WorldWideScience

Sample records for biofuel innovations grants

  1. Tracking U.S. biofuel innovation through patents

    International Nuclear Information System (INIS)

    Kessler, Jeff; Sperling, Daniel

    2016-01-01

    We use biofuel patents as a proxy for biofuel innovation. Through use of natural language processing and machine-learning algorithms, we expand patent classification capabilities to better explain the history of biofuels innovation. Results indicate that after the initial establishment of the U.S. biofuel industry, there were two surges in biofuel innovation: 1995–2000, characterized by heavy patenting by 1st generation (food-based) biofuel firms; and 2005–2010, characterized by a second surge of innovation by those same large firms, complemented by a large number of biotechnology firms producing a relatively small number of 2nd generation biofuel patents. Our analysis corroborates the widespread understanding that the first surge in biofuel innovation was linked to innovations in agriculture, and that the second surge of biofuel innovation was driven by demand-pull policies mandating and incentivizing biofuels. But the slow emergence of a 2nd generation cellulose-based biofuels industry, far slower than called for by policy, suggests that technology-push policies more focused on R&D and investment may be needed to accelerate the commercialization of 2nd generation biofuels. - Highlights: • Patenting activity closely corresponds to sociotechnical shifts in biofuel innovation. • The Renewable Fuel Standard likely contributed to the rise in biofuel patenting activity after 2005. • 2nd generation biofuel technology innovation appears lacking compared to 1st generation technologies.

  2. Zambia - Innovation Grants

    Data.gov (United States)

    Millennium Challenge Corporation — The performance evaluation of the IGP is structured according to five phases of IGP implementation that we have identified for each grant cycle: start-up, selection,...

  3. Innovative technological paradigm-based approach towards biofuel feedstock

    International Nuclear Information System (INIS)

    Xu, Jiuping; Li, Meihui

    2017-01-01

    Highlights: • DAS was developed through an innovative approach towards literature mining and technological paradigm theory. • A novel concept of biofuel feedstock development paradigm (BFDP) is proposed. • The biofuel production diffusion velocity model gives predictions for the future. • Soft path appears to be the driving force for the new paradigm shift. • An integrated biofuel production feedstock system is expected to play a significant role in a low-carbon sustainable future. - Abstract: Biofuels produced from renewable energy biomass are playing a more significant role because of the environmental problems resulting from the use of fossil fuels. However, a major problem with biofuel production is that despite the range of feedstock that can be used, raw material availability varies considerably. By combining a series of theories and methods, the research objective of this study is to determine the current developments and the future trends in biofuel feedstock. By combining technological paradigm theory with literature mining, it was found that biofuel feedstock production development followed a three-stage trajectory, which was in accordance with the traditional technological paradigm – the S-curve. This new curve can be divided into BFDP (biofuel feedstock development paradigm) competition, BFDP diffusion, and BFDP shift. The biofuel production diffusion velocity model showed that there has been constant growth from 2000, with the growth rate reaching a peak in 2008, after which time it began to drop. Biofuel production worldwide is expected to remain unchanged until 2030 when a paradigm shift is expected. This study also illustrates the results of our innovative procedure – a combination of the data analysis system and the technological paradigm theory – for the present biofuel feedstock soft path that will lead to this paradigm shift, with integrated biofuel production feedstock systems expected to be a significant new trend.

  4. Biofuels and the role of space in sustainable innovation journeys☆

    Science.gov (United States)

    Raman, Sujatha; Mohr, Alison

    2014-01-01

    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970–80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the

  5. Biofuels and the role of space in sustainable innovation journeys.

    Science.gov (United States)

    Raman, Sujatha; Mohr, Alison

    2014-02-15

    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present, and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects, we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970-80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and small-scale biofuel systems developed to address local energy needs in the

  6. An innovative biofuel approach : 2,5-dimethylfuran (DMF)

    International Nuclear Information System (INIS)

    Xu, H.

    2009-01-01

    Dimethylfuran (DMF) has physical properties very close to gasoline, but it has a very high octane number and relatively low volatility. Compared to ethanol, it has an energy density higher by 50 per cent in volume and by 40 per cent in mass. DMF is stable in storage and not soluble in water and therefore it cannot become contaminated by absorbing water from the atmosphere. DMF is also an ideal candidate for a new generation of sustainable biofuel. This presentation discussed the use of DMF as an innovative biofuel approach and illustrated results for ignition delay; heat release rate; volumetric efficiency; engine efficiency; carbon emissions; hydrocarbon emissions; nitrogen oxide emissions; maximum combustion pressure; particulate matter emissions; and particulate mass and numbers. The ignition delay of DMF was shown to be shorter than that of gasoline. When it was compared with ethanol, the difference varied with load so that it was longer at the low load but shorter at higher load conditions. The emissions of carbon, hydrocarbon and nitrogen oxide using DMF were all similar to those with gasoline. Overall, the experiments confirmed that due to the physiochemical properties of DMF being similar to gasoline, DMF and gasoline exhibited very similar combustion and emissions characteristics. tabs., figs.

  7. 7 CFR 1466.27 - Conservation Innovation Grants (CIG).

    Science.gov (United States)

    2010-01-01

    ..., evaluation, and implementation of: (i) Conservation adoption incentive systems, including market-based... 7 Agriculture 10 2010-01-01 2010-01-01 false Conservation Innovation Grants (CIG). 1466.27 Section... PROGRAM Contracts and Payments § 1466.27 Conservation Innovation Grants (CIG). (a) Definitions. In...

  8. Biofuels

    International Nuclear Information System (INIS)

    Poitrat, E.

    2009-01-01

    Biofuels are fuels made from non-fossil vegetal or animal materials (biomass). They belong to the renewable energy sources as they do not contribute to worsen some global environmental impacts, like the greenhouse effect, providing that their production is performed in efficient energy conditions with low fossil fuel consumption. This article presents: 1 - the usable raw materials: biomass-derived resources, qualitative and quantitative aspects, biomass uses; 2 - biofuels production from biomass: alcohols and ethers, vegetable oils and their esters, synthetic liquid or gaseous biofuels, biogas; 3 - characteristics of liquid biofuels and comparison with gasoline and diesel fuel; 4 - biofuel uses: alcohols and their esters, biofuels with oxygenated compounds; vegetable oils and their derivatives in diesel engines, biogas, example of global environmental impact: the greenhouse effect. (J.S.)

  9. Competitive Grants for Digital Innovation in Latin America and the ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Competitive Grants for Digital Innovation in Latin America and the Caribbean - Phase II ... and funded 26 research projects developed by institutions in 13 countries. ... information and communication technologies (ICTs), and help formulate the ...

  10. Seeds of Innovation: Three Years of the Technology Innovation Challenge Grant Program.

    Science.gov (United States)

    Harris, Larry A.

    This publication describes the 62 projects that received 5-year Technology Innovation Challenge Grants beginning in 1995, 1996, and 1997, with reviews of the projects occurring in late 1999 and early 2000. Part 1 of the report describes the Technology Innovation Challenge Grant (TICG) program and its importance. Part 2 contains the project…

  11. Innovation subject to sustainability: the European policy on biofuels and its effects on innovation in the Brazilian bioethanol industry

    Directory of Open Access Journals (Sweden)

    Henrique Pacini

    2012-08-01

    Full Text Available Biofuels are a suitable complement for fossil energy in the transport sector and bioethanol is the main biofuel traded worldwide. Based on the assumption that innovation can be influenced by regulation, the Brazilian bioethanol industry is facing new requirements from external actors while reaching for international markets. Until 2010, national environmental laws were the main sustainability instrument that the biofuel industry faced. With the introduction of sustainability criteria for biofuels in the European Fuels Quality Directive (FQD and Renewable Energy Directive (RED of 2009, bioethanol producers have been pressured to innovate in respect of the requirements of future markets. Here, the aim is to analyse the case of Brazil, given the potential exports of sugarcane-based ethanol from this country to the EU. Brazil provides an interesting overview of how a bioethanol industry innovated while facing sustainability requirements in the past. A comparison between the European requirements and the industry´s status quo is then explored. The EU criteria are likely to have effects on the Brazilian bioethanol industry and incremental improvements in sustainability levels might take place based on the sustainability requirements. In addition, the industry could follow two other paths, namely risk diversification by engaging in multi-output models; and market leakage towards less-regulated markets. At the same time, an environmental overregulation of the biofuel market may make it more difficult for emerging biofuel industries in other countries, especially in Africa, by creating a barrier rather than contributing to its expansion. The results of this analysis show the main challenges to be addressed and the potential positive and negative impacts of the European Union biofuels policy on the Brazilian bioethanol industry.

  12. Innovative voucher as a prospect tool for grant funding

    Directory of Open Access Journals (Sweden)

    V. A. Barinova

    2015-01-01

    Full Text Available The article aims to explore innovative international practice for advancing the mechanisms of distributing grant funding. Authors analyze a practical case study of successful implementation of innovative vouchers overseas, and draw parallels with regard to already formed institutes in Russia, corresponding with foreign in terms of their functional. Possible mechanisms for implementing successful foreign practices of utilizing innovative vouchers in Russia were studied in this article. On the basis of conducted analysis authors evaluate perspectives of implementing the suggested scheme in Russia.

  13. Innovation in emerging energy technologies: A case study analysis to inform the path forward for algal biofuels

    International Nuclear Information System (INIS)

    Haase, Rachel; Bielicki, Jeffrey; Kuzma, Jennifer

    2013-01-01

    Algal biofuel is an emerging energy source that has the potential to improve upon the environmental benefits realized by conventional biofuels and contribute to the biofuels mandate set by the Renewable Fuel Standard (RFS). While there has been much research into producing fuel from algae, a commercial-scale facility has not yet been built. We examine two case studies of energy technology innovation in the United States, first generation biodiesel and solar photovoltaics (PV), using the technological innovation system (TIS) framework to provide lessons and inform the path forward for commercializing algal biofuel. We identify five event types that have been the most influential to these innovation processes: changing expectations, technology development, demonstration projects, policy targets, and government subsidies. Some algal biofuel demonstration projects have occurred, but despite falling under the mandates set forth in the RFS (a policy target), algal biofuels do not currently receive production subsidies. The main finding from the case study analysis is that government interventions have significantly influenced the innovation processes of first generation biodiesel and solar PV and will likely be key factors in the commercialization of algal biofuel. - Highlights: • Two energy technology case studies were analyzed with a TIS framework. • Major drivers in the innovation process were identified in each case. • Government interventions were key factors for both. • The one identified key driver algal biofuel is lacking is federal subsidies. • All components of the TIS framework deserve attention in promoting innovation

  14. An Innovation Systems Assessment of the Australian Biofuel Industry. Policy and Private Sector Implications

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Jason D.

    2006-07-15

    , government policy and so on. This was complemented by interviews with top level managers from the most influential ethanol and biodiesel producers, a large financial investment group, a university research centre and a government department. The Australian ethanol and biodiesel industries, when viewed from an innovation systems perspective, have undergone considerable structural change since the early 2000s. Many new producer firms and other actors have entered the field, product standards have been created, fuel excise arrangements have been set and some industry networks and advocacy coalitions have also been formed or strengthened. Numerous inducing and blocking mechanisms were identified as influencing the ability of the ethanol and biodiesel industries to develop, diffuse and utilize their respective biofuels. The inducing mechanisms identified include broad contextual factors such as climate change, high oil prices and rural development goals. These drivers have inspired grant schemes, government fuel contracts, formation of lobby groups and consumer demand for cheap home grown alternatives. The overall performance of the ethanol and biodiesel industries has varied overtime with the key challenges coming from their ability to; legitimize their offerings, form markets and develop new knowledge. Legitimation is a major challenge for both the ethanol and biodiesel industries. It is acceptance by consumers which lies at the heart of the ethanol challenge while for biodiesel it is acceptance by engine manufacturers and automotive groups that is currently blocking greater acceptance. The ethanol scare campaign of 2002-03 should serve as a reminder to the biodiesel industry that having engine manufactures and automotive groups on side is crucial for successful market development, especially for the mass market which can be highly temperamental and easily manipulated. The ethanol and biodiesel industries both have considerable market formation challenges with the problem being

  15. An Innovation Systems Assessment of the Australian Biofuel Industry. Policy and Private Sector Implications

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Jason D

    2006-07-15

    , government policy and so on. This was complemented by interviews with top level managers from the most influential ethanol and biodiesel producers, a large financial investment group, a university research centre and a government department. The Australian ethanol and biodiesel industries, when viewed from an innovation systems perspective, have undergone considerable structural change since the early 2000s. Many new producer firms and other actors have entered the field, product standards have been created, fuel excise arrangements have been set and some industry networks and advocacy coalitions have also been formed or strengthened. Numerous inducing and blocking mechanisms were identified as influencing the ability of the ethanol and biodiesel industries to develop, diffuse and utilize their respective biofuels. The inducing mechanisms identified include broad contextual factors such as climate change, high oil prices and rural development goals. These drivers have inspired grant schemes, government fuel contracts, formation of lobby groups and consumer demand for cheap home grown alternatives. The overall performance of the ethanol and biodiesel industries has varied overtime with the key challenges coming from their ability to; legitimize their offerings, form markets and develop new knowledge. Legitimation is a major challenge for both the ethanol and biodiesel industries. It is acceptance by consumers which lies at the heart of the ethanol challenge while for biodiesel it is acceptance by engine manufacturers and automotive groups that is currently blocking greater acceptance. The ethanol scare campaign of 2002-03 should serve as a reminder to the biodiesel industry that having engine manufactures and automotive groups on side is crucial for successful market development, especially for the mass market which can be highly temperamental and easily manipulated. The ethanol and biodiesel industries both have considerable market formation challenges with the problem being

  16. An Innovation Systems Assessment of the Australian Biofuel Industry. Policy and Private Sector Implications

    International Nuclear Information System (INIS)

    Nielsen, Jason D.

    2006-07-01

    , government policy and so on. This was complemented by interviews with top level managers from the most influential ethanol and biodiesel producers, a large financial investment group, a university research centre and a government department. The Australian ethanol and biodiesel industries, when viewed from an innovation systems perspective, have undergone considerable structural change since the early 2000s. Many new producer firms and other actors have entered the field, product standards have been created, fuel excise arrangements have been set and some industry networks and advocacy coalitions have also been formed or strengthened. Numerous inducing and blocking mechanisms were identified as influencing the ability of the ethanol and biodiesel industries to develop, diffuse and utilize their respective biofuels. The inducing mechanisms identified include broad contextual factors such as climate change, high oil prices and rural development goals. These drivers have inspired grant schemes, government fuel contracts, formation of lobby groups and consumer demand for cheap home grown alternatives. The overall performance of the ethanol and biodiesel industries has varied overtime with the key challenges coming from their ability to; legitimize their offerings, form markets and develop new knowledge. Legitimation is a major challenge for both the ethanol and biodiesel industries. It is acceptance by consumers which lies at the heart of the ethanol challenge while for biodiesel it is acceptance by engine manufacturers and automotive groups that is currently blocking greater acceptance. The ethanol scare campaign of 2002-03 should serve as a reminder to the biodiesel industry that having engine manufactures and automotive groups on side is crucial for successful market development, especially for the mass market which can be highly temperamental and easily manipulated. The ethanol and biodiesel industries both have considerable market formation challenges with the problem being

  17. Methodological Foundations of Clustering and Innovativeness for Establishing the Competitive Production of Biofuels

    Directory of Open Access Journals (Sweden)

    Klymchuk Oleksandr V.

    2016-05-01

    Full Text Available The article is aimed to study the worldwide trends in development of innovative processes and creation of cluster structures for elaborating methodological foundations for establishing the competitive production of biofuels. The article highlights the cluster approaches in conducting the global commercial activities that create effective mechanisms and tools to encourage innovation-investment regional development and can be characterized by their relevance for the Ukrainian economy. Emphasis is made on the matter that clustering is one of the key tools for structuring the energy market, integrated exploiting the potential of bioenergy industry sector, management of the economic policies of redistribution of value added, implementation of the growth of investment attractiveness of the biofuel industry in our country. It has been concluded that cluster development in the biofuel production will stimulate specialization and cooperation processes in the agro-industrial economy sector, bringing together related businesses in the direction of an effective interaction, thereby ensuring a high level of competitiveness of biofuels in both the national and the international markets.

  18. Perceptions on the Importance of Forest Sector Innovations: Biofuels, Biomaterials, or Niche Products?

    Directory of Open Access Journals (Sweden)

    T. Stern

    2018-05-01

    Full Text Available New innovations are called for to renew the European forest sector into bioeconomy. However, little research exists on how the industry innovativeness is publicly perceived. Using data collected with an online questionnaire in four European countries, we investigate perceptions related to forest sector innovations on 13 current and new bioeconomy-related products and services. Altogether, 218 valid responses were received in 2015, and the data were analysed using descriptive statistics, performance-importance analysis, and Gartner’s innovation hype cycle. Based on our results, the respondents were in the strongest agreement that the forest sector has since the year 2000 has produced innovations related to wood building systems, construction materials, and wood composites. In the next 15 years, they foresaw a decline in innovations related to biofuels and paper products. The European forest sector also has future potential in wood construction, which is likely related to international policy targets related to carbon mitigation and capture. The observed variation in perceptions among the respondents on forest sector innovativeness calls for strengthening industry R&D, as well as by improving societal awareness of ongoing innovation projects by developing better communication.

  19. 77 FR 25469 - Applications for New Awards; Investing in Innovation Fund, Scale-Up Grants

    Science.gov (United States)

    2012-04-30

    ... DEPARTMENT OF EDUCATION Applications for New Awards; Investing in Innovation Fund, Scale- Up Grants Catalog of Federal Domestic Assistance (CFDA) Number: 84.411A (Scale-up grants). AGENCY: Office of... fiscal year 2012 for the Investing in Innovation (i3) Scale-up grant competition (March 27 i3 Scale-up...

  20. 77 FR 11087 - Applications for New Awards; Investing in Innovation Fund, Development Grants

    Science.gov (United States)

    2012-02-24

    ... (e.g., cognitive science, educational psychology), computer science, and personal technology. These... DEPARTMENT OF EDUCATION Applications for New Awards; Investing in Innovation Fund, Development... Information: Investing in Innovation Fund, Development grants Notice inviting applications for new awards for...

  1. Space for innovation for sustainable community-based biofuel production and use: Lessons learned for policy from Nhambita community, Mozambique

    International Nuclear Information System (INIS)

    Schut, Marc; Paassen, Annemarie van; Leeuwis, Cees; Bos, Sandra; Leonardo, Wilson; Lerner, Anna

    2011-01-01

    This paper provides insights and recommendations for policy on the opportunities and constrains that influence the space for innovation for sustainable community-based biofuel production and use. Promoted by the Mozambican government, Nhambita community established jatropha trials in 2005. Initial results were promising, but crop failure and the absence of organized markets led to scepticism amongst farmers. We start from the idea that the promotion of community-based biofuel production and use requires taking interactions between social-cultural, biophysical, economic, political and legal subsystems across different scales and levels of analysis through time into account. Our analysis demonstrates that heterogeneous farming strategies and their synergies at community level should be carefully assessed. Furthermore, national and international political and legal developments, such as the development of biofuel sustainability criteria, influence the local space in which community-based biofuel developments take place. We conclude that ex-ante integrated assessment and creating an enabling environment can enhance space for sustainable community-based biofuel production and use. It may provide insights into the opportunities and constraints for different types of smallholders, and promote the development of adequate policy mechanisms to prevent biofuels from becoming a threat rather than an opportunity for smallholders. - Highlights: → This paper explores space for innovation for community-based biofuel production and use. → Heterogeneous farming strategies and their synergies at community level are key. → Farmers have little trust in jatropha due to crop failure and absence of markets. → (Inter)national biofuel policies influence space for local biofuel production and use. → Policies should focus on ex-ante integrated assessment and creating an enabling environment.

  2. Innovative business models for sustainable biofuel production : the case of Tanzanian smallholder jatropha farmers in the global biofuel chain

    NARCIS (Netherlands)

    Balkema, A.J.; Romijn, H.A.

    2011-01-01

    This paper focuses on the smallholder outgrower model for jatropha biofuel cultivation in Tanzania. This model is based on seed production by small farmers who sell to a processing company that presses the bio-oil from the seeds locally, either for the local market or for export. This model has been

  3. 10 CFR 600.381 - Special provisions for Small Business Innovation Research Grants.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Special provisions for Small Business Innovation Research... Organizations Additional Provisions § 600.381 Special provisions for Small Business Innovation Research Grants. (a) General. This section contains provisions applicable to the Small Business Innovation Reserach...

  4. 75 FR 13740 - Office of Innovation and Improvement; Overview Information; Charter Schools Program (CSP) Grants...

    Science.gov (United States)

    2010-03-23

    ... DEPARTMENT OF EDUCATION Office of Innovation and Improvement; Overview Information; Charter Schools Program (CSP) Grants for National Leadership Activities; Notice Inviting Applications for New... of public schools have been identified for improvement, corrective action, or restructuring under...

  5. 36 CFR 72.45 - Fundable elements: Innovation grants.

    Science.gov (United States)

    2010-07-01

    ... proposal, such as sports equipment, arts and crafts supplies, chairs and tables if needed for an activity... innovation should demonstrate a concept that is untried, unique, and/or advances the state of the art for...

  6. Protecting innovation: genomics-based intellectual property for the development of feedstock for second-generation biofuels.

    Science.gov (United States)

    Harfouche, Antoine; Grant, Kannan; Selig, Marcus; Tsai, Daniel; Meilan, Richard

    2010-06-01

    One of the many controversies surrounding large-scale biofuel production is the diversion of land and other resources that might otherwise be used for food crops. Recent innovations will lead to a second generation of biofuel crops that can co-exist with food crops with little or no competition. Feedstocks from these bio-energy crops will be used to produce liquid fuel from cellulose, the most abundant polymer on the planet. Cell walls of higher plants are mainly composed of cellulose, hemicellulose, and lignin polymers. Cellulose and hemicellulose are polysaccharides with obvious value for biofuel production. However, lignin, while vital for plant growth and development, is widely known to negatively impact conversion efficiencies. Biomass pre-treatment, which is aimed at lignin removal, is not straightforward, and presents one of the major scientific and technical challenges and expenses associated with secondgeneration biofuel production. Scientific breakthroughs associated with altering the expression of key genes in the lignin biosynthetic pathway of biomass crops is a promising path toward solving this problem, and will likely impact the feedstock patent landscape in the near future. This review summarizes some of the recent and most important issued patents and patent applications associated with lignin-modification genes and methods of developing transgenic plants with altered lignin content and composition.

  7. The Innovative Technology Deployment (ITD) Grant Program, 2017 Annual Report

    Science.gov (United States)

    2018-05-01

    On December 4, 2015, the Fixing America's (FMCSA) works to reduce crashes, injuries, and Surface Transportation Act, 2015 (FAST Act) fatalities involving large trucks and buses. (Pub. L. 114-94) established the Innovative The ITD program is a key com...

  8. Innovative Practice in Advancement of Academic Nurse Educator Careers: Developing Scholarship From Program Grants.

    Science.gov (United States)

    Eddy, Linda L; Hoeksel, Renee; Fitzgerald, Cindy; Doutrich, Dawn

    We describe an innovative practice in advancing careers of academic nurse educators: demonstrating scholarly productivity from program grants. Scholarly productivity is often narrowly defined, especially in research-intensive institutions. The expectation may be a career trajectory based on the traditional scholarship of discovery. However, nurse educators, especially at the associate and full professor ranks, are often involved in leadership activities that include writing and managing program grants. We encourage the academy to value and support the development of program grants that include significant scholarly components, and we offer exemplars of associate and full professor scholarship derived from these projects.

  9. Washington State Biofuels Industry Development

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Richard [Univ. of Washington, Seattle, WA (United States)

    2017-04-09

    The funding from this research grant enabled us to design, renovate, and equip laboratories to support University of Washington biofuels research program. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  10. The impact of intramural grants on educators' careers and on medical education innovation.

    Science.gov (United States)

    Adler, Shelley R; Chang, Anna; Loeser, Helen; Cooke, Molly; Wang, Jason; Teherani, Arianne

    2015-06-01

    The University of California, San Francisco (UCSF), Haile T. Debas Academy of Medical Educators Innovations Funding program awards competitive grants to create novel curricula and faculty development programs, compare pedagogical approaches, and design learner assessment methods. The authors examined the principal investigators' (PIs') perceptions of the impact of these intramural grants on their careers and on medical education innovation. At 12 months (project completion) and 24 months (follow-up), PIs submit a progress report describing the impact of their grant on their careers, work with collaborators, subsequent funding, project dissemination, and the UCSF curriculum. The authors analyzed these reports using qualitative thematic analysis and achieved consensus in coding and interpretation through discussion. From 2001 to 2012, the program funded 77 PIs to lead 103 projects, awarding over $2.2 million. The authors analyzed reports from 88 grants (85.4%) awarded to 68 PIs (88.3%). PIs noted that the funding led to accelerated promotion, expanded networking opportunities, enhanced knowledge and skills, more scholarly publications and presentations, extramural funding, and local and national recognition. They also reported that the funding improved their status in their departments, enhanced their careers as medical educators, laid the foundation for subsequent projects, and engaged an array of stakeholders, including trainees and junior faculty. These modest intramural education grants not only created innovative, enduring programs but also promoted educators' professional identity formation, fostered collaborations, supported junior faculty in finding their desired career paths, provided advancement opportunities, and raised the local and national profiles of recipients.

  11. 77 FR 25152 - Applications for New Awards; Investing in Innovation Fund, Scale-Up Grants

    Science.gov (United States)

    2012-04-27

    ... DEPARTMENT OF EDUCATION Applications for New Awards; Investing in Innovation Fund, Scale- Up Grants Correction In notice document 2012-7362 appearing on pages 18216-18229 in the issue of Tuesday, March 27, 2012 make the following corrections: 1. On page 18225, in the second column, in the second...

  12. 77 FR 25152 - Applications for New Awards; Investing in Innovation Fund, Development Grants

    Science.gov (United States)

    2012-04-27

    ... DEPARTMENT OF EDUCATION Applications for New Awards; Investing in Innovation Fund, Development Grants Correction In notice document 2012-4357 appearing on pages 11087-11101 in the issue of Friday, February 24, make the following correction: 1. On page 11097, in the first column, in the first bulleted...

  13. 77 FR 25152 - Applications for New Awards; Investing in Innovation Fund, Validation Grants

    Science.gov (United States)

    2012-04-27

    ... DEPARTMENT OF EDUCATION Applications for New Awards; Investing in Innovation Fund, Validation Grants Correction In notice document 2012-7365 appearing on pages 18229-18242 in the issue of Tuesday, March 27, 2012 make the following corrections: 1. On page 18238 in the second column, in the second...

  14. Once the rockets are up, who should care where they come down? The problem of responsibility ascription for the negative consequences of biofuel innovations.

    Science.gov (United States)

    Tempels, T H; Van den Belt, H

    2016-01-01

    Responsible Innovation (RI) is often heralded in EU policy circles as a means to achieve ethically acceptable, sustainable innovations. Yet, conceptual questions on the specific notion of 'responsibility' and to what extent an innovation can be 'responsible' are only partly addressed. In this chapter the question of responsibility for the indirect negative effects of biofuel innovations is explored. While initially hailed as one of the much needed solutions in the global struggle against climate change, the use of biofuels has become increasingly criticised. It is argued that the increased production of biofuels has put smallholder farmers out of business, has given rise to increased food prices, sparking food riots in several countries, while also contributing to further environmental degradation as the demand for new biofuels requires the development of new croplands at the cost of forests and peat lands. In the current market-based system it is customary to disburden researchers and business companies from any responsibility for the more remote consequences of their actions. When harmful consequences are brought about through the mediation of (perhaps a long series of) market transactions, they are often considered inevitable and excusable and not an appropriate occasion for invoking anybody's responsibility. But how broad is the scope of responsibility when it comes to the above mentioned social and ecological problems? By invoking the sacred duty to "innovate", the business company could perhaps be exculpated. In our age, innovation is often so much celebrated that many negative impacts are duly accepted as the inevitable price of progress. By approaching responsibility from a perspective that takes into account the economic and ecological interconnectedness of the world, we show how the debate on Responsible Innovation in biofuels becomes tied in with global debates on economic justice and bioscarcity. In conclusion we argue that if we-assuming this

  15. 77 FR 23229 - Submission for OMB Review; Small Business Innovation Research (SBIR) Program-Phase I-Grant...

    Science.gov (United States)

    2012-04-18

    ....133). This is in response to Public Law 106- 554, the ``Small Business Reauthorization Act of [[Page... DEPARTMENT OF EDUCATION Submission for OMB Review; Small Business Innovation Research (SBIR) Program--Phase I--Grant Application Package SUMMARY: This application package invites small business...

  16. Biofuel Database

    Science.gov (United States)

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  17. 75 FR 3449 - Office of Innovation and Improvement; Overview Information; Teaching American History Grant...

    Science.gov (United States)

    2010-01-21

    ... traditional American history content, proven teaching strategies, and lessons learned in implementing TAH... American History Grant Program; Notice Inviting Applications for New Awards for Fiscal Year (FY) 2010.... Funding Opportunity Description Purpose of Program: The Teaching American History Grant (TAH) Program...

  18. Investigating biofuels through network analysis

    International Nuclear Information System (INIS)

    Curci, Ylenia; Mongeau Ospina, Christian A.

    2016-01-01

    Biofuel policies are motivated by a plethora of political concerns related to energy security, environmental damages, and support of the agricultural sector. In response to this, much scientific work has chiefly focussed on analysing the biofuel domain and on giving policy advice and recommendations. Although innovation has been acknowledged as one of the key factors in sustainable and cost-effective biofuel development, there is an urgent need to investigate technological trajectories in the biofuel sector by starting from consistent data and appropriate methodological tools. To do so, this work proposes a procedure to select patent data unequivocally related to the investigated sector, it uses co-occurrence of technological terms to compute patent similarity and highlights content and interdependencies of biofuels technological trajectories by revealing hidden topics from unstructured patent text fields. The analysis suggests that there is a breaking trend towards modern generation biofuels and that innovators seem to focus increasingly on the ability of alternative energy sources to adapt to the transport/industrial sector. - Highlights: • Innovative effort is devoted to biofuels additives and modern biofuels technologies. • A breaking trend can be observed from the second half of the last decade. • A patent network is identified via text mining techniques that extract latent topics.

  19. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  20. 36 CFR 72.44 - Fundable elements: Rehabilitation and Innovation grant common elements.

    Science.gov (United States)

    2010-07-01

    ... sharing. Other costs incurred prior to approval of any UPARR grant, and fees to consultants for... enhancement of the area's economy through the attraction of visitors to the jurisdiction, will not be...

  1. Does too much work hamper innovation? Evidence for diminishing returns of work hours for patent grants

    NARCIS (Netherlands)

    Celbis, M.G.; Turkeli, S.

    2014-01-01

    This study suggests that individual time is an important factor that needs to be considered in innovation research. We define two types of time: work time and free time. We find that work time has a positive but diminishing effect on innovative output such that after a certain point the

  2. Biofuels worldwide

    International Nuclear Information System (INIS)

    His, St.

    2004-01-01

    After over 20 years of industrial development, the outlook for biofuels now looks bright. Recent developments indicate that the use of biofuels, previously confined to a handful of countries including Brazil and the United States, is 'going global' and a world market may emerge. However, these prospects could eventually be limited by constraints relative to resources and costs. The future of biofuels probably depends on the development of new technologies to valorize lignocellulosic substances such as wood and straw. (author)

  3. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Biofuels represent 2,6% of the energy content of all the fuels used in road transport in Europe today. Nearly half of the target of 5,75% for 2010 set by the directive on biofuels has thus been reached in four years time. To achieve 5,75%, the european union is going to have to increase its production and doubtless call even more on imports, at a moment when biofuels are found at the core of complex ecological and economic issues. This analysis provided data and reflexions on the biofuels situation in the european union: consumption, bio-diesel, bio-ethanol, producers, environmental problems, directives. (A.L.B.)

  4. 77 FR 18229 - Applications for New Awards; Investing in Innovation Fund, Validation Grants

    Science.gov (United States)

    2012-03-27

    ... reading skills administered in the same way to both groups). Experimental study means a study that employs...-experimental study (as defined in this notice) supporting the effectiveness of the practice, strategy, or...-4357.pdf . Validation grants provide funding to support practices, strategies, or programs that show...

  5. A Mentoring Model for Interactive Online Learning in Support of a Technology Innovation Challenge Grant

    Science.gov (United States)

    Graves, Scott M.; Abbitt, Jason; Klett, Mitchell D.; Wang, Changhua

    2009-01-01

    The Lewis & Clark Rediscovery Project is a technology professional development program designed to help teachers restructure teaching and learning practices in the classroom, and to foster technology use in the schools. The 5-year program (extended into a 6th) was funded in 1999 with a grant from the U.S. Department of Education: Technology…

  6. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    In 2010 bio-fuel continued to gnaw away at petrol and diesel consumption in the European Union (EU). However its pace backs the assertion that bio-fuel consumption growth in EU slackened off in 2010. In the transport sector, it increased by only 1.7 Mtoe compared to 2.7 Mtoe in 2009. The final total bio-fuel consumption figure for 2010 should hover at around 13.9 Mtoe that can be broken down into 10.7 Mtoe for bio-diesel, 2.9 Mtoe for bio-ethanol and 0.3 Mtoe for others. Germany leads the pack for the consumption of bio-fuels and for the production of bio-diesel followed by France and Spain

  7. Obstacles to innovation and use of incentives Grants or fiscal stimulus?; Obstaculos a la innovacion y uso de innovacion de incentivos: subvenciones o estimulos fiscales?

    Energy Technology Data Exchange (ETDEWEB)

    Busom, I.; Martinez, E.; Corchuelo, B.

    2012-07-01

    We compare the use by firms of two tools of public support to business R and D and innovation: direct funding through grants and loans and fiscal incentives. Among other results, we find that these tools are not perfect substitutes. Firms that face financial constraints to undertake innovation projects are less likely to use R and D fiscal incentives. SMEs facing this type of constraint, however, are more likely to apply for and obtain direct public funding. (Author) 12 refs.

  8. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    The term biofuel is referred to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. Biofuels include bioethanol, biomethanol, vegetable oils, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Most traditional biofuels, such as ethanol from corn, wheat, or sugar beets, and biodiesel from oil seeds, are produced from classic agricultural food crops that require high-quality agricultural land for growth. Bioethanol is a petrol additive/substitute. Biomethanol can be produced from biomass using bio-syngas obtained from steam reforming process of biomass. Biomethanol is considerably easier to recover than the bioethanol from biomass. Ethanol forms an azeotrope with water so it is expensive to purify the ethanol during recovery. Methanol recycles easier because it does not form an azeotrope. Biodiesel is an environmentally friendly alternative liquid fuel that can be used in any diesel engine without modification. There has been renewed interest in the use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel. Due to its environmental merits, the share of biofuel in the automotive fuel market will grow fast in the next decade. There are several reasons for biofuels to be considered as relevant technologies by both developing and industrialized countries. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. The biofuel economy will grow rapidly during the 21st century. Its economy development is based on agricultural production and most people live in the rural areas. In the most biomass-intensive scenario, modernized biomass energy contributes by 2050 about one half of total energy

  9. Algal biofuels.

    Science.gov (United States)

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  10. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The European Union governments no longer view the rapid increase in biofuel consumption as a priority. Between 2010 and 2011 biofuel consumption increased by only 3%, which translates into 13.6 million tonnes of oil equivalent (toe) used in 2011 compared to 13.2 million toe in 2010. In 2011 6 European countries had a biofuel consumption in transport that went further 1 million toe: Germany (2,956,746 toe), France (2,050,873 toe), Spain (1,672,710 toe), Italy (1,432,455 toe), United Kingdom (1,056,105 toe) and Poland (1,017,793 toe). The breakdown of the biofuel consumption for transport in the European Union in 2011 into types of biofuels is: bio-diesel (78%), bio-ethanol (21%), biogas (0.5%) and vegetable oil (0.5%). In 2011, 4 bio-diesel producers had a production capacity in Europe that passed beyond 900,000 tonnes: Diester Industrie International (France) with 3,000,000 tonnes, Neste Oil (Finland) with 1,180,000 tonnes, ADM bio-diesel (Germany) with 975,000 tonnes, and Infinita (Spain) with 900,000 tonnes. It seems that the European Union's attention has shifted to setting up sustainability systems to verify that the biofuel used in the various countries complies with the Renewable Energy Directive's sustainability criteria

  11. Strategic niche management for biofuels: Analysing past experiments for developing new biofuel policies

    International Nuclear Information System (INIS)

    Laak, W.W.M. van der; Raven, R.P.J.M.; Verbong, G.P.J.

