2009-12-01

    Full Text Available Abstract We have described a severe combined immunodeficiency (SCID mouse model that permits the subcutaneous growth of primary human acute leukemia blast cells into a measurable subcutaneous nodule which may be followed by the development of disseminated disease. Utilizing the SCID mouse model, we examined the growth potential of leukemic blasts from 133 patients with acute leukemia, (67 acute lymphoblastic leukemia (ALL and 66 acute myeloid leukemia (AML in the animals after subcutaneous inoculation without conditioning treatment. The blasts displayed three distinct growth patterns: "aggressive", "indolent", or "no tumor growth". Out of 133 leukemias, 45 (33.8% displayed an aggressive growth pattern, 14 (10.5% displayed an indolent growth pattern and 74 (55.6% did not grow in SCID mice. The growth probability of leukemias from relapsed and/or refractory disease was nearly 3 fold higher than that from patients with newly diagnosed disease. Serial observations found that leukemic blasts from the same individual, which did not initiate tumor growth at initial presentation and/or at early relapse, may engraft and grow in the later stages of disease, suggesting that the ability of leukemia cells for engraftment and proliferation was gradually acquired following the process of leukemia progression. Nine autonomous growing leukemia cell lines were established in vitro. These displayed an aggressive proliferation pattern, suggesting a possible correlation between the capacity of human leukemia cells for autonomous proliferation in vitro and an aggressive growth potential in SCID mice. In addition, we demonstrated that patients whose leukemic blasts displayed an aggressive growth and dissemination pattern in SClD mice had a poor clinical outcome in patients with ALL as well as AML. Patients whose leukemic blasts grew indolently or whose leukemia cells failed to induce growth had a significantly longer DFS and more favorable clinical course.

  7. Titanium oxide as substrate for neural cell growth.

    Science.gov (United States)

    Carballo-Vila, Mónica; Moreno-Burriel, Berta; Chinarro, Eva; Jurado, José R; Casañ-Pastor, Nieves; Collazos-Castro, Jorge E

    2009-07-01

    Titanium oxide has antiinflammatory activity and tunable electrochemical behavior that make it an attractive material for the fabrication of implantable devices. The most stable composition is TiO2 and occurs mainly in three polymorphs, namely, anatase, rutile, and brookite, which differ in its crystallochemical properties. Here, we report the preparation of rutile surfaces that permit good adherence and axonal growth of cultured rat cerebral cortex neurons. Rutile disks were obtained by sinterization of TiO2 powders of commercial origin or precipitated from hydrolysis of Ti(IV)-isopropoxide. Commercial powders sintered at 1300-1600 degrees C produced rutile surfaces with abnormal grain growth, probably because of impurities of the powders. Neurons cultured on those surfaces survived in variable numbers and showed fewer neurites than on control materials. On the other hand, rutile sintered from precipitated powders had less contaminants and more homogenous grain growth. By adjusting the thermal treatment it was possible to obtain surfaces performing well as substrate for neuron survival for at least 10 days. Some surfaces permitted normal axonal elongation, whereas dendrite growth was generally impaired. These findings support the potential use of titanium oxide in neuroprostheses and other devices demanding materials with enhanced properties in terms of biocompatibility and axon growth promotion. PMID:18481786

  8. Growth and differentiation of human lens epithelial cells in vitro on matrix

    Science.gov (United States)

    Blakely, E. A.; Bjornstad, K. A.; Chang, P. Y.; McNamara, M. P.; Chang, E.; Aragon, G.; Lin, S. P.; Lui, G.; Polansky, J. R.

    2000-01-01

    PURPOSE: To characterize the growth and maturation of nonimmortalized human lens epithelial (HLE) cells grown in vitro. METHODS: HLE cells, established from 18-week prenatal lenses, were maintained on bovine corneal endothelial (BCE) extracellular matrix (ECM) in medium supplemented with basic fibroblast growth factor (FGF-2). The identity, growth, and differentiation of the cultures were characterized by karyotyping, cell morphology, and growth kinetics studies, reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and Western blot analysis. RESULTS: HLE cells had a male, human diploid (2N = 46) karyotype. The population-doubling time of exponentially growing cells was 24 hours. After 15 days in culture, cell morphology changed, and lentoid formation was evident. Reverse transcription-polymerase chain reaction (RT-PCR) indicated expression of alphaA- and betaB2-crystallin, fibroblast growth factor receptor 1 (FGFR1), and major intrinsic protein (MIP26) in exponential growth. Western analyses of protein extracts show positive expression of three immunologically distinct classes of crystallin proteins (alphaA-, alphaB-, and betaB2-crystallin) with time in culture. By Western blot analysis, expression of p57(KIP2), a known marker of terminally differentiated fiber cells, was detectable in exponential cultures, and levels increased after confluence. MIP26 and gamma-crystallin protein expression was detected in confluent cultures, by using immunofluorescence, but not in exponentially growing cells. CONCLUSIONS: HLE cells can be maintained for up to 4 months on ECM derived from BCE cells in medium containing FGF-2. With time in culture, the cells demonstrate morphologic characteristics of, and express protein markers for, lens fiber cell differentiation. This in vitro model will be useful for investigations of radiation-induced cataractogenesis and other studies of lens toxicity.

  9. Homeobox A7 increases cell proliferation by up-regulation of epidermal growth factor receptor expression in human granulosa cells

    Directory of Open Access Journals (Sweden)

    Yanase Toshihiko

    2010-06-01

    Full Text Available Abstract Background Homeobox (HOX genes encode transcription factors, which regulate cell proliferation, differentiation, adhesion, and migration. The deregulation of HOX genes is frequently associated with human reproductive system disorders. However, knowledge regarding the role of HOX genes in human granulosa cells is limited. Methods To determine the role of HOXA7 in the regulation and associated mechanisms of cell proliferation in human granulosa cells, HOXA7 and epidermal growth factor receptor (EGFR expressions were examined in primary granulosa cells (hGCs, an immortalized human granulosa cell line, SVOG, and a granulosa tumor cell line, KGN, by real-time PCR and Western blotting. To manipulate the expression of HOXA7, the HOXA7 specific siRNA was used to knockdown HOXA7 in KGN. Conversely, HOXA7 was overexpressed in SVOG by transfection with the pcDNA3.1-HOAX7 vector. Cell proliferation was measured by the MTT assay. Results Our results show that HOXA7 and EGFR were overexpressed in KGN cells compared to hGCs and SVOG cells. Knockdown of HOXA7 in KGN cells significantly decreased cell proliferation and EGFR expression. Overexpression of HOXA7 in SVOG cells significantly promoted cell growth and EGFR expression. Moreover, the EGF-induced KGN proliferation was abrogated, and the activation of downstream signaling was diminished when HOXA7 was knocked down. Overexpression of HOXA7 in SVOG cells had an opposite effect. Conclusions Our present study reveals a novel mechanistic role for HOXA7 in modulating granulosa cell proliferation via the regulation of EGFR. This finding contributes to the knowledge of the pro-proliferation effect of HOXA7 in granulosa cell growth and differentiation.

  10. The Effect of Irradiation and Epidermal Growth Factor on Cell Cycle and Apoptosis Induction in Human Epithelial Tumor Cell Lines

    International Nuclear Information System (INIS)

    This study was aimed to evaluate the cell cycle arrest and apoptosis induction after irradiation and epidermal growth factor (EGF) treatment in three human epithelial tumor cell lines (A431, Siha, KB). Single irradiation of 2, 5 and 10 Gy was done on three cell lines with 5.38 Gy/min dose rate using Cs-137 irradiator at room temperature. Also, EGF of 10 ng/ml was added immediately after 10 Gy irradiation. Cell growth was evaluated by counting the living cell number using a hemocytometer at 1 day, 2 days, 3 days, 4 days and 5 days after irradiation. Cell cycle arrest and apoptosis induction were assayed with the flow cytometry at 8 hours, 12 hours, 1 day, 2 days, 3 days, 4 days and 5 days after irradiation. Growth of irradiated three cell lines were inhibited in proportion to radiation dose. EGF treatment after irradiation showed various results according to cell lines. On all cell lines, G2 arrest was detected after 8 hours and maximized after 12 hours or 1 day. Amount of G2 arrest was positively dose dependent. But, EGF showed no significant change on G2 arrest. G2 arrest was recovered with time at 2 Gy and 5 Gy irradiation. But, at 10 Gy irradiation, G2 arrest was continued. Apoptosis was detected at 10 Gy irradiation. On EGF treated group after irradiation, A431 and Siha cell lines showed slightly increased apoptosis but there was no statistically significant difference. KB cell line showed no marked change of apoptosis induction. Irradiation effects cell cycle arrest and apoptosis induction in three human epithelial tumor cell lines but epidermal growth factor doesn't effect change of cell cycle arrest and apoptosis induction.

