WorldWideScience

Sample records for biogas biogas production

  1. biogas

    DEFF Research Database (Denmark)

    2015-01-01

    Functions for working with biogas data. Both low- and high-level functions are included for carrying out common tasks for analysis of biogas and related data. Molar mass and calculated oxygen demand (COD') can be determined from a chemical formula. Measured gas volume can be corrected for water...... vapor and to (possibly user-defined) standard temperature and pressure. Gas composition, cumulative production, or other variables can be interpolated to a specified time. Cumulative biogas and methane production (and rates) can be calculated using volumetric, manometric, or gravimetric methods for any...... be summarized in several different ways (e.g., omitting normalization) using the same function. Lastly, biogas and methane production can be predicted from substrate composition and additional, optional data....

  2. Empirical Study on Factors Affecting Biogas Production

    OpenAIRE

    Prasad, Ravita D.

    2012-01-01

    In Fiji, biogas has a huge potential to be one of the energy providers for cooking in rural areas but currently its use is very minimal. Main component of biogas is methane which releases energy when combusted. This paper mainly presents the factors that affect biogas production using experimental study. The first section presents an overview on what is biogas, types of biogas digesters present, and some background on the current use of biogas in Fiji. The second section of the paper describe...

  3. Biogas production from different grass

    OpenAIRE

    Liubarskij, Vladimir; Mahnert, Pia; Heiermann, Monika; Linke, Bernd

    2006-01-01

    The importance of forage as a feed supply for dairy and beef cattle stocks is decreasing. Therefore, interest is rising in alternative use of grasslands. An ecologically sound option is the anaerobic digestion of the biomass as co-substrates in biogas plants. Three fresh and ensiled grass species were investigated in lab-scale batch experiments at 35 °C to determine their maximum biogas production potential. The volatile solid-based biogas and methane yield were observed to be in the range...

  4. BIOGAS PRODUCTION FROM CATCH CROPS

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær;

    2014-01-01

    Catch crop cultivation combined with its use for biogas production would increase renewable energy production in the form of methane, without interfering with the production of food and fodder crops. The low biomass yield of catch crops is the main limiting factor for using these crops as co......-substrate in manure-based biogas plants and the profit obtained from the sale of biogas barely compensates for the harvest costs. A new agricultural strategy to harvest catch crops together with the residual straw of the main crop was investigated to increase the biomass and thereby the methane yield per hectare...... biomass. Leaving the straw on the field until harvest of the catch crop in the autumn could benefit biogas production due to the organic matter degradation of the straw taking place on the field during the autumn months. This new agricultural strategy may be a good alternative to achieve economically...

  5. Biogas production from lignocellulosic materials

    OpenAIRE

    Li SUN

    2015-01-01

    Lignocellulosic materials such as agricultural plant residues are widely available in large amounts and can be used for production of biogas without the risk of competition for arable land. However, the intricate structure of lignocellulose, a major component of the plant cell wall, limits microbial degradation and consequently results in low degradation rate and low biogas yield. The aim of this thesis was to investigate microbial communities engaged in the degradation of lignocellulose and ...

  6. The commercialization of biogas production

    International Nuclear Information System (INIS)

    Currently there are ten large collective biogas plants and ten smaller farm plants operating in Denmark. During the last five years, biogas technology has undergone extensive technological development. The developmental process is supported by a public R and D programme and a follow-up programme for full-scale demonstration plants. Most plants still need considerable income increases before a final conclusion can be reached as to whether it is possible to achieve a profit from a corporate economic viewpoint. All plants have received investment grants. Gas production is in most cases reliable, especially due to the admixture of easily convertible organic waste as a supplement to the slurry supplies. Profitable collective biogas plants are within reach, even without investment grants. The total intake of biomass must be supplemented by 10 to 25 per cent easily convertible organic waste so that the minimum gas production reaches 30 to 35 m3 per m3 of biomass. Plants based solely on animal manure are not profitable. Energy from the biogas has to be sold at prices corresponding to consumer prices, which include Danish energy taxes. Collective biogas plants in Denmark appear to be approaching a commercial breakthrough. The concept of a collective biogas plant has been developed to address the energy-related, environmentally-related and agricultural problems. (AB)

  7. Biogas production from a systems analytical perspective

    OpenAIRE

    Berglund, Maria

    2006-01-01

    Anaerobic digestion and the production of biogas can provide an efficient means of meeting several objectives concerning energy, environmental and waste management policy. Interest in biogas is increasing, and new facilities are being built. There is a wide range of potential raw material, and both the biogas and digestates produced can be used in many different applications. The variation in raw materials and digestion processes contributes to the flexibility of biogas production systems, bu...

  8. Biogas production from catch crops

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær;

    2013-01-01

    Manure-based biogas plants in Denmark are dependent on high yielding biomass feedstock in order to secure economically feasible operation. The aim of this study was to investigate the potential of ten different catch crop species or mixtures as feedstock for biogas production in co......, being in the ranges of 1.4–3.0 t ha−1 and 0.3–1.7 t ha−1 for Holstebro and Aabenraa, respectively. Specific methane yields were in the range of 229–450 m3 t−1 of VS. Methane yields per hectare of up to 800 m3 ha−1 were obtained, making catch crops a promising source of feedstock for manure-based biogas...

  9. Biogas from by-products; Biogas aus Nebenprodukten

    Energy Technology Data Exchange (ETDEWEB)

    Mack, Andreas [Eisenmann Anlagenbau GmbH und Co. KG, Boeblingen (Germany)

    2013-01-15

    The Italian sugar producer Co.Pro.B. (Minerbio, Italy) looked for an industrially experienced plant engineer for the biogas process in order to utilize energetically the by-products from the processing of sugar beets. Co.Pro.B. found the German environmental technology specialist Eisenmann Anlagenbau GmbH and Co. KG (Boeblingen, Federal Republic of Germany). After a planning and building period of only six months, even three biogas plants with plug-flow fermentation were brought on line in the provinces Bologna and Padua in autumn 2012.

  10. Energy efficient model for biogas production in farm scale

    OpenAIRE

    Huopana, Tuomas

    2011-01-01

    Energy efficient solutions for six farm biogas production was found by calculating mass and energy balance in different scenarios. Raw materials in biogas production were cow manure and grass silage that were produced in these farms. There were calculated mass and energy balances on average for one year biogas prouduction that consisted of grass silage production, raw material transportation and biogas production in the biogas plant. In addition, direct greenhouse gases from biogas production...

  11. Improvement of Biogas Production by Bioaugmentation

    OpenAIRE

    Kovács, K. L.; Ács, N.; E. Kovács; Wirth, R.; Rákhely, G.; Orsolya Strang; Zsófia Herbel; Bagi, Z.

    2012-01-01

    Biogas production technologies commonly involve the use of natural anaerobic consortia of microbes. The objective of this study was to elucidate the importance of hydrogen in this complex microbial food chain. Novel laboratory biogas reactor prototypes were designed and constructed. The fates of pure hydrogen-producing cultures of Caldicellulosiruptor saccharolyticus and Enterobacter cloacae were followed in time in thermophilic and mesophilic natural biogas-producing communities, respective...

  12. Forecasting the potential of Danish biogas production

    DEFF Research Database (Denmark)

    Bojesen, Mikkel; Skov-Petersen, Hans; Gylling, Morten

    , except for those farms which are in the largest state class. Regional differences in development trends were documented. The strategic objective of the model is to provide data for the spatial assessment of the potential of biogas production which can form the basis for a location analysis for future...... biogas plants....

  13. Biogas production from water hyacinth (eichhornia crassipes)

    International Nuclear Information System (INIS)

    The formation of biogas by anaerobic digestion of water hyacinth (Eichhornia crassipes) has been investigated in simple laboratory digesters. Seed material was obtained from the rumen contents of a goat. Under conditions where the mass of seed material exceeded the water hyacinth feed, the maximum rate of biogas production was obtained within one to two days of each addition of feed material. The maximum amount of biogas produced, 0.33 m3kg-1 dry matter was obtained at 40 deg. C with a slight decrease in total production at 35 deg. C. The total biogas produced at 45 deg. C (0.12 m3kg-1 dry matter) was less than that at 30 deg. C (0.16 m3kg-1). Regular additions of small amounts of feed material produced a more uniform rate of biogas production (author)

  14. Biogas barometer

    International Nuclear Information System (INIS)

    The energy recovery of biogas has kept on increasing in the European Union in 2013: +10.2%. Almost 13.4 million tep (tonnes of oil equivalent) of biogas primary energy was produced but the growth of the biogas sector is decreasing (it was 16.9% between 2011 and 2012). The growth for the coming years is expected to fall further because of political decisions in some countries to limit the use of land for farming purposes and to manage the biogas sector more efficiently. Germany ranks first for the production of biogas primary energy with 6717 ktep followed by United Kingdom with 1824 ktep. 2 tables give the production of electricity and heat from biogas in the E.U. member states in 2012 and 2013. The total production of electricity and heat from biogas in the E.U. in 2013 reached 53327 GWh and 432 ktep respectively. A list reviews the most significant companies working in Europe in the sector of methanation, 10 companies are listed among which 2 are Italian: AB Energy (Gruppo AB), BTS Italia and 8 are German: MT Energie, Envitec Biogas AG, Biogas Weser-Ems, Planet Biogastechnik, Schmack Biogas GmbH, Weltec Biopower GmbH, UTS Biogastechnik (Anaergia Group), Bioconstruct and BTS Italia. (A.C.)

  15. Improvement of Biogas Production by Bioaugmentation

    Directory of Open Access Journals (Sweden)

    K. L. Kovács

    2013-01-01

    Full Text Available Biogas production technologies commonly involve the use of natural anaerobic consortia of microbes. The objective of this study was to elucidate the importance of hydrogen in this complex microbial food chain. Novel laboratory biogas reactor prototypes were designed and constructed. The fates of pure hydrogen-producing cultures of Caldicellulosiruptor saccharolyticus and Enterobacter cloacae were followed in time in thermophilic and mesophilic natural biogas-producing communities, respectively. Molecular biological techniques were applied to study the altered ecosystems. A systematic study in 5-litre CSTR digesters revealed that a key fermentation parameter in the maintenance of an altered population balance is the loading rate of total organic solids. Intensification of the biogas production was observed and the results corroborate that the enhanced biogas productivity is associated with the increased abundance of the hydrogen producers. Fermentation parameters did not indicate signs of failure in the biogas production process. Rational construction of more efficient and sustainable biogas-producing microbial consortia is proposed.

  16. CO2 balance in production of energy based on biogas

    DEFF Research Database (Denmark)

    Nielsen, Per Sieverts; Holm-Nielsen, J.B.

    1997-01-01

    Biogas is an essential biomass source for achieving a reduction of CO2 emission by 50% in year 2030 in Denmark. The physical potential for biogas production in Denmark is more than 10 times the present biogas production in Denmark. In Denmark the largest part of the biogas production is produced at...... of increased transportation distances at large biogas plants on the total CO2 balance of the biogas plant. The advantage of constructing large biogas plants is the cost-effective possibility of using industrial organic waste to increase biogas production. In some cases co-fermentation increases...... biogas production up 100%. The present study evaluate optimal transportation strategies for biogas plants taking CO2 balances into account....

  17. Biogas production and biogas as vehicle fuel - Swedish experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, A.E. [VBB Viak AB, Stockholm (Sweden)

    1997-08-01

    In Sweden there are totally about 220 biogas plants in operation. The major part of these plants (134) are represented by sewage sludge treatment facilities at waste water treatment plants. At 60 sites the biogas is generated from landfills or cell digesters at landfills. In 1996, the amount produced had a total energy content of about 1,35 TWh (or 4 900 PJ). (EG)

  18. Effective green manuring via biogas production

    OpenAIRE

    Nykänen, Arja; Kymäläinen, Maritta; Lemola, Riitta

    2011-01-01

    The preliminary results show that the benefit from anaerobic digestion of the green manure leys seem to be based more on biogas energy production than for higher yields after anaerobic digestion. The N leaching risk is under determination.

  19. Solanum Tuberosum Supplementation for Biogas Production

    OpenAIRE

    Pradip B. Acharya; Prateek Shilpkar

    2015-01-01

    Production of biogas using animal dung is well documented. Nutritional supplement enhances microbial activity and ultimately results in increase biogas production. Solanum tuberosum (potato) is a vegetable crop grown in most parts of world. It is a rich source of carbohydrate starch and many minerals. Present experiment was conducted in 5L capacity glass digester bottles filled with mixture of buffalo dung and water at 5.3% total solids. A total of six sets were prepared, three as control and...

  20. EU Agro Biogas Project

    NARCIS (Netherlands)

    Amon, T.; Mayr, H.; Eder, M.; Hobbs, P.; Rao Ravella, S.; Roth, U.; Niebaum, A.; Doehler, H.; Weiland, P.; Abdoun, E.; Moser, A.; Lyson, M.; Heiermann, M.; Plöchl, M.; Budde, J.; Schattauer, A.; Suarez, T.; Möller, H.; Ward, A.; Hillen, F.; Sulima, P.; Oniszk-Polplawska, A.; Krampe, P.; Pastorek, Z.; Kara, J.; Mazancova, J.; Dooren, van H.J.C.; Wim, C.; Gioelli, F.; Balsari, P.

    2009-01-01

    EU-AGRO-BIOGAS is a European Biogas initiative to improve the yield of agricultural biogas plants in Europe, to optimise biogas technology and processes and to improve the efficiency in all parts of the production chain from feedstock to biogas utilisation. Leading European research institutions and

  1. Agricultural Potential for Biogas Production in Croatia

    OpenAIRE

    Biljana Kulišić; Vjekoslav Par

    2009-01-01

    Biogas is renewable energy source with strong local character as its production depends on availability and type of feedstock at a certain location. Utilisation of slurry, manure and beddings from cattle, pig, horse, poultry and other animal breeding together with energy rich substrates such as crops and other organic materials as biogas substrates creates an interesting option both from technical and economic perspective. Other materials suitable for anaerobic digestion are comprised of vari...

  2. Solanum Tuberosum Supplementation for Biogas Production

    Directory of Open Access Journals (Sweden)

    Pradip B. Acharya

    2015-04-01

    Full Text Available Production of biogas using animal dung is well documented. Nutritional supplement enhances microbial activity and ultimately results in increase biogas production. Solanum tuberosum (potato is a vegetable crop grown in most parts of world. It is a rich source of carbohydrate starch and many minerals. Present experiment was conducted in 5L capacity glass digester bottles filled with mixture of buffalo dung and water at 5.3% total solids. A total of six sets were prepared, three as control and three as test. Control sets were fed daily with buffalo dung water mixture throughout the period of experimentation, i.e. 80 days, whereas in test, from 51st day onward digesters were filled with mixture of dung and boiled potato with water. Feed was added daily in the amount of 120mL upto 80 days from beginning. On first day 12 mL fresh digested biogas slurry from running biogas plant was also added in all the digesters as inoculum. From 41th day onward biogas production was recorded by water displacement method and compared. Results reveal that in test digesters addition of potato shows an immediate and long lasting effect and increases biogas production between 90.48 and 192.86% higher than control sets.

  3. Production of metahnol from biogas; Herstellung von Methanol aus Biogas

    Energy Technology Data Exchange (ETDEWEB)

    Marquard-Moellenstedt, T.; Baumgart, F.; Specht, M. [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg, Stuttgart (Germany)

    2002-07-01

    An experimental facility for production of methanol from biogas was designed, constructed and operated at the author's institution, the ZSW. Apart from demonstrating the process and reducing the plant's complexity, the investigations focused on an analysis of the energy and mass flow in order to obtain information on the efficiency of decentralized methanol production systems. The process comprises essentially two stages: Biogas reforming and methanol synthesis. In the reforming concept chosen, the reaction enthalpy for steam reforming is provided by flameles oxidation of the fuel gas. Efficiencies of more than 70% were achieved in the small-scale reformers for synthesis gas production. Owing to the reduced complexity of the plant, methanol synthesis was designed as a ''one-through' process with power generation from the remainder of the synthesis gas. Efficiencies of 25% were achieved for methanol production and about 60% for combined methanol and residual synthesis gas. An efficiency of 33% was achieved for cogeneration of methanol and electric power. [German] Der Einsatz von Biomasse zur Herstellung synthetischer Kraftstoffe erfordert neue Technologien fuer dezentrale Kleinanlagen, da aus logistischen Gruenden die Biomassennutzung auf das lokale Aufkommen begrenzt ist. Am ZSW wurde erstmals eine Versuchsanlage zur Herstellung von Methanol aus Biogas konzipiert, aufgebaut und betrieben. Neben der Demonstration des Gesamtprozesses und der Reduzierung der Anlagenkomplexitaet ist die Analyse der Stoff- und Energiestroeme ein wesentliches Ziel des Projektes und ermoeglicht Aussagen ueber die Effizienz dezentraler Methanolanlagen. Das Verfahren besteht im Wesentlichen aus den zwei Prozessschritten Biogasreformierung und Methanolsynthese. Bei dem gewaehlten neuen Reformierungskonzept wird die Reaktionsenthalpie fuer die Dampfreformierung durch flammenlose Oxidation des Brenngases bereitgestellt. Bezogen auf das erzeugte Synthesegas wurden fuer

  4. EU Agro Biogas Project

    OpenAIRE

    Amon, T.; Mayr, H.; M. Eder; Hobbs, P.; Rao Ravella, S.; Roth, U.; Niebaum, A.; Doehler, H.; Weiland, P.; Abdoun, E.; A. Moser; Lyson, M.; Heiermann, M.; Plöchl, M.; Budde, J.

    2009-01-01

    EU-AGRO-BIOGAS is a European Biogas initiative to improve the yield of agricultural biogas plants in Europe, to optimise biogas technology and processes and to improve the efficiency in all parts of the production chain from feedstock to biogas utilisation. Leading European research institutions and universities are cooperating with key industry partners in order to work towards sustainable biogas production in Europe. Fourteen partners from eight European countries are involved in the EU-AGR...

  5. Biogas production from thin stillage

    OpenAIRE

    Moestedt, Jan

    2015-01-01

    The biogas plant in Norrköping (Tekniska verken i Linköping AB, publ.), Sweden, operates with thin stillage, a residue from bio-ethanol fermentation, as the main feedstock. Thin stillage is energy-rich due to its high protein content, but due to its high nitrogen and sulphate content is a somewhat complicated feedstock. The high nitrogen concentration results in inhibition of the microbial process and also selects for nitrogen-tolerant, but slow-growing, syntrophic acetate-oxidising bacteria ...

  6. Optimization of biogas production from manure

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Boe, Kanokwan; Buendia, Inmaculada M.;

    The main objective of the project was to improve biogas production from manures. This objective was addressed by investigating 1) the effect of different reactor configurations, 2) operational procedures, aiming to selectively retain/return degradable material in the reactor and 3) different...... process at 90/10, 80/20, 70/30, 50/50 or 30/70% volume distribution could produce 11-17.8% more biogas compared to single CSTR process under similar operating conditions. The increased biogas production was mainly from the second reactor of the serial process, which accounted for 16-18% of the total...... biogas production. At 13/87 ratio, no significant increase in biogas production was noticed. Both single and serial CSTR processes were stable when operated 90/10, 80/20, 70/30 or 50/50% volume distributions and also during an organic pulse load (19.6 to 65.3 g/l reactor volume). Results from pilot...

  7. The progress and prospects of rural biogas production in China

    International Nuclear Information System (INIS)

    Biogas production is an important aspect of China's energy strategy. After decades’ application and research, China biogas has achieved considerable accomplishments. This study presents the progress and prospect of biogas technologies and industry in China. Two biogas patterns exist in China, that is, household-scaled digester for scattered farmers and biogas plant for centralized biogas production. Household-scaled digester which is simple and practical has been widely used and fully developed. Biogas plants have being sprung up with different materials, process and biogas utilization technologies. By the end of 2010, 38.51 million household-scaled digesters, and 27,436 large- and medium-scaled biogas plants for agricultural wastes were built. The calculation result of biogas potential from agricultural wastes shows that those used raw materials account for only 1.90% of the total availability. Chinese government promulgated several laws and policies, and gave financial supports to promote the development of biogas. However, some problems such as inferior equipment technology, imperfect policy incentive hamper its wide application and promotion. With the rapid development of economy and the improvement of rural living condition, China biogas industry is expected to advance toward orientation of scalization, industrialization and commercialization. - Highlights: ► Developing progress of biogas production in China is evaluated comprehensively. ► Status of biogas industrialization is estimated. ► New problems which occurred during rural biogas construction were analyzed. ► Biogas production potentials from agricultural wastes in China were calculated. ► Prospect of China rural biogas is expected.

  8. Ultrasound assisted biogas production from landfill leachate

    International Nuclear Information System (INIS)

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  9. Ultrasound assisted biogas production from landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Oz, Nilgün Ayman, E-mail: nilgunayman@comu.edu.tr; Yarimtepe, Canan Can

    2014-07-15

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  10. Sustainable Biomass Resources for Biogas Production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup

    The aim of this thesis was to identify and map sustainable biomass resources, which can be utilised for biogas production with minimal negative impacts on the environment, nature and climate. Furthermore, the aim of this thesis was to assess the resource potential and feasibility of utilising...... such biomasses in the biogas sector. Sustainability in the use of biomass feedstock for energy production is of key importance for a stable future food and energy supply, and for the functionality of the Earths ecosystems. A range of biomass resources were assessed in respect to sustainability, availability...... from 39.3-66.9 Mtoe, depending on the availability of the residues. Grass from roadside verges and meadow habitats in Denmark represent two currently unutilised sources. If utilised in the Danish biogas sector, the results showed that the resources represent a net energy potential of 60,000 -122,000 GJ...

  11. Use of Polish-bred maize hybrids for biogas production

    OpenAIRE

    Zbigniew PODKÓWKA; Lucyna PODKÓWKA

    2015-01-01

    The suitability for biogas production of silages from selected Polish-bred maize hybrids was investigated. Biogas and methane yield of silages was 513 – 703 and 339 – 443 Ndm3•kg-1 ODM. Hybrids were characterized by a high methane content in biogas (over 63%). Differences were found in biogas and methane production from different maize varieties. The highest-yielding hybrids were SMH 1785 and KBK 11149.

  12. Effect of pressure on biogas production

    Directory of Open Access Journals (Sweden)

    Ahmet ERYAŞAR

    2009-02-01

    Full Text Available In facilities in which biogas systems are installed biogas is not produced and consumed simultaneously. Therefore, biogas produced when there is no consumption should be stored. Low pressure gasometers with 1- 1,5 kPa value are preferred in the rural area and when needed pressurizer is added to the system. When the pressure which gas production and usage require is provided by natural ways without usage of an added pressurizer, a respectively high pressure atmosphere can be seen. In this study, the effects of different low pressures on anaerobic fermentation of cattle manure were experimentally analyzed. Fermentation experiment which was carried out with 9 reactors with fed-batch type, 3 parallels in pressures of 19.6 kPa, 9.5 kPa and 1.5 kPa continued 60 days at 35 ºC. The acquired experimental data was subjected to LSD test in P

  13. Macro algae as substrate for biogas production

    DEFF Research Database (Denmark)

    Møller, Henrik; Sarker, Shiplu; Gautam, Dhan Prasad;

    Algae as a substrate for biogas is superior to other crops since it has a much higher yield of biomass per unit area and since algae grows in the seawater there will be no competition with food production on agricultural lands. So far, the progress in treating different groups of algae as a source...... of energy is promising. In this study 5 different algae types were tested for biogas potential and two algae were subsequent used for co-digestion with manure. Green seaweed, Ulva lactuca and brown seaweed Laminaria digitata was co-digested with cattle manure at mesophilic and thermophilic condition...

  14. The production and use of biogas in 2012; Produktion och anvaendning av biogas aar 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    This report presents an annual survey on the production and use of biogas. The survey aims to provide policy makers, industry associations, researchers, journalists, municipalities and the general public information on annual production and use of biogas. Statistics are used as the basis for Sweden's overall reporting of renewable energy to the EU and as a basis in various government investigations. In the present study, a total of 242 biogas-production plants have been identified in Sweden. These produced a total of 1,589 GWh of energy. The 242 biogas-producing plants were distributed by 135 wastewater treatment plants, 55 landfills, 26 farm biogas plants, 21 co-digestion plants and five industrial plants. The main substrates for biogas production were different types of waste such as sewage sludge, manure, source separated food waste and waste from butchers and food industries. Energy crops constituted a very small fraction of the total substrate similarly no. The geographic distribution shows that most of the biogas production was centered in a few counties. Skaane, Stockholm and Vaestra Goetaland accounted for over 50 % of the country's biogas production.

  15. Study of Biogas Production with Organic Rubbish as Producing Material

    OpenAIRE

    Santosa Santosa; Sandra Sandra; Omil Charmyn Chatib; Asep Dian Prima

    2015-01-01

    This research had done at Production and Agricultural Machines and Equipments Management Laboratory at Agricultural Engineering, Faculty of Agricultural Technology, Andalas University, Padang City from November 2011 to March 2012. It intent to study about biogas physics parameters (to know about when the first time it producing biogas, biogas volume and pressure, relative humidity (RH), enviroment temperature, biogas energy) and chemical parameter such as producing material acidity degree (pH...

  16. Can Anaerobic Fungi Improve Biogas Production?

    Czech Academy of Sciences Publication Activity Database

    Fliegerová, Kateřina; Mrázek, Jakub; Štrosová, Lenka; Procházka, J.

    Edinburgh : Elsevier, 2010. s. 1-1. [IMC9 (9th International mycological congress): The biology of Fungi. 01.08.2010 - 06.08.2010, Edinburgh] Institutional research plan: CEZ:AV0Z50450515 Keywords : anaerobic fungi * biogas production Subject RIV: EH - Ecology, Behaviour

  17. Biogas Purification up to Final Product

    Directory of Open Access Journals (Sweden)

    Yu. Losiuk

    2014-09-01

    Full Text Available The paper considers main technological methods for biogas purification from impurities that permit to increase energy value of the product and decrease its corrosion activity.  While evaluating economic efficiency due to introduction of the corresponding purification technology, in addition, it is necessary to take into account an ecological factor.

  18. Bio-gas production from alligator weeds

    Science.gov (United States)

    Latif, A.

    1976-01-01

    Laboratory experiments were conducted to study the effect of temperature, sample preparation, reducing agents, light intensity and pH of the media, on bio-gas and methane production from the microbial anaerobic decomposition of alligator weeds (Alternanthera philoxeroides. Efforts were also made for the isolation and characterization of the methanogenic bacteria.

  19. Agricultural Potential for Biogas Production in Croatia

    Directory of Open Access Journals (Sweden)

    Biljana Kulišić

    2009-12-01

    Full Text Available Biogas is renewable energy source with strong local character as its production depends on availability and type of feedstock at a certain location. Utilisation of slurry, manure and beddings from cattle, pig, horse, poultry and other animal breeding together with energy rich substrates such as crops and other organic materials as biogas substrates creates an interesting option both from technical and economic perspective. Other materials suitable for anaerobic digestion are comprised of various residues from agriculture (crops and vegetables, residues from food processing industry and energy crops (maize silage, grass and similar.Primary reason for biogas production is economic gain from energy production and/or organic waste management that adds value to agriculture and food processing residues that would otherwise be treated as waste.The purpose of the paper is to provide an overview of biogas production potential of Croatia at the level of statistical administrative units NUTS1 and NUTS2, excluding energy crops growing and agro-food imports but including the seasonality of substrate availability.

  20. Biogas production: current state and perspectives.

    Science.gov (United States)

    Weiland, Peter

    2010-01-01

    Anaerobic digestion of energy crops, residues, and wastes is of increasing interest in order to reduce the greenhouse gas emissions and to facilitate a sustainable development of energy supply. Production of biogas provides a versatile carrier of renewable energy, as methane can be used for replacement of fossil fuels in both heat and power generation and as a vehicle fuel. For biogas production, various process types are applied which can be classified in wet and dry fermentation systems. Most often applied are wet digester systems using vertical stirred tank digester with different stirrer types dependent on the origin of the feedstock. Biogas is mainly utilized in engine-based combined heat and power plants, whereas microgas turbines and fuel cells are expensive alternatives which need further development work for reducing the costs and increasing their reliability. Gas upgrading and utilization as renewable vehicle fuel or injection into the natural gas grid is of increasing interest because the gas can be used in a more efficient way. The digestate from anaerobic fermentation is a valuable fertilizer due to the increased availability of nitrogen and the better short-term fertilization effect. Anaerobic treatment minimizes the survival of pathogens which is important for using the digested residue as fertilizer. This paper reviews the current state and perspectives of biogas production, including the biochemical parameters and feedstocks which influence the efficiency and reliability of the microbial conversion and gas yield. PMID:19777226

  1. Recent updates on biogas production - a review

    Directory of Open Access Journals (Sweden)

    Ilona Sárvári Horváth

    2016-06-01

    Full Text Available One of the greatest challenges facing the societies now and in the future is the reduction of green house gas emissions and thus preventing the climate change. It is therefore important to replace fossil fuels with renewable sources, such as biogas. Biogas can be produced from various organic waste streams or as a byproduct from industrial processes. Beside energy production, the degradation of organic waste through anaerobic digestion offers other advantages, such as the prevention of odor release and the decrease of pathogens. Moreover, the nutrient rich digested residues can be utilized as fertilizer for recycling the nutrients back to the fields. However, the amount of organic materials currently available for biogas production is limited and new substrates as well as new effective technologies are therefore needed to facilitate the growth of the biogas industry all over the world. Hence, major developments have been made during the last decades regarding the utilization of lignocellulosic biomass, the development of high rate systems, and the application of membrane technologies within the anaerobic digestion process in order to overcome the shortcomings encountered. The degradation of organic material requires a synchronized action of different groups of microorganisms with different metabolic capacities. Recent developments in molecular biology techniques have provided the research community with a valuable tool for improved understanding of this complex microbiological system, which in turn could help optimize and control the process in an effective way in the future.

  2. Investigation of thermal integration between biogas production and upgrading

    International Nuclear Information System (INIS)

    Highlights: • Identify thermal characteristics of amine-based biogas upgrading for waste heat recovery. • Identify thermal characteristics of AD biogas production as sink for heat recovery. • Evaluation of thermal integration between biogas production and upgrading to improve overall energy efficiency. • Cost analysis applied for the economic feasibility of the thermal integration. • Using the principles of target design and system integration for connected thermal processes. - Abstract: Thermal integration of anaerobic digestion (AD) biogas production with amine-based chemical absorption biogas upgrading has been studied to improve the overall efficiency of the intergraded system. The thermal characteristics have been investigated for industrial AD raw biogas production and amine-based chemical absorption biogas upgrading. The investigation provides a basic understanding for the possibilities of energy saving through thermal integration. The thermal integration is carried out through well-defined cases based on the thermal characteristics of the biogas production and the biogas upgrading. The following factors are taken into account in the case study: thermal conditions of sub-systems, material and energy balances, cost issues and main benefits. The potential of heat recovery has been evaluated to utilise the waste heat from amine-based upgrading process for the use in the AD biogas production. The results show that the thermal integration has positive effects on improving the overall energy efficiency of the integrated biogas plant. Cost analysis shows that the thermal integration is economically feasible

  3. Perspectives on Spatial Decision Support Concerning Location of Biogas Production

    DEFF Research Database (Denmark)

    Bojesen, Mikkel

    Biogas production is a contemporary important topic in many agri-intensive countries, among these Denmark, where biogas has received increasingly political and scholarly awareness during recent years. The Danish government has set an ambition that 50% of the livestock slurry should by 2020 by used...... in biogas production. This ambition requires that more than 20 new large scale centralised biogas plants are built. The location of these plants is associated with a number of externalities and uncertainties and the existing biogas sector struggles to establish itself as a viable energy producing...... sector. Meanwhile planners and decision makers struggle to find sustainable locations that comprehensively balance the multiple concerns the location of biogas facilities includes. This PhD project examines how spatial decision support models can be used to ensure sustainable locations of future biogas...

  4. Dry-Wet Fermentation for Biogas Production

    OpenAIRE

    Ahlhaus, M; Barz, M; Vogel, T.

    2008-01-01

    At present biogas plants produce biogas mainly from slurry by liquid fermentation. But the low substrate digestation of herbaceous biomass by liquid fermentation permits to use only a low amount of herbaceous biomass. Since April 2007 the collaborative project entitled “Development of a combined dry-wet fermentation process to produce biogas from herbaceous biomass substrates” is conducted at the Laboratory for Integrated Energy Systems of the University of Applied Sciences in ...

  5. Energy balance of algal biogas production

    OpenAIRE

    Milledge, J.J.; Heaven, S.

    2014-01-01

    A mechanistic energy balance model was successfully developed for the production of biogas from the anaerobic digestion of micro-algal biomass from raceways. The energy balance model was used to consider the energetic viability of a number of production scenarios, and to identify the most critical parameters affecting net energy production. The output of the model demonstrated that no single method of harvesting studied (centrifugation, settlement or flocculation), produced a sufficiently gr...

  6. Production and use of biogas year 2009; Produktion och anvaendning av biogas aar 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-15

    In the present study, a total of 230 biogas-producing sites were identified. These produced a total of 1363 GWh of energy. The 230 biogas-producing plants were distributed in 136 sewage treatment plants, 57 landfills, 21 co-digestion plants, four industries and 12 farm sites. The number of upgrading plants amounted to 38 and at seven locations injection of upgraded biogas into the natural gas network took place. 44% of the biogas generated in sewage treatment plants, 25% were produced in landfills, 22% of co-digestion plants, 8% in industrial plants and 1% on farm installations. The total biogas production in 2009 was slightely higher than last year, but the division between the different plant types has changed. Production increased for co-digestion plants and farm installations, while production was relatively unchanged for sewage treatment plants. Production in landfills and industrial sites decreased compared with 2008. A larger proportion of the biogas came to use in 2009 compared with previous years. 667 GWh (49%) was used for heating, which also includes heat loss, 488 GWh (36%) were upgraded, 64 GWh (5%) of electricity was generated and 135 GWh (10%) was torched. The main substrates for biogas production were different types of waste such as sewage sludge, source separated food waste and waste from food industry. In addition to biogas, co-digestion plants and the farm plants together produced 537 403 tonnes (wet weight) biofertilizer, and the waste water treatment plants 214 000 tonnes (dry weight) sludge. The provincial breakdown shows that biogas production was greatest in metropolitan areas

  7. Biogas production from mediterranean crop silages

    OpenAIRE

    Carvalho, L.; Di Berardino, Santino; Duarte, E.

    2011-01-01

    Anaerobic digestion has proven to be an efficient way for the production of a renewable fuel. The aim of this work was to study the potential use of two crop silages, yellow lupine (Lupinus luteus L.) and oilseed radish (Raphanus sativus var. oleifera cv. Pegletta), for the production of biogas through the process of anaerobic digestion. The use of yellow lupine was due to its capacity for nitrogen fixation, reducing the fertilization needs for the succeeding crop cycle and reducing also the ...

  8. Safety and nutritional evaluation of biogas residue left after the production of biogas from wastewater

    OpenAIRE

    Baoguo Bian; Lvmu Li; Xiongyuan Si; Bin Li; Wenjie Guo; Hua Mu; Xiaoling Ding; Fazhi Xu

    2015-01-01

    We investigated the safety and nutritional value of biogas residue left after the production of biogas from wastewater. In Exp. 1, ninety- six female mice were selected for acute oral toxicity testing and randomly allocated to 4 treatment groups, which received distilled water (control) or the biogas residue solution at 1 g/mL, 5 g/mL, or 15 g/mL. Activity levels and serum biochemical parameters were measured after 24 hours. In Exp. 2, eighty mice were divided into 2 treatment groups for suba...

  9. Macro algae as substrate for biogas production

    DEFF Research Database (Denmark)

    Møller, Henrik; Sarker, Shiplu; Gautam, Dhan Prasad;

    Algae as a substrate for biogas is superior to other crops since it has a much higher yield of biomass per unit area and since algae grows in the seawater there will be no competition with food production on agricultural lands. So far, the progress in treating different groups of algae as a source...... of energy is promising. In this study 5 different algae types were tested for biogas potential and two algae were subsequent used for co-digestion with manure. Green seaweed, Ulva lactuca and brown seaweed Laminaria digitata was co-digested with cattle manure at mesophilic and thermophilic condition...... thermophilic treatment of Laminaria produced an average of 142 L CH4/kgVS, Ulva yielded around 122 L/kgVS. Overall, it was found that algae are promising substrates for co-digestion with cattle manure and besides producing energy algae can remove substantial amounts of nutrients from the water environment that...

  10. Mini digester and biogas production from plant biomass

    Directory of Open Access Journals (Sweden)

    P. Vindis

    2009-08-01

    Full Text Available Purpose: The aim of the paper is to present the construction of a mini digester for biogas production from different agriculture plant biomass and other organic wastes. The amount of biogas production (methane is observed by the mini digester.Design/methodology/approach: The mini digester consisting of twelve units was built and some measurements with agriculture plant biomass were performed according to DIN 38414 part 8. Four tests simultaneously with three repetitions can be performed.Findings: With the mini digester the amount of biogas production is observed. The parameters such as biogas production and biogas composition from maize and sugar beet silage in certain ratio were measured and calculated. The highest biogas and methane yield was 493 NI kg VS-1 or 289 NI CH4 kg VS-1.Research limitations/implications: The scope of substrates for the anaerobic digestion process is on the increase so the interest in the use of the biogas as a source of a renewable energy is very high. With mini digester it is possible to observe the amount of biogas (methane production and so the most suitable plant giving the maximum methane yield, can be determined.Practical implications: The aim of biogas as renewable source of energy is to replace fossil fuels with sustainable energy production systems and to fulfil the requirements of the Kyoto Protocol. On big farms the liquid manure and different energy crops can be used for biogas production. That can improve the economical efficiency of the farm and reduce the CO2 emissions.Originality/value: Mini digester for biogas production was built as special equipment. The quality of produced biogas is determined with a gas analyser GA 45.

  11. Improvement of the Biogas Production Process : Explorative project (EP1)

    OpenAIRE

    Karlsson, Anna; Björn, Annika; Sepehr, Shakeri Yekta; Svensson, Bo

    2014-01-01

    There are several ways to improve biogas production in anaerobic digestion processes and a number of strategies may be chosen. Increased organic loading in existing plants will in most cases demand the introduction of new substrate types. However, to substantially increase the Swedish biogas production new, large-scale biogas plants digesting new substrate types need to be established. Better utilization of existing digester volumes can be linked to:  Increase of organic loading rates and/or ...

  12. A tool for analyzing the sustainability of biogas production chains

    OpenAIRE

    Pierie, Frank; Broekhuijsen, J.; Gemert, W.J.T. van; Moll, H.C.

    2014-01-01

    Abstract written for an poster presentation at the EBA conference in Alkmaar. The flexibility of biogas makes it a very capable load balancer within decentralized smart energy systems. However, within this context the sustainability of biogas production is not fully understood. What is needed is a tool for analyzing the ustainability of biogas production pathways. The main goal, of this research is to design a transparent flexible planning tool capable determining the sustainability of decent...

  13. Biogas. Plants, raw materials, products. 7. rev. ed.; Biogas. Pflanzen, Rohstoffe, Produkte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-15

    In order to save fossil fuels and to stopp the climate change, a gradual shift to renewable energies is necessary. The federal government has aimed to a modern, environmental friendly, sustainable and secure energy supply by means of the expansion of renewable energies. Bioenergy plays a central role in the future. Biogas for renewable energies will play a special role. Biogas can be used for simultaneous production of electricity and heat, as a fuel and as a substitute for natural gas.

  14. Changed market conditions for biogas production; Foeraendrade marknadsvillkor foer biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Colnerud Granstroem, Sigrid; Gaaverud, Henrik; Glimhall, Alexandra

    2010-10-15

    The Swedish gas market consists mainly of the natural gas network that extends through the southwestern Sweden, and the local biogas markets. Biogas share of the Swedish gas market is growing steadily. The fact that the Swedish gas net is limited and fragmented forms an obstacle for biogas use to expand. That the gas market as a whole, natural gas included, must develop and expand is therefore a prerequisite for the large potential for Swedish Biogas to be realized. This in contrast with the ultimate objective to completely replace natural gas in the Swedish gas market. When policy changes are made in order to support biogas it is crucial for long-term competitiveness of biogas that these changes should not impact the natural gas market and hinder its development. Such a scenario would ultimately mean that also biogas development opportunities deteriorate. Biogas operations encounter three main problems that prevent or impede its expansion in the gas market. First, the potential for profitability in biogas production must be enhanced. Second, natural gas and biogas markets should be more integrated with each other. Thirdly, the biogas must be distributed in a cost-effective manner. The present investigation aims to supplement the Natural Gas Act with special provisions which takes into account the input and transmission of biogas. In addition to the production of biogas, it is now the producer's responsibility to clean the gas from water vapor, hydrogen sulfide and carbon dioxide and to augment the calorific value of the gas to the standard of Danish natural gas quality by propane addition and to ensure that the physical connection to network is available. There are thus a number of options available for shifting demarcation between biogas production and network operations. Short-term competitiveness of biogas would be strengthened most if purification and spiking the gas with propane and the connection to the network was imposed on network owners. In the

  15. Biogas Production Potential from Waste in Timis County

    Directory of Open Access Journals (Sweden)

    Teodor Vintila

    2012-05-01

    Full Text Available This work is a study of biogas production potential using as substrate the residues generated in the agricultural activities and the organic fraction from municipal wastes collected in Timis County. Data available in regional and national statistics have been reported to Timis County and used to calculate the potential quantity of biogas to be produced by anaerobic fermentation using as fermentable substrate residues generated in various human activities. To estimate the electric and thermal energy potential of the biogas, we considered the productivity of an average biogas plant couplet with a CHP unit with an efficiency of 40% net electric and 40% net thermal output and functioning 7500 hours per year. Processing data for the biogas production potential from livestock manure in Romania, we found that over 500 GWh of energy from biogas can be provided in one year. It is estimated that only half of the theoretical energy potential is technically usable by biogas investments. As for the crops residues, has been shown that the theoretical biogas potential is over 2900 GWh/year. Wastewater sludge can be converted in around 1700MWh/year, and the organic wastes available from municipal wastes can provide over 137 GWh/year. Another potential for renewable energy production in Timis County is the arable land uncultivated yearly, which can be used to cultivate energy crops, as raw material for biogas providing over 2800 GWh/year. All this quantity of biogas can be converted in numerous CHP biogas plants totaling an installed power of over 340 MWel. This potential can contribute to reach the target for 2020 in Romania to build biogas plants totaling at least 195 MWel. installed power, with an output of 950 GW electric power. 

  16. Biogas utilization

    Energy Technology Data Exchange (ETDEWEB)

    Moser, M.A. [Resource Conservation Management, Inc., Berkeley, CA (United States)

    1996-01-01

    Options for successfully using biogas depend on project scale. Almost all biogas from anaerobic digesters must first go through a gas handling system that pressurizes, meters, and filters the biogas. Additional treatment, including hydrogen sulfide-mercaptan scrubbing, gas drying, and carbon dioxide removal may be necessary for specialized uses, but these are complex and expensive processes. Thus, they can be justified only for large-scale projects that require high-quality biogas. Small-scale projects (less than 65 cfm) generally use biogas (as produced) as a boiler fuel or for fueling internal combustion engine-generators to produce electricity. If engines or boilers are selected properly, there should be no need to remove hydrogen sulfide. Small-scale combustion turbines, steam turbines, and fuel cells are not used because of their technical complexity and high capital cost. Biogas cleanup to pipeline or transportation fuel specifications is very costly, and energy economics preclude this level of treatment.

  17. Anaerobic digestion: biodegradability and biogas production of model wastes

    OpenAIRE

    Lausund, Erlend

    2014-01-01

    Anaerobic digestion is a desirable treatment practice in terms of minimizing volume, treating of pollutants and biogas production. In this thesis model wastes have been investigated with respect to biogas and methane production in order to find out what wastes are suitable for anaerobic digestion, and discussing ways to further the research to optimize the production of renewable energy.

  18. Biogas processing

    OpenAIRE

    Kudláč, Adam

    2010-01-01

    The diploma thesis includes proposals suitable for usage of the technologies for clearing the biogas into a quality of substitute natural gas (SNG). The most suitable technology is chosen for the clearing the biogas out of the septic tanks of the laboratory for biologically decomposable waste treatment at Institute of process and environmental engineering. There is a calculation , a proposal and a realisation of the experimental unit for clearing the biogas performed.

  19. An Introduction to Biogas Production on the Farm.

    Science.gov (United States)

    National Center for Appropriate Technology, Butte, MT.

    This three-section report provides introductory information about biogas production and its application to farm environments. The first section discusses the various components of a biogas production system (a system that converts organic wastes into a usable form of energy), explains the system's benefits and liabilities, and provides a brief…

  20. The social organization of agricultural biogas production and use

    International Nuclear Information System (INIS)

    While for wind, solar energy or hydropower, energy supply happens directly from the source to the wind wheels, hydropower turbines or solar panels, in the case of biogas, energy production cannot directly take from the energy source, organic matter, but depends on the institutional structures and farmers′ practices involved for making energy available. With the production of bioenergy in rural areas, practices within agriculture are transformed, requiring new ways of organizing production processes. Research has left the question largely unanswered of how agricultural biogas production and use are – and can best be – organized within rural society. Which kinds of social organization exist, how are these embedded in existing agricultural institutions and practices, and how do these systems function? Under which conditions may the different kinds of social organization of biogas production and use work sustainably? This introduction article to the Special Issue “The social organization of agricultural biogas production and use” presents a framework for analysing the different kinds of social organization of biogas production and use presented hereafter. Analysis parameters are the supply network, distribution network, distribution of benefits, social boundaries of the system (accessibility) and scale. Using these parameters, the Special Issue articles are outlined. - Highlights: • Through agricultural institutions and farmers′ practices, biogas is made available. • Scale, supply and delivery network distinguish biogas infrastructural systems. • Access and benefit distribution are key for a biogas system′s sustainability

  1. Research report Organofinery biogas production AAU

    OpenAIRE

    Molinuevo-Salces, Beatriz; Fernandez, Maria Santamaria; Uellendahl, Hinrich

    2015-01-01

    Organically grown red clover was investigated as a resource for organic feed by combination of protein extraction and anaerobic digestion of the sub-products. Extraction of proteins revealed a very favorable amino acid composition for the use as poultry feed. The residual 89% of organic matter, as solid press cake and brown juice was subjected to anaerobic digestion to produce biogas and fertilizer. Specific methane yields of 225±62 and 487±30 ml CH4/g VS were obtained for press cake and brow...

  2. A tool for analyzing the sustainability of biogas production chains

    NARCIS (Netherlands)

    Pierie, Frank; Broekhuijsen, J.; Gemert, W.J.T.; Moll, H.C.

    2014-01-01

    Abstract written for an poster presentation at the EBA conference in Alkmaar. The flexibility of biogas makes it a very capable load balancer within decentralized smart energy systems. However, within this context the sustainability of biogas production is not fully understood. What is needed is a t

  3. Performance optimization of the Växtkraft biogas production plant

    International Nuclear Information System (INIS)

    Highlights: ► Pre-treatment of ley crop can increase the biogas plant performance. ► Membrane filtration can increase the capacity of the biogas plant. ► Mechanical pre-treatment of the ley crop shows the highest energy efficiency. ► Using a distributor to spread the residues as fertilizer show promising results. -- Abstract: All over the world there is a strong interest and also potential for biogas production from organic residues as well as from different crops. However, to be commercially competitive with other types of fuels, efficiency improvements of the biogas production process are needed. In this paper, results of improvements studies done on a full scale co-digestion plant are presented. In the plant organic wastes from households and restaurants are mixed and digested with crops from pasture land. The areas for improvement of the plant addressed in this paper are treatment of the feed material to enhance the digestion rate, limitation of the ballast of organics in the water stream recirculated in the process, and use of the biogas plant residues at farms. Results from previous studies on pre-treatment and membrane filtration of recirculated process water are combined for an estimation of the total improvement potential. Further, the possibility of using neural networks to predict biogas production using historical data from the full-scale biogas plant was investigated. Results from an investigation using the process residues as fertilizer are also presented. The results indicate a potential to increase the biogas yield from the process with up to over 30% with pre-treatment of the feed and including membrane filtration in the process. Neural networks have the potential to be used for prediction of biogas production. Further, it is shown that the residues from biogas production can be used as fertilizers but that the emission of N2O from the fertilized soil is dependent on the soil type and spreading technology.

  4. BIOGAS PRODUCTION FROM TOFU LIQUID WASTE ON TREATED AGRICULTURAL WASTES

    Directory of Open Access Journals (Sweden)

    Budy Rahmat

    2014-01-01

    Full Text Available The Tofu Liquid Waste (TLW as a pollution might be processed into biogas which was environmentally friendly and had potential to replace burning wood or oil. However, the waste could not directly be employed as the biogas substrate due to the high nitrogen content which was not suitable to the methanogen microorganism on the biogas digester and did not produce biogas. It was therefore necessary to adapt the carbon-nitrogen ratio in TLW with the addition of other organic materials that had a lower nitrogen content so it would be a suitable substrate for generating biogas. The research was aimed to evaluate the addition of the other organic material on the TLW to increase the biogas production. The results showed that TLW combined with sheep dung, cabbage waste, bamboo leaves and paddy straw respectively produced biogas as much as 14,183, 7,250, 2,400, 895 cm3 in 20 days. The 4 treatments gave the same quality of biogas, which was determined using the water boiling test. The pH fluctuation during the process was in the right pH for anaerobic digestion, thus it was not the limiting factor.

  5. Progress in biogas. Biogas production from agricultural biomass and organic residues. Pt. 1 and 2. Proceedings (oral presentations and poster presentations); Fortschritt beim Biogas. Biogas aus landwirtschaftlicher Biomasse and organischen Reststoffen. T. 1 und 2. Tagungsband. Vortraege and Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Within the International Conference ''Progress in Biogas - Biogas production from agricultural biomass and organic residues'' at the University Hohenheim (Stuttgart, Federal Republic of Germany) from 18th to 21st September, 2007, the following lectures were held: (1) Global relevance and potential of bioenergy for regional development; (2) Biogas electricity for France feed-in tariff and some other things to know before entering French market; (3) Policy drivers and future prospects for on-farm anaerobic digestion in Northern Ireland; (4) Biogas in Belgium, a swot analysis; (5) Status and prospects of biogas energy use in Ukraine; (6) Recent developments in Chinese agricultural biogas production; (7) Opportunities for agricultural based biogas systems in the province of Ontario, Canada; (8) Pre-treatment and digestion of separated collected household waste in Sweden; (9) To the problem of monitoring measures and prophylaxis measures with the utilization of organic residual substances in biological gas facilities from hygienic view; (10) Fermenting residues from biological gas facilities - nutrients and pollutants, possibilities of application in the agriculture; (11) Treatment and utilization of fermentation residues; (12) Potential of residual gas of NaWaRo feeded biogas plants in Baden-Wuerttemberg; (13) Operating analytics of biogas plants to improve efficiency and to ensure process stability; (14) The potential of biogas and electric power production from subproducts in the sugar and alcohol industries by the application of anaerobic digestion; (15) Co-digestion plant in dairy cattle farm in Emilia Romagna region (Italy); (16) Facing operational problems in a biodigeser in Yuvientsa - Amazonian Region of Ecuador; (17) Biogas plant instead of milk cow - payment and occupation with the use of grassilage; (18) Biogas in ecologic agriculture - experiences from 3 years of fermentation of grass-clover ley; (19) Combined solar-biogas basis for the

  6. Biogas and bioethanol production in organic farming

    Energy Technology Data Exchange (ETDEWEB)

    Oleskowicz-Popiel, P.

    2010-08-15

    The consumer demand for environmentally friendly, chemical free and healthy products, as well as concern regarding industrial agriculture's effect on the environment has led to a significant growth of organic farming. On the other hand, organic farmers are becoming interested in direct on-farm energy production which would lead them to independency from fossil fuels and decrease the greenhouse gas emissions from the farm. In the presented work, the idea of biogas and bioenergy production at the organic farm is investigated. This thesis is devoted to evaluate such a possibility, starting from the characterization of raw materials, through optimizing new processes and solutions and finally evaluating the whole on-farm biorefinery concept with the help of a simulation software. (LN)

  7. Potential for energy production and use from biogas in Brazil; Potencial de aproveitamento energetico do biogas no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Zanette, Andre Luiz

    2009-12-15

    Biogas, produced from anaerobic digestion of organic matter in domestic, industrial and rural wastewaters and residuals, represent an alternative and renewable source of energy, with growing use worldwide. In Brazil, high population and its spatial concentration and expressive agricultural and agricultural-industrial production indicate a substantial potential of biogas production. The results presented in this work show a potential of biogas production of almost 2 billion cubic feet a day of CH{sub 4}. Viability of biogas production and use depends substantially on project scale. Generally, biogas projects are viable from landfills and domestic wastewater treatment for populations higher than 50,000 inhabitants and swine and dairy farms with at least 5,000 and 1,000 animals, respectively. Biogas is also competitive when compared to fossil fuels used in industry and transport. Despite incentive mechanisms for biogas production and use, like Clean Development Mechanism and renewable and alternative sources of energy incentives in Brazil, several regulatory, institutional, economical and technological barriers difficult the effective employment of biogas in Brazil. Thus, this work indicates the need of better coordination among different governmental levels, private sector and research and development institutions and effective policy formulation to promote a better employment of biogas in Brazil. (author)

  8. Biogas Production From Cassava Starch Effluent Using Microalgae As Biostabilisator

    Directory of Open Access Journals (Sweden)

    B. Budiyono

    2011-07-01

    Full Text Available The rapid growing of Indonesian population is emerging several critical national issues i.e. energy, food, environmental, water, transportation, as well as law and human right. As an agricultural country, Indonesia has abundant of biomass wastes such as agricultural wastes include the cassava starch wastes. The problem is that the effluent from cassava starch factories is released directly into the river before properly treatment. It has been a great source of pollution and has caused environmental problems to the nearby rural population. The possible alternative to solve the problem is by converting waste to energy biogas in the biodigester. The main problem of the biogas production of cassava starch effluent is acid forming-bacteria quickly produced acid resulting significantly in declining pH below the neutral pH and diminishing growth of methane bacteria. Hence, the only one of the method to cover this problem is by adding microalgae as biostabilisator of pH. Microalgae can also be used as purifier agent to absorb CO2.The general objective of this research project was to develop an integrated process of biogas production and purification from cassava starch effluent by using biostabilisator agent microalgae. This study has been focused on the used of urea, ruminant, yeast, microalgae, the treatment of gelled and ungelled feed for biogas production, pH control during biogas production using buffer Na2CO3, and feeding management in the semi-continuous process of biogas production. The result can be concluded as follows: i The biogas production increased after cassava starch effluent and yeast was added, ii Biogas production with microalgae and cassava starch effluent, yeast, ruminant bacteria, and urea were 726.43 ml/g total solid, iii Biogas production without  microalgae was 189 ml/g total solid.

  9. Biogas Production on Demand Regulated by Butyric Acid Addition

    Science.gov (United States)

    Kasper, K.; Schiffels, J.; Krafft, S.; Kuperjans, I.; Elbers, G.; Selmer, T.

    2016-03-01

    Investigating effects of volatile fatty acids on the biogas process it was observed that butyric acid can be used for transient stimulation of the methane production in biogas plants operating with low energy substrates like cattle manure. Upon addition of butyrate the methane output of the reactors doubled within 24 h and reached almost 3-times higher methane yields within 3-4 days. Butyrate was quantitatively eliminated and the reactors returned to the original productivity state within 3 days when application of butyrate was stopped. The opportunity to use butyrate feeding for increased biogas production on demand is discussed.