    2007-01-01

    Biofuels have gained a lot of attention since the implementation of the 2003 European Directive on biofuels. In the Netherlands the contribution of biofuels is still very limited despite several experiments in the past. This article aims to contribute to the development of successful policies for stimulating biofuels by analysing three experiments in depth. The approach of strategic niche management (SNM) is used to explain success and failure of these projects. Based on the analysis as well as recent innovation literature we develop a list of guidelines that is important to consider when developing biofuel policies

  12. Innovation

    Science.gov (United States)

    EPA frames innovation as critical to the protection of human health and the environment through initiatives such as sustainable practices, innovative research, prize competitions, innovation awards, partnerships, and community activities.

  13. "A Chimera of Sorts": Rethinking Educational Technology Grant Programs, Courseware Innovation, and the Language of Educational Change

    Science.gov (United States)

    Wolff, William I.

    2008-01-01

    How do we know when an educational organization, process, or courseware tool is "innovative"? How do we define the processes that encourage change or the ways in which faculty "develop" new courseware "innovations"? The terms "innovation", "change", and "development" have been overused in so many contexts that they now seem to have lost their…

  14. Innovation

    DEFF Research Database (Denmark)

    Nielsen, Janni; Yaganeh, Suzanne; Bloch Rasmussen, Leif

    2013-01-01

    This paper contributes to a theoretical discussion of creation of innovation with participants in, or outside, organisations. We address the creation of innovation with a complex theoretical understanding drawing on the Scandinavian and the Participatory Design tradition introducing two approaches...... to the processes of innovation. We ask if innovation can be initiated and enhanced looking at two collaborative approaches; participatory innovation (PIN) and cooperative innovation (COIN). We invite to dialogue and reflections on PIN’s conflict and creative frictions on one side and COIN’s complexity......, complementarity in diversity and the didactic scaffolding of the innovation process on the other side. Our contribution focuses on the methods and practices for facilitation of co-creating activities between different groups leading to cooperation, and innovation in thinking....

  15. Once the rockets are up, who should care where they come down? The problem of responsibility ascription for the negative consequences of biofuel innovations

    NARCIS (Netherlands)

    Tempels, T.H.; Belt, Van den H.

    2016-01-01

    Responsible Innovation (RI) is often heralded in EU policy circles as a means to achieve ethically acceptable, sustainable innovations. Yet, conceptual questions on the specific notion of ‘responsibility’ and to what extent an innovation can be ‘responsible’ are only partly addressed. In this

  16. Fuelling biofuel

    International Nuclear Information System (INIS)

    Collison, M.

    2006-01-01

    The Canadian government has recently committed to legislation ensuring that all transportation fuels will be supplemented with biofuels by 2010. This article provided details of a position paper written by the Canadian Renewable Fuels Association in response to the legislation. Details of new research to optimize the future biodiesel industry were also presented. Guiding principles of the paper included the creation of open markets across provincial boundaries; the manipulation of tax structures to make products competitive in the United States; and establishing quality standards via the Canadian General Standards Board. It is expected that the principles will reassure petroleum producers and retailers, as ethanol behaves differently than gasoline in storage tanks. As ethanol is water-absorbing, retailers must flush and vacuum their tanks to remove water, then install 10 micron filters to protect fuel lines and dispenser filters from accumulated gasoline residue loosened by the ethanol. Refineries are concerned that the average content of ethanol remains consistent across the country, as refiners will be reluctant to make different blends for different provinces. Critics of biodiesel claim that it is not energy-intensive enough to meet demand, and biodiesel crops are not an efficient use of soils that could otherwise be used to grow food crops. However, researchers in Saskatchewan are committed to using a variety of methods such as reduced tillage systems to make biodiesel production more efficient. Laboratory research has resulted in improved refining processes and genetic manipulation of potential biodiesel crops. Membrane technology is now being used to select water from ethanol. A process developed by the Ottawa company Iogen Corporation uses enzymatic hydrolysis to break down the tough fibres found in corn stalks, leaves, wood and other biomass into sugars. Scientists are also continuing to improve oil content yields in canola and soybean crops. It was

  17. Can the Nigerian biofuel policy and incentives (2007) transform Nigeria into a biofuel economy?

    International Nuclear Information System (INIS)

    Ohimain, Elijah I.

    2013-01-01

    Nigeria's economy is largely dependent on petroleum, yet the country is suffering from fuel supply shortages. In response to the transportation fuel supply difficulties in Nigeria, the country released the Nigerian Biofuel Policy and Incentives in 2007 to create favorable investment climate for the entrance of Nigeria into the biofuel sector. The paper assessed the progress made thus far by Nigeria, 4 years after the Nigerian biofuel was released in an attempt to answer the question whether the policy is adequate to transform Nigeria into a biofuel economy. The study found that little progress has been made, which includes commencement of the construction of 20 bioethanol factories, installation of biofuel handling facilities at two depots (Mosimi and Atlas Cove), and selection of retail outlets for biofuel/conventional fuel mix. The site construction of the announced biofuel projects is now slow and other progress is marginal. We therefore conclude that the Nigerian biofuel policy is unlikely to transform Nigeria into a biofuel economy unless the Government revert and refocus on biofuel and include additional financial incentives such as grants and subsidy to complement the tax waivers (income, import duty, VAT), loans, and insurance cover contained in the policy. - Highlights: ► Nigeria's economy is dependent on petroleum, yet the country is suffering from fuel shortages. ► The Nigerian Biofuel Policy and Incentives was released in 2007. ► Little progress has been made since the policy was released 4 years ago. ► Hence, the policy is unlikely to transform Nigeria into a biofuel economy

  18. 2016 National Algal Biofuels Technology Review Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    Algae-based biofuels and bioproducts offer great promise in contributing to the U.S. Department of Energy (DOE) Bioenergy Technologies Office’s (BETO’s) vision of a thriving and sustainable bioeconomy fueled by innovative technologies. The state of technology for producing algal biofuels continues to mature with ongoing investment by DOE and the private sector, but additional research, development, and demonstration (RD&D) is needed to achieve widespread deployment of affordable, scalable, and sustainable algal biofuels.

  19. Innovators.

    Science.gov (United States)

    NEA Today, 2001

    2001-01-01

    Describes various innovations that have been developed to enhance education. These innovations include: helping educators help at-risk students succeed; promoting high school journalism; ensuring quality online learning experiences; developing a student performing group that uses theater to address social issues; and having students design their…

  20. Innovation

    African Journals Online (AJOL)

    In recent years ULA has emphasized advocacy, and contributed to progress towards new legislation (freedom of information, copyright, the ... East African Community e-government strategy) of importance to the library and ... Innovation Vol.

  1. 78 FR 32381 - Applications for New Awards, Investing in Innovation Fund, Scale-up and Validation Grants...

    Science.gov (United States)

    2013-05-30

    ... journals) or informal (e.g., newsletters) mechanisms, the results of any evaluations it conducts of its...., newsletters) mechanisms, the results of any evaluations it conducts of its funded activities. For Scale-up and... DEPARTMENT OF EDUCATION Applications for New Awards, Investing in Innovation Fund, Scale- up and...

  2. Biofuel technologies. Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vijai Kumar [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry; MITS Univ., Rajasthan (India). Dept. of Science; Tuohy, Maria G. (eds.) [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry

    2013-02-01

    Written by experts. Richly illustrated. Of interest to both experienced researchers and beginners in the field. Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.

  3. Innovation

    African Journals Online (AJOL)

    Such issues are addressed in the Promotion of Access to Information Act (PAIA), but certain ambiguities are open to interpretation, a matter taken up by the National Archives. Both legal and ethical considerations are put to the test when granting access to records where personal privacy rights may be infringed upon.

  4. Panorama 2007: Biofuels Worldwide

    International Nuclear Information System (INIS)

    Prieur-Vernat, A.; His, St.

    2007-01-01

    The biofuels market is booming: after more than 20 years of industrial development, global bio-fuel production is growing fast. Willingness to reduce their oil dependence and necessity to promote low-carbon energies are the two main drivers for states to support biofuels development. (author)

  5. Innovation

    African Journals Online (AJOL)

    The purpose of Innovation journal of appropriate librarianship and information work in Southern Africa is to publish material on libraries, information supply and other related matters in South and Southern Africa. Vol 45 (2012). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access ...

  6. Innovation

    DEFF Research Database (Denmark)

    Torfing, Jacob; Ricard, Lykke Margot

    2017-01-01

    Innovation i krydsfeltet mellem forskellige styringsparadigmer i offentlige organisationer. New Public Governance gør det muligt at skabe offentlig værdi på nye måder. Men NPG er ingen trylledrik, der fra den ene dag til den anden skaber balance mellem borgernes store forventninger og en trængt ø...

  7. Innovation

    OpenAIRE

    2012-01-01

    Présenté par FutuRIS, plate-forme prospective sur la recherche, l’innovation et la société animée par l’Association Nationale de la Recherche et de la Technologie, ce volume livre un panorama du système français de recherche et d’innovation dans son environnement européen. Sont abordés dans une première partie les champs décisionnels concernés, les politiques nationales menées en matière de R&D, les relations entre enseignement supérieur et recherche et l’Espace européen de la recherche à l’h...

  8. INNOVATION

    DEFF Research Database (Denmark)

    Helms, Niels Henrik

    2012-01-01

    Kravet om innovation og kreativitet er på flere måder en stor og en ny udfordring for voksenuddannelserne. Det udfordrer det didaktiske dilemma, det at vi skal gøres til kompetente og frie mennesker gennem pædagogiske handlinger, som netop pålægger os en ufrihed. – Men hvor denne ufrihed tidligere...... kunne begrundes med, at skolen eller uddannelsen vidste bedre, så er det ikke længere tilfældet. Skolen skal sørge for, at vi lærer noget – og ikke noget andet. Men det kan ikke længere med bestemthed afgøres, hvad det er vi skal lære i skolen, fordi det nye, det kreative og ikke mindst innovative...

  9. Limits to biofuels

    Directory of Open Access Journals (Sweden)

    Johansson S.

    2013-06-01

    Full Text Available Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays’ use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years’ agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2–6000TWh (biogas from residues and waste and ethanol from woody biomass in the more optimistic cases.

  10. Limits to biofuels

    Science.gov (United States)

    Johansson, S.

    2013-06-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.

  11. Biofuels Baseline 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; Koper, M.; Berndes, G.; Englund, O.; Diaz-Chavez, R.; Kunen, E.; Walden, D.

    2011-10-15

    The European Union is promoting the use of biofuels and other renewable energy in transport. In April 2009, the Renewable Energy Directive (2009/28/EC) was adopted that set a 10% target for renewable energy in transport in 2020. The directive sets several requirements to the sustainability of biofuels marketed in the frame of the Directive. The Commission is required to report to the European Parliament on a regular basis on a range of sustainability impacts resulting from the use of biofuels in the EU. This report serves as a baseline of information for regular monitoring on the impacts of the Directive. Chapter 2 discusses the EU biofuels market, the production and consumption of biofuels and international trade. It is derived where the feedstock for EU consumed biofuels originally come from. Chapter 3 discusses the biofuel policy framework in the EU and major third countries of supply. It looks at various policy aspects that are relevant to comply with the EU sustainability requirements. Chapter 4 discusses the environmental and social sustainability aspects associated with EU biofuels and their feedstock. Chapter 5 discusses the macro-economic effects that indirectly result from increased EU biofuels consumption, on commodity prices and land use. Chapter 6 presents country factsheets for main third countries that supplied biofuels to the EU market in 2008.

  12. Life Cycle Assessment for Biofuels

    Science.gov (United States)

    A presentation based on life cycle assessment (LCA) for biofuels is given. The presentation focuses on energy and biofuels, interesting environmental aspects of biofuels, and how to do a life cycle assessment with some examples related to biofuel systems. The stages of a (biofuel...

  13. Combination of dry dark fermentation and mechanical pretreatment for lignocellulosic deconstruction: An innovative strategy for biofuels and volatile fatty acids recovery

    International Nuclear Information System (INIS)

    Motte, Jean-Charles; Sambusiti, Cecilia; Dumas, Claire; Barakat, Abdellatif

    2015-01-01

    Highlights: • A novel combination of solid-state fermentation and fine milling was developed. • Biological pretreatment produces valuable bioproducts (VFA and biohydrogen). • Solid-state dark fermentation improves considerably the milling efficiency. • Bioethanol yield was higher after a strong particle size reduction. • Substrate conversion was two times higher than conventional processes. - Abstract: In the present study, the feasibility of combining dry dark fermentation and mechanical pretreatment of wheat straw was studied in order to improve substrate valorization, save energy input, decrease the environmental impact and diversify biofuels and volatile fatty acids production. To this end, dark fermentation of wheat straw was performed at 55 °C and 35 °C under solid-state conditions (23% of total solid content) and it was considered as a biological pretreatment. Both biologically treated and raw straws were reduced at four particles size to cover the range of fine (50 < X < 500 μm) and ultrafine milling (<50 μm). Biological pretreatment led to a substrate conversion of 16% and 14%, mainly into volatile fatty acids and biohydrogen. Biological pretreatment improved the substrate grindability with a reduction of mean particle size up to 31% and a reduction of the milling specific energy consumption up to 35% compared to untreated straw. Finally, related to untreated straw, this combination of biological and mechanical treatments improved the bioethanol yield up to 83%, which leads to an enhancement of the overall substrate conversion up to 131%. Based on these high yields, this combination of dry biological–mechanical pretreatments appears more attractive and efficient in terms of bioproducts production, energy efficiency and environmental impact, compared to conventional pretreatments

  14. Biomass, biogas and biofuels

    International Nuclear Information System (INIS)

    Colonna, P.

    2011-01-01

    This article reviews the different ways to produce biofuels. It appears that there are 3 generations of biofuels. The first generation was based on the use of the energetic reserves of the plants for instance sugar from beetroot or starch from cereals or oil from oleaginous plants. The second generation is based on a more complete use of the plant, the main constituents of the plant: cellulose and lignin are turned into energy. The third generation of biofuels relies on the use of energy plants and algae. The second generation of biofuels reduces drastically the competition between an alimentary use and a non-alimentary use of plants. In 2008 the production of biofuels reached 43 Mtep which represents only 2% of all the energy used in the transport sector. The international agency for energy expects that the production of biofuels would be multiplied by a factor 6 (even 10 if inciting measures are taken) by 2030. (A.C.)

  15. The Danish Biofuel Debate

    DEFF Research Database (Denmark)

    Hansen, Janus

    2014-01-01

    of biofuels enrol scientific authority to support their positions? The sociological theory of functional differentiation combined with the concept of advocacy coalition can help in exploring this relationship between scientific claims-making and the policy stance of different actors in public debates about...... biofuels. In Denmark two distinct scientific perspectives about biofuels map onto the policy debates through articulation by two competing advocacy coalitions. One is a reductionist biorefinery perspective originating in biochemistry and neighbouring disciplines. This perspective works upwards from...

  16. Biofuels in China.

    Science.gov (United States)

    Tan, Tianwei; Yu, Jianliang; Lu, Jike; Zhang, Tao

    2010-01-01

    The Chinese government is stimulating the biofuels development to replace partially fossil fuels in the transport sector, which can enhance energy security, reduce greenhouse gas emissions, and stimulate rural development. Bioethanol, biodiesel, biobutanol, biogas, and biohydrogen are the main biofuels developed in China. In this chapter, we mainly present the current status of biofuel development in China, and illustrate the issues of feedstocks, food security and conversion processes.

  17. Biofuels and food security

    Directory of Open Access Journals (Sweden)

    Dmitry S. STREBKOV

    2015-03-01

    Full Text Available The major source of energy comes from fossil fuels. The current situation in the field of fuel and energy is becoming more problematic as world population continues to grow because of the limitation of fossil fuels reserve and its pressure on environment. This review aims to find economic, reliable, renewable and non-polluting energy sources to reduce high energy tariffs in Russian Federation. Biofuel is fuel derived directly from plants, or indirectly from agricultural, commercial, domestic, and/or industrial wastes. Other alternative energy sources including solar energy and electric power generation are also discussed. Over 100 Mt of biomass available for energy purposes is produced every year in Russian. One of the downsides of biomass energy is its potential threatens to food security and forage industries. An innovative approach proved that multicomponent fuel (80% diesel oil content for motor and 64% for in stove fuel can remarkably reduce the costs. This paper proposed that the most promising energy model for future is based on direct solar energy conversion and transcontinental terawatt power transmission with the use of resonant wave-guide technology.

  18. NREL biofuels program overview

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, J.R. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    The NREL Biofuels Program has been developing technology for conversion of biomass to transportation fuels with support from DOE Office of Transportation Technologies Biofuels System Program. This support has gone to both the National Renewable Energy Laboratory, and over 100 subcontractors in universities and industry. This overview will outline the value of the Biofuels development program to the Nation, the current status of the technology development, and what research areas still need further support and progress for the development of a biofuels industry in the US.

  19. A roadmap for biofuels...

    NARCIS (Netherlands)

    Faaij, A.P.C.; Londo, H.M.

    2009-01-01

    Biofuels have been in the eye of the storm, in particular since 2008, when the food crisis was considered by many to be caused by the increased production of biofuels. Heavy criticism in public media made various governments, including the European Commission, reconsider their targets and ambitions

  20. Biofuels for sustainable transportation

    Energy Technology Data Exchange (ETDEWEB)

    Neufeld, S.

    2000-05-23

    Biomass is an attractive energy source, and transportation fuels made from biomass offer a number of benefits. Developing the technology to produce and use biofuels will create transportation fuel options that can positively impact the national energy security, the economy, and the environment. Biofuels include ethanol, methanol, biodiesel, biocrude, and methane.

  1. Algal Biofuels | Bioenergy | NREL

    Science.gov (United States)

    biofuels and bioproducts, Algal Research (2016) Process Design and Economics for the Production of Algal cyanobacteria, Nature Plants (2015) Acid-catalyzed algal biomass pretreatment for integrated lipid and nitrogen, we can indefinitely maintain the genetic state of the sample for future research in biofuels

  2. Business grants

    Science.gov (United States)

    Twelve small businesses who are developing equipment and computer programs for geophysics have won Small Business Innovative Research (SBIR) grants from the National Science Foundation for their 1989 proposals. The SBIR program was set up to encourage the private sector to undertake costly, advanced experimental work that has potential for great benefit.The geophysical research projects are a long-path intracavity laser spectrometer for measuring atmospheric trace gases, optimizing a local weather forecast model, a new platform for high-altitude atmospheric science, an advanced density logging tool, a deep-Earth sampling system, superconducting seismometers, a phased-array Doppler current profiler, monitoring mesoscale surface features of the ocean through automated analysis, krypton-81 dating in polar ice samples, discrete stochastic modeling of thunderstorm winds, a layered soil-synthetic liner base system to isolate buildings from earthquakes, and a low-cost continuous on-line organic-content monitor for water-quality determination.

  3. Forecast for biofuel trade in Europe

    International Nuclear Information System (INIS)

    Hektor, B.; Vinterbaeck, J.; Toro, A.de; Nilsson, Daniel

    1993-01-01

    One principal general conclusion is that the European biofuel market for the period up to the year 2000 will be competitive, dynamic and affected by technical development and innovations. That leads to the conclusion that prices will go down, which will increase the ability of biofuels to compete in the market. Still, biofuels will generally not be able to compete at the price level of fossil fuels in the world market, but will need support or protection to reach a competitive position. There are several reasons for support, e.g. offsetting the green-house effect and acid rain, conservation of the limited fossil fuel deposits, utilisation of local and domestic energy resources, etc. As energy crops in Europe are at an introductory stage, no large international trade can be expected within the next ten years. In this study it is assumed that some limited protective measures are imposed, which is a possible result of the energy and environmental policy currently discussed for the European Community, EC. The study implies that in the year 2000 it is possible to transport large quantities of biofuels to large energy consumers if taxes and other incentives now under discussion in the EC and national governments are introduced. The study also implies that in the year 2000 it is possible to utilise biofuels primarily in local and national markets. In the latter case, international trade will be reduced to minor spot quantities

  4. Sun Grant Initiative : great strides toward a sustainable and more energy-independent future

    Science.gov (United States)

    2014-09-01

    The Sun Grant Initiative publication, developed by the U.S. Department of Transportation, offers a glimpse of how the Sun Grant Initiative Centers are advancing alternative fuels research. Transportation plays a significant role in biofuels research,...

  5. An overview of biofuels

    International Nuclear Information System (INIS)

    Qureshi, I.H.; Ahmad, S.

    2007-01-01

    Biofuels for transport have received considerable attention due to rising oil prices and growing concern about greenhouse gas emissions. Biofuels namely ethanol and esters of fatty acids have the potential to displace a substantial amount of petroleum fuel in the next few decades which will help to conserve fossil fuel resources. Life cycle analyses show that biofuels release lesser amount of greenhouse gases and other air pollutants. Thus biofuels are seen as a pragmatic step towards reducing carbon dioxide emission from transport sector. Biofuels are compatible with petroleum and combustion engines can easily operate with 10% ethanol and 20% biodiesel blended fuel with no modification. However higher concentrations require 'flex-fuel' engines which automatically adjust fuel injection depending upon fuel mix. Biofuels are derived from renewable biomass and can be produced from a variety of feedstocks. The only limiting factors are the availability of cropland, growth of plants and the climate. Countries with warmer climate can get about five times more biofuel crops from each acre of land than cold climate countries. Genetically modified crops and fast growing trees are being developed increase the production of energy crops. (author)

  6. Biofuels and sustainability.

    Science.gov (United States)

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria.

  7. Biofuels for transport

    International Nuclear Information System (INIS)

    2004-01-01

    In the absence of strong government policies, the IEA projects that the worldwide use of oil in transport will nearly double between 2000 and 2030, leading to a similar increase in greenhouse gas emissions. Biofuels, such as ethanol, bio-diesel, and other liquid and gaseous fuels, could offer an important alternative to petroleum over this time frame and help reduce atmospheric pollution. This book looks at recent trends in biofuel production and considers what the future might hold if such alternatives were to displace petroleum in transport. The report takes a global perspective on the nascent biofuels industry, assessing regional similarities and differences as well as the cost and benefits of the various initiatives being undertaken around the world. In the short term, conventional biofuel production processes in IEA countries could help reduce oil use and thence greenhouse gas emissions, although the costs may be high. In the longer term, possibly within the next decade, advances in biofuel production and the use of new feedstocks could lead to greater, more cost-effective reductions. Countries such as Brazil are already producing relatively low-cost biofuels with substantial reductions in fossil energy use and greenhouse gas emissions. This book explores the range of options on offer and asks whether a global trade in biofuels should be more rigorously pursued

  8. The biofuels in France

    International Nuclear Information System (INIS)

    2006-04-01

    The biofuels are liquid renewable energies sources resulting from vegetal matters. Today are two channels of biofuels: the ethanol channel for gasoline and the vegetal oils channel for the diesel. In the first part, the document presents the different channels and the energy efficiency of the products. It shows in the second part the advantages for the environment (CO 2 accounting) and for the energy independence. It discusses then the future developments and the projects. The fourth part is devoted to the legislation, regulations, taxes and financial incentives. The last part presents the french petroleum industry actions and attitudes in the framework of the biofuels development. (A.L.B.)

  9. Grants Solutions -

    Data.gov (United States)

    Department of Transportation — The Grants Center of Excellence The Grants Center of Excellence (COE) delivers end-to-end grants management products and support to over 17 Federal partner agencies....

  10. Biofuels: which interest, which perspectives?

    International Nuclear Information System (INIS)

    2006-01-01

    This paper is a synthesis of several studies concerning the production and utilization of bio-fuels: energy balance and greenhouse effect of the various bio-fuel systems; economical analysis and profitability of bio-fuel production; is the valorization of bio-fuel residues and by-products in animal feeding a realistic hypothesis?; assessment of the cost for the community due to tax exemption for bio-fuels

  11. Biofuels - 5 disturbing questions

    International Nuclear Information System (INIS)

    Legalland, J.P.; Lemarchand, J.L.

    2008-01-01

    Initially considered as the supreme weapon against greenhouse gas emissions, biofuels are today hold responsible to all harms of the Earth: leap of agriculture products price, deforestation, food crisis. Considered some time ago as the perfect clean substitute to petroleum, biofuels are now suspected to have harmful effects on the environment. Should it be just an enormous technical, environmental and human swindle? Should we abandon immediately biofuels to protect the earth and fight the threatening again starvation? Should we wait for the second generation of efficient biofuels, made from non food-derived products and cultivation wastes? This book analyses this delicate debate through 5 main questions: do they starve the world? Are they a clean energy source? Do they contribute to deforestation? Are they economically practicable? Is the second generation ready? (J.S.)

  12. Market possibilities for biofuels

    International Nuclear Information System (INIS)

    Hektor, B.

    1992-01-01

    The market for biofuels in Sweden after introduction of a proposed CO 2 -tax on fossil fuels is forecast. The competition between biofuels, fossil fuels and electricity is described for important market segments such as: Paper industry, Sawmills, Other energy-intensive industry, Power and heat producers, small Heat producers, and for Space heating of one-family houses. A market increase of the use of biofuels is probable for the segment small (district) heating centrals, 10 TWh in the next ten year period and even more during a longer period. Other market segments will not be much affected. An increased use of biofuels in paper and pulp industry will not influence the fuel market, since the increase will happen in the industry's normal lumber purchase. (2 figs., 18 tabs.)

  13. The biofuels, situation, perspectives

    International Nuclear Information System (INIS)

    Acket, C.

    2007-03-01

    The climatic change with the fight against the greenhouse effect gases, sees the development of ''clean'' energy sources. Meanwhile the biofuels remain penalized by their high production cost, the interest is increasing. Facing their development ecologists highlight the environmental and social negative impacts of the development of the biofuels. The author aims to take stock on the techniques and the utilizations. (A.L.B.)

  14. Bio-fuel barometer

    International Nuclear Information System (INIS)

    2015-01-01

    After a year of doubt and decline the consumption of bio-fuel resumed a growth in 2014 in Europe: +6.1% compared to 2013, to reach 14 millions tep (Mtep) that is just below the 2012 peak. This increase was mainly due to bio-diesel. By taking into account the energy content and not the volume, the consumption of bio-diesel represented 79.7% of bio-fuel consumption in 2014, that of bio-ethanol only 19.1% and that of biogas 1%. The incorporating rate of bio-fuels in fuels used for transport were 4.6% in 2013 and 4.9% in 2014. The trend is good and the future of bio-fuel seems clearer as the European Union has set a not-so-bad limit of 7% for first generation bio-fuels in order to take into account the CASI effect. The CASI effect shows that an increase of the consumption of first generation bio-fuels (it means bio-fuels produced from food crops like rape, soy, cereals, sugar beet,...) implies in fact a global increase in greenhouse gas release that is due to a compensation phenomenon. More uncultivated lands (like forests, grasslands, bogs are turned into cultivated lands in order to compensate lands used for bio-fuel production. In most European countries the consumption of bio-diesel increased in 2014 while it was a bad year for the European industry of ethanol because ethanol prices dropped by 16 %. Oil companies are now among the most important producers of bio-diesel in Europe.

  15. World Biofuels Study

    Energy Technology Data Exchange (ETDEWEB)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very

  16. Biofuels and Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Mielenz, Jonathan R [ORNL

    2009-01-01

    The world obtains 86% of its energy from fossil fuels, 40% from petroleum, a majority of which goes to the transportation sector (www.IEA.gov). Well-recognized alternatives are fuels derived from renewable sources known as biofuels. There are a number of biofuels useful for transportation fuels, which include ethanol, biobutanol, mixed alcohols, biodiesel, and hydrogen. These biofuels are produced from biologically derived feedstock, almost exclusively being plant materials, either food or feed sources or inedible plant material called biomass. This chapter will discuss technologies for production of liquid transportation biofuels from renewable feedstocks, but hydrogen will not be included, as the production technology and infrastructure are not near term. In addition, a specific emphasis will be placed upon the research opportunities and potential for application of system biology tools to dissect and understand the biological processes central to production of these biofuels from biomass and biological materials. There are a number of technologies for production of each of these biofuels that range from fully mature processes such as grain-derived ethanol, emerging technology of ethanol form cellulose derived ethanol and immature processes such thermochemical conversion technologies and production of hydrogen all produced from renewable biological feedstocks. Conversion of biomass by various thermochemical and combustion technologies to produce thermochemical biodiesel or steam and electricity provide growing sources of bioenergy. However, these technologies are outside of the scope of this chapter, as is the use of biological processing for upgrading and conversion of fossil fuels. Therefore, this chapter will focus on the current status of production of biofuels produced from biological-derived feedstocks using biological processes. Regardless of the status of development of the biological process for production of the biofuels, each process can benefit from

  17. Bio-fuels

    International Nuclear Information System (INIS)

    2008-01-01

    This report presents an overview of the technologies which are currently used or presently developed for the production of bio-fuels in Europe and more particularly in France. After a brief history of this production since the beginning of the 20. century, the authors describe the support to agriculture and the influence of the Common Agricultural Policy, outline the influence of the present context of struggle against the greenhouse effect, and present the European legislative context. Data on the bio-fuels consumption in the European Union in 2006 are discussed. An overview of the evolution of the activity related to bio-fuels in France, indicating the locations of ethanol and bio-diesel production facilities, and the evolution of bio-fuel consumption, is given. The German situation is briefly presented. Production of ethanol by fermentation, the manufacturing of ETBE, the bio-diesel production from vegetable oils are discussed. Second generation bio-fuels are then presented (cellulose enzymatic processing), together with studies on thermochemical processes and available biomass resources

  18. Toward Inclusive Biofuel Innovation in Indonesia | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Women, especially homemakers, depend on fuel for domestic use. ... have informed the national research agenda and been used as teaching materials and ... in India, including heat stress, water management, and climate-related migration.

  19. Panorama 2018 - 2017 biofuels scoreboard

    International Nuclear Information System (INIS)

    Boute, Anne; Lorne, Daphne

    2018-01-01

    This note presents some 2017 statistical data about biofuels: consumption, fuel substitution rate, world ethanol and bio-diesel markets, diesel substitutes, French market, R and D investments, political measures for biofuels development

  20. Biofuels: making tough choices

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Sonja; Dufey, Annie; Vorley, Bill

    2008-02-15

    The jury is still out on biofuels. But one thing at least is certain: serious trade-offs are involved in the production and use of these biomass-derived alternatives to fossil fuels. This has not been lost on the European Union. The year kicked off with an announcement from the EU environment commissioner that it may be better for the EU to miss its target of reaching 10 per cent biofuel content in road fuels by 2020 than to compromise the environment and human wellbeing. The 'decision tree' outlined here can guide the interdependent processes of deliberation and analysis needed for making tough choices in national biofuels development.

  1. Integrated biofuels process synthesis

    DEFF Research Database (Denmark)

    Torres-Ortega, Carlo Edgar; Rong, Ben-Guang

    2017-01-01

    Second and third generation bioethanol and biodiesel are more environmentally friendly fuels than gasoline and petrodiesel, andmore sustainable than first generation biofuels. However, their production processes are more complex and more expensive. In this chapter, we describe a two-stage synthesis......% used for bioethanol process), and steam and electricity from combustion (54%used as electricity) in the bioethanol and biodiesel processes. In the second stage, we saved about 5% in equipment costs and 12% in utility costs for bioethanol separation. This dual synthesis methodology, consisting of a top......-level screening task followed by a down-level intensification task, proved to be an efficient methodology for integrated biofuel process synthesis. The case study illustrates and provides important insights into the optimal synthesis and intensification of biofuel production processes with the proposed synthesis...

  2. Microalgae biofuel potentials (review).

    Science.gov (United States)

    Ghasemi, Y; Rasoul-Amini, S; Naseri, A T; Montazeri-Najafabady, N; Mobasher, M A; Dabbagh, F

    2012-01-01

    With the decrease of fossil based fuels and the environmental impact of them over the planet, it seems necessary to seek the sustainable sources of clean energy. Biofuels, is becoming a worldwide leader in the development of renewable energy resources. It is worthwhile to say that algal biofuel production is thought to help stabilize the concentration of carbon dioxide in the atmosphere and decrease global warming impacts. Also, among algal fuels' attractive characteristics, algal biodiesel is non toxic, with no sulfur, highly biodegradable and relatively harmless to the environment if spilled. Algae are capable of producing in excess of 30 times more oil per acre than corn and soybean crops. Currently, algal biofuel production has not been commercialized due to high costs associated with production, harvesting and oil extraction but the technology is progressing. Extensive research was conducted to determine the utilization of microalgae as an energy source and make algae oil production commercially viable.

  3. Biofuels, poverty, and growth

    DEFF Research Database (Denmark)

    Arndt, Channing; Benfica, Rui; Tarp, Finn

    2010-01-01

    and accrual of land rents to smallholders, compared with the more capital-intensive plantation approach. Moreover, the benefits of outgrower schemes are enhanced if they result in technology spillovers to other crops. These results should not be taken as a green light for unrestrained biofuels development...... Mozambique's annual economic growth by 0.6 percentage points and reduces the incidence of poverty by about 6 percentage points over a 12-year phase-in period. Benefits depend on production technology. An outgrower approach to producing biofuels is more pro-poor, due to the greater use of unskilled labor...

  4. The Brazilian biofuels industry

    Directory of Open Access Journals (Sweden)

    Goldemberg José

    2008-05-01

    Full Text Available Abstract Ethanol is a biofuel that is used as a replacement for approximately 3% of the fossil-based gasoline consumed in the world today. Most of this biofuel is produced from sugarcane in Brazil and corn in the United States. We present here the rationale for the ethanol program in Brazil, its present 'status' and its perspectives. The environmental benefits of the program, particularly the contribution of ethanol to reducing the emission of greenhouse gases, are discussed, as well as the limitations to its expansion.

  5. Outlook for advanced biofuels

    International Nuclear Information System (INIS)

    Hamelinck, Carlo N; Faaij, Andre P.C.

    2006-01-01

    To assess which biofuels have the better potential for the short-term or the longer term (2030), and what developments are necessary to improve the performance of biofuels, the production of four promising biofuels-methanol, ethanol, hydrogen, and synthetic diesel-is systematically analysed. This present paper summarises, normalises and compares earlier reported work. First, the key technologies for the production of these fuels, such as gasification, gas processing, synthesis, hydrolysis, and fermentation, and their improvement options are studied and modelled. Then, the production facility's technological and economic performance is analysed, applying variations in technology and scale. Finally, likely biofuels chains (including distribution to cars, and end-use) are compared on an equal economic basis, such as costs per kilometre driven. Production costs of these fuels range 16-22 Euro /GJ HHV now, down to 9-13 Euro /GJ HHV in future (2030). This performance assumes both certain technological developments as well as the availability of biomass at 3 Euro /GJ HHV . The feedstock costs strongly influence the resulting biofuel costs by 2-3 Euro /GJ fuel for each Euro /GJ HHV feedstock difference. In biomass producing regions such as Latin America or the former USSR, the four fuels could be produced at 7-11 Euro /GJ HHV compared to diesel and gasoline costs of 7 and 8 Euro /GJ (excluding distribution, excise and VAT; at crude oil prices of ∼35 Euro /bbl or 5.7 Euro /GJ). The uncertainties in the biofuels production costs of the four selected biofuels are 15-30%. When applied in cars, biofuels have driving costs in ICEVs of about 0.18-0.24 Euro /km now (fuel excise duty and VAT excluded) and may be about 0.18 in future. The cars' contribution to these costs is much larger than the fuels' contribution. Large-scale gasification, thorough gas cleaning, and micro-biological processes for hydrolysis and fermentation are key major fields for RD and D efforts, next to

  6. Improving EU biofuels policy?

    DEFF Research Database (Denmark)

    Swinbank, Alan; Daugbjerg, Carsten

    2013-01-01

    to be 'like' a compliant biofuel. A more economically rational way to reduce GHG emissions, and one that might attract greater public support, would be for the RED to reward emission reductions along the lines of the FQD. Moreover, this modification would probably make the provisions more acceptable...... in the WTO, as there would be a clearer link between policy measures and the objective of reductions in GHG emissions; and the combination of the revised RED and the FQD would lessen the commercial incentive to import biofuels with modest GHG emission savings, and thus reduce the risk of trade tension....

  7. Taking Soft Skills for Granted?

    Science.gov (United States)

    Dutton, Gail

    2012-01-01

    The U.S. Department of Labor will award a total of $2 billion over the next four years through the Trade Adjustment Assistance Community College and Career Training Grant Program. Grants will support the development and improvement of postsecondary programs of two years or less that use evidence-based or innovative strategies to prepare students…

  8. Technology Roadmaps: Biofuels for Transport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Biofuels could provide up to 27% of total transport fuel worldwide by 2050. The use of transport fuels from biomass, when produced sustainably, can help cut petroleum use and reduce CO2 emissions in the transport sector, especially in heavy transport. Sustainable biofuel technologies, in particular advanced biofuels, will play an important role in achieving this roadmap vision. The roadmap describes the steps necessary to realise this ambitious biofuels target; identifies key actions by different stakeholders, and the role for government policy to adopt measures needed to ensure the sustainable expansion of both conventional and advanced biofuel production.

  9. The biofuels in debate

    International Nuclear Information System (INIS)

    Rigaud, Ch.