  11. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  12. Keratinocyte Growth Inhibition through the Modification of Wnt Signaling by Androgen in Balding Dermal Papilla Cells

    OpenAIRE

    Kitagawa, Tomoko; Matsuda, Ken-ichi; Inui, Shigeki; Takenaka, Hideya; Katoh, Norito; Itami, Satoshi; Kishimoto, Saburo; Kawata, Mitsuhiro

    2009-01-01

    Context/Objective: Androgen induces androgenetic alopecia (AGA), which has a regressive effect on hair growth from the frontal region of the scalp. Conversely, Wnt proteins are known to positively affect mammalian hair growth. We hypothesized that androgen reduces hair growth via an interaction with the Wnt signaling system. The objective of this study was to investigate the effect of androgen on Wnt signaling in dermal papilla (DP) cells.

  13. Growth factor treatment enhances vestibular hair cell renewal and results in improved vestibular function

    OpenAIRE

    Kopke, Richard D; Jackson, Ronald L; Li, Geming; Rasmussen, Mark D.; Hoffer, Michael E.; Frenz, Dorothy A.; Costello, Michael; Schultheiss, Peter; Van De Water, Thomas R.

    2001-01-01

    The vestibules of adult guinea pigs were lesioned with gentamicin and then treated with perilymphatic infusion of either of two growth factor mixtures (i.e., GF I or GF II). GF I contained transforming growth factor α (TGFα), insulin-like growth factor type one (IGF-1), and retinoic acid (RA), whereas GF II contained those three factors and brain-derived neurotrophic factor. Treatment with GF I significantly enhanced vestibular hair cell renewal in ototoxin-damaged ...

  14. Synthesis of 2-Heterocyclomethyl-5-diphenylmethylenecyclopentanone Hydrochlorides and their Inhibitory Effect on Tumor Cell Growth

    Institute of Scientific and Technical Information of China (English)

    Yun Hai ZHANG; Lin Xiang ZHAO; Zhen Jun BIAN; Rui WANG; Fu Yuan SUN

    2006-01-01

    Sixteen new 2-heterocyclomethyl-5-diphenylmethylenecyclopentanone hydrochlorides were designed and synthesized. The growth inhibitory effect of these compounds in vitro was conducted using a MTT assay in human breast cancer T47D cells.

  15. Growth arrest and apoptosis of human hepatocellular carcinoma cells induced by hexamethylene bisacetamide

    OpenAIRE

    Ouyang, Gao-Liang; Cai, Qiu-Feng; Min LIU; Chen, Rui-Chuan; Huang, Zhi; Jiang, Rui-Sheng; Chen, Fu; Hong, Shui-Gen; Bao, Shi-Deng

    2004-01-01

    AIM: To investigate the cellular effects of hybrid polar compound hexamethylene bisacetamide (HMBA) on the growth and apoptosis of human hepatocellular carcinoma cells and to provide the molecular mechanism for potential application of HMBA in the treatment of liver cancer.

  16. FETAL DEXAMETHASONE EXPOSURE ACCELERATES DEVELOPMENT OF RENAL FUNCTION: RELATIONSHIP TO DOSE, CELL DIFFERENTIATION AND GROWTH INHIBITION

    Science.gov (United States)

    Fetal exposure to high doses of glucocorticoids slows cellular development and impairs organ performance, in association with growth retardation. evertheless, low doses of glucocorticoids may enhance cell differentiation and accelerate specific functions. he current study examine...

  17. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation

    DEFF Research Database (Denmark)

    Bath, Chris; Yang, Sufang; Muttuvelu, Danson;

    2013-01-01

    The aim of this study was to determine whether the growth and differentiation of limbal epithelial stem cell cultures could be controlled through manipulation of the oxygen tension. Limbal epithelial cells were isolated from corneoscleral disks, and cultured using either feeder cells in a growth......, progression through cell cycle, colony forming efficiency (CFE), and expression of stem cell (ABCG2 and p63α) and differentiation (CK3) markers was determined throughout the culture period of up to 18 days. Low oxygen levels favored a stem cell phenotype with a lower proliferative rate, high CFE......, and a relatively higher expression of ABCG2 and p63α, while higher levels of oxygen led not only to decreased CFE but also to increased proportion of differentiated cells positive for CK3. Hypoxic cultures may thus potentially improve stem cell grafts for cultured limbal epithelial transplantation (CLET)....

  18. Mitochondrial DNA copy number and biogenesis in different tissues of early- and late-lactating dairy cows.

    Science.gov (United States)

    Laubenthal, L; Hoelker, M; Frahm, J; Dänicke, S; Gerlach, K; Südekum, K-H; Sauerwein, H; Häussler, S

    2016-02-01

    Energy balance in dairy cows changes during the course of lactation due to alterations in voluntary feed intake and energy required for milk synthesis. To adapt to the demands of lactation, energy metabolism needs to be regulated and coordinated in key organs such as adipose tissue (AT), liver, and mammary gland. Mitochondria are the main sites of energy production in mammalian cells and their number varies depending on age, organ, and physiological condition. The copy number of the mitochondrial genome, the mitochondrial DNA (mtDNA), reflects the abundance of mitochondria within a cell and is regulated by transcriptional and translational factors. Environmental, physiological, and energetic conditions change during lactation and we thus hypothesized that these changes may influence the mtDNA copy number and the abundance of genes regulating mitochondrial biogenesis. Therefore, we aimed to provide an overview of mitochondrial biogenesis in liver, subcutaneous (sc)AT, mammary gland, and peripheral blood cells during early and late lactation in dairy cows. German Holstein cows (n=21) were fed according to their requirements, and biopsies from scAT, liver, mammary gland, and blood were collected in early and late lactation and assayed for relative mtDNA copy numbers and the mRNA abundance of genes regulating mitochondrial biogenesis, such as nuclear-respiratory factor 1 and 2 (NRF-1, NRF-2), mitochondrial transcription factor A (TFAM), and peroxisome proliferator-activated receptor-gamma coactivator 1-α (PGC-1α). The number of mtDNA copies increased from early to late lactation in all tissues, whereas that in peripheral blood cells was greater in early compared with late lactation. Moreover, mitochondrial activity enzymes (i.e., citrate synthase and cytochrome c oxidase) increased from early to late lactation in scAT. Comparing the number of mtDNA copies between tissues and blood in dairy cows, the highest mtDNA content was observed in liver. The mRNA abundance of

  19. THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN

    Science.gov (United States)

    THE INFLUENCE OF MAGNETIC FIELDS ON INHIBITION OF MCF-7 CELL GROWTH BY TAMOXIFEN.Harland and Liburdy (1) reported that 1.2-uT, 60-Hz magnetic fields could significantly block the inhibitory action of pharmacological levels of tamoxifen (10-7 M) on the growth of MCF-7 human br...

  20. Human growth hormone binding and stimulation of insulin biosynthesis in cloned rat insulinoma cells

    DEFF Research Database (Denmark)

    Billestrup, Nils

    1985-01-01

    Binding of 125I labelled human growth hormone to cloned insulin producing RIN-5AH cells is described. Binding was specific for somatotropic hormones since both human and rat growth hormone could compete for binding sites, whereas much higher concentrations of lactogenic hormones were needed to in...

  1. Induction of growth in kidney epithelial cells in culture by Na+.

    OpenAIRE

    Toback, F G

    1980-01-01

    The role of Na+ in the regulation of cell growth was examined in quiescent, high-density cultures of kidney epithelial cells of the BSC-1 line. The addition of NaCl to the medium increased the number of cells initiating DNA synthesis in a concentration-dependent manner after serum stimulation. In the presence of added NaCl, cells in confluent cultures grew to high density at an increased rate, whereas growth in sparse cultures was retarded. These results suggest that, in the presence of serum...

  2. Targeting and Regulation of Cell Wall Synthesis During Tip Growth in Plants

    Institute of Scientific and Technical Information of China (English)

    Fangwei Gu; Erik Nielsen

    2013-01-01

    Root hairs and pollen tubes are formed through tip growth, a process requiring synthesis of new cell wall material and the precise targeting and integration of these components to a selected apical plasma membrane domain in the growing tips of these cells. Presence of a tip-focused calcium gradient, control of actin cytoskeleton dynamics, and formation and targeting of secretory vesicles are essential to tip growth. Similar to cells undergoing diffuse growth, cellulose, hemi-celluloses, and pectins are also deposited in the growing apices of tip-growing cells. However, differences in the manner in which these cell wall components are targeted and inserted in the expanding portion of tip-growing cells is reflected by the identification of elements of the plant cell wall synthesis machinery which have been shown to play unique roles in tip-growing cells. In this review, we summarize our current understanding of the tip growth process, with a particular focus on the subcellular targeting of newly synthesized cell wall components, and their roles in this form of plant cell expansion.