  10. A PILOT PLANT FOR THE BIOGAS PRODUCTION

    Directory of Open Access Journals (Sweden)

    A. Omrani

    1988-08-01

    Full Text Available Manure and Putreseible garbage are some of the main sources of pathogenic germs in countryside’s. On the other hand, demand for fertilizer and energy increases in rural areas every day. To study Potential of cow manure for these requirements a 16,5m3 pilot plant was designed and constructed as fermentation tank near animal husbandry of karaj Agriculture Faculty. Some 260kg cow manure and water with the ratio of 4 and 7 was fed to fermentation tank every day. Average daily biogas production was 3.4m3, which was burned successfully in a gas range. Gas production was reduced by 86% during coldest winter days. Design for control of gas pressure and reservation of excessive gas was successful. Concentration of nitrate in sludge increased by 1.6 folds compared to row material. Some bacteria and Parasites were reduced drastically.

  11. PRELIMINARY STUDY ON BIOGAS PRODUCTION OF BIOGAS FROM MUNICIPAL SOLID WASTE (MSW LEACHATE

    Directory of Open Access Journals (Sweden)

    WAN AZLINA WAN AB KARIM GHANI

    2009-12-01

    Full Text Available Laboratory-scale digesters were operated to study the effect of leachate chemical oxygen demand strength on biogas (methane production. Three sets of experiment were performed using municipal solid waste leachate slurry with two different chemical oxygen demand strength strengths namely 3000 and 21000 mg/L (referred as low and high strength, respectively. The experiments were conducted at a controlled temperature of 35°C and pH ranging from 6.8 to 7.3 over 20 days period. The process performance was evaluated based on the biogas production and pollutants removal efficiencies. Results showed that the high and low strength samples performed quite similarly but with different biogas production rate observed. The biochemical oxygen demand in the effluent removed up to 80%, but the performance of other parameters such as chemical oxygen demand, total suspended solid and volatile suspended solid was slightly decreased which contributes 33 to 46%, 21 to 37% and 20 to 35%, respectively. From this study, it can be concluded that this method not only contributed to renewable biogas production but also improved the effluent quality.

  12. Biogas and biofuels barometer

    International Nuclear Information System (INIS)

    European union countries are becoming more and more interested by the characteristics of biogas in terms of environment and energy production and are developing their proper channels of valorization according to their potential. In this way, biogas production reached nearly 5,3 million tons oil equivalent in 2006, representing a 13,6% increase with respect to 2005. Statistical data are provided on the primary energy production of biogas, the electricity production from biogas, gross heat production from biogas, and the representative firms of the biogas sector. In a second part the biofuels barometer is presented. The agricultural environment and landscape of the European Union countries is redefined a little more each year by energy crops for biofuel production. According to the first estimates for 2006, biofuel consumption reached 5,38 Mtoe last year in the EU, corresponding to a 1,8% share of the total consumption of fuels devoted to transport. (A.L.B.)

  13. Ultrasound-Enhanced Biogas Production from Different Substrates

    DEFF Research Database (Denmark)

    González-Fernández, Cristina; Timmers, Rudolphus Antonius; Ruiz, Begona;

    2015-01-01

    Among the biofuel production processes using different substrates, the biogas generation process is one of the simplest. Compared with bioethanol or biodiesel production processes, anaerobic digestion is a process where all the organic matter (carbohydrates, lipids and proteins) can be biologically...... production. The present chapter is dedicated to providing a review of ultrasound pretreatment applied to different substrates (lignocelullosic materials, manures, sludge and microalgae). The advantages and constraints, that ultrasound pretreatment exhibit towards biogas production, are discussed and compared...

  14. Waste(d) potential : a socio-technical analysis of biogas production and use in Sweden

    OpenAIRE

    Olsson, Linda; Fallde, Magdalena

    2015-01-01

    This paper takes a socio-technical perspective on Swedish biogas production and use, in order to identify characteristics which may improve and increase biogas production. Biogas could potentially reduce greenhouse gas (GHG) emissions from Swedish road transport by 25%, and to that end transport policy endorses the use of biogas as vehicle fuel. Currently, however, only a small fraction of the biogas production potential is utilised. By analysing how social and technological context has influ...

  15. Recent developments in Chinese agricultural biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Xin Xiang [Chinese Ministry of Agriculture (China). Centre of Energy and Environmental Protection; Mang, H.P. [Chinese Academy of Agricultural Engineering (China)]|[Centrum fuer Internationale Migration und Entwicklung (CIM), Frankfurt am Main (Germany)

    2007-07-01

    China is still largely rural, with abundant biomass resources including agricultural residues, and animal wastes amounting to about 2.5 billion tons per annum. The first National Strategy for Renewable Rural Biomass Energy Development has developed a strategy which will provide a framework for a sustainable utilization of these resources as well as develop additional resources for renewable energy reduction. To comply with these regulations, under current economic and regulatory conditions, the least-cost response for mist agro-enterprises will be the installation of conventional, ''end of pipe'' waste treatment facilities. The results of an International Seminar on Biogas for Poverty and Sustainable Development in Beijing (Peoples Republic of China) in October 2005 came up with the following strategies for large scale biogas plant implementation: (a) Integration of biogas electricity generation in national feed-in-grid strategies and village electrification; (b) Create models for biogas grids; (c) Testing clear rules for Renewable Energy laws application; (d) Promotion of large scale industrial and community plants; (e) Integration of bio-organic waste and septic/faecal sludge collection system.

  16. Life cycle assessment of agricultural biogas production systems

    Energy Technology Data Exchange (ETDEWEB)

    Lansche, J.; Muller, J. [Hohenheim Univ., Stuttgart (Germany). Inst. of Agricultural Engineering, Tropical and Subtropical Group

    2010-07-01

    Agricultural activities are large contributors to anthropogenic greenhouse gas emissions. This paper discussed the effectiveness of reducing agricultural emissions by using liquid manure to produce biogas. When using this technique, greenhouse gas emissions from manure storage are avoided and renewable energy is generated as heat and electricity in combined heat and power plants. The purpose of this study was to evaluate the environmental impacts of biogas production systems based on the methods of life cycle assessment. The traditional use of agricultural manures was compared with conventional energy production. The Gabi 4.3 software was used to create a model to evaluate the biogas production systems according to their environmental impact. In addition to the global warming potential, other impact categories were also used to evaluate the effects of the systems in eutrophication and acidification. It was concluded that environmental benefits can be obtained in terms of greenhouse gas emissions compared to electricity production from biogas with the typical German marginal electricity mix.

  17. Life cycle assessment of agricultural biogas production systems

    International Nuclear Information System (INIS)

    Agricultural activities are large contributors to anthropogenic greenhouse gas emissions. This paper discussed the effectiveness of reducing agricultural emissions by using liquid manure to produce biogas. When using this technique, greenhouse gas emissions from manure storage are avoided and renewable energy is generated as heat and electricity in combined heat and power plants. The purpose of this study was to evaluate the environmental impacts of biogas production systems based on the methods of life cycle assessment. The traditional use of agricultural manures was compared with conventional energy production. The Gabi 4.3 software was used to create a model to evaluate the biogas production systems according to their environmental impact. In addition to the global warming potential, other impact categories were also used to evaluate the effects of the systems in eutrophication and acidification. It was concluded that environmental benefits can be obtained in terms of greenhouse gas emissions compared to electricity production from biogas with the typical German marginal electricity mix.

  18. Use of biogas in agriculture

    OpenAIRE

    Hejný, František

    2012-01-01

    Biogas results from anaerobic fermentation of organic substances either in oxygen atmosphere or non-oxygen atmosphere, depending on decomposition stage. Composition of Biogas is different, depends mainly on development of fermentation and additional important factors. The most important for Biogas is the maximum contents of methane. Biogas stations exploit Biogas for production of electric energy and heat energy by means of congregational units and there is also possibility to generate c...

  19. Biogas Production from Energy Crops and Agriculture Residues

    OpenAIRE

    Wang, Guangtao

    2010-01-01

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) s...

  20. Performance optimization of the Växtkraft biogas production plant

    OpenAIRE

    Thorin, Eva; Lindmark, Johan; Nordlander, Eva; Odlare, Monica; Dahlquist, Erik; Kastensson, Jan; Leksell, Niklas; Pettersson, Carl-Magnus

    2012-01-01

    All over the world there is a strong interest and also potential for biogas production from organic residues as well as from different crops. However, to be commercially competitive with other types of fuels, efficiency improvements of the biogas production process are needed. In this paper, results of improvements studies done on a full scale co-digestion plant are presented   In the plant organic wastes from households and restaurants are mixed and digested with crops from graze land. The a...

  1. Mini digester and biogas production from plant biomass

    OpenAIRE

    P. Vindis; B. Mursec; C. Rozman; M. Janzekovic; F. Cus

    2009-01-01

    Purpose: The aim of the paper is to present the construction of a mini digester for biogas production from different agriculture plant biomass and other organic wastes. The amount of biogas production (methane) is observed by the mini digester.Design/methodology/approach: The mini digester consisting of twelve units was built and some measurements with agriculture plant biomass were performed according to DIN 38414 part 8. Four tests simultaneously with three repetitions can be performed.Find...

  2. Biogas production with the use of mini digester

    OpenAIRE

    P. Vindis; B. Mursec; C. Rozman; M. Janzekovic; F. Cus

    2008-01-01

    Purpose: of this paper is to present the construction of a mini digester for biogas production from different energy plants and organic wastes. With the mini digester the amount of biogas production (methane) is observed.Design/methodology/approach: Firstly, the mini digester consisting of twelve units was built and secondly some measurements with energy plants were performed. The measurements were performed with mini digester according to DIN 38414 part 8. Four tests simultaneously with...

  3. Biogas Production Modelling: A Control System Engineering Approach

    Science.gov (United States)

    Stollenwerk, D.; Rieke, C.; Dahmen, M.; Pieper, M.

    2016-03-01

    Due to the Renewable Energy Act, in Germany it is planned to increase the amount of renewable energy carriers up to 60%. One of the main problems is the fluctuating supply of wind and solar energy. Here biogas plants provide a solution, because a demand-driven supply is possible. Before running such a plant, it is necessary to simulate and optimize the process feeding strategy. Current simulation models are either very detailed like the ADM 1, which leads to very long optimization runtimes or not accurate enough to handle the biogas production kinetics. Therefore this paper provides a new model of a biogas plant, which is easy to parametrize but also has the needed accuracy for the output prediction. It is based on the control system approach of system identification and validated with laboratory results of a real biogas production testing facility.

  4. Evaluation of different strategies to maximize biogas production from algae

    OpenAIRE

    Costa, J.C.; Oliveira, J. V. M.; Alves, M.M.

    2013-01-01

    Seaweeds (macroalgae) are a promising substrate for biogas production due to the high percentage of carbohydrates and high growth rate. Therefore, the biogas produced from the anaerobic digestion of seaweeds is a sustainable and renewable alternative source of bioenergy. Seaweeds are available in coastal areas and may also be produced in aquacultures. This work presents results of the biochemical methane potential (BMP) of the wild seaweed, Gracilaria vermiculophylla, as well as the effect of...

  5. Pretreaments of Chinese Agricultural residues to increase biogas production

    OpenAIRE

    Wang, Yu

    2010-01-01

    Development of biological conversion of lignocellulosic biomass to biogas is one approach to utilize straw comprehensively. However, high lignin contents of lignocellulosic materials results in low degradation. The main aim of this study was to investigate the appropriate pre-treatment to increase biogas production from Chinese agricultural residues. In this study, Chinese corn stalk, rice plant and wheat straw were evaluated as substrates by applying three different pre-treatments. The inves...

  6. Biogas Production Potential from Waste in Timis County

    OpenAIRE

    Teodor Vintila; Simina Neo; Cornelia Vintilă

    2012-01-01

    This work is a study of biogas production potential using as substrate the residues generated in the agricultural activities and the organic fraction from municipal wastes collected in Timis County. Data available in regional and national statistics have been reported to Timis County and used to calculate the potential quantity of biogas to be produced by anaerobic fermentation using as fermentable substrate residues generated in various human activities. To estimate the electric and thermal ...

  7. Biogas production through the syntrophic acetate-oxidising pathway

    OpenAIRE

    Westerholm, Maria

    2012-01-01

    Biogas produced from wastes, residues and energy crops has promising potential to reduce greenhouse gas emissions and to secure future energy supply. Methane is the energy-rich component of biogas, and is formed as the end product during degradation of organic material without oxygen (anaerobic). Acetate is an important intermediate in anaerobic degradation and can be converted to methane through two pathways: aceticlastic methanogenesis and syntrophic acetate oxidation (SAO). SAO is a two-st...

  8. Integrated biogas systems

    Science.gov (United States)

    Amaratunga, M.

    1980-01-01

    Integrated biogas systems as alternatives to fossil fuels in Sri Lanka are considered from standpoints of population growth, land availability, and employment opportunities. Agricultural practices would be improved by use of chemical fertilizers, and health/nutrition problems be alleviated by using biogas systems. Fuel for cooking and rural industries will become more easily available; water weeds, such as water hyacinth and salvinia which pose a threat to waterways and rice paddy lands could be used for the production of biogas and fertilizers. A concept of an integrated biogas system comprising photosynthesis and anaerobic degradation processes to produce food and energy is presented.

  9. Basic Data on Biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Renewable gases such as biogas and biomethane are considered as key energy carrier when the society is replacing fossil fuels with renewable alternatives. In Sweden, almost 80 % of the fossil fuels are used in the transport sector. Therefore, the focus in Sweden has been to use the produced biogas in this sector as vehicle gas. Basic Data on Biogas contains an overview of production, utilisation, climate effects etc. of biogas from a Swedish perspective. The purpose is to give an easy overview of the current situation in Sweden for politicians, decision makers and interested public. 1.4 TWh of biogas is produced annually in Sweden at approximately 230 facilities. The 135 wastewater treatment plants that produce biogas contribute with around half of the production. In order to reduce the sludge volume, biogas has been produced at wastewater treatment plants for decades. New biogas plants are mainly co-digestion plants and farm plants. The land filling of organic waste has been banned since 2005, thus the biogas produced in landfills is decreasing.

  10. BIOGAS PRODUCTION FROM WASTE TO ANIMAL

    Directory of Open Access Journals (Sweden)

    EDVAL LUIZ BATISTA DOS SANTOS

    2013-08-01

    Full Text Available Climate change is a current issue. Greenhouse gas emissions (GGEs are changing the atmosphere physio-chemical characteristics also affecting biosphere natural balance and life quality on Earth. The search for renewable and clean source is an alternative to reverse, control and attenuate the problems caused by greenhouse gases. Biomass is one of the major energy sources available in rural and agribusiness areas. Anaerobic biological degradation of organic material present in solid agricultural waste generates a gaseous mixture of methane (CH4 and carbon dioxide (CO2, called biogas. It is possible to use its energy potential through the burning and obtaining of thermal energy. Biogas generation offers producers a renewable energy source of optimum performance which supports external electric expenses and provides clean energy as well as adequate distribution of generated effluent. Biogas usage is a large energetic potential concerning small and medium-sized farms. This paper aims at observing how this kind of energy can help the control of GGE emissions, adequate animal waste disposal as well dumping and especially the generation of clean and renewable energy. It also intends to answer questions about this technology aiming to help producers to take advantages of such technique by decreasing electric energy costs providing an economical development as well as improvement on local and national energetic area.

  11. Progress in biogas. Biogas production from agricultural biomass and organic residues. Pt. 1 and 2. Proceedings (oral presentations and poster presentations); Fortschritt beim Biogas. Biogas aus landwirtschaftlicher Biomasse and organischen Reststoffen. T. 1 und 2. Tagungsband. Vortraege and Poster

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Within the International Conference ''Progress in Biogas - Biogas production from agricultural biomass and organic residues'' at the University Hohenheim (Stuttgart, Federal Republic of Germany) from 18th to 21st September, 2007, the following lectures were held: (1) Global relevance and potential of bioenergy for regional development; (2) Biogas electricity for France feed-in tariff and some other things to know before entering French market; (3) Policy drivers and future prospects for on-farm anaerobic digestion in Northern Ireland; (4) Biogas in Belgium, a swot analysis; (5) Status and prospects of biogas energy use in Ukraine; (6) Recent developments in Chinese agricultural biogas production; (7) Opportunities for agricultural based biogas systems in the province of Ontario, Canada; (8) Pre-treatment and digestion of separated collected household waste in Sweden; (9) To the problem of monitoring measures and prophylaxis measures with the utilization of organic residual substances in biological gas facilities from hygienic view; (10) Fermenting residues from biological gas facilities - nutrients and pollutants, possibilities of application in the agriculture; (11) Treatment and utilization of fermentation residues; (12) Potential of residual gas of NaWaRo feeded biogas plants in Baden-Wuerttemberg; (13) Operating analytics of biogas plants to improve efficiency and to ensure process stability; (14) The potential of biogas and electric power production from subproducts in the sugar and alcohol industries by the application of anaerobic digestion; (15) Co-digestion plant in dairy cattle farm in Emilia Romagna region (Italy); (16) Facing operational problems in a biodigeser in Yuvientsa - Amazonian Region of Ecuador; (17) Biogas plant instead of milk cow - payment and occupation with the use of grassilage; (18) Biogas in ecologic agriculture - experiences from 3 years of fermentation of grass-clover ley; (19) Combined solar-biogas basis for the

  12. Farm Biogas Handbook; Gaardsbiogashandbok

    Energy Technology Data Exchange (ETDEWEB)

    Christensson, Kjell; Bjoernsson, Lovisa; Dahlgren, Stefan; Eriksson, Peter; Lantz, Mikael; Lindstroem, Johanna; Mickelaaker, Maria

    2009-04-15

    A very large share of the total raw material potential for biogas production will be found within the agriculture. The raw material potential of manure in Sweden amounts to 4 - 6 TWh. Within the agriculture there is moreover a big potential in the form of residues from plant cultivation and non-food crops (approximately 7 TWh) that can to be used for biogas production. The potential for biogas production from only residues and manure is around 8-10 TWh. An increased biogas production within the agriculture would give significant environmental effects. Among other things manure, that today is leaking methane gas to the atmosphere, can be fermented, and trough this process the methane losses will be reduced. When the produced biogas replaces fossil fuel, an overall environmental effect will be reached, that is highly significant. This manual deals with biogas plants for agriculture and such plants that do not have extensive transports of different raw materials, as manure, wastes etc. One of the starting points for this manual's set-up is a course plan that Biogas Syd made for the courses they give to farmers, advisors and others. The manual illustrates important aspects in planning and construction of biogas plants, from raw material and technology to dimensioning of plant, use of biogas and planning of local gas grids. We also think it is important to illustrate the legislation that encompasses construction work and operation of a biogas plant. Investment costs are also illustrated, but the book does not give any extensive economic calculations, since we believe that such calculations need their own manual in the form of calculation examples, based on various conditions. The final section is called 'Biogas on farm - from idea to reality' where the entire process from analysis and pre-planning to monitoring and control of plant during operation is briefly described

  13. Utilization of Biodiesel By-Products for Biogas Production

    OpenAIRE

    Nina Kolesárová; Miroslav Hutňan; Igor Bodík; Viera Špalková

    2011-01-01

    This contribution reviews the possibility of using the by-products from biodiesel production as substrates for anaerobic digestion and production of biogas. The process of biodiesel production is predominantly carried out by catalyzed transesterification. Besides desired methylesters, this reaction provides also few other products, including crude glycerol, oil-pressed cakes, and washing water. Crude glycerol or g-phase is heavier separate liquid phase, composed mainly by glycerol. A couple o...

  14. BIOGAS TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    D.B. SALUNKHE

    2012-12-01

    Full Text Available Due to scarcity of petroleum and coal it threatens supply of fuel throughout the world also problem of their combustion leads to research in different corners to get access the new sources of energy, like renewable energy resources. Solar energy, wind energy, different thermal and hydro sources of energy, biogas are all renewable energy resources. But, biogas is distinct from other renewable energies because of its characteristics of using, controlling and collecting organic wastes and at the same time producing fertilizer and water for use in agricultural irrigation. Biogas does not have any geographical limitations nor does it require advanced technology for producing energy, also it is very simple to use and apply. Anaerobic digestion is controlled biological degradation process which allows efficient capturing & utilization of biogas (approximately 60% methane and 40% carbon dioxide for energy generation. Anaerobic digestion of food waste is achievable but different types, composition of food waste results in varying degrees of methane yields, and thus the effects of mixing various types of food waste and their proportions should be determined on case by case basis.

  15. Continuous dry fermentation of swine manure for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chuang; Zheng, Dan [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China); Liu, Gang–Jin [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China); Bioprocess Control AB, Scheelevägen 22, 223 63 Lund (Sweden); Deng, Liang–Wei, E-mail: dengliangwei@caas.cn [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China); Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041 (China); Southwest Collaborative Innovation Center of Swine for Quality & Safety, Chengdu 611130 (China); Long, Yan; Fan, Zhan–Hui [Biogas Institute of Ministry of Agriculture, Chengdu 610041 (China)

    2015-04-15

    Highlights: • Continuous dry fermentation of swine manure for biogas production is feasible. • The feedstock TS concentration exerted a significant impact on biogas production. • Influences of ammonia and digestate liquidity were investigated in this study. • The results showed that the feedstock TS of swine manure should not exceed 30%. - Abstract: A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644 L·(L d){sup −1} and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g{sup −1}VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L{sup −1}. Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L{sup −1}. The maximal volumetric biogas production rate of 2.34 L·(L d){sup −1} and biogas yield of 0.649 L g{sup −1}VS were obtained with TS concentration of 25% at 25 °C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s{sup −1} when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield.

  16. Continuous dry fermentation of swine manure for biogas production

    International Nuclear Information System (INIS)

    Highlights: • Continuous dry fermentation of swine manure for biogas production is feasible. • The feedstock TS concentration exerted a significant impact on biogas production. • Influences of ammonia and digestate liquidity were investigated in this study. • The results showed that the feedstock TS of swine manure should not exceed 30%. - Abstract: A down plug-flow anaerobic reactor (DPAR) was designed for the feasibility study on continuous dry fermentation of swine manure without any additional stirring. Using fresh swine manure as the feedstock with TS concentration (w/w) of 20%, 25%, 30%, and 35%, stable volumetric biogas production rates of 2.40, 1.92, 0.911, and 0.644 L·(L d)−1 and biogas yields of 0.665, 0.532, 0.252, and 0.178 L g−1VS were obtained respectively, and the TS degradation rates were 46.5%, 45.4%, 53.2%, and 55.6%, respectively. With the increase of feedstock TS concentration, the concentration of ammonia nitrogen grew up to the maximum value of 3500 mg L−1. Biogas production was obviously inhibited when the concentration of ammonia nitrogen was above 3000 mg L−1. The maximal volumetric biogas production rate of 2.34 L·(L d)−1 and biogas yield of 0.649 L g−1VS were obtained with TS concentration of 25% at 25 °C without inhibition. Liquidity experiments showed that TS concentration of digestate could be less than 15.8%, and the flow rate of digestate more than 0.98 m s−1 when the feedstock TS concentration was less than 35%, which indicated the digestate could be easily discharged from a DPAR. Therefore, it is feasible to conduct a continuous dry fermentation in a DPAR using fresh swine manure as the feedstock with TS concentration less than 35%, whereas the feedstock TS concentration should not exceed 30% to achieve the maximal biogas production rate and biogas yield

  17. Electricity from biogas

    International Nuclear Information System (INIS)

    Biogas is a medium-Btu methane and carbon dioxide mix produced by bacterial decomposition of organic matter. Its sources include landfills, waste water sludges, and animal wastes. It can fuel energy applications, of which electricity generation is a frequently-preferred option. The greatest current U.S. biogas recovery and energy use is at landfills, where biogas at about 80 landfill sites fuels a total of approximately 300 MWe. Wastewater treatment plants and confined animal waste management systems support additional electric power production. Generation of electricity from biogas can present difficulties due to the generally small scale of the generating facility, variable energy content of the gas, fluctuating availability, contaminant problems, and often-demanding control needs. However, such difficulties are being successfully addressed and economics for electricity generation are often favorable as biogas can be essentially open-quotes freeclose quotes fuel. Biogas recovery and use has the additional advantage of mitigating a potent greenhouse gas. Biogas from U.S. landfills alone could fuel about 1% of U.S. electrical generation while giving climate change benefit equivalent to reducing CO2 emissions in the electricity sector by more than 10%. Growth in landfill gas use will be facilitated by recent regulations, advances in equipment, and improved management techniques such as open-quotes controlled landfillingclose quotes. The potential for biogas recovery and electricity production from sewage sludges, animal wastes and other organic resources such as agricultural residues is uncertain but probably exceeds the estimate for landfills

  18. Biogas production from the aquatic weed Pistia (Pistia stratiotes)

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, S.A.; Nipaney, P.C. (Pondicherry (Central) Univ. (IN). Salim Ali School of Ecology); Panholzer, M.B. (Institute for Environmental Research, Graz (AT))

    1991-01-01

    Pistia stratiotes, an aquatic weed, was investigated as a substrate for biogas production in batch digestion. An inoculum was necessary to obtain biogas production form the weed. With Pistia,only production of carbon dioxide alone was high during the first five days of digestion but began to level off thereafter. With inoculated Pistia, a high rate of biogas production was sustained for nearly 10 days and the average methane content was 58%-68%. The digesters charged with Pistia alone had significant concentrations of propionic, butyric, isobutyric, valeric, and isovaleric acids. These acids were not present in detectable concentrations, in the digesters running with inoculated Pistia, except during the first 4 days of the digestion when propionic acid was formed. When an inoculum was added to a 'soured' digester the performance of the latter improved dramatically. (author).

  19. DEVELOPMENT TRENDS OF BIOGAS

    Directory of Open Access Journals (Sweden)

    Mariana DUMITRU

    2015-04-01

    Full Text Available All over the world, researches are made in order to improve the technologies, the operational and process stability and performance of biogas plants, because the world markets for biogas increased considerably in Europe and all over the world. In this paper we studied the most important parameters related to a biogas plant, starting from the ecologic landfill of Cristian, Sibiu, a landfill which storages industrial and household waste. In this respect, we studied operational parameters, such as organic load and hydraulic retention time, and parameters for evaluation of a biogas plant. Also, we made a case study concerning the evaluation of used waters in the landfill described above under the aspect of pollution sources, way of treatment and evacuation mode of used waters. The existing biomass resources everywhere in the world can give us an idea of the global potential of biogas production, which is not exploited to its capacity, especially in our country.

  20. The impact of mesophilic and thermophilic anaerobic digestion on biogas production

    OpenAIRE

    P. Vindis; B. Mursec; M. Janzekovic; F. Cus

    2009-01-01

    Purpose: of this paper is to compare mesophilic and thermophilic anaerobic digestion of three maize varieties. Parameters such as biogas production and biogas composition from maize silage were measured and calculated. The amount of biogas production (methane) was observed by the mini digester.Design/methodology/approach: Biogas production and composition in mesophilic (35 degrees C) and thermophilic (55 degrees C) conditions were measured and compared. The measurements were performed with mi...

  1. Factors affecting process temperature and biogas production in small-scale rural biogas digesters in winter in northern Vietnam

    DEFF Research Database (Denmark)

    Cuong, Pham Hung; Vu, C.C.; Sommer, Sven G.;

    2014-01-01

    and 180 cm, biogas production and methane (CH4) concentration in biogas from August to February. In parallel the temperature of the air (100 cm above ground), in the slurry mixing tank and in the soil (10, 100, 140, and 180 cm depth) was measured by thermocouple. The influent amount was measured daily...... and the influent chemical composition was measured monthly during the whole experimental period. Seasonal variations in air temperature significantly affected the temperature in the soil, mixing tank and digester. Consequently, biogas production, which is temperature dependent, was influenced by the...... season. The main factors determining the internal temperature in the digesters were insulation with Styrofoam, air temperature and temperature of slurry in the mixing tank. Biogas production is low due to the cold climate conditions in winter in Northern Vietnam, but the study proved that storing slurry...

  2. High-temperature pretreatment of biogas substrate by using district heating to increase the biogas production; Hoegtemperaturfoerbehandling av biogassubstrat med fjaerrvaerme foer oekad biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Del Pilar Castillo, Maria; Ascue, Johnny [JTI, Uppsala (Sweden); Olsson, Marcus; Henriksson, Gunilla; Nordman, Roger [SP, Boraas (Sweden)

    2011-12-15

    In this study, we have shown that pre-heating sludge from a waste water treatment plant can give a higher biogas production rate. However, pretreatment showed no effect on substrate from a biogas plant at the conditions tested in this study. The study has also shown that there is potential of using district heating in the biogas industry for thermal pretreatment of sludge.

  3. Evaluation of Biogas Production Yields of Different Waste Materials

    OpenAIRE

    Bahtiyar Ozturk

    2012-01-01

    Biogas production from three different sources namely, cattle manure, cheese whey and blood, which have different characteristics, were investigated comparatively. Biogas production rates of 0.63, 0,72 and 0,64 l min-1 m-3 were obtained from the digestion of manure, co-digestion of manure-cheese whey and manure-blood, respectively, at 35±2 oC. Phosphorus () and volatile solid materials (VSM) are important for anaerobic bacteria as much as C:N ratio. A 54% of reduction in VSM and a 52 % reduct...

  4. ENHANCEMENT OF BIOGAS PRODUCTION POTENTIAL FOR ANAEROBIC CO-DIGESTION OF WASTEWATER USING DECANTER CAKE

    OpenAIRE

    Thaniya Kaosol; Narumol Sohgrathok

    2012-01-01

    The wastewater from agro-industry treated with the biological treatment cannot produce the biogas because of its low COD level and its low organic content. In this research, the co-digestion with decanter cake will improve the biogas yield and biogas production of wastewater. The effect of three parameters (i.e., type of wastewater, mixing and mesophilic temperature) will be evaluated in batch digesters under anaerobic condition. Moreover, the study determines the biogas production potential ...

  5. ENHANCEMENT OF BIOGAS PRODUCTION POTENTIAL FOR ANAEROBIC CO-DIGESTION OF WASTEWATER USING DECANTER CAKE

    OpenAIRE

    Thaniya Kaosol; Narumol Sohgrathok

    2013-01-01

    The wastewater from agro-industry treated with the biological treatment cannot produce the biogas because of its low COD level and its low organic content. In this research, the co-digestion with decanter cake will improve the biogas yield and biogas production of wastewater. The effect of three parameters (i.e., type of wastewater, mixing and mesophilic temperature) will be evaluated in batch digesters under anaerobic condition. Moreover, the study determines the biogas production potential ...

  6. Experiences with biogas in Denmark

    OpenAIRE

    Bundgaard, Sirid Sif; Kofoed-Wiuff, Anders

    2014-01-01

    This report is primarily based on the work of the Danish biogas task force, which was established as a result of the Energy Agreement of 22 March 2012. The purpose of the taskforce is to examine and support concrete biogas projects in order to facilitate the projected biogas development up to 2020.The focus of the task force was on the practical integration of the new biogas production in energy system, including the utilization of gas, the necessary infrastructure and contractual relationshi...

  7. PRELIMINARY STUDY ON BIOGAS PRODUCTION OF BIOGAS FROM MUNICIPAL SOLID WASTE (MSW) LEACHATE

    OpenAIRE

    WAN AZLINA WAN AB KARIM GHANI; AZNI IDRIS

    2009-01-01

    Laboratory-scale digesters were operated to study the effect of leachate chemical oxygen demand strength on biogas (methane) production. Three sets of experiment were performed using municipal solid waste leachate slurry with two different chemical oxygen demand strength strengths namely 3000 and 21000 mg/L (referred as low and high strength, respectively). The experiments were conducted at a controlled temperature of 35°C and pH ranging from 6.8 to 7.3 over 20 days period. The process perfor...

  8. BIOGAS UPGRADING PROCESSES FOR THE PRODUCTION OF NATURAL GAS SUBSTITUTE

    OpenAIRE

    Čekanova, Patricia; Jasminska, Natalia; Brestovič, Tomaš; Schvarzbacherova, Eva

    2011-01-01

    Biogas from anaerobic digestion of biological wastes is a renewable energy resource. It has been used to provide heat, shaft power and electricity. Typical biogas contains 50-65% methane (CH4), 30-45% carbon dioxide (CO2), moisture and traces of hydrogen sulphide (H2S). Presence of CO2 and H2S in biogas affects engine performance adversely. Reducing CO2 and H2S content will significantly improve quality of biogas. In this work, a method for biogas scrubbing and CH4 enrichment is presented. Ch...

  9. Biogas production on organic farms: Sustainable energy and better nutrient cycling

    OpenAIRE

    Grieb, Beatrice; Zerger, Uli

    2014-01-01

    Biogas production in organic farming is an approach to combine renewable energy and organic farming with numerous positive impacts on the farming system. In Germany biogas on organic farms has a long tradition, now the EU Project “SUSTAINGAS” aims at promotion of this issue on an EU-level. In this context a description of organic biogas was established.

  10. Basic data biogas Germany. Solid fuels, biofuels, biogas; Basisdaten Bioenergie Deutschland. Festbrennstoffe - Biokraftstoffe - Biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-08-15

    The brochure ''Basic data biogas Germany'' gives statistical information about (a) renewable energies: primary energy consumption, power generation, energy supply, avoidance of greenhouse gases; (b) Solid fuels: energetic utilization, wood pellets, energy consumption, comparison to heating oil; (c) Biofuels: consumption, bioethanol, biodiesel, vegetable oils; (d) Biogas: biogas power plants, energy content, production, legal aspects.

  11. Basic data biogas Germany. Solid fuels, biofuels, biogas; Basisdaten Bioenergie Deutschland. Festbrennstoffe, Biokraftstoffe, Biogas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    The brochure ''Basic data biogas Germany'' gives statistical information about (a) renewable energies: primary energy consumption, power generation, energy supply, avoidance of greenhouse gases; (b) Solid fuels: energetic utilization, wood pellets, energy consumption, comparison to heating oil; (c) Biofuels: consumption, bioethanol, biodiesel, vegetable oils; (d) Biogas: biogas power plants, energy content, production, legal aspects.

  12. Combined biogas and bi oethanol production in organic farming

    International Nuclear Information System (INIS)

    Bio energy production from local bio resources has a great potential. It is important to reduce dependency on fossil fuels and decrease green house gas emission in organic agriculture (OA). Both biogas and bio ethanol can be produced in OA and significantly contribute to the sustain ability of organic farms. The presented study is part of the Bio Concerns project. (Author)

  13. The social organization of agricultural biogas production and use

    NARCIS (Netherlands)

    Bluemling, B.; Mol, A.P.J.; Tu, Q.

    2013-01-01

    While for wind, solar energy or hydropower, energy supply happens directly from the source to the wind wheels, hydropower turbines or solar panels, in the case of biogas, energy production cannot directly take from the energy source, organic matter, but depends on the institutional structures and fa

  14. Serial CSTR digester configuration for improving biogas production from manure

    DEFF Research Database (Denmark)

    Boe, Kanokwan; Angelidaki, Irini

    2009-01-01

    A new configuration of manure digesters for improving biogas production has been investigated in laboratory scale. A single thermophilic continuous-flow stirred tank reactor (CSTR) operated with a hydraulic retention time (HRT) of 15 days was compared to a serial CSTR configuration with volume di...

  15. Biogas barometer 2011

    International Nuclear Information System (INIS)

    Biogas energy recovery for both electricity and heat application has increased in the European Union in 2011 (compared to 2010): +18% for gross electricity production from biogas and +16% for the gross heat production from biogas. The magnitude of the reduction (-7%) in the primary energy figures between 2010 and 2011 can be played down as it can be explained by a change in reporting method of the main producer country, Germany. Germany has taken the lead by far in the E.U. for the production of primary energy of biogas and its uses for heat or electricity production. Among the 13 most representative firms in the anaerobic digestion (methanization) sector in Europe, 8 are German. New markets are starting to emerge but the economic crisis and regulatory restrictions do not augur well of their expansion

  16. Biogas production on dairy farms: A Croatia case study

    Directory of Open Access Journals (Sweden)

    Nikola Bilandžija

    2013-03-01

    Full Text Available In order to determine the differences in the production and composition of biogas as well as the quality of digested residue from anaerobic digestion of the raw materials generated by dairy farms in Croatia, investigations were undertaken in the biogas laboratory facility of the Faculty of Agriculture. The investigated raw materials were: dairy manure, corn silage, haylage and equal-measure mix (1/3 of all raw materials. For each substrate, three runs of experiments were performed with the same overall hydraulic retention time (40 days and temperature of digestion (35 °C in mesophilic conditions. The investigations found that the most efficient production of biogas was from corn silage. As for biogas composition, it was acceptable in all investigated samples both in energy and environmental terms. Digested residues, which are mildly alkaline, have low dry matter content. About 70 % of dry matter content is organic. On the basis of N:P:K analysis and the analysis of biogenic elements values and heavy metal values, it can be concluded that digested residues of all input raw materials can be used in agricultural production.

  17. Enhancing methane production in a farm-scale biogas production system

    OpenAIRE

    Kaparaju, Prasad

    2003-01-01

    This work highlights the application of biogas technology in a farm biogas system to generate renewable energy and to reduce environmental impacts and GHG emissions from high strength organic wastes ranging from agricultural, animal wastes and agro-industrial organic wastes. In addition, the thesis also emphasizes various measures to enhance methane production especially in a farm-scale biogas production system through co-digestion of manure and industrial organic waste/energy crops and recov...

  18. Progress in biogas II - Biogas production from agricultural biomass and organic residues. Pt. 1. Proceedings; Progress in Biogas II - Biogasproduktion aus landwirtschaftlicher Biomasse und organischen Reststoffen. T. 1. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    Within the International Congress at the University of Hohenheim (Stuttgart, Federal Republic of Germany) from 29th March to 1st April, 2011, the following lectures were held: (1) Biogas in Europe (F. Scholwin); (2) Biogas development in China: International Cooperation to up-scale the technology (Z. Li); (3) The methane to markets initiative and opportunities for livestock manure digesters in the United states (C. Voell); (4) Biogas for sanitation in Africa - experiences from creating a sustainable market 2003 to 2010 (M. Lebofa); (5) Are biogas plants in Baden-Wuerttemberg efficient? (M. Stanull); (6) The Estonian theoretical and practical biogas production potential and economically feasible feed-in-tariff for renewable electricity for micro CHP using biogas (A. Oja); (7) Biomass potentials for biogas utilization and the effects on sustainability in Kalugo (P. Fiedler); (8) An Integrated Energy System applied to Milking Dairy Cows (I. Bywater); (9) WINUBIO-Alternative technology to improve Austria's biogas capacity (V. Steinmueller); (10) Interdisciplinary approaches to advances in sustainable biogas production in Europe (S. Kusch); (11) Problems encountered in disseminating biogas technology in Uganda (G. Mabudo); (12) reasons to the success to biogas program in Nepal (K. Dawadi); (13) Effects of increasing biomass production for energetic utilization on soil fertility in the German Federal State on Brandenburg (J. Zimmer); (14) Biogas plants as part of sustainable development within peasant family farms in Germany - Interim results of an empirical field study (A. Bischoff); (15) Life cycle assessment of heat and power generation in biogas fed combined heat and power plants under German conditions (J. Lansche); (16) Biogas from lignocellulosic biomass: interest of pretreatments (H. Carrere); (17) Effect of physical and thermal pre-treatments on biogas yield of some agricultural by-products (P. Balsari); (18) Extrusion pre-treatment of green waste for

  19. Energy crops for biogas

    International Nuclear Information System (INIS)

    This investigation aims at describing the effects on cropping systems, containing a.o. leguminosae plant leys for biogas production. Problems treated are effects on soil physics, circulation of crop nutrients, use of chemical pesticides, preceding crop effects, and the possibility of utilizing catch crops for methane production. It is observed that the studied biogas-crop sequences gives positive effects on soil structure, reduced need for artificial fertilizers and chemical pesticides. 26 refs, 28 tabs

  20. Production of biogas from municipal solid waste with domestic sewage.

    Science.gov (United States)

    Elango, D; Pulikesi, M; Baskaralingam, P; Ramamurthi, V; Sivanesan, S

    2007-03-01

    In this study, experiments were conducted to investigate the production of biogas from municipal solid waste (MSW) and domestic sewage by using anaerobic digestion process. The batch type of reactor was operated at room temperature varying from 26 to 36 degrees C with a fixed hydraulic retention time (HRT) of 25 days. The digester was operated at different organic feeding rates of 0.5, 1.0, 2.3, 2.9, 3.5 and 4.3kg of volatile solids (VS)/m(3) of digester slurry per day. Biogas generation was enhanced by the addition of domestic sewage to MSW. The maximum biogas production of 0.36m(3)/kg of VS added per day occurred at the optimum organic feeding rate of 2.9kg of VS/m(3)/day. The maximum reduction of total solids (TS) (87.6%), VS (88.1%) and chemical oxygen demand (COD) (89.3%) occurred at the optimum organic loading rate of 2.9kg of VS/m(3)/day. The quality of biogas produced during anaerobic digestion process was 68-72%. PMID:16914265

  1. Key factors for achieving profitable biogas production from agricultural waste and sustainable biomass

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Biswas, Rajib;

    2013-01-01

    Based on numerous investigations on increasing the biogas yield of manure, a new concept was developed to increase the economical operation of manure based biogas plants by combining up concentration of manure with a more specific treatment of the recalcitrant lignocellulosic fiber fraction...... by implementing the treatment on the digested solid fraction. Catch crops have been identified as a sustainable co-substrate for biogas production with a high biogas potential. For exploiting this biomass for profitable biogas production, the biomass yield per hectare, harvest costs, TS concentration and specific...

  2. A Study Of Biogas Production From Rice Straw In An Underground Digester

    International Nuclear Information System (INIS)

    The rising cost of petroleum products, the growing world population with diminishing resources and increasing wastes has brought about the need for sourcing alternative resources in order to bring about sustainable development. In this regard. this research was conceived to innovate design and construction of a biogas digester and to study the production of biogas from rice straw. An underground biogas digester was designed. Constructed and tested. The test digestion produced biogas yield of 0.020 M/KXg from green cow dung. In the study of biogas production from rice straw, four bench digesters of one d m3 (I litre) each were used. The bench digester produced biogas yields of 0.0149 m3/kg of rice straw, 0.0389 m3/kg of a mixture of rice straw and cow dung and 0.0792 m3/kg of cow dung. Scaled up digestion of rice straw in the underground digester gave biogas yield of 7.37 x 104 m3/kg. The biogas produced from rice straw was found to contain 38.52% of carbon dioxide and no hydrogen sulphide. It was concluded that the biogas generation from rice straw was encouraging, but scale up yields was low. The limiting factors on biogas production from rice straw with the effect of digester design or biogas production are presented and discussed

  3. Production of bio-gas from maize cobs

    Energy Technology Data Exchange (ETDEWEB)

    Leke, Luter [College of Physical Sciences, University of Aberdeen, AB24 3UE, Aberdeen (United Kingdom); Department of Chemistry, Benue State University, P M B 102119, Makurdi (Nigeria); Ogbanje, Anne Ada [Department of Chemistry, Benue State University, P M B 102119, Makurdi (Nigeria); Department of Renewable Energy, Energy Commission of Nigeria, Garki-Abuja (Nigeria); Terfa, Dekaa Henry [Department of Chemistry, Benue State University, P M B 102119, Makurdi (Nigeria); Ikyaagba, Tyoalumun [College of Physical Sciences, University of Aberdeen, AB24 3UE, Aberdeen (United Kingdom)

    2013-07-01

    Anaerobic digestion of energy crop residues and wastes is of increasing interest in order to reduce greenhouse gas emissions and to facilitate a sustainable development of energy supply. Production of biogas provides a versatile carrier of renewable energy, as methane can be used for replacement of fossil fuels in both heat and power generation as vehicle fuel. Biogas fuel production from blends of biological wastes such as Cow rumen liquor (CL), Poultry droppings (PD), and Goat Faeces (GF) with Maize cobs (M) were studied. 20 g of each inoculum was mixed with 100g of degraded maize cobs in the first three digesters while the fourth contained CL 10g, PD 10 g, and M 100 g. 100 g of M alone in the fifth digester served as the control. The blends were subjected to anaerobic digestion for 10 days on the prevailing atmospheric ambient temperature and pressure conditions. Physiochemical properties of the blends such as moisture content, crude protein, ash, fat, crude fibre, carbohydrate content, C/N ratio, and pH were also determined. Results of the daily performances of each system showed that maize cobs (M) alone had cumulative biogas yield of 1.50 cm3 while those of the blends (MCL, MPD, MGF and MCLPD) were 6.11 cm3, 3.05 cm3, 2.50 cm3, and 63.00 cm3 respectively, pH and C/N ratio affected the biogas yield of the systems significantly. These results indicate that the low biogas production from maize cobs can be enhanced significantly by blending with cow rumen liquor and poultry droppings.

  4. Experiences with biogas in Denmark

    DEFF Research Database (Denmark)

    Bundgaard, Sirid Sif; Kofoed-Wiuff, Anders

    This report is primarily based on the work of the Danish biogas task force, which was established as a result of the Energy Agreement of 22 March 2012. The purpose of the task force is to examine and support concrete biogas projects in order to facilitate the projected biogas development up to 2020....... The focus of the task force was on the practical integration of the new biogas production in energy system, including the utilization of gas, the necessary infrastructure and contractual relationships. The aim was to ensure effective and appropriate integration of biogas in the Danish energy supply, which...... was consistent with the policy objectives, both in regards to current challenges for specific biogas plants and the role of biogas flexible renewable energy form on longer term. The task force's final report was published in 2014....

  5. COMPARISON BETWEEN BIOGAS PRODUCTION FROM MANURE OF LAYING HENERS AND BROILERS

    Directory of Open Access Journals (Sweden)

    Srećko Kukić

    2010-06-01

    Full Text Available Biogas plants that process raw materials from agriculture, such as poultry manure,are one of the most significant applications of anaerobic fermentation. In Asiancountries, particularly in China, India, Nepal and Vietnam, there are several millionvery simple, small biogas plants that produce gas for household cooking and lighting.In Europe and North America a number of agricultural biogas plants now, areincreasing daily, a few thousand biogas plants exist, most of which use moderntechnologies, anaerobic fermentation. The aim of this paper is to determine thepossibility of biogas production from poultry manure with 10% of total solids andthrough the segments of the quality and quantity, determine the content of totalsolids (DM, volatile solids (OM, and the amount and composition of biogas. Theaim was also to justify the use of poultry manure in biogas production and itsapplication for specific purposes Laboratory research showed that 1 kg of poultrymanure produced 25 l of biogas, and pig slurry in combination with 10% of poultrymanure produced 47.01 l of biogas during the 40 days of anaerobic fermentationunder mezofilic conditions. Production of biogas has a good potential for developmentin Croatia, especially in the continental part. Usages of this technology aremultiple because of the fact that the Republic of Croatia imports most of the energy.Usage of biogas would reduce the import of certain energy and thus reduce energydependence; it would increase the number of employers and ease the obligation ofCroatia toward EU in replacing some fossil fuels with renewable ones.

  6. Utilization of biodiesel by-products for biogas production.

    Science.gov (United States)

    Kolesárová, Nina; Hutňan, Miroslav; Bodík, Igor; Spalková, Viera

    2011-01-01

    This contribution reviews the possibility of using the by-products from biodiesel production as substrates for anaerobic digestion and production of biogas. The process of biodiesel production is predominantly carried out by catalyzed transesterification. Besides desired methylesters, this reaction provides also few other products, including crude glycerol, oil-pressed cakes, and washing water. Crude glycerol or g-phase is heavier separate liquid phase, composed mainly by glycerol. A couple of studies have demonstrated the possibility of biogas production, using g-phase as a single substrate, and it has also shown a great potential as a cosubstrate by anaerobic treatment of different types of organic waste or energy crops. Oil cakes or oil meals are solid residues obtained after oil extraction from the seeds. Another possible by-product is the washing water from raw biodiesel purification, which is an oily and soapy liquid. All of these materials have been suggested as feasible substrates for anaerobic degradation, although some issues and inhibitory factors have to be considered. PMID:21403868

  7. Utilization of Biodiesel By-Products for Biogas Production

    Directory of Open Access Journals (Sweden)

    Nina Kolesárová

    2011-01-01

    Full Text Available This contribution reviews the possibility of using the by-products from biodiesel production as substrates for anaerobic digestion and production of biogas. The process of biodiesel production is predominantly carried out by catalyzed transesterification. Besides desired methylesters, this reaction provides also few other products, including crude glycerol, oil-pressed cakes, and washing water. Crude glycerol or g-phase is heavier separate liquid phase, composed mainly by glycerol. A couple of studies have demonstrated the possibility of biogas production, using g-phase as a single substrate, and it has also shown a great potential as a cosubstrate by anaerobic treatment of different types of organic waste or energy crops. Oil cakes or oil meals are solid residues obtained after oil extraction from the seeds. Another possible by-product is the washing water from raw biodiesel purification, which is an oily and soapy liquid. All of these materials have been suggested as feasible substrates for anaerobic degradation, although some issues and inhibitory factors have to be considered.

  8. Biogas in Vietnam : a proposed business model in biogas sector

    OpenAIRE

    Phan, Thi Thanh Thao

    2011-01-01

    The purpose of this thesis was to discover a biogas opportunity in the Mekong Delta area in Vietnam. The discussed biogas production is derived from organic waste and targeted to fullfill the demand for gas for cooking in condition of non-pipeline system. However, different products from this production were introduced to maximize the technology profitability. Another aim was to propose a business model to foreign investors who own advanced technologies in biogas production. Qualitative r...

  9. Potential Biogas Production from Artichoke Byproducts in Sardinia, Italy

    OpenAIRE

    Fabio Menna; Remo Alessio Malagnino; Matteo Vittuari; Giovanni Molari; Giovanna Seddaiu; Paola A. Deligios; Stefania Solinas; Luigi Ledda

    2016-01-01

    The paper aims at evaluating the potential biogas production, both in terms of CH4 and theoretical energy potential, from globe artichoke agricultural byproducts in Sardinia. Field data about the productivity of byproducts were collected on five artichoke varieties cultivated in Sardinia, to assess the biomethane production of their aboveground non-food parts (excluding the head). Moreover, secondary data from previous studies and surveys at regional scale were collected to evaluate the poten...

  10. Progress in biogas II - Biogas production from agricultural biomass and organic residues. Pt. 1. Proceedings; Progress in Biogas II - Biogasproduktion aus landwirtschaftlicher Biomasse und organischen Reststoffen. T. 1. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-08-12

    Within the International Congress at the University of Hohenheim (Stuttgart, Federal Republic of Germany) from 29th March to 1st April, 2011, the following lectures were held: (1) Biogas in Europe (F. Scholwin); (2) Biogas development in China: International Cooperation to up-scale the technology (Z. Li); (3) The methane to markets initiative and opportunities for livestock manure digesters in the United states (C. Voell); (4) Biogas for sanitation in Africa - experiences from creating a sustainable market 2003 to 2010 (M. Lebofa); (5) Are biogas plants in Baden-Wuerttemberg efficient? (M. Stanull); (6) The Estonian theoretical and practical biogas production potential and economically feasible feed-in-tariff for renewable electricity for micro CHP using biogas (A. Oja); (7) Biomass potentials for biogas utilization and the effects on sustainability in Kalugo (P. Fiedler); (8) An Integrated Energy System applied to Milking Dairy Cows (I. Bywater); (9) WINUBIO-Alternative technology to improve Austria's biogas capacity (V. Steinmueller); (10) Interdisciplinary approaches to advances in sustainable biogas production in Europe (S. Kusch); (11) Problems encountered in disseminating biogas technology in Uganda (G. Mabudo); (12) reasons to the success to biogas program in Nepal (K. Dawadi); (13) Effects of increasing biomass production for energetic utilization on soil fertility in the German Federal State on Brandenburg (J. Zimmer); (14) Biogas plants as part of sustainable development within peasant family farms in Germany - Interim results of an empirical field study (A. Bischoff); (15) Life cycle assessment of heat and power generation in biogas fed combined heat and power plants under German conditions (J. Lansche); (16) Biogas from lignocellulosic biomass: interest of pretreatments (H. Carrere); (17) Effect of physical and thermal pre-treatments on biogas yield of some agricultural by-products (P. Balsari); (18) Extrusion pre-treatment of green waste for

  11. Biodigestion of the aquatics plants mixtures and biogas production; Biodigestao de misturas de plantas aquaticas e producao de biogas

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Roberto Guimaraes; Abreu, Fernando Luiz Barbuda de; Fernandes Filho, Jorge; Pereira, Maria Cristina Duarte Eiras [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica. Programa de Pos-Graduacao em Engenharia Mecanica]. E-mail: temrobe@vm.uff.br; Melo, Ricardo Bichara de [Light Servicos de Eletricidade S.A., Rio de Janeiro, RJ (Brazil). Gerencia de Estudos e Gestao de Geracao]. E-mail: rbmelo@light.com.br

    2004-07-01

    Several systems of generating electricity using water storage reservoirs. One problem that occurs constantly in these reservoirs is the accumulation of aquatic plants, such as Eichhornia crassipes, Eichhornia azurea, Pistia stratiotes and Salvinia that may cause serious problems for the system. Periodically, the biomass must be removed and disposed of appropriate form, so that does not cause contamination of soil, groundwater or allowing the proliferation of vectors. One possible destination is the use of biomass in a process of biodigestion, resulting in biogas. The bench of biodigester used in the experiment of biodigestion of aquatic plants is composed of a reactor containing the biomass, where the biogas is produced and a reservoir for the monitoring the production of biogas. The reactor is located inside a container containing water that can be heated by an electrical resistance, with the aim of maintaining the temperature inside the reactor around 35 deg C. The results of analysis of gas of the reactor was obtained using a gas chromatograph to CG MASTER of double ionization detector with a flame and thermal conductivity. These results show a percentage of 50% of methane in the biogas. Also, were analyzed the biomass in the biodigester for determination of humidity, total organic matter, waste mineral and organic carbon. The process of biodigestion of the mixture of aquatic plants: Eichhornia crassipes, Eichhornia azurea and Pistia stratiotes and Salvinia shows potential for obtaining biogas, with considerable levels of methane, in order to facilitate its recovery.

  12. Biogas and mineral fertiliser production from plant residues of phytoremediation

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Thi Thu Ha

    2011-07-01

    The former uranium mining site in Ronneburg, Thuringia, Germany was known as a big source of uranium with more than 113,000 tons of uranium mined from 1946 to 1990. This area has been remediated since the nineties of the last century. However, nowadays the site in Ronneburg is still specially considered because of the heterogeneous contamination by many heavy metals and the vegetation can be affected. Three plant species including Indian mustard - Brassica juncea L., triticale - x. Triticosecale Wittmaek and sunflower - Helianthus annuus L. were seeded as accumulators of heavy metals and radionuclides in the phytoremediation process in 2009 and 2010 in Ronneburg. The subsequent utilization of the plant residues after phytoremediation is of special consideration. Batch fermentation of harvested plant materials under the mesophilic condition showed that all of the investigated plant materials had much higher biogas production than liquid cow manure except triticale root, of which biogas yield per volatile solid was not significantly higher than the one of sludge. The highest biogas yields (311 L{sub N}/kg FM and 807 L{sub N}/kg VS) were achieved from the spica of triticale after 42 days of retention of anaerobic digestion. Triticale shoot residues generated higher biogas and methane yields than the previously reported triticale materials that were harvested from the uncontaminated soil Triticale was considered as the highest potential species in biogas production, beside the best growth ability on the acidic soil at the test field site with highest biomass production. Biogas yield of Indian mustard shoot was also high but dramatically varied from 2009 to 2010. Digestates after anaerobic digestion of plant residues contained various macronutrients such as nitrogen, potassium, phosphorus and sulphur, and various micronutrients such as iron, manganes, zinc, etc. The accumulation levels of heavy metals in the investigated plant materials were not the hindrance factors

  13. Treatment of Biogas for Use as Energy

    OpenAIRE

    Koller, J.

    2010-01-01

    The biogas generated in biogas plants offers significant potential for the production of energy from renewable energy sources. The number biogas plants in the Czech Republic is expected to exceed one hundred in the near future. Substrates from agriculture, industry and municipal wastes are used for biogas production. Biogas plants usually use co-generation units to generate electricity and heat. Increased effectiveness can be achieved by using heat as a source of energy for producing renewabl...