    2007-01-01

    As the development of the biofuels is increasing in the world, many voices are beginning to rise to denounce the environmental risks and the competition of the green fuels with the alimentary farming. The debate points out the problems to solve to develop a sustainable channel. (A.L.B.)

  10. Biofuel seeks endorsement

    NARCIS (Netherlands)

    Jongeneel, C.; Rentmeester, S.

    2015-01-01

    Biofuels such as ethanol from sugar cane and cellulose ‘waste’ are theoretically sustainable, as their combustion releases no more CO2 than is absorbed during production. Even so, they are also controversial, because they are believed to be grown at the expense of food crops, or because areas of

  11. Biofuel impacts on water.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  12. The rationality of biofuels

    International Nuclear Information System (INIS)

    Horta Nogueira, Luiz Augusto; Moreira, Jose Roberto; Schuchardt, Ulf; Goldemberg, Jose

    2013-01-01

    In an editorial of a recent issue of a known academic journal, Prof. Hartmut Michel affirmed that “…the production of biofuels constitutes an extremely inefficient land use… We should not grow plants for biofuel production.”, after comparing the area occupied with plants for bioenergy production with the one required for photovoltaic cells to supply the same amount of energy for transportation. This assertion is not correct for all situations and this comparison deserves a more careful analysis, evaluating the actual and prospective technological scenarios and other relevant aspects, such as capacity requirements, energy consumed during the life cycle of energy systems and the associated impacts. In this communication this comparison is revaluated, presenting a different perspective, more favorable for the bioenergy routes. - Highlights: • Energy systems and life cycle impacts are compared under equal conditions. • The comparison is done between biofuels and photovoltaic/battery in mobility uses. • Biofuels are a valuable option when produced sustainably by efficient routes

  13. Bio-fuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    European Union bio-fuel use for transport reached 12 million tonnes of oil equivalent (mtoe) threshold during 2009. The slowdown in the growth of European consumption deepened again. Bio-fuel used in transport only grew by 18.7% between 2008 and 2009, as against 30.3% between 2007 and 2008 and 41.8% between 2006 and 2007. The bio-fuel incorporation rate in all fuels used by transport in the E.U. is unlikely to pass 4% in 2009. We can note that: -) the proportion of bio-fuel in the German fuels market has plummeted since 2007: from 7.3% in 2007 to 5.5% in 2009; -) France stays on course with an incorporation rate of 6.25% in 2009; -) In Spain the incorporation rate reached 3.4% in 2009 while it was 1.9% in 2008. The European bio-diesel industry has had another tough year. European production only rose by 16.6% in 2009 or by about 9 million tonnes which is well below the previous year-on-year growth rate recorded (35.7%). France is leading the production of bio-ethanol fuels in Europe with an output of 1250 million liters in 2009 while the total European production reached 3700 million litters and the world production 74000 million liters. (A.C.)

  14. Making biofuels sustainable

    International Nuclear Information System (INIS)

    Gallagher, Ed

    2008-01-01

    Full text: As the twentieth century drew to a close, there was considerable support for the use of biofuels as a source of renewable energy. To many people, they offered significant savings in greenhouse gas emissions compared to fossil fuels, an opportunity for reduced dependency on oil for transport, and potential as a counter weight to increasing oil prices. They also promised an opportunity for rural economies to benefit from a new market for their products and a chance of narrowing the gap between rich and poor nations. Biofuel development was encouraged by government subsidies, and rapid growth occurred in many parts of the world. Forty per cent of Brazilian sugar cane is used for biofuel production, for example, as is almost a quarter of maize grown in the United States. Although only around 1 per cent of arable land is cultivated to grow feedstock for biofuels, there has been increasing concern over the way a largely unchecked market has developed, and about its social and environmental consequences. Recent research has confirmed that food prices have been driven significantly higher by competition for prime agricultural land and that savings in greenhouse gas emissions are much smaller - and in some cases entirely eliminated - when environmentally important land, such as rainforest, is destroyed to grow biofuels. As a result, many now believe that the economic benefits of biofuels have been obtained at too high a social and environmental price, and they question whether they can be a truly sustainable source of energy. The United Kingdom has always had sustainability at the heart of its biofuel policies and set up the Renewable Fuels Agency to ensure that this goal was met. The direct effects of biofuel production are already being assessed through five measures of environmental performance and two measures of social performance, as well as measures of the energy efficiency of the production processes used and of the greenhouse gas savings achieved

  15. Outlook for advanced biofuels

    NARCIS (Netherlands)

    Hamelinck, Carlo Noël

    2004-01-01

    Modern use of biomass can play an important role in a sustainable energy supply. Biomass abounds in most parts of the world and substantial amounts could be produced at low costs. Motor biofuels seem a sensible application of biomass: they are among the few sustainable alternatives to the

  16. The EU's Biofuel Strategy

    International Nuclear Information System (INIS)

    2006-01-01

    The EU is supporting biofuels, with the aim of reducing greenhouse-gas emission, encouraging the decarbonisation of fuels used in transportation, diversifying energy procurement, offering new earning opportunities in rural areas, and developing long-term replacements for oil. We publish lengthy excerpts from the recent Communication, COM(2006) 34def. which describes the strategy adopted by the Commission [it

  17. Smart choices for biofuels

    Science.gov (United States)

    2009-01-01

    Much of the strong support for biofuels in the United States is premised on the national security advantages of reducing dependence on imported oil. In late 2007, these expected payoffs played a major role in driving an extension and expansion of the...

  18. Time-Frequency Dynamics of Biofuel-Fuel-Food System

    Czech Academy of Sciences Publication Activity Database

    Vácha, Lukáš; Janda, K.; Krištoufek, Ladislav; Zilberman, D.

    2013-01-01

    Roč. 40, č. 1 (2013), s. 233-241 ISSN 0140-9883 R&D Projects: GA ČR(CZ) GBP402/12/G097 Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : biofuels * correlations * wavelet coherence Subject RIV: AH - Economics Impact factor: 2.580, year: 2013 http://library.utia.cas.cz/separaty/2013/E/vacha-time-frequency dynamics of biofuels-fuels-food system.pdf

  19. Regime-dependent topological properties of biofuels networks

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Janda, K.; Zilberman, D.

    2013-01-01

    Roč. 86, č. 2 (2013), 40-1-40-12 ISSN 1434-6028 R&D Projects: GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 118310; GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : topology * biofuels * correlations Subject RIV: AH - Economics Impact factor: 1.463, year: 2013 http://library.utia.cas.cz/separaty/2013/E/kristoufek-regime-dependent topological properties of biofuels networks.pdf

  20. The biofuels excellence network; Rede de excelencia em biocombustiveis

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Paulo de Tarso; Nascimento Filho, Lenart Palmeira do; Campos, Michel Fabianski [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Freire, Luiz Gustavo de Melo [Accenture, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The organization of the Biofuels Excellence Network, inside PROMINP - the Program of Mobilization of the National Industry of Oil and Natural Gas, has the objective of improving the actions of technical innovation and management in the chain of Oil, Gas Natural and Biofuels, through the optimized use of physical, financial, technological resources, of information and staff, with maximum qualification in areas of the human knowledge, whose purpose is to make decisions on specific problems of improvement of processes and/or products, besides promoting actions for the development and reinforcement of the markets of ethanol and biodiesel. The organization of the Biofuels Excellence Network became necessary, in order to enable Brazil to reach vanguard standards in biofuels (ethanol and biodiesel) in a sustainable, competitive and environmentally responsible way. Among the main reasons for the creation of the Biofuels Excellence Network are: to speed up the acquisition of knowledge and innovation, through partnerships with academical, technological, and government institutions; to contribute with PETROBRAS Strategical Planning planned goals; to capture synergies through the accomplishment of Projects of the Strategical Partners interest; to create sustainable economic value as a result of the Network Projects; to foster specialized professional qualification for the alcohol industry. (author)

  1. Design & Innovation

    DEFF Research Database (Denmark)

    Boelskifte, Per; Jørgensen, Ulrik

    2005-01-01

    The new design and innovation programme at DTU is challenging some of the standard concepts dominating most engineering educations. The programme, its background, context and basic educational ideas are presented and discussed in this paper. To build competences that match the need for innovative...... and design oriented engineers in industry and society has turned out to challenge a number of the standard – and often taken for granted – concepts in engineering education still dominated world wide by rather strict norms and concepts of learning that do not challenge the students creativity and innovative...

  2. Microalgae: biofuel production

    Directory of Open Access Journals (Sweden)

    Babita Kumari

    2013-04-01

    Full Text Available In the present day, microalgae feedstocks are gaining interest in energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels. The available literature on various aspects of microalgae for e.g. its cultivation, life cycle assessment, and conceptualization of an algal biorefinery, has been done. The evaluation of available information suggests the operational and maintenance cost along with maximization of oil-rich microalgae production is the key factor for successful commercialization of microalgae-based fuels.

  3. The bio-fuels

    International Nuclear Information System (INIS)

    Levy, R.H.

    1993-02-01

    In France, using fallow soils for energy production may be a solution to agriculture problems. Technical and economical studies of biofuels (ethanol, methanol, ethyl tributyl ether, methyl tributyl ether and methyl ester) are presented with costs of production from the raw material to the end product, characteristics of the end product, engine consumption for pure or mixed fuels, and environmental impacts. For the author, the mixed ethanol process shows no advantages in term of energy dependency (ETBE, MTBE and colza ester give better results), ethanol production uses 90% and colza ester production 53% of the calorific power of the produced biofuels. Commercial balance: damaged, fiscal receipts: reduced, new jobs creation: inferior to 10.000 and the majority outside of the agriculture sphere, environmental impacts: slight diminution of greenhouse gases, but growth of soil and water pollution, all these points are developed by the author. Observations of some contradictors are also given. (A.B.). refs. figs., tabs

  4. Biofuels made easy

    International Nuclear Information System (INIS)

    Hamilton, C.

    2004-01-01

    Much has been said and written in Australia since the Federal Government introduced its Clean Fuels Policy in September 2001. Various biofuel projects are now being considered in different states of Australia for the manufacture of bioethanol and biodiesel from renewable resources. However, the economic viability required to establish an Australian liquid biofuels industry is predicated on supportive government legislation and an encouraging fuel excise regime. On the other hand, the benefits of such an industry are also in debate. In an attempt to clarify some of the concerns being raised, this paper endeavours to provide an overview of the current use of bioethanol and biodiesel around the world, to summarise the process technologies involved, to review the benefits and non-benefits of renewable fuels to the transport industry and to address the issues for such an industry here in Australia

  5. A Tale of Two Small Business Grants: The Best of Times, the Worst of Times from the NASA Ames Small Business Innovative Research (SBIR) Program

    Science.gov (United States)

    Kojiro, Daniel R.; Lee, Geoffrey S.

    2006-01-01

    The purposes of the SBIR Program are to: stimulate technological innovation in the private sector; strengthen the role of Small Business Concerns (SBCs) in meeting Federal research and development needs; increase the commercial application of these research results; and encourage participation of socially and economically disadvantaged persons and women-owned small businesses. The process can be highly rewarding, providing the small business with resources to pursue research and development with a focus on providing NASA with new and advanced capabilities. We present two examples of how the NASA Ames SBIR Program has addressed these purposes, nurturing innovative ideas from small, businesses into commercially viable products that also address analytical needs in space research. These examples, from the Science Instruments for Conducting Solar System Exploration Subtopic, describe the journey from innovative concept to analytical instrument, one successful and one hampered by numerous roadblocks (including some international intrigue}.

  6. Biofuel market and carbon modeling to analyse French biofuel policy

    International Nuclear Information System (INIS)

    Bernard, F.; Prieur, A.

    2007-01-01

    In order to comply with European Union objectives, France has set up an ambitious biofuel plan. This plan is evaluated on the basis of two criteria: tax exemption on fossil fuels and greenhouse gases (GHG) emission savings. An economic marginal analysis and a life cycle assessment (LCA) are provided using a coupling procedure between a partial agro-industrial equilibrium model and an oil refining optimization model. Thus, we determine the minimum tax exemption needed to place on the market a targeted quantity of biofuel by deducting the biofuel long-run marginal revenue of refiners from the agro-industrial marginal cost of biofuel production. With a clear view of the refiner's economic choices, total pollutant emissions along the biofuel production chains are quantified and used to feed an LCA. The French biofuel plan is evaluated for 2008, 2010 and 2012 using prospective scenarios. Results suggest that biofuel competitiveness depends on crude oil prices and demand for petroleum products and consequently these parameters should be taken into account by authorities to modulate biofuel tax exemption. LCA results show that biofuel production and use, from 'seed to wheel', would facilitate the French Government's compliance with its 'Plan Climat' objectives by reducing up to 5% GHG emissions in the French road transport sector by 2010

  7. Biofuel market and carbon modeling to evaluate French biofuel policy

    International Nuclear Information System (INIS)

    Bernard, F.; Prieur, A.

    2006-10-01

    In order to comply with European objectives, France has set up an ambitious biofuel plan. This plan is evaluated considering two criteria: tax exemption need and GHG emission savings. An economic marginal analysis and a life cycle assessment (LCA) are provided using a coupling procedure between a partial agro-industrial equilibrium model and a refining optimization model. Thus, we are able to determine the minimum tax exemption needed to place on the market a targeted quantity of biofuel by deducing the agro-industrial marginal cost of biofuel production to the biofuel refining long-run marginal revenue. In parallel, a biofuels LCA is carried out using model outputs. Such a method avoid common allocation problems between joint products. The French biofuel plan is evaluated for 2008, 2010 and 2012 using prospective scenarios. Results suggest that biofuel competitiveness depends on crude oil prices and petroleum products demands. Consequently, biofuel tax exemption does not always appear to be necessary. LCA results show that biofuels production and use, from 'seed to wheel', would facilitate the French Government's to compliance with its 'Plan Climat' objectives by reducing up to 5% GHG emissions in the French road transport sector by 2010. (authors)

  8. Bio-fuels - biohazard

    International Nuclear Information System (INIS)

    Slovak, K.

    2008-01-01

    Politicians have a clear explanation for growing commodity prices. It is all the fault of speculators. It is easy to point the finger at an imaginary enemy. It is more difficult and from the point of view of a political career suicidal to admit one's mistakes. And there are reasons for remorse. According to studies prepared by the OECD and the World Bank bio-fuels are to be blame for high food prices. The bio-fuel boom that increases the demand for agro-commodities has been created by politicians offering generous subsidies. And so farming products do not end up on the table, but in the fuel tanks of cars in the form of additives. And their only efficiency is that they make food more expensive. The first relevant indication that environmentalist tendencies in global politics have resulted in shortages and food price increases can be found in a confidential report prepared by the World Bank. Parts of the report were leaked to the media last month. According to this information growing bio-fuel production has resulted in a food price increase by 75%. The theory that this development was caused by speculators and Chinese and Indian demand received a serious blow. And the OECD report definitely contradicted the excuse used by the politicians. According to the report one of the main reasons for growing food prices are generously subsidized bio-fuels. Their share of the increase of demand for agro-commodities in 2005 -2007 was 60% according to the study. (author)

  9. Biofuels barometer: Crops pending

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    The actors and production capacities have changed only little in the biofuel sector from year to another. Nevertheless, it is interesting to take stock of the development of this sector at the end of 2002, so as to update the more complete barometer published in issue 144 of Systemes Solaires. Indeed, European ethanol production grew by 13% and that of bio-diesel by more than 20% in 2001. (authors)

  10. Biofuels and WTO Disciplines

    OpenAIRE

    Brühwiler, Claudia Franziska; Hauser, Heinz

    2008-01-01

    Given the sharp rise in crude oil prices and growing awareness of climate change, the potential of biofuels, particularly of bioethanol, has become an ubiquitous topic of public debate and has induced ambitious policy initiatives. The latter are mostly paired with protectionist measures as the examples of the European Union and the United States show, where domestic producers of energy crops are put at an advantage thanks to subsidisation, direct payments and/or favourable tax schemes.Moreove...

  11. Biofuels - the UFIP position

    International Nuclear Information System (INIS)

    2004-01-01

    Since 2003 a directive promote the biofuels use. The industry is then using them in ETBE (Ethyl Tertio Butyl Ether) fuels and in diesel oil of vegetal oils esters EMHV. Meanwhile some of them present technical difficulties and must free themselves from fiscal incentives which make them competitive. For these reasons, the UFIP (french union of petroleum industries) do not agree their obligatory incorporation. (A.L.B.)

  12. Hawaii Algal Biofuel

    Science.gov (United States)

    2013-03-01

    Spirulina Algea, Swine Manure , and Digested Anaerobic Sludge." Bioresource Technology 102: 8295- 8303. Viets, John W., Narasimhan Sundaram, Bal K. Kaul, and...biofuel source. Dr. Zimmerman noted that since algae decompose easily in landfills, the nutrients produced by anaerobic digestion of biomass can be...resource requirements would be pivotal to the offices of the U.S. Navy Resource entities such as OPNAV. In order for decision makers to digest the

  13. Potentials of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Munack, A.; Schroder, O. [Johann Heinrich von Thunen Inst., Braunschweig (Germany); Krahl, J. [Coburg Univ. of Applied Sciences, Coburg (Germany); Bunger, J. [Inst. for Prevention and Occupational Medicine of the German Social Accident Insurance, Ruhr-Univ. Inst., Bochum (Germany)

    2010-07-01

    This paper discussed the potential of biofuels with particular reference to the situation in Germany and Europe. Emphasis was on technical potential, such as biofuel production, utilization and environmental aspects. The Institute of Agricultural Technology and Biosystems Engineering ran vTI emission tests on diesel engines to evaluate the environmental impacts of biofuels. This testing facility is able to drive heavy-duty diesel engines in both stationary and dynamic test cycles, such as the European ESC and ETC. Additional analyses were conducted to determine the fine and ultra-fine particles, polycyclic aromatic hydrocarbons (PAH), aldehydes, ketones, and the usual regulated exhaust gas compounds. Ames tests were conducted to assess the mutagenic potential of tailpipe emissions. Previous study results showed that neat vegetable oils can render the exhaust high in mutagenic potency. Some of the non-regulated exhaust gas compounds were found to vary nonlinearly with the blend composition. B20 was found to have high mutagenic potential and was subject to sedimentation.

  14. Biofuels from microbes

    Energy Technology Data Exchange (ETDEWEB)

    Antoni, D. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Inst. of Resource and Energy Technology; Zverlov, V.V.; Schwarz, W.H. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Dept. of Microbiology

    2007-11-15

    Today, biomass covers about 10% of the world's primary energy demand. Against a backdrop of rising crude oil prices, depletion of resources, political instability in producing countries and environmental challenges, besides efficiency and intelligent use, only biomass has the potential to replace the supply of an energy hungry civilisation. Plant biomass is an abundant and renewable source of energy-rich carbohydrates which can be efficiently converted by microbes into biofuels, of which, only bioethanol is produced on an industrial scale today. Biomethane is produced on a large scale, but is not yet utilised for transportation. Biobutanol is on the agenda of several companies and may be used in the near future as a supplement for gasoline, diesel and kerosene, as well as contributing to the partially biological production of butyl-t-butylether, BTBE as does bioethanol today with ETBE. Biohydrogen, biomethanol and microbially made biodiesel still require further development. This paper reviews microbially made biofuels which have potential to replace our present day fuels, either alone, by blending, or by chemical conversion. It also summarises the history of biofuels and provides insight into the actual production in various countries, reviewing their policies and adaptivity to the energy challenges of foreseeable future. (orig.)

  15. Benchmarking biofuels; Biobrandstoffen benchmarken

    Energy Technology Data Exchange (ETDEWEB)

    Croezen, H.; Kampman, B.; Bergsma, G.

    2012-03-15

    A sustainability benchmark for transport biofuels has been developed and used to evaluate the various biofuels currently on the market. For comparison, electric vehicles, hydrogen vehicles and petrol/diesel vehicles were also included. A range of studies as well as growing insight are making it ever clearer that biomass-based transport fuels may have just as big a carbon footprint as fossil fuels like petrol or diesel, or even bigger. At the request of Greenpeace Netherlands, CE Delft has brought together current understanding on the sustainability of fossil fuels, biofuels and electric vehicles, with particular focus on the performance of the respective energy carriers on three sustainability criteria, with the first weighing the heaviest: (1) Greenhouse gas emissions; (2) Land use; and (3) Nutrient consumption [Dutch] Greenpeace Nederland heeft CE Delft gevraagd een duurzaamheidsmeetlat voor biobrandstoffen voor transport te ontwerpen en hierop de verschillende biobrandstoffen te scoren. Voor een vergelijk zijn ook elektrisch rijden, rijden op waterstof en rijden op benzine of diesel opgenomen. Door onderzoek en voortschrijdend inzicht blijkt steeds vaker dat transportbrandstoffen op basis van biomassa soms net zoveel of zelfs meer broeikasgassen veroorzaken dan fossiele brandstoffen als benzine en diesel. CE Delft heeft voor Greenpeace Nederland op een rijtje gezet wat de huidige inzichten zijn over de duurzaamheid van fossiele brandstoffen, biobrandstoffen en elektrisch rijden. Daarbij is gekeken naar de effecten van de brandstoffen op drie duurzaamheidscriteria, waarbij broeikasgasemissies het zwaarst wegen: (1) Broeikasgasemissies; (2) Landgebruik; en (3) Nutriëntengebruik.

  16. European biofuel policies in retrospect

    International Nuclear Information System (INIS)

    Van Thuijl, E.; Deurwaarder, E.P.

    2006-05-01

    Despite the benefits of the production and use of biofuels in the fields of agriculture, security of energy supply and the environment, in India and surrounding countries, the barriers to the use of biofuels are still substantial. The project ProBios (Promotion of Biofuels for Sustainable Development in South and South East Asia) aims at promoting biofuels in the view of sustainable development in the Southern and South eastern Asian countries. The first stage of this project concerns a study, which will provide a thorough review of the complicated and sector-overarching issue of biofuels in India and surrounding countries. This report describes past experiences with the policy context for a selection of EU countries, with the purpose of identifying conclusions from the European experience that may be valuable for Indian and South East Asian policy makers and other biofuels stakeholders

  17. Sustainability development: Biofuels in agriculture

    OpenAIRE

    Cheteni, Priviledge

    2017-01-01

    Biofuels are socially and politically accepted as a form of sustainable energy in numerous countries. However, cases of environmental degradation and land grabs have highlighted the negative effects to their adoption. Smallholder farmers are vital in the development of a biofuel industry. The study sort to assess the implications in the adoption of biofuel crops by smallholder farmers. A semi-structured questionnaire was administered to 129 smallholder farmers who were sampled from the Easter...

  18. Fuelling expectations: A policy-promise lock-in of UK biofuel policy

    International Nuclear Information System (INIS)

    Berti, Pietro; Levidow, Les

    2014-01-01

    Controversy over EU-wide biofuel policy resonated within the UK, fuelling policy disagreements among UK public authorities. They disagreed over how to protect a space for future second-generation biofuels, which were expected to overcome harm from first-generation biofuels. The UK government defended rising targets for available biofuels as a necessary stimulus for industry to help fulfil the UK's EU obligations and eventually develop second-generation biofuels. By contrast, Parliamentary Select Committees opposed biofuel targets on grounds that these would instead lock-in first-generation biofuels, thus delaying or pre-empting second-generation biofuels. Those disagreements can be explained by different institutional responsibilities and reputational stakes towards ‘promise-requirement cycles’, whereby techno-optimistic promises generate future requirements for the actors involved. The UK government's stance illustrates a ‘policy-promise lock-in’, a dilemma whereby promised support is a requirement for credibility towards technology innovators and thus technoscientific development – but may delay the redirection of support from incumbent to preferable emerging technologies. Thus the sociology of expectations – previously applied to technological expectations from technology innovators – can be extended to analyse public authorities. - Highlights: • Controversy over EU-wide biofuel policy resonated within the UK. • At issue was how to stimulate future 2nd-generation biofuels. • The government defended targets for 1st-generation as necessary to stimulate industry. • Parliamentary Committees opposed biofuel targets as locking in 1st-generation. • The UK government′s stance illustrates a ‘policy-promise lock-in’

  19. Biofuels: from microbes to molecules

    National Research Council Canada - National Science Library

    Lu, Xuefeng

    2014-01-01

    .... The production of different biofuel molecules including hydrogen, methane, ethanol, butanol, higher chain alcohols, isoprenoids and fatty acid derivatives, from genetically engineered microbes...

  20. Biofuel technology handbook. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Rutz, Dominik; Janssen, Rainer

    2008-01-15

    This comprehensive handbook was created in order to promote the production and use of biofuels and to inform politicians, decision makers, biofuel traders and all other relevant stakeholders about the state-of-the-art of biofuels and relevant technologies. The large variety of feedstock types and different conversion technologies are described. Explanations about the most promising bio fuels provide a basis to discuss about the manifold issues of biofuels. The impartial information in this handbook further contributes to diminish existing barriers for the broad use of biofuels. Emphasis of this handbook is on first generation biofuels: bio ethanol, Biodiesel, pure plant oil, and bio methane. It also includes second generation biofuels such as BTL-fuels and bio ethanol from lingo-cellulose as well as bio hydrogen. The whole life cycle of bio fuels is assessed under technical, economical, ecological, and social aspect. Characteristics and applications of bio fuels for transport purposes are demonstrated and evaluated. This is completed by an assessment about the most recent studies on biofuel energy balances. This handbook describes the current discussion about green house gas (GHG) balances and sustainability aspects. GHG calculation methods are presented and potential impacts of biofuel production characterized: deforestation of rainforests and wetlands, loss of biodiversity, water pollution, human health, child labour, and labour conditions.

  1. 75 FR 18407 - Investing in Innovation Fund

    Science.gov (United States)

    2010-04-12

    ... Innovation Fund Catalog of Federal Domestic Assistance (CFDA) Numbers: 84.396A (Scale-up grants), 84.396B (Validation grants), and 84.396C (Development grants). AGENCY: Office of Innovation and Improvement... Rule) for the Investing in Innovation Fund. This document makes a correction to the March 12 Final Rule...

  2. Biofuels versus food production: Does biofuels production increase food prices?

    International Nuclear Information System (INIS)

    Ajanovic, Amela

    2011-01-01

    Rapidly growing fossil energy consumption in the transport sector in the last two centuries caused problems such as increasing greenhouse gas emissions, growing energy dependency and supply insecurity. One approach to solve these problems could be to increase the use of biofuels. Preferred feedstocks for current 1st generation biofuels production are corn, wheat, sugarcane, soybean, rapeseed and sunflowers. The major problem is that these feedstocks are also used for food and feed production. The core objective of this paper is to investigate whether the recent increase of biofuels production had a significant impact on the development of agricultural commodity (feedstock) prices. The most important impact factors like biofuels production, land use, yields, feedstock and crude oil prices are analysed. The major conclusions of this analysis are: In recent years the share of bioenergy-based fuels has increased moderately, but continuously, and so did feedstock production, as well as yields. So far, no significant impact of biofuels production on feedstock prices can be observed. Hence, a co-existence of biofuel and food production seems possible especially for 2nd generation biofuels. However, sustainability criteria should be seriously considered. But even if all crops, forests and grasslands currently not used were used for biofuels production it would be impossible to substitute all fossil fuels used today in transport.

  3. The price for biofuels sustainability

    International Nuclear Information System (INIS)

    Pacini, Henrique; Assunção, Lucas; Dam, Jinke van; Toneto, Rudinei

    2013-01-01

    The production and usage of biofuels has increased worldwide, seeking goals of energy security, low-carbon energy and rural development. As biofuels trade increased, the European Union introduced sustainability regulations in an attempt to reduce the risks associated with biofuels. Producers were then confronted with costs of sustainability certification, in order to access the EU market. Hopes were that sustainably-produced biofuels would be rewarded with higher prices in the EU. Based on a review of recent literature, interviews with traders and price data from Platts, this paper explores whether sustainability premiums emerged and if so, did they represent an attracting feature in the market for sustainable biofuels. This article finds that premiums for ethanol and biodiesel evolved differently between 2011 and 2012, but have been in general very small or inexistent, with certified fuels becoming the new norm in the market. For different reasons, there has been an apparent convergence between biofuel policies in the EU and the US. As market operators perceive a long-term trend for full certification in the biofuels market, producers in developing countries are likely to face additional challenges in terms of finance and capacity to cope with the sustainability requirements. - Highlights: • EU biofuel sustainability rules were once thought to reward compliant producers with price-premiums. • Premiums for certified biofuels, however, have been small for biodiesel and almost non-existent for ethanol. • As sustainable biofuels became the new norm, premiums disappeared almost completely in 2012. • Early stages of supply chains concentrate the highest compliance costs, affecting specially developing country producers. • Producers are now in a market where sustainable biofuels have become the new norm

  4. Sustainability of biofuels and renewable chemicals production from biomass.

    Science.gov (United States)

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Commercialization potential aspects of microalgae for biofuel production: An overview

    Directory of Open Access Journals (Sweden)

    Tahani S. Gendy

    2013-06-01

    This article discusses the importance of algae-based biofuels together with the different opinions regarding its future. Advantages and disadvantages of these types of biofuels are presented. Algal growth drives around the world with special emphasis to Egypt are outlined. The article includes a brief description of the concept of algal biorefineries. It also declares the five key strategies to help producers to reduce costs and accelerate the commercialization of algal biodiesel. The internal strengths and weaknesses, and external opportunities, and threats are manifested through the SWOT analysis for micro-algae. Strategies for enhancing algae based-fuels are outlined. New process innovations and the role of genetic engineering in meeting these strategies are briefly discussed. To improve the economics of algal biofuels the concept of employing algae for wastewater treatment is presented.

  6. Innovations and Changes of Procedure Civil Code, and Maintenance of the Subjectivism Term "Resources Insufficient" for Granting of Justice of Gratuity

    Directory of Open Access Journals (Sweden)

    Juliane Dziubate Krefta

    2016-10-01

    Full Text Available This work is focused on the analysis of Gratuity of Justice as an important mechanism of access to justice. It aims to address the news about the Gratuity of Justice in the current Civil Procedure Code, recently amended by Law nº. 13,105/2015, bringing out important changes that fixed the obsolete Law nº. 1,060/50. Aims to reflect about the requirement for granting the benefit of free justice, namely the lack of resources, and its high degree of subjectivity, emphasizing some positive and negative issues related to it.

  7. USEPA Grants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a provisional dataset that contains point locations for all grants given out by the USEPA going back to the 1960s through today. There are many limitations...

  8. Biofuels in Central America

    International Nuclear Information System (INIS)

    Sanders, E.

    2007-08-01

    This report presents the results of an analysis of the biofuel markets in El Salvador, Panama, Costa Rica and Honduras. The aim of this report is to provide insight in the current situation and the expected developments in these markets and thus to provide investors with an image of the opportunities that could be present in this sector. An attempt has been made to provide a clear overview of this sector in the countries concerned. Due to a lack of data this has not been fully accomplished in some cases. [mk] [nl

  9. Biofuels: Project summaries

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  10. Byproducts for biofuels

    International Nuclear Information System (INIS)

    Bondt, N.; Meeusen, M.J.G.

    2008-02-01

    This report examines the market for residues from the Dutch food and beverage industry, and the appeal of these residues for the production of bio-ethanol and biodiesel. The firstgeneration technology is readily suited to the conversion of no more than 29% of the 7.5 million tonnes of residues into biofuels. Moreover, when non-technological criteria are also taken into account virtually none of the residues are of interest for conversion into bioethanol, although vegetable and animal fats can be used to produce biodiesel. The economic consequences for sectors such as the animal-feed sector are limited [nl

  11. Transporter-mediated biofuel secretion.

    Science.gov (United States)

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-07

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance.

  12. Price transmission between biofuels, fuels and food commodities

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Janda, K.; Zilberman, D.

    2014-01-01

    Roč. 8, č. 3 (2014), s. 362-373 ISSN 1932-104X Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : biofuels * price transmission * non-linearity * elasticity Subject RIV: AH - Economics Impact factor: 4.214, year: 2014 http://library.utia.cas.cz/separaty/2014/E/kristoufek-0433525.pdf

  13. Environmental effect of constructed wetland as biofuel production system

    Science.gov (United States)

    Liu, Dong

    2017-04-01

    Being as a renewable energy, biofuel has attracted worldwide attention. Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Biofuel may offer a promising alternative to fossil fuels, but serious concerns arise about the adverse greenhouse gas consequences from using nitrogen fertilizers. Waste-nitrogen recycling is an attractive idea. Here we advocate a win-win approach to biofuel production which takes advantage of excessive nitrogen in domestic wastewater treated via constructed wetland (CW) in China. This study will carry on environmental effect analysis of CW as a biomass generation system through field surveys and controllable simulated experiments. This study intends to evaluate net energy balance, net greenhouse effect potential and ecosystem service of CW as biomass generation system, and make comparation with traditional wastewater treatment plant and other biofuel production systems. This study can provide a innovation mode in order to solve the dilemma between energy crops competed crops on production land and excessive nitrogen fertilizer of our traditional energy plant production. Data both from our experimental CWs in China and other researches on comparable CWs worldwide showed that the biomass energy yield of CWs can reach 182.3 GJ ha-1 yr-1, which was two to eight times higher than current biofuel-production systems. Energy output from CW was ˜137% greater than energy input for biofuel production. If CWs are designed with specific goal of biofuel production, biofuel production can be greatly enhanced through the optimization of N supply, hydraulic structures, and species selection in CWs. Assuming that 2.0 Tg (1 Tg = 1012 g) waste nitrogen contained in domestic wastewater is treated by CWs, biofuel production can account for 1.2% of national gasoline consumption in China. The proportion would increase to 6.7% if extra nitrogen (9.5 Tg) from industrial wastewater and agricultural runoff was included

  14. Biofuels. An overview. Final Report

    International Nuclear Information System (INIS)

    De Castro, J.F.M.

    2007-05-01

    The overall objective of this desk study is to get an overview of the most relevant liquid biofuels especially in the African context, and more specifically in the Netherlands' relevant partner countries. The study will focus on biofuels for transport, but will also consider biofuels for cooking and power generation. Biogas as the result of anaerobic fermentation which can be used for cooking, lighting and electricity generation will not be considered in this study. Liquid biofuels are usually divided into alcohols that are used to substitute for gasoline and oils that are used to substitute for diesel and are often called Biodiesel, and this division will be followed in this study. In chapter 2 we will analyse several aspects of the use of alcohols particularly ethanol, in chapter 3 the same analysis will be done for oils, using as example the very promising Jatropha oil. In chapter we will analyse socio-economic issues of the use of these biofuels

  15. National Algal Biofuels Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Dept. of Energy (DOE), Washington DC (United States); Sarisky-Reed, Valerie [Dept. of Energy (DOE), Washington DC (United States)

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  16. Biofuels and environment

    International Nuclear Information System (INIS)

    Wihersaari, M.

    1996-01-01

    The purpose of this work was to produce more information on the environmental impacts of biomass production and use. Energy consumption and environmental impacts of different biomass and fossil fuel production techniques combined with transportation and end use figures are needed for comparing different fuel alternatives to reach a maximum environmental benefits from the total energy system. The energy demand of different biomass production chains was calculated and compared. Special attention was paid to new production techniques, developed in the ongoing Finnish BIOENERGY research programme. The energy consumption and the emissions from biomass production were compared with the corresponding parametres for fossil fuels used in Finland. The use of biomass for energy purposes provides environmental benefits compared to fossile fuels. The most notable ones are very small or none net emissions of greenhouse gases and SO 2 when burning biomass. NO x emissions from the production and transportation chain form a notable part of the total NO x emissons of the bioenergy production and utilization chain, especially for large biomass plants, and therefore attention should be paid to the possibilities to lower these emissions. Biomass fuel production is not free from fossil fuels. About 2-6 per cent of the produced energy is used in the production chain. The amount of used energy rises much higher, if the biofuel is processed to be an alternative for e.g. fossil diesel fuels. The energy demand in the fossil fuel production chain is though greater than in the production chain of basic biofuels. (52 refs.)

  17. Biofuels and algae

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    Bio-fuels based on micro-algae are promising, their licensing for being used in plane fuels in a mix containing 50% of fossil kerosene is expected in the coming months. In United-States research on bio-fuels has been made more important since 2006 when 2 policies were launched: 'Advanced energy initiative' and 'Twenty-in-ten', the latter aiming to develop alternative fuels. In Europe less investment has been made concerning micro-algae fuels but research programs were launched in Spain, United-Kingdom and France. In France 3 important projects were launched: SHAMASH (2006-2010) whose aim is to produce lipidic fuels from micro-algae, ALGOHUB (2008-2013) whose aim is to use micro-algae as a raw material for humane and animal food, medicine and cosmetics, SYMBIOSE (2009-2011) whose aim is the optimization of the production of methane through the anaerobic digestion of micro-algae, SALINALGUE (2010-2016) whose aim is to grow micro-algae for the production of bio-energies and bio-products. (A.C.)