  3. Growth retardation of paramecium and mouse cells by shielding them from background radiation

    International Nuclear Information System (INIS)

    In the 1970s and 1980s, Planel et al. reported that the growth of paramecia was decreased by shielding them from background radiation. In the 1990s, Takizawa et al. found that mouse cells displayed a decreased growth rate under shielded conditions. The purpose of the present study was to confirm that growth is impaired in organisms that have been shielded from background radiation. Radioprotection was produced with a shielding chamber surrounded by a 15 cm thick iron wall and a 10 cm thick paraffin wall that reduced the γ ray and neutron levels in the chamber to 2% and 25% of the background levels, respectively. Although the growth of Paramecium tetraurelia was not impaired by short-term radioprotection (around 10 days), which disagreed with the findings of Planel et al., decreased growth was observed after long-term (40-50 days) radiation shielding. When mouse lymphoma L5178Y cells were incubated inside or outside of the shielding chamber for 7 days, the number of cells present on the 6th and 7th days under the shielding conditions was significantly lower than that present under the non-shielding conditions. These inhibitory effects on cell growth were abrogated by the addition of a 137Cs γ-ray source disk to the chamber. Furthermore, no growth retardation was observed in XRCC4-deficient mouse M10 cells, which display impaired DNA double strand break repair. (author)

  4. Accommodating the difference in students’ prior knowledge of cell growth kinetics

    OpenAIRE

    Seters, van, J.R.; Ossevoort, M.A.; Goedhart, M.J.; Tramper, J.

    2011-01-01

    This paper describes the development and benefits of an adaptive digital module on cell growth to tackle the problem of educating a heterogeneous group of students at the beginning of an undergraduate course on process engineering. Aim of the digital module is to provide students with the minimal level of knowledge on cell growth kinetics they need to comprehend the content knowledge of the subsequent lectures and pass the exam. The module was organised to offer the subject matter in a differ...

  5. Differential growth rates of Candida utilis mother and daughter cells under phased cultivation.

    OpenAIRE

    Thomas, K C; Dawson, P S; Gamborg, B L

    1980-01-01

    The yeast Candida utilis was continuously synchronized by the phased method of cultivation with the nitrogen source as the growth-limiting nutrient. The doubling time (phasing period) of cells was 6 h. Both cell number and deoxyribonucleic acid synthesis showed a characteristic stepwise increase during the phased growth. The time of bud emergence coincided with the time of initiation of deoxyribonucleic acid synthesis. Size distribution studies combined with microscopic analysis showed that t...

  6. Acetylbritannilactone Modulates Vascular Endothelial Growth Factor Signaling and Regulates Angiogenesis in Endothelial Cells

    OpenAIRE

    Zhao, Jingshan; Niu, Honglin; Li, Aiying; Nie, Lei

    2016-01-01

    The present study was conducted to determine the effects of 1-O-acetylbritannilactone (ABL), a compound extracted from Inula britannica L., on vascular endothelial growth factor (VEGF) signaling and angiogenesis in endothelial cells (ECs). We showed that ABL promotes VEGF-induced cell proliferation, growth, migration, and tube formation in cultured human ECs. Furthermore, the modulatory effect of ABL on VEGF-induced Akt, MAPK p42/44, and p38 phosphorylation, as well as on upstream VEGFR-2 pho...

  7. Functional maturation of growth hormone cells in the anterior pituitary gland of the fetus

    OpenAIRE

    Nogami, Haruo; Hisano, Setsuji

    2008-01-01

    Recent studies have disclosed the molecular mechanisms responsible for the phenotype determination of the anterior pituitary cell types. However, as far as growth hormone (GH) cells are concerned, particular extra-cellular cues are required for the initiation of GH and GH-releasing hormone (GHRH)-receptor gene production in addition to the expression of the cell type specific transcription factor, pit-1. The glucocorticoids play a principal role in the functional maturation of nascent GH cell...

  8. Effect of NCAM-transfection on growth and invasion of a human cancer cell line

    DEFF Research Database (Denmark)

    Edvardsen, K; Bock, E; Jirus, S;

    1997-01-01

    A cDNA encoding the human transmembrane 140 kDa isoform of the neural cell adhesion molecule (NCAM) was transfected into the highly invasive MDA-MB-231 human breast cancer cell line. Transfectants with a homogeneous expression of NCAM showed a restricted capacity for penetration of an artificial ...... of the NCAM-transfected cells. The fact that NCAM expression influences growth regulation attributes a pivotal role to this cell adhesion molecule during ontogenesis and tumor development....

  9. Inhibition of the growth of transformed and neoplastic cells by the dipeptide carnosine.

    OpenAIRE

    Holliday, R; McFarland, G. A.

    1996-01-01

    Human diploid fibroblasts growth normally in medium containing physiological concentrations of the naturally occurring dipeptide carnosine (beta-alanyl-L-histidine). These concentrations are cytotoxic to transformed and neoplastic cells lines in modified Eagle medium (MEM), whereas these cells grow vigorously in Dulbecco's modified Eagle medium (DMEM) containing carnosine. This difference is due to the presence of 1 mM sodium pyruvate in DMEM. Seven human cell lines and two rodent cell lines ...

  10. Vulnerability of microRNA biogenesis in FTD-ALS.

    Science.gov (United States)

    Eitan, Chen; Hornstein, Eran

    2016-09-15

    The genetics of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) turn our attention to RNA metabolism, primarily because many of the identified diseases-associated genes encode for RNA-binding proteins. microRNAs (miRNAs) are endogenous noncoding RNAs that play critical roles in maintaining brain integrity. The current review sheds light on miRNA dysregulation in neurodegenerative diseases, focusing on FTD-ALS. We propose that miRNAs are susceptible to fail when protein factors that are critical for miRNA biogenesis malfunction. Accordingly, potential insufficiencies of the 'microprocessor' complex, the nucleo-cytoplasmic export of miRNA precursors or their processing by Dicer were recently reported. Furthermore, specific miRNAs are involved in the regulation of pathways that are essential for neuronal survival or function. Any change in the expression of these specific miRNAs or in their ability to recognize their target sequences will have negative consequences. Taken together, recent reports strengthens the hypothesis that dysregulation of miRNAs might play an important role in the pathogenesis of neurodegenerative diseases, and highlights the miRNA biogenesis machinery as an interesting target for therapeutic interventions for ALS as well as FTD. This article is part of a Special Issue entitled SI:RNA Metabolism in Disease. PMID:26778173

  11. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    International Nuclear Information System (INIS)

    Highlights: • M-CSF and RANKL expressing HeLa cells induced osteoclastogenesis in vitro. • We established OGC-containing tumor model in vivo. • OGC-containing tumor became larger independent of M-CSF or RANKL effect. • VEGF-C secreted from OGCs was a one of candidates for OGC-containing tumor growth. - Abstract: Tumors with osteoclast-like giant cells (OGCs) have been reported in a variety of organs and exert an invasive and prometastatic phenotype, but the functional role of OGCs in the tumor environment has not been fully clarified. We established tumors containing OGCs to clarify the role of OGCs in tumor phenotype. A mixture of HeLa cells expressing macrophage colony-stimulating factor (M-CSF, HeLa-M) and receptor activator of nuclear factor-κB ligand (RANKL, HeLa-R) effectively supported the differentiation of osteoclast-like cells from bone marrow macrophages in vitro. Moreover, a xenograft study showed OGC formation in a tumor composed of HeLa-M and HeLa-R. Surprisingly, the tumors containing OGCs were significantly larger than the tumors without OGCs, although the growth rates were not different in vitro. Histological analysis showed that lymphangiogenesis and macrophage infiltration in the tumor containing OGCs, but not in other tumors were accelerated. According to quantitative PCR analysis, vascular endothelial growth factor (VEGF)-C mRNA expression increased with differentiation of osteoclast-like cells. To investigate whether VEGF-C expression is responsible for tumor growth and macrophage infiltration, HeLa cells overexpressing VEGF-C (HeLa-VC) were established and transplanted into mice. Tumors composed of HeLa-VC mimicked the phenotype of the tumors containing OGCs. Furthermore, the vascular permeability of tumor microvessels also increased in tumors containing OGCs and to some extent in VEGF-C-expressing tumors. These results suggest that macrophage infiltration and vascular permeability are possible mediators in these tumors. These

  12. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Yu [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Department of Cardivascular Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Nakahama, Ken-ichi, E-mail: nakacell@tmd.ac.jp [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Isobe, Mitsuaki [Department of Cardivascular Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Morita, Ikuo [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan)