  14. Potential Biogas Production from Artichoke Byproducts in Sardinia, Italy

    Directory of Open Access Journals (Sweden)

    Fabio De Menna

    2016-02-01

    Full Text Available The paper aims at evaluating the potential biogas production, both in terms of CH4 and theoretical energy potential, from globe artichoke agricultural byproducts in Sardinia. Field data about the productivity of byproducts were collected on five artichoke varieties cultivated in Sardinia, to assess the biomethane production of their aboveground non-food parts (excluding the head. Moreover, secondary data from previous studies and surveys at regional scale were collected to evaluate the potential biogas production of the different districts. Fresh globe artichoke residues yielded, on average, 292.2 Nm3·tDOM−1, with dissimilarities among cultivars. Fresh samples were analyzed in two series: (a wet basis; and (b wet basis with catalytic enzymes application. Enzymes proved to have some beneficial effects in terms of anticipated biomethane availability. At the regional level, ab. 20 × 106 Nm3 CH4 could be produced, corresponding to the 60% of current installed capacity. However, districts potentials show some differences, depending on the specific biomass partitioning and on the productivity of cultivated varieties. Regional assessments should encompass the sensitiveness of results to agro-economic variables and the economic impacts of globe artichoke residue use in the current regional biogas sector.

  15. Biogas Production from Energy Crops and Agriculture Residues

    DEFF Research Database (Denmark)

    Wang, Guangtao

    suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling......In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according to their...... of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co...

  16. Mechanisms and biochemistry of methano genesis in biogas production

    International Nuclear Information System (INIS)

    Alternative energy sources should be developed to replace fast depleting fossil fuels. The global energy crisis has generated interest in the use of animal waste as a substitute for fossil fuel. The production of biogas which is a mixture of methane, carbon dioxide and traces of other gases, is a biogical process through which wastes are converted to fuels. Through this process, an energy resource that can be stored and used efficiently is produced and an excellent residue that retains the fertiliser value of the original waste is created. This article discusses the biochemistry involved in the production of biogas by anaerobic fermentation of organic waste materials and also the mechanisms of methano genesis involved

  17. Life cycle assessment of coupling household biogas production to agricultural industry: A case study of biogas-linked persimmon cultivation and processing system

    International Nuclear Information System (INIS)

    Biogas plant construction has been boosted in rural China not only due to the immediate merit from biogas production but also the succeeding benefit from by-product utilization in agro-industry, both of which are significant strategies to address energy shortage and global warming issues. However, little work has been done to evaluate the coupling of biogas projects to traditional agrosystems from a life-cycle perspective, which is most important in process and system optimization in different senses. By taking persimmon cultivation and processing with supports from a household biogas plant as a case study, this study conducts a life cycle assessment of coupling biogas production to agro-industry in terms of energy, environmental and economic performance. The results suggest that each production stage following the biogas/digestate utilization chain (biogas operation-persimmon cultivation-product processing) is beneficial across all three aspects. However, a tradeoff only exists in utilizing digestate as top-dressing and employing biogas utilization as engine fuel, while biogas application in fresh-keeping and digestate reuse as base fertilizer fails to increase either energy production or greenhouse gas mitigation. The coupled system can be hopefully optimized through increasing fermentation efficiency and joint operation of biogas digesters. -- Highlights: •Biogas/digestate utilization is overall beneficial in all production stages. •Each bioresource application may not be profitable in all respects. •Tradeoffs in using biogas and digestate vary among different utilization ways. •Multi-user operation and fermentation efficiency elevation optimize system

  18. Enhanced biogas production from rice straw with various pretreatment : a review

    OpenAIRE

    Fahriya Puspita Sari; Budiyono Budiyono

    2014-01-01

    Rice straw is one of organic material that can be used for sustainable production of bioenergy and biofuels such as biogas (about 50-75% CH4 and 25-50% CO2). Out of all bioconversion technologies for biogas production, anaerobic digestion (AD) is a most cost-effective bioconversion technology that has been implemented worldwide for commercial production of electricity, heat, and compressed natural gas (CNG) from organic materials. However, the utilization of rice straw for biogas production v...

  19. Integrated system for macroalgae production and conversion into biogas

    OpenAIRE

    Nobre, A.; Gonçalves, P. R.; Costa, J.C.; Alves, M.M.

    2010-01-01

    Recently research on energy from macroalgae is being reconsidered driven by the following factors: fuel price increase, CO2 mitigation policies and interest on renewable energy sources after the Kyoto protocol, and need for energy crops not competing with land for food production. However, the commercial expansion of this energy source is limited by its economic feasibility. In this presentation we analyse the development of integrated systems that promote synergies between macroalgae/biogas ...

  20. Biogas production from Jatropha curcas press-cake

    Energy Technology Data Exchange (ETDEWEB)

    Staubmann, R.; Guebitz, G.M.; Lafferty, R.M. [Graz Technical Univ. (Austria)] [and others

    1997-12-31

    Seeds of the tropical plant Jatropha curcas (purge nut, physic nut) are used for the production of oil. Several methods for oil extraction have been developed. In all processes, about 50% of the weight of the seeds remain as a press cake containing mainly protein and carbohydrates. Investigations have shown that this residue contains toxic compounds and cannot be used as animal feed without further processing. Preliminary experiments have shown that the residue is a good substrate for biogas production. Biogas formation was studied using a semicontinous upflow anaerobic sludge blanket (UASB) reactor; a contact-process and an anaerobic filter each reactor having a total volume of 110 L. A maximum production rate of 3.5 m{sup 3} m{sup -3} d{sup -1} was obtained in the anaerobic filter with a loading rate of 13 kg COD m{sup -3} d{sup -1}. However, the UAS reactor and the contact-process were not suitable for using this substrate. When using an anaerobic filter with Jatropha curcas seed cake as a substrate, 76% of the COD was degraded and 1 kg degraded COD yielded 355 L of biogas containing 70% methane. 28 refs., 3 figs., 4 tabs.

  1. Biogas energy development in Slovenia

    OpenAIRE

    Bojnec, Štefan; Papler, Drago

    2013-01-01

    This paper analyses the development of the biogas energy production and use in Slovenia. The major concern is given to ecological, economic and technical determinants in decision making process for selection among alternative biogas energy production plants and use of energy for heating and electricity. The investments into the biogas plants have reduced ecological problems from large environmental polluters in urban and rural areas. Among them are sewage systems, food wastes, wastes from lar...

  2. Effects of biogas production on inter- and in-farm competition

    OpenAIRE

    Ostermeyer, Arlette; Schonau, Franziska

    2012-01-01

    Biogas production is one of the influential innovations of recent decades in German agriculture. Due to high guaranteed energy prices biogas production led to distortions in agricultural and land markets. This paper provides insights in effects of biogas production on farms, farm structures and rural areas for the region Altmark, Germany, for the period 2012-2026 by using the agent-based simulation model AgriPoliS. AgriPoliS enables to simulate agricultural structural change and impacts of po...

  3. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility.

    Science.gov (United States)

    Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih

    2015-11-01

    This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. PMID:26295443

  4. Biogas Production from Citrus Waste by Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Rachma Wikandari

    2014-08-01

    Full Text Available Rapid acidification and inhibition by d-limonene are major challenges of biogas production from citrus waste. As limonene is a hydrophobic chemical, this challenge was encountered using hydrophilic polyvinylidine difluoride (PVDF membranes in a biogas reactor. The more sensitive methane-producing archaea were encapsulated in the membranes, while freely suspended digesting bacteria were present in the culture as well. In this membrane bioreactor (MBR, the free digesting bacteria digested the citrus wastes and produced soluble compounds, which could pass through the membrane and converted to biogas by the encapsulated cell. As a control experiment, similar digestions were carried out in bioreactors containing the identical amount of just free cells. The experiments were carried out in thermophilic conditions at 55 °C, and hydraulic retention time of 30 days. The organic loading rate (OLR was started with 0.3 kg VS/m3/day and gradually increased to 3 kg VS/m3/day. The results show that at the highest OLR, MBR was successful to produce methane at 0.33 Nm3/kg VS, while the traditional free cell reactor reduced its methane production to 0.05 Nm3/kg VS. Approximately 73% of the theoretical methane yield was achieved using the membrane bioreactor.

  5. Intensification of biogas production using pretreatment based on hydrodynamic cavitation.

    Science.gov (United States)

    Patil, Pankaj N; Gogate, Parag R; Csoka, Levente; Dregelyi-Kiss, Agota; Horvath, Miklos

    2016-05-01

    The present work investigates the application of hydrodynamic cavitation (HC) for the pretreatment of wheat straw with an objective of enhancing the biogas production. The hydrodynamic cavitation reactor is based on a stator and rotor assembly. The effect of three different speeds of rotor (2300, 2500, 2700 rpm), wheat straw to water ratios (0.5%, 1% and 1.5% wt/wt) and also treatment times as 2, 4 and 6 min have been investigated in the work using the design of experiments (DOE) approach. It was observed that the methane yield of 31.8 ml was obtained with untreated wheat straw whereas 77.9 ml was obtained with HC pre-treated wheat straw confirming the favourable changes during the pre-treatment. The combined pre-treatment using KOH and HC gave maximum yield of biogas as 172.3 ml. Overall, it has been established that significant enhancement in the biogas production can be obtained due to the pretreatment using HC which can also be further intensified by combination with chemical treatment. PMID:26639635

  6. Biogas and Organic Farming: Empirical evidence on production structure and economics in Germany

    OpenAIRE

    Anspach, Dipl.-Ing.agr. Victor; Möller, Prof. Dr. Detlev

    2008-01-01

    Biogas production has an increasing importance on organic farms in Germany. Biogas plants have the possibility to produce energy, soil fertility and positive returns on capital. Yet previously no studies on the structure, economic outcomes and internal benefits of biogas production on organic farms existed. Therefore in 2006 and 2007 an empirical study, designed as a census, has been carried out to investigate these questions. Based on the empirical study a simulation model was built to analy...

  7. Environmental Sustainability and Economic Benefits of Dairy Farm Biogas Energy Production: A Case Study in Umbria

    OpenAIRE

    Biancamaria Torquati; Sonia Venanzi; Adriano Ciani; Francesco Diotallevi; Vincenzo Tamburi

    2014-01-01

    Accelerating demand to reduce the environmental impact of fossil fuels has been driving widespread attention to renewable fuels, such as biogas. In fact, in the last decade numerous policy guidelines and laws regarding energy, the environment and agriculture have been issued to encourage the use of animal sewage as a raw material for the production of biogas. The production of energy from biogas in a dairy farm can provide a good opportunity for sustainable rural development, augmenting the f...

  8. Process optimization of biogas production at Nemščak biogas plant by pre-treatment of the substrate and combining with waste sludge

    OpenAIRE

    Žitek, Filip

    2015-01-01

    The purpose of this thesis is to increase the amount of biogas produced by pre-treatment of the substrate and combining with waste sludge. For anaerobic digestion of different substrates, we used a pilot reactor to determine the biogas potential at Nemščak biogas plant. The pilot reactor was built in 2009 for the purpose of testing new substrates in the process of biogas production. The pilot reactor has a working volume of 2000 litres; there is a gas tank above it with the volume of 500 litr...

  9. Cost effective and economic method for cultivation of Chlorella pyrenoidosa for the simultaneous treatment of biogas digester wastewater and biogas production

    Directory of Open Access Journals (Sweden)

    Rohit Sharma

    2015-02-01

    Full Text Available Microalgae have recently received a lot of attention as a new biomass source for the production of bio fuels and for the treatment of waste water. In this work, Chlorella pyrenoidosa was cultivated in biogas digester wastewater. The growth kinetics of the algae as well as the bio-remediation effect on the waste water was studied. The Chlorella pyrenoidosa can utilize the nitrogen content present in biogas digester wastewater as a substrate for its growth. The growth of microalgae was found to follow the Monod growth model satisfactorily. Under the optimal condition in biogas waste water medium of microalgae, a maximum biomass of 1.5 gm/l was obtained in fifteen days. The net specific growth rate of microalgae Chlorella pyrenoidosa was found to be 0.1 D −1. The growing algae also removed 76 % of nitrate nitrogen (NO3-N from the biogas wastewater. Treated Biogas waste water can be further used for the anaerobic digestion of algal biomass for the production of biogas. This suggests that the cultivation of Chlorella pyrenoidosa in biogas wastewater would be efficient, saving water as well as producing digestible biomass. Thus, on one hand the biogas waste water is being treated and on the other, the alga is showing substantial growth. The same algal species can then be used to produce biogas or other corresponding bio fuel.

  10. Biogas: quo vadis?

    International Nuclear Information System (INIS)

    This article takes a look at the situation in Switzerland with respect to the use of biogas and the potential available for its increased use. The sharp increase of biogas production in Switzerland and its use for the production of heat, electrical power and methane for the gas mains is reviewed. The large potential for additional biomass is discussed. The political will to increase the use of renewable forms of energy in Switzerland, security of supply and regional added value are discussed. The article discusses the current situation as well as trends concerning substrates, systems and products

  11. BIOGAS PROCTION FROM ANAEROBIC CO-DIGESTION OF COW DUNG AND ORGANIC WASTES (NAPIER PAK CHONG I AND FOOD WASTE IN THAILAND: TEMPERATURE EFFECT ON BIOGAS PRODUCT

    Directory of Open Access Journals (Sweden)

    Lertluck Saitawee

    2014-01-01

    Full Text Available Biogas production has been attracting increasing attention as a biofuel of the future because biogas technology not only constitutes a biofuel source, but also can be applied in the various environmental pollutants. Anaerobic digestion of high solid slurries (such as food waste and cow dung is typically performed in continuously reactor (by force substrate flow to avoid problems with a thick floating layer or large amounts of sediments. Temperature also seems to have profound influence on the biogas production. The objective of the study was to identify the optimum biogas production for anaerobic co-digestion of cow dung and organic wastes (napierpakchong I and food waste. Influence of temperature (psyhrophilic temperature 25°C and thermoplilic temperature 45°C and active biogas process on single substrate (food waste feed and co-digestion of cow dung and organic wastes (napierpakchong I and food waste was used, within the reactor was studies in 1.80 cm high over a 45 day. Results showed that best digestion was achieved when digested of cow dung, napierpakchong I and food waste on 1:1:1 and thermoplilic temperature. Maximum biogas production (R4, biogas yield, methane content and %VS reduction was found that 70 L/day, 70 L/VS feed, 65 and 80%, respectively. The result showed that the biogas production increased progressively withhigher temperature.The increased in biogas production in thermophilic temperature and psyhrophilic temperature could be up 28.01 and 26%, respectively. The biogas yield increased 12.5% of co-digestion system, which compared to thermophilic temperature and psyhrophilic temperature (R4 and R2. This behavior might be due to the higher degradability. Therefore, temperature of digester can be used effectively as an operating strategy to optimize biogas production.

  12. Biogas from ley crops

    International Nuclear Information System (INIS)

    This report describes the cost of producing biogas from energy crops. Five process systems, sized 0.25-8 MW are studied. The cultivation of biogas-crops is made in three regions in Sweden. Also valued are the positive cultivation effects obtained when cereal dominated crop rotation is broken by biogas crops. 8 refs, 40 figs, 10 tabs

  13. New Networks for Biogas

    Energy Technology Data Exchange (ETDEWEB)

    Eekelen, R. van [Kiwa Gas Technology B. V., Apeldoorn (Netherlands)

    2012-06-15

    The study of 'New Networks for Biogas' main goal is to reduce the uncertainties associated with the design choices for biogas network configurations. Supplementary to the objective an overview of the state-of-the-art on the design, operations and maintenance of biogas networks in Europe is given.

  14. A case study for biogas generation from covered anaerobic ponds treating abattoir wastewater: Investigation of pond performance and potential biogas production

    International Nuclear Information System (INIS)

    Highlights: • We report on the performance of a novel covered anaerobic pond system. • Potential biogas production was estimated using BioWin modelling software. • Ponds maintained stable operation; however, accumulation of crust was an issue. • Modelling indicated that biogas yield can be influenced by decomposition efficiency. • Configuration and operation of ponds can also impact potential biogas production. - Abstract: Covered anaerobic ponds offer significant advantages to the red meat processing industry by capturing methane rich gas as a fuel source for bioenergy while reducing greenhouse gas emissions (GHG). This paper presents the results of a novel-designed anaerobic pond system at an Australian abattoir in relation to pond performance and potential biogas production. Key findings in assessing the effectiveness of the system revealed that the covered ponds are capable of efficient wastewater decomposition and biogas production. The primary issue with the covered ponds at the abattoir was the build-up of fat/crust that prevented the accurate measurement of biogas and effective use of the cover. In the absence of field biogas data the novel application of the computer modelling software BioWin® was carried out to simulate chemical oxygen demand (COD) removal rates and subsequent biogas yield. The unique parameter used to fit field data was the fraction of the inlet COD due to a superficial crust which did not follow anaerobic digestion. Field data effluent COD removal rates were matched to simulated rates predicted by BioWin when measured influent COD was reduced to 30%. Biogas modelling results suggest significant variation in the economic benefit of biogas energy, with the quantity of biogas potentially varying tenfold (from 328 m3/d to 3284 m3/d) depending on site factors such as pond efficiency, pond configuration and operational practices

  15. Environmental perspectives on using cast seaweed for biogas production

    DEFF Research Database (Denmark)

    Fredenslund, Anders Michael; Møller, Henrik Bjarne; Christensen, Thomas Budde;

    a mixed substrate biogas plant. Continuously fed reactor experiments showed that the intended mix of substrate including cast seaweed could be used as raw material for a biogas plant in thermophilic operation. The environmental analysis suggests existence of several positive benefits of utilizing......Solrød Municipality, Denmark is working towards building a biogas plant utilizing locally available organic wastes including cast seaweed, which is collected each year, since the local inhabitants see this material as a nuisance. A preliminary study suggested favorable conditions for contstructing...

  16. Analysis of problems with dry fermentation process for biogas production

    Science.gov (United States)

    Pilát, Peter; Patsch, Marek; Jandačka, Jozef

    2012-04-01

    The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas station that allows analysis of optimal parameters of the dry anaerobic fermentation, in particular, however, affect the reaction temperature on yield and quality of biogas.

  17. Perspectives for increased biogas production in Ukraine and Poland

    Directory of Open Access Journals (Sweden)

    Oksana Makarchuk

    2015-11-01

    Full Text Available In the article is analyzed the current state of natural gas provision in Ukraine and Poland. In the context of reducing dependence on mineral resources are considered potential of renewable energy sources, including biogas production in both countries. There is determined that an important role for further increase production plays legislative regulation. Theoretical and methodological basis for this study found on economic theory, scientific development of domestic and foreign engineers, economists, experts in the field of bioenergy, legislative and normative acts of Ukraine and Poland, as well as statistics in both countries.

  18. Dashboard: biogas for electricity production - Third quarter 2015

    International Nuclear Information System (INIS)

    This publication describes the situation of biogas-based electricity production in France and its evolution over the first quarters of 2015. A map indicates the level of connected power per district. Graphs illustrate the evolution of the number of new connections per quarter since 2009, the evolution of electricity quarterly production since 2011. Tables indicate the number of installations per power level (less than 0.5 MW, between 0.5 and 1.0 MW, more than 1 MW) and per installation type. Regional data are given in terms of number of installations, installed power in September 2015 and in December 2015, regional share and evolution

  19. Biogas Production in Municipal Wastewater Treatment Plants – Current Status in EU with a Focus on the Slovak Republic

    OpenAIRE

    Bodík, I.; Sedláček, S.; Kubaská, M.; Hutňan, M.

    2011-01-01

    The presented contribution reviews actual status of biogas production in the European countries with a focus on the Slovak municipal WWTPs. In 49 monitored Slovak WWTPs (out of 520) the anaerobic digestion with biogas production is operated. The total volume of digestion tanks is about 195 000 m3 but the total daily biogas production is only approx. 55 000 m3 d–1. From a technological point of view, the digestion tanks have sufficient space for considerable increase of biogas production. The ...

  20. Combined utilization of biogas and natural gas

    International Nuclear Information System (INIS)

    The Danish natural gas network has been established during the past 10 years. Running parallel with this a small but growing production of biogas from centralized biogas plants and landfills has been developed. The annual biogas production is expected to keep growing and increase tenfold in the next 25 year period with a reduction of green house gas emissions as one of the important incentives. The last years' development and expansion of the Danish biogas sector has shown a need for combined utilization of biogas and natural gas. If larger volumes of biogas are present, upgrading and distribution by the natural gas network may be an alternative to combined utilization. (au) 12 refs

  1. Spatial competition for biogas production using insights from retail location models

    DEFF Research Database (Denmark)

    Bojesen, Mikkel; Birkin, M.; Clarke, G.

    2014-01-01

    Biogas production is an important contemporary topic within agriculture as well as bioenergy production, both from an industrial and an academic point of view. The Danish biogas sector, which has been around for many years, is still struggling to establish itself as an economically viable energy ...

  2. Analysis of problems with dry fermentation process for biogas production

    OpenAIRE

    Jandačka Jozef; Patsch Marek; Pilát Peter

    2012-01-01

    The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas statio...

  3. Process control in biogas plants

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Oleskowicz-Popiel, Piotr

    2013-01-01

    Efficient monitoring and control of anaerobic digestion (AD) processes are necessary in order to enhance biogas plant performance. The aim of monitoring and controlling the biological processes is to stabilise and optimise the production of biogas. The principles of process analytical technology...

  4. GIANT MISCANTHUS AS A SUBSTRATE FOR BIOGAS PRODUCTION

    Directory of Open Access Journals (Sweden)

    Joanna Kazimierowicz

    2015-09-01

    Full Text Available One unconventional source of energy, which may be applied in numerous production and municipal processes, is energy accumulated in plants. As a result of photosynthesis, solar energy is transformed into chemical energy accumulated in a form of carbohydrates in the plant biomass, which becomes the material that is more and more sought by power distribution companies and individual users. Currently, a lot of research on obtaining biogas from energy crops is conducted. Corn silage is used most often, however, there is a demand for alternative plants. The experiment described in this article was conducted with the use of giant Miscanthus (Miscanthus Giganteus.

  5. Enhancement and Optimization Mechanisms of Biogas Production for Rural Household Energy in Developing Countries: A review

    Directory of Open Access Journals (Sweden)

    Yitayal Addis Alemayehu

    2015-10-01

    Full Text Available Anaerobic digestion is common but vital process used for biogas and fertilizer production as well as one method for waste treatment. The process is currently used in developing countries primarily for biogas production in the household level of rural people. The aim of this review is to indicate possible ways of including rural households who own less than four heads of cattle for the biogas programs in developing countries. The review provides different research out puts on using biogas substrates other than cow dung or its mix through different enhancement and optimization mechanisms. Many biodegradable materials have been studied for alternative methane production. Therefore, these substrates could be used for production by addressing the optimum conditions for each factor and each processes for enhanced and optimized biogas production.

  6. ENHANCEMENT OF BIOGAS PRODUCTION POTENTIAL FOR ANAEROBIC CO-DIGESTION OF WASTEWATER USING DECANTER CAKE

    Directory of Open Access Journals (Sweden)

    Thaniya Kaosol

    2012-01-01

    Full Text Available The wastewater from agro-industry treated with the biological treatment cannot produce the biogas because of its low COD level and its low organic content. In this research, the co-digestion with decanter cake will improve the biogas yield and biogas production of wastewater. The effect of three parameters (i.e., type of wastewater, mixing and mesophilic temperature will be evaluated in batch digesters under anaerobic condition. Moreover, the study determines the biogas production potential of several mixtures and that of wastewater alone. The co-digestion of decanter cake with rubber block wastewater of the R4 (wastewater 200 mL with decanter cake 8 g produces the highest biogas yield 3,809 mL CH4/g COD removal and the percentage maximum methane gas is 66.7%. The experimental result shows that the mixing and mesophilic temperature have no significant effect on the biogas potential production. The co-digestion of decanter cake with rubber block wastewater provides the highest biogas yield potential production in the ambient temperature. The experimental results reveal that the decanter cake can be potential sources for biogas production.

  7. ENHANCEMENT OF BIOGAS PRODUCTION POTENTIAL FOR ANAEROBIC CO-DIGESTION OF WASTEWATER USING DECANTER CAKE

    Directory of Open Access Journals (Sweden)

    Thaniya Kaosol

    2013-01-01

    Full Text Available The wastewater from agro-industry treated with the biological treatment cannot produce the biogas because of its low COD level and its low organic content. In this research, the co-digestion with decanter cake will improve the biogas yield and biogas production of wastewater. The effect of three parameters (i.e., type of wastewater, mixing and mesophilic temperature will be evaluated in batch digesters under anaerobic condition. Moreover, the study determines the biogas production potential of several mixtures and that of wastewater alone. The co-digestion of decanter cake with rubber block wastewater of the R4 (wastewater 200 ml with decanter cake 8 g produces the highest biogas yield 3,809 mL CH4/g COD removal and the percentage maximum methane gas is 66.7%. The experimental result shows that the mixing and mesophilic temperature have no significant effect on the biogas potential production. The co-digestion of decanter cake with rubber block wastewater provides the highest biogas yield potential production in the ambient temperature. The experimental results reveal that the decanter cake can be potential sources for biogas production.

  8. Evaluation of biogas quality from home biogas pits installed in central Vietnam

    OpenAIRE

    Štěpánek, Pavel

    2013-01-01

    Abstract Biomass or biogas, they are an essential component of the energy sources used in the conditions of the Vietnamese countryside due to its availability and relatively low investment costs. This thesis is focused on the quality and quantity of biogas produced from home biogas plants installed in Central Vietnam. In this thesis is shown the description of the fermentation process, its final product is biogas. The thesis describes the types of home biogas digesters, which are used ...

  9. Biological treatment of chicken feather waste for improved biogas production

    Institute of Scientific and Technical Information of China (English)

    Gergely Forgács; Saeid Alinezhad; Amir Mirabdollah; Elisabeth Feuk-Lagerstedt; Ilona Sárvári Horwáth

    2011-01-01

    A two-stage system was developed which combines the biological degradation of keratin-rich waste with the production of biogas.Chicken feather waste was treated biologically with a recombinant Bacillus megaterium strain showing keratinase activity prior to biogas production.Chopped,autoclaved chicken feathers (4%,W/V) were completely degraded,resulting in a yellowish fermentation broth with a level of 0.51 mg/mL soluble proteins after 8 days of cultivation of the recombinant strain.During the subsequent anaerobic batch digestion experiments,methane production of 0.35 Nm3/kg dry feathers (i.e.,0.4 Nm3/kg volatile solids of feathers),corresponding to 80% of the theoretical value on proteins,was achieved from the feather hydrolyzates,independently of the prehydrolysis time period of 1,2 or 8 days.Cultivation with a native keratinase producing strain,Bacillus licheniformis resulted in only 0.25 mg/mL soluble proteins in the feather hydrolyzate,which then was digested achieving a maximum accumulated methane production of 0.31 Nm3/kg dry feathers.Feather hydrolyzates treated with the wild type B.megaterium produced 0.21 Nm3 CH4/kg dry feathers as maximum yield.

  10. Biogas production from animal wastes as an element of energy and resourse saving

    Directory of Open Access Journals (Sweden)

    Іван Сергійович Козій

    2014-08-01

    Full Text Available This article deals with the possibility of biogas production from livestock waste sector. The use of this energy source is still relevant for most households and can solve a number of issues of environmental, energy and economic direction. The article studied the composition and calorific value of obtained biogas, and proposals for future reference are provided. 

  11. Biogas production from animal wastes as an element of energy and resourse saving

    OpenAIRE

    Іван Сергійович Козій; Станіслав Станіславович Мелейчук; Віталій Васильович Волохін

    2014-01-01

    This article deals with the possibility of biogas production from livestock waste sector. The use of this energy source is still relevant for most households and can solve a number of issues of environmental, energy and economic direction. The article studied the composition and calorific value of obtained biogas, and proposals for future reference are provided. 

  12. Biogas production from rice straw by solid-state anaerobic digestion

    Science.gov (United States)

    Shitophyta, Lukhi Mulia; Budiyono, Fuadi, Ahmad M.

    2015-12-01

    Biogas production from lignocellulosic biomass can be used as an alternative fuel to replace fossil fuels. Lignocellulose can be obtained from agricultural crop residues, such as rice straw. The aims of this study were to determine the effects of F/I ratio, total solid content, and physical pretreatment on biogas production by solid-state anaerobic digestion. The kinetics of biogas production were also examined in this study. The results showed that the biogas yield decreased by the increasing of F/I ratio. Meanwhile, the increase TS content of 22% to 24% also decreased the biogas yield. Physical pretreatment had no a significant effect on biogas yield (p > 0.05). The highest biogas yield of 248.4 L/kg VS was obtained at an F/I ratio of 2, TS content of 22%, and particle size of 2 mm. The kinetics of biogas production from rice straw followed the first-order kinetic model with the highest rate constant (k) of 0.0861 day-1.

  13. Application of biogas for combined heat and power production in the rural region

    International Nuclear Information System (INIS)

    The paper discusses combined production of heat and power (CHP) from biogas in a small-scale power plant placed in the rural region. Based on power and heat demands of the rural region and biomass supply, the CHP system was selected. Keywords: biogas, cogeneration

  14. Biogas and Hydrogen Systems Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bush, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melaina, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-31

    This analysis provides an overview of the market for biogas-derived hydrogen and its use in transportation applications. It examines the current hydrogen production technologies from biogas, capacity and production, infrastructure, potential and demand, as well as key market areas. It also estimates the production cost of hydrogen from biogas and provides supply curves at a national level and at point source.

  15. Biogas: A renewable energy source

    International Nuclear Information System (INIS)

    Biogas refers to a gas produced by the biological breakdown of organic matter in the absence of oxygen. Biogas can be used as a fuel in any country for any heating purpose such as cooking. By means of digesters, the energy in the gas can be converted to electricity and heat. Biogas like natural gas can also be used to power motor vehicle. Biogas is a renewable fuel which qualifies it for a renewable energy subsidy. It is non-toxic, environment-friendly and serve as a means of combating global warming. Biogas is presently being used in U.S.A, U.K, China, Sweden, Brazil, and India amongst others for domestic purposes, transportation and power generation. In this regard, this paper discusses biogas production. It also presents a model design of domestic biogas plant suitable for Nigerian households. The paper recommends that Nigerian Government should intensify efforts in educating the masses on this novel technology for a sustainable global development. A biogas plant designed for Nigerian household discussed in this paper is also recommended.

  16. The potential of biogas energy

    International Nuclear Information System (INIS)

    Biogas technology has been known about for a long time, but in recent years the interest in it has significantly increased, especially due to the higher costs and the rapid depletion of fossil fuels as well as their environmental considerations. The main objective of the present study is to investigate the potential of biogas energy in the 15 European Union (EU) countries and in Turkey, which is seeking admission to the EU and is trying to meet EU environmental standards. Biogas energy potential of the 15 EU countries is estimated to be about 800 PJ. Besides this, Turkey's annual animal waste potential is obtained to be about 11.81 million tons with a biogas energy equivalent of 53.6 PJ. It is expected that this study will be helpful in developing highly applicable and productive planning for energy policies towards the optimum utilization of biogas energy. (author)

  17. Biogas energy production from tropical biomass wastes by anaerobic digestion.

    Science.gov (United States)

    Ge, Xumeng; Matsumoto, Tracie; Keith, Lisa; Li, Yebo

    2014-10-01

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass and food wastes, such as taro, papaya, and sweet potato, are limited. In this study, these tropical biomass wastes were evaluated for biogas production by liquid AD (L-AD) and/or solid-state AD (SS-AD), depending on feedstock characteristics. When albizia leaves and chips were used as feedstocks, L-AD had greater methane yields (161 and 113 L kg(-1)VS, respectively) than SS-AD (156.8 and 59.6 L kg(-1)VS, respectively), while SS-AD achieved 5-fold higher volumetric methane productivity than L-AD. Mono-digestion and co-digestion of taro skin, taro flesh, papaya, and sweet potato achieved methane yields from 345 to 411 L kg(-1)VS, indicating the robustness of AD technology. PMID:25022835

  18. Biogas production from energy crops and agriculture residues

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.

    2010-12-15

    In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according to their suitability for biogas production. Moreover, pretreatment of these biomasses by using wet explosion method was studied and the effect of the wet explosion process was evaluated based on the increase of (a) sugar release and (b) methane potential when comparing the pretreated biomass and raw biomass. Ensiling of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential in term of ml CH4 produced per g of VS-added and (b) the amount of methane produced per m3 of reactor volume. (Author)

  19. Horse dung waste utilization as a household energy resource and estimation of biogas production

    Science.gov (United States)

    Umbara, Rian F.; Sumaryatie, Erni D.; Kirom, M. R.; Iskandar, Reza F.

    2013-09-01

    Horses are still used as traditional transportation in Soreang, West Java. About 6-7 horses can produce 25-30 kg of dung every day. Horse dung can produce biogas that can be used as an energy resource. A biogas reactor with capacity of 4 m3 has been built in Soreang. The reactor is filled with a mixture of 50 kg of horse dung and 100 liters of water every two days. This research was conducted to observe the quality of biogas produced from the reactor and to estimate the volume of biogas produced per day. The observation of daily biogas production conducted in 22 days. Laboratory tests showed that the composition of gases contained in the produced biogas consists of 56.53% of CH4, 26.98% of CO2, 12.35% of N2, 4.13% of O2, and 0.007% of H2. Daily biogas production data indicate a stationary trend. A moving average time series model is used to model the data. Using the model, it is estimated that the reactor can produce 0.240112 m3 of biogas per day, which is sufficient to meet the energy needs of a household.

  20. The biogas; Le biogaz se detend

    Energy Technology Data Exchange (ETDEWEB)

    Rigaud, Ch.; Laffargue, C.; Zebboud, I

    2007-05-15

    Mixed of methane and carbon dioxide the biogas can be produced by many sources for the heat or the electricity production and the fuel production. This document aims to better understand the biogas, its characteristics, its valorization, the plants concerned, the installations and the regulation. It provides also an example of a biogas power plant and the biogas use in the farms. (A.L.B.)

  1. Production of liquid biogas at the biowaste treatment plant Amtzell; Gewinnung von fluessigem Biogas an der Bioabfallbehandlungsanlage Amtzell

    Energy Technology Data Exchange (ETDEWEB)

    Bojahr, Armin [Gesellschaft fuer Umwelttechnik Bojahr mbH und Co. KG, Berg (Germany)

    2013-10-01

    The fermentation plant in Amtzell will be extended to increase the throughput of bio waste. In this context an extension of the gas utilization plant is also required. The produced biogas will be partly transferred to the existing combined heat and power plant. The remaining part of biogas will be used in an proposed GPP-Plus {sup registered} --plant to produce liquid bio methane (LBG). In the LBG gaining process the raw biogas will have to be dried in several steps, de-sulphured, compressed and cooled. Following this process and due to different physical characteristics of the ingredients, the contaminants will be removed from the biogas and the main ingredients, carbon dioxide and methane, separated from each other. Carbon dioxide as well as the methane are then available in liquid form and can be put onto the market. This method of using biogas can utilize almost 100% of its energy potential. (orig.)

  2. Biogas and methane production in an aerobic reactor; Produccion de biogas y metano en un reactor anaerobio UASB

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Borges, E.; Mendez Novelo, R.; Magana Pietra, A.

    1998-06-01

    On the basis of the results obtained during the evaluation of an anaerobic digester in treating pig farm sewage, mathematical models were constructed predicting the system`s efficiency in producing biogas from such waste, and the methane content of this gas, as a function of the influent`s hydraulic retention time(HRT) and chemical oxygen demand (COD). The experimental device consisted of a UASB reactor at the bottom and a high-rate sedimentator at the top with a total operational volume of 534 litres. The results obtained to establish the critical operating parameters are reported. The production of biogas was 259 1/m``3 and methane 217 1/m``3 with an HRT of 1.3 days when a load of 3.1 kg-COD/m``3 day was applied. The mathematical models presented analyses biogas production as a variable response and the influents` HRT and COD as independent variables to assess the efficiency of the system. (Author) 13 refs.

  3. Biogas production supported by excess heat – A systems analysis within the food industry

    International Nuclear Information System (INIS)

    Highlights: • A systems analysis when moving from external to internal production and use of biogas at an industry. • The aim is to study the impacts on greenhouse gas emissions and economics from this switch. • The study compares the choice of using biogas or industrial excess heat to heat the digester. • Internal biogas production supported by excess heat has environmental and economic benefits. - Abstract: The aim of this paper was to study the effects on greenhouse gases and economics when a change is made in the use of industrial organic waste from external production and use of biogas (A) to internal production and use (B). The two different system solutions are studied through a systems analysis based on an industrial case. The baseline system (A) and a modified system (B) were compared and analysed. Studies show that industrial processes considered as integrated systems, including the exchange of resources between industries, can result in competitive advantages. This study focuses on the integration of internally produced biogas from food industry waste produced by a food company and the use of excess heat. Two alternative scenarios were studied: (1) the use of available excess heat to heat the biogas digester and (2) the use of a part of the biogas produced to heat the biogas digester. This study showed that the system solution, whereby excess heat rather than biogas is used to heat the biogas digester, was both environmentally and economically advantageous. However, the valuation of biomass affects the magnitude of the emissions reduction. Implementing this synergistic concept will contribute to the reaching of European Union climate targets

  4. Biogas energy production in Ghana: environmental pollution analysis

    International Nuclear Information System (INIS)

    Analysis of biomass fuel conversion options for biogas production at Appolonia in Ghana has demonstrated that the technique is promising not only for solving some of the country's energy and agricultural problems, but as a very useful way of waste treatment which should help improve waste management. Some environmental analyses were made and some of the preliminary results obtained are presented and discussed. There has been considerable decrease in both biochemical oxygen demand and biological oxygen demand of the effluents compared with the corresponding values obtained for the influents of the three most readily available biomass sources used - human faeces, cow dung and pig dung. Apart from methane (about 54%) and carbon dioxide (about 40%) the biogas produced at Appolonia , according to investigations, using a gas filter analyser and gas chromatography, was found to contain from 1 to 2% hydrogen sulphide which is poisonous. Two other components were detected in the gas but not identified in this present work. (author). 2 figs., 5 tabs., 8 refs

  5. Kinetics of biogas production in Anaerobic Filters.

    Science.gov (United States)

    Krümpel, Johannes; Schäufele, Friedrich; Schneider, Johannes; Jungbluth, Thomas; Zielonka, Simon; Lemmer, Andreas

    2016-01-01

    This study investigates methane production kinetics from individual volatile fatty acids (VFA) in an Upflow Anaerobic Filter (AF). 1gCOD in the form of acetic (HAc), propionic (HPr) or butyric acid (HBu) was injected into the AF while operating at an organic loading rate (OLRCOD) of 3.5gL(-1)d(-1). A new method is introduced to separate gas production of the baseload from the product formation of VFA degradation after the injection. The lag phase, fractional rate of gas production and half-life has been determined for the methane production of the three VFAs. The half-lives were in the order HAcenergy market with balancing power. PMID:26492176

  6. GlidArc-assisted production of synthesis gas from biogas

    International Nuclear Information System (INIS)

    We present an emerging biogas reformer based on a direct use of high-voltage discharges (called GlidArc) that strike in the flow of such widely available and renewable feedstock without any gas separation or purification. A poor biogas (containing only 35 - 50 vol.% of methane) is partially converted into hydrogen and carbon monoxide (SynGas). Such enhanced biogas can, for example, be used as gaseous fuel in Internal Combustion Engines, be considered as source of Hydrogen for PEM fuel cells or be directly consumed in some specific Fuel Cells. Any level of impurities is accepted for our reformer where the discharges provide all energy and catalytic assistance for endothermic process of so-called 'dry' reforming of CH4 + CO2 into H2 + CO. Our tests with simulated biogas are performed in a 1.4-L reactor working at atmospheric pressure at up to 0.6 kW electric power. Such input is fully sufficient to process a flow of a poor biogas carrying up to 7 kW of thermal power. (author)

  7. Biogas production from cattle manure by anaerobic digestion

    International Nuclear Information System (INIS)

    Full text: In order to deal with the energy shortage problem, we are searching for more alternative energy resources especially renewable or sustainable. Biogas is one of the solutions in dealing with the energy shortage problem. Biogas is a type of energy resources derives from organic matter during the process called anaerobic digestion. The biogas produced is mainly consisting of methane and carbon dioxide. In this research, diluted cattle manure (1:1 ration with water) was inoculated with palm oil mill (POME) activated sludge at the ratio of 1:5 and placed in a 10 liter bioreactor. The temperature and pH in the bioreactor was regulated at 6.95 and 53 degree Celsius, respectively to enhance the anaerobic digestion process. Parameters such as chemical oxygen demand, biochemical oxygen demand, total solid, volatile solid, ammonia nitrogen (NH3-N), methane (CH4) and the volume of biogas generated was monitored for effectiveness of the treatment of cattle manure via anaerobic digestion. The total volume of biogas produced in this study is 80.25 liter in 29 days while being able to treat the COD content up to 52 %. (author)

  8. Biogas and Bioethanol Production in Organic Farming

    DEFF Research Database (Denmark)

    Oleskowicz-Popiel, Piotr

    The thesis consists of two parts. First one is an introduction providing background information on organic farming, ethanol and anaerobic digestion processes, and concept of on‐farm bioenergy production. Second part consists of 8 papers.......The thesis consists of two parts. First one is an introduction providing background information on organic farming, ethanol and anaerobic digestion processes, and concept of on‐farm bioenergy production. Second part consists of 8 papers....

  9. Fertiliser products from biogas plants; Biokaasulaitosten lopputuotteet lannoitevalmisteina

    Energy Technology Data Exchange (ETDEWEB)

    Marttinen, S.; Paavola, T.; Ervasti, S. [and others

    2013-02-01

    The use of end-products from biogas plants was studied from the perspective of plant nutrition and agriculture. The tasks included development of generally applicable methods for determining nitrogen and phosphorus in different fertiliser products in order to predict their fertiliser effect. The degradation of the products in soil was also studied. The work included both laboratory and field scale experiments. Additionally, the stability and possible phytotoxicity of the products was studied. The content of harmful contaminants and microbiological risks of the products were determined. The aim was to offer information on the characteristics and usability of the products for producers and users of the products and for supervising officials. Of the analysis methods tested, 1:60 water extraction was the best general method to describe the content of soluble, plant-available nitrogen in different organic fertiliser products. In liquid fertiliser products, nitrogen is more readily available for plants than in solid products and the fertilising effect is comparable to that of mineral fertilisers. The fertilising effect of solid organic fertiliser products is somewhat lower than that of mineral fertilisers due to surface application and mixing into the cultivation layer. This results in lower plant-availability than with mineral fertilisers which are injected into soil. Solid products contain significant amounts of total phosphorus, the solubility of which is low. As it may be solubilised over long periods of time, the 1:5 water extraction required by the current Finnish legislation of fertiliser products underestimates the usability of phosphorus. Due to the more sensitive yield response of organic fertiliser products to changes in conditions, as opposed to mineral fertilisers, it is also recommended to use an application strategy in which part of the soluble nitrogen originates from organic fertilisers and part from mineral fertilisers. Also due to legislative

  10. Energy recovering and biogas

    International Nuclear Information System (INIS)

    In spite of the advantages of the methanation and the biogas valorization, the France is one of the european countries where these energy recovery techniques have less developed. Liquid industrial effluents, sewage sludges, waste waters, oils or vinification residues can be processed to produce biogas. In this innovative context biogas combustion installations will have to anticipate the regulations on CO2 emissions. (A.L.B.)

  11. BIOGAS-ECONOMICAL SIGNIFICANCE AND GENERATION THEREOF

    OpenAIRE

    Kazimierz Brodowicz

    1983-01-01

    The paper presents a review of worldwide and domestic knowledge in the field of biogas generation techniques. To this there are discussed the basic fermentation processes being resonsible for biogas generation and actually used typical systems therefor presented.Particular attention has been paid to energetic aspects of the biogas. The generalization of biogas production would render possible large scale utilization of the biomass which is useless for other purposes but still renewable as a s...

  12. Evaluation of energy efficiency of various biogas production and utilization pathways

    International Nuclear Information System (INIS)

    of environmental compatibility of energy efficiency pathways in biogas production and utilization, including management of spent digestate.

  13. Evaluation of energy efficiency of various biogas production and utilization pathways

    Energy Technology Data Exchange (ETDEWEB)

    Poeschl, Martina; Ward, Shane [Charles Parsons Energy Research Programme, Bioresources Research Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4 (Ireland); Owende, Philip [Charles Parsons Energy Research Programme, Bioresources Research Centre, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfield, Dublin 4 (Ireland); School of Informatics and Engineering, Institute of Technology Blanchardstown, Blanchardstown Road North, Dublin 15 (Ireland)

    2010-11-15

    of environmental compatibility of energy efficiency pathways in biogas production and utilization, including management of spent digestate. (author)

  14. Utilization of by-products from ethanol production as substrate for biogas production.

    Science.gov (United States)

    De Paoli, F; Bauer, A; Leonhartsberger, C; Amon, B; Amon, T

    2011-06-01

    The aims of this work were to determine the specific biogas yields of steam-exploded sugarcane straw and bagasse as well as to estimate their energy potential under Brazilian conditions. Steam-explosion was carried out under different time and temperature conditions. The specific biogas yields were analyzed in batch-tests according to VDI 4630. Results have shown that steam-explosion pre-treatment increased the specific biogas yields of straw and bagasse significantly compared to the untreated material. The utilization of these by-products can contribute to 5% of the total energy consumption and thereby higher energy independence in Brazil. Further efforts in defining the optimum pretreatment conditions with steam-explosion as well as implementing this technology in large scale plants should be made. PMID:21481586

  15. Energy efficient method for energy recovery from biogas production

    International Nuclear Information System (INIS)

    A new method for biogas heating, cooling and drying has been developed. The method is based on two channel counter flow where recuperation happens. Biogas cooling is done with the dried colder flow to get the gas below the dew point temperature and allow it to condensate, but heating is done with humid hot gas flow from bioreactor. The system is being tested both experimentally and numerically by mathematical modelling. A previously developed 1D model has been implemented in MATLAB and calculations made for experimental setup. The results are also compared to 3D model made with ANSYS/CFX software. Keywords: Experimental verification, mathematical modelling, counter flow, bioreactor

  16. Animal manure for biogas production - what happens to the soil?

    OpenAIRE

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun; Riley, Hugh

    2011-01-01

    Utilizing animal slurry to produce biogas may reduce fossil fuel usage and emissions of greenhouse gases. However, there is limited information on how the recycling of digested slurry as a fertilizer impacts soil fertility in the long run. This is of concern because organic matter in the slurry is converted to methane, which escapes the on-farm carbon cycle. In 2010, a study of this question was initiated on the organic research farm in Tingvoll, Norway. So far, a biogas plant has been built,...

  17. An experimental evaluation of energy economics of biogas production at mesophilic and thermophilic temperatures

    International Nuclear Information System (INIS)

    Process economy, with regard to and energy content predicts the potentialities of biogas production options. Experimental study reveal from the kinetic data of daily biogas production that biomethanation reaction is faster in thermophilic digestion, with a higher yield of gas per reactor volume per day. Energy calculations show that it will take 3.55*105 kWh to produce 1 m3 of methane from our feedstock with biogas energy equivalent of 1.25 kWh. The cost implication of this is enormous amounting to US $2,641.95 for the production of 1 m3 of methane using brewers spent grins

  18. COMPARISON OF TWO CHEMICAL PRETREATMENTS OF RICE STRAW FOR BIOGAS PRODUCTION BY ANAEROBIC DIGESTION

    Directory of Open Access Journals (Sweden)

    Zilin Song,

    2012-06-01

    Full Text Available Lignocellulosic biomass is considered the most abundant renewable resource that has the potential to contribute remarkably in the supply of biofuel. Previous studies have shown that chemical pretreatment prior to anaerobic digestion (AD can increase the digestibility of lignocellulosic biomass and methane yield. In the present study, the effect of rice straw pretreatment using ammonium hydroxide (NH3•H2O and hydrogen peroxide (H2O2 on the biogasification performance through AD was investigated. A self-designed, laboratory-scale, and continuous anaerobic biogas digester was used for the evaluation. Results showed that the contents of the rice straw, i.e. the lignin, cellulose, and hemicellulose were degraded significantly after the NH3•H2O and H2O2 treatments, and that biogas production from all pretreated rice straw increased. In addition, the optimal treatments for biogas production were the 4% and 3% H2O2 treatments (w/w, which yielded 327.5 and 319.7 mL/gVS, biogas, respectively, higher than the untreated sample. Biogas production from H2O2 pretreated rice straw was more favorable than rice straw pretreated with same concentration of ammonia, ranking in the order of 4% ≈ 3% > 2% > 1%. The optimal amount of H2O2 treatment for rice straw biogas digestion is 3% when economics and biogas yields are considered.

  19. Energy production from biogas in the Italian countryside: Modernization vs. repeasantization

    International Nuclear Information System (INIS)

    Italy is experiencing a proliferation of biogas energy plants. In only a few years, the number of plants has grown from ten to nearly five hundred. Public policies have played an important role in stimulating and shaping the spread of biogas plants. Following the European Renewable Energy Directive (2009/28/EC) Italian public policy began to support the spread of biogas with a system of obligations and incentives. This system, combined with a rigid institutional framework, has shaped the organizational models adopted by farms for biogas technology implementation. From the point of view of sociological investigation, the article investigates the two main agricultural biogas organizational models: modernization and repeasantization. We present the two models through the study of two empirical cases, which highlight how different ways to introduce new technologies on farms can lead to different outcomes in ecological terms. - Highlights: • Energy production from biogas is a recent phenomenon in the Italian countryside. • The production of biogas requires an organizational change of the farms. • The most important organizational models are modernization and repeasantization. • Uses of land change depending on the organizational models with which the energy production fits in farm

  20. Biogas production by anaerobic co-digestion of cattle slurry and cheese whey

    OpenAIRE

    Comino, Elena; Riggio, Vincenzo Andrea; Rosso, Maurizio

    2012-01-01

    Biogas yield of mixtures of cattle slurry and cheese whey, rates of production of methane, removal efficiencies of chemical oxygen demand (COD) and biological oxygen demand (BOD) were investigated at 35 C. Stable biogas production of 621 l/kg volatile solids at a hydraulic retention time of 42 days in a mixture containing 50% slurry and whey was obtained. The concentration of methane in the biogas was around 55%. Maximum removal efficiencies for COD and BOD5 were 82% and 90%, respectively. A ...

  1. EVALUATING HYDROGEN PRODUCTION IN BIOGAS REFORMING IN A MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    F. S. A. Silva

    2015-03-01

    Full Text Available Abstract Syngas and hydrogen production by methane reforming of a biogas (CH4/CO2 = 2.85 using carbon dioxide was evaluated in a fixed bed reactor with a Pd-Ag membrane in the presence of a nickel catalyst (Ni 3.31% weight/γ-Al2O3 at 773 K, 823 K, and 873 K and 1.01×105 Pa. Operation with hydrogen permeation at 873 K increased the methane conversion to approximately 83% and doubled the hydrogen yield relative to operation without hydrogen permeation. A mathematical model was formulated to predict the evolution of the effluent concentrations. Predictions based on the model showed similar evolutions for yields of hydrogen and carbon monoxide at temperatures below 823 K for operations with and without the hydrogen permeation. The hydrogen yield reached approximately 21% at 823 K and 47% at 873 K under hydrogen permeation conditions.

  2. Biogas and BioFertilizer Production Using Green Technology

    International Nuclear Information System (INIS)

    Basically, it is technology which created and used in a way that conserves natural resources and the environment. This technology also can be environmental friendly because the use of this technology is supposed to reduce the amount of waste and pollution that is created during production and consumption. These food wastes will come from animal bone, crab skeleton, fish skeleton, rice, noodle, vegetable and others. We collect all of these wastes and then keep it in plants, and then we make sure that this waste will turn into biogas via anaerobic digestion. All of these involved hydrolysis, fermentation, aceto genesis and methano genesis process. Methane that produced will be used in biomass plant to generate electricity. Meanwhile bio fertilizer that produced will be applied on agriculture sectors as fertilizer for plants.

  3. Integration of energy, GHG and economic accounting to optimize biogas production based on co-digestion

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Baral, Khagendra Raj;

    Several countries have set a number of targets to boost energy production from renewable sources. Biogas production is expected to increase significantly over the next few decades and to play an important role in future energy systems. To achieve these ambitious targets, the biogas production has...... energy crops. In this study, we integrated three types of analysis - energetic, GHG and economic – in order to optimise biogas production from the co-digestion of pig slurry (PS) and sugar beet pulp silage (SB). We found that the energy and GHG balances are improved when utilising SB as a co......-substrate, mainly because of increased energy production. However, the profitability of biogas production is negatively affected when utilising SB, because of the increased costs involved in feedstock supply. The scale of the processing plant is neutral in terms of profitability when SB is added. The results...

  4. Integration of energy, GHG and economic accounting to optimize biogas production based on co-digestion

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Boldrin, Alessio; Baral, Khagendra Raj;

    2015-01-01

    Several countries have set a number of targets to boost energy production from renewable sources. Biogas production is expected to increase significantly over the next few decades and to play an important role in future energy systems. To achieve these ambitious targets, the biogas production has...... energy crops. In this study, we integrated three types of analysis - energetic, GHG and economic – in order to optimise biogas production from the co-digestion of pig slurry (PS) and sugar beet pulp silage (SB). We found that the energy and GHG balances are improved when utilising SB as a co......-substrate, mainly because of increased energy production. However, the profitability of biogas production is negatively affected when utilising SB, because of the increased costs involved in feedstock supply. The scale of the processing plant is neutral in terms of profitability when SB is added. The results...

  5. Biogas energy production from tropical biomass wastes by anaerobic digestion

    Science.gov (United States)

    Anaerobic digestion (AD) is an attractive technology in tropical regions for converting locally abundant biomass wastes into biogas which can be used to produce heat, electricity, and transportation fuels. However, investigations on AD of tropical forestry wastes, such as albizia biomass, and food w...

  6. Biogas barometer; barometre biogaz

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-11-15

    The biogas sector has never before aroused so much attention as it does today. Elected officers and investors' interest has been fired by the gradual introduction of regulatory restrictions on the treatment of organic waste and the renewable energy commitments recently made by the European Union Member States. The biogas sector is gradually deserting its core activities of waste cleanup and treatment and getting involved in energy production, with so much enthusiasm that in some countries its scope of action has extended to using energy crops. Across the European Union, the sector's progress is as clear as daylight, as in 2009, primary energy growth leapt by a further 4.3 per cent. (author)

  7. Biogas - the calculable energy

    Science.gov (United States)

    Kith, Károly; Nagy, Orsolya; Balla, Zoltán; Tamás, András

    2015-04-01

    EU actions against climate change are rising energy prices, both have emphasized the use of renewable energy,increase investments and energy efficiency. A number of objectives formulated in the EC decree no. 29/2009 by 2020. This document is based on the share of renewable energies in energy consumption should be increased to 20% (EC, 2009). The EU average is 20% but the share of renewables vary from one member state to another. In Hungary in 2020, 14.65% renewable energy share is planned to be achieved. According to the latest Eurostat data, the share of renewable energy in energy consumption of the EU average was 14.1%, while in Hungary, this share was 9.6% in 2012. (EUROSTAT, 2014). The use of renewable energy plant level is influenced by several factors. The most important of these is the cost savings and efficiency gains. Hungarian investments in renewable energy production usually have high associated costs and the payback period is substantially more than five years, depending on the support rate. For example, the payback period is also influenced by the green electricity generated feed prices, which is one of the lowest in Hungary compared the Member States of the European Union. Consequently, it is important to increase the production of green energy. Nowadays, predictable biogas energy is an outstanding type of decentralized energy production. It follows directly that agricultural by-products can be used to produce energy and they also create jobs by the construction of a biogas plant. It is important to dispose of and destroy hazardous and noxious substances in energy production. It follows from this that the construction of biogas plants have a positive impact, in addition to green energy which is prepared to reduce the load on the environment. The production of biogas and green electricity is one of the most environment friendly forms of energy production. Biogas production also has other important ecological effects, such as the substitution of

  8. Guide biogas. From production to utilization. 5. compl. rev. ed.; Leitfaden Biogas. Von der Gewinnung zur Nutzung

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The book under consideration is a guide for biogas and consists of the following contributions: (a) Targets of the guide (M. Kaltschmitt); (b) Fundamentals of anaerobic fermentation (J. Friehe); (c) Systems engineering for supplying biogas (J. Postel); (d) Description of selected substrates (J. Friehe); (e) Operation of biogas plants (J. Liebetrau); (f) Gas processing and possibilities of utilization (M. Wetthaeuser); (g) Legal and administrative framework conditions (H. von Bredow); (g) Economy (S. Hartmann); (h) Company organisation (G. Reinhold); (i) Quality and utilization of fermentation residues (H. Doehler); (j) Implementation of a project (E. Fischer); (k) Position and significance of biogas as a renewable energy resource in Germany (M. Kaltschmitt); (l) Project examples (J. Friehe).