  18. Biofuels: 1995 project summaries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  19. Biofuel from "humified" biomass

    Science.gov (United States)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  20. International Trade of Biofuels (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  1. The role of sustainability and life cycle thinking in U.S. biofuels policies

    International Nuclear Information System (INIS)

    Soratana, Kullapa; Harden, Cheyenne L.; Zaimes, George G.; Rasutis, Daina; Antaya, Claire L.; Khanna, Vikas; Landis, Amy E.

    2014-01-01

    A comprehensive review of the U.S. federal biofuel-related policies, from 1955 to 2012, was conducted to examine the progression of life cycle thinking within the policies. Over 1300 past and present federal and state biofuel laws and incentives were analyzed to identify the establishment of Life-cycle thinking (LCT) in the biofuel policies. The policies were searched for search terms representing the three themes: life cycle assessment, environmental impact and sustainability. LCT in policies was first seen in the Renewable Fuel Standard under the Energy Independence and Security Act of 2007, where life-cycle greenhouse gas emissions reduction of biofuels was required. Existing U.S. biofuel policies were also characterized to define types of policy as tax incentive, grants, mandate, etc. The results suggested that climate change or energy incentives, air quality or emissions, etc. should be more emphasized in fuel legislation for a continuous improvement of biofuels industry. Only 13% of both the federal and state policies reviewed in this study employed some aspect of LCT. Policies that incorporate LCT often only focused on greenhouse gas emissions; policies should include other environmental impacts to avoid any environmental tradeoffs and unintended consequences from biofuel production. - Highlights: • Identified the establishment of sustainability and life-cycle thinking in biofuel policy. • Presented the spatial distribution of state U.S. biofuels policies and production via GIS. • Analyzed past and present federal and state environmental policies progression toward biofuels. • Life-cycle thinking was only present in 13% of federal and state policies current as of 2013

  2. Sustainability aspects of biofuel production

    Science.gov (United States)

    Pawłowski, L.; Cel, W.; Wójcik Oliveira, K.

    2018-05-01

    Nowadays, world development depends on the energy supply. The use of fossil fuels leads to two threats: depletion of resources within a single century and climate changes caused by the emission of CO2 from fossil fuels combustion. Widespread application of renewable energy sources, in which biofuels play a major role, is proposed as a counter-measure. The paper made an attempt to evaluate to what extent biofuels meet the criteria of sustainable development. It was shown that excessive development of biofuels may threaten the sustainable development paradigms both in the aspect of: intergenerational equity, leading to an increase of food prices, as well as intergenerational equity, resulting in degradation of the environment. The paper presents the possibility of sustainable biofuels production increase.

  3. Biofuels: policies, standards and technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Skyrocketing prices of crude oil in the middle of the first decade of the 21st century accompanied by rising prices for food focused political and public attention on the role of biofuels. On the one hand, biofuels were considered as a potential automotive fuel with a bright future, on the other hand, biofuels were accused of competing with food production for land. The truth must lie somewhere in-between and is strongly dependent on the individual circumstance in different countries and regions. As food and energy are closely interconnected and often compete with each other for other resources, such as water, the World Energy Council - following numerous requests of its Member Committees - decided to undertake an independent assessment of biofuels policies, technologies and standards.

  4. Conventional and advanced liquid biofuels

    Directory of Open Access Journals (Sweden)

    Đurišić-Mladenović Nataša L.

    2016-01-01

    Full Text Available Energy security and independence, increase and fluctuation of the oil price, fossil fuel resources depletion and global climate change are some of the greatest challanges facing societies today and in incoming decades. Sustainable economic and industrial growth of every country and the world in general requires safe and renewable resources of energy. It has been expected that re-arrangement of economies towards biofuels would mitigate at least partially problems arised from fossil fuel consumption and create more sustainable development. Of the renewable energy sources, bioenergy draws major and particular development endeavors, primarily due to the extensive availability of biomass, already-existence of biomass production technologies and infrastructure, and biomass being the sole feedstock for liquid fuels. The evolution of biofuels is classified into four generations (from 1st to 4th in accordance to the feedstock origin; if the technologies of feedstock processing are taken into account, than there are two classes of biofuels - conventional and advanced. The conventional biofuels, also known as the 1st generation biofuels, are those produced currently in large quantities using well known, commercially-practiced technologies. The major feedstocks for these biofuels are cereals or oleaginous plants, used also in the food or feed production. Thus, viability of the 1st generation biofuels is questionable due to the conflict with food supply and high feedstocks’ cost. This limitation favoured the search for non-edible biomass for the production of the advanced biofuels. In a general and comparative way, this paper discusses about various definitions of biomass, classification of biofuels, and brief overview of the biomass conversion routes to liquid biofuels depending on the main constituents of the biomass. Liquid biofuels covered by this paper are those compatible with existing infrastructure for gasoline and diesel and ready to be used in

  5. Biofuel cells for biomedical applications: colonizing the animal kingdom.

    Science.gov (United States)

    Falk, Magnus; Narváez Villarrubia, Claudia W; Babanova, Sofia; Atanassov, Plamen; Shleev, Sergey

    2013-07-22

    Interdisciplinary research has combined the efforts of many scientists and engineers to gain an understanding of biotic and abiotic electrochemical processes, materials properties, biomedical, and engineering approaches for the development of alternative power-generating and/or energy-harvesting devices, aiming to solve health-related issues and to improve the quality of human life. This review intends to recapitulate the principles of biofuel cell development and the progress over the years, thanks to the contribution of cross-disciplinary researchers that have combined knowledge and innovative ideas to the field. The emergence of biofuel cells, as a response to the demand of electrical power devices that can operate under physiological conditions, are reviewed. Implantable biofuel cells operating inside living organisms have been envisioned for over fifty years, but few reports of implanted devices have existed up until very recently. The very first report of an implanted biofuel cell (implanted in a grape) was published only in 2003 by Adam Heller and his coworkers. This work was a result of earlier scientific efforts of this group to "wire" enzymes to the electrode surface. The last couple of years have, however, seen a multitude of biofuel cells being implanted and operating in different living organisms, including mammals. Herein, the evolution of the biofuel concept, the understanding and employment of catalyst and biocatalyst processes to mimic biological processes, are explored. These potentially green technology biodevices are designed to be applied for biomedical applications to power nano- and microelectronic devices, drug delivery systems, biosensors, and many more. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Alternative Crops and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, Philip [Oklahoma State Univ., Stillwater, OK (United States); Holcomb, Rodney B. [Oklahoma State Univ., Stillwater, OK (United States)

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  7. Effect of biofuel on environment

    International Nuclear Information System (INIS)

    Kalam, M.A; Masjuki, H.H.; Maleque, M.A.

    2001-01-01

    Biofuels are alcohols, esters, and other chemical made from cellulosic biomass such as herbaceous and woody plants, agricultural and forestry residues, and a large portion of municipal solid and industrial waste. Biofuels are renewable and mostly suitable for diesel engines due to their similar physiochemical properties as traditional diesel oil. Demand of biofuel is increasing and some European countries have started using biofuel in diesel engine. This interest has been grown in many countries mainly due to fluctuating oil prices because of diminishing availability of conventional sources and polluted environment. However, the use of biofuel for diesel engine would be more beneficial to oil importing countries by saving foreign exchange, because biofuel is domestic renewable fuels. This paper presents the evaluation results of a multi-cylinder diesel engine operated on blends of ten, twenty, thirty, forty and fifty percent of ordinary coconut oil (COCO) with ordinary diesel (OD). The test results from all the COCO blends were compared with OD. The fuels were compared based on the emissions results including, exhaust temperature, NO x , smoke, CO, HC, benzene and polycyclic aromatic hydrocarbon (PAH). Carbon deposit on injector nozzles was also monitored. Exhaust emissions results showed that increasing coconut oil in blend decreases all the exhaust emissions. Carbon deposited on injector nozzles was observed where no hard carbon was found on injector tip when the engine was running on COCO blends. (Author)

  8. Challenges in scaling up biofuels infrastructure.

    Science.gov (United States)

    Richard, Tom L

    2010-08-13

    Rapid growth in demand for lignocellulosic bioenergy will require major changes in supply chain infrastructure. Even with densification and preprocessing, transport volumes by mid-century are likely to exceed the combined capacity of current agricultural and energy supply chains, including grain, petroleum, and coal. Efficient supply chains can be achieved through decentralized conversion processes that facilitate local sourcing, satellite preprocessing and densification for long-distance transport, and business models that reward biomass growers both nearby and afar. Integrated systems that are cost-effective and energy-efficient will require new ways of thinking about agriculture, energy infrastructure, and rural economic development. Implementing these integrated systems will require innovation and investment in novel technologies, efficient value chains, and socioeconomic and policy frameworks; all are needed to support an expanded biofuels infrastructure that can meet the challenges of scale.

  9. Biofuels feedstock development program

    International Nuclear Information System (INIS)

    Wright, L.L.; Cushman, J.H.; Ehrenshaft, A.R.; McLaughlin, S.B.; McNabb, W.A.; Martin, S.A.; Ranney, J.W.; Tuskan, G.A.; Turhollow, A.F.

    1993-11-01

    The Department of Energy's (DOE's) Biofuels Feedstock Development Program (BFDP) leads the nation in the research, development, and demonstration of environmentally acceptable and commercially viable dedicated feedstock supply systems (DFSS). The purpose of this report is to highlight the status and accomplishments of the research that is currently being funded by the BFDP. Highlights summarized here and additional accomplishments are described in more detail in the sections associated with each major program task. A few key accomplishments include (1) development of a methodology for doing a cost-supply analysis for energy crops and the application of that methodology to looking at possible land use changes around a specific energy facility in East Tennessee; (2) preliminary documentation of the relationship between woody crop plantation locations and bird diversity at sites in the Midwest, Canada, and the pacific Northwest supplied indications that woody crop plantations could be beneficial to biodiversity; (3) the initiation of integrated switchgrass variety trials, breeding research, and biotechnology research for the south/southeast region; (4) development of a data base management system for documenting the results of herbaceous energy crop field trials; (5) publication of three issues of Energy Crops Forum and development of a readership of over 2,300 individuals or organizations as determined by positive responses on questionnaires

  10. BIOFUEL FROM CORN STOVER

    Directory of Open Access Journals (Sweden)

    Ljiljanka Tomerlin

    2003-12-01

    Full Text Available This paper deals with production of ethyl alcohol (biofuel from corn stover acid hydrolysate by yeasts, respectively at Pichia stipitis y-7124 and Pachysolen tannophilus y-2460 and Candida shehatae y-12856. Since moist corn stover (Hybryds 619 is proving to decomposition by phyllospheric microflora. It was (conserved spattered individually by microbicids: Busan-90, Izosan-G and formalin. In form of prismatic bales, it was left in the open air during 6 months (Octobar - March. At the beginning and after 6 months the microbiological control was carried out. The only one unspattered (control and three stover corn bals being individually spattered by microbicids were fragmented and cooked with sulfur acid. The obtained four acid hydrolysates are complex substratums, containing, apart from the sugars (about 11 g dm-3 pentosa and about 5.4 g dm-3 hexose, decomposite components as lignin, caramel sugars and uronic acids. By controlling the activity of the mentioned yeasts it was confirmed that yeasts Pichia stipitis y-7124 obtained best capability of ethyl alcohol production from corn stover acid hydrolysate at 0.23 vol. % to 0.49 vol. %.

  11. Sustainable Biofuels Development Center

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, Kenneth F. [Colorado State Univ., Fort Collins, CO (United States)

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  12. biofuel development in California

    Directory of Open Access Journals (Sweden)

    Varaprasad Bandaru

    2015-07-01

    Full Text Available Biofuels are expected to play a major role in meeting California's long-term energy needs, but many factors influence the commercial viability of the various feedstock and production technology options. We developed a spatially explicit analytic framework that integrates models of plant growth, crop adoption, feedstock location, transportation logistics, economic impact, biorefinery costs and biorefinery energy use and emissions. We used this framework to assess the economic potential of hybrid poplar as a feedstock for jet fuel production in Northern California. Results suggest that the region has sufficient suitable croplands (2.3 million acres and nonarable lands (1.5 million acres for poplar cultivation to produce as much as 2.26 billion gallons of jet fuel annually. However, there are major obstacles to such large-scale production, including, on nonarable lands, low poplar yields and broad spatial distribution and, on croplands, competition with existing crops. We estimated the production cost of jet fuel to be $4.40 to $5.40 per gallon for poplar biomass grown on nonarable lands and $3.60 to $4.50 per gallon for biomass grown on irrigated cropland; the current market price is $2.12 per gallon. Improved poplar yields, use of supplementary feedstocks at the biorefinery and economic supports such as carbon credits could help to overcome these barriers.

  13. Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results

    Directory of Open Access Journals (Sweden)

    Colin M. Beal

    2012-06-01

    Full Text Available Worldwide, algal biofuel research and development efforts have focused on increasing the competitiveness of algal biofuels by increasing the energy and financial return on investments, reducing water intensity and resource requirements, and increasing algal productivity. In this study, analyses are presented in each of these areas—costs, resource needs, and productivity—for two cases: (1 an Experimental Case, using mostly measured data for a lab-scale system, and (2 a theorized Highly Productive Case that represents an optimized commercial-scale production system, albeit one that relies on full-price water, nutrients, and carbon dioxide. For both cases, the analysis described herein concludes that the energy and financial return on investments are less than 1, the water intensity is greater than that for conventional fuels, and the amounts of required resources at a meaningful scale of production amount to significant fractions of current consumption (e.g., nitrogen. The analysis and presentation of results highlight critical areas for advancement and innovation that must occur for sustainable and profitable algal biofuel production can occur at a scale that yields significant petroleum displacement. To this end, targets for energy consumption, production cost, water consumption, and nutrient consumption are presented that would promote sustainable algal biofuel production. Furthermore, this work demonstrates a procedure and method by which subsequent advances in technology and biotechnology can be framed to track progress.

  14. Biofuels and sustainability in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Amigun, Bamikole; Stafford, William [Sustainable Energy Futures, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), 7599 Stellenbosch (South Africa); Musango, Josephine Kaviti [Resource Based Sustainable Development, Natural Resources and the Environment, Council for Scientific and Industrial Research (CSIR), 7599 Stellenbosch (South Africa)

    2011-02-15

    The combined effects of climate change, the continued volatility of fuel prices, the recent food crisis and global economic turbulence have triggered a sense of urgency among policymakers, industries and development practitioners to find sustainable and viable solutions in the area of biofuels. This sense of urgency is reflected in the rapid expansion of global biofuels production and markets over the past few years. Biofuels development offers developing countries some prospect of self-reliant energy supplies at national and local levels, with potential economic, ecological, social, and security benefits. Forty-two African countries are net oil importers. This makes them particularly vulnerable to volatility in global fuel prices and dependent on foreign exchange to cover their domestic energy needs. The goal therefore is to reduce the high dependence on imported petroleum by developing domestic, renewable energy. But can this objective be achieved while leaving a minimal social and environmental footprint? A fundamental question is if biofuels can be produced with consideration of social, economic and environmental factors without setting unrealistic expectation for an evolving renewable energy industry that holds such great promise. The overall performance of different biofuels in reducing non-renewable energy use and greenhouse gas emissions varies when considering the entire lifecycle from production through to use. The net performance depends on the type of feedstock, the production process and the amount of non-renewable energy needed. This paper presents an overview of the development of biofuels in Africa, and highlights country-specific economic, environmental and social issues. It proposes a combination framework of policy incentives as a function of technology maturity, discusses practices, processes and technologies that can improve efficiency, lower energy and water demand, and further reduce the social and environmental footprint of biofuels

  15. Biofuels and sustainability in Africa

    International Nuclear Information System (INIS)

    Amigun, Bamikole; Stafford, William; Musango, Josephine Kaviti

    2011-01-01

    The combined effects of climate change, the continued volatility of fuel prices, the recent food crisis and global economic turbulence have triggered a sense of urgency among policymakers, industries and development practitioners to find sustainable and viable solutions in the area of biofuels. This sense of urgency is reflected in the rapid expansion of global biofuels production and markets over the past few years. Biofuels development offers developing countries some prospect of self-reliant energy supplies at national and local levels, with potential economic, ecological, social, and security benefits. Forty-two African countries are net oil importers. This makes them particularly vulnerable to volatility in global fuel prices and dependent on foreign exchange to cover their domestic energy needs. The goal therefore is to reduce the high dependence on imported petroleum by developing domestic, renewable energy. But can this objective be achieved while leaving a minimal social and environmental footprint? A fundamental question is if biofuels can be produced with consideration of social, economic and environmental factors without setting unrealistic expectation for an evolving renewable energy industry that holds such great promise. The overall performance of different biofuels in reducing non-renewable energy use and greenhouse gas emissions varies when considering the entire lifecycle from production through to use. The net performance depends on the type of feedstock, the production process and the amount of non-renewable energy needed. This paper presents an overview of the development of biofuels in Africa, and highlights country-specific economic, environmental and social issues. It proposes a combination framework of policy incentives as a function of technology maturity, discusses practices, processes and technologies that can improve efficiency, lower energy and water demand, and further reduce the social and environmental footprint of biofuels

  16. Dis-locating innovation

    NARCIS (Netherlands)

    Barba Latta, Iulian I.V.

    2017-01-01

    This dissertation dwells on an experimental approach to the emergence of alternative innovations, interrogated through their spatiotemporal and material conditions. Proceeding from the more recent spate of contributions that grant recognition to innovation processes as a common

  17. Development of the University of Washington Biofuels and Biobased Chemicals Process Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, Richard [University of Washington

    2014-02-04

    The funding from this research grant enabled us to design and build a bioconversion steam explosion reactor and ancillary equipment such as a high pressure boiler and a fermenter to support the bioconversion process research. This equipment has been in constant use since its installation in 2012. Following are research projects that it has supported: • Investigation of novel chip production method in biofuels production • Investigation of biomass refining following steam explosion • Several studies on use of different biomass feedstocks • Investigation of biomass moisture content on pretreatment efficacy. • Development of novel instruments for biorefinery process control Having this equipment was also instrumental in the University of Washington receiving a $40 million grant from the US Department of Agriculture for biofuels development as well as several other smaller grants. The research that is being done with the equipment from this grant will facilitate the establishment of a biofuels industry in the Pacific Northwest and enable the University of Washington to launch a substantial biofuels and bio-based product research program.

  18. Tailoring next-generation biofuels and their combustion in next-generation engines

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, John Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wu, Weihua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Taatjes, Craig A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scheer, Adam Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Kevin M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yu, Eizadora T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Bryan, Greg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Powell, Amy Jo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gao, Connie W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  19. Assessment of pelletized biofuels

    International Nuclear Information System (INIS)

    Samson, R.; Duxbury, P.; Drisdelle, M.; Lapointe, C.

    2000-04-01

    There has been an increased interest in the development of economical and convenient renewable energy fuels, resulting from concerns about climate change and rising oil prices. An opportunity to use agricultural land as a means of producing renewable fuels in large quantities, relying on wood and agricultural residues only has come up with recent advances in biomass feedstock development and conversion technologies. Increasing carbon storage in the landscape and displacing fossil fuels in combustion applications can be accomplished by using switchgrass and short rotation willow which abate greenhouse gas emissions. The potential of switchgrass and short rotation willow, as well as other biomass residues as new feedstocks for the pellet industry is studied in this document. Higher throughput rates are facilitated by using switchgrass, which shows potential as a pelleting feedstock. In addition, crop drying requires less energy than wood. By taking into consideration energy for switchgrass production, transportation to the conversion facility, preprocessing, pelleting, and marketing, the overall energy balance of switchgrass is 14.5:1. Research on alfalfa pelleting can be applied to switchgrass, as both exhibit a similar behaviour. The length of chop, the application of high temperature steam and the use of a die with a suitable length/diameter ratio are all factors that contribute to the successful pelleting of switchgrass. Switchgrass has a similar combustion efficiency (82 to 84 per cent) to wood (84 to 86 per cent), as determined by combustion trials conducted by the Canada Centre for Mineral and Energy Technology (CANMET) in the Dell-Point close coupled gasifier. The energy content is 96 per cent of the energy of wood pellets on a per tonne basis. Clinker formation was observed, which necessitated some adjustments of the cleaner grate settings. While stimulating rural development and export market opportunities, the high yielding closed loop biofuels show

  20. The second generation biofuels from the biomass

    International Nuclear Information System (INIS)

    2007-01-01

    The author takes stock on the second generation biofuels in the world, the recent technologies, their advantages, the research programs and the economical and environmental impacts of the biofuels development. (A.L.B.)

  1. Biofuels from food processing wastes.

    Science.gov (United States)

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  2. Panorama 2007: Biofuels in Europe

    International Nuclear Information System (INIS)

    Prieur-Vernat, A.; His, St.

    2007-01-01

    The current leader on the world bio-diesel market, Europe is, after the United States and Brazil, one of the regions driving the production and utilization of biofuels. Its ambitious bio-fuel content targets for motor fuels (5.75% by 2010 and 8% by 2015) encourage Member States to significantly develop those pathways. This raises certain questions, especially about available biomass resources. It is likely that, beyond 2010, technologies other than those in existence today, using ligno-cellulosic biomass, will have to be implemented. (author)

  3. Policies promoting Biofuels in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Kristina [IVL Swedish Environmental Research Inst., Goeteborg (Sweden); Chalmers Univ. of Technology, Div. of Heat and Power Technology., Goeteborg (Sweden)

    2012-07-01

    This report was written as part of a course in Environmental Economics and Policy Instruments at the University of Gothenburg. It aims at summarizing the policy instruments introduced to directly affect the production and use of biofuels in Sweden. Since Sweden is part of the EU also EU policies were included. There are additional policy instruments which affect the production and utilization of biofuels in a more indirect way that are not presented here. The economic analysis in this paper is limited and could be developed from the information presented in order to draw further conclusions on necessary changes in order to reach set targets.

  4. Assessing the environmental sustainability of biofuels.

    Science.gov (United States)

    Kazamia, Elena; Smith, Alison G

    2014-10-01

    Biofuels vary in their potential to reduce greenhouse gas emissions when displacing fossil fuels. Savings depend primarily on the crop used for biofuel production, and on the effect that expanding its cultivation has on land use. Evidence-based policies should be used to ensure that maximal sustainability benefits result from the development of biofuels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Overview on Biofuels from a European Perspective

    Science.gov (United States)

    Ponti, Luigi; Gutierrez, Andrew Paul

    2009-01-01

    In light of the recently developed European Union (EU) Biofuels Strategy, the literature is reviewed to examine (a) the coherency of biofuel production with the EU nonindustrial vision of agriculture, and (b) given its insufficient land base, the implications of a proposed bioenergy pact to grow biofuel crops in the developing world to meet EU…

  6. Biofuels, a bad thing?; Boeser Biokraftstoff?

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, D.; Bensmann, M.

    2008-05-15

    The discussions over biofuels are still going on. Critics claim that biofuels ruin engine components, destroy rainforests and cause high food prices and global hunger. According to this contribution, the Federal government's biofuels policy was wrong and was doomed to fail. (orig.)

  7. Evaluation of biofuels sustainability: can we keep biofuel appropriate and green?

    CSIR Research Space (South Africa)

    Amigun, B

    2009-11-01

    Full Text Available and Industrial Research (CSIR) Pretoria, South Africa bamigun@csir.co.za Outlines • State of biofuels in Africa - Biofuels initiatives in Africa • Barriers to biofuels market penetration and policy incentives to stimulate the market. • Sustainability... are then motivated to put these ideas into practice. The end of Phase I is the political decision to invest money and other resources into biofuel research. Biofuels developmental stages in Africa…explanation © CSIR 2009 www...

  8. Biofuel supply chain, market, and policy analysis

    Science.gov (United States)

    Zhang, Leilei

    Renewable fuel is receiving an increasing attention as a substitute for fossil based energy. The US Department of Energy (DOE) has employed increasing effort on promoting the advanced biofuel productions. Although the advanced biofuel remains at its early stage, it is expected to play an important role in climate policy in the future in the transportation sector. This dissertation studies the emerging biofuel supply chain and markets by analyzing the production cost, and the outcomes of the biofuel market, including blended fuel market price and quantity, biofuel contract price and quantity, profitability of each stakeholder (farmers, biofuel producers, biofuel blenders) in the market. I also address government policy impacts on the emerging biofuel market. The dissertation is composed with three parts, each in a paper format. The first part studies the supply chain of emerging biofuel industry. Two optimization-based models are built to determine the number of facilities to deploy, facility locations, facility capacities, and operational planning within facilities. Cost analyses have been conducted under a variety of biofuel demand scenarios. It is my intention that this model will shed light on biofuel supply chain design considering operational planning under uncertain demand situations. The second part of the dissertation work focuses on analyzing the interaction between the key stakeholders along the supply chain. A bottom-up equilibrium model is built for the emerging biofuel market to study the competition in the advanced biofuel market, explicitly formulating the interactions between farmers, biofuel producers, blenders, and consumers. The model simulates the profit maximization of multiple market entities by incorporating their competitive decisions in farmers' land allocation, biomass transportation, biofuel production, and biofuel blending. As such, the equilibrium model is capable of and appropriate for policy analysis, especially for those policies

  9. You Can Get Grants!

    Science.gov (United States)

    Novelli, Joan

    1994-01-01

    Presents strategies to help elementary teachers win grants for the classroom. The article includes information on grant sources, where to find out more about grants, and how to write winning grants. Examples of successful grant projects are provided, and announcement of a $500 Instructor grant competition is included. (SM)

  10. Biofuelled heating plants

    International Nuclear Information System (INIS)

    Gulliksson, Hans; Wennerstaal, L.; Zethraeus, B.; Johansson, Bert-Aake

    2001-11-01

    The purpose of this report is to serve as a basis to enable establishment and operation of small and medium-sized bio-fuel plants, district heating plants and local district heating plants. Furthermore, the purpose of this report is to serve as a guideline and basis when realizing projects, from the first concept to established plant. Taking into account all the phases, from selection of heating system, fuel type, selection of technical solutions, authorization request or application to operate a plant, planning, construction and buying, inspection, performance test, take-over and control system of the plant. Another purpose of the report is to make sure that best available technology is used and to contribute to continuous development of the technology. The report deals mainly with bio-fuelled plants in the effect range 0.3 to10 MW. The term 'plant' refers to combined power and heating plants as well as 'simpler' district heating plants. The last-mentioned is also often referred to as 'local heating plant'. In this context, the term bio fuel refers to a wide range of fuel types. The term bio fuel includes processed fractions like powders, pellets, and briquettes along with unprocessed fractions, such as by-products from the forest industry; chips and bark. Bio fuels also include straw, energy crops and cereal waste products, but these have not been expressly studied in this report. The report is structured with appendixes regarding the various phases of the projects, with the purpose of serving as a helping handbook, or manual for new establishment, helping out with technical and administrative advice and environmental requirements. Plants of this size are already expanding considerably, and the need for guiding principles for design/technology and environmental requirements is great. These guiding principles should comply with the environmental legislation requirements, and must contain advice and recommendations for bio fuel plants in this effect range, also in

  11. Estimates of US biofuels consumption, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

  12. Estimates of US biofuels consumption, 1990

    International Nuclear Information System (INIS)

    1991-10-01

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs

  13. Biofuel production by recombinant microorganisms

    Science.gov (United States)

    Liao, James C.; Atsumi, Shota; Cann, Anthony F.

    2017-07-04

    Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.

  14. An Outlook on Microalgal Biofuels

    NARCIS (Netherlands)

    Wijffels, R.H.; Barbosa, M.J.

    2010-01-01

    Microalgae are considered one of the most promising feedstocks for biofuels. The productivity of these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only a step or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competing

  15. Biofuels for automobiles - an overview

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, G. [Universitaet Karlsruhe, Engler-Bunte-Institut, Karlsruhe (Germany); Vetter, A. [Thueringer Landesanstalt fuer Landwirtschaft, Dornburg (Germany)

    2008-05-15

    Due to increasing oil prices and climate change concerns, biofuels have become more important as potential alternative energy sources. It is an open question as to which types of biofuels have the best yield potentials, characteristic properties and environmental consequences for providing the largest contribution to future energy requirements. Apart from the quality aspects, the question of quantity is very important, i.e., yields of biomass raw materials from agriculture and forestry as well as the conversion efficiencies/yields of the conversion process to automotive fuels. The most widely used biofuel forms today are fatty acid methyl esters and ethanol. However, in the future it is possible that synthetic hydrocarbons and hydrogen, produced via biotechnological or chemical processes may become feasible as fuel sources. Limitations in quantity are caused by net productivities of photosynthesis, which are limited by several factors, e.g., by the supply of water, limited availability of land, and conversion losses. As a consequence, biofuels as they exist can only contribute to a limited extent to securing raw material supplies for energy requirements in the future. Efficiency improvements in processing technologies and changes in consumer behavior and attitude will also be required. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  16. Employment effects of biofuels development

    International Nuclear Information System (INIS)

    Danielsson, B.O.; Hektor, B.

    1992-01-01

    Effects on employment - national and regional - from an expanding market for biofuels in Sweden are estimated in this article. The fuels considered are: Peat, straw, energy crops, silviculture, forestry waste, wood waste, by-products from paper/wood industry and processed fuels from these sources. (22 refs., tabs.)

  17. Biofuels: What potential for development?

    International Nuclear Information System (INIS)

    Alazard-Toux, Nathalie

    2010-01-01

    The current production chain of the first generation of biofuels has quite real limits. To overcome them, efforts are being made to develop processes for converting vegetable resources of little worth into fuel. This research focuses both on these resources and on the technology and processes for turning them into fuel

  18. Cadmium in the biofuel system

    International Nuclear Information System (INIS)

    Aabyhammar, T.; Fahlin, M.; Holmroos, S.

    1993-12-01

    Removal of biofuel depletes the soil of important nutrients. Investigations are being made of possibilities to return most of these nutrients by spreading the ashes remaining after combustion in the forest or on field. Return of ashes implies that both beneficial and harmful substances are returned. This study has been conducted to illustrate that the return of cadmium implies the greatest risk for negative influences. The occurrence, utilization, emissions and effects of cadmium are discussed. The behaviour of cadmium in soil is discussed in detail. Flows and quantities of cadmium in Swedish society are reviewed. Flows and quantities of both total and plant available cadmium in the entire forest and arable areas of Sweden are given. A scenario for a bioenergy system of max 100 TWh is discussed. The cadmium flow in different biofuels and forest raw products, and anticipated amounts of ashes and cadmium concentrations, are calculated. Power production from biofuels is surveyed. Possibilities to clean ashes have been examined in laboratory experiments. Ashes and trace elements occurring as a result of the gasification of biofuels are reviewed. Strategies for handling ashes are discussed. Proposals on continued inputs in both the biological and technical sciences are made. 146 refs, 23 figs, 38 tabs

  19. Four myths surrounding U.S. biofuels

    International Nuclear Information System (INIS)

    Wetzstein, M.; Wetzstein, H.

    2011-01-01

    The rapid growth of biofuels has elicited claims and predictions concerning the current and future role of these fuels in the U.S. vehicle-fuel portfolio. These assertions are at times based on a false set of assumptions concerning the biofuel's market related to the petroleum and agricultural commodities markets, and the nonmarket consequences of our automobile driving. As an aid in clarifying these market relations, the following four biofuel myths are presented: (1) biofuels will be adopted because we will soon run out of oil, (2) biofuels will solve the major external costs associated with our automobile driving, (3) biofuels cause food price inflation (the food before fuel issue), and (4) biofuels will become a major vehicle fuel. - Highlights: → Biofuels will be adopted because we will soon run out of oil. → Biofuels will solve the major external costs associated with our automobile driving. → Biofuels cause food price inflation (the food before fuel issue). → Biofuels will become a major vehicle fuel.

  20. Biofuels Refining Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lobban, Lance [Univ. of Oklahoma, Norman, OK (United States)

    2017-03-28

    The goal of this project is the development of novel catalysts and knowledge of reaction pathways and mechanisms for conversion of biomass-based compounds to fuels that are compatible with oil-based fuels and with acceptable or superior fuel properties. The research scope included both catalysts to convert lignocellulosic biomass-based molecules (from pyrolysis) and vegetable oil-based molecules (i.e., triglycerides and fatty acid methyl esters). This project comprised five technical tasks. Each task is briefly introduced below, and major technical accomplishments summarized. Technical accomplishments were described in greater detail in the quarterly progress reports, and in even more detail in the >50 publications acknowledging this DoE project funding (list of publications and presentations included at the end of this report). The results of this research added greatly to the knowledge base necessary for upgrading of pyrolysis oil to hydrocarbon fuels and chemicals, and for conversion of vegetable oils to fungible diesel fuel. Numerous new catalysts and catalytic reaction systems were developed for upgrading particular compounds or compound families found in the biomass-based pyrolysis oils and vegetable oils. Methods to mitigate catalyst deactivation were investigated, including novel reaction/separation systems. Performance and emission characteristics of biofuels in flames and engines were measured. Importantly, the knowledge developed from this project became the basis for a subsequent collaborative proposal led by our research group, involving researchers from the University of Wisconsin, the University of Pittsburg, and the Idaho National Lab, for the DoE Carbon, Hydrogen and Separations Efficiency (CHASE) program, which was subsequently funded (one of only four projects awarded in the CHASE program). The CHASE project examined novel catalytic processes for lignocellulosic biomass conversion as well as technoeconomic analyses for process options for maximum

  1. Supporting the Knowledge, Innovation and Development Program at ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Supporting the Knowledge, Innovation and Development Program at FORO ... limited support granted to science, technology and innovation (STI) activities in Peru ... sustainable development strategy, as it relates to knowledge and innovation.

  2. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production

    International Nuclear Information System (INIS)

    Chiaramonti, David; Prussi, Matteo; Buffi, Marco; Rizzo, Andrea Maria; Pari, Luigi

    2017-01-01

    Highlights: • A review of microalgae thermochemical conversion to bioliquids was carried out. • We focused on pyrolysis and hydrothermal liquefaction for biocrude/biofuels. • Original experimental research on microalgae pyrolysis was also carried out. • Starvation does not impact significant on the energy content of the biocrude. • This result is relevant for designing full scale microalgae production plants. - Abstract: Advanced Biofuels steadily developed during recent year, with several highly innovative processes and technologies explored at various scales: among these, lignocellulosic ethanol and CTO (Crude Tall Oil)-biofuel technologies already achieved early-commercial status, while hydrotreating of vegetable oils is today fully commercial, with almost 3.5 Mt/y installed capacity worldwide. In this context, microalgae grown in salt-water and arid areas represent a promising sustainable chain for advanced biofuel production but, at the same time, they also represent a considerable challenge. Processing microalgae in an economic way into a viable and sustainable liquid biofuel (a low-cost mass-product) is not trivial. So far, the most studied microalgae-based biofuel chain is composed by microorganism cultivation, lipid accumulation, oil extraction, co-product valorization, and algae oil conversion through conventional esterification into Fatty Acids Methyl Esters (FAME), i.e. Biodiesel, or Hydrotreated Esters and Fatty Acids (HEFA), the latter representing a very high quality drop-in biofuel (suitable either for road transport or for aviation). However, extracting the algae oil at low cost and industrial scale is not yet a mature process, and there is not yet industrial production of algae-biofuel from these two lipid-based chains. Another option can however be considered: processing the algae through dedicated thermochemical reactors into advanced biofuels, thus approaching the downstream processing of algae in a completely different way than

  3. Federal health services grants, 1985.

    Science.gov (United States)

    Zwick, D I

    1986-01-01

    Federal health services grants amounted to about $1.8 billion in fiscal year 1985. The total amount was about $100 million less, about 6 percent, than in 1980. Reductions in the health planning program accounted for most of the decline in absolute dollars. The four formula grants to State agencies amounted to about $1.0 billion in 1985, about 60 percent of the total. The largest formula grants were for maternal and child health services and for alcohol, drug abuse, and mental health services. Project grants to selected State and local agencies amounted to about $.8 billion. There was 12 such grants in 1985 (compared with 34 in 1980). The largest, for community health services, equaled almost half the total. In real, inflation-adjusted dollars, the decline in Federal funds for these programs exceeded a third during the 5-year period. The overall dollar total in real terms in 1985 approximated the 1970 level. The ratio of formula grants to project grants in 1985 was similar to that in 1965. Studies of the impact of changes in Federal grants have found that while the development of health programs has been seriously constrained in most cases, their nature has not been substantially altered. In some cases broader program approaches and allocations have been favored. Established modes of operations and administration have generally been strengthened. Some efficiencies but few savings in administration have been identified. Replacement of reduced Federal funding by the States has been modest but has increased over time, especially for direct service activities. These changes reflect the important influence of professionalism in the health fields and the varying strengths of political interest and influence among program supporters. The long-term impact on program innovation is not yet clear.

  4. Total employment effect of biofuels

    International Nuclear Information System (INIS)

    Stridsberg, S.