    2014-03-28

    Highlights: • M-CSF and RANKL expressing HeLa cells induced osteoclastogenesis in vitro. • We established OGC-containing tumor model in vivo. • OGC-containing tumor became larger independent of M-CSF or RANKL effect. • VEGF-C secreted from OGCs was a one of candidates for OGC-containing tumor growth. - Abstract: Tumors with osteoclast-like giant cells (OGCs) have been reported in a variety of organs and exert an invasive and prometastatic phenotype, but the functional role of OGCs in the tumor environment has not been fully clarified. We established tumors containing OGCs to clarify the role of OGCs in tumor phenotype. A mixture of HeLa cells expressing macrophage colony-stimulating factor (M-CSF, HeLa-M) and receptor activator of nuclear factor-κB ligand (RANKL, HeLa-R) effectively supported the differentiation of osteoclast-like cells from bone marrow macrophages in vitro. Moreover, a xenograft study showed OGC formation in a tumor composed of HeLa-M and HeLa-R. Surprisingly, the tumors containing OGCs were significantly larger than the tumors without OGCs, although the growth rates were not different in vitro. Histological analysis showed that lymphangiogenesis and macrophage infiltration in the tumor containing OGCs, but not in other tumors were accelerated. According to quantitative PCR analysis, vascular endothelial growth factor (VEGF)-C mRNA expression increased with differentiation of osteoclast-like cells. To investigate whether VEGF-C expression is responsible for tumor growth and macrophage infiltration, HeLa cells overexpressing VEGF-C (HeLa-VC) were established and transplanted into mice. Tumors composed of HeLa-VC mimicked the phenotype of the tumors containing OGCs. Furthermore, the vascular permeability of tumor microvessels also increased in tumors containing OGCs and to some extent in VEGF-C-expressing tumors. These results suggest that macrophage infiltration and vascular permeability are possible mediators in these tumors. These

  13. The synthetic inhibitor of Fibroblast Growth Factor Receptor PD166866 controls negatively the growth of tumor cells in culture

    Directory of Open Access Journals (Sweden)

    Castelli Mauro

    2009-12-01

    Full Text Available Abstract Background Many experimental data evidence that over-expression of various growth factors cause disorders in cell proliferation. The role of the Fibroblast Growth Factors (FGF in growth control is indisputable: in particular, FGF1 and its tyrosine kinase receptor (FGFR1 act through a very complex network of mechanisms and pathways. In this work we have evaluated the antiproliferative activity effect of PD166866, a synthetic molecule inhibiting the tyrosin kinase action of FGFR1. Methods Cells were routinely grown in Dulbecco Modified Eagle's medium supplemented with newborn serum and a penicillin-streptomycin mixture. Cell viability was evaluated by Mosmann assay and by trypan blue staining. DNA damage was assessed by in situ fluorescent staining with Terminal Deoxynucleotidyl Transferase dUTP nick end labeling (TUNEL assay. Assessment of oxidative stress at membrane level was measured by quantitative analysis of the intra-cellular formation of malonyl-dialdheyde (MDA deriving from the decomposition of poly-unsaturated fatty acids. The expression of Poly-ADP-Ribose-Polymerase (PARP, consequent to DNA fragmentation, was evidenced by immuno-histochemistry utilizing an antibody directed against an N-terminal fragment of the enzyme. Results The bioactivity of the drug was investigated on Hela cells. Cytoxicity was assessed by the Mosmann assay and by vital staining with trypan blue. The target of the molecule is most likely the cell membrane as shown by the significant increase of the intracellular concentration of malonyl-dihaldheyde. The increase of this compound, as a consequence of the treatment with PD166866, is suggestive of membrane lipoperoxidation. The TUNEL assay gave a qualitative, though clear, indication of DNA damage. Furthermore we demonstrate intracellular accumulation of poly-ADP-ribose polymerase I. This enzyme is a sensor of nicks on the DNA strands and this supports the idea that treatment with the drug induces cell

  14. Stimulation of DNA synthesis in cultured primary human mesothelial cells by specific growth factors

    International Nuclear Information System (INIS)

    Monolayer cultures of human mesothelial cells made quiescent by serum deprivation are induced to undergo one round of DNA synthesis by platelet-derived growth factor (PDGF), epidermal growth factor (EGF), or transforming growth factor type beta 1 (TGF-beta 1). This one-time stimulation is independent of other serum components. The kinetics for induction of DNA synthesis observed for PDGF, EGF, and TGF-beta 1 are all similar to one another, with a peak of DNA synthesis occurring 24-36 h after the addition of the growth factors. Repetitive rounds of DNA synthesis and cell division do not ensue after addition of PDGF, EGF, or TGF-beta 1 alone or in combination; however, in media supplemented with chemically denatured serum, each of these factors is capable of sustaining continuous replication of mesothelial cells. Stimulation of growth by PDGF and TGF-beta 1 is unusual for an epithelial cell type, and indicates that mesothelial cells have growth regulatory properties similar to connective tissue cells

  15. Stability Analysis of a Hybrid Cellular Automaton Model of Cell Colony Growth

    CERN Document Server

    Gerlee, P

    2007-01-01

    Cell colonies of bacteria, tumour cells and fungi, under nutrient limited growth conditions, exhibit complex branched growth patterns. In order to investigate this phenomenon we present a simple hybrid cellular automaton model of cell colony growth. In the model the growth of the colony is limited by a nutrient that is consumed by the cells and which inhibits cell division if it falls below a certain threshold. Using this model we have investigated how the nutrient consumption rate of the cells affects the growth dynamics of the colony. We found that for low consumption rates the colony takes on a Eden-like morphology, while for higher consumption rates the morphology of the colony is branched with a fractal geometry. These findings are in agreement with previous results, but the simplicity of the model presented here allows for a linear stability analysis of the system. By observing that the local growth of the colony is proportional to the flux of the nutrient we derive an approximate dispersion relation fo...

  16. Selective pattern of cancer cell accumulation and growth using UV modulating printing of hydrogels.

    Science.gov (United States)

    Yang, Wenguang; Yu, Haibo; Wei, Fanan; Li, Gongxin; Wang, Yuechao; Liu, Lianqing

    2015-12-01

    Fabrication of extracellular microenvironment for cancer cell growth in vitro is an indispensable technique to precisely control the cell spatial arrangement and proliferation for cell-behavior research. Current micropatterning methods usually require relatively complicated operations, which makes it difficult to investigate the effects of different cell growth patterns. This manuscript proposes a DMD-based projection technique to quickly pattern a poly(ethylene) glycol diacrylate (PEGDA)-based hydrogel on a common glass substrate. Using this method, we can effectively control the growth patterns of cells. Compared with these traditional methods which employ digital dynamic mask, polymerization of PEGDA solution can be used to create arbitrary shaped microstructures with high efficiency, flexibility and repeatability. The duration of UV exposure is less than 10 s through controlling the projected illumination pattern. The ability of patterned PEGDA-coated film to hinder cell adhesion makes it possible to control area over which cells attach. In our experiments, we take advantage of the blank area to pattern cells, which allows cells to grow in various pre-designed shapes and sizes. And the patterning cells have a high viability after culturing for several days. Interestingly, we found that the restricted space could stiffen and strengthen the cells. These results indicate that cells and extracellular microenvironment can influence each other. PMID:26458559

  17. Capsaicin Inhibits Preferentially the NADH Oxidase and Growth of Transformed Cells in Culture

    Science.gov (United States)

    Morre, D. James; Chueh, Pin-Ju; Morre, Dorothy M.

    1995-03-01

    A hormone- and growth factor-stimulated NADH oxidase of the mammalian plasma membrane, constitutively activated in transformed cells, was inhibited preferentially in HeLa, ovarian carcinoma, mammary adenocarcinoma, and HL-60 cells, all of human origin, by the naturally occurring quinone analog capsaicin (8-methyl-N-vanillyl-6-noneamide), compared with plasma membranes from human mammary epithelial, rat liver, normal rat kidney cells, or HL-60 cells induced to differentiate with dimethyl sulfoxide. With cells in culture, capsaicin preferentially inhibited growth of HeLa, ovarian carcinoma, mammary adenocarcinoma, and HL-60 cells but was largely without effect on the mammary epithelial cells, rat kidney cells, or HL-60 cells induced to differentiate with dimethyl sulfoxide. Inhibited cells became smaller and cell death was accompanied by a condensed and fragmented appearance of the nuclear DNA, as revealed by fluorescence microscopy with 4',6-diamidino-2-phenylindole, suggestive of apoptosis. The findings correlate capsaicin inhibition of cell surface NADH oxidase activity and inhibition of growth that correlate with capsaicin-induced apoptosis.

  18. Endothelial cell growth factor and ionophore A23187 stimulation of production of inositol phosphates in porcine aorta endothelial cells.

    OpenAIRE

    Moscat, J; Moreno, F.; Herrero, C.; C. López; García-Barreno, P.

    1988-01-01

    The existence of a bovine brain-derived endothelial cell growth factor has recently been reported, but its mode of action is unknown. We show that the endothelial cell growth factor is a potent stimulant of inositol monophosphate release in porcine aorta endothelial cells. Although the activation of phospholipase C by this factor does not appear to be dependent on Ca2+, the Ca2+ ionophore A23187 stimulates release of inositol phosphates. It is suggested that the inositol 1,4,5-trisphosphate 3...