  9. An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant.

    Science.gov (United States)

    Ortseifen, Vera; Stolze, Yvonne; Maus, Irena; Sczyrba, Alexander; Bremges, Andreas; Albaum, Stefan P; Jaenicke, Sebastian; Fracowiak, Jochen; Pühler, Alfred; Schlüter, Andreas

    2016-08-10

    To study the metaproteome of a biogas-producing microbial community, fermentation samples were taken from an agricultural biogas plant for microbial cell and protein extraction and corresponding metagenome analyses. Based on metagenome sequence data, taxonomic community profiling was performed to elucidate the composition of bacterial and archaeal sub-communities. The community's cytosolic metaproteome was represented in a 2D-PAGE approach. Metaproteome databases for protein identification were compiled based on the assembled metagenome sequence dataset for the biogas plant analyzed and non-corresponding biogas metagenomes. Protein identification results revealed that the corresponding biogas protein database facilitated the highest identification rate followed by other biogas-specific databases, whereas common public databases yielded insufficient identification rates. Proteins of the biogas microbiome identified as highly abundant were assigned to the pathways involved in methanogenesis, transport and carbon metabolism. Moreover, the integrated metagenome/-proteome approach enabled the examination of genetic-context information for genes encoding identified proteins by studying neighboring genes on the corresponding contig. Exemplarily, this approach led to the identification of a Methanoculleus sp. contig encoding 16 methanogenesis-related gene products, three of which were also detected as abundant proteins within the community's metaproteome. Thus, metagenome contigs provide additional information on the genetic environment of identified abundant proteins. PMID:27312700

  10. BIOGAS PROCTION FROM ANAEROBIC CO-DIGESTION OF COW DUNG AND ORGANIC WASTES (NAPIER PAK CHONG I AND FOOD WASTE) IN THAILAND: TEMPERATURE EFFECT ON BIOGAS PRODUCT

    OpenAIRE

    Lertluck Saitawee; KanokornHussaro; Sombat Teekasap; Noppadon Cheamsawat

    2014-01-01

    Biogas production has been attracting increasing attention as a biofuel of the future because biogas technology not only constitutes a biofuel source, but also can be applied in the various environmental pollutants. Anaerobic digestion of high solid slurries (such as food waste and cow dung) is typically performed in continuously reactor (by force substrate flow) to avoid problems with a thick floating layer or large amounts of sediments. Temperature also seems to have profound influence on t...

  11. Cost effective and economic method for cultivation of Chlorella pyrenoidosa for the simultaneous treatment of biogas digester wastewater and biogas production

    OpenAIRE

    Rohit Sharma; Avanish K Tiwari; G. Sanjay Kumar; Bhawna Y. Lamba

    2015-01-01

    Microalgae have recently received a lot of attention as a new biomass source for the production of bio fuels and for the treatment of waste water. In this work, Chlorella pyrenoidosa was cultivated in biogas digester wastewater. The growth kinetics of the algae as well as the bio-remediation effect on the waste water was studied. The Chlorella pyrenoidosa can utilize the nitrogen content present in biogas digester wastewater as a substrate for its growth. The growth of microalgae was found to...

  12. A Comparative Study of Swedish and Chinese Biogas Production with a Brief Economical Feasibility Analysis

    OpenAIRE

    Olsson, Alexander

    2012-01-01

    This Master of Science and Engineering thesis in Chemical Engineering treats biogas production in China. The thesis is divided into two parts. The first part contains an energy potential and situation analysis of biogas in China and a comparison with the situation in Sweden. The biogas potential in China is 950-2180 TWh depending on source. Specially, the potential from fish waste is 11 TWh. Part 1 also includes batch experiments where co-digestion of corn straw and swine manure is performed ...

  13. Preliminary design and economical study of a biogas production-plant using cow manure

    Directory of Open Access Journals (Sweden)

    Juan Miguel Mantilla González

    2010-04-01

    Full Text Available This article presents considerations and results from designing a large- scale biogas production-plant using cow manure. The so designed plant capacity allowed processing the dung from 1,300 cows, producing 500 kW of electrical energy from operating a generator which works on a mixture of diesel and biogas fuel. The design included sizing the cowsheds, the manure-collecting systems, transporting the dung, the digester, the effluent tank and the biogas treatment system. An economic study was also done, concluding that project was viable and the importance of the cost of diesel evolving for determining return on investment time.

  14. Potential bioetanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean

    DEFF Research Database (Denmark)

    Petersson, Anneli; Thomsen, Mette Hedegaard; Hauggaard-Nielsen, Henrik;

    2007-01-01

    To meet the increasing need for bioenergy several raw materials have to be considered for the production of e.g. bioethanol and biogas. In this study, three lignocellulosic raw materials were studied, i.e. (1) winter rye straw (Secale cereale L), (2) oilseed rape straw (Brassica napus L.) and (3......) faba bean straw (Viciafaba L.). Their composition with regard to cellulose, hemicellulose, lignin, extractives and ash was evaluated, as well as their potential as raw materials for ethanol and biogas production. The materials were pretreated by wet oxidation using parameters previously found to be...... optimal for pretreatment of corn stover (195 degrees C, 15 min, 2 g l(-1) Na2CO3 and 12 bar oxygen). It was shown that pretreatment was necessary for ethanol production from all raw materials and gave increased biogas yield from winter rye straw. Neither biogas productivity nor yield from oilseed rape...

  15. COUPLED ANAEROBIC DIGESTER: WETLAND SYSTEM FOR DAIRY WASTE AND STORMWATER TREATMENT WITH BIOGAS PRODUCTION

    Science.gov (United States)

    By coupling wastewater treatment and biogas production, the proposed design will increase sustainability by (i) decreasing pollution of waters, fields, and ecosystems, and (ii) providing a return-on-investment for wastewater and stormwater treatment, (iii) decreasing costs ...

  16. The energy balance of utilising meadow grass in Danish biogas production

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup; Raju, Chitra Sangaraju; Kucheryavskiy, Sergey V.;

    2015-01-01

    This paper presents a study of the energy balance of utilising nature conservation biomass from meadow habitats in Danish biogas production. Utilisation of nature conservation grass in biogas production in Denmark represents an interesting perspective for enhancing nature conservation of the open...... grassland habitats, while introducing an alternative to the use of intensively cultivated energy crops as co-substrates in manure based biogas plants. The energy balance of utilising nature conservation grass was investigated by using: data collected from previous investigations on the productivity of...... meadow areas, different relevant geo-datasets, spatial analyses, and various statistical analyses. The results show that values for the energy return on energy invested (EROEI) ranging from 1.7 to 3.3 can be obtained when utilising meadow grasses in local biogas production. The total national net energy...

  17. BiogasMotor; BiogasMotor

    Energy Technology Data Exchange (ETDEWEB)

    Roubaud, A.; Favrat, D.

    2002-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of tests made at the Swiss Federal Institute of Technology in Lausanne with an unscavenged prechamber ignition system on a 150 kW co-generation engine fuelled with biogas. The engine's performance in terms of fuel conversion efficiency was observed and the reduction potential for exhaust emissions to a level below the Swiss limits was verified. The tests made, which used natural gas mixed with CO{sub 2} as simulated biogas fuel, are described. The results of the tests, including figures on NO{sub x}, CO and HC emissions, are presented and discussed. The authors conclude that biogas engines with unscavenged prechamber ignition could provide a significant boost in energy conversion efficiency whilst keeping emissions within the tough Swiss limits.

  18. Monitoring of biogas test plants

    DEFF Research Database (Denmark)

    Holm-Nielsen, Jens Bo; Esbensen, Kim H.

    2011-01-01

    Most studies reported in the literature have investigated near infrared spectroscopy (NIR) in laboratory-scale or minor pilot biogas plants only; practically no other studies have examined the potential for meso-scale/full-scale on-line process monitoring. The focus of this study is on a meso......-scale biogas test plant implementation of process analytical technologies (PAT) to develop multivariate calibration/prediction models for anaerobic digestion (AD) processes. A 150 L bioreactor was fitted with a recurrent loop at which NIR spectroscopy and attendant reference sampling were carried out. In all...... realistic bioreactor scales, it is necessary to obtain a fairly constant level of volatile fatty acid (VFA) concentration, which furthers a stable biogas production. Uncontrolled VFA contents have a significant negative impact on biogas production; VFA concentrations should not exceed 5–6000 mg/L lest...

  19. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing

    OpenAIRE

    Leandro Janke; Athaydes Leite; Marcell Nikolausz; Thomas Schmidt; Jan Liebetrau; Michael Nelles; Walter Stinner

    2015-01-01

    Biogas production from sugarcane waste has large potential for energy generation, however, to enable the optimization of the anaerobic digestion (AD) process each substrate characteristic should be carefully evaluated. In this study, the kinetic challenges for biogas production from different types of sugarcane waste were assessed. Samples of vinasse, filter cake, bagasse, and straw were analyzed in terms of total and volatile solids, chemical oxygen demand, macronutrients, trace elements, an...

  20. Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure

    OpenAIRE

    Pham, C. H.; Triolo, J. M.; Cu, T. T. T.; Pedersen, L; Sommer, S.G.

    2013-01-01

    In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journal...

  1. Processing biogas plant digestates into value-added products - BIOVIRTA

    Energy Technology Data Exchange (ETDEWEB)

    Paavola, T. (MTT Agrifood Research Finland, Jokioinen (Finland)), e-mail: teija.paavola@mtt.fi; Torniainen, M. (Finnish Food Safety Authority, EVIRA, Helsinki (Finland)), e-mail: merja.torniainen@evira.fi; Kaparaju, P. (Jyvaeskylae Univ. (Finland)), e-mail: prasad.kaparaju@jyu.fi (and others)

    2011-11-15

    The objective of BIOVIRTA project is to develop technologies and practices with which digestates, originating from anaerobic digestion of different organic wastes and by-products can be refined to value-added and safe products for various end-uses. It is expected that the operational preconditions for biogas plants will be significantly enhanced when the end-products are proven safe and applicable. Selection of the raw materials for anaerobic co-digestion is the main operational strategy that could influence the nutrient content in the digestate. This has been clearly established in the laboratory and full-scale studies with various digestates originating from different raw materials. The nutrient content in the digestate also affects the opportunities to produce refined digestate products. In this project, the possibilities for several processing technologies, e.g. mechanical separation, stripping, and struvite production have been intensively evaluated for the production of different digestate products. Their mass balances have also been estimated. The feasibility for the use of the digestate products has been assessed based on their chemical and hygienic quality and for various end-uses, including as organic fertiliser and/or soil improver in crop production. The results of these field-experiments showed that the yield of barley fertilised with digestate products was comparable to inorganic fertilisers. (orig.)

  2. Evaluation of anaerobic degradation, biogas and digestate production of cereal silages using nylon-bags.

    Science.gov (United States)

    Negri, Marco; Bacenetti, Jacopo; Fiala, Marco; Bocchi, Stefano

    2016-06-01

    In this study, the degradation efficiency and the biogas and digestate production during anaerobic digestion were evaluated for the cereal silages most used to feed biogas plants. To this purpose, silages of: maize from the whole plant, maize from the ear, triticale and wheat were digested, inside of nylon bags, in laboratory scale digesters, for 75days. Overall, the test involved 288 nylon bags. After 75days of digestion, the maize ear silage shows the highest degradation efficiency (about 98%) while wheat silage the lowest (about 83%). The biogas production ranges from 438 to 852Nm(3)/t of dry matter for wheat and ear maize silage, respectively. For all the cereal silages, the degradation as well as the biogas production are faster at the beginning of the digestion time. Digestate mass, expressed as percentage of the fresh matter, ranges from 38% to 84% for wheat and maize ear silage, respectively. PMID:26946439

  3. Decentralized power generation from biogas

    International Nuclear Information System (INIS)

    Areva Bioenergies proposes ready-to-use biogas production and valorization units that use industrial effluents (liquid effluents, spent water, solid wastes). Biogas valorization is performed through cogeneration plants with an output power of 500 kW to 10 MW. This brochure presents Areva's global offer in methanation projects (support, engineering, optimization). Areva Bioenergies counts 20 dual-purpose power plants in operation or under construction in the world which represent an installed power of 220 MW

  4. Biogas infrastructures from farm to regional scale, prospects of biogas transport grids

    OpenAIRE

    Hengeveld, E.J.; Bekkering, J.; Gemert, W.J.T. van; Broekhuis, A.A.

    2016-01-01

    The volume of biogas produced in agricultural areas is expected to increase in coming years. An increasing number of local and regional initiatives show a growing interest in decentralized energy production, wherein biogas can play a role. Biogas transport from production sites to user, i.e. a CHP, boiler or an upgrading installation, induces a scale advantage and an efficiency increase. Therefore the exploration of the costs and energy use of biogas transport using a dedicated infrastructure...

  5. Biogas infrastructures from farm to regional scale, prospects of biogas transport grids

    NARCIS (Netherlands)

    Hengeveld, E.J.; Bekkering, J.; Gemert, W.J.T. van; Broekhuis, A.A.

    2016-01-01

    The volume of biogas produced in agricultural areas is expected to increase in coming years. An increasing number of local and regional initiatives show a growing interest in decentralized energy production, wherein biogas can play a role. Biogas transport from production sites to user, i.e. a CHP,

  6. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome and metatranscriptome

    Directory of Open Access Journals (Sweden)

    Vimac Nolla-Ardevol

    2015-06-01

    Full Text Available A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na+. Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96 %. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time of 15 days and 0.25 g Spirulina L-1 day-1 organic loading rate were identified as the optimal operational parameters. Metagenomics and metatranscriptomics analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the ML635J-40 aquatic group while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus.

  7. Thermic model to predict biogas production in unheated fixed-dome digesters buried in the ground

    DEFF Research Database (Denmark)

    Terradas-Ill, Georgina; Cuong, Pham Hung; Triolo, Jin Mi;

    2014-01-01

    In many developing countries, simple biogas digesters are used to produce energy for domestic purposes from anaerobic digestion of animal manure. We developed a simple, one-dimensional (1-D), thermal model with easily-available input data for unheated, unstirred, uninsulated, fixed-dome digesters...... buried in the soil to study heat transfer between biogas digester and its surroundings. The predicted temperatures in the dome, biogas and slurry inside the digester and the resulting biogas production are presented and validated. The model was well able to estimate digester temperature (linear slope...... nearly 1, R2 0.96). Model validation for methane production gave root-mean-square error (RMSE) of 54.4 L CH4 digester-1 day-1 and relative-root-mean-square errors (rRMSEP(%)) of 35.4%. The validation result was considerably improved if only using winter data (RMSE = 26.1 L CH4 digester-1 day-1; r...

  8. Observation of temperature and pH during biogas production from water hyacinth and cow manure

    Directory of Open Access Journals (Sweden)

    Nurfitri Astuti

    2013-11-01

    Full Text Available Biogas is generated from biological process of organic material by bacterial engaged. Biogas can be derived from manure, municipal waste, agricultural waste and other biomass resources. In addition to the use of cow manure as raw material for biogas production, it can also be derived from biomass containing cellulose which one is water hyacinth as an organic material that contains quite large cellulose. The abundance of water hyacinth found in Rawapening causing several negative impacts. The purpose of this study is to observe  temperature and pH on the biogas production generated from water hyacinth of Rawapening and cow manure. Biogas production process begins by chopping the leaves and stems of water hyacinth, and then mixed with cow manure and water. The results of substrate variation of water hyacinth, cow manure and water reaches optimally at 40:80:480 respectively, which produce the highest point of  biogas amounted 176.33 ml on the day 20 in 1L sized digester, the temperature of the biogas production is at 32°C.  At the initial fermentation, digester temperature of 30°C has increased over the course of the fermentation process, a peak at day 20 and then decreased to 27°C at the end of fermentation. There is a decrease in pH starting from initial fermentation at pH 6-7 and then the pH began to decline until the end of fermentation as amount of pH 5.Doi: http://dx.doi.org/10.12777/wastech.1.1.22-25Citation:  Nurfitri Astuti, N., Tri Retnaningsih Soeprobowati, T.R., and  Budiyono. 2013. Observation of temperature and pH during biogas production from water hyacinth and cow manure. Waste Technology 1(1:1-5. Doi: http://dx.doi.org/10.12777/wastech.1.1.22-25

  9. Enhanced biogas production from rice straw with various pretreatment : a review

    Directory of Open Access Journals (Sweden)

    Fahriya Puspita Sari

    2014-04-01

    Full Text Available Rice straw is one of organic material that can be used for sustainable production of bioenergy and biofuels such as biogas (about 50-75% CH4 and 25-50% CO2. Out of all bioconversion technologies for biogas production, anaerobic digestion (AD is a most cost-effective bioconversion technology that has been implemented worldwide for commercial production of electricity, heat, and compressed natural gas (CNG from organic materials. However, the utilization of rice straw for biogas production via anaerobic digestion has not been widely adopted because the complicated structure of the plant cell wall makes it resistant to microbial attack. Pretreatment of recalcitrant rice straw is essential to achieve high biogas yield in the AD process. A number of different pretreatment techniques involving using physical pretreatment (hydrothermal and freeze, chemical pretreatment (sodium carbonate – sodium sulfite, hydrogen peroxide, NMMO, alkaline, and dilute acid and biological pretreatment (fungal pretreatment also combined pretretment (microwave irradiation and chemical approaches have been investigated, but there is no report that systematically compares the performance of these pretreatment methods for application on rice straw for biogas production. This paper reviews the methods that have been studied for pretreatment of rice straw for delignification, reducing sugar, and conversion to biogas. It describes the AD process, structural and compositional properties of rice straw, and various pretreatment techniques, including the pretreatment process, parameters, performance, and advantages vs. drawbacks.

  10. Technical modifications and current legal framework for a controllable electricity production via biogas plants in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Haering, G.; Sonnleitner, M.; Zoerner, W. [Centre of excellence for renewable energy research, Ingolstadt Univ. of Applied Sciences, Ingolstadt (Germany)], e-mail: georg.haering@haw-ingolstadt.de; Hanby, V. [Inst. of Energy and Sustainable Development, De Montfort Univ., Leicester (United Kingdom)

    2012-11-01

    With the expansion of renewable but fluctuating power generation from wind and solar energy, the demand placed on the security and reliability of supply is increasing. To ensure grid stability in the future, potential in the fields of load management and new storage technologies has to be developed. A higher efficiency can be achieved for the storage of biogas-generated electricity in comparison to pumped-storage hydroelectricity, compressed-air energy storage or in the form of hydrogen. Therefore, its controllable power production has a great technical and economic potential. The controllable electricity production via biogas plants depends on various factors. Besides the stability of the biological process, cost is the main issue. To achieve an economic optimum, efficient control strategies and system configurations are to be chosen. The latter are currently not fully known, thus, further research is necessary. In this context, the Centre of Excellence for Renewable Energy Research at Ingolstadt Univ. of Applied Sciences and the biogas plant manufacturer UTS Biogastechnik GmbH, Hallbergmoos, Germany, are working on the research project 'BioStrom - Controllable Electricity Production via Biogas Plants', funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. For a controllable electricity production via biogas plants, technical modifications are necessary concerning the biogas storage, the CHP-units, the heat supply for internal and external heat demands, the controls regarding the gas and electricity production and the monitoring systems.

  11. Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean

    OpenAIRE

    Petersson, Anneli; Thomsen, Mette Hedegaard; Hauggaard-Nielsen, Henrik; Thomsen, Anne Belinda

    2007-01-01

    To meet the increasing need for bioenergy several raw materials have to be considered for the production of e.g. bioethanol and biogas.In this study, three lignocellulosic raw materials were studied, i.e. (1) winter rye straw (Secale cereale L), (2) oilseed rape straw (Brassica napus L.) and (3) faba bean straw (Viciafaba L.). Their composition with regard to cellulose, hemicellulose, lignin, extractives and ash was evaluated, as well as their potential as raw materials for ethanol and biogas...

  12. Two-Stage Conversion of Land and Marine Biomass for Biogas and Biohydrogen Production

    OpenAIRE

    Nkemka, Valentine

    2012-01-01

    The replacement of fossil fuels by renewable fuels such as biogas and biohydrogen will require efficient and economically competitive process technologies together with new kinds of biomass. A two-stage system for biogas production has several advantages over the widely used one-stage continuous stirred tank reactor (CSTR). However, it has not yet been widely implemented on a large scale. Biohydrogen can be produced in the anaerobic two-stage system. It is considered to be a useful fuel for t...

  13. Decentralized power generation from biogas; Production d'energie decentralisee a partir de biogaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Areva Bioenergies proposes ready-to-use biogas production and valorization units that use industrial effluents (liquid effluents, spent water, solid wastes). Biogas valorization is performed through cogeneration plants with an output power of 500 kW to 10 MW. This brochure presents Areva's global offer in methanation projects (support, engineering, optimization). Areva Bioenergies counts 20 dual-purpose power plants in operation or under construction in the world which represent an installed power of 220 MW.

  14. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production

    Science.gov (United States)

    Poszytek, Krzysztof; Ciezkowska, Martyna; Sklodowska, Aleksandra; Drewniak, Lukasz

    2016-01-01

    The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants. PMID:27014244

  15. The economics of sugar beets in biogas production; Vergaerung von Zuckerrueben in Biogasanlagen. Lohnt sich das?

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Stefan; Doehler, Helmut [Kuratorium fuer Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), Darmstadt (Germany)

    2011-07-01

    The economics of employing sugar beets for biogas production were investigated using a calculation model based on the currently available data. Taken into account were all steps of the chain from cultivation, conditioning and conservation to the influences in the biogas plant. Only by calculating with very good assumptions for the fermentation of sugar beets, they can constitute an economical alternative to the use of silo maize as a fermentation substrate. (orig.)

  16. Microbial Consortium with High Cellulolytic Activity (MCHCA for enhanced biogas production.

    Directory of Open Access Journals (Sweden)

    Krzysztof ePoszytek

    2016-03-01

    Full Text Available The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used.The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate.Over one hundred strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, sixteen strains (representatives of Bacillus, Providencia and Ochrobactrum genera were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants.The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic Microbial Consortium with High Cellulolytic Activity has a great potential for application on industrial scale in agricultural biogas plants.

  17. The Optimum Mesophilic Temperature of Batch Process Biogas Production from Animal-based Wastes

    Directory of Open Access Journals (Sweden)

    Osita Obineche Obiukwu

    2014-10-01

    Full Text Available The optimum mesophilic temperature of biogas production from blends The optimum temperature of biogas production from blends of animal-based wastes was determined under controlled heat supply to the digester in a batch digestion process. Cow Dung (CD and Poultry Droppings (PD were blended in the ratio of CD: PD: 1:3. The digester was operated at average ambient temperature of 30°C as baseline. Biogas production from the waste blends was monitored under the temperatures of 32 to 45°C. Results obtained indicate maximum cumulative gas yield was observed at the temperature of 40°C. The 40°C temperature gave the highest biogas yield of 2685 mL followed by the 35°C temperature with the cumulative yield of 2535 mL. The ambient temperature of 30°C had the least cumulative biogas yield of 185 mL. These results indicate that increased and steady biogas production can be achieved under the optimum mesophilic temperature of 40°C when these animal-based wastes are digested in batch digestion process.

  18. Biogas production from UASB and polyurethane carrier reactors treating sisal processing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Rubindamayugi, M.S.T.; Salakana, L.K.P. [Univ. of Dar es Salaam, Faculty of Science, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    The fundamental benefits which makes anaerobic digestion technology (ADT) attractive to the poor developing include the low cost and energy production potential of the technology. In this study the potential of using UASB reactor and Polyurethane Carrier Reactor (PCR) as pollution control and energy recovery systems from sisal wastewater were investigated in lab-scale reactors. The PCR demonstrated the shortest startup period, whereas the UASB reactor showed the highest COD removal efficiency 79%, biogas production rate (4.5 l biogas/l/day) and process stability than the PCR under similar HRT of 15 hours and OLR of 8.2 g COD/l/day. Both reactor systems became overloaded at HRT of 6 hours and OLR of 15.7 g COD/l/day, biogas production ceased and reactors acidified to pH levels which are inhibiting to methanogenesis. Based on the combined results on reactor performances, the UASB reactor is recommended as the best reactor for high biogas production and treatment efficiency. It was estimated that a large-scale UASB reactor can be designed under the same loading conditions to produce 2.8 m{sup 3} biogas form 1 m{sup 3} of wastewater of 5.16 kg COD/m{sup 3}. Wastewater from one decortication shift can produce 9,446 m{sup 3} og biogas. The energy equivalent of such fuel energy is indicated. (au)

  19. Biogas Production in Dairy Farming in Indonesia: A Challenge for Sustainability

    OpenAIRE

    Jatmiko Wahyudi; Tb. Benito Achmad Kurnani; Joy Clancy

    2015-01-01

    Biogas plays an important role in supporting and ensuring the dairy farming sector remains sustainable. Biogas technology is not only as a method to dispose dairy farming waste but also benefiting economically, socially and environmentally. Biogas technology has been introduced since 1970s and many biogas programmes have been implemented in Indonesia. However compare to other countries like China and India, the dissemination of biogas technology in Indonesia runs quite slowly. There are sever...

  20. Stirring and biomass starter influences the anaerobic digestion of different substrates for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Christian; Fang, Sheng; Uhlenhut, Frank; Borchert, Axel; Stein, Ingo; Schlaak, Michael [Institut fuer Umwelttechnik EUTEC, Fachbereich Technik, Fachhochschule Emden/Leer, Emden (Germany)

    2010-08-15

    Here, we present the results of lab-scale experiments conducted in a batch mode to determine the biogas yield of lipid-rich waste and corn silage under the effect of stirring. Further semi-continuous experiments were carried out for the lipid-rich waste with/without stirring. Additionally, it was analyzed how the starter used for the batch experiment influences the digestion process. The results showed a significant stirring effect on the anaerobic digestion only when seed sludge from a biogas plant was used as a starter. In this case, the experiments without stirring yielded only about 50% of the expected biogas for the investigated substrates. The addition of manure slurry to the batch reactor as part of the starter improved the biogas production. The more diluted media in the reactor allowed a better contact between the bacteria and the substrates making stirring not necessary. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  1. Biologische Entschwefelung von Biogas

    OpenAIRE

    Schneider, Ralf

    2009-01-01

    Ziel dieser Arbeit ist die Erhöhung von Abbauleistung und Stabilität des biologischen Abbaus von Schwefelwasserstoff (H2S) in Biotropfkörpern zur Entschwefelung von Biogas. Für die Nutzung von Biogas ist häufig eine Reduktion des H2S-Gehalts erforderlich. Üblicherweise wird H2S von aeroben Mikroorganismen bei Zugabe von Luft zum Biogas entweder direkt im Biogasreaktor oder in nachgeschalteten Biotropfkörpern zu Schwefel und Schwefelsäure oxidiert. In der Praxis auftretende Schwankungen der H2...

  2. State of the art of biogas production: in Austria

    International Nuclear Information System (INIS)

    The biogas technic engineering in Austria has reached a new 'high-water-mark' in its history because there are positive political and technical backgrounds. It is a new opportunity for farmers to become energy farmers instead of producing meat, milk or vegetable. With 50 ha of agricultural land you can produce 700.000 kWh (100 kW) of electricity plus 1 MWh of heat. Biogas can produce up to 10% of the electricity in Austria if the backgrounds stay as favorable as they are now. Renewable energies have become a strong business with a steady rising number of companies and employees. When the new members of the European Union are welcomed in the middle of 2004, renewable energies will even get more important than now. (author)

  3. Lab-scale Technology for Biogas Production from Lignocellulose Wastes

    Directory of Open Access Journals (Sweden)

    Lukáš Krátký

    2012-01-01

    Full Text Available Currently-operating biogas plants are based on the treatment of lignocellulose biomass, which is included in materials such as agriculture and forestry wastes, municipal solid wastes, waste paper, wood and herbaceous energy crops. Lab-scale biogas technology was specially developed for evaluating the anaerobic biodegrability and the specific methane yields of solid organic substrates. This technology falls into two main categories – pretreatment equipments, and fermentation equipments. Pretreatment units use physical principles based on mechanical comminution (ball mills, macerator orhydrothermal treatment (liquid hot water pretreatment technology. The biochemical methane potential test is used to evaluate the specific methane yields of treated or non-treated organic substrates. This test can be performed both by lab testing units and by lab fermenter.

  4. CULTIVATION OF INDIGENOUS ALGAE FOR INCREASED BIOGAS PRODUCTION

    OpenAIRE

    Krustok, Ivo; Nehrenheim, Emma; Odlare, Monica; Liu, Xiaoling; Li, S.

    2013-01-01

    There is an increased demand for biogas in the society and one way to meet this is to use cultivated microalgae as fermentation substrate. In the present study, a co-digestion experiment was established where municipal food waste was fermented with harvested microalgae cultivated in lake water. The experiment was carried out as a laboratory batch experiment with fermentation bottles, where 0, 12, 25 and 37% of the food waste was replaced with harvested microalgae, respectively. The results sh...

  5. Model based optimization of biogas production at SNJ plant

    OpenAIRE

    Popov, Jovan

    2010-01-01

    The main purpose of this thesis is the acquisition of knowledge and familiarization with the SNJ biogas plant and effects of codigestion. Plant operation and performance was monitored in order to understand and evaluate the factors affecting the efficiency of the sludge treatment process. The thesis also presents an overview of anaerobic digestion process, modelling of anaerobic codigestion process, and a general presentation of the Regional Wastewater Treatment Plant of Nord‐J...

  6. Substrate Handbook for Biogas Production; Substrathandbok foer biogasproduktion

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, My; Uldal, Martina (AnoxKaldnes AB, Lund (Sweden))

    2009-02-15

    Today, co-digestion plants in Sweden treat a broad range of different substrates, of which some have not previously been used for anaerobic digestion. The major part of this organic waste derives from households, restaurants, food industries and farms. When evaluating a new substrate as feed for anaerobic digestion, several different aspects need to be taken into consideration, such as anaerobic degradability, TS/VS content, nutrient composition and risk for mechanical problems. Consequently, there is a need for practical guidelines on how to evaluate new substrates as raw materials for biogas production, including not only gas yield but also what practical and microbiological problems that may arise when the specific substrate is treated together with other substrates in the plant. The aim with this handbook is to provide a basis on how to evaluate new substrates as feed for anaerobic digestion. The intention is that this material will save time and effort for the personnel at the plant when they come in contact with new types of waste. Also, the aim is to facilitate the process of identifying new substrates within the ABP-regulation (1774/2002) and what requirements are then demanded on handling. The work with the handbook has been divided in three different parts; (1) an extensive literature study and a compilation of the achieved results, (2) interviews with personnel at most of the Swedish co-digestion plants to identify substrates and problems of interest, and (3) lab tests of selected substrates. The lab tests included Bio Methane Potential (BMP) tests as well as a simple characterization of each substrate based on fat/protein/carbohydrate content. All data origins from anaerobic digestion within the mesophilic temperature range, but the results and discussion are applicable also for thermophilic anaerobic digestion. The result of this work is a written report together with an Excel file which are to be directly used by the biogas plants as a basis in the

  7. Environmental and economic analysis of application of water hyacinth for eutrophic water treatment coupled with biogas production.

    Science.gov (United States)

    Wang, Zanxin; Calderon, Margaret M

    2012-11-15

    The proliferation of water hyacinth is currently controlled by removing it from a water body and disposing it by landfill in China. Using water hyacinth to remove nutrients from water bodies and to produce biogas is another technically feasible option for the control of water hyacinth, but its environmental and economic performances are not well understood. This study collected data from an experimental biogas plant to develop a lifecycle analysis and a cost benefit analysis for the control of water hyacinth proliferation in a eutrophic lake in China. Comparison was made between the alternative option of using water hyacinth for biogas production and the current practice of disposing it in landfills. The results reveal that the biogas option is economically feasible with a positive energy balance. The removal of water hyacinth to produce biogas can contribute to water quality improvement and GHG emission reduction whose values, however, depend on the processing scale of the biogas plant. Since both the current approach and the biogas option can remove nutrients from water bodies, the additional value of water quality improvement resulting from the biogas option is only possible when the processing scale of the biogas plant is greater than the amount of water hyacinth disposed by landfill. The emission of methane deserves attention when water hyacinth is disposed by landfill. The biogas option can respond to China's policies on water pollution control, renewable energy development, and energy saving and emission reduction. PMID:22813757

  8. Biogas from lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Berglund Odhner, Peter; Schabbauer, Anna [Grontmij AB, Stockholm (Sweden); Sarvari Horvath, Ilona; Mohseni Kabir, Maryam [Hoegskolan i Boraas, Boraas (Sweden)

    2012-01-15

    Grontmij AB has cooperated with the University of Boraas to evaluate the technological and economical possibilities for biogas production from substrates containing lignocellulose, such as forest residues, straw and paper. The state of knowledge regarding biogas production from cellulosic biomass has been summarized. The research in the field has been described, especially focusing on pretreatment methods and their results on increased gas yields. An investigation concerning commercially available pretreatment methods and the cost of these technologies has been performed. An economic evaluation of biogas production from lignocellulosic materials has provided answers to questions regarding the profitability of these processes. Pretreatment with steam explosion was economically evaluated for three feedstocks - wood, straw and paper - and a combination of steam explosion and addition of NaOH for paper. The presented costs pertain to costs for the pretreatment step as it, in this study, was assumed that the pretreatment would be added to an existing plant and the lignocellulosic substrates would be part of a co-digestion process. The results of the investigation indicate that it is difficult to provide a positive net result when comparing the cost of pretreatment versus the gas yield (value) for two of the feedstocks - forest residues and straw. This is mainly due to the high cost of the raw material. For forest residues the steam pretreatment cost exceeded the gas yield by over 50 %, mainly due to the high cost of the raw material. For straw, the production cost was similar to the value of the gas. Paper showed the best economic result. The gas yield (value) for paper exceeded the pretreatment cost by 15 %, which makes it interesting to study paper further.

  9. Production and use of biogas in Europe: a survey of current status and perspectives

    Directory of Open Access Journals (Sweden)

    Massimo Raboni

    2014-04-01

    Full Text Available The article presents the results of a survey carried out in the European Union (EU regarding the production and use of biogas from different sources. The EU is a world leader in the field of biogas, with a production of 10,085.8 ktoe y -1 (in 2011 in terms of primary energy, accounting for about 60% of the world’s production. Germany is the EU country that has made the greatest progress in this field with a production of as much as 5,067.6 ktoe y-1 , of which a share of 4,414.2 ktoe y-1 results from anaerobic digestion (and co-digestion processes of selected organic matrices. UK is the second largest producer with 1,764.8 ktoe y -1 , determined for 84% by landfill biogas and the remainder by biogas produced in sewage treatment plants (sludge digestion. Italy (1,095.7 ktoe y-1 and France (349.6 ktoe y -1 follow in the list of the largest producers. The trend of biogas production, in accordance with the action lines of the EU, is characterized by a progressive increase from anaerobic digestion (and co-digestion of selected organic matrices and a progressive decrease from landfills. Production in 2020 is estimated at 28.0 Mtoe y-1 in accordance with the EU Renewable Energy National Plans. The uses of biogas are mainly directed to the production of electricity and heat. There are, however, several cases of conversion of biogas into biomethane injected into the natural gas grids or used as biofuel in vehicles. In this last direction, worthy of note are a few north-central EU countries which have implemented an effective policy to promote the use of biomethane for public and private transport.

  10. Potential bioethanol and biogas production using lignocellulosic biomass from winter rye, oilseed rape and faba bean

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Anneli; Thomsen, Mette H.; Hauggaard-Nielsen, Henrik; Thomsen, Anne-Belinda [Risoe National Laboratory, P.O. Box 49, DK-4000 Roskilde (Denmark)

    2007-11-15

    To meet the increasing need for bioenergy several raw materials have to be considered for the production of e.g. bioethanol and biogas. In this study, three lignocellulosic raw materials were studied, i.e. (1) winter rye straw (Secale cereale L), (2) oilseed rape straw (Brassica napus L.) and (3) faba bean straw (Viciafaba L.). Their composition with regard to cellulose, hemicellulose, lignin, extractives and ash was evaluated, as well as their potential as raw materials for ethanol and biogas production. The materials were pretreated by wet oxidation using parameters previously found to be optimal for pretreatment of corn stover (195 C, 15 min, 2 g l{sup -1} Na{sub 2}CO{sub 3} and 12 bar oxygen). It was shown that pretreatment was necessary for ethanol production from all raw materials and gave increased biogas yield from winter rye straw. Neither biogas productivity nor yield from oilseed rape straw or faba bean straw was significantly affected by pretreatment. Ethanol was produced by the yeast Saccharomyces cerevisiae during simultaneous enzymatic hydrolysis of the solid material after wet oxidation with yields of 66%, 70% and 52% of theoretical for winter rye, oilseed rape and faba bean straw, respectively. Methane was produced with yields of 0.36, 0.42 and 0.44 l g{sup -1} volatile solids for winter rye, oilseed rape and faba bean straw, respectively, without pretreatment of the materials. However, biogas productivity was low and it took over 50 days to reach the final yield. It could be concluded that all three materials are possible raw materials for either biogas or ethanol production; however, improvement of biogas productivity or ethanol yield is necessary before an economical process can be achieved. (author)

  11. UTILIZATION OF POULTRY, COW AND KITCHEN WASTES FOR BIOGAS PRODUCTION: A COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    K. Animasahun

    2007-09-01

    Full Text Available The amount of solid wastes generated in developing countries such as Nigeria has steadily increased over the last two decades as a result of population explosion and continuous growth of industries and agricultural practices. In agriculture, particularly cattle rearing, large quantities of cow wastes are generated, which could be used as biogas inputs to compliment the fuel usage alternative. In addition, a large number of families generate heavy wastes in the kitchen on a daily basis, which could be converted to economic benefits. In this work, a comparative study of biogas production from poultry droppings, cattle dung, and kitchen wastes was conducted under the same operating conditions. 3kg of each waste was mixed with 9L of water and loaded into the three waste reactors. Biogas production was measured for a period of 40 days and at an average temperature of 30.5oC. Biogas production started on the 7th day, and attained maximum value on the 14th days for reactor 1. Production reached its peak on the 14th day with 85´10-3dm3 of gas produced in reactor 2. For reactor 3, biogas production started on the 8th day and production reached a peak value on the 14th day. The average biogas production from poultry droppings, cow dung and kitchen waste was 0.0318dm3/day, 0.0230dm3/day and 0.0143dm3/day, respectively. It is concluded that the wastes can be managed through conversion into biogas, which is a source of income generation for the society.

  12. Special file: biogas

    International Nuclear Information System (INIS)

    With some graphs indicating the number and types of existing and projected biogas production units, a first article outlines that the development rate is presently too low to be able to reach objectives defined for 2020. A second article comments the results of a benchmark study performed by the ADEME on the biogas sector status in European countries (a map indicates the levels of production and electricity purchase tariffs, the evolution of development conditions, and the types of financial support). In an interview, a GrDF manager in charge of strategy discusses the GrDF strategy on biomethane, the future management of gas networks, the operation of existing biomethane injection sites, future projects, the management of consumption variations, and the issue of biomethane injection tariff. An article then presents an experiment made by farmers in western France who gathered about a methanization site with a unit of injection of biomethane into the natural gas network. The assessment of another experiment (a Methanea methanization unit operated by two farmers in the Ain district) is then presented. The next article gives an overview of the various possibilities proposed by the legal framework for the contract between input providers and the methanization unit operator. Different assessment tools are then presented: Flash BMP (a fast and affordable method of measurement of the biochemical methane potential or BMP to perform feasibility studies), and a software for the precise assessment of the profitability of a methanization unit. In an interview, a member of Weltec Biopower proposes a brief overview of services and products proposed by this company which installs biogas and bio-methanization every where in the world. A last article addresses the recent evolutions and progress of certification of French digestates

  13. Modelling the Kinetics of Biogas Production from Mesophilic Anaerobic Co-Digestion of Cow Dung with Plantain Peels

    Directory of Open Access Journals (Sweden)

    Ganiyu Kayode Latinwo

    2015-02-01

    Full Text Available This work investigated the effect of plantain peels as co-substrate in the anaerobic digestion of cow dung for efficient and high biogas production. The biogas experiments were carried out in two different 5 L anaerobic digesters and incubated for 40 days at ambient mesophilic temperatures (28 oC to 34 °C. The results showed that co-digestion of cow dung with plantain peels as co-substrate reduced start-up time for biogas generation and increased biogas yield by 18% as compared to cow dung alone. Peak biogas production was obtained for both digesters at pH of 6.7 and 6.9 as well as temperature of 29 and 30oC, respectively. Modelling study revealed that exponential plot simulated better in both ascending and descending limb than the linear plot the biogas production rates in biogas production from cow dung co-digested with plantain peels and cow dung alone, respectively. Logistic growth model and modified Gompertz plot showed better correlation of cumulative biogas production than exponential rise to maximum plot. These results show that biogas production can be enhanced efficiently through co-digestion process.

  14. Biogas Production from Thin Stillage on an Industrial Scale—Experience and Optimisation

    Directory of Open Access Journals (Sweden)

    Anna Schnürer

    2013-10-01

    Full Text Available With the increasing demand for renewable energy and sustainable waste treatment, biogas production is expanding. Approximately four billion litres of bio-ethanol are produced annually for vehicle fuel in Europe, resulting in the production of large amounts of stillage residues. This stillage is energy-rich and can be used for biogas production, but is a challenging substrate due to its high levels of nitrogen and sulphate. At the full-scale biogas production plant in Norrköping, Sweden (Svensk Biogas i Linköping AB, thin grain stillage is used as a biogas substrate. This paper describes the plant operation and strategies that have been implemented to digest thin stillage successfully. High ammonia concentrations in the digester have resulted in syntrophic acetate oxidation (SAO becoming the major pathway for acetate degradation. Therefore, a long hydraulic retention time (HRT (40–60 days is used to allow the syntrophic acetate-oxidising bacteria time to grow. The high sulphate levels in thin stillage result in high levels of hydrogen sulphide following degradation of protein and the activity of sulphate-reducing bacteria (SRB, the presence of which has been confirmed by quantitative polymerase chain reaction (qPCR analysis. To optimise biogas production and maintain a stable process, the substrate is diluted with tap water and co-digested with grain residues and glycerine to keep the ammonium nitrogen (NH4-N concentration below 6 g L−1. Combined addition of iron, hydrochloric acid and cobalt successfully precipitates sulphides, reduces ammonia toxicity and supplies microorganisms with trace element. Mesophilic temperature (38 °C is employed to further avoid ammonia toxicity. Together, these measures and doubling the digester volume have made it possible to increase annual biogas production from 27.7 TJ to 69.1 TJ.

  15. Small-scale upgrading and refinement of biogas; Smaaskalig uppgradering och foeraedling av biogas

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Helena; Mccann, Michael; Westman, Johan (Poeyry SwedPower AB, Stockholm (Sweden))

    2012-02-15

    Small-scale upgrading and refinement of biogas is a report which aims to compile the state of knowledge in small-scale biogas upgrading. The project have been a collaboration with Agrovaest and Energy Farm and was funded by the Foundation for Agricultural Research, Western Goetaland and the Agriculture Department. The technology available for small scale upgrade has been examined from the technical and economic standpoint. An economic comparison has been made and the production of upgraded biogas has been estimated for different raw gas flows. The work also contains information related to biogas production, upgrading and a comparison of liquid biogas, DME and Ecopar-diesel

  16. Biogas from farms will be tomorrow's fuel

    International Nuclear Information System (INIS)

    This final report for the Swiss Federal Office of Energy presents the results of a preliminary study on the technical, logistical and economic possibilities of agricultural biogas production for use as motor fuel. The study was made for a geographically limited region in the Swiss Canton of Lucerne. The reason for the choice of this area - which exhibits a high density of cattle and fowl - and its high potential for the production of biogas from animal excrements are discussed. The economic viability of three possible variants of biogas usage are discussed - its use as a fuel for electricity generation, the processing of the biogas and its injection into the natural gas mains and storage of the biogas in compressed-gas cylinders. Also, the relevance of biogas production in terms of environmental protection is emphasised - ammonia emissions from liquid manure poses a serious problem for the region. Further, political and market development aspects are discussed

  17. Impact of enzymatic pretreatment on corn stover degradation and biogas production.

    Science.gov (United States)

    Schroyen, Michel; Vervaeren, Han; Van Hulle, Stijn W H; Raes, Katleen

    2014-12-01

    Corn stover is an agricultural residue consisting of lignocellulose, cellulose and hemicellulose polymers, sheeted in a lignin barrier. Corn stover can be used as feedstock for biogas production. Previous studies have shown biological pretreatment of lignocellulose materials can increase digestibility of the substrate improving hydrolysis, the rate-limiting step in biogas production. The impact of pretreating with different enzymes (laccase, manganese peroxidase and versatile peroxidase) and different incubation times, (0, 6 and 24 h) was studied. The effect on the matrix and biomethane production was determined. Pretreatments did not yield high concentrations of phenolic compounds, inhibitors of biogas production. The laccase enzyme showed an increase in biomethane production of 25% after 24 h of incubation. Pretreatment with peroxidase enzymes increased biomethane production with 17% after 6 h of incubation. As such it can be concluded that by introducing the different enzymes at different stages during pretreatment an increased biomethane production can be obtained. PMID:25285760

  18. Analysis or evaluation of parameters having an influence on the optimization of the production of raw biogas biogas in terms of the constancy of quality and quantity of biogas; Analyse und Bewertung der Einflussgroessen auf die Optimierung der Rohbiogasproduktion hinsichtilich der Konstanz von Biogasqualitaet und -menge

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Ralph

    2013-04-01

    The expansion of renewable energies is an important contribution to the reduction of energy-related environmental impacts and sustainable development of the energy supply. The author of the contribution under consideration reports on the modification parameter in order to increase the efficiency of the biogas process and to optimize the production of raw biogas in terms of the constancy of quality and quantity of biogas. Thus, at first crucial factors influencing the optimization are examined in the laboratory and subsequently verified on a large-scale biogas plant. Finally, this method is applied to other, future biogas projects.

  19. Psychrophilic anaerobic co-digestion of highland barley straw with two animal manures at high altitude for enhancing biogas production

    International Nuclear Information System (INIS)

    Highlights: • High I/S ratio (>2/1) was favorable to both sole digestion and co-digestion. • Biogas production from BS was feasible at low temperature and low air pressure condition. • Long SRT (>80 days) is needed for biogas production at low temperature and low air pressure condition. • BS to manure ratio of 1/1 could increase biogas production. • IVS removal efficiency was correlated with biogas production. - Abstract: Biogas production from the co-digestion of highland barley straw (BS) with Tibet pig manure (TPM) and cow manure (CM) was investigated at Tibet plateau under low temperature (15 °C) condition. The effect of inoculum to substrate (I/S) ratio and BS to manure ratio on the biogas production was studied using a series of batch digesters performed at substrate concentration of 20%, based on total solid (TS). The results showed that biogas production from BS was feasible at low temperature and low air pressure condition. High I/S ratio (>2/1) and BS to manure ratio of 1/1 could increase the biogas production. Long solid retention time (SRT) (>80 days) was needed for biogas production at low temperature and low air pressure condition. The highest cumulative biogas production obtained from the co-digestion of BS with TPM and CM was 233.4 ml/gVS and 192.0 ml/gVS, respectively. Removal efficiencies of substrate showed that biogas production was correlated with the removal efficiency of water-insoluble volatile solids (IVS) but not with the change rate of soluble chemical oxygen demand (SCOD)

  20. Biogas Koczala. Biogas project in Koczala. Feasibility study. Technical report

    International Nuclear Information System (INIS)

    The present production of district heating in Koczala is based on coal. The district heating system is worn out technically and economically and according to the 2001 Energy Plan of Koczala the district heating plant shall be converted to a combination of a biogas fired CHP and a wood chip boiler. The overall objective of this project is to access the feasibility and viability construction an operation of a biogas plant owned by the co-operative agricultural company, Poldanor S.A. The feasibility study includes: 1) Availability of organic waste in the Koczala area, 2) Possibilities of using energy crops in the biogas plant, 3) Possibilities of receiving grants from the Polish National Fund for Environmental Protection, the new EU regional funds and through the joint implementation market (CO2 quotas), 4) Alternative locations of the biogas plant and the CHP unit, 5) Alternative strategies for selling electricity and heat, 6) Organisational issues (ownership). This report concludes that implementing the biogas project is environmentally and financially feasible and viable. If organic waste and/or maize silage can be provided and gasified without problems, the plant can supply as well the Koczala farm as the fodder mill with steam and heat, and also supply Koczala district heating system with approx. 75% of yearly heat consumption. Furthermore, electricity is supplied to the fodder mill and the public grid. (BA)

  1. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing

    Directory of Open Access Journals (Sweden)

    Leandro Janke

    2015-08-01

    Full Text Available Biogas production from sugarcane waste has large potential for energy generation, however, to enable the optimization of the anaerobic digestion (AD process each substrate characteristic should be carefully evaluated. In this study, the kinetic challenges for biogas production from different types of sugarcane waste were assessed. Samples of vinasse, filter cake, bagasse, and straw were analyzed in terms of total and volatile solids, chemical oxygen demand, macronutrients, trace elements, and nutritional value. Biochemical methane potential assays were performed to evaluate the energy potential of the substrates according to different types of sugarcane plants. Methane yields varied considerably (5–181 Nm3·tonFM−1, mainly due to the different substrate characteristics and sugar and/or ethanol production processes. Therefore, for the optimization of AD on a large-scale, continuous stirred-tank reactor with long hydraulic retention times (>35 days should be used for biogas production from bagasse and straw, coupled with pre-treatment process to enhance the degradation of the fibrous carbohydrates. Biomass immobilization systems are recommended in case vinasse is used as substrate, due to its low solid content, while filter cake could complement the biogas production from vinasse during the sugarcane offseason, providing a higher utilization of the biogas system during the entire year.

  2. Biogas Production from Sugarcane Waste: Assessment on Kinetic Challenges for Process Designing.

    Science.gov (United States)

    Janke, Leandro; Leite, Athaydes; Nikolausz, Marcell; Schmidt, Thomas; Liebetrau, Jan; Nelles, Michael; Stinner, Walter

    2015-01-01

    Biogas production from sugarcane waste has large potential for energy generation, however, to enable the optimization of the anaerobic digestion (AD) process each substrate characteristic should be carefully evaluated. In this study, the kinetic challenges for biogas production from different types of sugarcane waste were assessed. Samples of vinasse, filter cake, bagasse, and straw were analyzed in terms of total and volatile solids, chemical oxygen demand, macronutrients, trace elements, and nutritional value. Biochemical methane potential assays were performed to evaluate the energy potential of the substrates according to different types of sugarcane plants. Methane yields varied considerably (5-181 Nm³·tonFM(-1)), mainly due to the different substrate characteristics and sugar and/or ethanol production processes. Therefore, for the optimization of AD on a large-scale, continuous stirred-tank reactor with long hydraulic retention times (>35 days) should be used for biogas production from bagasse and straw, coupled with pre-treatment process to enhance the degradation of the fibrous carbohydrates. Biomass immobilization systems are recommended in case vinasse is used as substrate, due to its low solid content, while filter cake could complement the biogas production from vinasse during the sugarcane offseason, providing a higher utilization of the biogas system during the entire year. PMID:26404248

  3. Nonmarket cobenefits and economic feasibility of on-farm biogas energy production

    International Nuclear Information System (INIS)

    Standard analysis of the economic feasibility of on-farm biogas energy production tend to emphasize primarily on direct financial benefits to farmers, and abstracts from the nonmarket cobenefits associated with anaerobic digestion of livestock manure and other biomass feedstock. This shortcoming of the standard feasibility analysis raises a fundamental question: How is the economic feasibility of on-farm anaerobic biogas energy production affected by the associated nonpecuniary cobenefits? Incorporating key nonmarket cobenefits from biogas energy production extends the standard economic feasibility analysis, and provides important insights. When nonmarket cobenefits were excluded, on-farm biogas energy production was generally not financially feasible for the dairy and swine farm size ranges studied (except for 600- and 800-sow farms). Overall, results of the financial feasibility analysis did not change compared to a base scenario (without nonmarket cobenefits) when an estimated annual total nonmarket cobenefits of CND$5000 was incorporated into the analysis, for both dairy and swine farms. Biogas energy production was generally financially viable for small-size dairy (i.e., 50-cow) and swine (i.e., 200-sow) farms when the nonmarket cobenefits were valued at CND$15,000 (or higher). Improvements in financial feasibility were more dramatic for dairy than for swine farms

  4. Modelling the Kinetics of Biogas Production from Mesophilic Anaerobic Co-Digestion of Cow Dung with Plantain Peels

    OpenAIRE

    Ganiyu Kayode Latinwo; Samuel Enahoro Agarry

    2015-01-01

    This work investigated the effect of plantain peels as co-substrate in the anaerobic digestion of cow dung for efficient and high biogas production. The biogas experiments were carried out in two different 5 L anaerobic digesters and incubated for 40 days at ambient mesophilic temperatures (28 oC to 34 °C). The results showed that co-digestion of cow dung with plantain peels as co-substrate reduced start-up time for biogas generation and increased biogas yield by 18% as compared to cow dung a...

  5. Cavitation for improved sludge conversion into biogas

    OpenAIRE

    Stoop, A.H.; Bakker, T.W.; Kramer, H.J.M.

    2015-01-01

    In several studies the beneficial influence of pre-treatment of waste activated sludge with cavitation on the biogas production was demonstrated. It is however, still not fully certain whether this effect should be mainly contributed to an increase in conversion rate of organics into biogas by anaerobic bacteria, and how much cavitation increases the total biogas yield. An increase in yield is only the case if cavitation can further disrupt otherwise inaccessible cell membrane structures and ...

  6. Biogas in Romanian Agriculture, Present and Perspectives

    Directory of Open Access Journals (Sweden)

    Teodor Vintila

    2011-05-01

    Full Text Available In this work we have made a review of data available concerning the potential and technologies available to be applied in Romania to produce biogas in agricultural sector. Biogas application is especially interesting for medium and large farms, concentrated on specific surfaces, where a proper substrate collection can be organized. Reviewing data presenting the theoretical potential for livestock manure in Romania, we found that over 17 mil. MWh of energy from biogas can be provided in one year. It is estimated that only half of the theoretical energy potential is technically usable by biogas investments. As for the crops residues, has been shown that the theoretical biogas potential is 76,7 mil. MWh/year. However, there is a long way to be done in Romania to reach this potential, as in the present, the entire production of biogas is from industrial and municipal landfill and slurries - there are no operational on-farm biogas plants. Despite the high potential in terms of biogas production from agricultural sources, Romania has among the lowest biogas production in Europe. Although currently there are several biogas plants (not in agricultural sector totaling an installed capacity of only 4 MW, and producing in 2010 only 19 GWh electric power, the target for 2020 in Romania is 195 MWel. installed power, with an output of 950 GW electric power. The main cause of the actual situation is the lack of economic incentives similar to those offered by countries as Germany. Without a review of relevant legislation, the progress of the biogas sector in Romania will be limited. Furthermore, the development of low-cost technologies available to Romanian farmers will contribute to the development of production of renewable energy from biogas and other biofuels.