    1998-08-01

    The study examined the total employment effect of both direct production of biofuel and energy conversion to heat and electricity, as well as the indirect employment effect arising from investments and other activities in conjunction with the production organization. A secondary effect depending on the increased capital flow is also included in the final result. The scenarios are based on two periods, 1993-2005 and 2005-2020. In the present study, the different fuels and the different applications have been analyzed individually with regard to direct and indirect employment within each separate sector. The greatest employment effect in the production chain is shown for logging residues with 290 full-time jobs/TWh, whereas other biofuels range between 80 and 280 full-time jobs/TWh. In the processing chain, the corresponding range is 200-300 full-time jobs per each additional TWh. Additionally and finally, there are secondary effects that give a total of 650 full-time jobs/TWh. Together with the predicted increase, this suggests that unprocessed fuel will provide an additional 16 000 annual full-time jobs, and that fuel processing will contribute with a further 5 000 full-time jobs. The energy production from the fuels will provide an additional 13 000 full-time jobs. The total figure of 34 000 annual full-time jobs must then be reduced by about 4000 on account of lost jobs, mainly in the oil sector and to some extent in imports of biofuel. In addition, the anticipated increase in capital turnover that occurs within the biofuel sector, will increase full-time jobs up to year 2020. Finally, a discussion is given of the accomplishment of the programmes anticipated by the scenario, where it is noted that processing of biofuel to wafers, pellets or powder places major demands on access to raw material of good quality and that agrarian fuels must be given priority if they are to enter the system sufficiently fast. Straw is already a resource but is still not accepted by

  5. From first generation biofuels to advanced solar biofuels.

    Science.gov (United States)

    Aro, Eva-Mari

    2016-01-01

    Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories.

  6. Toward nitrogen neutral biofuel production.

    Science.gov (United States)

    Huo, Yi-Xin; Wernick, David G; Liao, James C

    2012-06-01

    Environmental concerns and an increasing global energy demand have spurred scientific research and political action to deliver large-scale production of liquid biofuels. Current biofuel processes and developing approaches have focused on closing the carbon cycle by biological fixation of atmospheric carbon dioxide and conversion of biomass to fuels. To date, these processes have relied on fertilizer produced by the energy-intensive Haber-Bosch process, and have not addressed the global nitrogen cycle and its environmental implications. Recent developments to convert protein to fuel and ammonia may begin to address these problems. In this scheme, recycling ammonia to either plant or algal feedstocks reduces the demand for synthetic fertilizer supplementation. Further development of this technology will realize its advantages of high carbon fixation rates, inexpensive and simple feedstock processing, in addition to reduced fertilizer requirements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Algal biofuels: challenges and opportunities.

    Science.gov (United States)

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Health effects of biofuel exhaust

    OpenAIRE

    Vugt, M.A.T.M. van; Mulderij, M.; Usta, M.; Kadijk, G.; Kooter, I.M.; Krul, C.A.M.

    2009-01-01

    Alternatives to fossil fuels receive a lot of attention. In particular, oil derived of specific crops forms a promising fuel. In order to warrant global expectance of such novel fuels, safety issues associated with combustion of these fuels needs to be assessed. Although only a few public reports exist, recently potential toxic effects associated with biofuels has been published. Here, we report the analysis of a comprehensive study, comparing the toxic effects of conventional diesel, biodies...

  9. Climate regulation enhances the value of second generation biofuel technology

    Science.gov (United States)

    Hertel, T. W.; Steinbuks, J.; Tyner, W.

    2014-12-01

    Commercial scale implementation of second generation (2G) biofuels has long been 'just over the horizon - perhaps a decade away'. However, with recent innovations, and higher oil prices, we appear to be on the verge of finally seeing commercial scale implementations of cellulosic to liquid fuel conversion technologies. Interest in this technology derives from many quarters. Environmentalists see this as a way of reducing our carbon footprint, however, absent a global market for carbon emissions, private firms will not factor this into their investment decisions. Those interested in poverty and nutrition see this as a channel for lessening the biofuels' impact on food prices. But what is 2G technology worth to society? How valuable are prospective improvements in this technology? And how are these valuations affected by future uncertainties, including climate regulation, climate change impacts, and energy prices? This paper addresses all of these questions. We employ FABLE, a dynamic optimization model for the world's land resources which characterizes the optimal long run path for protected natural lands, managed forests, crop and livestock land use, energy extraction and biofuels over the period 2005-2105. By running this model twice for each future state of the world - once with 2G biofuels technology available and once without - we measure the contribution of the technology to global welfare. Given the uncertainty in how these technologies are likely to evolve, we consider a range cost estimates - from optimistic to pessimistic. In addition to technological uncertainty, there is great uncertainty in the conditions characterizing our baseline for the 21st century. For each of the 2G technology scenarios, we therefore also consider a range of outcomes for key drivers of global land use, including: population, income, oil prices, climate change impacts and climate regulation. We find that the social valuation of 2G technologies depends critically on climate change

  10. Land availability for biofuel production.

    Science.gov (United States)

    Cai, Ximing; Zhang, Xiao; Wang, Dingbao

    2011-01-01

    Marginal agricultural land is estimated for biofuel production in Africa, China, Europe, India, South America, and the continental United States, which have major agricultural production capacities. These countries/regions can have 320-702 million hectares of land available if only abandoned and degraded cropland and mixed crop and vegetation land, which are usually of low quality, are accounted. If grassland, savanna, and shrubland with marginal productivity are considered for planting low-input high-diversity (LIHD) mixtures of native perennials as energy crops, the total land availability can increase from 1107-1411 million hectares, depending on if the pasture land is discounted. Planting the second generation of biofuel feedstocks on abandoned and degraded cropland and LIHD perennials on grassland with marginal productivity may fulfill 26-55% of the current world liquid fuel consumption, without affecting the use of land with regular productivity for conventional crops and without affecting the current pasture land. Under the various land use scenarios, Africa may have more than one-third, and Africa and Brazil, together, may have more than half of the total land available for biofuel production. These estimations are based on physical conditions such as soil productivity, land slope, and climate.

  11. Land Clearing and the Biofuel Carbon Debt

    Science.gov (United States)

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-01

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages.

  12. How policies affect international biofuel price linkages

    International Nuclear Information System (INIS)

    Rajcaniova, Miroslava; Drabik, Dusan; Ciaian, Pavel

    2013-01-01

    We estimate the role of biofuel policies in determining which country is the price leader in world biofuel markets using a cointegration analysis and a Vector Error Correction (VEC) model. Weekly prices are analyzed for the EU, US, and Brazilian ethanol and biodiesel markets in the 2002–2010 and 2005–2010 time periods, respectively. The US blender's tax credit and Brazil's consumer tax exemption are found to play a role in determining the ethanol prices in other countries. For biodiesel, our results demonstrate that EU policies – the consumer tax exemption and blending target – tend to determine the world biodiesel price. - Highlights: • We estimate the role of biofuel policies in determining biofuel prices. • We use a cointegration analysis and the Vector Error Correction (VEC) model. • The biofuel policies in US and Brazil determine the world ethanol prices. • EU biofuel policies tend to form the world biodiesel price

  13. Frames in the Ethiopian Debate on Biofuels

    Directory of Open Access Journals (Sweden)

    Brigitte Portner

    2013-01-01

    Full Text Available Biofuel production, while highly contested, is supported by a number of policies worldwide. Ethiopia was among the first sub-Saharan countries to devise a biofuel policy strategy to guide the associated demand toward sustainable development. In this paper, I discuss Ethiopia’s biofuel policy from an interpretative research position using a frames approach and argue that useful insights can be obtained by paying more attention to national contexts and values represented in the debates on whether biofuel production can or will contribute to sustainable development. To this end, I was able to distinguish three major frames used in the Ethiopian debate on biofuels: an environmental rehabilitation frame, a green revolution frame and a legitimacy frame. The article concludes that actors advocating for frames related to social and human issues have difficulties entering the debate and forming alliances, and that those voices need to be included in order for Ethiopia to develop a sustainable biofuel sector.

  14. Promoting biofuels: Implications for developing countries

    International Nuclear Information System (INIS)

    Peters, Joerg; Thielmann, Sascha

    2008-01-01

    Interest in biofuels is growing worldwide as concerns about the security of energy supply and climate change are moving into the focus of policy makers. With the exception of bioethanol from Brazil, however, production costs of biofuels are typically much higher than those of fossil fuels. As a result, promotion measures such as tax exemptions or blending quotas are indispensable for ascertaining substantial biofuel demand. With particular focus on developing countries, this paper discusses the economic justification of biofuel promotion instruments and investigates their implications. Based on data from India and Tanzania, we find that substantial biofuel usage induces significant financial costs. Furthermore, acreage availability is a binding natural limitation that could also lead to conflicts with food production. Yet, if carefully implemented under the appropriate conditions, biofuel programs might present opportunities for certain developing countries

  15. Oil price, biofuels and food supply

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Mevel, Simon; Shrestha, Ashish

    2011-01-01

    The price of oil could play a significant role in influencing the expansion of biofuels, but this issue has yet to be fully investigated in the literature. Using a global computable general equilibrium (CGE) model, this study analyzes the impact of oil price on biofuel expansion, and subsequently, on food supply. The study shows that a 65% increase in oil price in 2020 from the 2009 level would increase the global biofuel penetration to 5.4% in 2020 from 2.4% in 2009. If oil prices rise 150% from their 2009 levels by 2020, the resulting penetration of biofuels would be 9%, which is higher than that would be caused by current mandates and targets introduced in more than forty countries around the world. The study also shows that aggregate agricultural output drops due to an oil price increase, but the drop is small in major biofuel producing countries as the expansion of biofuels would partially offset the negative impacts of the oil price increase on agricultural outputs. An increase in oil price would reduce global food supply through direct impacts as well as through the diversion of food commodities and cropland towards the production of biofuels. - Highlights: ► A global CGE model to analyze impacts of oil price on biofuels and food supply. ► Global biofuel penetration increases from 2.4% (2009) to 5.4% (2020) in baseline. ► A 150% rise of oil price boosts biofuels more than current mandates and targets do. ► Biofuels partially offset drops in agricultural outputs caused by oil price rise. ► Biofuels as well as oil price rise negatively affect global food supply.

  16. Biofuels in Italy: obstacles and development opportunities

    International Nuclear Information System (INIS)

    Pignatelli, Vito; Clementi, Chiara

    2006-01-01

    Today biofuels are the sole realistically practical way to reduce CO 2 emissions in the transportation sector. In many countries, including Italy, biofuel production and use are already a reality corresponding to a large agro-industrial production system that uses essentially mature technologies. To significantly lower production costs and optimise land use, Italy needs to develop new, second-generation biofuel production operations that can offer significant opportunities to the nation's agro-industrial sector [it

  17. DLA Energy Biofuel Feedstock Metrics Study

    Science.gov (United States)

    2012-12-11

    moderately/highly in- vasive  Metric 2: Genetically modified organism ( GMO ) hazard, Yes/No and Hazard Category  Metric 3: Species hybridization...4– biofuel distribution Stage # 5– biofuel use Metric 1: State inva- siveness ranking Yes Minimal Minimal No No Metric 2: GMO hazard Yes...may utilize GMO microbial or microalgae species across the applicable biofuel life cycles (stages 1–3). The following consequence Metrics 4–6 then

  18. Strategic niche management for biofuels : analysing past experiments for developing new biofuels policy

    NARCIS (Netherlands)

    Laak, W.W.M.; Raven, R.P.J.M.; Verbong, G.P.J.

    2007-01-01

    Biofuels have gained a lot of attention since the implementation of the 2003 European Directive on biofuels. In the Netherlands the contribution of biofuels is still very limited despite several experiments in the past. This article aims to contribute to the development of successful policies for

  19. [Biofuels, food security and transgenic crops].

    Science.gov (United States)

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  20. Towards Sustainable Production of Biofuels from Microalgae

    Directory of Open Access Journals (Sweden)

    Hans Ragnar Giselrød

    2008-07-01

    Full Text Available Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel.

  1. Using Mini-Grants as a Resource to Enrich Gifted Programs.

    Science.gov (United States)

    Adderholdt-Elliott, Miriam; And Others

    1990-01-01

    Guidelines are offered for accessing local grant and foundation monies to fund special and innovative activities in gifted education programs. Descriptions of six projects funded by grants from local foundations demonstrate the variety of projects that can be funded. (JDD)

  2. Producing biofuels using polyketide synthases

    Science.gov (United States)

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  3. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  4. Zinc-Laccase Biofuel Cell

    Directory of Open Access Journals (Sweden)

    Abdul Aziz Ahmad

    2011-12-01

    Full Text Available A zinc-laccase biofuel cell adapting the zinc-air cell design features is investigated. A simple cell design configuration is employed: a membraneless single chamber and a freely suspended laccase in a quasi-neutral buffer electrolyte. The cell is characterised according to its open-circuit voltage, polarization profile, power density plot and discharge capacity at constant current. The biocatalytic role of laccase is evident from the polarization profile and power output plot. Performance comparison between a single chamber and dual chamber cell design is also presented. The biofuel cell possessed an open-circuit voltage of 1.2 V and delivered a maximum power density of 0.9 mW/cm2 at current density of 2.5 mA/cm2. These characteristics are comparable to biofuel cell utilising a much more complex system design.KEY WORDS (keyword:  Biofuel cell, Bioelectrochemical cell, Zinc anode, Laccase and Oxidoreductase.ABSTRAK: Sel bio-bahan api zink-laccase dengan adaptasi daripada ciri-ciri rekabentuk sel zink-udara telah dikaji. Sel dengan konfigurasi rekabentuk yang mudah digunapakai: ruangan tunggal tanpa membran dan laccase diampaikan secara bebas di dalam elektrolit pemampan quasi-neutral. Sel dicirikan berdasarkan voltan litar terbuka, profil polarisasi, plot ketumpatan kuasa dan kapasiti discas pada arus malar. Peranan laccase sebagai bio-pemangkin adalah amat ketara daripada profil polarisasi dan plot ketumpatan kuasa. Perbandingan prestasi di antara sel dengan rekabentuk ruangan tunggal and dwi-ruangan turut diketengahkan. Seperti dijangkakan, sel dengan rekabentuk ruangan tunggal menunjukkan kuasa keluaran yang lebih rendah jika dibandingkan dengan rekabentuk dwi-ruangan kemungkinan disebabkan fenomena cas bocor. Sel bio-bahan api ini mempunyai voltan litar terbuka 1.2 V dan memberikan ketumpatan kuasa maksima 0.9 mW/cm2 pada ketumpatan arus 2.5 mA/cm2. Ciri-ciri ini adalah sebanding dengan sel bio-bahan api yang menggunapakai rekabentuk sel

  5. Energy Primer: Solar, Water, Wind, and Biofuels.

    Science.gov (United States)

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  6. Montana Advanced Biofuels Great Falls Approval

    Science.gov (United States)

    This November 20, 2015 letter from EPA approves the petition from Montana Advanced Biofuels, LLC, Great Falls facility, regarding ethanol produced through a dry mill process, qualifying under the Clean Air Act for advanced biofuel (D-code 5) and renewable

  7. Increase of the investments for the biofuels

    International Nuclear Information System (INIS)

    Jemain, A.

    2005-01-01

    With the construction for 2007 of six new units of biofuels (three bio-diesel and three bio-ethanol), France is developing its energy policy in favor of the biofuels. This decision benefits Diester and Sofiproteol industries which will invest in the development of their deposits. The enthusiasm is less for the bio-ethanol industries. (A.L.B.)

  8. Next generation of liquid biofuel production

    NARCIS (Netherlands)

    Batidzirai, B.

    2012-01-01

    More than 99% of all currently produced biofuels are classified as “first generation” (i.e. fuels produced primarily from cereals, grains, sugar crops and oil seeds) (IEA, 2008b). “Second generation” or “next generation” biofuels, on the other hand, are produced from lignocellulosic feedstocks such

  9. NREL Algal Biofuels Projects and Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-01

    This fact sheet highlights several algal biofuels research and development projects focused on improving the economics of the algal biofuels production process. These projects should serve as a foundation for the research efforts toward algae as a source of fuels and other chemicals.

  10. Sustainable production of grain crops for biofuels

    Science.gov (United States)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  11. Biofuels. Environment, technology and food security

    International Nuclear Information System (INIS)

    Escobar, Jose C.; Lora, Electo S.; Venturini, Osvaldo J.; Yanez, Edgar E.; Castillo, Edgar F.; Almazan, Oscar

    2009-01-01

    The imminent decline of the world's oil production, its high market prices and environmental impacts have made the production of biofuels to reach unprecedent volumes over the last 10 years. This is why there have been intense debates among international organizations and political leaders in order to discuss the impacts of the biofuel use intensification. Besides assessing the causes of the rise in the demand and production of biofuels, this paper also shows the state of the art of their world's current production. It is also discussed different vegetable raw materials sources and technological paths to produce biofuels, as well as issues regarding production cost and the relation of their economic feasibility with oil international prices. The environmental impacts of programs that encourage biofuel production, farmland land requirements and the impacts on food production are also discussed, considering the life cycle analysis (LCA) as a tool. It is concluded that the rise in the use of biofuels is inevitable and that international cooperation, regulations and certification mechanisms must be established regarding the use of land, the mitigation of environmental and social impacts caused by biofuel production. It is also mandatory to establish appropriate working conditions and decent remuneration for workers of the biofuels production chain. (author)

  12. Microalgae for biofuels production and environmental applications ...

    African Journals Online (AJOL)

    This review presents the current classification of biofuels, with special focus on microalgae and their applicability for the production of biodiesel. The paper considered issues related with the processing and culturing of microalgae, for not only those that are involved in biofuel production, but as well as the possibility of their ...

  13. Modifying plants for biofuel and biomaterial production.

    Science.gov (United States)

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Biofuels and biodiversity in South Africa

    Directory of Open Access Journals (Sweden)

    Patrick J. O’Farrell

    2011-05-01

    Full Text Available The South African government, as part of its efforts to mitigate the effects of the ongoing energy crisis, has proposed that biofuels should form an important part of the country’s energy supply. The contribution of liquid biofuels to the national fuel supply is expected to be at least 2% by 2013. The Biofuels Industrial Strategy of the Republic of South Africa of 2007 outlines key incentives for reaching this target and promoting the development of a sustainable biofuels industry. This paper discusses issues relating to this strategy as well as key drivers in biofuel processing with reference to potential impacts on South Africa’s rich biological heritage.

    Our understanding of many of the broader aspects of biofuels needs to be enhanced. We identify key areas where challenges exist, such as the link between technology, conversion processes and feedstock selection. The available and proposed processing technologies have important implications for land use and the use of different non-native plant species as desired feedstocks. South Africa has a long history of planting non-native plant species for commercial purposes, notably for commercial forestry. Valuable lessons can be drawn from this experience on mitigation against potential impacts by considering plausible scenarios and the appropriate management framework and policies. We conceptualise key issues embodied in the biofuels strategy, adapting a framework developed for assessing and quantifying impacts of invasive alien species. In so doing, we provide guidelines for minimising the potential impacts of biofuel projects on biodiversity.

  15. Biofuel investment in Tanzania: Omissions in implementation

    International Nuclear Information System (INIS)

    Habib-Mintz, Nazia

    2010-01-01

    Increasing demand for biofuels as a component of climate change mitigation, energy security, and a fossil fuel alternative attracts investors to developing countries like Tanzania. Ample unused land is critical for first generation biofuels production and an important feature to attract foreign direct investments that can contribute towards agricultural modernization and poverty reduction initiatives. Despite the economic justifications, the existing institutional and infrastructural capacities dictate the impacts of biofuels market penetrations. Furthermore, exogenous factors like global recessionary pressure depressed oil prices below the level at which biofuel production were profitable in 2007, making Tanzania's competitiveness and potential benefits questionable. This paper investigates the extent that first generation, jatropha-based biofuels industry development in Tanzania observed during fieldwork in Kisarawe and Bahi may fulfill policy objectives. This paper argues that without strong regulatory frameworks for land, investment management, and rural development, biofuel industrialization could further exacerbate poverty and food insecurity in Tanzania. The paper concludes with policy recommendations for first generation biofuel development while keeping in mind implications of second generation production. Since the topic is broad and multifaceted, a multidisciplinary approach is used that includes political, institutional, and agricultural economics to analyze and conceptualize biofuel industry development and food security.

  16. Global nitrogen requirement for increased biofuel production

    NARCIS (Netherlands)

    Flapper, Joris

    2008-01-01

    Biofuels are thought to be one of the options to substitute fossil fuels and prevent global warming by the greenhouse gas (GHG) effect as they are seen as a renewable form of energy. However, biofuels are almost solely subjected to criticism from an energ

  17. Allelopathic effect of new introduced biofuel crops on the soil biota: A comparative study

    Czech Academy of Sciences Publication Activity Database

    Heděnec, Petr; Novotný, D.; Usťak, S.; Honzík, R.; Kovářová, M.; Šimáčková, H.; Frouz, J.

    2014-01-01

    Roč. 63, July (2014), s. 14-20 ISSN 1164-5563 R&D Projects: GA MŠk(CZ) 7E08081 Grant - others:GA ČR(CZ) GAP504/12/1288 Program:GA Institutional support: RVO:60077344 Keywords : allelopathic effect * biofuel crops * invasive plant species * plant biomass chemistry * seedling germination Subject RIV: EH - Ecology, Behaviour Impact factor: 1.719, year: 2014

  18. The perspectives for genetically modified cellulosic biofuels in the Central European conditions

    Czech Academy of Sciences Publication Activity Database

    Bláhová, P.; Janda, K.; Krištoufek, Ladislav

    2014-01-01

    Roč. 60, č. 6 (2014), s. 247-259 ISSN 0139-570X Grant - others:GA ČR(CZ) GAP402/11/0948 Program:GA Institutional support: RVO:67985556 Keywords : ellulosic biofuels * genetic modifications Subject RIV: AH - Economics Impact factor: 0.442, year: 2014 http://library.utia.cas.cz/separaty/2014/E/kristoufek-0433521.pdf

  19. Scope of algae as third generation biofuels

    Directory of Open Access Journals (Sweden)

    Shuvashish eBehera

    2015-02-01

    Full Text Available An initiative has been taken to develop different solid, liquid and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass have been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security.

  20. Coupling of Algal Biofuel Production with Wastewater

    Directory of Open Access Journals (Sweden)

    Neha Chamoli Bhatt

    2014-01-01

    Full Text Available Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  1. Which future for aviation bio-fuels?

    International Nuclear Information System (INIS)

    Botti, Jean; Combarnous, Michel; Jarry, Bruno; Monsan, Pierre; Burzynski, Jean-Pierre; Jeuland, Nicolas; Porot, Pierre; Demoment, Pascale; Gillmann, Marc; Marchand, Philippe; Kuentzmann, Paul; Kurtsoglou, Nicolas; Lombaert-Valot, Isabelle; Pelegrin, Marc; Renvier, Jacques; Rousseau, Julien; Stadler, Thierry; Tremeau, Benoit

    2014-01-01

    This collective report proposes a detailed overview of the evolution of aviation fuels and bio-fuels from technological, regulatory and economic points of view. It also proposes a road-map for possible future evolutions, and outlines the different assessments between American and European countries regarding the predictions for the beginning of industrial production and use of bio-jet-fuel. After having recalled international objectives, an overview of European and French commitments for technological and operational advances, and a discussion of the role of bio-fuels in the carbon cycle, the report presents various technical constraints met in aircraft industry and describes the role bio-fuels may have. The next part proposes an overview of bio-fuels which are industrially produced in the world in 2013. The authors then focus on aviation bio-fuels (main production processes, thermo-chemical processes), discuss the political context, and examine obstacles, partnerships and the role of public authorities

  2. Biofuel support policies in Europe. Lessons learnt for the long way ahead

    International Nuclear Information System (INIS)

    Wiesenthal, Tobias; Leduc, Guillaume; Christidis, Panayotis; Schade, Burkhard; Pelkmans, Luc; Govaerts, Leen; Georgopoulos, Panagiotis

    2009-01-01

    Biofuel consumption in the EU is growing rapidly but major efforts will need to be undertaken if the EU's objectives for 2010 and beyond are to be achieved. This article analyses the strengths and weaknesses of different biofuel support policies based on the experiences gained in pioneering countries and explores scenarios for their possible impacts in the long-term. It comes to the conclusion that important pre-conditions such as fuel standards and compatibility with engines are in place or being introduced on an EU-wide basis. Current and future policy support therefore focuses on creating favourable economic or legal frameworks to accelerate the market penetration of biofuels. The ambitious targets endorsed in terms of biofuel market shares require the implementation of efficient policy instruments. At the same time, large consumption volumes and the advent of innovative production technologies make it possible for Member States to promote specific types of biofuels, depending on their main objectives and natural potentials. This will require complementary instruments such as subsidies for production facilities, user incentives or feedstock subsidies. (author)

  3. Second generation biofuels: Economics and policies

    International Nuclear Information System (INIS)

    Carriquiry, Miguel A.; Du Xiaodong; Timilsina, Govinda R.

    2011-01-01

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: → Second generation biofuels could significantly contribute to the future energy supply mix. → Cost is a major barrier to its the commercial production in the near to medium term. → The policy regime should be revised to account for the relative merits of different biofuels.

  4. Second generation biofuels: Economics and policies

    Energy Technology Data Exchange (ETDEWEB)

    Carriquiry, Miguel A., E-mail: miguelc@iastate.edu [Center for Agricultural and Rural Development, Iowa State University (United States); Du Xiaodong, E-mail: xdu23@wisc.edu [Department of Agricultural and Applied Economics, University of Wisconsin-Madison (United States); Timilsina, Govinda R., E-mail: gtimilsina@worldbank.org [Development Research Group, The World Bank (United States)

    2011-07-15

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: > Second generation biofuels could significantly contribute to the future energy supply mix. > Cost is a major barrier to its the commercial production in the near to medium term. > The policy regime should be revised to account for the relative merits of different biofuels.

  5. Superfund Technical Assistance Grants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset includes data related to the Superfund Technical Assistance Grant program, including grant number, award amounts, award dates, period of performance,...

  6. SRA Grant Writing Tutorial

    Science.gov (United States)

    This tutorial will help give your organization a broad but succinct analysis of what the SRA grant program is about. This self-paced tutorial is organized under two segments: Overview of Grant Program and Program Details.

  7. Indirect land use change and biofuel policy

    International Nuclear Information System (INIS)

    Kocoloski, Matthew; Griffin, W Michael; Matthews, H Scott

    2009-01-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO 2 emissions (including from land use) than gasoline, would still be cost-effective at a CO 2 price of $80 per ton or less, well above estimated CO 2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  8. Assessment of Peruvian biofuel resources and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Harper, J.P.; Smith, W.; Mariani, E.

    1979-08-01

    Comprehensive assessment of the biofuel potential of Peru is based on: determination of current biofuel utilization practices, evauation of Peruvian biomass productivity, identification of Peruvian agricultural and forestry resources, assessment of resource development and management concerns, identification of market considerations, description of biofuel technological options, and identification of regional biofuel technology applications. Discussion of current biofuel utilization centers on a qualitative description of the main conversion approaches currently being practiced in Peru. Biomass productivity evaluations consider the terrain and soil, and climatic conditions found in Peru. The potential energy from Peruvian agricultural and forestry resources is described quantitatively. Potental regional production of agricultural residues and forest resources that could supply energy are identified. Assessment of resource development and management concerns focuses on harvesting, reforestation, training, and environmental consequences of utilization of forest resources. Market factors assessed include: importation, internal market development, external market development, energy policy and pricing, and transportation. Nine biofuel technology options for Peru are identified: (1) small-to-medium-scale gasification, (2) a wood waste inventory, (3) stationary and mobile charcoal production systems, (4) wood distillation, (5) forest resource development and management, (6) electrical cogeneration, (7) anaerobic digestion technology, (8) development of ethanol production capabilities, and (9) agricultural strategies for fuel production. Applications of these biofuel options are identified for each of the three major regions - nine applications for the Costa Region, eight for the Sierra Region, and ten for the Selva Region.

  9. Biofuels - Illusion or Reality? - The european experience

    International Nuclear Information System (INIS)

    Furfari, A.

    2008-01-01

    Environmental issues, rising prices and security of supply are putting energy at the centre of all attentions. Policy-makers pushed by various stakeholders are struggling to find more sustainable solutions to the world legitimate demand for energy. The transport sector is especially under pressure as it relies for 98% on oil. Despite vast research and development investments, no short-term solutions appeared to be reliable. Thanks to lawmakers support to biofuels, these substitutes for oil are now seen as the potential solution for a sustainable transport. This book analyses the real possibility of biofuels. Does Europe has enough land to produce the needed feedstock? What are the real gains in terms of greenhouse gases emissions and energy efficiency? Are biofuels really a sustainable solution? Will this policy succeed? Are the targets reachable? The reader will find some indications in this book to make up his mind on this complex, multifaceted and highly political subject. Contents: Summary. Introduction. Biofuels in the U.S.A. and Brazil. Do we have enough land in Europe? Biofuels life cycle analysis. Greenhouse gases reduction and efficiency. Case of the glycerin price. Variables affecting biofuels sustainability. Standard for Biofuels. Conclusion. General Bibliography. Annexes. References

  10. Potential of biofuels for shipping. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Florentinus, A.; Hamelinck, C.; Van den Bos, A.; Winkel, R.; Cuijpers, M. [Ecofys Netherlands, Utrecht (Netherlands)

    2012-01-15

    Biofuels could be one of the options to realize a lower carbon intensity in the propulsion of ships and also possibly reduce the effect of ship emissions on local air quality. Therefore, EMSA, the European Maritime Safety Agency, is evaluating if and how biofuels could be used in the shipping sector as an alternative fuel. To determine the potential of biofuels for ships, a clearer picture is needed on technical and organizational limitations of biofuels in ships, both on board of the ship as in the fuel supply chain to the ship. Economic and sustainability analysis of biofuels should be included in this picture, as well as an overview on current and potential policy measures to stimulate the use of biofuels in shipping. Ecofys has determined the potential of biofuels, based on analysis of collected data through literature review, own expertise and experiences, direct communication with EMSA, research publications, market developments based on press and other media, and consultations with relevant stakeholders in the shipping market.

  11. The Third Pacific Basin Biofuels Workshop: Proceedings

    Science.gov (United States)

    Among the many compelling reasons for the development of biofuels on remote Pacific islands, several of the most important include: (1) a lack of indigenous fossil fuels necessitates their import at great economic loss to local island economics, (2) ideal conditions for plant growth exist on many Pacific islands to produce yields of biomass feedstocks, (3) gaseous and liquid fuels such as methane, methanol and ethanol manufactured locally from biomass feedstocks are the most viable alternatives to gasoline and diesel fuels for transportation, and (4) the combustion of biofuels is cleaner than burning petroleum products and contributes no net atmospheric CO2 to aggravate the greenhouse effect and the subsequent threat of sea level rise to low islands. Dr. Vic Phillips, HNEI Program Manager of the Hawaii Integrated Biofuels Research Program welcomed 60 participants to the Third Pacific Basin Biofuels Workshop at the Sheraton Makaha Hotel, Waianae, Oahu, on March 27 and 28, 1989. The objectives of the workshop were to update progress since the Second Pacific Basin Biofuels Workshop in April 1987 and to develop a plan for action for biofuels R and D, technology transfer, and commercialization now (immediate attention), in the near-term (less than two years), in the mid-term (three to five years), and in the long-term (more than six years). An emerging theme of the workshop was how the production, conversion, and utilization of biofuels can help increase environmental and economic security locally and globally. Individual papers are processed separately for the data base.

  12. Indirect land use change and biofuel policy

    Science.gov (United States)

    Kocoloski, Matthew; Griffin, W. Michael; Matthews, H. Scott

    2009-09-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO2 emissions (including from land use) than gasoline, would still be cost-effective at a CO2 price of 80 per ton or less, well above estimated CO2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  13. Global biofuel use, 1850-2000

    Science.gov (United States)

    Fernandes, Suneeta D.; Trautmann, Nina M.; Streets, David G.; Roden, Christoph A.; Bond, Tami C.

    2007-06-01

    This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, ˜220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, ˜180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at ˜1200 ± 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

  14. Opportunity for profitable investments in cellulosic biofuels

    International Nuclear Information System (INIS)

    Babcock, Bruce A.; Marette, Stephan; Treguer, David

    2011-01-01

    Research efforts to allow large-scale conversion of cellulose into biofuels are being undertaken in the US and EU. These efforts are designed to increase logistic and conversion efficiencies, enhancing the economic competitiveness of cellulosic biofuels. However, not enough attention has been paid to the future market conditions for cellulosic biofuels, which will determine whether the necessary private investment will be available to allow a cellulosic biofuels industry to emerge. We examine the future market for cellulosic biofuels, differentiating between cellulosic ethanol and 'drop-in' cellulosic biofuels that can be transported with petroleum fuels and have equivalent energy values. We show that emergence of a cellulosic ethanol industry is unlikely without costly government subsidies, in part because of strong competition from conventional ethanol and limits on ethanol blending. If production costs of drop-in cellulosic biofuels fall enough to become competitive, then their expansion will not necessarily cause feedstock prices to rise. As long as local supplies of feedstocks that have no or low-valued alternative uses exist, then expansion will not cause prices to rise significantly. If cellulosic feedstocks come from dedicated biomass crops, then the supply curves will have a steeper slope because of competition for land. (author)

  15. External noise when using biofuel

    International Nuclear Information System (INIS)

    Kotaleski, J.

    1994-08-01

    The aim of this study has been to cover sources of noise dealing with all steps in a biofuel chain; producing, transporting, storing and firing the biofuel. When the availability of relevant test results from noise surveys is not so good and mostly badly documented, the study has been concentrated on estimation of external noise for planning and design purposes, from a prospective biofuel-fired plant. A synoptic tabulation of estimated acoustic power levels from different noise sources, has been done. The results from measurements of external noise from different existing combined power and heating plants are tabulated. The Nordic model for simulation of external noise has been used for a prospective plant - VEGA - designed by Vattenfall. The aim has been to estimate its noise pollutions at critical points at the nearest residential area (250 m from the fenced industry area). The software - ILYD - is easy to handle, but knowledge about the model is necessary. A requisite for the reliability is the access to measurements or estimations of different sources of noise, at different levels of octaves from 63 to 8000 Hz. The degree of accuracy increases with the number of broad band sources, that are integrated. Using ILYD with available data, a night limit of 40 dB(A) should be possible to fulfill with good degree of accuracy at VEGA, between 10 pm and 7 am, with good planning and under normal operation conditions. A demand for 35 dB(A) as a limit can be harder to fulfill, especially at mornings from 6 to 7. Noise from heavy vehicles within the plant area is classified as industrial noise and not as road traffic noise. This type of noise depends very much on the way of driving and assumed acceleration. Concerning wheel-mounted loaders, they may then only be used during daytime. The simulations show, that even at daytime from 7 to 6 pm, it would be possible to use an acoustically damped chipping machine, inside the power industry area. 31 refs, 13 figs, tabs, 8

  16. Metabolomics of Clostridial Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D [Princeton Univ., NJ (United States); Aristilde, Ludmilla [Cornell Univ., Ithaca, NY (United States); Amador-Noguez, Daniel [Univ. of Wisconsin, Madison, WI (United States)

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  17. 50 CFR 85.30 - Grant selection criteria.

    Science.gov (United States)

    2010-10-01

    ... (CONTINUED) FINANCIAL ASSISTANCE-WILDLIFE SPORT FISH RESTORATION PROGRAM CLEAN VESSEL ACT GRANT PROGRAM Grant...; (e) Proposals for innovative ways to increase the availability and use of pumpout and dump stations, e.g., where private parties put in more than the minimum amount; (f) Proposals that include an...

  18. Innovative learning for innovation

    NARCIS (Netherlands)

    Dr.Ir. Hay Geraedts

    2010-01-01

    Introduction Innovation is crucial for companies who have to react to constantly changing markets. Several national and European research institutes stress the importance of developing innovation for small and medium size enterprises (SMEs). This was a trigger to design a minor on strategic

  19. Contrasts and synergies in different biofuel reports.

    Science.gov (United States)

    Michalopoulos, A; Landeweerd, L; Van der Werf-Kulichova, Z; Puylaert, P G B; Osseweijer, P

    2011-04-06

    The societal debate on biofuels is characterised by increased complexity. This can hinder the effective governance of the field. This paper attempts a quantitative bird's eye meta-analysis of this complexity by mapping different stakeholder perspectives and expected outcomes as seen in the secondary literature on biofuels, along the lines of the People-Planet-Profit framework. Our analysis illustrates the tension between stated and actual drivers of large scale biofuel development, especially for first generation biofuels. Although environmental (Planet) aspects have dominated the biofuel debate, their overall assessment is mostly negative with regard to first generation biofuels. By contrast, economic (Profit) aspects are the only ones that are assessed positively with regard to first generation biofuels. Furthermore, positive and negative assessments of biofuel development are strongly influenced by the differences in focus between different stakeholder clusters. Stakeholders who appear generally supportive to biofuel development (industry) focus relatively more on aspects that are generally assessed as positive (Profit). By contrast, non-supportive stakeholders (NGO's) tend to focus mainly on aspects that are generally assessed as negative (Planet). Moreover, our analysis of reference lists revealed few citations of primary scientific data, and also that intergovernmental organizations produce the most influential publications in the debate. The surprising lack of listed references to scientific (primary) data reveals a need to assess in which arena the transition of scientific data towards secondary publications takes place, and how one can measure its quality. This work should be understood as a first effort to take some control over a complex and contradictory number of publications, and to allow the effective governance of the field through the identification of areas of overlapping consensus and persisting controversy, without reverting to claims on

  20. Liquid biofuels in the aeroderivative gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    DiCampli, James; Schornick, Joe; Farr, Rachel

    2010-09-15

    While there are regional economic and political incentives for using liquid biofuels for renewable power generation, several challenges must be addressed. Given the fuel volumes required, base-load operation with renewable fuels such as biodiesel and ethanol are not likely sustainable with today's infrastructure. However, blending of biofuels with fossil fuels is a more economic option to provide renewable power. In turn, this lays the foundation to increase to more power generation in the future as new generation biofuels come on line. And, much like the automotive industry, the power industry will need to institute design changes to accommodate these fuels.