  19. Combined MET inhibition and topoisomerase I inhibition block cell growth of small cell lung cancer.

    Science.gov (United States)

    Rolle, Cleo E; Kanteti, Rajani; Surati, Mosmi; Nandi, Suvobroto; Dhanasingh, Immanuel; Yala, Soheil; Tretiakova, Maria; Arif, Qudsia; Hembrough, Todd; Brand, Toni M; Wheeler, Deric L; Husain, Aliya N; Vokes, Everett E; Bharti, Ajit; Salgia, Ravi

    2014-03-01

    Small cell lung cancer (SCLC) is a devastating disease, and current therapies have not greatly improved the 5-year survival rates. Topoisomerase (Top) inhibition is a treatment modality for SCLC; however, the response is short lived. Consequently, our research has focused on improving SCLC therapeutics through the identification of novel targets. Previously, we identified MNNG HOS transforming gene (MET) to be overexpressed and functional in SCLC. Herein, we investigated the therapeutic potential of combinatorial targeting of MET using SU11274 and Top1 using 7-ethyl-10-hydroxycamptothecin (SN-38). MET and TOP1 gene copy numbers and protein expression were determined in 29 patients with limited (n = 11) and extensive (n = 18) disease. MET gene copy number was significantly increased (>6 copies) in extensive disease compared with limited disease (P = 0.015). Similar TOP1 gene copy numbers were detected in limited and extensive disease. Immunohistochemical staining revealed a significantly higher Top1 nuclear expression in extensive (0.93) versus limited (0.15) disease (P = 0.04). Interestingly, a significant positive correlation was detected between MET gene copy number and Top1 nuclear expression (r = 0.5). In vitro stimulation of H82 cells revealed hepatocyte growth factor (HGF)-induced nuclear colocalization of p-MET and Top1. Furthermore, activation of the HGF/MET axis enhanced Top1 activity, which was abrogated by SU11274. Combination of SN-38 with SU11274 dramatically decreased SCLC growth as compared with either drug alone. Collectively, these findings suggest that the combinatorial inhibition of MET and Top1 is a potentially efficacious treatment strategy for SCLC. PMID:24327519

  20. Hormones that Stimulate the Growth of Blood Cells.

    Science.gov (United States)

    Golde, David W.; Gasson, Judith C.

    1988-01-01

    Describes the nature and action of hematopoietic proteins which regulate the production of specific sets of blood cells. Discusses the production of these hematopoietins by recombinant-DNA methods in an effort to enable physicians to treat patients by eliciting production of specific types of blood cells. (CW)

  1. Growth and death of animal cells in bioreactors.

    NARCIS (Netherlands)

    Martens, D.E.

    1996-01-01

    Animal-cell cultivation is becoming increasingly important especially for the area of hunian- health products. The products range from vaccines to therapeutic proteins and the cells themselves. The therapeutic application of proteins puts high demands upon their quality with respect to purity and st

  2. Nitazoxanide Inhibits Pilus Biogenesis by Interfering with Folding of the Usher Protein in the Outer Membrane.

    Science.gov (United States)

    Chahales, Peter; Hoffman, Paul S; Thanassi, David G

    2016-04-01

    Many bacterial pathogens assemble surface fibers termed pili or fimbriae that facilitate attachment to host cells and colonization of host tissues. The chaperone/usher (CU) pathway is a conserved secretion system that is responsible for the assembly of virulence-associated pili by many different Gram-negative bacteria. Pilus biogenesis by the CU pathway requires a dedicated periplasmic chaperone and an integral outer membrane (OM) assembly and secretion platform termed the usher. Nitazoxanide (NTZ), an antiparasitic drug, was previously shown to inhibit the function of aggregative adherence fimbriae and type 1 pili assembled by the CU pathway in enteroaggregativeEscherichia coli, an important causative agent of diarrhea. We show here that NTZ also inhibits the function of type 1 and P pili from uropathogenicE. coli(UPEC). UPEC is the primary causative agent of urinary tract infections, and type 1 and P pili mediate colonization of the bladder and kidneys, respectively. By analysis of the different stages of the CU pilus biogenesis pathway, we show that treatment of bacteria with NTZ causes a reduction in the number of usher molecules in the OM, resulting in a loss of pilus assembly on the bacterial surface. In addition, we determine that NTZ specifically prevents proper folding of the usher β-barrel domain in the OM. Our findings demonstrate that NTZ is a pilicide with a novel mechanism of action and activity against diverse CU pathways. This suggests that further development of the NTZ scaffold may lead to new antivirulence agents that target the usher to prevent pilus assembly. PMID:26824945

  3. Making a tooth: growth factors, transcription factors, and stem cells

    Institute of Scientific and Technical Information of China (English)

    Yah Ding ZHANG; Zhi CHEN; Yi Qiang SONG; Chao LIU; Yi Ping CHEN

    2005-01-01

    Mammalian tooth development is largely dependent on sequential and reciprocal epithelial-mesenchymal interactions.These processes involve a series of inductive and permissive interactions that result in the determination, differentiation,and organization of odontogenic tissues. Multiple signaling molecules, including BMPs, FGFs, Shh, and Wnt proteins,have been implicated in mediating these tissue interactions. Transcription factors participate in epithelial-mesenchymal interactions via linking the signaling loops between tissue layers by responding to inductive signals and regulating the expression of other signaling molecules. Adult stem cells are highly plastic and multipotent. These cells including dental pulp stem cells and bone marrow stromal cells could be reprogrammed into odontogenic fate and participated in tooth formation. Recent progress in the studies of molecular basis of tooth development, adult stem cell biology, and regeneration will provide fundamental knowledge for the realization of human tooth regeneration in the near future.

  4. A novel peptide sansalvamide analogue inhibits pancreatic cancer cell growth through G0/G1 cell-cycle arrest

    International Nuclear Information System (INIS)

    Patients with pancreatic cancer have little hope for cure because no effective therapies are available. Sansalvamide A is a cyclic depsipeptide produced by a marine fungus. We investigated the effect of a novel sansalvamide A analogue on growth, cell-cycle phases, and induction of apoptosis in human pancreatic cancer cells in vitro. The sansalvamide analogue caused marked time- and concentration-dependent inhibition of DNA synthesis and cell proliferation of two human pancreatic cancer cell lines (AsPC-1 and S2-013). The analogue induced G0/G1 phase cell-cycle arrest and morphological changes suggesting induction of apoptosis. Apoptosis was confirmed by annexin V binding. This novel sansalvamide analogue inhibits growth of pancreatic cancer cells through G0/G1 arrest and induces apoptosis. Sansalvamide analogues may be valuable for the treatment of pancreatic cancer

  5. Impacts of X-ray irradiation on Saccharomyces cerevisiae cells growth and physiological-biochemical characteristic

    Institute of Scientific and Technical Information of China (English)

    曹国珍; 张苗苗; 李文建; 缪建顺; 陆栋; 张文德

    2015-01-01

    In this paper, the growth curves of yeast cells exposed to X-rays were detected, and then fitted by Gompertz equation. The yeast cells treated with 50–125 Gy showed an increased exponential growth rate, and lower total biomass at plateau. At doses ≥ 150 Gy, cells showed a decreased exponential growth rate and higher total biomass at plateau. DNA lesions were detected by comet assay. Meanwhile, intracellular accumulation of reactive oxygen species (ROS), reduction of mitochondrial membrane potential (∆Ψm) and cell membrane integrity were evaluated. We conclude that X-ray irradiation results in DNA lesions, ROS accumulation and∆Ψm decline in a dose-dependent manner, and that these changes may be one of causes of X-rays-induced apoptosis in yeast. Furthermore, yeast cell membrane integrity appeared compromised following irradiation, suggesting that membrane damage may also have a role in the biological effects of radiation.

  6. Wall extensibility: its nature, measurement and relationship to plant cell growth

    Science.gov (United States)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  7. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks

    Science.gov (United States)

    Huang, S.; Ingber, D. E.