  7. ORGANIC WASTE USED IN AGRICULTURAL BIOGAS PLANTS

    Directory of Open Access Journals (Sweden)

    Joanna Kazimierowicz

    2014-04-01

    Full Text Available Treatment of organic waste is an ecological and economical problem. Searching method for disposal of these wastes, interest is methane fermentation. The use of this process in agricultural biogas plants allows disposal of hazardous waste, obtaining valuable fertilizer, while the production of ecologically clean fuel – biogas. The article presents the characteristics of organic waste from various industries, which make them suitable for use as substrates in agricultural biogas plants.

  8. ORGANIC WASTE USED IN AGRICULTURAL BIOGAS PLANTS

    OpenAIRE

    Joanna Kazimierowicz

    2014-01-01

    Treatment of organic waste is an ecological and economical problem. Searching method for disposal of these wastes, interest is methane fermentation. The use of this process in agricultural biogas plants allows disposal of hazardous waste, obtaining valuable fertilizer, while the production of ecologically clean fuel – biogas. The article presents the characteristics of organic waste from various industries, which make them suitable for use as substrates in agricultural biogas plants.

  9. Risk assessment of biogas in kitchens

    OpenAIRE

    Leroux, Carole; Modelon, Hugues; Rousselle, Christophe; Bellenfant, Gaël; Ramalho, Olivier; Jaeg, Jean-Paul; Zdanevitch, Isabelle; Naja, Ghinwa M.

    2009-01-01

    The health risk associated with human exposure to pollutants while using biogas for cooking was assessed following the methodology described by the US - National Research Council. Information of hazardous compounds and compositions of several biogas types were extracted from scientific literature. Compositions were dependent on the biogas origin (production process). First, a quantitative approach was conducted to identify substances with a high health risk based on their Human Toxicity Value...

  10. A regional model for sustainable biogas electricity production: A case study from a Finnish province

    International Nuclear Information System (INIS)

    Highlights: ► Regional model is introduced for biogas electricity production. ► The aim is to increase electricity production and to decrease GHG emissions. ► The model is tested in a Finnish province, North-Savo. ► Locations of biogas plants and potential feedstock fractions are determined. ► Results are illustrated in North-Savo map. -- Abstract: A regional model for sustainable biogas electricity production was formulated and tested for a Finnish province, North-Savo. By using the model the aim was to support decision making for reducing greenhouse gas (GHG) emissions and increasing renewable energy (RE) production in the studied region in the biogas electricity production system. The system boundary of the model included transportation of waste, biogas production, heat and electricity production, as well as the delivery of heat and digestate to the end users. When electricity production was maximized in the studied region, the electricity production and GHG emissions were 20 GW h/year and 24 kt/year of CO2 equivalent, respectively. When GHG emissions were minimized, the electricity production and GHG emissions were 20 GW h/year and 23 kt/year of CO2 equivalent, respectively. By producing electricity of 20 GW h/year, the maximum GHG reductions were roughly 74% of the theoretical maximum GHG emissions of 90 kt/year of CO2 equivalent in both cases. The regional electricity production potential of 20 GW h/year was only 21% of the maximum electricity production potential of 94 GW h/year. The locations of biogas plants, regional relative GHG emissions, potential feedstocks and regional electricity production were optimized in both cases in the studied region.

  11. Biogas in organic agriculture-effects on productivity, energy self-sufficiency and greenhouse gas emissions

    DEFF Research Database (Denmark)

    Pugesgaard, Siri; Olesen, Jørgen E; Jørgensen, Uffe;

    2014-01-01

    anaerobic digestion and biogas production were analyzed on a 1000 ha model farm with combined dairy and cash crop production, representing organic agriculture in Denmark. The effects on crop rotation, nitrogen flows and losses, yield, energy balance and greenhouse gas (GHG) emissions were evaluated for four...... production, but decreased when maize was used. Since part of the area was used for biogas production, the total output of foodstuffs from the farm was decreased. Effects on GHG emissions and net energy production were assessed by use of the whole-farm model FarmGHG. A positive farm energy balance was...

  12. Terpenes removal from biogas; Terpenenverwijdering uit biogas

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, P.; Holstein, J.; De Haan, HR.; Vlap, H. [DNV KEMA, Arnhem (Netherlands)

    2013-06-15

    Biogas may contain unwanted and harmful components, including aromatic hydrocarbons such as terpenes. These terpenes (organic oils) are mainly present in citrus peel and plant residues; that is why especially raw biogas from organic waste digestion plants contains high concentrations of terpenes. If terpenes end up in the gas grid (with the injected biomethane) there is a risk that plastics (PE pipes) lose their mechanical properties by absorbing liquids or extracting ethereal plasticizers. This can lead to embrittlement greatly lowering the reliability of the piping. In addition, soft components are als o affected (gaskets and rubber O-rings). Besides the impact on the integrity of the gas grid, terpenes also mask the odor of natural gas odorants such as THT. This impedes the detection of gas leaks which is a significant security risk. Furthermore, the presence of terpenes in biogas leads to fouling of equipment used for the drying of biomethane, as well as contamination of adsorption liquids and membranes used in the upgrading process. Currently, terpenes are removed by activated carbon filters. The tool life of such a filter can be relatively short if terpene concentrations are high in the biogas; this results in a significant increase of the operational costs, due to the replacement of the carbon. This study looked at alternative techniques for removing much of the terpenes from biogas in a simple, efficient and cheap way. In a workshop with stakeholders two techniques were chosen to be tested on laboratory scale in order to demonstrate the proof of principle. These techniques are photo-oxydation and a gas scrubbing. Of all investigated techniques for the removal of limonene the application of UV radiation seems to be the most promising option because of the simplicity of the process, the high efficiency (up to 94%), the comparable operational costs with activated carbon (6.7 to 9.5 euro/kg limonene removed, compared to 10 euro/kg limonene removed for activated

  13. How can we improve biomethane production per unit of feedstock in biogas plants?

    International Nuclear Information System (INIS)

    Biogas production is one of the number of tools that may be used to alleviate the problems of global warming, energy security and waste management. Biogas plants can be difficult to sustain from a financial perspective. The facilities must be financially optimized through use of substrates with high biogas potential, low water content and low retention requirement. This research carried out in laboratory scale batch digesters assessed the biogas potential of energy crops (maize and grass silage) and solid manure fractions from manure separation units. The ultimate methane productivity in terms of volatile solids (VS) was determined as 330, 161, 230, 236, 361 L/kg VS from raw pig slurry, filter pressed manure fiber (FPMF), chemically precipitated manure fiber (CPMF), maize silage and grass silage respectively. Methane productivity based on mass (L/kg substrate) was significantly higher in FPMF (55 L/kg substrate), maize silage (68 L/kg substrate) and grass silage (45-124 L/kg substrate (depending on dry solids of feedstock)) as in comparison to raw pig slurry (10 L/kg substrate). The use of these materials as co-substrates with raw pig slurry will increase significantly the biomethane yield per unit feedstock in the biogas plant.

  14. Potential of biogas production with young bulls manure on batch biodigesters

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Monica Sarolli S. de M.; Costa, Luiz A. de Mendonca [Universidade Estadual do Oeste do Parana (UNIOESTE), Cascavel, PR (Brazil)], E-mail: monicas@unioeste.br; Lucas Junior, Jorge de [Universidade Estadual Paulista (FCAV/UNESP), Jaboticabal, SP (Brazil). Faculdade de Ciencias Agrarias e Veterinarias

    2008-07-01

    The feedlot system concerning the young bull model allows that animals gain weight in a shorter time since there is higher daily intake of protein when compared to fiber. This change on animals' diet alters particularly manure characteristics and thus interferes on performance of biological systems of treatment. This study aimed at evaluating the potential of biogas production using manure of young bulls that received two different diets on batch biodigesters under three temperatures, with and without inoculum use. The results showed that manure from animals that received more protein on diet (80% concentrate + 20% roughage) had greater reductions on volatile solids when submitted to anaerobic biodigestion. Although the speed of biogas production was superior on treatments with inoculum, it was observed negative effect on inoculum use. There was no effect on temperature during biogas production. Regarding diet effect, manure of animals fed on diet with more protein produced larger amounts of biogas per kg of total added solids (0.2543) when compared to those who received less protein on diet (65% concentrate + 35% roughage), which meant 0.1001 m{sup 3} biogas/kg/total solids. (author)

  15. Production and use of biogas in Europe: a survey of current status and perspectives

    OpenAIRE

    Massimo Raboni1; Giordano Urbini

    2014-01-01

    The article presents the results of a survey carried out in the European Union (EU) regarding the production and use of biogas from different sources. The EU is a world leader in the field of biogas, with a production of 10,085.8 ktoe y -1 (in 2011) in terms of primary energy, accounting for about 60% of the world’s production. Germany is the EU country that has made the greatest progress in this field with a production of as much as 5,067.6 ktoe y-1 , of which a share of 4,414.2 ktoe y-1 res...

  16. Economic analysis of the generation of electric energy from biogas in pig production; Analise economica da geracao de energia eletrica a partir do biogas na suinocultura

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Franco M.; Oliveira, Paulo A.V. de [EMBRAPA Suinos e Aves, Concordia, SC (Brazil)], Emails: franco@cnpsa.embrapa.br, paolive@cnpsa.embrapa.br

    2011-06-15

    The demand for alternative sources of energy has grown in recent years in line with the variation of petroleum prices coupled with the recent energy crisis. Through anaerobic digestion swine manure can be converted into biogas. In the present study it was evaluated the economic viability of using biogas as an alternative source for the production of electricity, for different periods of generation. The method used for the economic evaluation was the net present value (NPV). The time of return on invested capital was also calculated taking into account the discount interest rate on cash flows. The study proved to be economically viable use of biogas from swine manure as a source for generating electricity. The increased demand for electricity in the property increases the net present value and decreases the time required for return of the investment. (author)

  17. Biogas building directions

    Energy Technology Data Exchange (ETDEWEB)

    Eggeling, G.; Guldager, R.; Hilliges, G.; Tietjen, C.; Werner, U.; Guldager, H.; Sasse, L.

    The purpose of this book is to approach the people living and working in the rural regions of developing countries with a technology enabling them to use their resources by their proper means in a way that they dispose of a cheap and inexhaustible source of energy and fertilizer. These building directives for biogas plants shall concretely give the fundamental information for the use of this technology and be a practical support in do-it-yourself construction of biogas plants by its intelligible way of description owing to designs and popular language. These directives are part of a work performed by German and Indian experts during two years working up the biogas technology in countries of the Third World and in industrial countries. The regulations have been discussed at an international workshop in Bremen with more than 60 experts from countries of all continents meeting to discuss the application of biogas plants. The result has been documented in the ''Report on the International Biogas-Workshop Bremen''.

  18. Biogas technology in Pakistan

    International Nuclear Information System (INIS)

    Although biomethanation is a mature technology its implementation is paradoxically only partly a success in Pakistan. Biogas plants on family farms can be economical but seldom are so in Pakistan. Either the investment cost has been high or satisfactory performance of the process could not be maintained or in some case for a short period of time only. It is, however, concluded that biogas plants, if correctly operated and maintained, may prove to be appropriate to the technical abilities and economic capacity of Pakistani farmers. It can get a change to be disseminated in rural areas. Biogas technology is appropriate to the ecological and economic demands of the future. With the potential from existing cattle population only, 3 to 4 million family size biogas plants may be installed in Pakistan which can substitute of considerable part of rural fuel wood demand for their daily household energy requirements. A large amount of dung is burnt every year by households which if put in the biogas plant, may provide a considerable amount of energy along with organic fertilizer could be saved from being burned at the same time. On the basis of available data from the livestock excluding agriculture residue (50% collectivity-1991), in terms of fuel substitution, this would be equivalent to 1200 million litres of kerosene at worth economic value of 9021 million rupees saving in the form of gas and 821 million rupees as additional fertilizer value annually. (LN)

  19. Energy production from biogas in the Italian countryside: Policies and organizational models

    International Nuclear Information System (INIS)

    In recent years, Italy has witnessed a proliferation of agricultural biogas plants. This article argues that institutional factors have played an important role in their diffusion. It describes the state and evolution of agricultural biogas in Italy, and then investigates the extent to which institutional pressures have been influential in shaping organizational models of biogas production. It finds that the dominance of one particular organizational model is the result of an isomorphic process in which a monopolistic market, legal structures, and subsidies play a role. The prevalence of this organizational model, however, does not lead to the effective use of biogas production, and furthermore it results in low environmental efficiency. For a more sustainable development of bioenergy, Italian policy-makers should reform the existing institutional framework by reorganizing subsidies, liberalizing the management of gas grids, and involving farmers in local projects. - Highlights: • Institutional factors played an important role for the diffusion of biogas plants in Italy. • The dominance of one organizational model is the result of an isomorphic process. • The prevalence of one organizational model results in low environmental efficiency. • Italian policy makers should reform the existing institutional framework

  20. Modelling the Potential Biogas Productivity Range from a MSW Landfill for Its Sustainable Exploitation

    Directory of Open Access Journals (Sweden)

    Elena Cristina Rada

    2015-01-01

    Full Text Available A model of biogas generation was modified and applied to the case of a sanitary landfill in Italy. The modifications considered the role of the temperature field normally established within each layer of waste. It must be pointed out the temperature affects the anaerobic biodegradation kinetics. In order to assess the effect of moisture on the waste biodegradation rate, on the bacteria process and then on the methane production, the model was compared with the LandGEM one. Information on the initial water content came from data concerning waste composition. No additional information about the hydrological balance was available. Thus, nine sets of kinetic constants, derived by literature, were adopted for the simulations. Results showed a significant variability of the maximal hourly biogas flows on a yearly basis, with consequences for the collectable amount during the operating period of a hypothetical engine. The approach is a useful tool to assess the lowest and highest biogas productivity in order to analyze the viability of biogas exploitation for energy purposes. This is useful also in countries that must plan for biogas exploitation from old and new landfills, as a consequence of developments in the waste sector.

  1. Establishment of a biogas grid and interaction between a biogas grid and a natural gas grid

    Energy Technology Data Exchange (ETDEWEB)

    Kvist, T.

    2011-01-15

    The project has aimed to clarify the advantages and disadvantages of a large biogas net in Ringkoebing Skjern municipality in Denmark, which wants to become self-sufficient in renewable energy by 2020. It is estimated that the biogas potential in the municipality is about. 60 mill. m3 methane gas a year. Half of the methane will be generated by digesting 80 % of the area's slurry, while the other half will be produced from energy crops. It will require an area equivalent to 5 % of the municipality's farmland. The idea is to establish decentralized 60-80 and 1-3 large centralized biogas plants, and that the produced biogas is distributed to natural gas-fired decentralized power plants. Based on this framework, a number of issues for the establishment of a biogas net have been investigated. These are: - the relation between biogas production and demand; - biogas compared to the overall energy system, - purification and measurement of biogas; - conversion of natural gas-fired power plants to biogas; - the value of biogas for cogeneration plants; - design of a biogas distribution net; - ownership and accountability; - potential business models. (LN)

  2. Determinants of the distribution and concentration of biogas production in Germany. A spatial econometric analysis

    International Nuclear Information System (INIS)

    The biogas production in Germany is characterized by a heterogeneous distribution and the formation of regional centers. In the present study the determinants of the spatial distribution and concentration are analyzed with methods of spatial statistics and spatial econometrics. In addition to the consideration of ''classic'' site factors of agricultural production, the analysis here focuses on the possible relevance of agglomeration effects. The results of the work contribute to a better understanding of the regional distribution and concentration of the biogas production in Germany.

  3. Influence of Oregano (Origanum vulgare L.), Fennel (Foeniculum vulgare L.) and Hop cones (Humulus lupulus L.) on biogas and methane production

    OpenAIRE

    Mohamed, Shamseldin Daffallah Yousif

    2014-01-01

    A high demand for agricultural biomass production in Germany was attributed to the increasing number of biogas plants every year. The value of a crop as a substrate for biogas production via anaerobic digestion depends on its biomass yield capacity compared to the effort for cultivation and on its ability to produce biogas with high methane content. After the EEG 2012 amendment which determined the amount of maize that should be used in biogas production farmers searching for alternative s...

  4. Biogas Production from Household Wastes : A Quantitative Feasibility Study for Student Apartments in Albano

    OpenAIRE

    Önder, Deniz

    2013-01-01

    Biogas is an environmentally friendly energy source with great importance for sustainable development. The purpose of this study is to determine the feasibility of setting up a biogas plant at the student housing area planned at Albano in Stockholm. The possibility of attaining self-sustainability in Albano is also investigated. After compiling the processes for converting household waste into biogas through a literature study, a quantitative feasibility study of setting up a biogas plant is ...

  5. COMPARISON BETWEEN BIOGAS PRODUCTION FROM MANURE OF LAYING HENERS AND BROILERS

    OpenAIRE

    Srećko Kukić; Branimir Bračun; Davor Kralik; Robert T. Burns; Slavko Rupčić; Daria Jovičić

    2010-01-01

    Biogas plants that process raw materials from agriculture, such as poultry manure,are one of the most significant applications of anaerobic fermentation. In Asiancountries, particularly in China, India, Nepal and Vietnam, there are several millionvery simple, small biogas plants that produce gas for household cooking and lighting.In Europe and North America a number of agricultural biogas plants now, areincreasing daily, a few thousand biogas plants exist, most of which use moderntechnologies...

  6. THE EFFECT OF NATURAL WATER WITH COW DUNG AND AGRICULTURAL WASTE RATIO ON BIOGAS PRODUCTION FROM ANAEROBIC CO-DIGESTION

    Directory of Open Access Journals (Sweden)

    NaponKeanoi

    2013-01-01

    Full Text Available Global warming caused by energy generation from fossil fuel has accelerated the deployment of renewable fuels such as biogas. In this study, batch fermentation (5L was studied to observe the effect of natural water, cow dung, rice straw and water hyacinth ratio on the biogas and methane production at ambient temperature (31°C, 7.1-7.4 of pH for 52 days. The five types of co-digestion were 2:1:1:1 (digester A, 1:1:1:1 (digester B, 0.5:1:1:1 (digester C, 1:1:1:0 (digester D and 1:1:0:1 (digester E, respectively. The result showed that the biogas production increased progressively with amount of natural water to raw material. The maximum biogas production and methane concentration was 1650 mL/days and 61.47% was obtained at substrate mixture 2:1:1:1 (digester A, which there are suitable of C:N ratio at 31.1:1. Natural water, cow dung, rice straw and water hyacinth was mixed for biogas production, have been found to improve highest biogas production compared to those of without rice straw and water hyacinth. Therefore, the mixing natural water, cow dung, rice straw and water hyacinth can improve both biogas production and content of methane in biogas.

  7. Influence of lignin on biochemical methane potential of biomass for biogas production

    DEFF Research Database (Denmark)

    Triolo, J M; Sommer, S G; Møller, H B;

    2011-01-01

    Biochemical methane potential (BMP) of biomass is of great importance in assessing biodegradability as well as predicting biogas yield for biogas production. Since the current BMP determination methods are costly and time-consuming, innovative techniques for predicting BMP are needed. The objective...... of this study was to examine the influence of fibrous fractions of biomass on BMP to develop an economical and easy-to-use predicting model of BMP, and hence the biodegradability of organic materials for biogas production. The model was developed either for energy crops or for animal manures, or as a...... combined model for these two biomass groups. Validation of the combined model was carried out using datasets from the literature. This study showed that lignin was not degraded during anaerobic digestion. Furthermore, lignin concentration in organic materials was the strongest predictor of BMP for all the...

  8. Biogas Production by Anaerobic Digestion of Date PalmPulp Waste

    Directory of Open Access Journals (Sweden)

    Khalidah A. Jaafar

    2010-01-01

    Full Text Available The purpose of this preliminary study is to verify the possibility of using Iraqi Zahdi date palm biomass as a resource for biogas production, methane in particular using thermophilic anaerobic digestion with waste water treatment activated sludge. Moreover, is to investigate the influence of extra nutrients addition to the digestion mixture. Biogas was captured in sealed jars with remote sensing modules connected to computer with integrated program to record the gas pressure continuously. A total gas pressure with 67% Methane was produced from date pulp waste fermentation with a yield of 0.57 Lit for each gram volatile solid of substrate. Addition of 1% yeast extract solution as nutrient increased Methane yield in liters by 5.9%. This is the first time in literature to record biogas production data from Iraqi date palm biomass.

  9. Buckwheat for the production of biogas. Rediscover forgotten cultures; Buchweizen fuer die Biogasproduktion. Vergessene Kulturen wiederentdecken

    Energy Technology Data Exchange (ETDEWEB)

    Stockmann, Falko; Fritz, Maendy

    2011-07-01

    Buckwheat whole plant can be used for the production of biogas. Due to its short growing period, buckwheat can be integrated very variable in crop rotations. For example, buckwheat can be grown as a second crop in the summer. After the harvest of winter wheat, which is used as whole plant silage, the sowing date is around mid-June. The ingredients of buckwheat expect a good fermentability with corresponding biogas production. [German] Buchweizen-Ganzpflanzen koennen fuer die Erzeugung von Biogas genutzt werden. Durch seine kurze Vegetationsperiode laesst sich Buchweizen sehr variabel in Fruchtfolgen einbinden. Zum Beispiel kann Buchweizen als Zweitfrucht im Sommer angebaut werden. Nach der Ernte von Wintergetreide, das als Ganzpflanzensilage genutzt wird, liegt der Saattermin etwa Mitte Juni. Die Inhaltsstoffe von Buchweizen lassen eine gute Vergaerbarkeit mit einer entsprechenden Biogasproduktion erwarten.

  10. Conceptual design of an integrated hydrothermal liquefaction and biogas plant for sustainable bioenergy production

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Rudra, Souman; Toor, Saqib;

    2013-01-01

    process. This biorefinery concept offers a sophisticated and sustainable way of converting organic residuals into a range of high-value biofuel streams in addition to combined heat and power (CHP) production. The primary goal of this study is to provide an initial estimate of the feasibility...... of such a process. By adding a diesel-quality-fuel output to the process, the product value is increased significantly compared to a conventional BP. An input of 1000 kg h−1 manure delivers approximately 30–38 kg h−1 fuel and 38–61 kg h−1 biogas. The biogas can be used to upgrade the biocrude, to supply the gas...

  11. Biogas Production from Batch Anaerobic Co-Digestion of Night Soil with Food Waste

    OpenAIRE

    Assadawut Khanto; Peerakan Banjerdkij

    2016-01-01

    The objective of this study is to investigate the biogas production from Anaerobic Co-Digestion of Night Soil (NS) with Food Waste (FW). The batch experiment was conducted through the NS and FW with a ratio of 70:30 by weight. The experiment is mainly evaluated by the characteristic of Co-Digestion and Biogas Production. In addition of food waste was inflating the COD loading from 17,863 to 42,063 mg/L which is 135 % increased. As the result, it shows that pH has dropped off in the beginning ...

  12. Production of biogas from Azolla pinnata R. Br. and Lemna minor L. : effect of heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Jain, S.K.; Gujral, G.S.; Jha, N.K.; Vasudevan, P. (Indian Inst. of Tech., New Delhi (India))

    1992-01-01

    The absorption of iron, copper, cadmium, nickel, lead, zinc, manganese and cobalt by Azolla pinnata R.Br and Lemna minor L., and subsequent utilization of this biomass for production of biogas (methane), have been investigated. Iron or manganese did not have any toxic effect on the anaerobic fermentation of Azolla and Lemna, while copper, cobalt, lead and zinc showed toxicity. At low concentrations cadmium and nickel showed a favourable effect on the rate of biogas production and its methane content, but with increase in concentrations,rate of biogas production and methane content decreased. However, although there was this decrease in biogas production and methane content, the methane content of biogas was still higher than that which was obtained from non-contaminated biomass. (author).

  13. Optimised biogas production from the co-digestion of sugar beet with pig slurry: Integrating energy, GHG and economic accounting

    DEFF Research Database (Denmark)

    Boldrin, Alessio; Baral, Khagendra Raj; Fitamo, Temesgen Mathewos;

    2016-01-01

    , utilising SB negatively affects the profitability of biogas production, because of the increased costs involved in feedstock supply. The scale of the processing plant is neutral in terms of profitability when SB is added. The results indicate that medium-to large-sized biogas plants, using low shares of SB...

  14. Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing

    DEFF Research Database (Denmark)

    Zakrzewski, Martha; Goesmann, Alexander; Jaenicke, Sebastian;

    2012-01-01

    Structural composition and gene content of a biogas-producing microbial community from a production-scale biogas plant fed with renewable primary products was recently analyzed by means of a metagenome sequencing approach. To determine the transcriptionally active part of the same biogas communit...

  15. Biogas Plant in MUAS

    OpenAIRE

    Varapnickaite, Ernesta

    2015-01-01

    The first and the most important aim is to find out if it is profitable to build a biogas plant in MUAS. Biogas plant has already proved that it is efficient way to use waste and make additional energy for heating and electricity. However in MUAS we have limited amount of biowaste so I will investigate how much energy would ir be possible to get. The second aim is to learn what is the best way to use the energy from the plant – if it should be used in all buildings for electricity and heating...

  16. Optimal operating conditions for maximum biogas production in anaerobic bioreactors

    International Nuclear Information System (INIS)

    The objective of this paper is to demonstrate the existence of optimal residence time and substrate inlet mass flow rate for maximum methane production through numerical simulations performed with a general transient mathematical model of an anaerobic biodigester introduced in this study. It is herein suggested a simplified model with only the most important reaction steps which are carried out by a single type of microorganisms following Monod kinetics. The mathematical model was developed for a well mixed reactor (CSTR – Continuous Stirred-Tank Reactor), considering three main reaction steps: acidogenesis, with a μmax of 8.64 day−1 and a KS of 250 mg/L, acetogenesis, with a μmax of 2.64 day−1 and a KS of 32 mg/L, and methanogenesis, with a μmax of 1.392 day−1 and a KS of 100 mg/L. The yield coefficients were 0.1-g-dry-cells/g-pollymeric compound for acidogenesis, 0.1-g-dry-cells/g-propionic acid and 0.1-g-dry-cells/g-butyric acid for acetogenesis and 0.1 g-dry-cells/g-acetic acid for methanogenesis. The model describes both the transient and the steady-state regime for several different biodigester design and operating conditions. After model experimental validation, a parametric analysis was performed. It was found that biogas production is strongly dependent on the input polymeric substrate and fermentable monomer concentrations, but fairly independent of the input propionic, acetic and butyric acid concentrations. An optimisation study was then conducted and optimal residence time and substrate inlet mass flow rate were found for maximum methane production. The optima found were very sharp, showing a sudden drop of methane mass flow rate variation from the observed maximum to zero, within a 20% range around the optimal operating parameters, which stresses the importance of their identification, no matter how complex the actual bioreactor design may be. The model is therefore expected to be a useful tool for simulation, design, control and

  17. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jingqing [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); School of Environmental Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Li, Dong; Sun, Yongming [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang, Guohui [School of Environmental Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Yuan, Zhenhong, E-mail: yuanzh@ms.giec.ac.cn [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China); Zhen, Feng; Wang, Yao [Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2013-12-15

    Highlights: • Biogas production was enhanced by co-digestion of rice straw with other materials. • The optimal ratio of kitchen waste, pig manure and rice straw is 0.4:1.6:1. • The maximum biogas yield of 674.4 L/kg VS was obtained. • VFA inhibition occurred when kitchen waste content was more than 26%. • The dominant VFA were propionate and acetate in successful reactors. - Abstract: In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37 ± 1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9–70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others.

  18. Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure

    International Nuclear Information System (INIS)

    Highlights: • Biogas production was enhanced by co-digestion of rice straw with other materials. • The optimal ratio of kitchen waste, pig manure and rice straw is 0.4:1.6:1. • The maximum biogas yield of 674.4 L/kg VS was obtained. • VFA inhibition occurred when kitchen waste content was more than 26%. • The dominant VFA were propionate and acetate in successful reactors. - Abstract: In order to investigate the effect of feedstock ratios in biogas production, anaerobic co-digestions of rice straw with kitchen waste and pig manure were carried out. A series of single-stage batch mesophilic (37 ± 1 °C) anaerobic digestions were performed at a substrate concentration of 54 g/L based on volatile solids (VS). The results showed that the optimal ratio of kitchen waste, pig manure, and rice straw was 0.4:1.6:1, for which the C/N ratio was 21.7. The methane content was 45.9–70.0% and rate of VS reduction was 55.8%. The biogas yield of 674.4 L/kg VS was higher than that of the digestion of rice straw or pig manure alone by 71.67% and 10.41%, respectively. Inhibition of biogas production by volatile fatty acids (VFA) occurred when the addition of kitchen waste was greater than 26%. The VFA analysis showed that, in the reactors that successfully produced biogas, the dominant intermediate metabolites were propionate and acetate, while they were lactic acid, acetate, and propionate in the others

  19. Evaluation of biogas of waste from poultry

    International Nuclear Information System (INIS)

    Most of the farms, the waste of agricultural production do not receive adequate treatment for the stabilization of organic matter and reduce its pollution potential. The anaerobic digestion is an alternative for the treatment of waste, as well as allowing the reduction of pollution potential and the health risks of waste to a minimum, promotes the generation of biogas used as a heat source for various uses on the farm. Thus, the aim of this work was to evaluate the biogas production efficiency from the chicken waste. For the supply of biodigesters, adopted the total solids content of 8% and discontinuous supply system. The biogas potential was determined on the basis of their daily production and explosive rate. It was observed that the biogas production started 24 hours after the start of supplying the digesters. The maximum biogas production was approximately 0.87 L after the ninth and the 54th day starting the digestion process. The average daily production of biogas generated from bird manure was 0.022 L, while the cumulative 0.91 L after 72 days of digestion. The explosive rate of biogas generated by poultry origin residues peaked at 51% after 32 days of the start of the digestion process. In this analysis, we found the presence of methane in the biogas produced in all substrates tested after 24 h of digestion, because it’s burning in the presence of an ignition source (Fire). (full text)

  20. Anaerobic digestion technology in livestock manure treatment for biogas production: a review

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, Ismail M. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Selangor (Malaysia); Mohd Ghazi, Tinia I.; Omar, Rozita

    2012-06-15

    This article reviews the potential of anaerobic digestion (AD) for biogas production from livestock manure wastes and compares the operating and performance data for various anaerobic process configurations. It examines different kinds of manure waste treatment techniques and the influence of several parameters on biogas and methane yield. The comparison indicates that a variety of different operational conditions, various reactor configurations such as batch reactors, continuously stirred tank reactor (CSTR), plug flow reactor (PFR), up-flow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (ASBR), temperature phased anaerobic digestion (TPAD), and continuous one- and two-stage systems, present a suitable technology for the AD of livestock manure waste. Main performance indicators are biogas and methane yield, degradation of volatile solids (VS), higher loading, and process stability with a short retention time. (copyright 2012 WILEY-VCH Verlag GmbH 8 Co. KGaA, Weinheim)

  1. Anaerobic co-digestion of agricultural by-products with manure, for enhanced biogas production

    DEFF Research Database (Denmark)

    Søndergaard, Marie M.; Fotidis, Ioannis; Kovalovszki, Adam;

    2015-01-01

    Biogas is extensively promoted as a promising renewable energy. Therefore, the search of appropriate co-substrates has come into focus. In this study, we examined the potential of using agricultural byproducts as alternative co-substrates for increased biogas production. The biochemical methane...... all mono-substrates tested. On the basis of BMP, the substrates ranked as follows: meadow grass > spring barley, winter wheat, winter barley, ryegrass > rapeseed > manure. Co-digestion of manure with byproducts resulted in only an additive and not synergistic methane production. Continuous co......-digestion of 34 g L–1 raw meadow grass with manure increased the methane production rate of the CSTR reactor by 114% compared to the manure alone....

  2. Factors influencing the feasibility of using catch crops for biogas production

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2013-01-01

    In order to secure an economically feasible operation of manure-based biogas plants in Denmark there is a need for supplying the plants with high yielding biomass feedstock. The aim of this study was to investigate the biomass yield and the methane potential of three different catch crop species in...... three different locations of Jutland, Denmark. Differences in climate and soil conditions between locations determined mainly the biomass yield. Methane potentials were in the range of 252-435 ml CH4/ g VS depending on catch crops species. The use of catch crops for biogas production has large...

  3. Plant cultivation aspects of biogas production in organic farming; Pflanzenbauliche Aspekte der Biogasproduktion im oekologischen Landbau

    Energy Technology Data Exchange (ETDEWEB)

    Schwab, Bernhard [Amt fuer Ernaehrung Landwirtschaft und Forsten, Bamberg (Germany); Miller, Hubert [Biolandhof Miller (Germany)

    2012-11-01

    The authors of the contribution under consideration report on plant cultivation aspects of biogas production in organic farming. The power generation, the economic aspects of this operating sector, the potential impact on the performance of crop production as well as soil fertility are considered.

  4. Mechanism of zeolite activity in biogas co-digestion

    OpenAIRE

    Hansson, Anna

    2011-01-01

    Biogas is a source of renewable energy and is produced at anaerobic conditions. The gas consists mainly of methane (55-70 %) and carbon dioxide (30-45 %). Biogas can be used as vehicle fuel after the gas has been upgraded to a methane content of approximately 97 %. There are several companies in Sweden producing biogas. Svensk biogas AB in Linköping is one of the largest. The company has two biogas production plants; one in Linköping and one in Norrköping. To meet the surge demand for biogas ...

  5. Life cycle assessment of biogas production in small-scale household digesters in Vietnam

    DEFF Research Database (Denmark)

    Vu, T.K.V.; Vu, D.Q.; Jensen, Lars Stoumann;

    2015-01-01

    where there is an excess of biogas which is intentionally released. A sensitivity analysis showed that biogas digesters could be a means of reducing global warming if methane emissions can be kept low. In terms of eutrophication, farms with biogas digesters had 3 to 4 times greater impacts. In order to......Small-scale household digesters have been promoted across Asia as a sustainable way of handling manure. The major advantages are that they produce biogas and reduce odor. However their disadvantages include the low recycling of nutrients, because digestate is dilute and therefore difficult to...... transport, and the loss of biogas as a result of cracks and the intentional release of excess biogas. In this study, life cycle assessment (LCA) methodology was used to assess the environmental impacts associated with biogas digesters in Vietnam. Handling 1,000 kg of liquid manure and 100 kg of solid manure...

  6. Biogas document; Dossier Biogaz

    Energy Technology Data Exchange (ETDEWEB)

    Verchin, J.C.; Servais, C. [Club BIOGAZ, 94 - Arcueil (France)

    2002-06-01

    In this document concerning the biogas, the author presents this renewable energy situation in 2001-2002, the concerned actors, the accounting of the industrial methanization installations in France, the three main chains of process for industrial wastes and two examples of methanization implementation in a paper industry and in a dairy. (A.L.B.)

  7. Improvement of Biogas Production from Orange Peel Waste by Leaching of Limonene

    Directory of Open Access Journals (Sweden)

    Rachma Wikandari

    2015-01-01

    Full Text Available Limonene is present in orange peel wastes and is known as an antimicrobial agent, which impedes biogas production when digesting the peels. In this work, pretreatment of the peels to remove limonene under mild condition was proposed by leaching of limonene using hexane as solvent. The pretreatments were carried out with homogenized or chopped orange peel at 20–40°C with orange peel waste and hexane ratio (w/v ranging from 1 : 2 to 1 : 12 for 10 to 300 min. The pretreated peels were then digested in batch reactors for 33 days. The highest biogas production was achieved by treating chopped orange peel waste and hexane ratio of 12 : 1 at 20°C for 10 min corresponding to more than threefold increase of biogas production from 0.061 to 0.217 m3 methane/kg VS. The solvent recovery was 90% using vacuum filtration and needs further separation using evaporation. The hexane residue in the peel had a negative impact on biogas production as shown by 28.6% reduction of methane and lower methane production of pretreated orange peel waste in semicontinuous digestion system compared to that of untreated peel.

  8. Sustainable supply of biogas in Germany; Nachhaltige Biogasbereitstellung in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Ronny [DBI - Gastechnologisches Institut gGmbH, Freiberg (Germany). Bereich Biogastechnologie; Ball, Thomas; Kiefer, Joachim [Technologiezentrum Wasser (Germany). Abt. Grundwasser und Boden; Dresen, Boris [Fraunhofer-Institut UMSICHT (Germany). Themenbereich Ressourcenmanagement; Koeppel, Wolfgang [DVGW-Forschungsstelle Karlsruhe (Germany). Gruppe Systeme und Netze

    2013-04-15

    The supply of certain substrates for biogas production is partly controversial discussed: 'Tank-or-plate' discussions, maize cultivation of the landscape and so forth. The research project 'Potential study for the sustainable production and supply of gaseous, renewable energy in Germany (Biogas Atlas)' examines the potentials of biogas production under consideration of various sustainability factors.

  9. Life cycle costs for the optimized production of hydrogen and biogas from microalgae

    International Nuclear Information System (INIS)

    Despite the known advantages of microalgae compared with other biomass providers or fossil fuels, microalgae are predominately produced for high-value products. Economic constraints might limit the commercial energetic use of microalgae. Therefore, we identify the LCCs (life cycle costs) and economic hot spots for photoautotrophic hydrogen generation from photoautotrophically grown Chlamydomonas reinhardtii in a novel staggered PBR (photobioreactor) and the anaerobic digestion of the residual biomass to obtain biogas. The novel PBR aims at minimizing energy consumption for mixing and aeration and at optimizing the light conditions for algal growth. The LCCs per MJ amounted to 12.17 Euro for hydrogen and 0.99 Euro for biogas in 2011 for Germany. Market prices per MJ of 0.02 Euro for biogas and 0.04 Euro for hydrogen are considerably exceeded. Major contributors to operating costs, about 70% of total LCCs, are personnel and overhead costs. The investment costs consist to about 92% of those for the PBR with a share of 61% membrane costs. The choice of Madrid as another production location with higher incident solar irradiation and lower personnel costs reduces LCCs by about 40%. Projecting LCCs to 2030 with experience curves, the LCCs still exceed future market prices. - Highlights: • Life cycle cost assessment of hydrogen and biogas from microalgae in a novel photobioreactor. • Current and future (2030) economically viable production unlikely in Germany. • Personnel and photobioreactor costs are major cost drivers. • Changing the production location may significantly reduce the life cycle costs

  10. Sustainable biogas production. Learning from nature; Nachhaltige Biogaserzeugung. Was wir von der Natur lernen koennen

    Energy Technology Data Exchange (ETDEWEB)

    Weichgrebe, Dirk; Rosenwinkel, Karl-Heinz [Leibniz Univ. Hannover (Germany). Inst. fuer Siedlungswasserwirtschaft und Abfalltechnik; Breves, Gerhard [Stiftung Tieraerztliche Hochschule Hannover (Germany); Strecker, Michael [ARES-Consultants GbR, Hannover (Germany)

    2009-07-01

    The digestion process in the ruminant stomach is nature's most efficient system of cellulose conversion; its recreation as a technical process is the point of departure for improving the efficiency of biogas production in the RUMEN and DAUMEN research processes. (orig.)

  11. Evaluation of biogas production by dry anaerobic digestion of switchgrass-animal manure mixtures

    Science.gov (United States)

    Anaerobic digestion is a biological method used to convert organic wastes into a stable product for land application without adverse environmental effects. The biogas produced can be used as an alternative renewable energy source. Dry anaerobic digestion (> 15% TS; total solid) has an advantage ov...

  12. Fungal pretreatment of albizia chips for enhanced biogas production by solid-state anaerobic digestion

    Science.gov (United States)

    Albizia biomass is a forestry waste, and holds a great potential in biogas production by solid-state anaerobic digestion (SS-AD). However, low methane yields from albizia chips were observed due to their recalcitrant structure. In this study, albizia chips were pretreated by Ceriporiopsis subvermisp...

  13. The effect of electron acceptors on biogas production from tannery sludge of a Mexican wastewater plant

    Science.gov (United States)

    Effluents from the leather processing plants generally are discharged into rivers or are used to irrigate farmland. The biogas production from the digestion of sludge produced could be used as alternative sources for energy and power generation. A study was carried out to examine the effects of vari...

  14. The effect of system parameters on the biogas production from anaerobic digestion of livestock wastes

    Science.gov (United States)

    Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of system p...

  15. BIOLEACH: Coupled modeling of leachate and biogas production on solid waste landfills

    Science.gov (United States)

    Rodrigo-Clavero, Maria-Elena; Rodrigo-Ilarri, Javier

    2015-04-01

    One of the most important factors to address when performing the environmental impact assessment of urban solid waste landfills is to evaluate the leachate production. Leachate management (collection and treatment) is also one of the most relevant economical aspects to take into account during the landfill life. Leachate is formed as a solution of biological and chemical components during operational and post-operational phases on urban solid waste landfills as a combination of different processes that involve water gains and looses inside the solid waste mass. Infiltration of external water coming from precipitation is the most important component on this water balance. However, anaerobic waste decomposition and biogas formation processes play also a role on the balance as water-consuming processes. The production of leachate one biogas is therefore a coupled process. Biogas production models usually consider optimal conditions of water content on the solid waste mass. However, real conditions during the operational phase of the landfill may greatly differ from these optimal conditions. In this work, the first results obtained to predict both the leachate and the biogas production as a single coupled phenomenon on real solid waste landfills are shown. The model is applied on a synthetic case considering typical climatological conditions of Mediterranean catchments.

  16. Learning as the Construction and Re-Mediation of Activity Systems: Environmental Management in Biogas Production

    Science.gov (United States)

    Pereira Querol, Marco A.; Suutari, Timo; Seppanen, Laura

    2010-01-01

    The purpose of this paper is to present theoretical tools for understanding the dynamics of change and learning during the emergence and development of environmental management activities. The methodology consists of a historical analysis of a case of biogas production that took place in the Southwest region of Finland. The theoretical tools used…

  17. Biogas production from communal grass cuttings. Final report. Biogaserzeugung aus kommunalen Grasabfaellen im Klaewerk. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Perwanger, A.; Seifert, M.; Radeloff, D.

    1988-02-01

    An investigation was carried out in the sewage works of the town of Selb over a period of two years as to the possibility of adding grass to sewage sludge for biogas production. Communal grass cuttings were added to the large (2500 m{sup 3}) reactor tower of the sewage plant. Additionally the gas production rate from grass and sludge was determined using a continuous flow trial reactor of 1 m{sup 3} capacity run in parallel to the main reactor. The remaining grass was analysed for mineral and heavy metal content, and the vollumetric reduction measured. In accompanying laboratory investigations using 45 biogas reactors of 10 to 1000 litre capacity 29 specific trials were carried out. The principle factors determined were: 1. Optimum mixture of sewage sludge and grass, 2. Specific gas production from grass, silage and hay, 3. Comparative suitability of batch storage and flow biogas reactors. The results are evaluated in terms of substrate and reactor efficiency. Based on the insight gained, three proposals for the construction and operation of biogas plants for energy production from grass have been designed. (orig.) With 22 refs., 29 tabs., 98 figs.

  18. Application of ADM1 for modeling of biogas production from anaerobic digestion of Hydrilla verticillata.

    Science.gov (United States)

    Chen, Xiaojuan; Chen, Zhihua; Wang, Xun; Huo, Chan; Hu, Zhiquan; Xiao, Bo; Hu, Mian

    2016-07-01

    The present study focused on the application of anaerobic digestion model no. 1 (ADM1) to simulate biogas production from Hydrilla verticillata. Model simulation was carried out by implementing ADM1 in AQUASIM 2.0 software. Sensitivity analysis was used to select the most sensitive parameters for estimation using the absolute-relative sensitivity function. Among all the kinetic parameters, disintegration constant (kdis), hydrolysis constant of protein (khyd_pr), Monod maximum specific substrate uptake rate (km_aa, km_ac, km_h2) and half-saturation constants (Ks_aa, Ks_ac) affect biogas production significantly, which were optimized by fitting of the model equations to the data obtained from batch experiments. The ADM1 model after parameter estimation was able to well predict the experimental results of daily biogas production and biogas composition. The simulation results of evolution of organic acids, bacteria concentrations and inhibition effects also helped to get insight into the reaction mechanisms. PMID:27010339

  19. Testing and optimising biogas plants

    Energy Technology Data Exchange (ETDEWEB)

    Perwanger, A.

    1984-01-01

    The long-term output of biogas systems studied in practice of an average just under 1 cbm gross of biogas per GV and day is below the forecast levels. Only very few plants showed higher output in the long term. This makes it even more important to show ways of improving process control and reducing building costs for the system. As a result of comparative practical studies in connection with corresponding experiments in the laboratory, it has already been possible to find a number of proposals for improvements. For instance, raising substrate performance with substrate dilution, cost-reducing and functionally safe construction of systems with a gas-dome mounted on top and the possibility of simple biogas production in the final storage unit with low-cost voluminous gas storage at the same time. The latter solution has the advantage of allowing the fermentation substrate to be anaerobically treated all year round, the N-losses would be lower by contrast with open slurry storage, and that any ecologically relevant regulations about odeur control and slurry storage at the farm could be complied with absolutely safely and with the additional use of biogas.

  20. Fuels made from agricultural biomass - (biogas) alternative types(Alternativne vrste goriva iz poljoprivredne biomase - biogas)

    OpenAIRE

    Jovanovska, Vangelica; Jovanovski, Nikola; Sovreski, Zlatko; Pop-Andonov, Goran; Sinani, Feta

    2013-01-01

    Biogas is a typical "product" of urban discharges, which has a great negative environmental impact. To avoid this negative effect, it can be burnt at very high temperatures, producing smoke emissions composed of CO2. A useful alternative is to use biogas as fuel to feed co-generation plants, producing electricity. At the moment biogas is used as fuel, introducing it directly in the combustion chamber. Nevertheless the heterogeneity of the gas stresses the engine, reducing its life. The new te...

  1. Biogas in the natural gas distribution network; Biogas til nettet

    Energy Technology Data Exchange (ETDEWEB)

    Kvist Jensen, T.

    2009-05-15

    With the Danish 'Thorsoe Biogas Plant' as reference case, an assessment of the possibility of using the existing natural gas distribution network for distributing biogas was carried out. Technologies for and cost of upgrading biogas to natural gas quality are presented. Furthermore, a socio-economic analysis has been performed, including the Danish financial conditions, the market models, and the role of the natural gas distribution companies.

  2. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome

    Science.gov (United States)

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E.

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na+). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L−1 day−1 organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the “ML635J-40 aquatic group” while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  3. Solar energy project and biogas for animal feed production and jelly; Projeto de energia solar e biogas para producao de racao animal e geleia

    Energy Technology Data Exchange (ETDEWEB)

    Moura, J.P. de; Selvam, P.V.P.; Silva, R.T. da [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica], e-mails: johnsonmoura@yahoo.com.br, tatianesil@gmail.com

    2006-07-01

    This paper presents a study for utilization of surplus of horticulture industry for the production of jam and sweet from the fruit pulp and the manufacture of animal feed, organic fertilizer and biogas from the waste of this production. It also presents the equipment development of low-cost construction and operation that enables high energy efficiency (without heat loss) and can then be traded with greater advantage over other products on the market.

  4. Choosing co-substrates to supplement biogas production from animal slurry - A life cycle assessment of the environmental consequences

    DEFF Research Database (Denmark)

    Croxatto Vega, Giovanna Catalina; Ten Hoeve, Marieke; Birkved, Morten;

    2014-01-01

    Biogas production from animal slurry can provide substantial contributions to reach renewable energy targets, yet due to the low methane potential of slurry, biogas plants depend on the addition of co-substrates to make operations profitable. The environmental performance of three underexploited co...... nutrient content and high methane potential, straw yields the lowest impacts for eutrophication and the highest climate change and fossil depletion savings. Co-substrates diverted from incineration to biogas production had fewer environmental benefits, due to the loss of energy production, which is then...

  5. Assessment of energy performance in the life-cycle of biogas production

    International Nuclear Information System (INIS)

    Energy balances are analysed from a life-cycle perspective for biogas systems based on 8 different raw materials. The analysis is based on published data and relates to Swedish conditions. The results show that the energy input into biogas systems (i.e. large-scale biogas plants) overall corresponds to 20-40% (on average approximately 30%) of the energy content in the biogas produced. The net energy output turns negative when transport distances exceed approximately 200 km (manure), or up to 700 km (slaughterhouse waste). Large variations exist in energy efficiency among the biogas systems studied. These variations depend both on the properties of the raw materials studied and on the system design and allocation methods chosen. The net energy output from biogas systems based on raw materials that have high water content and low biogas yield (e.g. manure) is relatively low. When energy-demanding handling of the raw materials is required, the energy input increases significantly. For instance, in a ley crop-based biogas system, the ley cropping alone corresponds to approximately 40% of the energy input. Overall, operation of the biogas plant is the most energy-demanding process, corresponding to 40-80% of the energy input into the systems. Thus, the results are substantially affected by the assumptions made about the allocation of a plant's entire energy demand among raw materials, e.g. regarding biogas yield or need of additional water for dilution

  6. Investigation of technologies for producing organic-mineral fertilizers and biogas from waste products

    Directory of Open Access Journals (Sweden)

    Anna V. Ivanchenko

    2015-12-01

    Full Text Available Modern agriculture requires special attention to a preservation of soil fertility; development of cultures fertilization; producing of new forms of organic-mineral fertilizers which nutrient absorption coefficient would be maximum. Application of artificial fertilizers has negative influence on soils. Aim: The aim of the study is to identify the scientific regularities of organic-mineral fertilizers and biogas technologies from waste products and cattle manure with the addition of fermentation additive. Materials and Methods: The affordable organic raw material for production of organic-mineral fertilizers is the cattle manure. Environmental technology of the decontamination and utilization of manure is its anaerobic bioconversion to fermented fertilizer and biogas. The waste decontamination and the degradation of complex polymers into simple renewable and plant-available compounds takes place during the conversion of manner to biogas. Experimental research carried out for the three types of loads to the model reactor of anaerobic fermentation with 1 dm3 volume for dry matter. The mesophilic fermentation mode used in the experiments (at 33 °C. Results: It has been shown that the addition of whey to the input raw materials in a ratio of 1:30 accelerates the process of anaerobic digestion and biogas generation in 1,3...2,1 times. An analysis of organic-mineral fertilizers from cattle manure were conducted. Technological schemes of organic-mineral fertilizers and biogas technologies from waste products were developed. Conclusions: Implementation of research results to farms and urban waste treatment facilities lead to increased energy potential of our country and expansion of high-quality organic-mineral fertilizers variety, which are well absorbed by plants.

  7. Experimental Investigation on the Effects of Digester Size on Biogas Production from Cow Dung

    Directory of Open Access Journals (Sweden)

    Abdulkarim Nasir

    2015-01-01

    Full Text Available This paper presents the experimental investigation on the effect of digester size on biogas production. Experiments were carried out to produce biogas from different sizes of digester. 1.4 kg of cow dung was used to carry out the experiments. The temperature throughout the period of experimentation was within ambient temperature of 250C to 350C. It was observed that the pH values of the Digesters fluctuate between 5.4 and 7.6. This may be due to the activities of acid. Digesters A, B, C, D and E, with volumes of 250 ml, 500ml, 1000ml, 2000ml and 3000ml, produced a total biogas of 625 cm3 , 715cm3 , 1635cm3 , 2082cm3 and 2154cm3 respectively. Digester size is an important factor which has a direct effect on the quantity of gas produced. For the total biogas produced per litre of digester size, Digesters A, B, C, D and E, produces 2500 cm 3 l -1 , 1430 cm 3 l - 1 , 1635 cm 3 l -1 , 1041 cm 3 l -1 and 718 cm 3 l -1 respectively.

  8. Characteristics and biogas production potential of municipal solid wastes pretreated with a rotary drum reactor.

    Science.gov (United States)

    Zhu, Baoning; Gikas, Petros; Zhang, Ruihong; Lord, James; Jenkins, Bryan; Li, Xiujin

    2009-02-01

    This study was conducted to determine the characteristics and biogas production potential of organic materials separated from municipal solid wastes using a rotary drum reactor (RDR) process. Four different types of wastes were first pretreated with a commercial RDR system at different retention times (1, 2 and 3 d) and the organic fractions were tested with batch anaerobic digesters with 2.6 g VS L(-1) initial loading. The four types of waste were: municipal solid waste (MSW), a mixture of MSW and paper waste, a mixture of MSW and biosolids, and a mixture of paper and biosolids. After 20 d of thermophilic digestion (50+/-1 degrees C), it was found that the biogas yields of the above materials were in the range of 457-557 mL g VS(-1) and the biogas contained 57.3-60.6% methane. The total solid and volatile solid reductions ranged from 50.2% to 65.0% and 51.8% to 66.8%, respectively. For each material, the change of retention time in the RDR from 1 to 3d did not show significant (alpha=0.05) influence on the biogas yields of the recovered organic materials. Further studies are needed to determine the minimum retention time requirements in the RDR system to achieve effective separation of organic from inorganic materials and produce suitable feedstock for anaerobic digesters. PMID:18849162

  9. The costs of agricultural biogas production - a summary from the economic and technical viewpoint

    International Nuclear Information System (INIS)

    If biogas plants are to become economically efficient, capital investment must be drastically lowered and gas production per unit of substrate distinctly increased. Usually it is not possible to lower capital investment. A greater gas yield can be achieved by means of cofermentation, i.e., admixture of readily degradable organic substances, for instance, from the food industry. This permits improving economic efficiency also by raising fees for disposal. It must be taken into account, however, that scientific research into this field is still in its infancy and that problems might arise from pollutants contained in additives. It is true that biogas plants improve the fertiliser value and abate the smell of manure. In no case, however, do these advantages balance the costs of a plant and, what is more, they can be achieved by other, less expensive, means. A business that rashly invests capital into the construction of a biogas plant can seriously endanger its stability and liquidity and cripple its development potential for a long time. On the other hand, a frequent consequence of lower capital investment are higher expenses for maintenance and repair and a greater work load. The most important prerequisites for the construction and successful operation of a biogas plant are comprehensive and thorough planning and precise calculations. (orig./EF)

  10. Investment in biogas for energy purposes to promote cleaner production

    International Nuclear Information System (INIS)

    In Cuba, by the characteristics of a developing country characteristics, formulation and evaluation of projects is a critical task, since the decision to invest means sacrificing the opportunity to meet current needs for different and long-term alternatives. The assessment prior to the execution of a project is proposed as the aim of the present study, as a crucial task that contributes to amendments or self-definition. The results should be directed to the analysis of development trends in the energy environment which indicates the increase of the contribution of renewable energy sources as a viable to meet global demand for energy efficient and sustainable way. For that reason, it has encouraged the use of biogas as the most important fuel of the future, since the materials required for processing and construction of the necessary facilities are within reach of many first-world economies as countries developmental. History: Specific methods of pollution trends in the province; Description: Evaluation of investment within the life cycle of the investment project. Techniques and instruments: Direct observation; Structured surveys and use of specialized software: Excel, QSB, Statgraphics. The research is justified and concludes that the project Swine Genetics UEB Cienfuegos achieved energy independence, as well as sales to 13.7 MW annual energy electro National System (SEN). (full text)

  11. Estimating biogas production of biologically treated municipal solid waste.

    Science.gov (United States)

    Scaglia, Barbara; Confalonieri, Roberto; D'Imporzano, Giuliana; Adani, Fabrizio

    2010-02-01

    In this work, a respirometric approach, i.e., Dynamic Respiration Index (DRI), was used to predict the anaerobic biogas potential (ABP), studying 46 waste samples coming directly from MBT full-scale plants. A significant linear regression model was obtained by a jackknife approach: ABP=(34.4+/-2.5)+(0.109+/-0.003).DRI. The comparison of the model of this work with those of the previous works using a different respirometric approach (Sapromat-AT(4)), allowed obtaining similar results and carrying out direct comparison of different limits to accept treated waste in landfill, proposed in the literature. The results indicated that on an average, MBT treatment allowed 56% of ABP reduction after 4weeks of treatment, and 79% reduction after 12weeks of treatment. The obtainment of another regression model allowed transforming Sapromat-AT(4) limit in DRI units, and achieving a description of the kinetics of DRI and the corresponding ABP reductions vs. MBT treatment-time. PMID:19783431

  12. Numerical investigation of biogas flameless combustion

    International Nuclear Information System (INIS)

    Highlights: • Fuel consumption decreases from 3.24 g/s in biogas conventional combustion to 1.07 g/s in flameless mode. • The differences between reactants and products temperature intensifies irreversibility in traditional combustion. • The temperature inside the chamber is uniform in biogas flameless mode and exergy loss decreases in this technique. • Low O2 concentration in the flameless mode confirms a complete and quick combustion process in flameless regime. - Abstract: The purpose of this investigation is to analyze combustion characteristics of biogas flameless mode based on clean technology development strategies. A three dimensional (3D) computational fluid dynamic (CFD) study has been performed to illustrate various priorities of biogas flameless combustion compared to the conventional mode. The effects of preheated temperature and wall temperature, reaction zone and pollutant formation are observed and the impacts of combustion and turbulence models on numerical results are discussed. Although preheated conventional combustion could be effective in terms of fuel consumption reduction, NOx formation increases. It has been found that biogas is not eligible to be applied in furnace heat up due to its low calorific value (LCV) and it is necessary to utilize a high calorific value fuel to preheat the furnace. The required enthalpy for biogas auto-ignition temperature is supplied by enthalpy of preheated oxidizer. In biogas flameless combustion, the mean temperature of the furnace is lower than traditional combustion throughout the chamber. Compared to the biogas flameless combustion with uniform temperature, very high and fluctuated temperatures are recorded in conventional combustion. Since high entropy generation intensifies irreversibility, exergy loss is higher in biogas conventional combustion compared to the biogas flameless regime. Entropy generation minimization in flameless mode is attributed to the uniform temperature inside the chamber

  13. Yield and Quality of Biogas from Anaerobic Fermentation of Grass

    OpenAIRE

    Poláček, Jan

    2014-01-01

    Biogas is generally considered as a renewable source of energy. In fact, however, it is biodegradable organic material, that makes this source of energy renewable. Biogas is, then, the final product of anaerobic fermentation of these materials. Because energetically the most valuable component of biogas is methane (CH4) its relative volume stands as the measure of biogas quality. The process of anaerobic fermentation was characterized in the first part of this thesis. Organic materials ar...