  1. Biofuels development and the policy regime.

    Science.gov (United States)

    Philp, Jim C; Guy, Ken; Ritchie, Rachael J

    2013-01-01

    Any major change to the energy order is certain to provoke both positive and negative societal responses. The current wave of biofuels development ignited controversies that have re-shaped the thinking about their future development. Mistakes were made in the early support for road transport biofuels in Organisation for Economic Co-operation and Development (OECD) countries. This article examines some of the policies that shaped the early development of biofuels and looks to the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Biofuel Cells – Alternative Power Sources

    International Nuclear Information System (INIS)

    Babanova, Sofia; Yolina Hubenova; Mario Mitov

    2009-01-01

    Energy generation from renewable sources and effective waste treatment are two key challenges for the sustainable development. Microbiological (or Bio-) Fuel Cells provide an elegant solution by linking both tasks. Biofuel cells, which can directly generate electricity from biodegradable substances, have rapidly gained increasing research attention. Widely available fuel sources and moderate operational conditions make them promising in renewable energy generation, wastewater treatment, power sources for remote devices, etc. This paper reviews the use of microorganisms as biocatalysts in microbiological fuel cells. The principle of biofuel cells and their construction elements are discussed. Keywords: alternative power sources, biofuel cells, biocatalysts

  3. Session 8: biofuels; Session 8: Les biocarburants

    Energy Technology Data Exchange (ETDEWEB)

    Botte, J.M.

    2006-01-15

    Here are given the summaries of the speeches of Mr Daniel Le Breton (Total): the transports of the future: the role of biofuels; of Mr Pierre Rouveirolles (Renault): the future expectations and needs; of Mr Frederic Monot (IFP): the developments of new generations of biofuels from biomass; of Mr Willem Jan Laan (Unilever): the use of bio resources for food and fuel: a fair competition? All these speeches have been presented at the AFTP yearly days (12-13 october 2005) on the session 8 concerning the biofuels. (O.M.)

  4. Energy balance of solid biofuels

    International Nuclear Information System (INIS)

    Scholz, V.; Berg, W.; Kaulfuss, P.

    1998-01-01

    The input and output of energy are two important factors used to determine the energetic and ecological usefulness of a fuel or its production technology. In this paper, a number of different methods for the production of five biofuels which can be produced in agriculture and forestry are analysed and energetic balances are presented. The results show that the energetic input is relatively low compared to the output, especially for by-products and residual substances such as cereal straw and forest pruning timber (thinning). Whenever fuel crops are cultivated, the energetic efficiency is critically determined by the quantity of nitrogen applied. Depending on the crop and technology, each gigajoule of energy input can provide 7-30 GJ or with by-products up to 50 GJ of thermally utilizable energy without any additional CO 2 pollution. (author)

  5. Biofuel Production Initiative at Claflin University Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Kamal

    2011-07-20

    For US transportation fuel independence or reduced dependence on foreign oil, the Federal Government has mandated that the country produce 36 billion gallons (bg) of renewable transportation fuel per year for its transportation fuel supply by 2022. This can be achieved only if development of efficient technology for second generation biofuel from ligno-cellulosic sources is feasible. To be successful in this area, development of a widely available, renewable, cost-effective ligno-cellulosic biomass feedstock that can be easily and efficiently converted biochemically by bacteria or other fast-growing organisms is required. Moreover, if the biofuel type is butanol, then the existing infrastructure to deliver fuel to the customer can be used without additional costs and retrofits. The Claflin Biofuel Initiative project is focused on helping the US meet the above-mentioned targets. With support from this grant, Claflin University (CU) scientists have created over 50 new strains of microorganisms that are producing butanol from complex carbohydrates and cellulosic compounds. Laboratory analysis shows that a number of these strains are producing higher percentages of butanol than other methods currently in use. All of these recombinant bacterial strains are producing relatively high concentrations of acetone and numerous other byproducts as well. Therefore, we are carrying out intense mutations in the selected strains to reduce undesirable byproducts and increase the desired butanol production to further maximize the yield of butanol. We are testing the proof of concept of producing pre-industrial large scale biobutanol production by utilizing modifications of currently commercially available fermentation technology and instrumentation. We have already developed an initial process flow diagram (PFD) and selected a site for a biobutanol pilot scale facility in Orangeburg, SC. With the recent success in engineering new strains of various biofuel producing bacteria at CU

  6. Figure 5, Biofuel refinery facility locations

    Data.gov (United States)

    U.S. Environmental Protection Agency — This workbook contains the locations and types of current and anticipated biofuel feedstock processing facilities assumed under the simulated scenarios. This dataset...

  7. Biofuel characteristics of beniseed (Sesanum indicum) oil

    African Journals Online (AJOL)

    SERVER

    2007-11-05

    Nov 5, 2007 ... Local method was used to extract oil from beniseed (Sesanum indicum). ... fuel properties similar to common biofuels, hence beniseed could be utilized as an .... industries for the manufacture of soap and vegetable oil –.

  8. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  9. 3 CFR - Biofuels and Rural Economic Development

    Science.gov (United States)

    2010-01-01

    ... biofuels promise to play a key role by providing the Nation with homegrown sustainable energy options and... publish this memorandum in the Federal Register.BARACK OBAMATHE WHITE HOUSE, Washington, May 5, 2009. ...

  10. Technical solutions to make biofuels more competitive

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    With the present day environmental and economical stakes, the French government has announced in 2005 a plan for the accelerated development of biofuels. In France, two traditional ways of biofuel generation exist: the bio-ethanol way and the bio-diesel way (methyl esters of vegetable oils). Two problems limit today the development of biofuels: the available cultivation surfaces and the production costs. The challenge of the next generation of biofuels concerns the better use of the available biomass, with no competition with the food productions, and in particular the development of ethyl esters of vegetable oils or the hydrogen processing of vegetable oils. Other processes are making their way, like the biomass to liquid (BTL) process, based on the Fischer-Tropsch synthesis, which allows to convert any type of biomass source into liquid fuels with a high production rate (about 5000 l/Ha). Short paper. (J.S.)

  11. Third Generation Biofuels via Direct Cellulose Fermentation

    Directory of Open Access Journals (Sweden)

    David B. Levin

    2008-07-01

    Full Text Available Consolidated bioprocessing (CBP is a system in which cellulase production, substrate hydrolysis, and fermentation are accomplished in a single process step by cellulolytic microorganisms. CBP offers the potential for lower biofuel production costs due to simpler feedstock processing, lower energy inputs, and higher conversion efficiencies than separate hydrolysis and fermentation processes, and is an economically attractive near-term goal for “third generation” biofuel production. In this review article, production of third generation biofuels from cellulosic feedstocks will be addressed in respect to the metabolism of cellulolytic bacteria and the development of strategies to increase biofuel yields through metabolic engineering.

  12. Biofuels and bioenergy: processes and technologies

    National Research Council Canada - National Science Library

    Lee, Sunggyu; Shah, Yatish T

    2013-01-01

    ... since the early twentieth century. Up until recently, however, development interest in biofuels had lessened due to the availability of relatively inexpensive fossil energy resources as well as the handling and transportation...

  13. setting sustainable standards for biofuel production

    African Journals Online (AJOL)

    OLAWUYI

    Director for Research, Training and International Development, Institute for Oil, Gas, ..... Table 3 presents the five stages in the product lifecycle for biofuel production ..... Principles on Human Rights Impact Assessments of Trade and Investment.

  14. Biofuels for transportation : a climate perspective

    Science.gov (United States)

    2008-06-01

    As the United States seeks to reduce greenhouse gas (GHG) emissions from motor vehicles and to lessen its dependence on imported oil, biofuels are gaining increasing attention as one possible solution. This paper offers an introduction to the current...

  15. Biofuels securing the planet's future energy needs

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    The biofuels include bioethanol, biobutanol, biodiesel, vegetable oils, biomethanol, pyrolysis oils, biogas, and biohydrogen. There are two global biomass based liquid transportation fuels that might replace gasoline and diesel fuel. These are bioethanol and biodiesel. World production of biofuel was about 68 billion L in 2007. The primary feedstocks of bioethanol are sugarcane and corn. Bioethanol is a gasoline additive/substitute. Bioethanol is by far the most widely used biofuel for transportation worldwide. About 60% of global bioethanol production comes from sugarcane and 40% from other crops. Biodiesel refers to a diesel-equivalent mono alkyl ester based oxygenated fuel. Biodiesel production using inedible vegetable oil, waste oil and grease has become more attractive recently. The economic performance of a biodiesel plant can be determined once certain factors are identified, such as plant capacity, process technology, raw material cost and chemical costs. The central policy of biofuel concerns job creation, greater efficiency in the general business environment, and protection of the environment.

  16. MICROALGAE AS AN ALTERNATIVE TO BIOFUELS PRODUCTION. PART 1: BIOETHANOL

    Directory of Open Access Journals (Sweden)

    Maiara Priscilla de Souza

    2013-02-01

    Full Text Available The demand from the energy sector is one of the culminating factors to do researches that enable innovations in the biotechnology sector and to boost biofuel production. The variability of the existing feedstocks provides benefits to energy production, however, we must choose the ones that present plausible characteristics depending on the type of product that we want to obtained. In this context, it is noted that the microalgae have suitable characteristics to producing different types of fuels, depending on the type of treatment are subjected, the species being analyzed as well as the biochemical composition of the biomass. Bioethanol production from microalgae is a promising and growing energy alternative under a view that biomass of these microorganisms has an enormous biodiversity and contain high levels of carbohydrates, an indispensable factor for the bioconversion of microalgae in ethanol. Due to these factors, there is a constant search for more viable methods for pretreatment of biomass, hydrolysis and fermentation, having as one of the major aspects the approach of effectives methodologies in the ambit of quality and yield of ethanol. Therefore, we have to search to increase the interest in the developing of biofuels reconciling with the importance of using microalgae, analyzing whether these micro-organisms are capable of being used in bioethanol production.

  17. Biofuels: The hidden cause of deforestation?

    OpenAIRE

    Smith, Alison; Lebensohn, Ignacio; Lickacz, Lindsay; Clarke, Louise

    2009-01-01

    The objective of the project is to establish a causal relationship between the biofuel market in the USA and the Amazonic Deforestation. The project parts from an objectivist approach and uses economic as well as environmental theories as a starting point. It attempts to demonstrate that biofuels are not as environmentally friendly as advertised, but instead have a detrimental effect on the Amazon Rainforest. The project utilizes statistics as a main source for empirical data, as well various...

  18. Panorama 2011: Water and bio-fuels

    International Nuclear Information System (INIS)

    Lorne, D.

    2011-01-01

    Nowadays, water is seen as a major sustainability criterion for bio-energies. Although the biofuels being produced by food crops are subject to the same risks as the farming sector as far as water resources are concerned, future sectors have a significant potential to reduce these risks, and this potential needs to be better understood in order for biofuels as a resource and their related technologies to develop properly. (authors)

  19. Sun Grant Initiative Regional Biomass Feedstock Partnership Competitive Grants Program

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Vance [South Dakota State Univ., Brookings, SD (United States). North Central Regional Sun Grant Center

    2016-12-30

    The Sun Grant Initiative partnered with the US Department of Energy (DOE) in 2008 to create the Regional Biomass Feedstock Partnership Competitive Grants Program. The overall goal of this project was to utilize congressionally directed funds to leverage the North Central Regional Sun Grant’s Competitive Grant program at South Dakota State University (SDSU) to address key issues and research gaps related to development of the bioeconomy. Specific objectives of this program were to: 1. Identify research projects through a Regional Competitive Grants program that were relevant to the sustainable production, harvest, transport, delivery, and processing/conversion of cost-competitive, domestically grown biomass. 2. Build local expertise and capacity at the North Central Regional Sun Grant Center at SDSU through an internal selection of key bioenergy research projects. To achieve these, three nationwide Request for Applications (RFA) were developed: one each in 2008, 2009, and 2010. Internal, capacity building projects at SDSU were also selected during each one of these RFAs. In 2013 and 2015, two additional Proof of Concept RFAs were developed for internal SDSU projects. Priority areas for each RFA were 1) Biomass feedstock logistics including biomass harvesting, handling, transportation, storage, and densification; 2) Sustainable biomass feedstock production systems including biomass crop development, production, and life-cycle analysis; 3) Biomass production systems that optimize biomass feedstock yield and economic return across a diverse landscape while minimizing negative effects on the environment and food/feed production; and 4) Promotion of knowledge-based economic development in science and technology and to advance commercialization of inventions that meet the mission of the Sun Grant Initiative. A total of 33 projects were selected for funding through this program. Final reports for each of these diverse projects are included in this summary report

  20. The Alliance to Scale Digital Innovation and Entrepreneurship (Seed ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Alliance to Scale Digital Innovation and Entrepreneurship (Seed Alliance). This project will support digital innovations that solve development challenges. ... It combines three regional, competitive small grants and awards programs from ...

  1. An assessment of Thailand's biofuel development

    DEFF Research Database (Denmark)

    Kumar, S.; Salam, P. Abdul; Shrestha, Pujan

    2013-01-01

    The paper provides an assessment of first generation biofuel (ethanol and biodiesel) development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues-environmental, socio-economic and food security aspects. The pol......The paper provides an assessment of first generation biofuel (ethanol and biodiesel) development in Thailand in terms of feedstock used, production trends, planned targets and policies and discusses the biofuel sustainability issues-environmental, socio-economic and food security aspects...... to land and water use and food security are important considerations to be addressed for its large scale application. Second generation biofuels derived from agricultural residues perform favorably on environmental and social sustainability issues in comparison to first generation biofuel sources...... as transportation fuel. Alternatively, the same amount of residue could provide 0.8-2.1 billion liters per year of diesel (biomass to Fischer-Tropsch diesel) to potentially offset 6%-15% of national diesel consumption in the transportation sector....

  2. Environmental and energy aspects of liquid biofuels

    International Nuclear Information System (INIS)

    De Boo, W.

    1993-02-01

    When spending public money to reduce CO 2 emissions, it is necessary to establish which alternative energy source results in the largest reduction of CO 2 emission per unit cost. Comparison of different biofuels with other energy resources is therefore important. Bioethanol is compared with leadfree gasoline, and rapeseed oil methylester (RME) is compared with diesel. Subsequently, biofuel production as a method to reduce CO 2 emission will be compared with other sustainable energy resources. This comparison is based on the energy balance in chapter two and the final costs of biofuels in chapter six. The comparison of biofuels and current fossil fuels is based on emissions to the atmosphere of greenhouse gases and acidifying pollutants in chapter three. Pollution to soil and water by arable cropping is a specific characteristic of biofuel production and is difficult to compare with fossil fuels. On this subject biofuels are compared with other land uses in chapter four. This also applies to other adverse environmental aspects of agricultural production such as competition for land use with natural areas and recreation purposes. To explore future technological developments, a comparison is made in energy balances with estimated results after the year 2000. The overall conclusion is that there are far better options to achieve CO 2 reduction. 2 figs., 9 tabs., 14 appendices, 28 refs

  3. Sustainability of biofuels in Latin America: Risks and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Rainer, E-mail: rainer.janssen@wip-munich.de [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany); Rutz, Dominik Damian [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany)

    2011-10-15

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: > This study investigates risks and opportunities of biofuels in Latin America. > Latin American countries are setting up programmes to promote biofuel development. > Strong biofuel sectors provide opportunities for economic development. > Potential negative impact includes deforestation and effects on food security. > Sustainability initiatives exist to minimise negative impact.

  4. Sustainability of biofuels in Latin America: Risks and opportunities

    International Nuclear Information System (INIS)

    Janssen, Rainer; Rutz, Dominik Damian

    2011-01-01

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: → This study investigates risks and opportunities of biofuels in Latin America. → Latin American countries are setting up programmes to promote biofuel development. → Strong biofuel sectors provide opportunities for economic development. → Potential negative impact includes deforestation and effects on food security. → Sustainability initiatives exist to minimise negative impact.

  5. 76 FR 80407 - Notice of Funding Opportunity and Solicitation for Grant Application (SGA) for Workforce...

    Science.gov (United States)

    2011-12-23

    ... job seeker and employer customers and cost- effectiveness. ETA expects to fund approximately 20 to 30... Innovation Fund Grants AGENCY: Employment and Training Administration, Labor. ACTION: Notice of Solicitation... Innovation Fund grants authorized by the Full-Year Continuing Appropriations Act, 2011 (Pub. L. 112-10) to...

  6. Liquid biofuels - can they meet our expectations?

    Science.gov (United States)

    Glatzel, G.

    2012-04-01

    Liquid biofuels are one of the options for reducing the emission of greenhouse gases and the dependence on fossil fuels. This is reflected in the DIRECTIVE 2003/30/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the promotion of the use of biofuels or other renewable fuels for transport. The promotion of E10, an automotive fuel containing 10 percent bioethanol, is based on this directive. At present almost all bioethanol is produced from agricultural crops such as maize, corn or sugar beet and sugar cane in suitable climates. In view of shortages and rising prices of food, in particular in developing countries, the use of food and feed crops for biofuel production is increasingly criticized. Alternative sources of biomass are perennial grasses and wood, whose cellulose fraction can be converted to alcohol by the so called "second generation" processes, which seem to be close to commercial deployment. The use of the total plant biomass increases the biofuel yield per hectare as compared to conventional crops. Of special interest for biofuel production is woody biomass from forests as this avoids competition with food production on arable land. Historically woody biomass was for millennia the predominant source of thermal energy. Before fossil fuels came into use, up to 80 percent of a forest was used for fuel wood, charcoal and raw materials such as potash for trade and industry. Now forests are managed to yield up to 80 percent of high grade timber for the wood industry. Replacing sophisticatedly managed forests by fast growing biofuel plantations could make economic sense for land owners when a protected market is guaranteed by politics, because biofuel plantations would be highly mechanized and cheap to operate, even if costs for certified planting material and fertilizer are added. For forest owners the decision to clear existing long rotation forests for biofuel plantations would still be weighty because of the extended time of decades required to rebuild a

  7. Privileged Biofuels, Marginalized Indigenous Peoples: The Coevolution of Biofuels Development in the Tropics

    Science.gov (United States)

    Montefrio, Marvin Joseph F.

    2012-01-01

    Biofuels development has assumed an important role in integrating Indigenous peoples and other marginalized populations in the production of biofuels for global consumption. By combining the theories of commoditization and the environmental sociology of networks and flows, the author analyzed emerging trends and possible changes in institutions…

  8. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  9. Flambeau River Biofuels Demonstration Plant

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Robert J. [Flambeau River Biofuels, Inc., Park Falls, WI (United States)

    2012-07-30

    Flambeau River BioFuels, Inc. (FRB) proposed to construct a demonstration biomass-to-liquids (BTL) biorefinery in Park Falls, Wisconsin. The biorefinery was to be co-located at the existing pulp and paper mill, Flambeau River Papers, and when in full operation would both generate renewable energy – making Flambeau River Papers the first pulp and paper mill in North America to be nearly fossil fuel free – and produce liquid fuels from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for BTL production using forest residuals and wood waste, providing a basis for proliferating BTL conversion technologies throughout the United States. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. FRB planned to replicate this facility at other paper mills after this first demonstration scale plant was operational and had proven technical and economic feasibility.

  10. Biofuels and the biorefinery concept

    International Nuclear Information System (INIS)

    Taylor, Gail

    2008-01-01

    Liquid fuels can be made by refining a range of biomass materials, including oil-rich and sugar-rich crops such as oil-seed rape and sugar beet, biomass that consists mainly of plant cell walls (second generation lignocellulosics), macro- and micro-alga, or material that would now be discarded as waste. This can include animal bi-products as well as waste wood and other resources. In the medium-term, plant cell (lignocellulosic) material is likely to be favoured as the feedstock for biorefineries because of its availability. The UK may make use of a number of these options because of its complex agricultural landscape. There are now a range of targets for biofuel use in the UK, although their environmental effects are disputed. The technology of refining these materials is well known. Possible outputs include biodiesel and bioethanol, both of which can be used as transport fuel. Other potential products include hydrogen, polymers and a wide range of value-added chemicals, making this technology important in a post-petrochemical world. Biorefineries could use cogeneration to produce electricity. The paper identifies a range of research and development priorities which must be met if this opportunity is to be exploited fully

  11. Engineering microbes to produce biofuels.

    Science.gov (United States)

    Wackett, Lawrence P

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Innovation af innovation

    DEFF Research Database (Denmark)

    Harste, Gorm

    2009-01-01

    , at innovation af innovationen forsøges gennemført på en måde, hvor tiden kræves at forholde sig til sin egen tidslighed i form af fremtid, nutid, fortid og ikke mindst i form af samtidighed. I tiden skal vi iagttage, hvordan vi iagttager tiden. Vi dobbelt-koder tiden på samme måde, som forskning forsker i...... organisationssystemerne. De to typer systemer kan noget helt bestemt med fænomenet tid. De kan synkronisere. Analyseres organisationssystemer ser vi, imidlertid at innovation kræver ro. Stærkt innovative systemer er militærsystemet og kunstsystemet, der også inddrages, og hvor vi ser paradokset mellem innovation og...... involution. Tid er med et medium og ikke et lufttomt rum. Tid er end ikke en gasart, men udgør et solidt fluidum, som samfundet bader i og flyder i, konstant i bevægelse. Reformer forudsætter former, og innovation forudsætter involution. Kun sådan muliggøres evolution....

  13. Transfer of biofuel technologies in private and commercial sectors in western India

    International Nuclear Information System (INIS)

    Saxena, S.C.; Vasudevan, P.

    1991-01-01

    The energy crisis all over the world has stimulated a lot of interest in renewable energies and indigenously produced fuels. Biofuels falls potentially into both these categories, hence biofuel technologies have attracted both scientists and practicing engineers in R ampersand D and transfer. Most of the biofuel technologies in India do not form part of the market economy, owing to unfavorable economic returns, but need large scale transfer due to their importance in the overall scenario of meeting growing energy requirements, calling for innovative approaches. In this paper an attempt has been made to analyze the gaps in transfer of biofuel technologies and describe an alternate model evolved by the authors. The experiences in the form of case studies are given, with a view to throw light on the A-B-C model's efficacy in terms of linkages and employment generation potential. Select reference to attempts made by other institutions in technology transfer to commercial sectors has also been made to focus attention on some key issues having policy implications

  14. Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study.

    Science.gov (United States)

    Xin, Chunhua; Addy, Min M; Zhao, Jinyu; Cheng, Yanling; Cheng, Sibo; Mu, Dongyan; Liu, Yuhuan; Ding, Rijia; Chen, Paul; Ruan, Roger

    2016-07-01

    Combining algae cultivation and wastewater treatment for biofuel production is considered the feasible way for resource utilization. An updated comprehensive techno-economic analysis method that integrates resources availability into techno-economic analysis was employed to evaluate the wastewater-based algal biofuel production with the consideration of wastewater treatment improvement, greenhouse gases emissions, biofuel production costs, and coproduct utilization. An innovative approach consisting of microalgae cultivation on centrate wastewater, microalgae harvest through flocculation, solar drying of biomass, pyrolysis of biomass to bio-oil, and utilization of co-products, was analyzed and shown to yield profound positive results in comparison with others. The estimated break even selling price of biofuel ($2.23/gallon) is very close to the acceptable level. The approach would have better overall benefits and the internal rate of return would increase up to 18.7% if three critical components, namely cultivation, harvest, and downstream conversion could achieve breakthroughs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Assessment of bio-fuel options for solid oxide fuel cell applications

    Science.gov (United States)

    Lin, Jiefeng

    Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with

  16. Orchestrating innovation

    NARCIS (Netherlands)

    Berkers, F.T.H.M.; Klein Woolthuis, R.J.A.; Boer, J. de

    2015-01-01

    Orchestrating Innovation increases the probability of success, minimizing the probability of failure of technological innovations by creating sustained societal and economic value. Orchestrating innovation propagates to take into account and actively involve all relevant stakeholders of the (future)

  17. Correlations between biofuels and related commodities before and during the food crisis: A taxonomy perspective

    Czech Academy of Sciences Publication Activity Database

    Krištoufek, Ladislav; Janda, Karel; Zilberman, D.

    2012-01-01

    Roč. 34, č. 5 (2012), s. 1380-1391 ISSN 0140-9883 R&D Projects: GA ČR GA402/09/0965 Grant - others:GA UK(CZ) 118310; GA ČR(CZ) GAP402/11/0948; VŠE Praha(CZ) IP100040 Program:GA Institutional support: RVO:67985556 ; RVO:67985998 Keywords : biofuels * networks * minimal spanning tree * hierarchical tree Subject RIV: AH - Economics; AH - Economics (NHU-C) Impact factor: 2.538, year: 2012 http://library.utia.cas.cz/separaty/2012/E/kristoufek-correlations between biofuels and related commodities before and during the food crisis a taxonomy perspective.pdf

  18. National Bio-fuel Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jezierski, Kelly [NextEnergy Center, Detroit, MI (United States)

    2010-12-27

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEM’s. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy – a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors

  19. Allies in Biofuels. Opportunities in the Dutch - Argentinean biofuels trade relation

    International Nuclear Information System (INIS)

    Verhagen, M.

    2007-01-01

    First generation biofuels as an environmental solution are showing their own negative environmental, social and economic side effects. These need to be dealt with, because it is apparent that those same biofuels can be produced in a sustainable manner, thereby contributing to a healthier planet. Since both Argentina and the Netherlands would benefit from sustainable biofuels trade, policy measures need to be taken to guide the proper way. In what manner could bilateral cooperation concerning biofuels, optimize trade and policy output in both countries? By answering this question, one can hand solutions to upcoming problems - barriers to a sustainable energy structure - while at the same time facilitating trade between Argentina and the Netherlands. Besides providing information about the European, Dutch and Argentine market, this report presents an overview of biofuel policies. Special attention is given to the issue of sustainable biofuel production, in order to spread the necessary awareness, create wide support for corresponding politics, and offer opportunities for cooperation to prevent future entrapment. An entrapment, which could easily occur when actors in politics and business ignore international requirements for sustainable biofuel production. The research aims to produce the following output: Policy recommendations regarding the promotion of environmentally sound biofuels in both countries; A set arena to support a policy dialogue between both countries; An overview of current Dutch and Argentinean biofuel policies; Up to date information on current volumes of production, consumption and trade; Data with contact information of partners in both countries. Argentina shows an extremely professional agricultural sector, producing large quantities of vegetable oils, specifically of soybean. This sector has started to turn its attention towards biofuels - particularly to biodiesel. Projected production (for 2007-2008) is astonishingly high. The sector mainly

  20. Plagiarism in Grant Proposals

    Science.gov (United States)

    Markin, Karen M.

    2012-01-01

    It is not news that software exists to check undergraduate papers for plagiarism. What is less well known is that some federal grant agencies are using technology to detect plagiarism in grant proposals. That variety of research misconduct is a growing problem, according to federal experts. The National Science Foundation, in its most recent…

  1. Synthetic biology and the technicity of biofuels.

    Science.gov (United States)

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. Perspectives for Sustainable Aviation Biofuels in Brazil

    Directory of Open Access Journals (Sweden)

    Luís A. B. Cortez

    2015-01-01

    Full Text Available The aviation industry has set ambitious goals to reduce carbon emissions in coming decades. The strategy involves the use of sustainable biofuels, aiming to achieve benefits from environmental, social, and economic perspectives. In this context, Brazilian conditions are favorable, with a mature agroindustry that regularly produces automotive biofuel largely adopted by Brazilian road vehicles, while air transportation has been growing at an accelerating pace and a modern aircraft industry is in place. This paper presents the main conclusions and recommendations from a broad assessment of the technological, economic, and sustainability challenges and opportunities associated with the development of drop-in aviation biofuels in Brazil. It was written by a research team that prepared the initial reports and conducted eight workshops with the active participation of more than 30 stakeholders encompassing the private sector, government institutions, NGOs, and academia. The main outcome was a set of guidelines for establishing a new biofuels industry, including recommendations for (a filling the identified research and development knowledge gaps in the production of sustainable feedstock; (b overcoming the barriers in conversion technology, including scaling-up issues; (c promoting greater involvement and interaction between private and government stakeholders; and (d creating a national strategy to promote the development of aviation biofuels.

  3. Beyond commonplace biofuels: Social aspects of ethanol

    International Nuclear Information System (INIS)

    Ribeiro, Barbara Esteves

    2013-01-01

    Biofuels policies and projects may lead to environmental, economic and social impacts. A number of studies point out the need to deliver comprehensive sustainability assessments regarding biofuels, with some presenting analytical frameworks that claim to be exhaustive. However, what is often found in the literature is an overexploitation of environmental and economic concerns, by contrast to a limited appraisal of the social aspects of biofuels. Building on a systematic review of the peer-reviewed literature, this paper discusses the social constraints and strengths of ethanol, with regard to the product's lifecycle stages and the actors involved. Its objective is to contribute to the development of social frameworks to be used in assessing the impact of ethanol. Main findings indicate that ethanol developments can increase the levels of social vulnerability, although there is little evidence in the literature regarding the positive and negative social impacts of 1st-generation ethanol and potential impacts of cellulosic ethanol. Further work is needed on the formulation of social criteria and indicators for a comprehensive sustainability assessment of this biofuel. Policy makers need to internalise the social dimension of ethanol in decision-making to prevent public opposition and irreversible social costs in the future. - Highlights: ► The literature lacks evidence on the social impacts of ethanol. ► Further work is needed on social criteria and indicators for assessment. ► Ethanol developments can increase the levels of social vulnerability. ► Decision-making should internalise the social dimension of biofuels sustainability

  4. Round table on bio-fuels

    International Nuclear Information System (INIS)

    2005-11-01

    The French ministers of agriculture and of industry have organized a meeting with the main French actors of agriculture, petroleum industry, car making and accessories industry and with professionals of agriculture machines to encourage the development of bio-fuels in France. This meeting took place in Paris in November 21, 2005. Its aim was to favor the partnerships between the different actors and the public authorities in order to reach the ambitious goals of the government of 5.75% of bio-fuels in fossil fuels by 2008, 7% by 2010 and 10% by 2015. The main points discussed by the participants were: the compatibility of automotive fuel standards with the objectives of bio-fuel incorporation, the development of direct incorporation of methanol in gasoline, the ethanol-ETBE partnership, the question of the lower calorific value of ETBE (ethyl tertio butyl ether), the development of new bio-fuels, the development of bio-diesel and the specific case of pure vegetal oils, and the fiscal framework of bio-fuels. This meeting has permitted to reach important improvements with 15 concrete agreements undertaken by the participants. (J.S.)

  5. Bio-fuel production potential in Romania

    International Nuclear Information System (INIS)

    Laurentiu, F.; Silvian, F.; Dumitru, F.

    2006-01-01

    The paper is based on the ESTO Study: Techno- Economic Feasibility of Large-Scale Production of Bio-Fuels in EU-Candidate Countries. Bio-fuel production has not been taken into account significantly until now in Romania, being limited to small- scale productions of ethanol, used mostly for various industrial purposes. However the climatic conditions and the quality of the soil are very suitable in the country for development of the main crops (wheat, sugar-beet, sunflower and rape-seed) used in bio-ethanol and bio-diesel production. The paper intended to consider a pertinent discussion of the present situation in Romania's agriculture stressing on the following essential items in the estimation of bio-fuels production potential: availability of feed-stock for bio-fuel production; actual productions of bio-fuels; fuel consumption; cost assessment; SWOT approach; expected trends. Our analysis was based on specific agricultural data for the period 1996-2000. An important ethanol potential (due to wheat, sugar-beet and maize cultures), as well as bio-diesel one (due to sun-flower and rape-seed) were predicted for the period 2005-2010 which could be exploited with the support of an important financial and technological effort, mainly from EU countries

  6. Characterization of ashes from biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Frandsen, F.J.; Hansen, L.A. [Technical Univ. of Denmark. Dept. of Chemical Engineering (Denmark); Soerensen, H.S. [Geological Survey of Denmark and Greenland (Denmark); Hjuler, K. [dk-TEKNIK. Energy and Environment (Denmark)

    1998-02-01

    One motivation for initiating the present project was that the international standard method of estimating the deposit propensity of solid fuels, of which a number of variants exist (e.g. ISO, ASTM, SD, DIN), has shown to be unsuitable for biomass ashes. This goal was addressed by the development of two new methods for the detection of ash fusibility behaviour based on Simultaneous Thermal Analysis (STA) and High Temperature Light Microscopy (HTLM), respectively. The methods were developed specifically for ashes from biofuels, but are suitable for coal ashes as well. They have been tested using simple salt mixtures, geological standards and samples from straw CHP and coal-straw PF combustion plants. All samples were run in a nitrogen atmosphere at a heating rate of 10 deg. C/min. In comparison with the standard method, the new methods are objective and have superior repeatability and sensitivity. Furthermore, the two methods enable the melting behavior to be characterized by a continuous measurement of melt fraction versus temperature. Due to this two-dimensional resolution of the results, the STA and HTLM methods provide more information than the standard method. The study of bottom ash and fly ash as well as deposit samples from straw test firings at the Haslev and Slagelse Combined Heat and Power plants resulted in a better understanding of mineral behaviour during straw grate firing. In these tests a number of straws were fired which had been carefully selected for having different qualities with respect to sort and potassium and chlorine contents. By studying bottom ashes from Slagelse it was found that the melting behaviour correlated with the deposition rate on a probe situated at the outlet part of the combustion zone. (EG)

  7. Competitive liquid biofuels from biomass

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    The cost of biodiesels varies depending on the feedstock, geographic area, methanol prices, and seasonal variability in crop production. Most of the biodiesel is currently made from soybean, rapeseed, and palm oils. However, there are large amounts of low-cost oils and fats (e.g., restaurant waste, beef tallow, pork lard, and yellow grease) that could be converted to biodiesel. The crop types, agricultural practices, land and labor costs, plant sizes, processing technologies and government policies in different regions considerably vary ethanol production costs and prices by region. The cost of producing bioethanol in a dry mill plant currently totals US$1.65/galon. The largest ethanol cost component is the plant feedstock. It has been showed that plant size has a major effect on cost. The plant size can reduce operating costs by 15-20%, saving another $0.02-$0.03 per liter. Thus, a large plant with production costs of $0.29 per liter may be saving $0.05-$0.06 per liter over a smaller plant. Viscosity of biofuel and biocrude varies greatly with the liquefaction conditions. The high and increasing viscosity indicates a poor flow characteristic and stability. The increase in the viscosity can be attributed to the continuing polymerization and oxidative coupling reactions in the biocrude upon storage. Although stability of biocrude is typically better than that of bio-oil, the viscosity of biocrude is much higher. The bio-oil produced by flash pyrolysis is a highly oxygenated mixture of carbonyls, carboxyls, phenolics and water. It is acidic and potentially corrosive. Bio-oil can also be potentially upgraded by hydrodeoxygenation. The liquid, termed biocrude, contains 60% carbon, 10-20 wt.% oxygen and 30-36 MJ/kg heating value as opposed to <1 wt.% and 42-46 MJ/kg for petroleum. (author)

  8. Competitive liquid biofuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, Ayhan [Sirnak University, Dean of Engineering Faculty, Department of Mechanical Engineering, Sirnak (Turkey)

    2011-01-15

    The cost of biodiesels varies depending on the feedstock, geographic area, methanol prices, and seasonal variability in crop production. Most of the biodiesel is currently made from soybean, rapeseed, and palm oils. However, there are large amounts of low-cost oils and fats (e.g., restaurant waste, beef tallow, pork lard, and yellow grease) that could be converted to biodiesel. The crop types, agricultural practices, land and labor costs, plant sizes, processing technologies and government policies in different regions considerably vary ethanol production costs and prices by region. The cost of producing bioethanol in a dry mill plant currently totals US$1.65/galon. The largest ethanol cost component is the plant feedstock. It has been showed that plant size has a major effect on cost. The plant size can reduce operating costs by 15-20%, saving another $0.02-$0.03 per liter. Thus, a large plant with production costs of $0.29 per liter may be saving $0.05-$0.06 per liter over a smaller plant. Viscosity of biofuel and biocrude varies greatly with the liquefaction conditions. The high and increasing viscosity indicates a poor flow characteristic and stability. The increase in the viscosity can be attributed to the continuing polymerization and oxidative coupling reactions in the biocrude upon storage. Although stability of biocrude is typically better than that of bio-oil, the viscosity of biocrude is much higher. The bio-oil produced by flash pyrolysis is a highly oxygenated mixture of carbonyls, carboxyls, phenolics and water. It is acidic and potentially corrosive. Bio-oil can also be potentially upgraded by hydrodeoxygenation. The liquid, termed biocrude, contains 60% carbon, 10-20 wt.% oxygen and 30-36 MJ/kg heating value as opposed to <1 wt.% and 42-46 MJ/kg for petroleum. (author)

  9. Import of biofuels and peat

    International Nuclear Information System (INIS)

    Albertsson, N.