    2000-01-01

    Development of characteristic tissue patterns requires that individual cells be switched locally between different phenotypes or "fates;" while one cell may proliferate, its neighbors may differentiate or die. Recent studies have revealed that local switching between these different gene programs is controlled through interplay between soluble growth factors, insoluble extracellular matrix molecules, and mechanical forces which produce cell shape distortion. Although the precise molecular basis remains unknown, shape-dependent control of cell growth and function appears to be mediated by tension-dependent changes in the actin cytoskeleton. However, the question remains: how can a generalized physical stimulus, such as cell distortion, activate the same set of genes and signaling proteins that are triggered by molecules which bind to specific cell surface receptors. In this article, we use computer simulations based on dynamic Boolean networks to show that the different cell fates that a particular cell can exhibit may represent a preprogrammed set of common end programs or "attractors" which self-organize within the cell's regulatory networks. In this type of dynamic network model of information processing, generalized stimuli (e.g., mechanical forces) and specific molecular cues elicit signals which follow different trajectories, but eventually converge onto one of a small set of common end programs (growth, quiescence, differentiation, apoptosis, etc.). In other words, if cells use this type of information processing system, then control of cell function would involve selection of preexisting (latent) behavioral modes of the cell, rather than instruction by specific binding molecules. Importantly, the results of the computer simulation closely mimic experimental data obtained with living endothelial cells. The major implication of this finding is that current methods used for analysis of cell function that rely on characterization of linear signaling pathways or

  8. Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

    Directory of Open Access Journals (Sweden)

    Christina Rosman

    2014-12-01

    Full Text Available In this work, we study epithelial cell growth on substrates decorated with gold nanorods that are functionalized either with a positively charged cytotoxic surfactant or with a biocompatible polymer exhibiting one of two different end groups, resulting in a neutral or negative surface charge of the particle. Upon observation of cell growth for three days by live cell imaging using optical dark field microscopy, it was found that all particles supported cell adhesion while no directed cell migration and no significant particle internalization occurred. Concerning cell adhesion and spreading as compared to cell growth on bare substrates after 3 days of incubation, a reduction by 45% and 95%, respectively, for the surfactant particle coating was observed, whereas the amino-terminated polymer induced a reduction by 30% and 40%, respectively, which is absent for the carboxy-terminated polymer. Furthermore, interface-sensitive impedance spectroscopy (electric cell–substrate impedance sensing, ECIS was employed in order to investigate the micromotility of cells added to substrates decorated with various amounts of surfactant-coated particles. A surface density of 65 particles/µm2 (which corresponds to 0.5% of surface coverage with nanoparticles diminishes micromotion by 25% as compared to bare substrates after 35 hours of incubation. We conclude that the surface coating of the gold nanorods, which were applied to the basolateral side of the cells, has a recognizable influence on the growth behavior and thus the coating should be carefully selected for biomedical applications of nanoparticles.

  9. Growth arrest and differentiation-associated phosphoproteins in mesenchymal stem cells

    International Nuclear Information System (INIS)

    Cancer is thought to result from the expression of defects in the control of both cell proliferation and differentiation. In murine mesenchymal stem cells they have established that differentiation and proliferation can be mediated at a variety of distinct states in the G1 phase of the cell cycle. In order to evaluate the role of cellular phosphoprotein (PP) expression in these regulatory processes, five different growth and differentiation-dependent states were compared. Cells in the following states were studied: (1) exponential growth; (2) arrest in serum-deficient medium; (3) arrest at the predifferentiation arrest state; (4) arrest at a state of nonterminal differentiation; and (5) arrest at a state of terminal differentiation. Whole cell lysates from each group were phosphorylated in vitro using [γ-32P]ATP and analyzed by SDS-polyacrylamide gel electrophoresis. Two most interesting observations were established. First, a distinct PP with a molecular weight of 37 kD was expressed in all growth arrested cells but was not evident in rapidly growing cells. Second, two distinct differentiation-associated PP with molecular weights of 72 kD and 29 kD were expressed exclusively in nonterminally and terminally differentiated cells. Since the identification of the 37 kD cell cycle-dependent growth arrest-associated PP could be of great significance, they plan to further investigate the functional role of this phosphoprotein in the control of cellular proliferation

  10. Aligned Fibrous Scaffold Induced Aligned Growth of Corneal Stroma Cells in vitro Culture

    Institute of Scientific and Technical Information of China (English)

    GAO Yan; YAN Jing; CUI Xue-jun; WANG Hong-yan; WANG Qing

    2012-01-01

    To investigate the contribution of fibre arrangement to guiding the aligned growth of corneal stroma cells,aligned and randomly oriented fibrous scaffolds of gelatin and poly-L-lactic acid(PLLA) were fabricated by electrospinning.A comparative study of two different systems with corneal stroma cells on randomly organized and aligned fibres were conducted.The efficiency of the scaffolds for inducing the aligned growth of cells was assessed by morphological observation and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide(MTT) assay.Results show that the cells cultured on both randomly oriented and aligned scaffolds maintained normal morphology and well spreading as well as long term proliferation.Importantly,corneal stroma cells grew high orderly on the aligned scaffold,while the cells grew disordered on the randomly oriented scaffold.Moreover,the cells exhibited higher viability in aligned scaffold than that in randomly oriented scaffold.These results indcate that electrospinng to prepare aligned fibrous scaffolds has provided an effective approach to the aligned growth of corneal stroma cells in vitro.Our findings that fiber arrangement plays a crucial role in guiding the aligned growth of cells may be helpful to the development of better biomaterials for tissue engineered cornea.

  11. Cholecystokinin and Somatostatin Negatively Affect Growth of the Somatostatin-RIN-14B Cells

    Directory of Open Access Journals (Sweden)

    Karim El-Kouhen

    2009-01-01

    Full Text Available With the exclusive presence of the pancreatic CCK-2 receptors on the pancreatic delta cells of six different species, this study was undertaken to determine the role of cholecystokinin and gastrin on growth of these somatostatin (SS cells. For this study, the SS-RIN-14B cells were used in culture and their growth was evaluated by cell counting. Results. To our surprise, we established by Western blot that these RIN cells possess the two CCK receptor subtypes, CCK-1 and CCK-2. Occupation of the CCK-1 receptors by caerulein, a CCK analog, led to inhibition of cell proliferation, an effect prevented by a specific CCK-1 receptor antagonist. Occupation of the CCK-2 receptors by the gastrin agonist pentagastrin had no effect on cell growth. Proliferation was not affected by SS released from these cells but was inhibited by exogenous SS. Conclusions. Growth of the SS-RIN-14B cells can be negatively affected by occupation of their CCK-1 receptors and by exogenous somatostatin.

  12. Somatostatin receptor-1 induces cell cycle arrest and inhibits tumor growth in pancreatic cancer.

    Science.gov (United States)

    Li, Min; Wang, Xiaochi; Li, Wei; Li, Fei; Yang, Hui; Wang, Hao; Brunicardi, F Charles; Chen, Changyi; Yao, Qizhi; Fisher, William E

    2008-11-01

    Functional somatostatin receptors (SSTR) are lost in human pancreatic cancer. Transfection of SSTR-1 inhibited pancreatic cancer cell proliferation in vitro. We hypothesize that stable transfection of SSTR-1 may inhibit pancreatic cancer growth in vivo possibly through cell cycle arrest. In this study, we examined the expression of SSTR-1 mRNA in human pancreatic cancer tissue specimens, and investigated the effect of SSTR-1 overexpression on cell proliferation, cell cycle, and tumor growth in a subcutaneous nude mouse model. We found that SSTR-1 mRNA was downregulated in the majority of pancreatic cancer tissue specimens. Transfection of SSTR-1 caused cell cycle arrest at the G(0)/G(1) growth phase, with a corresponding decline of cells in the S (mitotic) phase. The overexpression of SSTR-1 significantly inhibited subcutaneous tumor size by 71% and 43% (n = 5, P < 0.05, Student's t-test), and inhibited tumor weight by 69% and 47% (n = 5, P < 0.05, Student's t-test), in Panc-SSTR-1 and MIA-SSTR-1 groups, respectively, indicating the potent inhibitory effect of SSTR-1 on pancreatic cancer growth. Our data demonstrate that overexpression of SSTR-1 significantly inhibits pancreatic cancer growth possibly through cell cycle arrest. This study suggests that gene therapy with SSTR-1 may be a potential adjuvant treatment for pancreatic cancer. PMID:18823376

  13. Vitamin D3 stimulates embryonic stem cells but inhibits migration and growth of ovarian cancer and teratocarcinoma cell lines

    OpenAIRE

    Abdelbaset-Ismail, Ahmed; Pedziwiatr, Daniel; Suszyńska, Ewa; Sluczanowska-Glabowska, Sylwia; Schneider, Gabriela; Kakar, Sham S; Mariusz Z Ratajczak

    2016-01-01

    Background Deficiency in Vitamin D3 (cholecalciferol) may predispose to some malignancies, including gonadal tumors and in experimental models vitamin D3 has been proven to inhibit the growth of cancer cells. To learn more about the potential role of vitamin D3 in cancerogenesis, we evaluated the expression and functionality of the vitamin D receptor (VDR) and its role in metastasis of ovarian cancer cells and of murine and human teratocarcinoma cell lines. Methods In our studies we employed ...