  14. Biogas as a way to attract renewable energy

    OpenAIRE

    Kardasz, Piotr

    2013-01-01

    The subject of the following article is biogas plant, which is an installation for the production of biogas. Biogas can be used to produce electricity, heat and fuels. Produced by the fermentation of biomass materials that can be used (mainly waste from agricultural, animal and food industry), sediments, sewage treatment and municipal waste lying in landfills. Depending on the type of feedstock used in biogas technology may be different, but the basic elements of the system of administration ...

  15. Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment

    International Nuclear Information System (INIS)

    Highlights: ► Microwave irradiation enhanced the disintegration and digestibility of microalgae. ► Algal biomass solubilisation increased by 800% with microwave pretreatment. ► The main parameter influencing biomass solubilisation was the applied specific energy. ► Increased biogas production rate (27–75%) and yield (12–78%) with pretreated biomass. ► Linear correlation between microalgae solubilisation and biogas yield. - Abstract: The aim of this study was to evaluate the effect of microwave pretreatment on the solubilisation and anaerobic digestion of microalgae–bacterial biomass cultivated in high rate algal ponds for wastewater treatment. The microwave pretreatment comprised three specific energies (21,800, 43,600 and 65,400 kJ/kg TS), combining three output power values with different exposure times. Response surface analysis showed that the main parameter influencing biomass solubilisation was the applied specific energy. Indeed, a similar solubilisation increase was obtained for the same specific energy, regardless of the output power and exposure time (280–350% for 21,800 kJ/kg TS, 580–610% for 43,600 kJ/kg TS and 730–800% for 65,400 kJ/kg TS). In biochemical methane potential tests, the initial biogas production rate (27–75% increase) and final biogas yield (12–78% increase) were higher with pretreated biomass. A linear correlation was found between biomass solubilisation and biogas yield. It can be concluded that microwave irradiation enhanced the disintegration and digestibility of microalgae

  16. Electricity and heat from biogas

    International Nuclear Information System (INIS)

    In this paper author deals with utilisation of biological wastes for heat and electricity production. Total quantity of dung in Slovakia in calculation on production of dry mass is 120.000 t yearly, what corresponds to yearly production of biogas 43,530 ths. cubic meters yearly. Energetic equivalent of utilizable excrements of economic animals is 972.5 TJ yearly. Some cogeneration units in the Slovak Republic are described

  17. Biogas from sanitary landfills for electricity production; Biogas de rellenos sanitarios para produccion de electricidad

    Energy Technology Data Exchange (ETDEWEB)

    Arvizu F, Jose L; Huacuz V, Jorge M. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    There are many ways to eliminate the municipal solid wastes, but only a few help to treat them and to dispose of them suitably. Some of the forms to avoid the problems that the trash originate are: not to produce it, recycling it in a 100% or creating a fictitious market where its value is equal to or greater than the product that gave origin to it; in any case, these alternatives are not absolutely practical. The trash can be incinerated, be segregated, be recycled partially or also be arranged in sanitary landfills. Anyway, the trash has always existed and it will continue existing for sure. [Spanish] Existen muchas maneras de eliminar los residuos solidos municipales, pero solo unas pocas ayudan a tratarlos y disponerlos adecuadamente. Algunas de las formas para evitar los problemas que ocasiona la basura son: no produciendola, reciclandola en un 100% o creando un mercado ficticio donde su valor sea igual o mayor al del producto que le dio origen; en cualquier caso, estas alternativas no son del todo practicas. La basura tambien se puede incinerar, segregar, reciclar parcialmente o disponer en rellenos sanitarios. De cualquier manera, la basura siempre ha existido y seguramente seguira existiendo.

  18. Biogas Opportunities Roadmap Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-12-01

    In support of the Obama Administration's Climate Action Plan, the U.S. Department of Energy, the U.S. Environmental Protection Agency, and U.S. Department of Agriculture jointly released the Biogas Opportunities Roadmap Progress Report, updating the federal government's progress to reduce methane emissions through biogas systems since the Biogas Opportunities Roadmap was completed by the three agencies in July 2014. The report highlights actions taken, outlines challenges and opportunities, and identifies next steps to the growth of a robust biogas industry.

  19. Profile and perceptions of biogas as automobile fuel : A study of Svensk Biogas

    OpenAIRE

    Larsson, Anneli

    2008-01-01

    From an environmental- and health perspective, biogas and other biomass-based fuels have several advantages; nevertheless the majority of motorists fill their cars with petroleum-based fuels. This thesis is designed to explore the profile of biogas in relation to its perceptions. It is a study concerning the communication between the biogas producing company Svensk Biogas and their biogas users and non biogas users. To obtain a thorough understanding of the profile and perceptions of biogas a...

  20. Potential biodiesel and biogas production from corncob by anaerobic fermentation and black soldier fly.

    Science.gov (United States)

    Li, Wu; Li, Qing; Zheng, Longyu; Wang, Yuanyuan; Zhang, Jibin; Yu, Ziniu; Zhang, Yanlin

    2015-10-01

    Bioenergy has become attractive as alternatives of gradually exhausted fossil fuel. Obtaining high grade bioenergy from lignocellulose is attractive that can gradually meet the demand. This study reported biogas and biodiesel were produced from corncob by a two-step bioprocess, biogas was produced from corncob by anaerobic fermentation, then biogas residue was converted by black soldier fly larvae, and then biodiesel was produced from larvae grease. 86.70 L biogas was obtained from 400 g corncob with the accumulation of biogas yield of 220.71 mL/g VS(added) by anaerobic digestion. Besides, 3.17 g of biodiesel was produced from grease after inoculating black soldier fly larvae into 400 g biogas residue. Meanwhile, the results showed that the addition of black soldier fly larvae could be effective for the degradation of lignocellulose and the accumulation of grease. PMID:26210140

  1. Bacterial Contamination of Biogas

    Czech Academy of Sciences Publication Activity Database

    Mrázek, Jakub; Čermáková, J.; Tenkrát, D.; Kopečný, Jan; Fliegerová, Kateřina

    Smolenice : IAP, Slovak Academy of Sciences, Košice, 2011. s. 11-11. ISBN 978-80-968618-6-6. [7th International Symposium on Anaerobic Microbiology. 15.6.2011-18.6.2011, Smolenice] R&D Projects: GA ČR GPP503/10/P394; GA MZe QI92A286 Institutional research plan: CEZ:AV0Z50450515 Keywords : biogas * bacterium Subject RIV: EE - Microbiology, Virology

  2. Pretreatment of different waste streams for improvement in biogas production; Foerbehandlingsteknikers betydelse foer oekat biogasutbyte

    Energy Technology Data Exchange (ETDEWEB)

    Sarvari Horvath, Ilona (Hoegskolan i Boraas (Sweden)); del Pilar Castillo, Maria (JTI (Sweden)); Loren, Anders; Brive, Lena; Ekendahl, Susanne; Nordman, Roger (SP, Boraas (Sweden)); Kanerot, Mija (Boraas Energi och Miljoe AB (Sweden))

    2010-07-01

    Biological breakdown of organic municipal and industrial waste to biogas is already in use today. The technology is of outmost importance to attain the environmental goals that our society has set regarding to sustainable development. Of decisive economic importance is the ability to obtain an increased amount of biogas from the same amount of substrate. Alternative resources for biogas production are at the same time of great interest in order to enable a large expansion of biogas production. The goal of applying a suitable pre-treatment step before anaerobic digestion is to open up the molecular structure of inaccessible biopolymers in order to facilitate access to the carbon for microorganisms involved in biological breakdown and fermentation to biogas. Our study shows that introducing a pretreatment step opens new perspectives for biogas production. Treatment of paper residuals by steam explosion increased methane production up to 400 Nm3/ton dry matter, to a double amount of methane yield compared to that of untreated paper. A novel method for pretreatment with an environment-friendly solvent N-methylmorpholine-N-oxide (NMMO) was also tested on lignocellulose-rich waste fractions from forest and agricultural. The NMMO-treatment increased the methane yields of spruce chips and triticale straw by 25 times (250 Nm3/ton dry matter), and by 6 times (200 Nm3/ton dry matter), respectively, compared to that of the untreated materials. Keratin-rich feather waste yielded around 200 Nm3 methane/ton dry matter, which could be increased to 450 Nm3/ton after enzymatic treatment and to 360 Nm3/ton after either chemical treatment with lime, or after biological treatment with a recombinant bacterial strain of Bacillus megaterium. However, the gain in increased amount of methane after a pretreatment step should be weighted against a possible increase in energy usage generated by the pretreatment. We have therefore performed a case study in which the energy balance for a biogas

  3. Farm scale biogas concepts in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [Nova Energie, Ettenhausen (Switzerland)

    1997-08-01

    The near future of farm scale biogas production looks bright as long as the high electricity prices are maintained by political will and subsidies remain higher than approx. 20%. If in all the number of biogas plants is growing as it is in Germany (Within the last two years about 200 new plants have been built) then biogas will add its share to a nuclear power free electricity production, as does wind energy in Germany, Holland or Denmark. The standard for manure digesters is set. There is still some way to go for solid waste digesters. However, first inputs have been given. (EG) 10 refs.

  4. Economic Impact of NMMO Pretreatment on Ethanol and Biogas Production from Pinewood

    OpenAIRE

    Marzieh Shafiei; Keikhosro Karimi; Hamid Zilouei; Taherzadeh, Mohammad J.

    2014-01-01

    Processes for ethanol and biogas (scenario 1) and biomethane (scenario 2) production from pinewood improved by N-methylmorpholine-N-oxide (NMMO) pretreatment were developed and simulated by Aspen plus. These processes were compared with two processes using steam explosion instead of NMMO pretreatment ethanol (scenario 3) and biomethane (scenario 4) production, and the economies of all processes were evaluated by Aspen Process Economic Analyzer. Gasoline equivalent prices of the products inclu...

  5. Municipal Solid Waste Management in a Low Income Economy Through Biogas and Bioethanol Production

    DEFF Research Database (Denmark)

    Miezah, Kodwo; Obiri-Danso, Kwasi; Kádár, Zsófia;

    2016-01-01

    The biodegradable fraction of municipal solid wastes generated from households in Ghana has favourable characteristics worth considering for bioenergy production. The suitability of this biodegradable portion for biogas and bioethanol production was assessed in this study. The assessment...... except the treated yard waste which significantly increased by 54 % in glucose over the untreated waste. The most promising waste fractions were FW, CYPPW and mixed paper wastes. Careful selection of these fractions in feedstock for biofuel production would reduce generation of the waste, improve...

  6. Anaerobic Mono- and Co-digestion of Mechanically Pretreated Meadow Grass for Biogas Production

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Angelidaki, Irini

    2015-01-01

    Biomass from permanent grasslands and meadows can be exploited for biogas production, because this substrate is abundant and does not compete with food production. In the present study, the biogas productivity of meadow grass silage, harvested in two different seasons (early and late Cut), was...... investigated. The grass silage was mechanically pretreated with different methods to increase its biodegradability. It was found that the early cut of non-treated meadow grass silage led to higher methane production [294 mL of CH4/g of volatile solids (VS)] compared to the corresponding non-treated meadow...... grass silage from the late cut (282 mL of CH4/g of VS). Moreover, it was found that the application of two mesh grating plates, as the pretreatment method, greatly enhanced the methane production in early and late cut silage in a range of 15 and 17%, respectively, compared to the non-treated grass...

  7. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    Science.gov (United States)

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. PMID:26836846

  8. Understanding the motivational perspectives of sustainability: A case of biogas production

    Directory of Open Access Journals (Sweden)

    Marco Pereira Querol

    2015-06-01

    Full Text Available Despite the importance of the expectations and visions of the actors involved in sustainable innovations, only the societal, motivational perspective is usually considered. The fact that local actors may have different multi-motivations is typically overlooked. The aim of this study is to examine and understand the multi-motivational perspectives in a sustainable production project. First, we introduce the concept of the object and analyze the case of a biogas production project as a mediating activity for making swine production more sustainable. We argue that the object of the activity, as manifested in motivational perspectives, shapes the way in which biogas production (BP systems are implemented. The article concludes by discussing how the concept of object can be used to explore the actual and future possibilities of using artifacts for increasing the sustainability of production.

  9. Development of a complete bio-NGV production process based on agricultural biogas at farm scale

    OpenAIRE

    Sarperi, Laura

    2014-01-01

    Bio-NGV (bio- Natural Gas for Vehicles) is a bio-fuel based on the biogas in which components such as CO2and H2S are removed. But the economical feasibility of available and commercial technologies to perform these removals is limited to 80 Nm3/h of treated biogas. Regarding farm scale biogas plant, fuel needs of 1 fill-upper day would represent the treatment of only 1 Nm3/hof raw biogas. The aim of our work was to develop a solution economically adapted to farm scale to produce bio-NGV from ...

  10. Study of Biogas Production Rate from Water Hyacinth by Hydrothermal Pretreatment with Buffalo Dung as a Starter

    OpenAIRE

    Teguh Kurniawan; Yuhelsa Putra; Dewi Murni

    2014-01-01

    In this paper we report the effects of hydrothermal pretreatment on biogas enhancement production rates from water hyacinth mixed with buffalo dung. The focus of the experiment was on the time of hydrothermal pretreatment and the ratio of water hyacinth with buffalo dung. The hydrothermal pretreated substrates were characterized by TDS, BOD and pH. The hydrothermal pretreatment of 60 minutes with the ratio of water hyacinth to buffalo dung 1:2 showed the highest biogas production rate at 7889...

  11. Utilization possibilites of waste products from fishing and hunting to biogas and bio-oil production in Uummannaq County

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur; Jørgensen, Marianne Willemoes

    specific conditions that apply in Uummannaq County. The best alternatives were evaluated to be biogas production and utilization of fat from the fish waste to produce bio-oil. The results showed that with the price of energy in Greenland in 2009 of 3,71 DKR per kWh, the waste in Uummannaq County would......In spring 2007 a project was carried out at the Arctic Technology Centre in which research of various possibilities of utilizing waste products from fishing and hunting generated in Uummannaq County was performed. Numerous alternatives were identified in the project, which were weighed against the...... amount to approximately 6 million DKR when using biogas production and 5,7 million DKR when using bio-oil. Compared with the energy used in Uummannaq County today, the biogas production would be able to supply 17 percent of the energy and bio-oil production would cover approximately 16 percent....

  12. The economics of biogas in Denmark

    DEFF Research Database (Denmark)

    Jacobsen, Brian H.; Laugesen, Frederik Møller; Dubgaard, Alex

    2014-01-01

    Denmark has been one of the leading European Countries in using Biogas for Combined Heat and Power (CHP), since the 1980s. However, in the last two decades, the increase has been limited. A new energy policy aimed at increasing the profitability of biogas was introduced in the spring of 2012....... The analysis here shows that the new agreement will improve the profitability of biogas plants and increase the biogas production although the political ambition of an increase from 4 PJ to 17 PJ by 2020 seems unlikely. The analysis shows that biogas plants can be profitable even if the input is a mix....... The analysis shows that the profit from upgrading biogas is only to be preferred if the sales price of heat or the amount sold are relatively low. The socioeconomic analyses show that the costs of biogas as a measure to reduce CO2 emissions are around €151 per tonne CO2 (€85‐266 per ton) and that using maize...

  13. Biotechnological Screening of Microalgal and Cyanobacterial Strains for Biogas Production and Antibacterial and Antifungal Effects

    OpenAIRE

    Opayi Mudimu; Nataliya Rybalka; Thorsten Bauersachs; Jens Born; Thomas Friedl; Rüdiger Schulz

    2014-01-01

    Microalgae and cyanobacteria represent a valuable natural resource for the generation of a large variety of chemical substances that are of interest for medical research, can be used as additives in cosmetics and food production, or as an energy source in biogas plants. The variety of potential agents and the use of microalgae and cyanobacteria biomass for the production of these substances are little investigated and not exploited for the market. Due to the enormous biodiversity of microalga...

  14. Potential of biogas and methane production from anaerobic digestion of poultry slaughterhouse effluent

    Directory of Open Access Journals (Sweden)

    Natália da Silva Sunada

    2012-11-01

    Full Text Available The objective of this study was to evaluate the efficiency of anaerobic digestion on the treatment of effluent from poultry slaughterhouse. The experiment was conducted at the Laboratory of Waste Recycling from Animal Production/FCA/UFGD. During four weeks, eight experimental digesters, semi-continuous models, were loaded and set according to the hydraulic retention time (HRT of 7, 14, 21 and 28 days, and according to the solid fraction treatment, separated with 1 mm sieve or without separation. The average weekly production of biogas and methane as well as the methane concentrations, the potential production per amount of chemical oxygen demand (COD added and reduced, the concentrations of N, P and K at the beginning and end of process, and the most likely numbers of total and thermotolerant coliforms were evaluated. For data analysis, a completely randomized design was performed in a 4 × 2 factorial arrangement (4 HRT: 7, 14, 21 and 28 days and separation with 1 mm sieve or without separation, with repetition over time. The highest production of biogas and methane was statistically significant for the HRT of 7 and 14 days (5.29 and 2.38 L of biogas and 4.28 and 1.73 L of methane, respectively. There was an interaction between HRT and the separation of the solid with sieve and the highest production was obtained in the treatment without separation. Similar behavior was observed for the potential production with a maximum of 0.41 m³ methane.kg-1 COD added with an HRT of 7 days without separation of the solid fraction. The separation of the solid fraction is not recommended in the pretreatment of liquid effluent from poultry slaughterhouse, once the potential for production and production of methane and biogas were reduced with this treatment.

  15. Post digestion of biogas production residues at mid-range mesophilic temperature

    OpenAIRE

    Nordell, Erik; Karlsson, Martin

    2011-01-01

    A common way to store digestate from anaerobic digesters is in open air lagoons. The aim of this study was to investigate whether cooling of digestate before transfer to the storage prevents methane production. Furthermore, if methanogenesis is not prevented, to determine the potential maximum methane slip from an open air lagoon, supplied with heat exchanged digestate from a mesophilic co-digestion plant such as Linköping biogas plant. Results indicate that methane production is not terminat...

  16. The perspectives of the French biogas market

    International Nuclear Information System (INIS)

    After having outlined that France is the fourth European producer of biogas, that regulatory evolutions have been adopted in 2012 to support the market, and that operators are trying to take place on this market, this document proposes the table of content of a market study which addresses the following topics: definition, resources and valorisation modes, legal framework and support measures taken by public authorities, investments, costs and profitability of a biogas project, current status of production and valorisation of biogas in France and market perspectives, presentation of main actors and of their development strategies

  17. The introduction of the biogas engineering system with daily biogas production of 40,000 m{sup 3} in Nangyang distillery

    Energy Technology Data Exchange (ETDEWEB)

    Shangsuo Shi [Nangyang Distillery, Nangyang, HEN (China)

    2000-07-01

    In order to convert wastewater into useful resources, Nangyang distillery has been developing biogas technology for 26 years, which included two-liter lab scale experiments, 40 m{sup 3} pilot plant tests and the final successful installation of 2,000 m{sup 3} and 5,000 m{sup 3} full-scale biogas digesters. Many technical problems, such as selection of seed material, culturing of thermophilic seed material, the balance between acidification and methanization phases, the design of fermentation processes, the design and construction of 5,000 m{sup 3} anaerobic digester volume and the design and installation of stirring equipments, have been solved by the technicians and engineers in this factory. The daily biogas production capacity is 40,000 m{sup 3}. The gas is widely used for multiple purposes, i.e., as pipe fuel gas for urban residents, as fuel for workshop boilers and as basic chemical substrate for manufacturing chloroform. Digested residues are also used in crop fields as fertilizer, which in turn may promote the improvement of rural ecosystems and increase food production. (orig.)

  18. Maximizing the Production of Biogas in an Instructional Manipulative Designed to Teach Energy Concepts to High School Students

    Science.gov (United States)

    McCall, Shakira Renee

    In an effort to stress the benefits of the application of renewable energy to the next generation of science, technology, engineering, arts, and mathematics (STEAM) professionals, instructional modules on energy and biogas were integrated into a summer camp curriculum that challenged students to apply STEAM concepts in the design and development of chain reaction machines. Each module comprised an interactive presentations and a hands-on component where students operated a manipulative relevant to the content. During summer 2013, this camp was implemented at two high schools in Arizona and one in Trinidad and Tobago. Assessments showed that the overall modules were effective in helping students learn and retain the information presented on energy and biogas production. To improve future implementations of these modules, specifically the module on biogas production, the anaerobic digester was redesigned. In addition, a designed experiment was conducted to determine how to optimize the influent and operational environment that is available in an average high school classroom to generate maximum biogas yield. Eight plug-flow anaerobic digesters made of PVC piping and fixtures were used in a 2x3 factorial design assessing: co-digestion (20mL or 50mL) used cooking oil, temperature (25°C or 40°C), and addition of inoculum (0mL or 200mL). Biogas production was captured at two intervals over a 30-day period, and the experiments were replicated three times. Results showed that temperature at 40°C significantly increased biogas production and should be used over 25°C when using anaerobic digesters. Other factors that may potentially increase biogas production are combination of temperature at 40°C and 50mL of used cooking oil. In the future, the improvements made in the design of the anaerobic digester, and the applications of the finding from the experimental design, are expected to lead to an improved manipulative for teaching students about biogas production.

  19. The impact of German biogas production on European and global agricultural markets, land use and the environment

    International Nuclear Information System (INIS)

    As part of its climate policy, Germany promotes the production of biogas via its so-called Renewable-Energy-Act (EEG). The resulting boost in biogas output went along with a significant increase in production of green maize, the dominant feedstock. Existing studies of the EEG have analysed its impacts on German agriculture without considering market feedback. We thus expand existing quantitative analysis by also considering impacts on European and global agricultural markets, land use and the environment by combining a detailed location model for biogas plants, the Regionalised Location Information System-Maize (ReSi-M2012), with a global Partial Equilibrium model for agriculture, the Common Agricultural Policy Regional Impact (CAPRI) model. Our results indicate that the German biogas production is large enough to have sizeable impacts on global agricultural markets in prices and quantities, causing significant land use change outside of Germany. While profits in the agricultural sector increase, food consumer face higher prices, and subsidies for biogas production are passed on to electricity consumers. The German biogas program, as long as it is almost entirely based on non-waste feedstocks, is probably not a promising avenue towards a GHG-saving renewable energy production, but a rather expensive one. - Highlights: • Recent changes to that program decrease green maize use but increase land demands. • The program could raise EU prices for cereals by 3%. • Agricultural land use expansion outside of the EU estimated at 1 Mio ha

  20. 10. Biogas conference Dresden. Anaerobic treatment of biological wastes. Proceedings

    International Nuclear Information System (INIS)

    The biogas conference in Dresden will be held for the tenth time and is still the only conference in Germany, which focuses on the production of biogas solely from waste. This year, the implementation of paragraph 11 of the Recycling and Waste Management Act and the amendment of the Renewable Energies Act (EEG) in 2014, the chances of the waste management biogas technology will be spotlighted here. The efficiency and wise use of the end products of the biogas production - the biogas and fermentation residues are equally critical for the success of biogas technology as the emission reduction of biogas plants. In this context, the biogas technology will also be dependent in the future on legal requirements and funding instruments such as the EEG. For the technical implementation, the development of reliable system concepts with specific sinking biogas and electricity supply costs and with greater flexibility in terms of launching needs-based biogas and electricity production. The contributions in this paper discuss possible solutions and implementations from the perspective of politics, associations, research and practice. Innovative topics will be discussed, which will be decisive for the future of biogas production from organic wastes.

  1. Storage of catch crops to produce biogas

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2014-01-01

    Catch crop biomass is a promising co-substrate for manure-based biogas plants in Denmark since the cultivation of catch crops is mandatory to retain nutrients in the soil, contributing to protect the aquatic environment. In general, the growth period for catch crops is from harvest of the previous...... crop in July-August to the end of the growing season and harvest in late October. Hence, for use of the biomass in biogas production there is a need for storage of the biomass. Storage as silage would guarantee the availability of the feedstock for biogas production during the whole year. A proper...... ensiling process determines the storage loss and the quality of the final silage and, thus, the possible use of it as a substrate for biogas production. Moreover, silage has been considered as a pre-treatment since it partially hydrolyses organic matter improving cellulose convertibility. Since a large...

  2. Nanosilver impact on methanogenesis and biogas production from municipal solid waste.

    Science.gov (United States)

    Yang, Yu; Xu, Meng; Wall, Judy D; Hu, Zhiqiang

    2012-05-01

    Silver nanoparticles (AgNPs, nanosilver) released from industrial activities and consumer products may be disposed directly or indirectly in sanitary landfills. To determine the impact of AgNPs on anaerobic digestion of landfill waste, municipal solid waste (MSW) was loaded in identical landfill bioreactors (9L volume each) and exposed to AgNPs (average particle size=21nm) at the final concentrations of 0, 1, and 10mgAg/kg solids. The landfill anaerobic digestion was carried out for more than 250 days, during which time the cumulative biogas production was recorded automatically and the chemical property changes of leachates were analyzed. There were no significant differences in the cumulative biogas volume or gas production rate between the groups of control and 1mgAg/kg. However, landfill solids exposed to AgNPs at 10mg/kg resulted in the reduced biogas production, the accumulation of volatile fatty acids (including acetic acid), and the prolonged period of low leachate pH (between 5 and 6). Quantitative PCR results after day 100 indicated that the total copy numbers of 16S rRNA gene of methanogens in the groups of control and 1mgAgNPs/kg were 1.97±0.21×10(7) and 0.90±0.03×10(7), respectively. These numbers were significantly reduced to 5.79±2.83×10(5)(copies/mL) in the bioreactor treated with 10mgAgNPs/kg. The results suggest that AgNPs at the concentration of 1mg/kg solids have minimal impact on landfill anaerobic digestion, but a concentration at 10mg/kg or higher inhibit methanogenesis and biogas production from MSW. PMID:22317796

  3. Kinetics of biogas production from fermentation broth of wild cocoyam codigested with cow paunch in batch mode

    OpenAIRE

    I.C.E. Umeghalu; E.I.U. Nwuba; D.O. Onukwuli; I.F. Okonkwo; J.O. Ngini

    2015-01-01

    Mathematical models are useful in solving the stability problems often exhibited by anaerobic digestion process. Kinetics of batch anaerobic digestion of cocoyam waste mixed with cow paunch for biogas production in batch mode was studied for 30 days hydraulic retention time (HRT). Data from cumulative biogas yield obtained during the experimental stages was fitted to C-NIKBRAN mathematical model based on first order reaction which adequately predicted the kinetic behavior of the substrate’s a...

  4. The effect of microwave power and heating time pretreatment on biogas production from fresh and dried water hyacinth (Eichhornia crassipes)

    Science.gov (United States)

    Sumardiono, Siswo; Budiyono, Mardiani, Dini Tri

    2015-12-01

    The objective of this research was to study the effect of microwave pretreatment of fresh and dried water hyacinth on biogas production. The variations of microwave power levels are 240; 400; 560 and 800 W. The variations of microwave heating time are 5; 7 and 9 min. The unpretreated fresh and dried water hyacinth are used as control. The result of research showed that almost all pretreated water hyacinth produced biogas were higher compare tounpretreated water hyacinth. The maximum of biogas production from fresh and dried water hyacinthwere obtained at 560 W for 7 min and 400 W for 7 min of microwave pretreatment. In this condition, pretreated fresh and dried water hyacinth resulted biogas production of 75,12 and 53,06 mL/g TS, respectively. The unpretreated fresh and dried water hyacinth produced biogas of 37,56 and 33,56 mL/g TS, respectively. The microwave pretreatment of water hyacinth improved biogas production. Microwave pretreatment had a positive impact on anaerobic biodegradability of water hyacinth.

  5. Enhanced biogas recovery by applying post-digestion in large-scale centralized biogas plants

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Hejnfelt, Anette; Ellegaard, L.

    2006-01-01

    The main objective of this study was to investigate the degradation efficiency of centralized biogas plants and provide guidance for the design of more efficient digester and post-digestion systems. These centralized biogas plants in Denmark digest manure together with organic waste from the food...... industry to generate biogas, which is used for electricity and thermal energy. A total of 20 such plants are currently active in Denmark, most of which were included in the investigation. From the plants, samples were obtained from various steps of the process. Samples were analysed and the residual biogas...... potential determined by batch post-digestion at various temperature levels. Results were correlated with plant characteristics and production statistics in order to judge the efficiency of various digestion concepts. A simplified model based on a two-step biogas production process was developed...

  6. Renewable Hydrogen Potential from Biogas in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Saur, G.; Milbrandt, A.

    2014-07-01

    This analysis updates and expands upon previous biogas studies to include total potential and net availability of methane in raw biogas with respect to competing demands and includes a resource assessment of four sources of biogas: (1) wastewater treatment plants, including domestic and a new assessment of industrial sources; (2) landfills; (3) animal manure; and (4) a new assessment of industrial, institutional, and commercial sources. The results of the biogas resource assessment are used to estimate the potential production of renewable hydrogen from biogas as well as the fuel cell electric vehicles that the produced hydrogen might support.

  7. The potential of residues of furfural and biogas as calcareous soil amendments for corn seed production.

    Science.gov (United States)

    Zhao, Yunchen; Yan, Zhibin; Qin, Jiahai; Ma, Zhijun; Zhang, Youfu; Zhang, Li

    2016-04-01

    Intensive corn seed production in Northwest of China produced large amounts of furfural residues, which represents higher treatment cost and environmental issue. The broad calcareous soils in the Northwest of China exhibit low organic matter content and high pH, which led to lower fertility and lower productivity. Recycling furfural residues as soil organic and nutrient amendment might be a promising agricultural practice to calcareous soils. A 3-year field study was conducted to evaluate the effects of furfural as a soil amendment on corn seed production on calcareous soil with compared to biogas residues. Soil physical-chemical properties, soil enzyme activities, and soil heavy metal concentrations were assessed in the last year after the last application. Corn yield was determined in each year. Furfural residue amendments significantly decreased soil pH and soil bulk density. Furfural residues combined with commercial fertilizers resulted in the greater cumulative on soil organic matter, total phosphorus, available phosphorus, available potassium, and cation exchange capacity than that of biogas residue. Simultaneously, urease, invertase, catalase, and alkaline phosphatase increased even at the higher furfural application rates. Maize seed yield increased even with lower furfural residue application rates. Furfural residues resulted in lower Zn concentration and higher Cd concentration than that of biogas residues. Amendment of furfural residues led to higher soil electrical conductivity (EC) than that of biogas residues. The addition of furfural residues to maize seed production may be considered to be a good strategy for recycling the waste, converting it into a potential resource as organic amendment in arid and semi-arid calcareous soils, and may help to reduce the use of mineral chemical fertilizers in these soils. However, the impact of its application on soil health needs to be established in long-term basis. PMID:26606935

  8. Microalgal Biomethane Production Integrated with an Existing Biogas Plant: A Case Study in Sweden

    OpenAIRE

    Wang, Xiaoqiang; Nordlander, Eva; Thorin, Eva; Yan, Jinyue

    2012-01-01

    Microalgae are considered as potential sources for biodiesel production due to the higher growth rate than terrestrial plants. However, the large-scale application of algal biodiesel would be limited by the downstream cost of lipid extraction and the availability of water, CO2 and nutrients. A possible solution is to integrate algae cultivation with existing biogas plant, where algae can be cultivated using the discharges of CO2 and digestate as nutrient input, and then the attained biomass c...

  9. Validation and Recommendation of Methods to Measure Biogas Production Potential of Animal Manure

    Science.gov (United States)

    Pham, C. H.; Triolo, J. M.; Cu, T. T. T.; Pedersen, L.; Sommer, S. G.

    2013-01-01

    In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane (CH4) production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP) (CH4 NL kg−1 VS) of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05). The biodegradability using a ratio of BMP and theoretical BMP (TBMP) was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr) for all batch methods was very low (4.8 to 8.1%), while the reproducibility of the relative standard deviation (RSDR) varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM) were comparable to those obtained using gas chromatography (GC). This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC. PMID:25049861

  10. Biogas Production from Water Hyacinth Case of Lake Chivero - Zimbabwe A review

    OpenAIRE

    Kunatsa T,; Mufundirwa A,

    2013-01-01

    The purpose of this study was to review the energy situation in Zimbabwe as well as the possibility of producing biogas from water hyacinth. Zimbabwe faces a shortage of electrical energy owing to internal generation shortfalls and the country imports all its petroleum fuels at a huge cost.The majority of people in Zimbabwe as a developing country are dependent on traditional and inefficient energy services that constrain their ability to enhance economic productivity and quality of life. The...

  11. Potential of Organic Waste for Biogas and Biofertilizer Production in Nigeria

    OpenAIRE

    Chima Ngumah; Jude Ogbulie; Justina Orji; Ekpewerechi Amadi

    2013-01-01

    With the growing demerits of fossil fuels - its finitude and its negative impact on the environment and public health - renewable energy is becoming a favored emerging alternative.  For over a millennium, anaerobic digestion (AD) has been employed in treating organic waste (biomass).  The two main products of anaerobic digestion, biogas and biofertilizer, are very important resources.  Since organic wastes are always available and unavoidable, too, anaerobic digestion provides an efficient me...

  12. Pressurissed carbon dioxide as a means of sanitising sewage sludge and improving biogas production

    OpenAIRE

    Mushtaq, Maryam

    2013-01-01

    The research reports on the potential for CO2 pressurisation as a means of enhancing biogas production in the anaerobic digestion of co-settled sewage sludge, a technique reported in the commercial literature as showing great benefits. The possibility of using this technique to reduce the number of faecal indicator bacteria is also explored, as an alternative means of complying with the UK water industry's Safe Sludge Matrix. Initial research using pure cultures of both E. coli (a strain i...

  13. Validation and recommendation of methods to measure biogas production potential of animal manure.

    Science.gov (United States)

    Pham, C H; Triolo, J M; Cu, T T T; Pedersen, L; Sommer, S G

    2013-06-01

    In developing countries, biogas energy production is seen as a technology that can provide clean energy in poor regions and reduce pollution caused by animal manure. Laboratories in these countries have little access to advanced gas measuring equipment, which may limit research aimed at improving local adapted biogas production. They may also be unable to produce valid estimates of an international standard that can be used for articles published in international peer-reviewed science journals. This study tested and validated methods for measuring total biogas and methane (CH4) production using batch fermentation and for characterizing the biomass. The biochemical methane potential (BMP) (CH4 NL kg(-1) VS) of pig manure, cow manure and cellulose determined with the Moller and VDI methods was not significantly different in this test (p>0.05). The biodegradability using a ratio of BMP and theoretical BMP (TBMP) was slightly higher using the Hansen method, but differences were not significant. Degradation rate assessed by methane formation rate showed wide variation within the batch method tested. The first-order kinetics constant k for the cumulative methane production curve was highest when two animal manures were fermented using the VDI 4630 method, indicating that this method was able to reach steady conditions in a shorter time, reducing fermentation duration. In precision tests, the repeatability of the relative standard deviation (RSDr) for all batch methods was very low (4.8 to 8.1%), while the reproducibility of the relative standard deviation (RSDR) varied widely, from 7.3 to 19.8%. In determination of biomethane concentration, the values obtained using the liquid replacement method (LRM) were comparable to those obtained using gas chromatography (GC). This indicates that the LRM method could be used to determine biomethane concentration in biogas in laboratories with limited access to GC. PMID:25049861

  14. Small-scale biogas production in the province of Pampanga, Philippines

    OpenAIRE

    Trosgård, Emma

    2015-01-01

    The purpose of this study was to contribute to sustainable development in the Pampanga province, Philippines. The Philippines are facing several major environmental problems; pig production represents a major contributing factor to pollution and eutrophication of water bodies in the country. At present there is no requirement for purification of wastewater from backyard (small-scale) farms. With the help of anaerobic digestion the manure could be used to produce biogas. The study’s objective ...

  15. Modelling the Potential Biogas Productivity Range from a MSW Landfill for Its Sustainable Exploitation

    OpenAIRE

    Elena Cristina Rada; Marco Ragazzi; Paolo Stefani; Marco Schiavon; Vincenzo Torretta

    2015-01-01

    A model of biogas generation was modified and applied to the case of a sanitary landfill in Italy. The modifications considered the role of the temperature field normally established within each layer of waste. It must be pointed out the temperature affects the anaerobic biodegradation kinetics. In order to assess the effect of moisture on the waste biodegradation rate, on the bacteria process and then on the methane production, the model was compared with the LandGEM one. Information on the ...

  16. Wastes of banana ‘s lignocellulosic biomass: a sustainable and renewable source of biogas production

    OpenAIRE

    Kamdem, Irenée; Hiligsmann, Serge; Vanderghem, Caroline; Bilik, Igor; Paquot, Michel

    2013-01-01

    We highlight in this poster, the results of biogas production and biochemical analysis based on the anaerobic digestion of each type of the lignocellulosic waste from a banana cultivar (Williams Cavendish: triploid Musa AAA group). These wastes are usually abandoned in the plantation after the fruits have been harvested. There is great interest in obtaining energy from this generally neglected biomaterial, particularly in the contexts of global warming and sustainable development.

  17. Anaerobic Digestion of Saline Creeping Wild Ryegrass for Biogas Production and Pretreatment of Particleboard Material

    Science.gov (United States)

    The objective of this research was to develop an integrated process to produce biogas and high-quality particleboard using saline creeping wild ryegrass (CWR), Leymus triticoides through anaerobic digestion (AD). Besides producing biogas, AD also serves as a pretreatment method to remove the wax la...

  18. Production of biogas from organic waste in microreactors operated at two temperatures

    International Nuclear Information System (INIS)

    The process and the product of anaerobic digestion are evaluated for different proportions of organic substrates, in microreactors operated at thermophilic and mesophilic temperatures with interest to find alternatives that will generate energy from biomass. Small-scale tests are conducted to ensure the proper functioning of biodigesters and optimize operating conditions. The anaerobic digestion process is characterized in three manure mixing ratios: mix of leftovers (100:0,90:10 and 80:20) and two temperatures of work (35 degrees Celsius and 50 degrees Celsius), using a factorial arrangement with 2 replicates per treatment. The mixture is composed of manure, cow dung and scraps of fresh food (fruits and vegetables) and prepared food. The proportions were diluted to 5% total solids. Bottles are the experimental unit used consisting culture medium bottles of 1 liter with 500 mL of mixture. The test has run for 5 hydraulic retention times (HRT) of twenty days each. At this time the pH was evaluated, the daily production of biogas, biogas composition, total solids, volatile and fixed and the content of volatile fatty acids. The values obtained biogas productivity and CH4 content have been similar to those reported in the literature and indicate that the systems have been successful

  19. Biogas Production from Batch Anaerobic Co-Digestion of Night Soil with Food Waste

    Directory of Open Access Journals (Sweden)

    Assadawut Khanto

    2016-01-01

    Full Text Available The objective of this study is to investigate the biogas production from Anaerobic Co-Digestion of Night Soil (NS with Food Waste (FW. The batch experiment was conducted through the NS and FW with a ratio of 70:30 by weight. The experiment is mainly evaluated by the characteristic of Co-Digestion and Biogas Production. In addition of food waste was inflating the COD loading from 17,863 to 42,063 mg/L which is 135 % increased. As the result, it shows that pH has dropped off in the beginning of 7-day during digestion and it was slightly increased into the range of optimum anaerobic condition. After digestion of the biogas production was 2,184 l and 56.5 % of methane fraction has obtained within 31 days of experimentation. The investigation of Biochemical Methane Potential (BMP and Specific Methanogenic Activities (SMA were highly observed. And the results were obtained by 34.55 mL CH4/gCODremoval and 0.38 g CH4-COD/gVSS-d. While the average COD removal from the 4 outlets got 92%, 94%, 94 % and 92 % respectively. However, the effluent in COD concentration was still high and it needs further treatment before discharge.

  20. ALKALINE PRETREATMENT OF SPRUCE AND BIRCH TO IMPROVE BIOETHANOL AND BIOGAS PRODUCTION

    Directory of Open Access Journals (Sweden)

    Azam Jeihanipour

    2010-05-01

    Full Text Available Alkaline pretreatment with NaOH under mild operating conditions was used to improve ethanol and biogas production from softwood spruce and hardwood birch. The pretreatments were carried out at different temperatures between minus 15 and 100ºC with 7.0% w/w NaOH solution for 2 h. The pretreated materials were then enzymatically hydrolyzed and subsequently fermented to ethanol or anaerobically digested to biogas. In general, the pretreatment was more successful for both ethanol and biogas production from the hardwood birch than the softwood spruce. The pretreatment resulted in significant reduction of hemicellulose and the crystallinity of cellulose, which might be responsible for improved enzymatic hydrolyses of birch from 6.9% to 82.3% and spruce from 14.1% to 35.7%. These results were obtained with pretreatment at 100°C for birch and 5°C for spruce. Subsequently, the best ethanol yield obtained was 0.08 g/g of the spruce while pretreated at 100°C, and 0.17 g/g of the birch treated at 100°C. On the other hand, digestion of untreated birch and spruce resulted in methane yields of 250 and 30 l/kg VS of the wood species, respectively. The pretreatment of the wood species at the best conditions for enzymatic hydrolysis resulted in 83% and 74% improvement in methane production from birch and spruce.

  1. Environmental Sustainability and Economic Benefits of Dairy Farm Biogas Energy Production: A Case Study in Umbria

    Directory of Open Access Journals (Sweden)

    Biancamaria Torquati

    2014-09-01

    Full Text Available Accelerating demand to reduce the environmental impact of fossil fuels has been driving widespread attention to renewable fuels, such as biogas. In fact, in the last decade numerous policy guidelines and laws regarding energy, the environment and agriculture have been issued to encourage the use of animal sewage as a raw material for the production of biogas. The production of energy from biogas in a dairy farm can provide a good opportunity for sustainable rural development, augmenting the farm’s income from traditional sources and helping to reduce the overall environmental impact of the energy sector. This paper investigates the trade-off between the environmental and economic benefits of an agro-energy farm in the Umbria region of Italy that employs livestock sewage and manure, dedicated energy crops (corn and triticale silage and olive waste. The environmental analysis was performed using the LCA methodology, while the economic investigation was carried out by reconstructing the economic balance of the agro-energetic supply chain based on the budgets of each activity performed. The LCA results show, on the one hand, the predominant weight of producing dedicated crops compared to all other processes in the supply chain and, on the other hand, a significant reduction in environmental impact compared to that caused by energy production from fossil fuels. Economic analysis revealed that the results depend significantly on what rate per kWh the government incentives guarantee to agricultural producers of renewable energy.

  2. Inhibition of biogas production by alkyl benzene sulfonates (LAS) in a screening test for anaerobic biodegradability.

    Science.gov (United States)

    Garcia, M Teresa; Campos, Encarna; Dalmau, Manel; Illán, Patricia; Sánchez-Leal, Joaquin

    2006-02-01

    The effect of the inoculum source on the digestion of linear alkylbenzene sulfonates (LAS) under anaerobic conditions has been investigated. The potential for primary and ultimate LAS biodegradation of anaerobic sludge samples obtained from wastewater treatment plants (WWTPs) of different geographical locations was studied applying a batch test system. It was found that only 4-22% of the LAS added to the batch anaerobic digesters was primarily transformed suggesting a poor primary degradation of the LAS molecule in anaerobic discontinuous systems. Regarding ultimate biodegradation, the addition of LAS to the batch anaerobic digesters caused a reduction on the extent of biogas production. Significant differences in the inhibition extent of the biogas production were observed (4-26%) depending on the sludge used as inoculum. Effect of the surfactant on the anaerobic microorganisms was correlated with its concentration in the aqueous phase. Sorption of LAS on anaerobic sludge affects its toxicity by depletion of the available fraction of the surfactant. LAS content on sludge was related to the total amount of calcium and magnesium extractable ions. The presence of divalent cations promote the association of LAS with anaerobic sludge reducing its bioavailability and the extent of its inhibitory effect on the biogas production. PMID:16453170

  3. Biogas production from synthetic sago wastewater by anaerobic digestion: Optimization and treatment

    Directory of Open Access Journals (Sweden)

    Sangeetha V.

    2016-01-01

    Full Text Available Sago processing industries generate a voluminous amount of wastewater with extremely high concentration of organic pollutants, resulting in water pollution. Anaerobic digestion has employed for reduction of COD and maximization of biogas production using synthetic sago wastewater by batch process. Mixed culture obtained from sago industry sludge was used as a source for microorganism. Response surface methodology was used to optimize the variables, such as pH, initial BOD, temperature and retention time. Statistical results were assessed with various descriptive, such as p value, lack of fit (F-test, coefficient of R2 determination, and adequate precision values. Pareto Analysis of Variance revealed that the coefficients of determination value (R2 of % COD removal, % BOD removal and biogas production were 0.994, 0.993 and 0.988. The optimum condition in which maximum COD removal (81.85%, BOD removal (91.61% and biogas production of 99.4 ml/day was achieved at pH 7 with an initial BOD of 1374 mg/l, and with the retention time of 10 days at 32oC.

  4. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    Science.gov (United States)

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production. PMID:24837280

  5. Biogas production from animal manure and agri-organic by-products. An analysis of the environment

    International Nuclear Information System (INIS)

    Growing interest in sustainable energy has been directed to the production of biogas from organic matter in animal manure and agri-organic by-products. The technology of biogas production by anaerobic digestion of organic materials is used in several parts of the world. Based on this experience and on positive results in a Novem study for the Netherlands situation in 1995, an actor survey has been carried out. The introduction of combined digestion of animal manure and agri-organic by-products has been discussed with companies, business associations and governmental organisations in the energy, agricultural and waste sectors. The survey has revealed that commercial exploitation of biogas plants with a capacity of 100 kton per year is possible under the following conditions: (1) costs of investment should not be higher than 100 Dutch Guilders (45 ECU) per ton processing capacity; (2) yield demands on investment capital, both equity and debt, should not be higher than 8%; (3) selling price for biogas should be around 0,30 Dutch Guilders (0,135 ECU) per mo3 natural gas equivalents; (4) supply for processing of agri-organic by-products with a received minimum fee of 35 Dutch Guilders (15,7 ECU) per ton should be guaranteed; (5) dairy, pig and arable farmers involved in the biogas plant should have both financial and quality incentives to participation; (6) environmental legislation on the level of heavy metals in animal manure mixed with agri-organic byproducts should not be different from the accepted levels in 'normal' animal manure; and finally (7) the site of the biogas plant accepted by local authorities should be suitable by logistic standards for the transports of animal manure, agri-organic by-products, the digested mixture and biogas. It has been concluded that these conditions are not unrealistic, although there is no absolute certainty that they will be fulfilled. However, circumstances for the implementation of biogas plants have improved in recent years

  6. Cost-effective production of biogas from manure – retrogas project

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Rohold, Lars;

    2010-01-01

    fractions of the manure could be used to centralized biogas plants for methane production and as fertilizer on the farm, respectively. Unfortunately, the manure transportation systems today are designed for handling of liquid material and are useless for solid material transportation. A solution to that...... development of new separation and liquefaction technology in order to make the anaerobic digestion of swine manure cost efficient and viable.......Transport of large quantities of low concentrated swine manure (total solids around 5-7%) to biogas plants represents a significant proportion of the operating costs for co-digestion plants. Together with the increment of the prices of the industrial effluents that are used for codigestion, this is...

  7. BIOGAS PRODUCTION FROM CATCH CROPS:A SUSTAINABLE AGRICULTURAL STRATEGY TO INCREASE BIOMASS YIELD BY CO-HARVEST OF CATCH CROPS AND STRAW

    OpenAIRE

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær; Uellendahl, Hinrich

    2014-01-01

    Catch crop cultivation combined with its use for biogas production would increase renewable energy production in the form of methane, without interfering with the production of food and fodder crops. The low biomass yield of catch crops is the main limiting factor for using these crops as co-substrate in manure-based biogas plants and the profit obtained from the sale of biogas barely compensates for the harvest costs. A new agricultural strategy to harvest catch crops together with the resid...

  8. Residual biogas yield of digestate from agricultural biogas plants; Restgaspotenzial in Gaerresten aus landwirtschaftlichen Biogasanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Andreas; Effenberger, Mathias; Kissel, Rainer; Gronauer, Andreas [Bayerische Landesanstalt fuer Landwirtschaft, Freising (Germany). Arbeitsgruppe Biogastechnologie und Reststoffmanagement

    2009-07-01

    To evaluate the residual biogas yield during storage, biogas tests at a temperature of 22 C were performed with samples of liquid digested residue from 15 agricultural biogas plants (BGP). Values of residual biogas yield between 0.3 and 1.3 % with respect to the biogas yield from the raw input materials were measured. For the two one-stage BGP, the value was about 1.2 %. For the two-stage plants, a residual biogas yield (RBY) of 0.9 % was determined as opposed to 0.4 % for the three-stage plants. With a single exception, the RBY was clearly below 1.0 % if the overall hydraulic retention time in the BGP was equal to or larger than 100 days. For the majority of samples, the residual biogas yield showed a positive correlation with the level of volatile fatty acids in the digestate. Since the real conditions in storage tanks cannot be simulated with a simple batch-test, the results are not representative for the actual biogas production and potential methane emissions from the digestate during open storage. (orig.)

  9. Enhancing methane production in a farm-scale biogas production system

    Energy Technology Data Exchange (ETDEWEB)

    Kaparaju, P.

    2003-07-01

    Biogas technology with utilisation of biogas is increasingly applied in the agricultural sector to produce renewable energy and to minimise environmental emissions both resulting in reduction in greenhouse gas (GHG) emissions. The main objective of this thesis was to evaluate methods to enhance the methane production in a farm-scale biogas production system. Semi-continuous digestion of pig and dairy cow manures produced methane yields (m{sup 3} kg{sup -1} volatile solids (VS)) of about 0.31 and 0.14 respectively at 2 kgVS m{sup -3} d{sup -1} loading rate, 30 d hydraulic retention time (HRT) and 6.0% feed VS while in batches yields were 0.14, and 0.36 m3 kg{sup -1} VS for dairy cow and pig and manures respectively. These yields were lower than the theoretical yield of 0.4 m3 kg{sup -1} VS reported for cow manure. Possible co-substrates to enhance the methane production were investigated. Methane yields (m{sup 3} kg{sup -1} VS) in batch assays were 0.14 to 0.35 for three different energy crops and 0.32-0.39 for confectionery by-products. On full-scale application, cow manure alone and co-digestion with energy crops produced 0.22 m{sup 3} CH{sub 4} kg{sup -1} VS and co-digestion with confectionery by-products (20% of feed biomass) about 0.28 m{sup 3} kg{sup -1} VS. Laboratory co-digestion of pig manure with potato tuber or its industrial by- products (potato peel or potato stillage) at loading rate of 2 kg VS m-3 d-1 produced methane yields (m{sup 3} kg{sup -1} VS) of about 0.22 at 85:15 and 0.31 at 80:20 feed VS ratio (VS% pig manure to potato co-substrate) compared to 0.14 for pig manure alone. The batch incubation of digested materials from a farm biogas digester (35 deg C) and its associated post-storage tank indicated that both materials could still produce up to 0.20 m{sup 3} kg{sup -1} VS. The amount and rate was highly dependent on temperature. These results suggest that the untapped methane potential in the digested manure cannot effectively be recovered at

  10. Energy Efficiency Evaluation of two Biogas Plants

    OpenAIRE

    Nordlander, Eva; Holgersson, Jenny; Thorin, Eva; Thomassen, Martin; Yan, Jinyue

    2011-01-01

    Anaerobic digestion for biogas production is a promising renewable energy technology whichcan be used to achieve environmental goals set in the European Union and other regions. Thereare however many improvements that can still be made to the process. Furthermore, there arealternative energy conversion processes that compete for some of the substrates used inanaerobic digestion. Energy efficiency could therefore be a tool for measuring and comparingthe performance of biogas plants. This study...

  11. Increase of Bio-Gas Power Potential

    OpenAIRE

    V. Sednin; О. Kraetskaya; I. Prokoрenia

    2014-01-01

    The paper presents a review of industrial technologies for obtaining gas-synthesis which is applicable for bio-gas enrichment process. Comparative characteristics are given in the paper. The paper thoroughly considers a technology of dry methane conversion as the most expedient variant recommended for the application in this case. The bio-gas enrichment carried out during its production expands possibilities and efficiency of its application.

  12. Biodeterioration of cementitious materials in biogas digester

    OpenAIRE

    Voegel, C.; Bertron, A.; Erable, B

    2015-01-01

    In biogas production plants, concrete structures suffer chemical and biological attacks during the anaerobic digestion process. The attack on concrete may be linked to the effects of (i) organic acids; (ii) ammonium and CO2 co-produced by the microorganisms’ metabolisms; and (iii) the bacteria’s ability to form biofilms on the concrete surface. In a context of biogas industry expansion, the mechanisms of concrete deterioration need to be better understood in order to propose innovative, effic...