    1993-06-01

    In areas neighbouring Sweden, i.e., foremost the Baltic States, it is probable that a large part of the available amounts will be consumed on the domestic market. Studies of the possible use of wood fuel in Estonia, Latvia and Lithuania are being made by the World Bank. Considerable investments will probably be made in the near future to replace existing coal- and oil-fired boiler plants with plants burning wood fuel. Consequently, the opportunities for exports of wood fuel will probably be small. In a global perspective, peat is used only to a limited extent as fuel. In the former Soviet Union alone it is estimated that the amount of peat that is economically feasible to extract is about 166x10 9 tonnes at a moisture content of 40%. Among the most interesting bio products that can be used in energy production from different food processing industries are nut-shells and fruit stones. Some stones, such as those in olives, plums and peaches, are excellent as fuels. The advantage with olive stones, in comparison with chips is that the bulk weight is high and the moisture content is low. Olive stones are thus similar to processed biofuels such as pellets. Due to their high energy content the olive stones can replace coal, which cannot be done by unprocessed fuels without expensive investments in materials handling equipment. Our survey shows that processed forest fuels and crushed olive stones are the products of greatest interest for the Swedish market. It also shows that both chips and peat-based products from the Baltic States are competitive

  10. Competitivity of biofuels in heating

    International Nuclear Information System (INIS)

    Flyktman, M.

    1996-01-01

    The competitivity of indigenous fuels in heating of residential houses in comparison with imported fuels, and both electricity and district heating, has been studied in this research, ordered by the Finnish Ministry of Trade and Industry. Heating plants of residential house scale (20-1000 kW) have been investigated in the research. Only the new heating plants are included in the investigation. The heat generation calculations concerning the residential heating plants have been made for following indigenous fuels: sod peat, fuel-chips, peat and wood pellets, firewood and straw. In addition to these, the calculations have been made for light fuel-oil, electric heating, district heating and natural gas. The local energy tariffs have to be taken into account in electric heating, district heating and natural gas heating. A calculation model, based on flowsheet calculation, forms the main result of the project. By using the model it is possible to update the competitivity data rapidly. Of all the indigenous fuels, sod peat and fuel-chips appeared to be competitive with electric and district heating costs in nearly all scales investigated. The construction of the heat generation costs of solid indigenous fuels differs remarkably from those of electric and district heating. The main part of the heating costs of wood chips and sod peat is formed of fixed costs; i.e. of investment costs and of the costs of heating and control work. The energy costs are the highest costs items in electric an district heating, as well as in the oil heating. It is possible to improve the competitivity of biofuels by developing cheaper boilers and fuel processing and storage devices

  11. Status of advanced biofuels demonstration facilities in 2012. A report to IEA Bioenergy task 39

    Energy Technology Data Exchange (ETDEWEB)

    Bacovsky, Dina; Ludwiczek, Nikolaus; Ognissanto, Monica; Woergetter, Manfred

    2013-03-18

    the previous edition of this report (2010), advanced biofuels technologies have developed significantly. Hydrotreatment as pursued by e.g. Neste Oil has been commercialized and currently accounts for app. 2,4% of biofuels production worldwide. Fermentation of lignocellulosic raw material to ethanol has also seen a strong development and several large scale facilities are just coming online in Europe and North America. As for thermochemical processes, the development is recently focusing on the production of mixed alcohols rather than BtL-Diesel. Economic reasons are driving this development, and concepts like the integration into existing industries and the production of several products instead of biofuel only (biorefinery concept) receive more attention lately. But, as expected, some of the projects for advanced biofuel production have failed. As a result, companies are now more careful in making announcements of advanced biofuels projects, and several large-scale projects have been postponed recently, some even though public funding would have been granted. Nevertheless, the production capacity for biofuels from lignocellulosic feedstock has tripled since 2010 and currently accounts for some 140 000 tons per year. Hydrotreating capacity for biofuels has multiplied and stands at about 2 190 000 tons per year.

  12. Biofuel and Food-Commodity Prices

    Directory of Open Access Journals (Sweden)

    David Zilberman

    2012-09-01

    Full Text Available The paper summarizes key findings of alternative lines of research on the relationship between food and fuel markets, and identifies gaps between two bodies of literature: one that investigates the relationship between food and fuel prices, and another that investigates the impact of the introduction of biofuels on commodity-food prices. The former body of literature suggests that biofuel prices do not affect food-commodity prices, but the latter suggests it does. We try to explain this gap, and then show that although biofuel was an important contributor to the recent food-price inflation of 2001–2008, its effect on food-commodity prices declined after the recession of 2008/09. We also show that the introduction of cross-price elasticity is important when explaining soybean price, but less so when explaining corn prices.

  13. Next generation biofuel engineering in prokaryotes

    Science.gov (United States)

    Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.

    2014-01-01

    Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045

  14. Bio-fuels of the first generation

    International Nuclear Information System (INIS)

    2012-04-01

    After having briefly recalled the objective of use of renewable energies and the role bio-fuels may play, this publication briefly presents various bio-fuels: bio-diesel (from colza, soybean or sunflower oil), and ethanol (from beet, sugar cane, wheat or corn). Some key data regarding bio-fuel production and use in France are briefly commented. The publication outlines strengths (a positive energy assessment, a decreased dependency on imported fossil fuels and a higher supply safety, a diversification of agriculture revenues and prospects, a reduction of greenhouse gas emissions) and weaknesses (uncertainty regarding the evolution of soil use, an environmental impact related to farming methods) of this sector. Actions undertaken by the ADEME in collaboration with other agencies and institutions are briefly overviewed

  15. MAIN TRENDS OF BIOFUELS PRODUCTION IN UKRAINE

    Directory of Open Access Journals (Sweden)

    Myroslav PANCHUK

    2017-12-01

    Full Text Available The analysis of biological resources for biofuels production in Ukraine has been carried out, and it has been shown that usage of alternative energy sources has great potential for substantially improving energy supply of the state and solving environmental problems. The directions of development and new technologies of obtaining motor fuels from biomass are systematized. It has been established that usage of different types of biofuels and their mixtures for feeding internal combustion engines involves application of modified engines in terms of structure and algorithms and usage of traditional designs of cars without significant structural changes. Moreover, the impact of biofuels on the efficient operation of the engine requires further integrated research.

  16. Biofuels barometer - EurObserv'ER - July 2011

    International Nuclear Information System (INIS)

    2011-07-01

    13,6 % the increase in EU biofuel consumption in 2010. In 2010 biofuel continued to gnaw away at petrol and diesel consumption in the European Union. However its pace backs the assertion that EU biofuel consumption growth slackened off. In the transport sector, it increased by only 1.7 Mtoe compared to 2.7 Mtoe in 2009. The final total biofuel consumption figure for 2010 should hover at around 13,9 Mtoe

  17. Institutional analysis of biofuel production in Northern Ghana

    OpenAIRE

    Kwoyiga, Lydia

    2013-01-01

    The thesis studied the nature of institutional arrangement around biofuel production and how this arrangement has shaped the production outcome of biofuel companies and community development. The study was conducted in two communities of the Yendi Municipal Assembly of the Northern Region of Ghana. In this area, a biofuel company called Biofuel Africa Limited has acquired areas of land and cultivated Jatropha plantations. A total of 32 informants were interviewed to arrive at information ne...

  18. The Roundtable on Sustainable Biofuels: plant scientist input needed.

    Science.gov (United States)

    Haye, Sébastien; Hardtke, Christian S

    2009-08-01

    The Energy Center at the Ecole Polytechnique Fédérale de Lausanne (Swiss federal institute of technology) is coordinating a multi-stakeholder effort, the Roundtable on Sustainable Biofuels (http://energycenter.epfl.ch/biofuels), to develop global standards for sustainable biofuels production and processing. Given that many of the aspects related to biofuel production request a high scientific level of understanding, it is crucial that scientists take part in the discussion.

  19. FTIR Analysis of Surface Functionalities on Particulate Matter Produced by Off-Road Diesel Engines Operating on Diesel and Biofuel

    Czech Academy of Sciences Publication Activity Database

    Popovicheva, O.B.; Kireeva, E.D.; Shonija, N.K.; Vojtíšek-Lom, M.; Schwarz, Jaroslav

    2015-01-01

    Roč. 22, č. 6 (2015), s. 4534-4544 ISSN 0944-1344 R&D Projects: GA ČR GA13-01438S Grant - others:RFBR-NSC(RU) 12-05-00395; RFBR-NSC(RU) 12-05-92002 Institutional support: RVO:67985858 Keywords : diesel/biofuel emissions * off-road engine * combustion nanoparticles Subject RIV: DI - Air Pollution ; Quality Impact factor: 2.760, year: 2015

  20. Emergence of green business models: The case of algae biofuel for aviation

    International Nuclear Information System (INIS)

    Nair, Sujith; Paulose, Hanna

    2014-01-01

    Emergent business models seek to take advantage of new market mechanisms driven by technological changes, particularly those related to the production and delivery of clean or sustainable energy. Such business models often function at the intersection of various industries, with global views, and the resulting systems have distinct social, political, environmental, economic, technological, and business dimensions. Such holistic systems are not only difficult to develop but also require support from a broad range of actors with effective regulations and policies in place, such that the firm functions within a framework that integrates various factors. This study substantiates such a framework by detailing the nascent algae-based bio-fuel industry that caters to the aviation sector while arguing that businesses in the energy industry can emerge as a next-practice platform that drive a sixth wave of innovation. The framework begins with three basic enablers, innovation, flexibility, and sustainability, and explains how value from renewable energy technologies can be created and captured sustainably and innovatively with new market mechanisms implemented by firms with green business models. - Highlights: • We develop a framework that enables the emergence of green energy business models. • We present a case study on the algae based biofuel system for airline industry. • The green business models in energy are global in nature and are next practice platforms. • New market mechanisms and policy measures lead to sustainable energy business models. • Innovation, flexibility and sustainability are the basic enablers of the framework

  1. Biofuel Feedstock Assessment for Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  2. Prospects of using algae in biofuel production

    Directory of Open Access Journals (Sweden)

    Y. I. Maltsev

    2017-08-01

    Full Text Available The development of industry, agriculture and the transport sector is associated with the use of various energy sources. Renewable energy sources, including biofuels, are highly promising in this respect. As shown by a number of scientific studies, a promising source for biofuel production that would meet modern requirements may be algal biomass. After activation of the third generation biodiesel production it was assumed that the algae would become the most advantageous source, because it is not only able to accumulate significant amounts of lipids, but could reduce the of agricultural land involved in biofuel production and improve air quality by sequestering CO2. However, a major problem is presented by the cost of algae biomass cultivation and its processing compared to the production of biodiesel from agricultural crops. In this regard, there are several directions of increasing the efficiency of biodiesel production from algae biomass. The first direction is to increase lipid content in algae cells by means of genetic engineering. The second direction is connected with the stimulation of increased accumulation of lipids by stressing algae. The third direction involves the search for new, promising strains of algae that will be characterized by faster biomass accumulation rate, higher content of TAG and the optimal proportions of accumulated saturated and unsaturated fatty acids compared to the already known strains. Recently, a new approach in the search for biotechnologically valuable strains of algae has been formed on the basis of predictions of capacity for sufficient accumulation of lipids by clarifying the evolutionary relationships within the major taxonomic groups of algae. The outcome of these studies is the rapid cost reduction of biofuel production based on algae biomass. All this emphasizes the priority of any research aimed at both improving the process of production of biofuels from algae, and the search for new sources for

  3. Orchestrating innovation

    OpenAIRE

    Berkers, F.T.H.M.; Klein Woolthuis, R.J.A.; Boer, J. de

    2015-01-01

    Orchestrating Innovation increases the probability of success, minimizing the probability of failure of technological innovations by creating sustained societal and economic value. Orchestrating innovation propagates to take into account and actively involve all relevant stakeholders of the (future) ecosystem in which the innovation will, can or has to be adopted.

  4. Mindful innovation

    DEFF Research Database (Denmark)

    Olsen, Poul Bitsch

    2008-01-01

    Mindful innovation is an approach to innovation that pays attention to people's experience in an organization rather than to formal organization or social role.......Mindful innovation is an approach to innovation that pays attention to people's experience in an organization rather than to formal organization or social role....

  5. Innovative didaktik

    DEFF Research Database (Denmark)

    Lund, Birthe

    Innovative didaktik. This deals with innovative didaktik from at methodological point of view in three ways - how to define the concept, how to develop it and how analyse it. Issues analysed: How to create innovative students? How to create innovative learning envoriments? These are core question...... in "Projekt Innovativ didaktik". The hidden curriculum is to inspire students to develop entreprenuership and creativty....

  6. Information Society Innovation Fund Asia | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Information Society Innovation Fund Asia. IDRC's Pan Asia Networking (PAN) program initiative has about 10 years experience with small grants funding. The small grants modality has allowed PAN to sample the region for research priorities, emerging research issues and players, and has resulted in innovative ...

  7. Assessing the biofuel options for Southern Africa

    CSIR Research Space (South Africa)

    Von Malititz, GP

    2008-11-01

    Full Text Available with nested levels of resource use rights. Despite the fact that this land is under-producing from a commercial agricultural perspective, this does not automatically translate into this land being available for biofuels. Due to the complex nature... the Biofuel yield in l/ha used in table one, using sugar cane and Jatropha as feedstock. These values are therefore not linked to specific country level growth conditions and assume suitable land is available. 3 It is very difficult to estimate total job...

  8. Microspora floccosa; a potential biofuel producer

    International Nuclear Information System (INIS)

    Memon, A.A.S.; Pathan, A.A.

    2016-01-01

    The current study is focused on biofuel production from local specie of algae. Initially samples were observed to identify the algal specie. Afterward oil was extracted from algae by Soxhlet extraction method, retention time was optimized to improve the yield of oil at different intervals. The recovered oil from algae was subjected to qualitative analysis by Gas Chromatography. Four major peaks were appeared on GC chromatogram which correspond to methyl esters of dodecanoic acid, tetradecanoic acid, 8,11,14-Eicosadienoic acid and 9,10-dihydroxy octadecanoic. The results reflect that Microspora floccosa algae considered to be favorable for biofuel production. (author)

  9. Microspora Floccosa; A Potential Biofuel Producer

    Directory of Open Access Journals (Sweden)

    Aisha Abdul Sattar Memon

    2016-06-01

    Full Text Available The current study is focused on biofuel production from local specie of algae. Initially samples were observed to identify the algal specie. Afterward oil was extracted from algae by Soxhlet extraction method, retention time was optimized to improve the yield of oil at different intervals. The recovered oil from algae was subjected to qualitative analysis by Gas Chromatography. Four major peaks were appeared on GC chromatogram which correspond to methyl esters of Dodecanoic acid, Tetradecanoic acid, 8,11,14-Eicosadienoic acid and 9,10-Dihydroxy octadecanoic. The results reflect that Microspora floccosa algae considered to be favorable for biofuel production.

  10. Water use implications of biofuel scenarios

    Science.gov (United States)

    Teter, J.; Mishra, G. S.; Yeh, S.

    2012-12-01

    Existing studies rely upon attributional lifecycle analysis (LCA) approaches to estimate water intensity of biofuels in liters of irrigated/evapotranspiration water consumed for biofuel production. Such approaches can be misleading. From a policy perspective, a better approach is to compare differential water impacts among scenarios on a landscape scale. We address the shortcomings of existing studies by using consequential LCA, and incorporate direct and indirect land use (changes) of biofuel scenarios, marginal vs. average biofuel water use estimates, future climate, and geographic heterogeneity. We use the outputs of a partial equilibrium economic model, climate and soil data, and a process-based crop-soil-climate-water model to estimate differences in green water (GW - directly from precipitation to soil) and blue water (BW - supplied by irrigation) use among three scenarios: (1) business-as-usual (BAU), (2) Renewable Fuels Standard (RFS) mandates, and (3) a national Low Carbon Fuel Standard (LCFS) plus the RFS scenario. We use spatial statistical methods to interpolate key climatic variables using daily climate observations for the contiguous USA. Finally, we use FAO's crop model AquaCrop to estimate the domestic GW and BW impacts of biofuel policies from 2007-2035. We assess the differences among scenarios along the following metrics: (1) crop area expansion at the county level, including prime and marginal lands, (2) crop-specific and overall annual/seasonal water balances including (a) water inflows (irrigation & precipitation), (b) crop-atmosphere interactions: (evaporation & transpiration) and (d) soil-water flows (runoff & soil infiltration), in mm 3 /acre over the relevant time period. The functional unit of analysis is the BW and GW requirements of biofuels (mm3 per Btu biofuel) at the county level. Differential water use impacts among scenarios are a primarily a function of (1) land use conversion, in particular that of formerly uncropped land classes

  11. Gas Emissions in Combustion of Biofuel

    Directory of Open Access Journals (Sweden)

    Vitázek Ivan

    2014-10-01

    Full Text Available Nowadays, biomass or more precisely biofuel is more and more being exploited as a substitute for fossil fuels for heating as well as for example for heating a drying environment. This contribution focuses on assessing a heat source by combusting various types of solid biofuels. It is a boiler VIGAS 25 with AK 2000 regulation for heating a family house. Gaseous emissions were measured using a device TESTO 330-2LL. Firewood, peat briquettes, bark briquettes and hardwood briquettes were burnt. Results of experimental measurements concerning the production of gaseous emissions are processed in tables and graphs depending on boiler performance and combustion time.

  12. Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability

    Science.gov (United States)

    Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...

  13. 75 FR 11836 - Bioenergy Program for Advanced Biofuels

    Science.gov (United States)

    2010-03-12

    ... Biofuels AGENCY: Rural Business-Cooperative Service (RBS), USDA. ACTION: Notice of Contract for Proposal... Year 2009 for the Bioenergy Program for Advanced Biofuels under criteria established in the prior NOCP... Bioenergy Program for Advanced Biofuels. In response to the previously published NOCP, approximately $14.5...

  14. A viable technology to generate third-generation biofuel

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving; Nigam, Poonam Singh

    2011-01-01

    First generation biofuels are commercialized at large as the production technologies are well developed. However, to grow the raw materials, there is a great need to compromise with food security, which made first generation biofuels not so much promising. The second generation of biofuels does...

  15. Biofuels barometer - EurObserv'ER - July 2016

    International Nuclear Information System (INIS)

    2016-07-01

    The European biofuel market is now regulated by the directive, known as ILUC, whose wording focuses on the environmental impact of first generation biofuel development. This long-awaited clarification has arrived against the backdrop of falling oil prices and shrinking European Union biofuel consumption, which should drop by 1.7% between 2014 and 2015, according to EurObserv'ER

  16. Positive and negative impacts of agricultural production of liquid biofuels

    NARCIS (Netherlands)

    Reijnders, L.; Hester, R.E.; Harrison, R.M.

    2012-01-01

    Agricultural production of liquid biofuels can have positive effects. It can decrease dependence on fossil fuels and increase farmers’ incomes. Agricultural production of mixed perennial biofuel crops may increase pollinator and avian richness. Most types of agricultural crop-based liquid biofuel

  17. Research promotion of the FNR on biofuels. Energy from algae; Forschungsfoerderung der FNR zu Biokraftstoffen. Energie aus Algen

    Energy Technology Data Exchange (ETDEWEB)

    Spittel, Maria [Fachagentur Nachwachsende Rohstoffe e.V. (FNR), Guelzow (Germany). Abt. Projektmanagement

    2012-07-01

    There is an increasing interest in biofuels motivated mainly by climate and environment conservation aspects, but also due to aiming at more independence in fuel supply security. Biofuels had a share of 5,6 % (33.7 TWh) in the total fuel consumption in 2011. The total turnover in the biofuel sector added up to about 3,350 Mill. EUR, showing its economic importance. In this context algae technology is becoming more and more prominent. Algae are seen as alternative resource with increasing importance for the production of biofuels. However, the viability of the involved production and conversion processes are strongly connected to further development and increasing efficiency of algae biotechnology. To date, using algae for energy purposes only is economically not viable. The synergetic combination of industrial and energetic uses of algae will become more important in the future. The Agency for Renewable Resources (FNR) funds innovative R and D and demonstration projects in the framework of the funding program ''Renewable Resources'' initiated by the German Ministry of Food Agriculture and Consumer Protection (BMELV). In this context, FNR supports the optimisation of already commercialised biofuels as well as the further development of future options like fuels from algae biomass. (orig.)

  18. Integrating social and value dimensions into sustainability assessment of lignocellulosic biofuels.

    Science.gov (United States)

    Raman, Sujatha; Mohr, Alison; Helliwell, Richard; Ribeiro, Barbara; Shortall, Orla; Smith, Robert; Millar, Kate

    2015-11-01

    The paper clarifies the social and value dimensions for integrated sustainability assessments of lignocellulosic biofuels. We develop a responsible innovation approach, looking at technology impacts and implementation challenges, assumptions and value conflicts influencing how impacts are identified and assessed, and different visions for future development. We identify three distinct value-based visions. From a techno-economic perspective, lignocellulosic biofuels can contribute to energy security with improved GHG implications and fewer sustainability problems than fossil fuels and first-generation biofuels, especially when biomass is domestically sourced. From socio-economic and cultural-economic perspectives, there are concerns about the capacity to support UK-sourced feedstocks in a global agri-economy, difficulties monitoring large-scale supply chains and their potential for distributing impacts unfairly, and tensions between domestic sourcing and established legacies of farming. To respond to these concerns, we identify the potential for moving away from a one-size-fits-all biofuel/biorefinery model to regionally-tailored bioenergy configurations that might lower large-scale uses of land for meat, reduce monocultures and fossil-energy needs of farming and diversify business models. These configurations could explore ways of reconciling some conflicts between food, fuel and feed (by mixing feed crops with lignocellulosic material for fuel, combining livestock grazing with energy crops, or using crops such as miscanthus to manage land that is no longer arable); different bioenergy applications (with on-farm use of feedstocks for heat and power and for commercial biofuel production); and climate change objectives and pressures on farming. Findings are based on stakeholder interviews, literature synthesis and discussions with an expert advisory group.

  19. US EPA CARE Grants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a provisional dataset that contains point locations for the subset of Community Action for a Renewed Environment (CARE) grants given out by the US EPA. CARE...

  20. Brownfields Grants Information

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset includes all types of information regarding Brownfields grant programs that subsidize/support Brownfield cleanup. This includes EPA's Brownfields Program...

  1. VT Historic Preservation Grant

    Data.gov (United States)

    Vermont Center for Geographic Information — The State-funded Historic Preservation Grant Program helps municipalities and non-profit organizations rehabilitate the historic buildings that are a vital part of...

  2. US EPA EJ Grants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This is a provisional dataset that contains point locations for all Environmental Justice (EJ) grants given out by the US EPA. There are many limitations to the data...

  3. Wetland Program Development Grants (WPDGs)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Wetland Grant Database (WGD) houses grant data for Wetland Program Development Grants (created by EPA in 1990 under the Clean Water Act Section 104(b)(3)...

  4. Glucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance

    OpenAIRE

    Hamideh Aghahosseini; Ali Ramazani; Pegah Azimzadeh Asiabi; Farideh Gouranlou; Fahimeh Hosseini; Aram Rezaei; Bong-Ki Min; Sang Woo Joo

    2016-01-01

    Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiologically produced glucose as a fuel, the living battery can recharge for continuous production of el...

  5. Enzymatic deconstruction of xylan for biofuel production

    Science.gov (United States)

    DODD, DYLAN; CANN, ISAAC K. O.

    2010-01-01

    The combustion of fossil-derived fuels has a significant impact on atmospheric carbon dioxide (CO2) levels and correspondingly is an important contributor to anthropogenic global climate change. Plants have evolved photosynthetic mechanisms in which solar energy is used to fix CO2 into carbohydrates. Thus, combustion of biofuels, derived from plant biomass, can be considered a potentially carbon neutral process. One of the major limitations for efficient conversion of plant biomass to biofuels is the recalcitrant nature of the plant cell wall, which is composed mostly of lignocellulosic materials (lignin, cellulose, and hemicellulose). The heteropolymer xylan represents the most abundant hemicellulosic polysaccharide and is composed primarily of xylose, arabinose, and glucuronic acid. Microbes have evolved a plethora of enzymatic strategies for hydrolyzing xylan into its constituent sugars for subsequent fermentation to biofuels. Therefore, microorganisms are considered an important source of biocatalysts in the emerging biofuel industry. To produce an optimized enzymatic cocktail for xylan deconstruction, it will be valuable to gain insight at the molecular level of the chemical linkages and the mechanisms by which these enzymes recognize their substrates and catalyze their reactions. Recent advances in genomics, proteomics, and structural biology have revolutionized our understanding of the microbial xylanolytic enzymes. This review focuses on current understanding of the molecular basis for substrate specificity and catalysis by enzymes involved in xylan deconstruction. PMID:20431716

  6. Use of biofuels in road transport decreases

    International Nuclear Information System (INIS)

    Segers, R.

    2011-01-01

    The use of biofuels decreased from 3.5 percent, for all gasoline and diesel used by road transport in 2009, to 2 percent in 2010. Particularly the use of biodiesel decreased, dropping from 3.5 to 1.5 percent. The use of biogasoline remained stable, catering for 3 percent of all gasoline use. [nl

  7. Exploring new strategies for cellulosic biofuels production

    Science.gov (United States)

    Paul Langan; S. Gnankaran; Kirk D. Rector; Norma Pawley; David T. Fox; Dae Won Cho; Kenneth E. Hammel

    2011-01-01

    A research program has been initiated to formulate new strategies for efficient low-cost lignocellulosic biomass processing technologies for the production of biofuels. This article reviews results from initial research into lignocellulosic biomass structure, recalcitrance, and pretreatment. In addition to contributing towards a comprehensive understanding of...

  8. Impact of biofuels on contrail warming

    Science.gov (United States)

    Caiazzo, Fabio; Agarwal, Akshat; Speth, Raymond L.; Barrett, Steven R. H.

    2017-11-01

    Contrails and contrail-cirrus may be the largest source of radiative forcing (RF) attributable to aviation. Biomass-derived alternative jet fuels are a potentially major way to mitigate the climate impacts of aviation by reducing lifecycle CO2 emissions. Given the up to 90% reduction in soot emissions from paraffinic biofuels, the potential for a significant impact on contrail RF due to the reduction in contrail-forming ice nuclei (IN) remains an open question. We simulate contrail formation and evolution to quantify RF over the United States under different emissions scenarios. Replacing conventional jet fuels with paraffinic biofuels generates two competing effects. First, the higher water emissions index results in an increase in contrail occurrence (~ +8%). On the other hand, these contrails are composed of larger diameter crystals (~ +58%) at lower number concentrations (~ -75%), reducing both contrail optical depth (~ -29%) and albedo (~ -32%). The net changes in contrail RF induced by switching to biofuels range from -4% to +18% among a range of assumed ice crystal habits (shapes). In comparison, cleaner burning engines (with no increase in water emissions index) result in changes to net contrail RF ranging between -13% and +5% depending on habit. Thus, we find that even 67% to 75% reductions in aircraft soot emissions are insufficient to substantially reduce warming from contrails, and that the use of biofuels may either increase or decrease contrail warming—contrary to previous expectations of a significant decrease in warming.

  9. Production of biofuels via hydrothermal conversion

    DEFF Research Database (Denmark)

    Biller, Patrick; Ross, Andrew

    2016-01-01

    as the quality of targeted biofuel is a function of feedstock and operating conditions. The quality of hydrochar influences its uses as a solid fuel while biocrude quality affects its use as a liquid fuel and feedstock for upgrading to drop-in replacement fuels, while HTG produces a syngas rich in either H2...

  10. Coproduction of bioethanol with other biofuels

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Westermann, Peter

    2007-01-01

    pilot-scale biorefineries for multiple fuel production and also discuss perspectives for further enhancement of biofuel yields from biomass. The major fuels produced in this refinery are ethanol, hydrogen, and methane. We also discuss the applicability of our biorefinery concept as a bolt-on plant...

  11. Electric vehicles need biofuels; Elektroautos brauchen Biotreibstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Engel, Tomi

    2008-09-15

    The debate over electromobility is in full swing. The effects on the electric power grid and on the biofuels industry are quire different than expected, even paradox. (orig.) [German] Die Debatte um Elektromobilitaet ist in vollem Gang. Die Auswirkung auf das Stromnetz und auf die Biotreibstoffbranche sind ganz anders, als man denkt. Sie wirken fast schon paradox. (Orig.)

  12. Future of Liquid Biofuels for APEC Economies

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.; Overend, R. P.

    2008-05-01

    This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

  13. SOLID BIOFUEL UTILIZATION IN VEGETABLE OIL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Slusarenko V.

    2016-08-01

    Full Text Available The paper deals with questions of creating at JSC “Alimentarmash "in the last 20 years the technological equipment for the production of vegetable oils from oilseeds: from the press for the final spin to mini oilfactory, using as an energy source for heating the liquid coolant (Thermal oil "Arian" of solid biofuels - husk of sunflower seeds.

  14. Biorefineries for chemical and biofuel production

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene

    crops for biofuel production is research in biorefineries using a whole-crop approach with the aim of having an optimal use of all the components of the specific crop. Looking at rape as a model crop, the components can be used for i.e. bioethanol, biodiesel, biogas, biohydrogen, feed, food and plant...

  15. Designing Sustainable Supply Chains for Biofuels

    Science.gov (United States)

    Driven by the Energy and Independence Act of 2007 mandate to increase production of alternative fuels and to ensure that this increase causes minimal environmental impact, a project to design sustainable biofuel supply chains has been developed. This effort uses life cycle asses...

  16. Public policy and biofuels: The way forward?

    International Nuclear Information System (INIS)

    Charles, Michael B.; Ryan, Rachel; Ryan, Neal; Oloruntoba, Richard

    2007-01-01

    The use of biofuels has been given much attention by governments around the world, especially in increasingly energy-hungry OECD nations. Proponents have argued that they offer various advantages over hydrocarbon-based fuels, especially with respect to reducing dependence on OPEC-controlled oil, minimizing greenhouse gas (GHG) emissions, and ensuring financial and lifestyle continuity to farmers and agriculturally dependent communities. This paper adds to the continuing technical debate by addressing the issue from a holistic public policy perspective. In particular, it looks at the proposed benefits of biofuels, yet also addresses the implications of increased demand on the global and regional environment, in addition to the economic welfare of developing nations. Furthermore, it posits that short-term reliance on biofuels vis-a-vis other alternative energy sources may potentially inhibit the development and maturation of longer-term technologies that have greater potential to correct the harmful effects of fossil-fuel dependence. In light of this, the manifold policy instruments currently employed or proposed by governments in developed nations to promote biofuels emerge as questionable

  17. Boundless Biofuels? Between Environmental Sustainability and Vulnerability

    NARCIS (Netherlands)

    Mol, A.P.J.

    2007-01-01

    Biofuels currently appear to be one of the major controversies in the agriculture/environment nexus, not unlike genetically modified organisms. While some countries (such as Brazil) have for quite some time supported successful large-scale programmes to improve the production and consumption of

  18. Novel biofuel formulations for enhanced vehicle performance

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Dennis [Michigan State Univ., East Lansing, MI (United States); Narayan, Ramani [Michigan State Univ., East Lansing, MI (United States); Berglund, Kris [Michigan State Univ., East Lansing, MI (United States); Lira, Carl [Michigan State Univ., East Lansing, MI (United States); Schock, Harold [Michigan State Univ., East Lansing, MI (United States); Jaberi, Farhad [Michigan State Univ., East Lansing, MI (United States); Lee, Tonghun [Michigan State Univ., East Lansing, MI (United States); Anderson, James [Michigan State Univ., East Lansing, MI (United States); Wallington, Timothy [Michigan State Univ., East Lansing, MI (United States); Kurtz, Eric [Michigan State Univ., East Lansing, MI (United States); Ruona, Will; Hass, Heinz

    2013-08-30

    This interdisciplinary research program at Michigan State University, in collaboration with Ford Motor Company, has explored the application of tailored or designed biofuels for enhanced vehicle performance and reduced emissions. The project has included a broad range of experimental research, from chemical and biological formation of advanced biofuel components to multicylinder engine testing of blended biofuels to determine engine performance parameters. In addition, the project included computation modeling of biofuel physical and combustion properties, and simulation of advanced combustion modes in model engines and in single cylinder engines. Formation of advanced biofuel components included the fermentation of five-carbon and six-carbon sugars to n-butanol and to butyric acid, two four-carbon building blocks. Chemical transformations include the esterification of the butyric acid produced to make butyrate esters, and the esterification of succinic acid with n-butanol to make dibutyl succinate (DBS) as attractive biofuel components. The conversion of standard biodiesel, made from canola or soy oil, from the methyl ester to the butyl ester (which has better fuel properties), and the ozonolysis of biodiesel and the raw oil to produce nonanoate fuel components were also examined in detail. Physical and combustion properties of these advanced biofuel components were determined during the project. Physical properties such as vapor pressure, heat of evaporation, density, and surface tension, and low temperature properties of cloud point and cold filter plugging point were examined for pure components and for blends of components with biodiesel and standard petroleum diesel. Combustion properties, particularly emission delay that is the key parameter in compression ignition engines, was measured in the MSU Rapid Compression Machine (RCM), an apparatus that was designed and constructed during the project simulating the compression stroke of an internal combustion

  19. Driving biofuels from field to fuel tank.

    Science.gov (United States)

    Gura, Trisha

    2009-07-10

    Rising oil prices, fears of global warming, and instability in oil-producing countries have ignited the rush to produce biofuels from plants. The science is progressing rapidly, driven by favorable policies and generous financing, but many hurdles remain before cars and trucks run on "gasohol" or "grassoline."

  20. 76 FR 7935 - Advanced Biofuel Payment Program

    Science.gov (United States)

    2011-02-11

    ... payments. Application materials may be obtained by contacting one of Rural Development's Energy...) number, which can be obtained at no cost via a toll-free request line at 1-866-705-5711 or online at http... producer'' provisions for determining whether an advanced biofuel producer of biogas or solid advanced...

  1. Characterizing Emissions from the Combustion of Biofuels

    Science.gov (United States)

    Emissions from two biofuels, a soy-based biodiesel and an animal-based biodiesel, were measured and compared to emissions from a distillate petroleum fuel oil. The three fuels were burned in a small fire tube boiler designed for use in institutional, commercial, and light industr...

  2. Panorama 2007: Biofuels and their Environmental Performance

    International Nuclear Information System (INIS)

    Prieur-Vernat, A.; His, St.; Bouvart, F.

    2007-01-01

    Today, the development of bio-fuel pathways is closely associated with targets for the reduction of greenhouse gas (GHG) emissions in the transport sector. Well-to-wheel assessments indicate that the use of these automotive fuels of vegetable origin yield definite benefits in terms of GHG emissions and fossil energy consumption compared to petroleum-based automotive fuels. (author)

  3. Biowastes-to-biofuels routes via gasification

    NARCIS (Netherlands)

    Ptasinski, K.J.; Sues Caula, A.; Jurascik, M.; Badeau, J.P.; Levi, A.

    2009-01-01

    Nowadays, biomass has a well-known potential for producing energy calTiers, such as electricity, heat (steam) and transport biofuels. However, biomass availability is rather limited and stochastically distributed. This could be a major problem in demographically dense regions where land is scarce

  4. Grass Pollen Pollution from Biofuels Farming

    Czech Academy of Sciences Publication Activity Database

    Ratajová, A.; Tříska, Jan; Vrchotová, Naděžda; Kolář, L.; Kužel, S.