  14. In vitro growth, differentiation and biological characteristics of neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Meijiang Yun; Lianzhong Wang; Yongcai Wang; Xiaolian Jiang

    2006-01-01

    OBJECTIVE: To summarize the biological characteristics of neural stem cells, and the separation, purification, differentiation and source of neural stem cells.DATA SOURCES: An online search of Pubmed database was undertaken to identify English articles about the growth of neural stem cells in vitro published from January 2000 to October 2006 by using the keywords of "neural stem ceils, bone marrow mesenchymal stem cells (BMSCs), umbilical cord blood stem cells, embryonic stem cells (ESC), separation methods, neural growth factor". And relevant articles published in IEEE/IEE Electronic Library (IEL) database, Springer Link database and Kluwer Online Journals were also searched.Chinese relevant articles published between January 2000 to October 2006 were searched with the same keywords in Chinese in Chinese journal full-text database.STUDY SELECTTON: The articles were primarily screened, and then the full-texts were searched. Inclusive criteria: ① Articles relevant to the biological characteristics and classification of neural stem cells; ② Articles about the source, separation and differentiation of the ESCs, BMSCs and umbilical cord blood stem cells. The repetitive studies and reviews were excluded.DATA EXTRACTION: Thirty articles were selected from 203 relevant articles according to the inclusive criteria.Articles were excluded because of repetition and reviews.DATA SYNTHESTS: Neural stem cells have the ability of self-renewing and high differentiation, and they are obtained from ESCs, nerve tissue, nerve system, BMSCs and umbilical cord blood stem cells. ESCs can be separated by means of mechanical dissociation is better than that of the trypsin digestion, BMSCs by density gradient centrifuge separation, hemolysis, whole-blood culture, etc., and umbilical cord blood stem cells by Ficoil density gradient centrifugation, hydroxyethyl starch (HES) centrifugation sedimentation, etc. Neural growth factor (NGF) and other factors play an important role in the growth

  15. Growth inhibiting effects of terazosin on androgen-independent prostate cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    许克新; 王向红; 凌明达; 王云川

    2003-01-01

    Objective To study the effects of an α1-adrenoceptor antagonist, terazosin on the androgen-independent prostate cancer cell lines PC-3 and DU145.Methods Two androgen independent cell lines, PC-3 and DU145, were used to determine cell viability, colony-forming ability, as well as cell cycle distribution, after exposure to terazosin. Western blot analysis was used to determine the expression of p21WAF1 and p27KIP1.Results This study shows that terazosin inhibits not only prostate cancer cell growth but also its colony forming ability, both of which are main targets of clinical treatment. In addition, terazosin is shown to inhibit cell growth through G1 phase cell cycle arrest and the up-regulation of p27KIP1.Conclusion This study provides evidence that the α1-adrenoceptor antagonist terazosin may have therapeutic potential in the treatment of advanced hormone refractory prostate cancer.

  16. Enhanced growth medium and method for culturing human mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R. (7290 Sayre Dr., Oakland, CA 94611); Smith, Helene S. (5693 Cabot Dr., Oakland, CA 94611); Hackett, Adeline J. (82 Evergreen Dr., Orinda, CA 94563)

    1983-01-01

    Methods are disclosed for isolating and culturing human mammary epithelial cells of both normal and malignant origin. Tissue samples are digested with a mixture including the enzymes collagenase and hyaluronidase to produce clumps of cells substantially free from stroma and other undesired cellular material. Growing the clumps of cells in mass culture in an enriched medium containing particular growth factors allows for active cell proliferation and subculture. Clonal culture having plating efficiencies of up to 40% or greater may be obtained using individual cells derived from the mass culture by plating the cells on appropriate substrates in the enriched media. The clonal growth of cells so obtained is suitable for a quantitative assessment of the cytotoxicity of particular treatment. An exemplary assay for assessing the cytotoxicity of the drug adriamycin is presented.

  17. Amphiregulin enhances regulatory T cell-suppressive function via the epidermal growth factor receptor.

    Science.gov (United States)

    Zaiss, Dietmar M W; van Loosdregt, Jorg; Gorlani, Andrea; Bekker, Cornelis P J; Gröne, Andrea; Sibilia, Maria; van Bergen en Henegouwen, Paul M P; Roovers, Rob C; Coffer, Paul J; Sijts, Alice J A M

    2013-02-21

    Epidermal growth factor receptor (EGFR) is known to be critically involved in tissue development and homeostasis as well as in the pathogenesis of cancer. Here we showed that Foxp3(+) regulatory T (Treg) cells express EGFR under inflammatory conditions. Stimulation with the EGF-like growth factor Amphiregulin (AREG) markedly enhanced Treg cell function in vitro, and in a colitis and tumor vaccination model we showed that AREG was critical for efficient Treg cell function in vivo. In addition, mast cell-derived AREG fully restored optimal Treg cell function. These findings reveal EGFR as a component in the regulation of local immune responses and establish a link between mast cells and Treg cells. Targeting of this immune regulatory mechanism may contribute to the therapeutic successes of EGFR-targeting treatments in cancer patients. PMID:23333074

  18. Tumor growth effects of rapamycin on human biliary tract cancer cells

    Directory of Open Access Journals (Sweden)

    Heuer Matthias

    2012-06-01

    Full Text Available Abstract Background Liver transplantation is an important treatment option for patients with liver-originated tumors including biliary tract carcinomas (BTCs. Post-transplant tumor recurrence remains a limiting factor for long-term survival. The mammalian target of rapamycin-targeting immunosuppressive drug rapamycin could be helpful in lowering BTC recurrence rates. Therein, we investigated the antiproliferative effect of rapamycin on BTC cells and compared it with standard immunosuppressants. Methods We investigated two human BTC cell lines. We performed cell cycle and proliferation analyses after treatment with different doses of rapamycin and the standard immunosuppressants, cyclosporine A and tacrolimus. Results Rapamycin inhibited the growth of two BTC cell lines in vitro. By contrast, an increase in cell growth was observed among the cells treated with the standard immunosuppressants. Conclusions These results support the hypothesis that rapamycin inhibits BTC cell proliferation and thus might be the preferred immunosuppressant for patients after a liver transplantation because of BTC.

  19. Xanthine oxidase activity regulates human embryonic brain cells growth

    Directory of Open Access Journals (Sweden)

    Kevorkian G. A.

    2011-10-01

    Full Text Available Aim. Involvement of Xanthine Oxidase (XO; EC1.1.3.22 in cellular proliferation and differentiation has been suggested by the numerous investigations. We have proposed that XO might have undoubtedly important role during the development, maturation as well as the death of human embryos brain cells. Methods. Human abortion material was utilized for the cultivation of brain cells (E90. XO activity was measured by the formation of uric acid in tissue. Cell death was detected by the utility of Trypan Blue dye. Results. Allopurinol suppressed the XO activity in the brain tissue (0.12 ± 0.02; 0.20 ± 0.03 resp., p < 0.05. On day 12th the number of cells in the culture treated with the Allopurinol at the early stage of development was higher in comparison with the Control (2350.1 ± 199.0 vs 2123 ± 96 and higher in comparison with the late period of treatment (1479.6 ± 103.8, p < < 0.05. In all groups, the number of the dead cells was less than in Control, indicating the protective nature of Allopurinol as an inhibitor of XO. Conclusions. Allopurinol initiates cells proliferation in case of the early treatment of the human brain derived cell culture whereas at the late stages it has an opposite effect.

  20. Expression of an Exogenous Growth Hormone Gene by Transplantable Human Epidermal Cells

    Science.gov (United States)

    Morgan, Jeffrey R.; Barrandon, Yann; Green, Howard; Mulligan, Richard C.

    1987-09-01

    Retrovirus-mediated gene transfer was used to introduce a recombinant human growth hormone gene into cultured human keratinocytes. The transduced keratinocytes secreted biologically active growth hormone into the culture medium. When grafted as an epithelial sheet onto athymic mice, these cultured keratinocytes reconstituted an epidermis that was similar in appearance to that resulting from normal cells, but from which human growth hormone could be extracted. Transduced epidermal cells may prove to be a general vehicle for the delivery of gene products by means of grafting.

  1. Direct growth of graphene nanowalls on the crystalline silicon for solar cells

    Science.gov (United States)

    Liu, Jian; Sun, Wentao; Wei, Dapeng; Song, Xuefen; Jiao, Tianpeng; He, Shixuan; Zhang, Wei; Du, Chunlei

    2015-01-01

    We developed a simple approach to fabricate graphene/Si heterojunction solar cells via direct growth of graphene nanowalls on Si substrate. This 3D graphene structure was outstanding electrode network and could form fine interface with Si substrate. Moreover, direct growth method not only simplified manufacturing process, but also avoided damages and contaminants from graphene transfer process. The short-circuit current (Jsc) increased greatly and could reach 31 mA/cm2. After HNO3 doping, the energy conversion efficiency was increased up to 5.1%. Furthermore, we investigated the influence of growth time on the cell performance.

  2. Rat hepatic stellate cells alter the gene expression profile and promote the growth, migration and invasion of hepatocellular carcinoma cells

    OpenAIRE

    Wang, Zhi-Ming; ZHOU, LE-YUAN; Liu, Bin-Bin; JIA, QIN-AN; DONG, YIN-YING; XIA, YUN-HONG; Ye, Sheng-Long

    2014-01-01

    The aim of the present study was to examine the effects of activated hepatic stellate cells (HSCs) and their paracrine secretions, on hepatocellular cancer cell growth and gene expression in vitro and in vivo. Differentially expressed genes in McA-RH7777 hepatocellular carcinoma (HCC) cells following non-contact co-culture with activated stellate cells, were identified by a cDNA microarray. The effect of the co-injection of HCC cells and activated HSCs on tumor size in rats was also investiga...