  13. Supply and Demand on Vehicle Fuel Biogas in the Biogas East Region; Utbud och efterfraagan paa fordonsgas i Biogas Oest Regionen

    Energy Technology Data Exchange (ETDEWEB)

    Jonerholm, Katarina; Millers-Dalsjoe, Daina; Ganga Parada, Celeste (Sweco Environment AB, Stockholm (Sweden))

    2010-02-15

    This study identifies the current production, demand and distribution of biogas for vehicle fuel Biogas in Eastern Region of Sweden including the counties of Stockholm, Uppsala, Vaestmanland, Soedermanland, Oerebro and Oestergoetland. The study also provides projections of future production, distribution and demand to the year 2020, and for a discussion on the conditions necessary for sustainability of biogas vehicle fuel in the region. Forecast for biogas production by the year 2020 include biogas anaerobic digestion, where the existing sewage treatment plant (WWTP) with digester, as well as existing and planned facilities in the digestion region accounts for the largest biogas production. Inquiry does not include the gasification of biomass or the import of substrates from for digestion of the region. The results of the investigation are summarized and the entire region, and county

  14. Inhibition of biogas production and biodegradability by substituted phenolic compounds in anaerobic sludge.

    Science.gov (United States)

    Hernandez, J E; Edyvean, R G J

    2008-12-15

    Phenolic compounds are abundant in nature and organic wastes. This biomass may be utilised in biogas generation. Phenolics can inhibit the degradation of readily biodegradable organic fractions and their own biodegradation. In this work, assays were carried out under anaerobic conditions to study the inhibition of both gas production and biodegradability due to seven phenolic compounds and to study their adsorption onto sludge and autoxidation in the aqueous medium. Fifty percent inhibition was in the range of 120 to 594 mg of compound/g VSS. An initial enhancement followed by an inhibition of biogas formation was found. The inhibition by the phenolic compounds was found to be influenced by autoxidation, apolarity, type, size and number of substitutions. Biogas production is influenced by concentration rather than any pH change. The concentration of the phenolic compound was partially biomethanized and the degradation of gallic and caffeic acids by this process is reported here for the first time. The maximum total biodegradation of any phenolic compound was 63.85+/-2.73%, and remaining non-biodegradable fraction was autoxidized and adsorbed onto the sludge matrix. Inhibition of methanization and partial inhibition of background gas was found at concentrations between 800 and 1600 mg/L organic carbon. PMID:18403112

  15. Natural attenuation of biogas in landfill covers

    International Nuclear Information System (INIS)

    In the risk evaluation of uncontrolled biogas emissions from landfills, the process of natural attenuation in landfill covers assumes a very important role. The capacity of biogas oxidation in the cover soils seems to be the most important control to mitigate the biogas emission during the aftercare period when the biogas collection system might fail. In the present paper laboratory experiences on lab columns to study the biogas oxidation are discussed

  16. Cavitation for improved sludge conversion into biogas

    Science.gov (United States)

    Stoop, A. H.; Bakker, T. W.; Kramer, H. J. M.

    2015-12-01

    In several studies the beneficial influence of pre-treatment of waste activated sludge with cavitation on the biogas production was demonstrated. It is however, still not fully certain whether this effect should be mainly contributed to an increase in conversion rate of organics into biogas by anaerobic bacteria, and how much cavitation increases the total biogas yield. An increase in yield is only the case if cavitation can further disrupt otherwise inaccessible cell membrane structures and long chain organic molecules. In this study the influence of hydrodynamic cavitation on sludge that was already digested for 30 days was investigated. The total biogas yield could indeed be increased. The effect of the backpressure behind the venturi tube on the yield could not yet be established.

  17. Model of the daily production of biogas from a Indian type digester using techniques of identification systems; Modelo da producao diaria de biogas de um biodigestor tipo indiano utilizando tecnicas de identificacao de sistemas

    Energy Technology Data Exchange (ETDEWEB)

    Borges Neto, Manuel Rangel [Centro Federal de Educacao Tecnologica de Petrolina (CEFET-PET), PE (Brazil)], e-mail: rangel@cefetpet.br; Carvalho, Paulo Cesar Marques de; Almeida, Otacilio da Mota [Universidade Federal do Ceara (PPGEE/UFC), Fortaleza, CE (Brazil). Programa de Pos Graduacao em Engenharia Eletrica

    2008-07-01

    This paper brings a study about utilization of curve adjustments and prediction models of biogas production from a biodigestor fed by sheep manure, to help in the development of a optimal controller to production and use of biogas generated by Indian type biodigestors applied to semiarid. From experimental data were applied simultaneously the Least Mean Squares and Recursive Least Squares methods algorithms and after proper analysis, to validation, a new experimental data set was used to the chosen model. (author)

  18. Biogas Production by Co-Digestion of Goat Manure with Three Crop Residues

    Science.gov (United States)

    Zhang, Tong; Liu, Linlin; Song, Zilin; Ren, Guangxin; Feng, Yongzhong; Han, Xinhui; Yang, Gaihe

    2013-01-01

    Goat manure (GM) is an excellent raw material for anaerobic digestion because of its high total nitrogen content and fermentation stability. Several comparative assays were conducted on the anaerobic co-digestion of GM with three crop residues (CRs), namely, wheat straw (WS), corn stalks (CS) and rice straw (RS), under different mixing ratios. All digesters were implemented simultaneously under mesophilic temperature at 35±1 °C with a total solid concentration of 8%. Result showed that the combination of GM with CS or RS significantly improved biogas production at all carbon-to-nitrogen (C/N) ratios. GM/CS (30:70), GM/CS (70:30), GM/RS (30:70) and GM/RS (50:50) produced the highest biogas yields from different co-substrates (14840, 16023, 15608 and 15698 mL, respectively) after 55 d of fermentation. Biogas yields of GM/WS 30:70 (C/N 35.61), GM/CS 70:30 (C/N 21.19) and GM/RS 50:50 (C/N 26.23) were 1.62, 2.11 and 1.83 times higher than that of CRs, respectively. These values were determined to be the optimal C/N ratios for co-digestion. However, compared with treatments of GM/CS and GM/RS treatments, biogas generated from GM/WS was only slightly higher than the single digestion of GM or WS. This result was caused by the high total carbon content (35.83%) and lignin content (24.34%) in WS, which inhibited biodegradation. PMID:23825574

  19. Potential of Organic Waste for Biogas and Biofertilizer Production in Nigeria

    Directory of Open Access Journals (Sweden)

    Chima Ngumah

    2013-04-01

    Full Text Available With the growing demerits of fossil fuels - its finitude and its negative impact on the environment and public health - renewable energy is becoming a favored emerging alternative.  For over a millennium, anaerobic digestion (AD has been employed in treating organic waste (biomass.  The two main products of anaerobic digestion, biogas and biofertilizer, are very important resources.  Since organic wastes are always available and unavoidable, too, anaerobic digestion provides an efficient means of converting organic waste to profitable resources.  This paper elucidates the potential benefits of organic waste generated in Nigeria as a renewable source of biofuel and biofertilizer.  The selected organic wastes studied in this work are livestock wastes (cattle manure, sheep and goat manure, pig manure, poultry manure; and abattoir waste, human manure, crop residue, and municipal solid waste (MSW.  Using mathematical computation based on the standard measurements, Nigeria generates about 542.5 million tons of the above selected organic waste per annum.  This, in turn, has the potential of yielding about 25.53 billion m3 of biogas (about 169, 541.66 MWh and 88.19 million tons of biofertilizer per annum.  Both have a combined estimated value of about N 4.54 trillion ($ 29.29 billion.  This potential biogas yield will be able to completely replace the use of kerosene and coal for domestic cooking, and reduce the consumption of wood fuel by 66%.  An effective biogas program in Nigeria will also remarkably reduce environmental and public health concerns, deforestation, and greenhouse gas (GHG emissions.DOI: http://dx.doi.org/10.5755/j01.erem.63.1.2912

  20. Enhancing Biogas Production from Anaerobically Digested Wheat Straw Through Ammonia Pretreatment

    Institute of Scientific and Technical Information of China (English)

    杨懂艳; 庞云芝; 袁海荣; 陈树林; 马晶伟; 郁亮; 李秀金

    2014-01-01

    Aqueous ammonia was used to pretreat wheat straw to improve biodegradability and provide nitrogen source for enhancing biogas production. Three doses of ammonia (2%, 4%, and 6%, dry matter) and three moisture contents (30%, 60%, and 80%, dry matter) were applied to pretreat wheat straw for 7 days. The pretreated wheat straws were anaerobically digested at three loading rates (50, 65, and 80 g·L-1) to produce biogas. The results indi-cated that the wheat straw pretreated with 80%moisture content and 4%ammonia achieved the highest methane yield of 199.7 ml·g-1 (based on per unit volatile solids loaded), with shorter digestion time (T80) of 25 days at the loading rate of 65 g·L-1 compared to untreated one. The main chemical compositions of wheat straw were also ana-lyzed. The cellulose and hemicellulose contents were decomposed by 2%-20%and 26%-42%, respectively, while the lignin content was hardly removed, cold-water and hot-water extracts were increased by 4%-44%, and 12%-52%, respectively, for the ammonia-pretreated wheat straws at different moisture contents. The appropriate C/N ratio and decomposition of original chemical compositions into relatively readily biodegradable substances will improve the biodegradability and biogas yield.

  1. Pretreatment of Lignocellulosic Wastes to Improve Ethanol and Biogas Production: A Review

    Directory of Open Access Journals (Sweden)

    Keikhosro Karimi

    2008-09-01

    Full Text Available Lignocelluloses are often a major or sometimes the sole components of different waste streams from various industries, forestry, agriculture and municipalities. Hydrolysis of these materials is the first step for either digestion to biogas (methane or fermentation to ethanol. However, enzymatic hydrolysis of lignocelluloses with no pretreatment is usually not so effective because of high stability of the materials to enzymatic or bacterial attacks. The present work is dedicated to reviewing the methods that have been studied for pretreatment of lignocellulosic wastes for conversion to ethanol or biogas. Effective parameters in pretreatment of lignocelluloses, such as crystallinity, accessible surface area, and protection by lignin and hemicellulose are described first. Then, several pretreatment methods are discussed and their effects on improvement in ethanol and/or biogas production are described. They include milling, irradiation, microwave, steam explosion, ammonia fiber explosion (AFEX, supercritical CO2 and its explosion, alkaline hydrolysis, liquid hot-water pretreatment, organosolv processes, wet oxidation, ozonolysis, dilute- and concentrated-acid hydrolyses, and biological pretreatments.

  2. Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation

    International Nuclear Information System (INIS)

    Highlights: ► Apple waste (AW) was co-digested with swine manure (SM). ► Mixture of AW and SM produced a higher biogas yield than SM only. ► Mixture of AW and SM produced a higher biogas yield at 55 °C than at 36.5 °C. ► Modified Gompertz model best fitted to the substrates used. ► Positive synergetic effect up to 33% AW during continuous digestion. -- Abstract: This study evaluated the performance of anaerobic digesters using a mixture of apple waste (AW) and swine manure (SM). Tests were performed using both batch and continuous digesters. The batch test evaluated the gas potential, gas production rate of the AW and SM (Experiment I), and the effect of AW co-digestion with SM (33:67,% volatile solids (VSs) basis) (Experiment II) at mesophilic and thermophilic temperatures. The first-order kinetic model and modified Gompertz model were also evaluated for methane yield. The continuous test evaluated the performance of a single stage completely stirred tank reactor (CSTR) with different mixture ratios of AW and SM at mesophilic temperature. The ultimate biogas and methane productivity of AW in terms of total chemical oxygen demand (TCOD) was determined to be 510 and 252 mL/g TCOD added, respectively. The mixture of AW and SM improved the biogas yield by approximately 16% and 48% at mesophilic and thermophilic temperatures, respectively, compared to the use of SM only, but no significant difference was found in the methane yield. The difference between the predicted and measured methane yield was higher with a first order kinetic model (4.6–18.1%) than with a modified Gompertz model (1.2–3.4%). When testing continuous digestion, the methane yield increased from 146 to 190 mL/g TCOD added when the AW content in the feed was increased from 25% to 33% (VS basis) at a constant organic loading rate (OLR) of 1.6 g VS/L/d and a hydraulic retention time (HRT) of 30 days. However, the total volatile fatty acids (TVFA) accumulation increased rapidly and the p

  3. New findings on the biogas production from sugar beets; Neue Erkenntnisse zur Biogasproduktion aus Zuckerrueben

    Energy Technology Data Exchange (ETDEWEB)

    Bormann, Hinnerk; Schlaefer, Ottmar; Sievers, Michael [CUTEC-Institut GmbH, Clausthal-Zellerfeld (Germany); Trommler, Marcus; Postel, Jan [Deutsches Biomasseforschungszentrum (DBFZ) gemeinnuetzige GmbH, Leipzig (Germany); Felde, Andreas von; Harling, Hinrich; Rother, Beate [KWS Saat AG, Einbeck (Germany); Franke, Henning; Tkocz, Lisa [INPUT Ingenieure GmbH, Sehnde (Germany)

    2013-10-01

    Main purpose of the project is the process improvement to acquire the full potential of sugar beet based biomethane production. This covers the optimization of breeding and cultivation, as well as improvements of the overall logistic and production process. The project results show that breeding of regional adapted sugar beets can lead to higher yields in cultivation as well as technical enhancements within the biogas production chain can lower the production costs. Both approaches are part of an overall optimization of sugar beets for biomethane production. Project findings indicate a competitive position in comparison to biomethane based on different agricultural feedstock. (orig.)

  4. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    International Nuclear Information System (INIS)

    Highlights: ► This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. ► Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. ► Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. ► Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. ► It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable

  5. Determinants of Biogas Adoption in Manure Management of Vietnamese Household Pig Production : A Case Study in Tien Lu District, Hung Yen Province

    OpenAIRE

    Ly, Nguyen Thi; Nanseki, Teruaki; Chomei, Yosuke

    2015-01-01

    Although biogas technology is one of the useful ways managing the animal manure to reduce environmental problems in rural area, many Vietnamese households that produce pigs still do not apply biogas digesters. This study aim to investigate the main factors contributing to biogas adoption in household pig production based on primary data collected in Tien Lu district, Hung Yen province in Vietnam and the use of Logit regression. The empirical results highlighted that socioeconomic characterist...

  6. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Serrano, Maria; Thomsen, Anne Belinda;

    2009-01-01

    fermentation of cellulose yielded 0.41 g-ethanol/g-glucose, while dark fermentation of hydrolysate produced 178.0 ml-H-2/g-sugars. The effluents from both bioethanol and biohydrogen processes were further used to produce methane with the yields of 0.324 and 0.381 m(3)/kg volatile solids (VS)added, respectively....... Additionally, evaluation of six different wheat straw-to-biofuel production scenaria showed that either use of wheat straw for biogas production or multi-fuel production were the energetically most efficient processes compared to production of mono-fuel such as bioethanol when fermenting C6 sugars alone. Thus...

  7. Kinetics of biogas production from fermentation broth of wild cocoyam codigested with cow paunch in batch mode

    Directory of Open Access Journals (Sweden)

    I.C.E. Umeghalu

    2015-03-01

    Full Text Available Mathematical models are useful in solving the stability problems often exhibited by anaerobic digestion process. Kinetics of batch anaerobic digestion of cocoyam waste mixed with cow paunch for biogas production in batch mode was studied for 30 days hydraulic retention time (HRT. Data from cumulative biogas yield obtained during the experimental stages was fitted to C-NIKBRAN mathematical model based on first order reaction which adequately predicted the kinetic behavior of the substrate’s anaerobic biodegradability. The validity of the applied model was also verified through application of the regression model (ReG (Least Square Method using Excel Version 2003 in predicting the trend of the experimental results. Comparative analysis of Figs. 7-10 show very close alignment of curves which precisely translated into significantly similar trend of data point’s distribution for experimental (ExD, derived model (MoD and regression model-predicted (ReG results of cumulative biogas yield. Also, critical analysis of data obtained from experiment and derived model show low deviations on the part of the model-predicted values relative to values obtained from the experiment. This necessitated the introduction of correction factor, to bring the model-predicted cumulative biogas yield to those of the corresponding experimental values. Deviational analysis from strongly indicates that cumulative biogas yield was most reliable based on the associated admissible deviation of the model-predicted cumulative biogas yield from the corresponding experimental values; 9.2% within the pH range. The values of cumulative biogas yield within the highlighted deviation indicates over 90% confidence level for the applied model and over 0.9 effective dependency coefficients (EDC of cumulative biogas yield on pH, chemical oxygen demand (COD, total viable count (TVC and total dissolved solids (TDS. Also, deviation of model-predicted cumulative biogas yield from

  8. EFFECT OF WITH/WITHOUT AGITATIONOF AGRICULTURAL WASTE ON BIOGAS PRODUCTION FROM ANAEROBIC CO-DIGESTION-A SMALL SCALE

    Directory of Open Access Journals (Sweden)

    Naphon Keanoi

    2014-01-01

    Full Text Available The growing worldwide concerns over environment, health and monetary aspects have triggered a search for efficient and economic renewable sources of energy production. Agricultural sector holds the potential for development of one of the major source of renewable energy such as biogas. In this study, CSTR-small scale fermentation (200 L stainless steel was studied to observe the effect of stirring for natural water, cow dung, rice straw and water hyacinth ratio (2:1:1:1, which there are suitable of C: N ratio at 31.1: 1on the biogas and methane production at ambient temperature (31°C, 6.7-7.2 and 6.7-7.8 of pH for with/without stirring digester, respectively, for 52 days. The result showed that the biogas production increased progressively with stirring digester. The maximum biogas production and methane concentration was 98.56 L/days and 64.07% was obtained at stirring digester. This gave an increase of 7.56 over without stirring digester. Thus, agitation of digester can be used effectively as an operating strategy to optimize biogas production.

  9. Nitrogen availability of biogas residues

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed Fouda, Sara

    2011-09-07

    The objectives of this study were to characterize biogas residues either unseparated or separated into a liquid and a solid phase from the fermentation of different substrates with respect to their N and C content. In addition, short and long term effects of the application of these biogas residues on the N availability and N utilization by ryegrass was investigated. It is concluded that unseparated or liquid separated biogas residues provide N at least corresponding to their ammonium content and that after the first fertilizer application the C{sub org}:N{sub org} ratio of the biogas residues was a crucial factor for the N availability. After long term application, the organic N accumulated in the soil leads to an increased release of N.

  10. Effect of ferrous chloride on biogas production and enzymatic activities during anaerobic fermentation of cow dung and Phragmites straw.

    Science.gov (United States)

    Zhang, Huayong; Tian, Yonglan; Wang, Lijun; Mi, Xueyue; Chai, Yang

    2016-06-01

    The effect of ferrous (added as FeCl2) on the anaerobic co-digestion of Phragmites straw and cow dung was studied by investigating the biogas properties, pH values, organic matter degradation (COD) and enzyme activities (cellulase, protease and dehydrogenase) at different stages of mesophilic fermentation. The results showed that Fe(2+) addition increased the cumulative biogas yields by 18.1 % by extending the peak period with high daily biogas yields. Meanwhile, the methane (CH4) contents in the Fe(2+) added groups were generally higher than the control group before the 15th day. The pH values were not significantly impacted by Fe(2+) concentrations during the fermentation process. The COD concentrations, cellulase, protease and dehydrogenase activities varied with the added Fe(2+) concentrations and the stages of the fermentation process. At the beginning stage of fermentation (4th day), Fe(2+) addition increased the biogas production by improving the cellulase and dehydrogenase activities which caused a decline in COD. At the peak stage of fermentation (8th day), Fe(2+) addition enhanced the cellulase and protease activities, and resulted in lower COD contents than the control group. When the biogas yields decreased again (13th day), the COD contents varied similar with the protease and dehydrogenase activities, whilst cellulase activities were not sensitive to Fe(2+) concentrations. At the end of fermentation (26th day), Fe(2+) addition decreased the cellulase activities, led to lower COD contents and finally resulted the lower biogas yields than the control group. Taking the whole fermentation process into account, the promoting effect of Fe(2+) addition on biogas yields was mainly attributed to the extension of the gas production peak stage and the improvement of cellulase activities. PMID:26862032

  11. Biogas. Present situation and future potential; Biogas. Nulaege och framtida potential

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Ulf [Swedish Inst. of Agricultural and Environmental Engineering, Uppsala (Sweden)

    2006-12-15

    The report contains a general overview of present technology concerning production of biogas through anaerobic breakdown of easily recycled organic material as well as implementation areas for biogas. The work has been done in three parts: description of present situation, technical limitations and development efforts, synthesis. In Sweden there are more than 220 biogas plants for handling crops, sludge and organic residue material. Production of biogas occurs primarily at sewage treatment plants and landfills. Total capacity in 2004 was approx. 300,000 m{sup 3} anaerobic chamber volume, of which approx. 73% was utilised. Planned increase in capacity was approx. 125,000 m{sup 3} or approx. 42%.The substrate brought to the plants was comprised of approx. 45% manure, 30% offal, 10% biowaste from households and 15% other substrates. Calculations based on the energy content of input substrate indicate that approx. 10% of the gas was from manure, 65% from offal, 25% from household waste and 5% from other substrates. In 2005 a total of 1,5 TWh of biogas was produced in Sweden. Biogas is used primarily for heating purposes followed by use as vehicle fuel and in electricity production. More than 55 GWh is torched away. Sewage treatment plants are not included. Interest in using biogas as fuel has increased. The theoretical biogas potential in Sweden has been calculated to be 14-17 TWh per year, of which approx. 80% is found in agriculturally related biomass. Approximately 3 TWh originates from various types of household and industrial waste. Generally it can be said that there is a large potential for improvement and increased efficiency within the whole chain of substrate collection, preparatory treatment of substrates, operational control of biogas plants, upgrade/treatment and use of gas as well as spreading and use of biofertilizer. The greatest increase in substrate will come from the amount of crops from the agricultural sector. The contacts between farmers and plant

  12. Analysis of different substrates for processing into biogas

    OpenAIRE

    B. Mursec; P. Vindis; M. Janzekovic; M. Brus; F. Cus

    2009-01-01

    Purpose: The main target is to produce as much biogas as possible with highest possible biomethane content from crops representing the principal fuel for driving the gas motors and electric generators and, consequently, production of electricity.Design/methodology/approach: The biogas production was measured by a mini digester according to the German standard DIN 38414, Part 8. It was effected in the mesophilic temperature range. The biogas production from six different energy crops and pig s...

  13. A review of chemical absorption of carbon dioxide for biogas upgrading

    Institute of Scientific and Technical Information of China (English)

    Fouad RH Abdeen; Maizirwan Mel; Mohammed Saedi Jami; Sany Izan Ihsan; Ahmad Faris Ismail

    2016-01-01

    Significant attention has been given to biogas production, purification and upgrading as a renewable and clean fuel supplement. Biogas is a product of an anaerobic digestion process comprising methane, carbon dioxide, and trace amounts of other gases. Biogas purification removes trace gases in biogas for safe utilisation. Biogas upgrading produces methane-rich biogas by removing bulk carbon dioxide from the gas mixture. Several carbon dioxide removal techniques can be applied for biogas upgrading. However, chemical absorption of carbon dioxide for biogas upgrading is of special significance due to its operation at ambient or near ambient temperature and pressure, thus reducing energy consumption. This paper reviews the chemical absorption of carbon dioxide using amine scrubbing, caustic solvent scrubbing, and amino acid salt solution scrubbing. Each of these tech-niques for biogas upgrading is discussed. The paper concludes that an optimised implementation of the chemical absorption techniques for biogas upgrading requires further research.

  14. Collective biogas plants

    International Nuclear Information System (INIS)

    Papers contributed to the European seminar on collective biogas plants held at Herning, Denmark on October 22-23 under the auspices of the Commission of the European Communities, Directorate-General for Energy (DG XVII) are presented. Within the framework of the THERMIE programme, a network of OPETs (Organizations for the Promotion of Energy Technologies) was set up in order to disseminate information on new energy technologies throughout the European communities. The potential for further implementation of centralized capacity for the conversion of animal manures and other organic wastes to bio-fuels, not only in central and eastern Europe but also in the developing countries, is discussed in addition to the relevant technologies. Actual biomass conversion plants are described and details are given on operational experience and plant management. Agricultural, economic and policy aspects are also dealt with. (AB)

  15. Influence of solid-liquid separation strategy on biogas yield from a stratified swine production system.

    Science.gov (United States)

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luis; Scussiato, Lucas Antunes; Tápparo, Deisi Cristina; Gaspareto, Taís Carla

    2016-03-01

    As the fourth largest swine producer and exporter, Brazil has increased its participation in the global swine production market. Generally, these units concentrate a large number of animals and generate effluents that must be correctly managed to prevent environmental impacts, being anaerobic digestion is an interesting alternative for treating these effluents. The low-volatile solid concentration in the manure suggests the need for solid-liquid separation as a tool to improve the biogas generation capacity. This study aimed to determine the influence of simplified and inexpensive solid-liquid separation strategies (screening and settling) and the different manures produced during each swine production phase (gestating and farrowing sow houses, nursery houses and finishing houses) on biogas and methane yield. We collected samples in two gestating sow houses (GSH-a and GSH-b), two farrowing sow houses (FSH-a and FSH-b), a nursery house (NH) and a finishing house (FH). Biochemical methane potential (BMP) tests were performed according to international standard procedures. The settled sludge fraction comprised 20-30% of the raw manure volume, which comprises 40-60% of the total methane yield. The methane potential of the settled sludge fraction was approximately two times higher than the methane potential of the supernatant fraction. The biogas yield differed among the raw manures from different swine production phases (GSH-a 326.4 and GSH-b 577.1; FSH-a 860.1 and FSH-b 479.2; NH -970.2; FH 474.5 NmLbiogas.gVS(-1)). The differences were relative to the production phase (feed type and feeding techniques) and the management of the effluent inside the facilities (water management). Brazilian swine production has increased his participation in the global market, been the fourth producer and the fourth exporter. The segregation of swine production in multiple sites has increased its importance, due to the possibilities to have more specialized units. Generally, these units

  16. Hazardous organic compounds in biogas plant end products-Soil burden and risk to food safety

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, K., E-mail: kimmo.suominen@evira.fi [Finnish Food Safety Authority Evira, Risk Assessment Research Unit, Mustialankatu 3, 00790 Helsinki (Finland); Verta, M. [Finnish Environmental Institute (SYKE), Mechelininkatu 34a, P.O. Box 140, 00251 Helsinki (Finland); Marttinen, S. [MTT Agrifood Research Finland, 31600 Jokioinen (Finland)

    2014-09-01

    The end products (digestate, solid fraction of the digestate, liquid fraction of the digestate) of ten biogas production lines in Finland were analyzed for ten hazardous organic compounds or compound groups: polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCB(7)), polyaromatic hydrocarbons (PAH(16)), bis-(2-ethylhexyl) phthalate (DEHP), perfluorinated alkyl compounds (PFCs), linear alkylbenzene sulfonates (LASs), nonylphenols and nonylphenol ethoxylates (NP + NPEOs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Biogas plant feedstocks were divided into six groups: municipal sewage sludge, municipal biowaste, fat, food industry by-products, animal manure and others (consisting of milling by-products (husk) and raw former foodstuffs of animal origin from the retail trade). There was no clear connection between the origin of the feedstocks of a plant and the concentrations of hazardous organic compounds in the digestate. For PCDD/Fs and for DEHP, the median soil burden of the compound after a single addition of digestate was similar to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. For PFCs, the median soil burden was somewhat lower than the atmospheric deposition in Finland or Sweden. For NP + NPEOs, the soil burden was somewhat higher than the atmospheric deposition in Denmark. The median soil burden of PBDEs was 400 to 1000 times higher than the PBDE air deposition in Finland or in Sweden. With PBDEs, PFCs and HBCD, the impact of the use of end products should be a focus of further research. Highly persistent compounds, such as PBDE- and PFC-compounds may accumulate in agricultural soil after repeated use of organic fertilizers containing these compounds. For other compounds included in this study, agricultural use of biogas plant end products is unlikely to cause risk to food safety in Finland. - Highlights:

  17. Hazardous organic compounds in biogas plant end products-Soil burden and risk to food safety

    International Nuclear Information System (INIS)

    The end products (digestate, solid fraction of the digestate, liquid fraction of the digestate) of ten biogas production lines in Finland were analyzed for ten hazardous organic compounds or compound groups: polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCB(7)), polyaromatic hydrocarbons (PAH(16)), bis-(2-ethylhexyl) phthalate (DEHP), perfluorinated alkyl compounds (PFCs), linear alkylbenzene sulfonates (LASs), nonylphenols and nonylphenol ethoxylates (NP + NPEOs), polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Biogas plant feedstocks were divided into six groups: municipal sewage sludge, municipal biowaste, fat, food industry by-products, animal manure and others (consisting of milling by-products (husk) and raw former foodstuffs of animal origin from the retail trade). There was no clear connection between the origin of the feedstocks of a plant and the concentrations of hazardous organic compounds in the digestate. For PCDD/Fs and for DEHP, the median soil burden of the compound after a single addition of digestate was similar to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. For PFCs, the median soil burden was somewhat lower than the atmospheric deposition in Finland or Sweden. For NP + NPEOs, the soil burden was somewhat higher than the atmospheric deposition in Denmark. The median soil burden of PBDEs was 400 to 1000 times higher than the PBDE air deposition in Finland or in Sweden. With PBDEs, PFCs and HBCD, the impact of the use of end products should be a focus of further research. Highly persistent compounds, such as PBDE- and PFC-compounds may accumulate in agricultural soil after repeated use of organic fertilizers containing these compounds. For other compounds included in this study, agricultural use of biogas plant end products is unlikely to cause risk to food safety in Finland. - Highlights:

  18. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    International Nuclear Information System (INIS)

    Highlights: ► Small increase in methane production was observed applying sonication pretreatment. ► Biogas productions between 720 and 1100 mL/Lreactor day were achieved. ► Volatile solids removal efficiencies ranged between 53% and 60%. ► Lower methane yields were obtained when operating under thermophilic conditions. ► Optimum OLR in lab-scale CSTR was 1.2–1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH4/kg VSfeed for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 °C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20–28% in SMP. Lower methane yields were obtained when operating at 55 °C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

  19. Co-digestion of cattle manure with food waste and sludge to increase biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Maranon, E., E-mail: emara@uniovi.es [Department of Chemical Engineering and Environmental Technology, University Institute of Technology of Asturias, Campus of Gijon, University of Oviedo, 33203 Gijon (Spain); Castrillon, L.; Quiroga, G.; Fernandez-Nava, Y. [Department of Chemical Engineering and Environmental Technology, University Institute of Technology of Asturias, Campus of Gijon, University of Oviedo, 33203 Gijon (Spain); Gomez, L.; Garcia, M.M. [Zero Emissions Technology, 41018 Seville (Spain)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Small increase in methane production was observed applying sonication pretreatment. Black-Right-Pointing-Pointer Biogas productions between 720 and 1100 mL/Lreactor day were achieved. Black-Right-Pointing-Pointer Volatile solids removal efficiencies ranged between 53% and 60%. Black-Right-Pointing-Pointer Lower methane yields were obtained when operating under thermophilic conditions. Black-Right-Pointing-Pointer Optimum OLR in lab-scale CSTR was 1.2-1.3 g VS/L day (HRT: 20 days). - Abstract: Anaerobic co-digestion strategies are needed to enhance biogas production, especially when treating certain residues such as cattle/pig manure. This paper presents a study of co-digestion of cattle manure with food waste and sewage sludge. With the aim of maximising biogas yields, a series of experiments were carried out under mesophilic and thermophilic conditions using continuously stirred-tank reactors, operating at different hydraulic residence times. Pretreatment with ultrasound was also applied to compare the results with those obtained with non-pretreated waste. Specific methane production decreases when increasing the OLR and decreasing HRT. The maximum value obtained was 603 LCH{sub 4}/kg VS{sub feed} for the co-digestion of a mixture of 70% manure, 20% food waste and 10% sewage sludge (total solid concentration around 4%) at 36 Degree-Sign C, for an OLR of 1.2 g VS/L day. Increasing the OLR to 1.5 g VS/L day led to a decrease of around 20-28% in SMP. Lower methane yields were obtained when operating at 55 Degree-Sign C. The increase in methane production when applying ultrasound to the feed mixtures does not compensate for the energy spent in this pretreatment.

  20. Biogas in agriculture. Status and prospects. Proceedings; Biogas in der Landwirtschaft. Stand und Perspektiven. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the congress of the Agency for Renewable Resources (Guelzow, Federal Republic of Germany) and the Association for Technology and Structures in Agriculture (Darmstadt, Federal Republic of Germany) at 20th-21st September, 2011 in Goettingen (Federal Republic of Germany) the following lectures and posters were presented: (1) Perspectives of using biogas as a part of the German power supply (Stefan Rauh); (2) Development of biogas in Europe (Marc Fleureck); (3) Biology of methanogenic archaea and its significance for the microbial process control in biogas plants (Helmut Koenig); (4) Efficiency and behaviour of enzymes in the biogas process (Monika Heiermann); (5) Trace elements in NaWaRo biogas plants for balancing substrate limited deficiency symptoms and stabilizing the fermentation process (Hans Oechsner); (6) EEG - Actual developments for biogas (Ulrich Keymer); (7) Utilization of thermal energy from cogeneration in the practice - Experiences from the view of an environmental expert (Michael Hub); (8) Innovations in the legal aspects of the production and utilization of biogas (Hartwig von Bredow); (9) Damages and deficiencies at biogas plants (Waldemar Gruber); (10) Learning from accidents, damages and their causes as well as their correctives in the operation of biogas plants - Reports from the practice (Wolfgang Horst Stachowitz); (11) Causes and avoidance of container damages by means of biocorrosion (Jan Kuever); (12) Anaerobic degradation of cellulosic substrates - Bionic implementation of the forestomach sysem of a ruminant (Dirk Weichgrebe); (13) Fermentation of renewable raw materials in the up flow procedure (Jan Mumme); (14) Two-phase pressure fermentation for feeding into natural gas grids (Andreas Lemmer); (15) Requirements and potential of sugar beets for fermentation (Christa Hoffmann); (16) Innovation in the area of power beets (Andreas von Felde); (17) Optimization of manuring with fermentation residues in order to reduce the nitrogen

  1. Isolations of biogas products and effective utilization of biomass in a tropical environment

    International Nuclear Information System (INIS)

    This paper has compared two types (Indian and Chinese) of biogas producing facilities designed and built in Birnin-Kebbi, Nigeria. Available local input for the plants are identified and the isolations of the resultant output (products) and their economic viabilities are emphasized. The importance and the uses of the secondary products are highlighted. Ways of maintaining the PH in the digester for optimum gas yield are reported. The difficulties encountered in on the site operation of the two models are stated. On the whole the Chinese model is considered most responsive to the environmental conditions of the study location. (author). 11 refs, 2 figs

  2. Liquid membrane purification of biogas

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S.; Guha, A.K.; Lee, Y.T.; Papadopoulos, T.; Khare, S. (Stevens Inst. of Tech., Hoboken, NJ (United States). Dept. of Chemistry and Chemical Engineering)

    1991-03-01

    Conventional gas purification technologies are highly energy intensive. They are not suitable for economic removal of CO{sub 2} from methane obtained in biogas due to the small scale of gas production. Membrane separation techniques on the other hand are ideally suited for low gas production rate applications due to their modular nature. Although liquid membranes possess a high species permeability and selectivity, they have not been used for industrial applications due to the problems of membrane stability, membrane flooding and poor operational flexibility, etc. A new hollow-fiber-contained liquid membrane (HFCLM) technique has been developed recently. This technique overcomes the shortcomings of the traditional immobilized liquid membrane technology. A new technique uses two sets of hydrophobic, microporous hollow fine fibers, packed tightly in a permeator shell. The inter-fiber space is filled with an aqueous liquid acting as the membrane. The feed gas mixture is separated by selective permeation of a species through the liquid from one fiber set to the other. The second fiber set carries a sweep stream, gas or liquid, or simply the permeated gas stream. The objectives (which were met) of the present investigation were as follows. To study the selective removal of CO{sub 2} from a model biogas mixture containing 40% CO{sub 2} (the rest being N{sub 2} or CH{sub 4}) using a HFCLM permeator under various operating modes that include sweep gas, sweep liquid, vacuum and conventional permeation; to develop a mathematical model for each mode of operation; to build a large-scale purification loop and large-scale permeators for model biogas separation and to show stable performance over a period of one month.

  3. Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility

    International Nuclear Information System (INIS)

    As fossil fuel prices increase and environmental concerns gain prominence, the development of alternative fuels from biomass has become more important. Biodiesel produced from microalgae is becoming an attractive alternative to share the role of petroleum. Currently it appears that the production of microalgal biodiesel is not economically viable in current environment because it costs more than conventional fuels. Therefore, a new concept is introduced in this article as an option to reduce the total production cost of microalgal biodiesel. The integration of biodiesel production system with methane production via anaerobic digestion is proved in improving the economics and sustainability of overall biodiesel stages. Anaerobic digestion of microalgae produces methane and further be converted to generate electricity. The generated electricity can surrogate the consumption of energy that require in microalgal cultivation, dewatering, extraction and transesterification process. From theoretical calculations, the electricity generated from methane is able to power all of the biodiesel production stages and will substantially reduce the cost of biodiesel production (33% reduction). The carbon emissions of biodiesel production systems are also reduced by approximately 75% when utilizing biogas electricity compared to when the electricity is otherwise purchased from the Victorian grid. The overall findings from this study indicate that the approach of digesting microalgal waste to produce biogas will make the production of biodiesel from algae more viable by reducing the overall cost of production per unit of biodiesel and hence enable biodiesel to be more competitive with existing fuels. (author)

  4. Anaerobic co-digestion of water hyacinth and cow dung for biogas production

    OpenAIRE

    OROKA FRANK OKE; AKHIHIERO THELMA

    2015-01-01

    Co-digestion of water hyacinth and cow dung under anaerobic condition was studied. Results indicate a progressive increase in biogas yield with increased cow dung in the co-ferment mixture of water hyacinth: cow dung

  5. Trace compounds affecting biogas energy utilisation - A review

    Energy Technology Data Exchange (ETDEWEB)

    Rasi, S., E-mail: saija.rasi@gmail.com [University of Jyvaeskylae, Department of Biological and Environmental Science, P.O. Box 35, FI-40014 (Finland); Laentelae, J.; Rintala, J. [University of Jyvaeskylae, Department of Biological and Environmental Science, P.O. Box 35, FI-40014 (Finland)

    2011-11-15

    Highlights: {yields} In regards to trace compounds, landfill gases are the most studied biogases. {yields} More strict requirements are set for biogas purity with new biogas applications. {yields} With traditional applications, small variations in biogas quality are acceptable. {yields} New requirements set challenges on raw material control and biogas quality. {yields} In this study, variations in analysing methods and biogas quality are discussed. - Abstract: This paper investigates the trace compounds affecting energy utilisation in biogas that come from different production sites. With biogas being more widely used in different energy applications more interest has arisen for the specific composition of biogas. In traditional energy applications, methane and hydrogen sulphide contents have had the most influence when energy utilisation application has been considered. With more advanced processes also the quantity and quality of trace compounds is more important. In regards to trace compounds, it was found that the concentrations and the variations of volatile organic compounds (VOCs) can be high in different landfills, especially, with compounds originating from the biological degradation process (like aromatics and terpenes) as seasonal variations affect the biological degradation. Trace compounds produced by direct volatilisation (halogenated and silicon compounds) show a smaller seasonal variation. Halogenated compounds are rarely present in high concentrations in waste water treatment plant (WWTP) biogas, but the concentrations of organic silicon compounds and their variation is high. Organic silicon compounds are usually detected only in low concentrations in co-digestion plant biogas, when no WWTP sludge is used as a raw material.

  6. Trace compounds affecting biogas energy utilisation - A review

    International Nuclear Information System (INIS)

    Highlights: → In regards to trace compounds, landfill gases are the most studied biogases. → More strict requirements are set for biogas purity with new biogas applications. → With traditional applications, small variations in biogas quality are acceptable. → New requirements set challenges on raw material control and biogas quality. → In this study, variations in analysing methods and biogas quality are discussed. - Abstract: This paper investigates the trace compounds affecting energy utilisation in biogas that come from different production sites. With biogas being more widely used in different energy applications more interest has arisen for the specific composition of biogas. In traditional energy applications, methane and hydrogen sulphide contents have had the most influence when energy utilisation application has been considered. With more advanced processes also the quantity and quality of trace compounds is more important. In regards to trace compounds, it was found that the concentrations and the variations of volatile organic compounds (VOCs) can be high in different landfills, especially, with compounds originating from the biological degradation process (like aromatics and terpenes) as seasonal variations affect the biological degradation. Trace compounds produced by direct volatilisation (halogenated and silicon compounds) show a smaller seasonal variation. Halogenated compounds are rarely present in high concentrations in waste water treatment plant (WWTP) biogas, but the concentrations of organic silicon compounds and their variation is high. Organic silicon compounds are usually detected only in low concentrations in co-digestion plant biogas, when no WWTP sludge is used as a raw material.

  7. A review of the biogas industry in China

    International Nuclear Information System (INIS)

    This article presents an overview of the development and future perspectives of the Chinese biogas industry. The development of the industry has the potential to improve the rural environment and produce significant amounts of sustainable energy for China. Barriers to the development are the relatively weak environmental policies, imperfect financial policies and lack of long-term follow-up services. The rapid economic development of China has also seen a development in the scales of biogas plants constructed. Although the technology has been improved, this review has identified problems in the construction and operation of Chinese biogas plants, particularly in the efficiency of household systems. All levels of China's government acknowledge this and recent biogas projects have more focus on quality and less on the quantity. The intention is to gradually introduce stricter environmental policies, to provide better service systems, improve the financial policies that support the construction and follow-up service of biogas projects, promote the use of standardized engineering equipment and materials and standards for plant construction and production. This will promote the development of biogas projects at various scales further, and reduce the dependency on fossil fuels and emissions of greenhouse gases. - Highlights: → The biogas industry in China has great developing potential and necessity. → Barriers to the development of biogas industry in China were included in the article. → All scales of Biogas plants in China have developed rapidly in recent years. → Measures to promote the development of biogas projects further in China were proposed.

  8. Optimization of biogas production using MEMS based near infrared inline-sensor

    Science.gov (United States)

    Saupe, Ray; Seider, Thomas; Stock, Volker; Kujawski, Olaf; Otto, Thomas; Gessner, Thomas

    2013-03-01

    Due to climate protection and increasing oil prices, renewable energy is becoming extremely important. Anaerobic digestion is a particular environmental and resource-saving way of heat and power production in biogas plants. These plants can be operated decentralized and independent of weather conditions and allow peak load operation. To maximize energy production, plants should be operated at a high efficiency. That means the entire installed power production capacity (e.g. CHP) and biogas production have to be used. However, current plant utilization in many areas is significantly lower, which is economically and environmentally inefficient, since the biochemical process responds to fluctuations in boundary conditions, e.g. mixing in the conditions and substrate composition. At present only a few easily accessible parameters such as fill level, flow rates and temperature are determined on-line. Monitoring of substrate composition occurs only sporadically with the help of laboratory methods. Direct acquisition of substrate composition combined with a smart control and regulation concept enables significant improvement in plant efficiency. This requires a compact, reliable and cost-efficient sensor. It is for this reason that a MEMS sensor system based on NIR spectroscopy has been developed. Requirements are high accuracy, which is the basic condition for exact chemometric evaluation of the sample as well as optimized MEMS design and packaging in order to work in poor environmental conditions. Another issue is sample presentation, which needs an exact adopted optical-mechanical system. In this paper, the development and application of a MEMS-based analyzer for biogas plants will be explained. The above mentioned problems and challenges will be discussed. Measurement results will be shown to demonstrate its performance.

  9. Biogas in Portugal: status and public policies in a European context

    OpenAIRE

    Ferreira, Miguel; Marques, Isabel Paula; Malico, Isabel

    2012-01-01

    The current status and legal framework of biogas production in Portugal are analyzed and compared to that of five other European countries, characterized by wide-ranging diversity of substrates and biogas applications. With this comparison, and with the calculation of the biogas energy potential in Portugal, the authors want to assess the significance of developing the Portuguese biogas sector. This study illustrates that the highest biogas feed-in tariffs are applied in the countries with a ...

  10. A perspective on the potential role of biogas in smart energy grids

    OpenAIRE

    Persson, Tobias; MURPHY Jerry; JANNASCH Anna-Karin; AHERN Eoin; LIEBETRAU Jan; TROMMLER Marcus; TOYAMA Jeferson

    2015-01-01

    This report documents the potential role of biogas in smart energy grids. Biogas systems can facilitate increased proportions of variable renewable electricity on the electricity grid through use of two different technologies: • Demand driven biogas systems which increase production of electricity from biogas facilities at times of high demand for electricity, or store biogas temporarily at times of low electricity demand. • Power to gas systems when demand for electricity is less th...

  11. Influence of different practices on biogas sustainability

    International Nuclear Information System (INIS)

    Biogas production and use are generally regarded as a sustainable practice that can guarantee high greenhouse gas (GHG) savings. However, the actual carbon footprint of biogas is strongly influenced by several factors. The aim of this study is to analyse the environmental performance of different biogas to electricity scenarios. Two criticalities are identified as important: the choice of feedstock and the operational practice concerning the digestate. Maize, manure and co-digestion of them are the different feedstocks chosen. Maize has higher yields, but its cultivation has to be accounted for, which consists of 28–42% of the GHG emissions of the whole process of producing electricity. Manure is considered a residue and as a result benefits from no production stage, but also from avoided emissions from the normal agricultural practice of storing it in the farm and spreading it as fertiliser, but has lower methane yields. Co-digestion combines the benefits and disadvantages of the two different feedstocks. Digestate storage in open or closed tanks and further use as fertiliser is analysed. The environmental impact analysis shows that a substantial reduction of GHG emissions can be achieved with closed digestate storage. The GHG emissions savings vary from about 3% in the maize pathways with open storage up to 330% in the manure pathway with closed storage. The biogas pathways, though, have worse environmental performances in all other environmental impacts considered but ozone depletion potential when compared to the European electricity average mix. -- Highlights: ► Biogas sustainability depends on the feedstock and the digestate management. ► Closed storage is strongly recommended. ► Taking into consideration credits is recommended. ► The biogas pathways GHG emissions can be lower than the ones of the reference system. ► Biogas pathways have higher impact in eutrophication, ecotoxicity and PM potentials

  12. Vehicular Quality Biomethane Production from Biogas by Using an Automated Water Scrubbing System

    OpenAIRE

    Chandra, R; Vijay, V. K.; Subbarao, P. M. V.

    2012-01-01

    This paper presents the results of an automated water scrubbing system used for enrichment of methane content in the biogas, to produce vehicular grade biomethane fuel. Incorporation of automatic control systems for precisely regulating the water level and maintaining constant operating pressure in the packed bed absorption column of water scrubbing system resulted in steady-state operation of the scrubbing system and a consistent supply of methane-enriched biogas from the gas outlet. The imp...

  13. Catalytic Effect of Tungsten on Anaerobic Digestion Process for Biogas Production from Fruit and Vegetable Wastes

    OpenAIRE

    Das A; Mondal.C

    2013-01-01

    In the recent years global energy crisis increased at a fast pace. Demand for the use of fossil fuels for cooking and other commercial activities increased along with the increasing population of India. Use of renewable sources of energy viz. biogas for cooking etc can somewhat be an alternative for the excessive demand of fossil fuels like LPG. In this study, the catalytic effect of tungsten for maximizing biogas have been presented. Essentially, anaerobic digesti...

  14. On-line near infrared monitoring of ammonium and dry matter in biosturry for robust biogas production

    DEFF Research Database (Denmark)

    Madsen, Michael; Ihunegbo, Felicia N.; Holm-Nielsen, Jens Bo;

    2012-01-01

    Heterogeneous substrates fed into agricultural biogas plants originate from many sources with resulting quality fluctuations potentially inhibiting the process. Biogas yield can be substantially increased by optimisation of the organic dry matter load. In this study, near infrared spectroscopy was...

  15. Ecotoxicological assessment of residues from different biogas production plants used as fertilizer for soil.

    Science.gov (United States)

    Stefaniuk, Magdalena; Bartmiński, Piotr; Różyło, Krzysztof; Dębicki, Ryszard; Oleszczuk, Patryk

    2015-11-15

    Residues from biogas production (RBP) are a relatively new materials, which may be an interesting resource for the improvement of soil fertility. Nevertheless, in spite of the potential benefits from the agricultural utilization of RBP, there is a need of comprehensive estimation of their toxicity. This information is needed to exclude potential negative environmental impacts arising from the use of RBP. Samples of RBP obtained from six biogas production plants with varied biogas production methods were analysed. The samples with and without separation on solid and liquid phases were investigated. The physicochemical properties of the RBP, heavy metals content (Cr, Cu, Ni, Cd, Pb i Zn) and toxicity on bacteria (Vibrio fischeri, MARA test - 11 different strains), collembolans (Folsomia candida) and two plant species (Lepidium sativum and Sinapis alba) was investigated. Toxicity of RBP was examined using Phytotoxkit F (root growth inhibition), collembolan test (mortality, inhibition of reproduction), Microtox® (inhibition of the luminescence of V. fischeri) and MARA test (growth of microorganisms). An especially negative effect on the tested organisms whereas was noted for the liquid phase after separation. In many cases, RBP without separation also showed unfavourable effects on the tested organisms. Liquid phase after separation and non-separated materials caused inhibition of root growth of L. sativum and S. alba at the level of 17.42-100% and 30.5-100%, respectively, as well as the inhibition of reproduction of F. candida with the range from 68.89 to 100%. In most cases, no ecotoxicological effect was observed for solid phase after separation for tested organisms. The solid phase after separation presented the most favorable properties between all investigated RBP. Therefore, it can be a potential material for the improvement of soil properties and for later use in agriculture. PMID:26057443

  16. Experimental and Mathematical Modelling for Methane Biogas Production from Mixing of Real Municipal Solid Waste and Sewage Sludge

    OpenAIRE

    Faiza E. Gharib*; Ahmed Hassoon Ali; , Wisam Ali Hussein

    2014-01-01

    Biogas (methane) production from batch anaerobic digesters containing varying ratio of organic fraction municipal solid waste and sewage sludge, pH, temperature and total solid are studied for a period of 30 days. It was observed that biogas production was optimized when waste and inoculum were mixed in a ratio of 5:1.At temperature, total solid and pH of 35oC, 10 % and of 7.5 respectively. The maximum accumulative methane production is 450 mL/gm V.S. First order model was deve...

  17. Wheat straw, household waste and hay as a source of lignocellulosic biomass for bioethanol and biogas production

    DEFF Research Database (Denmark)

    Tomczak, Anna; Bruch, Magdalena; Holm-Nielsen, Jens Bo

    2010-01-01

    To meet the increasing need for bioenergy three lignocellulosic materials: raw hay, pretreated wheat straw and pretreated household waste were considered for the production of bioethanol and biogas. Several mixtures of household waste supplemented with different fractions of wheat straw and hay in...... fermentation process with Saccharomyces cerevisiae were investigated. Wheat straw and household wastes were pretreated using IBUS technology, patented by Dong Energy, which includes milling, stem explosion treatment and enzymatic hydrolysis. Methane production was investigated using stillages, the effluents...... from bioethanol fermentation experiment. Previous trial of biogas production from above mentioned household wastes was enclosed....

  18. Technical-economical analysis of the Saveh biogas power plant

    Energy Technology Data Exchange (ETDEWEB)

    Giti Taleghani; Akbar Shabani Kia [Atomic Energy Organization of Iran, Tehran (Iran). Center for Development of New Energies

    2005-03-01

    The resource limitation of fossil fuels and the problems arising from their combustion has led to widespread research on the accessibility of new and renewable energy resources. Solar, wind, thermal and hydro sources, and finally biogas are among these renewable energy resources. But what makes biogas distinct from other renewable energies is its importance in controlling and collecting organic waste material and at the same time producing fertilizer and water for use in agricultural irrigation. Unlike other forms of renewable energy, biogas neither has any geographical limitations and required technology for producing energy and nor is it complex or monopolistic. Considering the ever increasing amount of different types of organic waste materials (about 15 million tonnes) in Iran, working on the control of waste material and biogas production becomes inevitable. In this paper, biogas and the benefits from its production are discussed, as is the technical-economic analysis of the Saveh biogas power plant as a case study. (author)

  19. The Temperature Influence to Biogas Production on Anaerobic Reactor at Ponggol Singapore

    International Nuclear Information System (INIS)

    Temperature is one of the important factor which is influence the fermentation process, but in tropical country like Singapore or Indonesia heating process is not necessary, so it is needed to observe the benefit of heater installation. The observation of temperature influence to biogas production of 1500 m3, Totally mix anaerobic reactor with hydraulic retention time 10 days with and without heating process is 13% higher than without heating process. Gas quality is not influence the process during the observation time, while the degradation of total volatile solid with heating process is 75.8% and without heating process is 57.3%. (author)

  20. Life Cycle Assessment of Biogas/Biofuel Production from Organic Waste

    OpenAIRE

    Seldal, Tiril Jeanette

    2014-01-01

    The focus on energy production is important today and will be of even bigger importance in the future. With an increase in the world’s population and at the same time a more energy demanding one the energy issue is and will be one aspect that will involve all of us. The demand and environmental impacts will require that an increasing share of the energy will be renewable. Waste systems has therefore become of bigger interests in the resent years.This thesis has looked at biogas/biofuel p...

  1. Two-Stage Fungal Pre-Treatment for Improved Biogas Production from Sisal Leaf Decortication Residues

    OpenAIRE

    Amelia Kajumulo Kivaisi; Anthony Manoni Mshandete; Mutemi Muthangya

    2009-01-01

    Sisal leaf decortications residue (SLDR) is amongst the most abundant agro-industrial residues in Tanzania and is a good feedstock for biogas production. Pre-treatment of the residue prior to its anaerobic digestion (AD) was investigated using a two-stage pre-treatment approach with two fungal strains, CCHT-1 and Trichoderma reesei in succession in anaerobic batch bioreactors. AD of the pre-treated residue with CCTH-1 at 10% (wet weight inoculum/SLDR) inoculum concentration incubated for four...

  2. Utilization of water hyacinth for production of biogas and incorporation into integrated farming schemes

    International Nuclear Information System (INIS)

    The rate of production of biogas from water hyacinth in the form of chopped whole plant, blended whole plant, blended stolon and leaf, blended roots, whole stolon and leaf and fermented blended whole plant has been determined in small laboratory digesters. These results have been compared with investigations carried out under the CSC/UNEP programme in India and with experiments reported from the United States. The second phase of the study has commenced m which the digestion of water hyacinth is being investigated m larger (10 m3) field type digesters

  3. Life Cycle Assessment of Biogas Production from Marine Macroalgae: a Latvian Scenario

    Science.gov (United States)

    Pilicka, Iluta; Blumberga, Dagnija; Romagnoli, Francesco

    2011-01-01

    There is potential environmental benefit to be gained from the use of algae because of their ability to fix CO2, no need for direct land use and utilization of bio-waste (rich in potassium, phosphate and nitrogen based compounds) as a nutrients. The aim of the research is to assess the impact of biogas production and the final use in a cogeneration unit system from a Life Cycle Assessment (LCA) in comparison with a similar reference system using a non-renewable source (e.g. natural gas). The paper is intended to be a preliminary study for understanding the implementation of this novel technology in a Latvian context.

  4. Efficient Heat Use from Biogas CHP Plants. Case Studies from Biogas Plants in Latvia

    OpenAIRE

    Dzene, Ilze; Slotiņa, Lāsma

    2013-01-01

    This paper is focusing on efficient heat use from biogas plants. It gives an overview about various biogas heat use options and specifically addresses biogas heat use market in Latvia. In the end three examples from typical agricultural biogas plants in Latvia and their heat use plans are described.

  5. Pretreatment of non-sterile, rotted silage maize straw by the microbial community MC1 increases biogas production.

    Science.gov (United States)

    Hua, Binbin; Dai, Jiali; Liu, Bin; Zhang, Huan; Yuan, Xufeng; Wang, Xiaofen; Cui, Zongjun

    2016-09-01

    Using microbial community MC1 to pretreat lignocellulosic materials increased the yield of biogas production, and the substrate did not need to be sterilized, lowering the cost. Rotted silage maize straw carries many microbes. To determine whether such contamination affects MC1, rotted silage maize straw was pretreated with MC1 prior to biogas production. The decreases in the weights of unsterilized and sterilized rotted silage maize straw were similar, as were their carboxymethyl cellulase activities. After 5d pretreatment, denaturing gradient gel electrophoresis and quantitative polymerase chain reaction results indicated that the proportions of five key strains in MC1 were the same in the unsterilized and sterilized groups; thus, MC1 was resistant to microbial contamination. However, its resistance to contamination decreased as the degradation time increased. Following pretreatment, volatile fatty acids, especially acetic acid, were detected, and MC1 enhanced biogas yields by 74.7% compared with the untreated group. PMID:27289062

  6. Enhancing biogas production from anaerobic biodegradation of the organic fraction of municipal solid waste through leachate blending and recirculation.

    Science.gov (United States)

    Nair, Arjun; Sartaj, Majid; Kennedy, Kevin; Coelho, Nuno M G

    2014-10-01

    Leachate recirculation has a profound advantage on biodegradation of the organic fraction of municipal solid waste in landfills. Mature leachate from older sections of landfills (>10 years) and young leachate were blended and added to organic fraction of municipal solid waste in a series of biomethane potential assay experiments with different mixing ratios of mature and young leachate and their effect on biogas production was monitored. The improvement in biogas production was in the range of 19%-41% depending on the ratio of mixing old and new leachate. The results are conclusive that the biogas generation could be improved by blending the old and new leachate in a bioreactor landfill system as compared with a conventional system employed in bioreactor landfills today for recirculating the same age leachate. PMID:25125510

  7. Biotechnological Screening of Microalgal and Cyanobacterial Strains for Biogas Production and Antibacterial and Antifungal Effects

    Directory of Open Access Journals (Sweden)

    Opayi Mudimu

    2014-05-01

    Full Text Available Microalgae and cyanobacteria represent a valuable natural resource for the generation of a large variety of chemical substances that are of interest for medical research, can be used as additives in cosmetics and food production, or as an energy source in biogas plants. The variety of potential agents and the use of microalgae and cyanobacteria biomass for the production of these substances are little investigated and not exploited for the market. Due to the enormous biodiversity of microalgae and cyanobacteria, they hold great promise for novel products. In this study, we investigated a large number of microalgal and cyanobacterial strains from the Culture Collection of Algae at Göttingen University (SAG with regard to their biomass and biogas production, as well antibacterial and antifungal effects. Our results demonstrated that microalgae and cyanobacteria are able to generate a large number of economically-interesting substances in different quantities dependent on strain type. The distribution and quantity of some of these components were found to reflect phylogenetic relationships at the level of classes. In addition, between closely related species and even among multiple isolates of the same species, the productivity may be rather variable.

  8. Utilization of CO2 fixating bacterium Actinobacillus succinogenes 130Z for simultaneous biogas upgrading and bio-succinic acid production

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Alvarado-Morales, Merlin; Angelidaki, Irini

    2014-01-01

    Biogas is an attractive renewable energy carrier. However, it contains CO2 which limits certain applications of biogas. Here we report a novel approach for removing CO2 from biogas and capturing it as a biochemical through a biological process. This approach entails converting CO2 into bio-succin...

  9. Biogas : Animal Waste That Can be Alternative Energy Source

    OpenAIRE

    Tuti Haryati

    2006-01-01

    Biogas is a renewable energy which can be used as alternative fuel to replace fossil fuel such as oil and natural gas . Recently, diversification on the use of energy has increasingly become an important issue because the oil sources are depleting . Utilization of agricultural wastes for biogas production can minimize the consumption of commercial energy source such as kerosene as well as the use of firewood . Biogas is generated by the process of organic material digestion by certain anaerob...

  10. Biogas Potential in the United States (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-10-01

    Biogas has received increased attention as an alternative energy source in the United States. The factsheet provides information about the biogas (methane) potential from various sources in the country (by county and state) and estimates the power generation and transportation fuels production (renewable natural gas) potential from these biogas sources. It provides valuable information to the industry, academia and policy makers in support of their future decisions.

  11. Biogas Power Plants in Poland—Structure, Capacity, and Spatial Distribution

    Directory of Open Access Journals (Sweden)

    Daniela Szymańska

    2015-12-01

    Full Text Available This paper presents the analysis and evaluation of biogas power plant capacity in Poland based on the generic structure and energy production. These issues are also presented from the point of view of the obtained energy and biogas energy production in Poland against selected European Union countries. The paper also indicates a significant diversity in the spatial distribution of biogas plants in Poland. It also discusses the importance of biogas plants as one of the elements of bottom-up development of the second tier administrative units. There are 231 biogas power plants in Poland (as of 2013, which are based on biogas from landfill sites, biogas from wastewater treatment plants, and agricultural biogas. The generic structure of biogas power plants in Poland is dominated by power plants based on biogas from landfill. Despite the fact that Poland has large resources of agricultural substrate, there are very few biogas power plants based on agricultural biogas. There are no biogas power plants in almost 60% of poviats in Poland, despite the fact that every poviat in Poland has enough of this substrate at its disposal. This article contributes innovative elements to existing knowledge on biogas power plants in Poland, thanks to its comprehensive treatment of the problem of biogas power plants in Poland and because it urges local authorities and local communities to behave more ecologically, as well as promoting endogenous factors of the economic development of a given region.

  12. Biogas and methanation; Biogaz et methanisation

    Energy Technology Data Exchange (ETDEWEB)

    Vachey, C.

    2000-05-01

    This paper recalls the methanation principle, biochemical phenomenon which occurs in closed wall, where the organic matter is transformed in biogas. It presents the biogas valorization channels and their advantages. (A.L.B.)

  13. Methane production from a field-scale biofilter designed for desulfurization of biogas stream.

    Science.gov (United States)

    Pirolli, Mateus; da Silva, Márcio Luís Busi; Mezzari, Melissa Paola; Michelon, William; Prandini, Jean Michel; Moreira Soares, Hugo

    2016-07-15

    The development of a simple and low maintenance field-scale biotrickling filter (BTF) for desulfurization of swine wastewater-derived biogas stream that was also capable of increasing biomethane concentrations was investigated. BTF was continuously fed with wastewater effluent from an air sparged nitrification-denitrification bioreactor installed downgradient from an UASB-type digester. BTF maximum removal efficiency (RE) of 99.8% was achieved with a maximum elimination capacity (EC) of 1,509 g H2S m(-3) h(-1). Average EC obtained with inlet biogas flow rates of 0.024, 0.036 and 0.048 m(3) h(-1) was 718, 1,013 and 438 g H2S m(-3) h(-1), respectively. SO4(-2) and S(0) were the major metabolites produced from biological conversion of H2S. Additionally to the satisfactory biodesulfurization capacity, an average increase in methane concentration of ≅ 3.8 ± 1.68 g m(-3) was measured in the filtered gas stream throughout 200 days of BTF operation. RT-PCR analyses of archaea communities in the biofilm confirmed dominance of hydrogenotrophic methanogens thus corroborating with the observed strong correlation between CO2 removal and CH4 production. Among the three major archaea orders investigated (i.e., Methanosarcinales, Methanobacteriales, and Methanomicrobiales), Methanobacteriales were encountered at highest concentrations (1.9 × 10(11) gene copies mL(-1)). The proposed BTF was robust efficiently removing H2S from biogas stream while concomitantly enhancing the concentration of valuable methane as source of renewable fuel. PMID:27093237

  14. Optimization of the digestion process of Scenedesmus sp. and Opuntia maxima for biogas production

    International Nuclear Information System (INIS)

    Highlights: • Scenedesmus biomass showed low biodegradability and biogas production. • Methane yield and kinetics of the batch process were improved by co-digestion. • Scenedesmus and Opuntia maxima were successfully co-digested in CSTR. • High biogas yields were obtained and no inhibition by ammonia was observed. - Abstract: Scenedesmus biomass is not an adequate substrate for anaerobic digestion due to its low biodegradability and low biogas yield. This study aims to evaluate the anaerobic co-digestion of Scenedesmus microalgal biomass and Opuntia maxima cladodes, the latter added in order to improve the digestion process. Batch assays were conducted to evaluate possible synergistic effects in different mixtures of both substrates. Mixture with highest methane yield was digested in semi-continuous mode at different VS concentrations. Feedstock composed of 75% O.maxima and 25% Scenedesmus (VS basis) showed the highest methane yield increasing 66.4% and 63.9% that of Scenedesmus and O.maxima, respectively. In semi-continuous mode, ideal organic loading rate (OLR) with 6%VS feed concentration was 4 gVS L−1 d−1, which yielded 292 ± 39 LCH4 kgVS−1 (15 days HRT). In the case of 8%VS feed concentration ideal OLR was 5.33 gVS L−1 d−1, which yielded 308 ± 22 LCH4 kgVS−1 (15 days HRT). The co-digestion of O.maxima and Scenedesmus biomass enhanced the anaerobic digestion process and avoided inhibition caused by low C/N ratio of microalgae

  15. Microbiologic handbook for biogas plants; Mikrobiologisk handbok foer biogasanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, Aasa; Schnuerer, Anna

    2009-05-15

    There is today great interest in the biogas process. The reason for interest is that this process offers an opportunity to stabilize and reduce various types of organic waste, while also generating clean renewable energy in the form of biogas. Purified biogas is a good alternative to gasoline and diesel as motor fuel and can also be used for heating and electricity production. Behind efficient biogas production lies a complex microbiological process. For biogas to be formed many different species of microorganisms have to be active. A disturbance of this teamwork leads to a reduction in biogas production or in the worst case that the process stops. In order to operate a biogas process in an efficient manner, it is necessary to have knowledge of the underlying microbiology and how microorganisms function. Today Swedish biogas plants have personnel with great technical knowledge, while the biological knowledge often is more limited. It has been difficult to find appropriate Swedish language literature in the field. This handbook aims to increase the microbiological expertise of staff at the biogas plants and thus to facilitate the stable operation and optimization of gas production

  16. Distribution forms for biogas and natural gas in Sweden

    International Nuclear Information System (INIS)

    Since biogas and natural gas basically have the same characteristics, they can be distributed in the same system. In the parts of the country where there is an extensive natural gas distribution network, the infrastructure for natural gas can be used for distribution of biogas. In order to increase the use of renewable energy, it is a political ambition to increase the share of biogas in the natural gas network, and, in the long run, entirely replace natural gas with biogas. Much of biogas production in the country is, however, not reached by the existing natural gas network, and this is also the case for a large part of the potential for future biogas production. In these areas the gas is transported in more or less extensive local gas distribution networks and by truck in compressed or liquid form. Transport of compressed and liquefied gas is efficient in some cases and development of these systems is an ongoing process. A number of facilities are planned for production of large quantities of biogas, several hundred GWh/year, through digestion and gasification processes. These plants will be located either in conjunction with major gas consumers or in the vicinity of the existing natural gas grid. The potential for biogas production is, however, present throughout the country and in order to meet market demand biogas requires efficient distribution systems

  17. Utilization of pentoses from sugarcane biomass: techno-economics of biogas vs. butanol production.

    Science.gov (United States)

    Mariano, Adriano Pinto; Dias, Marina O S; Junqueira, Tassia L; Cunha, Marcelo P; Bonomi, Antonio; Filho, Rubens Maciel

    2013-08-01

    This paper presents the techno-economics of greenfield projects of an integrated first and second-generation sugarcane biorefinery in which pentose sugars obtained from sugarcane biomass are used either for biogas (consumed internally in the power boiler) or n-butanol production via the ABE batch fermentation process. The complete sugarcane biorefinery was simulated using Aspen Plus®. Although the pentoses stream available in the sugarcane biorefinery gives room for a relatively small biobutanol plant (7.1-12 thousand tonnes per year), the introduction of butanol and acetone to the product portfolio of the biorefinery increased and diversified its revenues. Whereas the IRR of the investment on a biorefinery with biogas production is 11.3%, IRR varied between 13.1% and 15.2% in the butanol production option, depending on technology (regular or engineered microorganism with improved butanol yield and pentoses conversion) and target market (chemicals or automotive fuels). Additional discussions include the effects of energy-efficient technologies for butanol processing on the profitability of the biorefinery. PMID:23748087

  18. Environmental benefits and value chain economics at biogas production, phase II. Food waste and manure; Miljoenytte og verdikjedeoekonomi ved biogassproduksjon, fase II. Matavfall og husdyrgjoedsel

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Hanne; Arnoey, Silje; Modahl, Ingunn Saur; Morken, John; Briseid, Tormod; Hanssen, Ole Joergen; Soerby, Ivar

    2012-07-01

    The main objective has been to develop an environmental model and an economic model for the entire value chain for the production of biogas and digestate processing. The results will contribute to better decision making in the planning of new biogas plants in Norway. Shortened version.(eb)

  19. Energy systems analysis of biogas systems; Energianalys av biogassystem

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, Maria; Boerjesson, Paal

    2003-05-01

    The aim of this study was to calculate the net energy output and energy efficiency, from a life-cycle perspective and for Swedish conditions, in anaerobic digestion of various raw materials. Our calculations are based on literature reviews concerning the total primary energy input required for the production of biogas (i.e. direct and indirect energy inputs, e.g. when producing and distributing diesel fuels, electricity, fertilisers) as well as the biogas yield from various raw materials. Our analyses include handling and transportation of raw materials, operation of the biogas plants, and transportation and spreading of digested residues, as well as the biogas yield from manure, ley crops, tops and leaves of sugar beets, straw, municipal organic waste, slaughter waste, and grease separator sludge. All calculations concern individual raw materials. The net energy input required to run a biogas system (i.e. centralised biogas plant) typically corresponds to approximately 20-40% of the energy content in the produced biogas. Theoretically, the raw materials could be transported for some 200 km (manure) up to 700 km (slaughter waste) before the net energy output becomes negative. The variations in energy efficiency between studied biogas systems depend mainly on the type of raw material studied and the calculation methods used. Raw materials with high water content and low biogas yield (e.g. manure) require rather large energy inputs compared to the amount of biogas produced. Energy demanding handling of the raw materials, such as ley crops, could correspond to as much as approximately 40% of the net energy input. Varying energy efficiency in different parts of the biogas system, but most of all, changes in the biogas yield, could considerably affect the total net energy output. In general, operation of the biogas plant is the most energy demanding process in the biogas systems, corresponding to some 40-80% of the net energy input in the biogas systems. This implies

  20. Biogas everywhere; Biogaz a tous les etages

    Energy Technology Data Exchange (ETDEWEB)

    Couturier, Ch. [SOLAGRO, 31 - Toulouse (France); Pegret-Rosa, A.S.; Leca, Ch. [CLERC, 93 - Montreuil (France); Adlec, E. [Club Biogaz, 94 - Arcueil (France)

    2009-01-15

    Since the publication in July 2006 of the new purchase tariff of electricity produced by biogas, the methanation channel is increasing. In the past ten years the number of biogas plants from domestic wastes, passed from 1 to 20. This document presents an economic analysis of the different sources of biogas, the performances and the injection of biogas in the public network of the gas utilities. (A.L.B.)

  1. Biogas utilization: Experimental investigation on biogas flameless combustion in lab-scale furnace

    International Nuclear Information System (INIS)

    Highlights: • High costs of biogas purification and low calorific value of biogas are the main obstacles of biogas utilization. • The energy of biogas can be extracted by flameless combustion without any modification in burner or combustion system. • The efficiency of biogas flameless combustion and conventional combustion were 53% and 32% respectively. • The temperature inside the biogas flameless chamber is uniform. • In biogas flameless combustion, NOx and CO2 formation decrease drastically in comparison with traditional combustion. - Abstract: Biogas generated in the anaerobic digestion of biomass and organic wastes by micro-organisms can be applied for heating, transportation and power generation as a renewable energy source. However, low calorific value (LCV) of biogas is one the most important bottlenecks of biogas conversion into electrical or thermal energy. Indeed, the presence of corrosive gases such as H2S and water vapor in biogas components makes some dilemmas in biogas purification and utilization. In order to obtain the efficient biogas utilization method, different biogas resources, physical and chemical properties of biogas and biogas combustion characteristics should be considered. In this paper biogas was utilized in lab-scale flameless combustion furnace and the performance of flameless combustion chamber fueled by biogas has been presented. Results demonstrated that flameless combustion is one of the best feasible strategies for biogas utilization. Uniformity of temperature in the flameless furnace increases the durability of refractory and related equipment. Simplicity of the flameless burner, pollutant formation reduction and fuel consumption decreases are the main causes of biogas flameless combustion supremacy

  2. The influence on biogas production of three slurry-handling systems in dairy farms

    Directory of Open Access Journals (Sweden)

    Damiano Coppolecchia

    2015-04-01

    Full Text Available Handling systems can influence the production of biogas and methane from dairy farm manures. A comparative work performed in three different Italian dairy farms showed how the most common techniques (scraper, slatted floor, flushing can change the characteristics of collected manure. Scraper appears to be the most neutral choice, as it does not significantly affect the original characteristics of manure. Slatted floor produces a manure that has a lower methane potential in comparison with scraper, due to: a lower content of volatile solids caused by the biodegradation occurring in the deep pit, and a lower specific biogas production caused by the change in the characteristics of organic matter. Flushing can produce three different fluxes: diluted flushed manure, solid separated manure and liquid separated manure. The diluted fraction appears to be unsuitable for conventional anaerobic digestion in completely stirred reactors (CSTR, since its content of organic matter is too low to be worthwhile. The liquid separated fraction could represent an interesting material, as it appears to accumulate the most biodegradable organic fraction, but not as primary substrate in CSTR as the organic matter concentration is too low. Finally, the solid-liquid separation process tends to accumulate inert matter in the solid separated fraction and, therefore, its specific methane production is low.

  3. Point of view. Maize for biogas production in Thuringia; Standpunkt. Maisanbau fuer die Biogaserzeugung in Thueringen

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold, Gerd; Peyker, Walter; Zorn, Wilfried; Strauss, Christoph; Struempfel, Juergen; Vetter, Armin; Degner, Joachim

    2011-04-15

    In Thuringia the maize represents with a current size of the cultivation of less than 10% and a cultivation concentration of less than 20% in every county an enrichment of crop rotation. The recycling of the digestate in the farm results due to higher C-reduction stability of the fermentation products to any deterioration of the C balance and soil fertility. Especially in Thuringia farming regions with very low livestock the introduction of biogas plants introduces to a higher diversity of agricultural production and dispersal of crop rotation. Practiced by the combination of locally adapted biogas plants with animal husbandry (milk production = use manure, pig = heat utilization) positive economic and environmental effects can be achieved for the Thuringian farmers. [German] In Thueringen stellt der Mais bei einem gegenwaertigen Anbauumfang von unter 10 % und einer Anbaukonzentration von unter 20 % in jedem Landkreis eine Bereicherung der Fruchtfolge dar. Die Verwertung der Gaerreste im Betrieb fuehrt infolge hoeherer C-Abbaustabilitaet der Gaerprodukte zu keiner Verschlechterung der C-Bilanz und der Bodenfruchtbarkeit. Besonders in Thueringer Ackerbauregionen mit sehr geringem Tierbesatz traegt die Einfuehrung von Biogasanlagen zu einer hoeheren Vielfalt der landwirtschaftlichen Produktion und Auflockerung der Fruchtfolgen bei. Durch die praktizierte Kombination von standortangepassten Biogasanlagen mit der Tierhaltung (Milcherzeugung = Guellenutzung, Schweinehaltung = Waermenutzung) werden fuer die Thueringer Landwirte positive oekonomische und oekologische Effekte erzielt.

  4. Energy recovery from the urban solid wastes biogas; Recupero energetico del biogas da discariche di RSU

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, P.C.; Giambelli, G. [Milan Politecnico, Milan (Italy). Dipt. di Energetica

    1999-12-01

    This paper is focused on the exploitation of biogas produced by anaerobic fermentation in landfills. It is part of an extensive research on the use of urban solid wastes for energy production. Special stress is laid on the environmental benefit and the significant energetic contribution, with specific reference to electric power generation, and on the need of strict laws to develop the exploitation of biogas. [Italian] L'articolo, tratto da un'ampia ricerca sull'utilizzazione energetica dei rifiuti solidi urbani, incentra la sua attenzione sull'utilizzo dei biogas prodotto dalla fermentazione anaerobica nelle discariche. Si sottolineano il vantaggio ambientale e il significativo apporto energetico, con particolare riferimento alla produzione di energia elettrica, nonche' la necessita' di piu' rigore normativo per sviluppare l'utilizzo energetico del biogas.

  5. Monitoring and controlling the biogas process

    Energy Technology Data Exchange (ETDEWEB)

    Ahring, B.K.; Angelidaki, I. [The Technical Univ. of Denmark, Dept. of Environmental Science and Engineering, Lyngby (Denmark)

    1997-08-01

    Many modern large-scale biogas plants have been constructed recently, increasing the demand for proper monitoring and control of these large reactor systems. For monitoring the biogas process, an easy to measure and reliable indicator is required, which reflects the metabolic state and the activity of the bacterial populations in the reactor. In this paper, we discuss existing indicators as well as indicators under development which can potentially be used to monitor the state of the biogas process in a reactor. Furthermore, data are presented from two large scale thermophilic biogas plants, subjected to temperature changes and where the concentration of volatile fatty acids was monitored. The results clearly demonstrated that significant changes in the concentration of the individual VFA occurred although the biogas production was not significantly changed. Especially the concentrations of butyrate, isobutyrate and isovalerate showed significant changes. Future improvements of process control could therefore be based on monitoring of the concentration of specific VFA`s together with information about the bacterial populations in the reactor. The last information could be supplied by the use of modern molecular techniques. (au) 51 refs.

  6. The optimal size for biogas plants

    International Nuclear Information System (INIS)

    The costs of biogas and electricity production from maize silage in relation to plant size are investigated in this paper. A survey of manufacturers' engineering data was conducted to derive a reliable relationship between the capacity of a combined heat and power (CHP) unit and its electrical efficiency. Then a model was developed to derive cost curves for the unit costs of biogas and electricity production and for the transport costs for maize silage and biogas slurry. The least-cost plant capacity depends to a great extent on the local availability of silage maize, and ranges in the model calculations from 575 to 1150 kWel. Finally, the paper deals with the optimum operating plant size due to the investment support available and the graduated tariff for green electricity in Austria. (author)

  7. Economical analysis of the use of biogas in swine production for generation of electric energy; Analise economica da utilizacao do biogas na suinocultura para geracao de energia eletrica

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Franco Muller; Oliveira, Paulo Armando Victoria de [EMBRAPA Suinos e Aves, Concordia, SC (Brazil)], Emails: franco@cnpsa.embrapa.br, paolive@cnpsa.embrapa.br

    2009-07-01

    The demand for alternative sources of energy has been growing in the last years in function of the variation on the prices of petroleum and the recent energy crisis. The anaerobic bio digestion can convert swine manure in biogas. In the present work it was studied the economic viability of the use of the biogas as alternative source for the generation of electric energy in different demand levels. The methodology utilized was the Net Present Value. The study showed that the utilization of biogas as electric energy source is economically feasible. The increase of the demand of electric energy, in the property, associated to the increase of the price of the electric energy, increases the economical profits and accelerates the time of return of the investments. (author)

  8. Domestic biogas development in developing countries

    International Nuclear Information System (INIS)

    Communities that rely mostly on agriculture and livestock farming in developing countries can face strong pressure related to: - Energy access: for instance, in Africa, it is estimated that 68% of the population live without clean cooking facilities [1]. Energy access plays a key role in poverty alleviation. - Resources depletion: if a household uses firewood for cooking purposes, forests depletion in some areas makes firewood collection tougher. - Climate change mitigation: agriculture (i.e. the production of crop and livestock products) accounts for 13.5%2 of the global GHG emissions, and extensive systems are sometimes blamed for being less efficient than intensive ones when it comes to climate change mitigation (given that the later involve lower direct emissions per kg of product). In this context, access to clean and sustainable energy through domestic biogas production can help rural communities alleviate current pressures on the environment. In an urban context, domestic biogas in developing countries is also considered as a means for improving hygiene conditions (especially when it comes to public washrooms issues). This report only focuses on domestic biogas development within the frame of small scale agriculture and livestock production (i.e. in rural areas). The main objective of this document is to provide domestic biogas project developers with relevant information on the key issues to have in mind regarding national integration of such projects. This document gives a general presentation of domestic biogas and its main environmental, social and economic benefits. It also browses the main aspects one should have in mind (checklist) in order to assess local risks and opportunities for domestic biogas development

  9. THE EFFECT OF NATURAL WATER WITH COW DUNG AND AGRICULTURAL WASTE RATIO ON BIOGAS PRODUCTION FROM ANAEROBIC CO-DIGESTION

    OpenAIRE

    NaponKeanoi; KanokornHussaro; Sombat Teekasap

    2013-01-01

    Global warming caused by energy generation from fossil fuel has accelerated the deployment of renewable fuels such as biogas. In this study, batch fermentation (5L) was studied to observe the effect of natural water, cow dung, rice straw and water hyacinth ratio on the biogas and methane production at ambient temperature (31°C), 7.1-7.4 of pH for 52 days. The five types of co-digestion were 2:1:1:1 (digester A), 1:1:1:1 (digester B), 0.5:1:1:1 (digester C), 1:1:1:0 (digester D) and 1:1:0:1 (...

  10. Biogas production from presorted biowaste and municipal solid waste from Sweden : substrate characterization, wet fermentation and cash flow analysis

    OpenAIRE

    Wu, Lishan

    2014-01-01

    Due to the great demand of methane as car fuel by the local population in the state of Västmanland, Sweden, a Swedish company called Svensk Växtkraft AB needs to the triple the biogas production until year 2016. A problem is the availability of biowaste, which is nearly completed utilized in the biogas plant already. To solve this problem, the utilization of presorted municipal solid waste (MSW) is an option. This thesis is aiming at characterization of pre-sorted biowaste and municipal s...

  11. High-solid Anaerobic Co-digestion of Food Waste and Rice Straw for Biogas Production

    Institute of Scientific and Technical Information of China (English)

    Pei Zhan-jiang; Liu Jie; Shi Feng-mei; Wang Su; GaoYa-bing; Zhang Da-lei

    2014-01-01

    Anaerobic co-digestion of food waste (FW) and rice straw (RS) in continuously stirred tank reactor (CSTR) at high organic loading rate (OLR) was investigated. Co-digestion studies of FW and RS with six different mixing ratios were conducted at an initial volatile solid (VS) concentration of more than 3 gVS•L-1. The biogas production, methane contents, degradation efficiency of VS, chemical oxygen demand (COD) and volatile fatty acids (VFAs) were determined to evaluate the stability and performance of the system. The results showed that the co-digestion process had higher system stability and higher volumetric biogas production than mono-digestions. Increase in FW content in the feedstock could increase the methane yield and shorten retention time. The efficiency of co-digestion systems mainly relied on the mixing ratios of FW and RS to some extent. The highest methane yield was 60.55 mL•gV•S-1•d-1 at a mass ratio (FW/RS) of 3: 1, which was 178% and 70% higher than that of mono-digestions of FW and RS, respectively. Consequently, the anaerobic co-digestion of FW and RS could have superior stability and better performance than mono-digestions in higher organic loading system.

  12. Biogas production from mono-digestion of maize silage-long-term process stability and requirements.

    Science.gov (United States)

    Lebuhn, M; Liu, F; Heuwinkel, H; Gronauer, A

    2008-01-01

    Biogas production from mono-digestion of maize silage was studied for more than one year in six continuously stirred, daily fed 36 L fermenters. Chemical and microbiological parameters were analysed concomitantly. The reactors acidified already after 8 months of operation at a low organic loading rate (OLR) of 2 g VS*(L*d)(-1). The TVA/TAC ratio was the most reliable parameter to indicate early process instabilities leading to acidification. A TVA/TAC threshold of 0.5 should not be exceeded. After acidification and recovery of the fermenters, propionic acid was no reliable parameter anymore to indicate process failure, since values far below the threshold of 1 g*L(-1) were obtained although the process had collapsed.The acidified reactors recovered better, showed greatly improved stability and allowed a higher OLR when a trace element (TE) cocktail was supplemented. Hydrolysis was obviously not process-limiting, results indicated that methanogens were affected. The most limiting element in long-term mono-digestion of maize silage turned out to be cobalt, but data obtained suggest that molybdenum and selenium should also be provided. TE supplementation should be designed specifically in order to meet the actual needs. TE availability for the biocenosis appears to be a key issue in biogas production, not only in mono-but also in co-digestion processes. PMID:19001720

  13. Two-Stage Fungal Pre-Treatment for Improved Biogas Production from Sisal Leaf Decortication Residues

    Directory of Open Access Journals (Sweden)

    Amelia Kajumulo Kivaisi

    2009-11-01

    Full Text Available Sisal leaf decortications residue (SLDR is amongst the most abundant agroindustrial residues in Tanzania and is a good feedstock for biogas production. Pretreatment of the residue prior to its anaerobic digestion (AD was investigated using a twostage pre-treatment approach with two fungal strains, CCHT-1 and Trichoderma reesei in succession in anaerobic batch bioreactors. AD of the pre-treated residue with CCTH-1 at 10% (wet weight inoculum/SLDR inoculum concentration incubated for four days followed by incubation for eight days with 25% (wet weight inoculum/SLDR of T. reesei gave a methane yield of 0.292 ± 0.04 m3 CH4/kg volatile solids (VSadded. On reversing the pre-treatment succession of the fungal inocula using the same parameters followed by AD, methane yield decreased by about 55%. Generally, an increment in the range of 30–101% in methane yield in comparison to the un-treated SLDR was obtained. The results confirmed the potential of CCHT-1 followed by Trichoderma reesei fungi pre-treatment prior to AD to achieve significant improvement in biogas production from SLDR.

  14. Anaerobic co-digestion of sewage sludge and primary clarifier skimmings for increased biogas production.

    Science.gov (United States)

    Alanya, S; Yilmazel, Y D; Park, C; Willis, J L; Keaney, J; Kohl, P M; Hunt, J A; Duran, M

    2013-01-01

    The objective of the study was to identify the impact of co-digesting clarifier skimmings on the overall methane generation from the treatment plant and additional energy value of the increased methane production. Biogas production from co-digesting clarifier skimmings and sewage sludge in pilot-scale fed-batch mesophilic anaerobic digesters has been evaluated. The digester was fed with increasing quantities of clarifier skimmings loads: 1.5, 2.6, 3.5 and 7.0 g COD equivalent/(L·d) (COD: chemical oxygen demand). Average volatile solids reduction of 65% was achieved in the scum-fed digester, compared with 51% in the control digester. Average 69% COD removal was achieved at highest scum loading (7 g COD eq/(L·d)) with approximate methane yield of 250 L CH(4)/kg COD fed (4 ft(3)/lb COD fed). The results show that scum as co-substrate in anaerobic digestion systems improves biogas yields while a 29% increase in specific CH(4) yield could be achieved when scum load is 7 g COD eq/(L·d). Based on the pilot-scale study results and full-scale data from South East Water Pollution Control Plant and Northeast Water Pollution Control Plant the expected annual energy recovery would be approximately 1.7 billion BTUs or nearly 0.5 million kWh. PMID:23128636

  15. Parametric Evaluation of Digestability of Organic Fraction of Municipal Solid Waste for Biogas Production

    Directory of Open Access Journals (Sweden)

    Monoj Kumar Mondal

    2015-12-01

    Full Text Available Municipal solid waste was collected from Varanasi’s municipal solid waste dumpsite and sorted for organic fraction present in it. Current work showed the consequences of calcium hydroxide or lime digestion on organic fraction of municipal solid waste of Varanasi, India. The organic fraction of municipal solid waste sample was digested with desired amount of calcium hydroxide. The different concentrations (0.1, 0.2, and 0.5 % of calcium hydroxide was blended separately to substrates (10 % total solid at 30-35 ºC in 3 different beakers denoted by A1, A2 and A3, respectively of 2 L capacity. Experiments of hydrolysis step were conducted on all three samples for evaluation of chemical oxygen demand, pH and volatile fatty acids content in sample. The parameters measured during experiments were chemical oxygen demand, biogas production, total solid, volatile solids, total Kjeldahl nitrogen and total organic carbon. Rate enhancement of anaerobic digestion and biogas production were occurred for calcium hydroxide digested samples. Therefore calcium hydroxide can be used as an effective alkali for the digestion of organic fraction of municipal solid waste.

  16. COD removal and biogas production at the manipueira treatment in anaerobic one-stage reactor with different supporting media; Remocao de DQO e producao de biogas no tratamento de manipueira em reator anaerobico monofasico com diferentes meios de suporte

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Douglas Guedes Batista; Kunzler, Kathia Regina; Gomes, Simone Damasceno; Tavares, Maria Herminia Ferreira; Assis, Tatiane Martins de [Universidade Estadual do Oeste do Parana (UNIOESTE), PR (Brazil)], Emails: simoned@unioeste.br, mhstavar@certto.com.br

    2009-07-01

    This study aims at evaluating the efficiency for organic load removal and biogas production for the manipueira treatment in two anaerobic reactors using as supporting media bamboo rings and polyurethane. The manipueira loads added to the systems were 0.548, 1.156, 1.471 and 3.049 g COD/ L{sub reactorday}, gradually increased. With bamboo as supporting media, the load increasing carried the greatest biogas production, with 3.049 g COD/ L{sub reactorday}. Using polyurethane, the greatest production occurred with the 1.471 g CODL{sub reactorday} {sup -1}load. Therefore, it was shown that the supporting media use allowed greater loads and biogas productions, comparatively to the literature data. (author)

  17. Biogas production in Denmark - Assessments of the operational and societal economy; Biogasproduktion i Danmark - Vurderinger af drifts- og samfundsoekonomi

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Brian H.; Laugesen, F.M.; Dubgaard, A.; Bojesen, M.

    2013-06-15

    In the mid 1990's, the increase in the biogas production came from 20 centralised biogas plants. Since then the increase in biogas production has come mainly from farm biogas plants and it is estimated that around 8% of all slurry today is used to produce biogas. With the energy agreement from 2012 and a new political ambition of using up to 50% of all slurry and manure in the production of biogas, new targets, as well as a new framework have been set up for the future biogas production in Denmark. The aim of this report is to assess the business and socio-economics of biogas in Denmark under the new conditions given by the 2012 energy agreement. It is the aim to highlight many of the different parameters which, in effect, decides the economic outcome. Furthermore, it is the aim to look at the socio-economic gains and costs related to biogas production, including the positive side effects which come from biogas. The analysis of farm biogas indicates that the business profit is positive of around 0.4 million DKK per year, while the result for the organic plant is a deficit of around 4 million DKK per year despite the assumption that the farms are located relatively near the biogas plant. In the socio-economic analysis, the value of replaced natural gas is included as well as the value of increased fertiliser value and reduced nitrogen leaching. In the calculations, a net tax factor of 35% has been used to change the factor prices to consumer prices. A tax distortion factor (dead weight loss factor) of 20% has been used to account for the subsidies given and the change in taxation required. This is done even though the Danish PSO levy ensures that the subsidies given do actually affect the price of the energy bought by the consumer. The interest is set at 4.25% following the recommendation by the Ministry of Finance and The Environment Agency. The analyses show that the direct socio-economic costs are 39.5 million DKK and that the tax distortion effect costs 5

  18. Effects of steam pretreatment and co-production with ethanol on the energy efficiency and process economics of combined biogas, heat and electricity production from industrial hemp

    OpenAIRE

    Barta, Zsolt; Kreuger, Emma; Björnsson, Lovisa

    2013-01-01

    Background The study presented here has used the commercial flow sheeting program Aspen Plus™ to evaluate techno-economic aspects of large-scale hemp-based processes for producing transportation fuels. The co-production of biogas, district heat and power from chopped and steam-pretreated hemp, and the co-production of ethanol, biogas, heat and power from steam-pretreated hemp were analysed. The analyses include assessments of heat demand, energy efficiency and process economics in terms of an...

  19. Modelling a demand driven biogas system for production of electricity at peak demand and for production of biomethane at other times.

    Science.gov (United States)

    O'Shea, R; Wall, D; Murphy, J D

    2016-09-01

    Four feedstocks were assessed for use in a demand driven biogas system. Biomethane potential (BMP) assays were conducted for grass silage, food waste, Laminaria digitata and dairy cow slurry. Semi-continuous trials were undertaken for all feedstocks, assessing biogas and biomethane production. Three kinetic models of the semi-continuous trials were compared. A first order model most accurately correlated with gas production in the pulse fed semi-continuous system. This model was developed for production of electricity on demand, and biomethane upgrading. The model examined a theoretical grass silage digester that would produce 435kWe in a continuous fed system. Adaptation to demand driven biogas required 187min to produce sufficient methane to run a 2MWe combined heat and power (CHP) unit for 60min. The upgrading system was dispatched 71min following CHP shutdown. Of the biogas produced 21% was used in the CHP and 79% was used in the upgrading system. PMID:27240240

  20. Modification and tuning of diesel bus engine for biogas electricity production

    Directory of Open Access Journals (Sweden)

    Sittiboon Siripornakarachai

    2007-11-01

    Full Text Available This study is to convert and tune a bus diesel engine for electricity production in a farm using biogas as fuel. The engine under study is a Hino K-13CTI 13,000 cc 24 valve turbocharged engine coupled to a 3 phase 4 pole induction motor to produce electricity at 50 Hz. Modifications include an addition of biogas carburetor for air-fuel mixing, replacing the fuel injection system with spark ignition system, reduction of compression ratio from the original 16:1 to 8:1 using a cylinder head spacer, and modification of the turbocharger waste gate so the boost pressure can be adjusted. When the induction motor is synchronized to the power grid, the running speed of the engine is 1,500 rpm. Optimal engine efficiency was achieved at 28.6% by setting the lambda factor at 1.097, ignition timing at 54o before top dead center, and the turbocharger boost at 56 kPa. With this setting, the generator power output is 134.20 kilowatt with emission of CO and NOX being 1,154 and 896 ppm respectively.

  1. Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates.

    Science.gov (United States)

    Herrmann, Christiane; Kalita, Navajyoti; Wall, David; Xia, Ao; Murphy, Jerry D

    2016-08-01

    Microalgae can be used to upgrade biogas to biomethane and subsequently be digested for biogas production. However, the low C:N ratio of species such as Arthrospira platensis may cause ammonia inhibition and low process stability during anaerobic digestion. This study investigates co-fermentation of A. platensis with carbon-rich co-substrates (barley straw, beet silage and brown seaweed) at a C:N ratio of 25 to enhance biomass conversion. No synergistic effects on biomethane potential could be proven in batch fermentation tests. However continuous digestion trials showed significantly improved process stability. Mono-digestion of A. platensis was stable only at an organic loading of 1.0gVSL(-1)d(-1). The optimum process co-digested A. platensis with seaweed and achieved stable operation at an organic loading of 4.0gVSL(-1)d(-1). Co-digestion of microalgae and seaweed can be effectively applied to integrated coastal biomethane systems. PMID:27152773

  2. Integrated rural industrialization through biogas

    International Nuclear Information System (INIS)

    Role of biogas in rural industrialization in India is explained. The Khadi and Village Industries Commission has installed over 2 lakhs (0.2 million) biogas plants during the last 30 years. A 15 cu.m. capacity plant costs Rs. 35,000/-. It produces 65 tons bio-manure worth Rs. 13,000/- in a year and fuel gas equivalent to 3,285 litres of kerosene worth Rs. 9855/-. It provides employment to 300 man days. In addition to serving as a source of energy and manure, it reduces deforestation, solves rural sanitation problem and maintain environmental equilibrium. Industrial activities suitable for rural areas and which can use biogas as a source of power are indicated. (M.G.B.)

  3. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...... against Methanothrix soehngenii or Methanothrix CALS-I in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate...

  4. Technical improvements with biogas plants

    Energy Technology Data Exchange (ETDEWEB)

    Perwanger, A.

    In theory and practice, science aims at smooth operation of biogas plants at a good cost/benefit ratio by improving plant design and introducing more effective process techniques. For several years now, experience gained with the construction and operation of over 40 biogas plants are evaluated at the Landtechnik Weihenstephan in co-operation with manufacturing companies and committed farmers. By means of elementary drawings, 10 differently designed biogas plants are explained in greater detail concerning their technical features (structure, efficiency, function) which comprise, too, a through-flow facility, separate gasometer, mechanical stirrer, construction and refitting of such plants by the user, a rotary reactor floating in a water tank, a small-sized gas cupola and a flexible foil hood. With optimum process technology, there are still some issues left unanswered like e.g. suitable process temperature and intensity of stirrer.

  5. Manure management practices on biogas and non-biogas pig farms in developing countries - using livestock farms in Vietnam as an example

    DEFF Research Database (Denmark)

    Cu, T. T. T.; Cuong, P. H.; Hang, L. T.;

    2012-01-01

    This survey was carried out to study animal manure management on livestock farms with biogas technology (biogas farms) and without (non-biogas farms) in the areas surrounding the Vietnamese cities Hanoi and Hue. The objective of the study was to assess the contribution of biogas production...... to a better environment as well as to recognize the problems with livestock manure management on small-scale farms. On all the farms included in the study more than one manure management technology was used, i.e. composting, separation of manure, biogas production and discharge of liquid manure to recipients...... such as public sewers or ponds. On biogas farms, most of the manure collected was used for bio-digestion. The farmers used the fermented manure (digestate) as a source of nutrients for crops, but on more than 50% of the interviewed biogas farms digestate was discharged to the environment. On non-biogas farms...

  6. Biogas production from energy crops and crop residues

    OpenAIRE

    Lehtomäki, Annimari

    2006-01-01

    The feasibility of utilising energy crops and crop residues in methane production through anaerobic digestion in boreal conditions was evaluated in this thesis. Potential boreal energy crops and crop residues were screened for their suitability for methane production, and the effects of harvest time and storage on the methane potential of crops was evaluated. Co-digestion of energy crops and crop residues with cow manure, as well as digestion of energy crops alone in batch leach bed reactors ...

  7. Small-scale household biogas digesters

    DEFF Research Database (Denmark)

    Bruun, Sander; Jensen, Lars Stoumann; Khanh Vu, Van Thi;

    2014-01-01

    -scale digesters and their biogas production, this corresponds to methane losses of 4.5 Tg yr -1 or about 1% of global emissions or 10% as much as emissions from rice production. Further poliferation of small-scale digesters could therefore contribute significantly to global emissions of methane. It is therefore...

  8. Antioxidant Extraction and Biogas Production from Pomegranate Marc

    Science.gov (United States)

    The pomegranate marc (PM), by-product from pomegranate juice processing, has not been effectively utilized. The objectives of this study were to (1) determine the yields and properties of antioxidants (total phenolics) extracted from peels and seeds of pomegranate marc in wet and dry forms, and (2)...

  9. Biogas production within the bioethanol production chain: Use of co-substrates for anaerobic digestion of sugar beet vinasse.

    Science.gov (United States)

    Moraes, B S; Triolo, J M; Lecona, V P; Zaiat, M; Sommer, S G

    2015-08-01

    Bioethanol production generates large amounts of vinasse, which is suitable for biogas production. In this study, the anaerobic digestion of sugar beet vinasse was optimised using continuous stirred-tank reactors (CSTR) supplemented either with lime fertiliser or with 3% cow manure. In both reactors, the C/N ratio was adjusted by adding straw. The biochemical methane potential (BMP) of vinasse was 267.4±4.5LCH4kgVS(-1). Due to the low content of macro- and micronutrients and low C/N ratio of vinasse, biogas production failed when vinasse alone was fed to the reactor. When co-substrate was added, biogas production achieved very close to the BMP of vinasse, being 235.7±32.2LCH4kgVS(-1) from the fertiliser supplied reactor and 265.2±26.8LCH4kgVS(-1) in manure supplied reactor at steady state. Anaerobic digestion was the most stable when cow manure was supplied to digestion of vinasse. PMID:25958146

  10. Biogas production from Macrocystis pyrifera biomass in seawater system.

    Science.gov (United States)

    Fan, Xiaolei; Guo, Rongbo; Yuan, Xianzheng; Qiu, Yanling; Yang, Zhiman; Wang, Fei; Sun, Mengting; Zhao, Xiaoxian

    2015-12-01

    Marine sediments from littoral and sublittoral location were evaluated as inocula for methane production from anaerobic fermentation of Macrocystis pyrifera in seawater system. Littoral sediment showed the higher methanogenetic activity from acetate and resulted in a higher biomethane yield of 217.1±2.4mL/g-VS, which was comparable with that reported in freshwater system with desalted seaweeds. With 0.8mM sodium molybdate added, both the maximal methane yield and concentration increased while the lag-time was greatly shortened, suggesting that sulfate was one of the major inhibitors. Microbial community analysis revealed that degradation of M. pyrifera needed cooperation of very complex microbial populations. Hydrogenotrophic methanogens had an absolute dominance in distribution compared with the acetotrophic ones, indicating syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis might play important roles in the thalassic anaerobic fermentation system. These results clearly showed that biomethane production of raw seaweeds in seawater system was feasible. PMID:26344241

  11. Membrane Separation for Biogas Purification

    Czech Academy of Sciences Publication Activity Database

    Morávková, Lenka; Kárászová, Magda; Sedláková, Zuzana; Šimčík, Miroslav; Vejražka, Jiří; Izák, Pavel

    Praha : Česká společnost průmyslové chemie, 2015, s. 28 /p65./. ISBN 978-80-86238-73-9. [mezinárodní chemicko-technologická konference (ICCT 2015) /3./. Mikulov (CZ), 13.04.2015-15.04.2015] R&D Projects: GA TA ČR TE01020080; GA MŠk(CZ) LD13018 Institutional support: RVO:67985858 Keywords : membrane separation * biogas purification * biogas purification Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  12. Enhancing biogas production of corn stover by fast pyrolysis pretreatment.

    Science.gov (United States)

    Wang, Fang; Zhang, Deli; Wu, Houkai; Yi, Weiming; Fu, Peng; Li, Yongjun; Li, Zhihe

    2016-10-01

    A new thermo-chemical pretreatment by a lower temperature fast pyrolysis (LTFP) was applied to promote anaerobic digestion (AD) efficiency of corn stover (CS). The pretreatment experiment was performed by a fluidized bed pyrolysis reactor at 180, 200 and 220°C with a carrier gas flow rate of 4 and 3m(3)/h. The components characteristics, Scanning Electron Microscope (SEM) images and Crystal Intensity (CrI) of the pretreated CS were tested to explore effectiveness of the pretreatment. The results showed that the cumulative methane production at 180°C for 4 and 3m(3)/h were 199.8 and 200.3mL/g TS, respectively. As compared to the untreated CS, the LTFP pretreatment significantly (a<0.05) increased the methane production by 18.07% and 18.33%, respectively. Methane production was well fitted by the Gompertz models, and the maximum methane potential and AD efficiency was obtained at 180°C for 3m(3)/h. PMID:27420161

  13. Study of Biogas Production Rate from Water Hyacinth by Hydrothermal Pretreatment with Buffalo Dung as a Starter

    Directory of Open Access Journals (Sweden)

    Teguh Kurniawan

    2014-08-01

    Full Text Available In this paper we report the effects of hydrothermal pretreatment on biogas enhancement production rates from water hyacinth mixed with buffalo dung. The focus of the experiment was on the time of hydrothermal pretreatment and the ratio of water hyacinth with buffalo dung. The hydrothermal pretreated substrates were characterized by TDS, BOD and pH. The hydrothermal pretreatment of 60 minutes with the ratio of water hyacinth to buffalo dung 1:2 showed the highest biogas production rate at 7889 ml/day. However, the highest methane composition was 52.82% which resulted on the hydrothermal treatment of 30 minutes with equal ratio of water hyacinth and buffalo dung. Thus, the optimum of methane yield obtained at hydrothermal pretreatment for 30 minutes with equal ratio of water hyacinth to buffalo dung is 2856 ml/day. The hydrothermal pretreatment increases the rate production of biogas 102% and the methane yield 51% relative to untreated water hyacinth. The ratio of water hyacinth and buffalo dung has a great impact on biogas production rate and compositions for hydrothermal pretreated substrates.

  14. Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production

    DEFF Research Database (Denmark)

    O-Thong, Sompong; Boe, Kanokwan; Angelidaki, Irini

    2012-01-01

    The effect of pretreatment methods for improved biodegradability and biogas production of oil palm empty fruit bunches (EFB) and its co-digestion with palm oil mill effluent (POME) was investigated. The maximum methane potential of POME was 502mL CH4/gVS-added corresponding to 33.2m3 CH4/ton POME...

  15. Biogas production from substrates with high amounts of organic nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Prechtl, S.; Faulstich, M. [ATZ-EVUS Development Center for Process Engineering, Sulzbach-Rosenberg (Germany)

    2004-07-01

    Thermophilic fermentation is a favoured method for treating animal by-products because of its short hydraulic retention time and hygienic features. However, substrates with high organic nitrogen content can create problems in the fermentation process due to the high ammonium concentration produced during anaerobic degradation. More economical and ecological solutions for treating animal by-products are also needed to address concerns of the Bovine Spongiform Encephalopathy (BSE) crisis. This study considered a recycling concept based on the Thermal Pressure Hydrolysis (TPH) process with subsequent anaerobic digestion. A heat exchange system was also developed. The sterilization in the TPH reactor guarantees complete disinfection. The study examined the reactor temperature, pH-value, hydraulic retention time, organic loading rate and degradation performance. The amount of volatile fatty acids in the effluent of the anaerobic reactor suggests good biological degradation. A combined heat and power station with an electrical efficiency of 38 per cent made it possible to produce up to 780 kWh of electricity from 1,000 kg of raw material. 6 refs., 2 tabs., 1 fig.

  16. Individual acceptance of the biogas innovation: A structural equation model

    International Nuclear Information System (INIS)

    The rapid spread of biogas production in Germany has resulted in an increased public debate over this new business branch. Today the production of biogas is much more controversially debated than several years ago. At the same time it could be proven that even among farmers themselves the acceptance of biogas production in some regions is somewhat dampened due to accompanying “collateral damages”. Therefore, the goal of this paper is to identify relevant influencing factors that determine the acceptance of the innovation “biogas” among farmers by applying a causal analysis. Initial results among the five investigated determinants show that not only an individual attitude toward biogas but also the farmers' personal innovativeness strongly and significantly influences an individual's acceptance of the innovation “biogas”. -- Highlights: •Strong expansion of biogas production based on renewable resources in Germany since 2004. •Low acceptance of biogas production in some regions. •Identification of influencing factors that determine the individual acceptance of the biogas innovation among German farmers. •Compared to existing studies, personal innovativeness was taken into account in the causal model. •Results are important for the further expansion of biogas production in Germany as well as in other countries

  17. Pre-treatment of substrates for biogas production - A systems analysis; Foerbehandling av biogassubstrat i systemanalys

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, My; Holmstroem, David; Lagerkvist, Anders; Bisaillon, Mattias

    2013-09-01

    The present expansion of biogas capacity responds to a growing demand for renewable vehicle fuels. Biodegradable wastes are attractive substrates and are also prioritized in national policy. The full potential of the substrates can rarely be used however. This is partly due to impurities, or the availability or degradation speed may be limiting the biogas yield. In both cases there is a need of pre-treatments. This work deals with the system impacts of pre-treatment aiming to remove impurities in food waste and pre-treatments aiming to improve the biogas yield of horse manure and ley. In the latter case steam explosion and extrusion were the treatments studied. Gas yields and the plant and system impacts on energy, climate and economic were studied. The system includes the biogas plant as well as the impact in supplementary systems for heat and power production. The three named substrates were identified to be highly prioritised due to their total potential and the improvements possible in its realisation. Existing information from literature and contacts has form the data basis, with the addition of a few supplementary analyses of substrates. The project has been operated by the authors with participation of a group of facility operators and external reviewers. Four plants have been visited during the study. Operators of digestion plants and all interested in developing the efficiency of biogas plants are the main target group for the study. The rate that the potential yield of food waste can be utilised depends largely on how efficiently contaminants can be separated without loss of substrate. In this case the separation degree has the main impact on the economy, but not a pronounced climate effect. For all types of pre-treatments the water content of substrates is important, a higher water content is detrimental to economy, energy demand and climate impact. For both the energy balance and the climate impact the generation of vehicle fuel has a large impact. An

  18. Experiences in WWTP of the effects of co-digestion of substrates on the biogas production; Experiencia en EDAR de la codigestion de sustratos sobre la produccion de biogas

    Energy Technology Data Exchange (ETDEWEB)

    Morenilla, J. J.; Bernacer, I.; Martinez, F.; Jardin, C.; Simon, P.; Ruiz, L.; Pradas, P.; Pastor, L.

    2010-07-01

    The use of co-digestion in wastewater treatment plants (WWTP) offers the possibility of treating sludge in conjunction with other substrates from different sources (agricultural or agroindustrial residues, etc.)to offset the balance of nutrients and moisture, increasing significantly biogas production of the process. Pobla de Farnals (Valencia) WWTP and Molina de Segura (Murcia) WWTP have introduced landfill leachate of municipal solid waste (MSW) in the anaerobic digestion, resulting in an increase of the biogas production. the additions started with punctual discharges of small amounts of leachate, and later, the frequency and volume of the discharges increased depending on the results. (Author) 17 refs.

  19. The anaerobic co-digestion of sheep bedding and ⩾ 50% cattle manure increases biogas production and improves biofertilizer quality.

    Science.gov (United States)

    Cestonaro, Taiana; Costa, Mônica Sarolli Silva de Mendonça; Costa, Luiz Antônio de Mendonça; Rozatti, Marcos Antonio Teofilo; Pereira, Dercio Ceri; Lorin, Higor Eisten Francisconi; Carneiro, Leocir José

    2015-12-01

    Sheep manure pellets are peculiarly shaped as small 'capsules' of limited permeability and thus are difficult to degrade. Fragmentation of manure pellets into a homogeneous mass is important for decomposition by microorganisms, and occurs naturally by physical shearing due to animal trampling, when sheep bedding is used. However, the high lignocellulose content of sheep bedding may limit decomposition of sheep manure. Here, we evaluated if co-digestion of sheep bedding with cattle manure would improve the yield and quality of the useful products of anaerobic digestion of sheep bedding--biogas and biofertilizer--by providing a source of nutrients and readily available carbon. Mixtures of sheep bedding and cattle manure in varying proportions (0%, 25%, 50%, 75%, or 100% cattle manure) were added to 6-L digesters, used in a batch system, and analyzed by uni and multivariate statistical tools. PC1, which explained 64.96% of data variability, can be referred to as 'organic fraction/productivity', because higher rates of organic fraction consumption (COD, cellulose and hemicellulose contents) led to higher digester productivity (biogas production, nutrient concentration, and sample stability changes). Therefore, productivity and organic fraction variables were most influenced by manure mixtures with higher (⩾ 50%) or lower (⩽ 25%) ratios of cattle manure, respectively. Increasing the amount of cattle manure up to 50% enhanced the biogas potential production from 142 L kg(-1)TS (0% of cattle manure) to 165, 171, 160 L biogas kg(-1)TS for the mixtures containing 100%, 75% and 50% of cattle manure, respectively. Our results show that the addition of ⩾ 50% cattle manure to the mixture increases biogas production and improves the quality of the final biofertilizer. PMID:26341827

  20. Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, F. [MITA Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva s/n, 18071 Granada (Spain); Torres, J.C. [EMUASA (Murcia Water Works), Pza. Circular, 9, 30008 Murcia (Spain)

    2009-10-15

    The main objective of this investigation consists in the biogas purification coming from the anaerobic digestion of sludges in a wastewater treatment plant, in order to be used later as biofuel for vehicles. This article consists of the optimization of the biogas desulphurization. In our case, this process was achieved in a chemical way. Besides the scrubbing towers, the pilot plant used included filters of activated carbon at the end of the line. The H{sub 2}S inflow concentrations were quite high. The effluent biogas from the scrubbing towers presented an H{sub 2}S concentration less than 1 ppm and zero or undetectable values were obtained for up to 58 analyzed trace elements. (author)