  3. THE NADPH OXIDASE INHIBITOR VAS2870 IMPAIRS CELL GROWTH AND ENHANCES TGF-?-INDUCED APOPTOSIS OF LIVER TUMOR CELLS

    OpenAIRE

    Sancho, Patricia; Fabregat, Isabel

    2011-01-01

    Abstract Liver tumor cells show several molecular alterations which favor pro-survival signaling. Among those, we have proposed the NADPH oxidase NOX1 as a prosurvival signal for liver tumor cells. On the one side, we have described that FaO rat hepatoma cells show NOX1-dependent partial resistance to apoptosis induced by Transforming Growth Factor beta (TGF-?). On the other side, we have shown that FaO cells, as well as different human hepatocellular carcinoma (HCC) cell lines, ar...

  4. Optimization of energy-consuming pathways towards rapid growth in HPV-transformed cells.

    Directory of Open Access Journals (Sweden)

    Sarit Mizrachy-Schwartz

    Full Text Available Cancer is a complex, multi-step process characterized by misregulated signal transduction and altered metabolism. Cancer cells divide faster than normal cells and their growth rates have been reported to correlate with increased metabolic flux during cell transformation. Here we report on progressive changes in essential elements of the biochemical network, in an in vitro model of transformation, consisting of primary human keratinocytes, human keratinocytes immortalized by human papillomavirus 16 (HPV16 and passaged repeatedly in vitro, and the extensively-passaged cells subsequently treated with the carcinogen benzo[a]pyrene. We monitored changes in cell growth, cell size and energy metabolism. The more transformed cells were smaller and divided faster, but the cellular energy flux was unchanged. During cell transformation the protein synthesis network contracted, as shown by the reduction in key cap-dependent translation factors. Moreover, there was a progressive shift towards internal ribosome entry site (IRES-dependent translation. The switch from cap to IRES-dependent translation correlated with progressive activation of c-Src, an activator of AMP-activated protein kinase (AMPK, which controls energy-consuming processes, including protein translation. As cellular protein synthesis is a major energy-consuming process, we propose that the reduction in cell size and protein amount provide energy required for cell survival and proliferation. The cap to IRES-dependent switch seems to be part of a gradual optimization of energy-consuming mechanisms that redirects cellular processes to enhance cell growth, in the course of transformation.

  5. Inhibition of growth and induction of differentiation of colon cancer cells by peach and plum phenolic compounds

    Science.gov (United States)

    The action of extracts from anthocyanin-enriched plums and peaches on growth and differentiation was studied with human colon cancer cells. Growth inhibitory effects were observed in Caco-2, SW1116, HT29 and NCM460 cells. In Caco-2 cells but not in the other cells studied there was evidence for incr...

  6. De novo peroxisome biogenesis in Penicillium chrysogenum is not dependent on the Pex11 family members or Pex16.

    Directory of Open Access Journals (Sweden)

    Łukasz Opaliński

    Full Text Available We have analyzed the role of the three members of the Pex11 protein family in peroxisome formation in the filamentous fungus Penicillium chrysogenum. Two of these, Pex11 and Pex11C, are components of the peroxisomal membrane, while Pex11B is present at the endoplasmic reticulum. We show that Pex11 is a major factor involved in peroxisome proliferation. We also demonstrate that P. chrysogenum cells deleted for known peroxisome fission factors (all Pex11 family proteins and Vps1 still contain peroxisomes. Interestingly, we find that, unlike in mammals, Pex16 is not essential for peroxisome biogenesis in P. chrysogenum, as partially functional peroxisomes are present in a pex16 deletion strain. We also show that Pex16 is not involved in de novo biogenesis of peroxisomes, as peroxisomes were still present in quadruple Δpex11 Δpex11B Δpex11C Δpex16 mutant cells. By contrast, pex3 deletion in P. chrysogenum led to cells devoid of peroxisomes, suggesting that Pex3 may function independently of Pex16. Finally, we demonstrate that the presence of intact peroxisomes is important for the efficiency of ß-lactam antibiotics production by P. chrysogenum. Remarkably, distinct from earlier results with low penicillin producing laboratory strains, upregulation of peroxisome numbers in a high producing P. chrysogenum strain had no significant effect on penicillin production.

  7. Withaferin A inhibits in vivo growth of breast cancer cells accelerated by Notch2 knockdown.

    Science.gov (United States)

    Kim, Su-Hyeong; Hahm, Eun-Ryeong; Arlotti, Julie A; Samanta, Suman K; Moura, Michelle B; Thorne, Stephen H; Shuai, Yongli; Anderson, Carolyn J; White, Alexander G; Lokshin, Anna; Lee, Joomin; Singh, Shivendra V

    2016-05-01

    The present study offers novel insights into the molecular circuitry of accelerated in vivo tumor growth by Notch2 knockdown in triple-negative breast cancer (TNBC) cells. Therapeutic vulnerability of Notch2-altered growth to a small molecule (withaferin A, WA) is also demonstrated. MDA-MB-231 and SUM159 cells were used for the xenograft studies. A variety of technologies were deployed to elucidate the mechanisms underlying tumor growth augmentation by Notch2 knockdown and its reversal by WA, including Fluorescence Molecular Tomography for measurement of tumor angiogenesis in live mice, Seahorse Flux analyzer for ex vivo measurement of tumor metabolism, proteomics, and Luminex-based cytokine profiling. Stable knockdown of Notch2 resulted in accelerated in vivo tumor growth in both cells reflected by tumor volume and/or latency. For example, the wet tumor weight from mice bearing Notch2 knockdown MDA-MB-231 cells was about 7.1-fold higher compared with control (P medicinal plant. Molecular underpinnings for tumor growth intensification by Notch2 knockdown included compensatory increase in Notch1 activation, increased cellular proliferation and/or angiogenesis, and increased plasma or tumor levels of growth stimulatory cytokines. WA administration reversed many of these effects providing explanation for its remarkable anti-cancer efficacy. Notch2 functions as a tumor growth suppressor in TNBC and WA offers a novel therapeutic strategy for restoring this function. PMID:27097807

  8. Functional analysis of tumor cell growth and clearance in living animals

    Science.gov (United States)

    Sweeney, Thomas J.; Mailaender, V.; Tucker, Amanda A.; Olomu, A. B.; Zhang, Weisheng; Negrin, Robert S.; Contag, Christopher H.

    1999-07-01

    Evaluation of antineoplastic therapies would be enhanced by sensitive methods that noninvasively asses both tumor location and neoplastic growth kinetics in living animals. Since light is transmitted through mammalian tissues, it was possible to externally monitor growth and regression of luciferase labeled murine tumor cells engrafted into immunodeficient mice. External quantification of tumor burden revealed the biological impact of the chemotherapeutic agent cyclophosphamide on the kinetics of tumor growth in living animals. Therapeutic activity was apparent but this drug did not eliminate the NIH 3T3 cell signal over the 28 d time course. This novel, noninvasive system allowed sensitive, real time spatiotemporal analyses of neoplastic cell growth and may facilitate rapid optimization of effective therapeutic treatment regimes.

  9. Amygdalin Blocks Bladder Cancer Cell Growth In Vitro by Diminishing Cyclin A and cdk2

    Science.gov (United States)

    Makarević, Jasmina; Rutz, Jochen; Juengel, Eva; Kaulfuss, Silke; Reiter, Michael; Tsaur, Igor; Bartsch, Georg; Haferkamp, Axel; Blaheta, Roman A.

    2014-01-01

    Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25–10 mg/ml) on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP). Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR) related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug. PMID:25136960

  10. Amygdalin blocks bladder cancer cell growth in vitro by diminishing cyclin A and cdk2.

    Directory of Open Access Journals (Sweden)

    Jasmina Makarević

    Full Text Available Amygdalin, a natural compound, has been used by many cancer patients as an alternative approach to treat their illness. However, whether or not this substance truly exerts an anti-tumor effect has never been settled. An in vitro study was initiated to investigate the influence of amygdalin (1.25-10 mg/ml on the growth of a panel of bladder cancer cell lines (UMUC-3, RT112 and TCCSUP. Tumor growth, proliferation, clonal growth and cell cycle progression were investigated. The cell cycle regulating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1, p19, p27 as well as the mammalian target of rapamycin (mTOR related signals phosphoAkt, phosphoRaptor and phosphoRictor were examined. Amygdalin dose-dependently reduced growth and proliferation in all three bladder cancer cell lines, reflected in a significant delay in cell cycle progression and G0/G1 arrest. Molecular evaluation revealed diminished phosphoAkt, phosphoRictor and loss of Cdk and cyclin components. Since the most outstanding effects of amygdalin were observed on the cdk2-cyclin A axis, siRNA knock down studies were carried out, revealing a positive correlation between cdk2/cyclin A expression level and tumor growth. Amygdalin, therefore, may block tumor growth by down-modulating cdk2 and cyclin A. In vivo investigation must follow to assess amygdalin's practical value as an anti-tumor drug.