    2013-01-01

    Roč. 26, č. 4 (2013), s. 199-203 ISSN 2151-321X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : grass pollen pollution * biofuels farming * temperate climate * PK-fertilization * N-fertilization * phenolic Subject RIV: EH - Ecology, Behaviour Impact factor: 0.556, year: 2013

  5. Perspectives for the provision of biofuels. Classification of fuel options according to technical, economic and ecological criteria; Perspektiven der Biokraftstoffbereitstellung. Einordnung der Kraftstoffoptionen nach technischen, oekonomischen und oekologischen Kriterien

    Energy Technology Data Exchange (ETDEWEB)

    Scheftelowitz, Mattes; Mueller-Langer, Franziska [DBFZ Deutsches BiomasseForschungsZentrum gemeinnuetzige GmbH, Leipzig (Germany)

    2009-07-01

    Next to the use of more efficient, innovative technologies (including hybrid vehicles, electromobility) another important contribution to reducing greenhouse gas emissions in the traffic sector will have to come from biofuels. A wide variety of conversion pathways, each with numerous process alternatives, is available along the whole length of the ''well-to-wheel'' chain (i.e. starting from biomass cropping or recovery, through its supply and conversion to biofuel, including the necessary infrastructure, and ending with its final use). The present paper presents various biofuel options and compares them on the basis of systematic, economic and ecological criteria.

  6. Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels

    International Nuclear Information System (INIS)

    Mohr, Alison; Raman, Sujatha

    2013-01-01

    Aims: The emergence of second generation (2G) biofuels is widely seen as a sustainable response to the increasing controversy surrounding the first generation (1G). Yet, sustainability credentials of 2G biofuels are also being questioned. Drawing on work in Science and Technology Studies, we argue that controversies help focus attention on key, often value-related questions that need to be posed to address broader societal concerns. This paper examines lessons drawn from the 1G controversy to assess implications for the sustainability appraisal of 2G biofuels. Scope: We present an overview of key 1G sustainability challenges, assess their relevance for 2G, and highlight the challenges for policy in managing the transition. We address limitations of existing sustainability assessments by exploring where challenges might emerge across the whole system of bioenergy and the wider context of the social system in which bioenergy research and policy are done. Conclusions: Key lessons arising from 1G are potentially relevant to the sustainability appraisal of 2G biofuels depending on the particular circumstances or conditions under which 2G is introduced. We conclude that sustainability challenges commonly categorised as either economic, environmental or social are, in reality, more complexly interconnected (so that an artificial separation of these categories is problematic). - Highlights: • Controversy surrounding 1G biofuels is relevant to sustainability appraisal of 2G. • Challenges for policy in managing the transition to 2G biofuels are highlighted. • A key lesson is that sustainability challenges are complexly interconnected

  7. Glucose-based Biofuel Cells: Nanotechnology as a Vital Science in Biofuel Cells Performance

    Directory of Open Access Journals (Sweden)

    Hamideh Aghahosseini

    2016-07-01

    Full Text Available Nanotechnology has opened up new opportunities for the design of nanoscale electronic devices suitable for developing high-performance biofuel cells. Glucose-based biofuel cells as green energy sources can be a powerful tool in the service of small-scale power source technology as it provides a latent potential to supply power for various implantable medical electronic devices. By using physiologically produced glucose as a fuel, the living battery can recharge for continuous production of electricity. This review article presents how nanoscience, engineering and medicine are combined to assist in the development of renewable glucose-based biofuel cell systems. Here, we review recent advances and applications in both abiotic and enzymatic glucose biofuel cells with emphasis on their “implantable” and “implanted” types. Also the challenges facing the design and application of glucose-based biofuel cells to convert them to promising replacement candidates for non-rechargeable lithium-ion batteries are discussed. Nanotechnology could make glucose-based biofuel cells cheaper, lighter and more efficient and hence it can be a part of the solutions to these challenges.

  8. A modelling approach to estimate the European biofuel production: from crops to biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Clodic, Melissa [Institute National de la Recherche Agronomique (IFP/INRA), Paris (France). Instituto Frances do Petroleo

    2008-07-01

    Today, in the context of energy competition and climate change, biofuels are promoted as a renewable resource to diversify the energy supply. However, biofuel development remains controversial. Here, we will present a way to make an environmental and economic cost and benefit analysis of European biofuels, from the crops until the marketed products, by using a linear programming optimization modelling approach. To make this European biofuel production model, named AGRAF, possible, we decided to use different independent linear programming optimization models which represent the separate parts of the process: European agricultural production, production of transforming industries and refinery production. To model the agricultural and the refining sections, we have chosen to improve existing and experimented models by adding a biofuel production part. For the transforming industry, we will create a new partial equilibrium model which will represent stake holders such as Sofiproteol, Stereos, etc. Data will then be exchanged between the models to coordinate all the biofuel production steps. Here, we will also focus on spatialization in order to meet certain of our requirements, such as the exchange flux analysis or the determination of transport costs, usually important in an industrial optimization model. (author)

  9. [Model-based biofuels system analysis: a review].

    Science.gov (United States)

    Chang, Shiyan; Zhang, Xiliang; Zhao, Lili; Ou, Xunmin

    2011-03-01

    Model-based system analysis is an important tool for evaluating the potential and impacts of biofuels, and for drafting biofuels technology roadmaps and targets. The broad reach of the biofuels supply chain requires that biofuels system analyses span a range of disciplines, including agriculture/forestry, energy, economics, and the environment. Here we reviewed various models developed for or applied to modeling biofuels, and presented a critical analysis of Agriculture/Forestry System Models, Energy System Models, Integrated Assessment Models, Micro-level Cost, Energy and Emission Calculation Models, and Specific Macro-level Biofuel Models. We focused on the models' strengths, weaknesses, and applicability, facilitating the selection of a suitable type of model for specific issues. Such an analysis was a prerequisite for future biofuels system modeling, and represented a valuable resource for researchers and policy makers.

  10. Overview of the Estonian Biofuels Association activities

    International Nuclear Information System (INIS)

    Hueues, Meelis

    2000-01-01

    Due to global warming and environment pollution because of widespread use of fossil fuels there are already tendencies to stabilize and decrease the consumption of these energy resources and take into use more renewable energy resources. Estonian Biofuels Association (EBA) is a non-profit association, which was founded on 8. of May 1998 in Tallinn. The EBA is an independent and voluntary alliance of its members. Fields of activity of the EBA are by biofuels research, developing and evaluation to engage environmental, biofuels and energy saving. EBA members are: energy consultants, scientists, as well as fuel suppliers, DH-companies, technology suppliers, energy service companies etc. The members of EBA are involved in different projects in Estonia, where biomass are produced and used for heating, where wood, waste, peat, rape oil and biogas resources are examined and put into use, and also projects which deal with energy saving and environment friendly equipment production for using biofuels. During our short experience we have noticed that people in Estonia have become more aware of biomass and their use, so the development of environment friendly and sustainable energetics will continue in Estonia. Available biofuels in Estonia could compete with fossil fuels if burnt rationally with high technology equipment. EBA members are convinced that biomass have perspective and that they could play an important role in improving Estonian economic and environmental situation. Modem biomass combustion devices are taken into use more the faster general wealth increases and EBA can raise people's awareness of bio fuel subject through special, courses and media. We want Estonian energy policy to develop towards widespread use of renewable energy resources, which would save energy and environment improve nation's foreign trade balance and create jobs mainly in rural areas

  11. Biofuels, vehicle emissions, and urban air quality.

    Science.gov (United States)

    Wallington, Timothy J; Anderson, James E; Kurtz, Eric M; Tennison, Paul J

    2016-07-18

    Increased biofuel content in automotive fuels impacts vehicle tailpipe emissions via two mechanisms: fuel chemistry and engine calibration. Fuel chemistry effects are generally well recognized, while engine calibration effects are not. It is important that investigations of the impact of biofuels on vehicle emissions consider the impact of engine calibration effects and are conducted using vehicles designed to operate using such fuels. We report the results of emission measurements from a Ford F-350 fueled with either fossil diesel or a biodiesel surrogate (butyl nonanoate) and demonstrate the critical influence of engine calibration on NOx emissions. Using the production calibration the emissions of NOx were higher with the biodiesel fuel. Using an adjusted calibration (maintaining equivalent exhaust oxygen concentration to that of the fossil diesel at the same conditions by adjusting injected fuel quantities) the emissions of NOx were unchanged, or lower, with biodiesel fuel. For ethanol, a review of the literature data addressing the impact of ethanol blend levels (E0-E85) on emissions from gasoline light-duty vehicles in the U.S. is presented. The available data suggest that emissions of NOx, non-methane hydrocarbons, particulate matter (PM), and mobile source air toxics (compounds known, or suspected, to cause serious health impacts) from modern gasoline and diesel vehicles are not adversely affected by increased biofuel content over the range for which the vehicles are designed to operate. Future increases in biofuel content when accomplished in concert with changes in engine design and calibration for new vehicles should not result in problematic increases in emissions impacting urban air quality and may in fact facilitate future required emissions reductions. A systems perspective (fuel and vehicle) is needed to fully understand, and optimize, the benefits of biofuels when blended into gasoline and diesel.

  12. Pathways to Carbon-Negative Liquid Biofuels

    Science.gov (United States)

    Woolf, D.; Lehmann, J.

    2017-12-01

    Many climate change mitigation scenarios assume that atmospheric carbon dioxide removal will be delivered at scale using bioenergy power generation with carbon capture and storage (BECCS). However, other pathways to negative emission technologies (NETs) in the energy sector are possible, but have received relatively little attention. Given that the costs, benefits and life-cycle emissions of technologies vary widely, more comprehensive analyses of the policy options for NETs are critical. This study provides a comparative assessment of the potential pathways to carbon-negative liquid biofuels. It is often assumed that that decarbonisation of the transport sector will include use of liquid biofuels, particularly for applications that are difficult to electrify such as aviation and maritime transport. However, given that biomass and land on which to grow it sustainably are limiting factors in the scaling up of both biofuels and NETs, these two strategies compete for shared factors of production. One way to circumvent this competition is carbon-negative biofuels. Because capture of exhaust CO2 in the transport sector is impractical, this will likely require carbon capture during biofuel production. Potential pathways include, for example, capture of CO2 from fermentation, or sequestration of biochar from biomass pyrolysis in soils, in combination with thermochemical or bio-catalytic conversion of syngas to alcohols or alkanes. Here we show that optimal pathway selection depends on specific resource constraints. As land availability becomes increasingly limiting if bioenergy is scaled up—particularly in consideration that abandoned degraded land is widely considered to be an important resource that does not compete with food fiber or habitat—then systems which enhance land productivity by increasing soil fertility using soil carbon sequestration become increasingly preferable compared to bioenergy systems that deplete or degrade the land resource on which they

  13. Utilization of residues from firing with biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Moberg, P O; Nelson, B; Sjoeberg, A

    1983-10-01

    The aim of the project is to analyse various possibilities of using residues from firing with biofuels, to assess the environmental consequences of such use and to prepare proposal and programme for investigations and tests concerning the use and its environmental consequences. Peat fly ashes have been tested in making concrete with promising results. On the other hand it is doubtful if wood ashes can be used, as the lime content is high. Generally can be said that ashes from biofuels are produced by many small combustion plants and that the quality is unequal. It should be possible to use fly ashes as well as bottom ashes from biofuels as borrow material in road works and construction works. Lime and cement are binders used for stabilization of gravel, sand and clay. Coal fly ashes can partly substitute such binders. Ground stabilization is usual in connection with road construction. It is also probable that fly ashes from biofuels can partly be substituted for cement and lime. Higher prices can be obtained for bio ashes used as binders than used as borrow material. Especially wood ashes are considered to be valuable as forest manure. The value roughly estimated by means of comparison to fertilizer is 400 - 800 SEK/ton. Bottom ashes which are an important part of the total ash production have low contents of heavy metals and are thus perhaps suitable for agricultural use. It seems to be possible to substitute fly ashes from biofuel for part of the precipitation chemicals used for reduction of phosphorus and for sludge conditioning at the local water treatment plants. The estimated Swedish production of wood ashes in 1990 could account for 10 per cent of the present production of potash in Europe. There is a need to cover old tailingponds of rests of sulphide ore with an alkaline and dense material. Locally (Dalecarlia) the good properties of fly ashes for this purpose should be utilized.

  14. Perspectives of microalgal biofuels as a renewable source of energy

    International Nuclear Information System (INIS)

    Kiran, Bala; Kumar, Ritunesh; Deshmukh, Devendra

    2014-01-01

    Highlights: • Microalgae offer solution of wastewater treatment, CO 2 sequestration, and energy crises. • Microalgal biofuel is renewable, nontoxic and environmentally friendly option. • Integration of wastewater treatment with biofuels production has made them more cost effective. • This article details out the potential production process and benefits of microalgal biofuels. - Abstract: Excessive use of fossil fuels to satisfy our rapidly increasing energy demand has created severe environmental problems, such as air pollution, acid rain and global warming. Biofuels are a potential alternative to fossil fuels. First- and second-generation biofuels face criticism due to food security and biodiversity issues. Third-generation biofuels, based on microalgae, seem to be a plausible solution to the current energy crisis, as their oil-producing capability is many times higher than that of various oil crops. Microalgae are the fastest-growing plants and can serve as a sustainable energy source for the production of biodiesel and several other biofuels by conversion of sunlight into chemical energy. Biofuels produced from microalgae are renewable, non-toxic, biodegradable and environment friendly. Microalgae can be grown in open pond systems or closed photobioreactors. Microalgal biofuels are a potential means to keep the development of human activities in synchronization with the environment. The integration of wastewater treatment with biofuel production using microalgae has made microalgal biofuels more attractive and cost effective. A biorefinery approach can also be used to improve the economics of biofuel production, in which all components of microalgal biomass (i.e., proteins, lipids and carbohydrates) are used to produce useful products. The integration of various processes for maximum economic and environmental benefits minimizes the amount of waste produced and the pollution level. This paper presents an overview of various aspects associated with

  15. Science Innovation

    Science.gov (United States)

    EPA provides innovative research activities that help transform the protection of human health and the environment with high-risk, high-reward Pathfinder Innovation Projects, the P3 student competition, and low-cost air monitoring.

  16. Technology Innovation

    Science.gov (United States)

    EPA produces innovative technologies and facilitates their creation in line with the Agency mission to create products such as the stormwater calculator, remote sensing, innovation clusters, and low-cost air sensors.

  17. Industrial symbiosis and biofuels industry : Business value and organisational factors within cases of ethanol and biogas production

    OpenAIRE

    Mirata, Murat; Eklund, Mats; Gundberg, Andreas

    2017-01-01

    Industrial symbiosis (IS) involves collaborations among diverse, and predominantly local and re- gional, actors that create additional economic and environmental value through by-product ex- changes, utility and service sharing, and joint innovations. While the importance of IS for the de- velopment of biofuels is commonly recognised hypothetically, this study aims at advancing under- standing of the actual contribution provided in two real life examples–one focusing on grain-based ethanol pr...

  18. Political innovations

    DEFF Research Database (Denmark)

    Sørensen, Eva

    2017-01-01

    are mainly interested in assessing and promoting innovations in public service delivery, but have paid little or no attention to the need for innovations in polity, politics and policy. This article develops a research agenda for studying innovations in political institutions, in the political process...... and in policy outputs. It proposes a number of research themes related to political innovations that call for scholarly attention, and identifies push and pull factors influencing the likelihood that these themes will be addressed in future research....

  19. Innovation hubs

    DEFF Research Database (Denmark)

    O´Hara, J.; Hansen, Poul H. Kyvsgård; Turner, N.

    2008-01-01

    "Whilst ‘incremental innovation' is an imperative for the short-to-medium term success of a company, there is also a need for companies to engage in innovation activity that goes beyond the incremental in order to guarantee long-term success. However, such ‘radical innovation' (RI) poses new chal...

  20. Brugerdreven innovation

    DEFF Research Database (Denmark)

    Helms, Niels Henrik; Larsen, Lasse Juel

    2007-01-01

    På et generelt plan er vores afsæt et opgør med traditionelle modeller for kreativitet og innovation. Artiklen mener, at brugerdreven innovation ikke bare en god idé, men en beskrivelse af, hvordan innovation finder sted. Vores afsæt er interaktionsdesign, hvor vi bygger på den antagelse...

  1. Biofuel Feedstock Assessment For Selected Countries

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Keith L [ORNL; Oladosu, Gbadebo A [ORNL; Wolfe, Amy K [ORNL; Perlack, Robert D [ORNL; Dale, Virginia H [ORNL

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply

  2. National Innovation Systems in Brazil, Russia, India, China and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Brazil, Russia, India, China and South Africa (BRICS) have put innovation at the centre of their development strategies. In each case, however, there exists scant knowledge about the national innovation system and its impact on the economy. This grant will support a comparative analysis of innovation systems in the five ...

  3. Toward Effective Policies for Innovation Financing in Asia | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The question of how to support innovations and innovative businesses in the ... policies that promote the long-term viability and competitiveness of small and ... of innovation financing schemes in Malaysia, Singapore, Taiwan and Thailand. ... tax incentives, loan and grant programs, capital market rules/regulations, etc.

  4. Controversies, development and trends of biofuel industry in the world

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2012-09-01

    Full Text Available Controversies, development and trends of biofuel industry in the world were discussed in present article. First-generation biofuels, i.e., grain and land based biofuels, occupied large areas of arable lands and severely constrained food supplies, are widely disputed. They have been replaced by second-generation biofuels. The raw materials of the second-generation biofuels include plants, straw, grass and other crops and forest residues. However, the cost for production of the second-generation biofuels is higher. Therefore the development of the third-generation biofuels is undergoing. The third-generation technologies use, mainly algae, as raw material to produce bioethanol, biobutanol, biodiesel and hydrogen, and use discarded fruits to produce dimethylfuran, etc. Different countries and regions are experiencing different stages of biofuel industry. In the future the raw materials for biofuel production will be focused on various by-products, wastes, and organisms that have not direct economic benefit for human. Production technologies should be improved or invented to reduce carbon emission and environmental pollution during biofuel production and to reduce production cost.

  5. Framing Innovation

    DEFF Research Database (Denmark)

    Haase, Louise Møller; Laursen, Linda Nhu

    2017-01-01

    Designing a remarkable product innovation is a difficult challenge, which businesses today continuously are striving to tackle. This challenge is particularly present in the early phase of innovation, where the main product concept and frames of the innovation is determined. As a main challenge...... in the early phase is the reasoning process; innovation team are faced with open- ended ill-defines problems, where they need to make decisions about an unknown future having only incomplete, ambiguous and contradicting insights available. We study the reasoning of experts, how they frame to make sense of all...... the insights and create a basis for decision making in relation to a new project. Based on case studies of five innovative products from various industries, we suggest a Product Reasoning Model for understanding reasoning and envisioning of new product innovations in the early phases of innovation....

  6. Capturing latecomer advantages in the adoption of biofuels: The case of Argentina

    International Nuclear Information System (INIS)

    Mathews, John A.; Goldsztein, Hugo

    2009-01-01

    Although Argentina came late to the biofuels revolution, a series of measures taken recently at federal and provincial government level have created new opportunities. New federal laws on biofuels promotion have sparked an investment boom. The main activity has been in the biodiesel sector-partly because diesel is the dominant fuel sector in Argentina, and partly because the country had already engineered a soy revolution over the past 15 years, becoming the world's largest exporter of soy oil and soy meal. Biodiesel allows this revolution to be extended-from soy as foodstuff to soy as fuelstock. The biodiesel revolution now underway promises to extend Argentina's latecomer advantages by combining greater scale and lower costs with introduced technical innovations such as genetically modified crops and no-till farming. In this way, Argentina can be seen to be demonstrating the superiority of biofuel production in countries of the South over the conditions obtaining in countries of the North-including superior resources availability, superior energetics and lower costs. Whereas Brazil has demonstrated its superiority in sugarcane-based ethanol, Argentina is about to demonstrate its superiority in soy-based biodiesel

  7. Generating opportunity : human resources needs in the bioenergy, biofuels and industrial biotechnology subsectors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Canada has a plentiful resource base and a long history of innovation in bioenergy, biofuels and industrial biotechnology. Success of the industry depends on having the required human resources capacity such as the right number of skilled, job-ready professionals to support companies as they develop and commercialize new solutions. This document presented the results of a human resources survey conducted by BioTalent regarding the national and global bioenergy, biofuels and industrial biotechnology subsectors. It addressed a variety of issues, such as the increasing demand for bioenergy; the near-term perspective; growth factors; and the role of public policy. A subsector snapshot of human resources was also presented, with particular reference to the principal areas of need; types of roles required in the bio-economy; human resources capacity and company size; regional variances; skills gaps; reliance on outsourcing; knowledge, learning and connectedness; recruitment, retention and turnover; and the road ahead. Conclusions and recommendations were also offered. It was concluded that once the economy recovers, demand for bioenergy, biofuels and industrial products and services is expected to increase. 3 tabs., 6 figs.

  8. Cyanofuels: biofuels from cyanobacteria. Reality and perspectives.

    Science.gov (United States)

    Sarsekeyeva, Fariza; Zayadan, Bolatkhan K; Usserbaeva, Aizhan; Bedbenov, Vladimir S; Sinetova, Maria A; Los, Dmitry A

    2015-08-01

    Cyanobacteria are represented by a diverse group of microorganisms that, by virtue of being a part of marine and freshwater phytoplankton, significantly contribute to the fixation of atmospheric carbon via photosynthesis. It is assumed that ancient cyanobacteria participated in the formation of earth's oil deposits. Biomass of modern cyanobacteria may be converted into bio-oil by pyrolysis. Modern cyanobacteria grow fast; they do not compete for agricultural lands and resources; they efficiently convert excessive amounts of CO2 into biomass, thus participating in both carbon fixation and organic chemical production. Many cyanobacterial species are easier to genetically manipulate than eukaryotic algae and other photosynthetic organisms. Thus, the cyanobacterial photosynthesis may be directed to produce carbohydrates, fatty acids, or alcohols as renewable sources of biofuels. Here we review the recent achievements in the developments and production of cyanofuels-biofuels produced from cyanobacterial biomass.

  9. Microbial stress tolerance for biofuels. Systems biology

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zonglin Lewis (ed.) [National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL (United States)

    2012-07-01

    The development of sustainable and renewable biofuels is attracting growing interest. It is vital to develop robust microbial strains for biocatalysts that are able to function under multiple stress conditions. This Microbiology Monograph provides an overview of methods for studying microbial stress tolerance for biofuels applications using a systems biology approach. Topics covered range from mechanisms to methodology for yeast and bacteria, including the genomics of yeast tolerance and detoxification; genetics and regulation of glycogen and trehalose metabolism; programmed cell death; high gravity fermentations; ethanol tolerance; improving biomass sugar utilization by engineered Saccharomyces; the genomics on tolerance of Zymomonas mobilis; microbial solvent tolerance; control of stress tolerance in bacterial host organisms; metabolomics for ethanologenic yeast; automated proteomics work cell systems for strain improvement; and unification of gene expression data for comparable analyses under stress conditions. (orig.)

  10. Microalgae for Biofuels and Animal Feeds

    Directory of Open Access Journals (Sweden)

    John Benemann

    2013-11-01

    Full Text Available The potential of microalgae biomass production for low-cost commodities—biofuels and animal feeds—using sunlight and CO2 is reviewed. Microalgae are currently cultivated in relatively small-scale systems, mainly for high value human nutritional products. For commodities, production costs must be decreased by an order of magnitude, and high productivity algal strains must be developed that can be stably cultivated in large open ponds and harvested by low-cost processes. For animal feeds, the algal biomass must be high in digestible protein and long-chain omega-3 fatty acids that can substitute for fish meal and fish oils. Biofuels will require a high content of vegetable oils (preferably triglycerides, hydrocarbons or fermentable carbohydrates. Many different cultivation systems, algal species, harvesting methods, and biomass processing technologies are being developed worldwide. However, only raceway-type open pond systems are suitable for the production of low-cost commodities.

  11. Sustainable Process Design of Lignocellulose based Biofuel

    DEFF Research Database (Denmark)

    Mangnimit, Saranya; Malakul, Pomthong; Gani, Rafiqul

    the production and use of alternative and sustainable energy sources as rapidly as possible. Biofuel is a type of alternative energy that can be produced from many sources including sugar substances (such as sugarcane juice and molasses), starchy materials (such as corn and cassava), and lignocellulosic...... materials such as agricultural residual, straw and wood chips, the residual from wood industry. However, those sugar and starchy materials can be used not only to make biofuels but they are also food sources. Thus, lignocellulosic materials are interesting feed-stocls as they are inexpensive, abundantly...... available, and are also non-food crops. In this respect, Cassava rhizome has several characteristics that make it a potential feedstock for fuel ethanol production. It has high content of cellulose and hemicelluloses . The objective of this paper is to present a study focused on the sustainable process...

  12. Applications of Cyanobacteria in Biofuel Production

    DEFF Research Database (Denmark)

    Möllers, K. Benedikt

    and to evolve from a wasteful petrochemical system into a sustainable bio-based society, biofuels and the introduction of bio-refineries play an essential role. Aquatic phototrophs are promising organisms to employ photosynthetic capacities as well as the derived carbohydrates for the production of biofuels......, enzymatic conversion of lignocellulosic biomass for further fermentation or as a platform chemical in a bio-refinery concept. Autotrophically cultivated cells of the marine model cyanobacterium Synechococcus sp. PCC 7002 (Synechococcus) were exposed to mild nitrogen starvation which has been identified...... for fermentation of plant waste material or a substitute for yeast extract. By mimicking photosynthetic electron transport from light excited photo pigments to LPMOs in combination with a reductant and cellulose as substrate, a 100-fold increase in catalytic activity of LPMOs was observed. Also, it was found...

  13. Biofuels, land use change and smallholder livelihoods

    DEFF Research Database (Denmark)

    Hought, Joy Marie; Birch-Thomsen, Torben; Petersen, Jacob

    2012-01-01

    of biofuel feedstock adoption by smallholders in the northwestern Cambodian province of Banteay Meanchey, a region undergoing rapid land use change following the formal end of the Khmer Rouge era in 1989 and subsequent rural resettlement. Remote sensing data combined with field interviews pointed to three...... discrete phases of land use change in this period: first, as a result of the establishment of new settlements (mainly subsistence rice production); second, via the expansion of cash crop cultivation into forested areas (mainly grown on upland fields); and third, due to the response of smallholders...... market had severe consequences for livelihoods and food security. The paper concludes with a discussion of the probable impacts of the emerging cassava market on trajectories in land use, land ownership, and land access in rural Cambodia. The case looks at biofuel adoption in the context of other land...

  14. Drivers for An International Biofuels Market

    International Nuclear Information System (INIS)

    Slingerland, S.; Van Geuns, L.

    2005-12-01

    This paper explores geopolitical and economic drivers for an international biofuels market. It is concluded that the biofuels market so far is primarily regionally oriented and policy driven. However, as demand is expected to increase in the years to come and demand and production do not coincide geographically, an international market is soon expected to arise. How quickly this market will develop is determined by several geopolitical and economic factors. Important geopolitical factors are in particular security of supply and risk abatement considerations, the contents of future emission reduction agreements, and the interaction with in new parties and policies such as those in the agricultural sector. Key economic factors are the prices of primary biomass and petroleum, as well as technological development influencing the price of conversion of biomass to end-use applications. International certification is likely to play a key role in determining whether or not this market will develop in an ecologically sound way.

  15. Bio-fuels: European Communities fiscal initiatives

    International Nuclear Information System (INIS)

    Autrand, A.

    1992-01-01

    This paper first reviews the influence that European Communities fiscal policies have had in the past on the development of more environmentally compatible fuels such as unleaded gasoline. It then discusses which directions fiscal policy makers should take in order to create appropriate financial incentives encouraging the production and use of biomass derived fuels - methanol, ethanol and pure and transesterified vegetable oils. An assessment is made of the efficacy of a recent European Communities proposal which calls for the application of excise tax reductions on bio-fuels. Attention is given to the net effects due to reduced sulfur and carbon dioxide emissions characterizing bio-fuels and the increased use of fertilizers necessary to produce biomass fuels

  16. Grant Wood: "American Gothic."

    Science.gov (United States)

    Fitzgerald, Diane M.

    1988-01-01

    Presents a lesson plan which exposes students in grades 10-12 to the visual symbols and historical references contained in Grant Wood's "American Gothic." Includes background information on the artist and the painting, instructional strategies, a studio activity, and evaluation criteria. (GEA)

  17. Grants Mining District

    Science.gov (United States)

    The Grants Mineral Belt was the focus of uranium extraction and production activities from the 1950s until the late 1990s. EPA is working with state, local, and federal partners to assess and address health risks and environmental effects of the mines

  18. Climate changes, biofuels and the sustainable future

    International Nuclear Information System (INIS)

    Zidansek, Aleksander; Blinc, Robert; Jeglic, Anton; Kabashi, Skender; Bekteshi, Sadik; Slaus, Ivo

    2009-01-01

    Climate change is one of the most dangerous problems of the contemporary world. We can either adapt to the corresponding changes or try to reduce their impact by significantly reducing fossil fuel burning. A hydrogen-based economy using energy from biomass, solar, wind and other renewable sources and/or nuclear energy seems to be a viable alternative. Here we analyse the possibilities of the biofuels to replace fossil fuels and their potential to contribute to hydrogen economy. (author)

  19. Climate changes, biofuels and the sustainable future

    Energy Technology Data Exchange (ETDEWEB)

    Zidansek, Aleksander; Blinc, Robert [Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana (Slovenia); Jozef Stefan Institute, Jamova 39, Ljubljana (Slovenia); Jeglic, Anton [Faculty of Electrical Engineering, University of Ljubljana (Slovenia); Kabashi, Skender; Bekteshi, Sadik [Faculty of Mathematical and Natural Sciences, University of Prishtina, Kosovo (RS); Slaus, Ivo [Ruder Boskovic Institute, Bijenicka 54, Zagreb (Croatia)

    2009-08-15

    Climate change is one of the most dangerous problems of the contemporary world. We can either adapt to the corresponding changes or try to reduce their impact by significantly reducing fossil fuel burning. A hydrogen-based economy using energy from biomass, solar, wind and other renewable sources and/or nuclear energy seems to be a viable alternative. Here we analyse the possibilities of the biofuels to replace fossil fuels and their potential to contribute to hydrogen economy. (author)

  20. Renewable energy progress and biofuels sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; De Lovinfosse, I.; Koper, M.; Beestermoeller, C.; Nabe, C.; Kimmel, M.; Van den Bos, A.; Yildiz, I.; Harteveld, M. [Ecofys Netherlands, Utrecht (Netherlands); Ragwitz, M.; Steinhilber, S. [Fraunhofer Institut fuer System- und Innovationsforschung ISI, Karlsruhe (Germany); Nysten, J.; Fouquet, D. [Becker Buettner Held BBH, Munich (Germany); Resch, G.; Liebmann, L.; Ortner, A.; Panzer, C. [Energy Economics Group EEG, Vienna University of Technology, Vienna (Austria); Walden, D.; Diaz Chavez, R.; Byers, B.; Petrova, S.; Kunen, E. [Winrock International, Brussels (Belgium); Fischer, G.

    2013-03-15

    On 27 March 2013, the European Commission published its first Renewable Energy Progress Report under the framework of the 2009 Renewable Energy Directive. Since the adoption of this directive and the introduction of legally binding renewable energy targets, most Member States experienced significant growth in renewable energy consumption. 2010 figures indicate that the EU as a whole is on its trajectory towards the 2020 targets with a renewable energy share of 12.7%. Moreover, in 2010 the majority of Member States already reached their 2011/2012 interim targets set in the Directive. However, as the trajectory grows steeper towards the end, more efforts will still be needed from the Member States in order to reach the 2020 targets. With regard to the EU biofuels and bioliquids sustainability criteria, Member States' implementation of the biofuels scheme is considered too slow. In accordance with the reporting requirements set out in the 2009 Directive on Renewable Energy, every two years the European Commission publishes a Renewable Energy Progress Report. The report assesses Member States' progress in the promotion and use of renewable energy along the trajectory towards the 2020 renewable energy targets. The report also describes the overall renewable energy policy developments in each Member State and their compliance with the measures outlined in the Directive and the National Renewable Energy Action Plans. Moreover, in accordance with the Directive, it reports on the sustainability of biofuels and bioliquids consumed in the EU and the impacts of this consumption. A consortium led by Ecofys was contracted by the European Commission to perform support activities concerning the assessment of progress in renewable energy and sustainability of biofuels.

  1. Renewable energy progress and biofuels sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Hamelinck, C.; De Lovinfosse, I.; Koper, M.; Beestermoeller, C.; Nabe, C.; Kimmel, M.; Van den Bos, A.; Yildiz, I.; Harteveld, M. [Ecofys Netherlands, Utrecht (Netherlands); Ragwitz, M.; Steinhilber, S. [Fraunhofer Institut fuer System- und Innovationsforschung ISI, Karlsruhe (Germany); Nysten, J.; Fouquet, D. [Becker Buettner Held BBH, Munich (Germany); Resch, G.; Liebmann, L.; Ortner, A.; Panzer, C. [Energy Economics Group EEG, Vienna University of Technology, Vienna (Austria); Walden, D.; Diaz Chavez, R.; Byers, B.; Petrova, S.; Kunen, E. [Winrock International, Brussels (Belgium); Fischer, G.

    2013-03-15

    On 27 March 2013, the European Commission published its first Renewable Energy Progress Report under the framework of the 2009 Renewable Energy Directive. Since the adoption of this directive and the introduction of legally binding renewable energy targets, most Member States experienced significant growth in renewable energy consumption. 2010 figures indicate that the EU as a whole is on its trajectory towards the 2020 targets with a renewable energy share of 12.7%. Moreover, in 2010 the majority of Member States already reached their 2011/2012 interim targets set in the Directive. However, as the trajectory grows steeper towards the end, more efforts will still be needed from the Member States in order to reach the 2020 targets. With regard to the EU biofuels and bioliquids sustainability criteria, Member States' implementation of the biofuels scheme is considered too slow. In accordance with the reporting requirements set out in the 2009 Directive on Renewable Energy, every two years the European Commission publishes a Renewable Energy Progress Report. The report assesses Member States' progress in the promotion and use of renewable energy along the trajectory towards the 2020 renewable energy targets. The report also describes the overall renewable energy policy developments in each Member State and their compliance with the measures outlined in the Directive and the National Renewable Energy Action Plans. Moreover, in accordance with the Directive, it reports on the sustainability of biofuels and bioliquids consumed in the EU and the impacts of this consumption. A consortium led by Ecofys was contracted by the European Commission to perform support activities concerning the assessment of progress in renewable energy and sustainability of biofuels.

  2. Pretreatment techniques for biofuels and biorefineries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhen (ed.) [Chinese Academy of Sciences, Kunming, YN (China). Xishuangbanna Tropical Botonical Garden

    2013-02-01

    The first book focused on pretreatment techniques for biofuels contributed by the world's leading experts. Extensively covers the different types of biomass, various pretreatment approaches and methods that show the subsequent production of biofuels and chemicals. In addition to traditional pretreatment methods, novel techniques are also introduced and discussed. An accessible reference work for students, researchers, academicians and industrialists in biorefineries. This book includes 19 chapters contributed by the world's leading experts on pretreatment methods for biomass. It extensively covers the different types of biomass (e.g. molasses, sugar beet pulp, cheese whey, sugarcane residues, palm waste, vegetable oil, straws, stalks and wood), various pretreatment approaches (e.g. physical, thermal, chemical, physicochemical and biological) and methods that show the subsequent production of biofuels and chemicals such as sugars, ethanol, extracellular polysaccharides, biodiesel, gas and oil. In addition to traditional methods such as steam, hot-water, hydrothermal, diluted-acid, organosolv, ozonolysis, sulfite, milling, fungal and bacterial, microwave, ultrasonic, plasma, torrefaction, pelletization, gasification (including biogas) and liquefaction pretreatments, it also introduces and discusses novel techniques such as nano and solid catalysts, organic electrolyte solutions and ionic liquids. This book offers a review of state-of-the-art research and provides guidance for the future paths of developing pretreatment techniques of biomass for biofuels, especially in the fields of biotechnology, microbiology, chemistry, materials science and engineering. It intends to provide a systematic introduction of pretreatment techniques. It is an accessible reference work for students, researchers, academicians and industrialists in biorefineries.

  3. National Biofuels Action Plan, October 2008

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2008-10-01

    To help industry achieve the aggressive national goals, Federal agencies will need to continue to enhance their collaboration. The Biomass Research and Development (R&D) Board was created by Congress in the Biomass Research and Development Act of 2000. The National Biofuels Action Plan outlines areas where interagency cooperation will help to evolve bio-based fuel production technologies from promising ideas to competitive solutions.

  4. Panorama 2007: New Bio-fuel Technologies

    International Nuclear Information System (INIS)

    His, St.

    2007-01-01

    New pathways are emerging in the wake of the boom in the biofuels market. Their development is driven by the search for improved product quality and a broader range of natural plant feedstock. Interested in these new pathways, the oil companies are seeking to differentiate themselves on a market that promises to be very competitive in future. This is a turning point in a sector that has historically been dominated by agro-food companies. (author)

  5. Road-map for 2. generation biofuels

    International Nuclear Information System (INIS)

    2009-01-01

    This document presents road-map issues concerning the requirements for biofuels of second generation, and defines the priorities addressed by a demonstrator program. It recalls the context created by the challenges of climate change and the excessive dependence on fossil fuels, and the objectives defined by the European Union in terms of biofuel share in the global consumption. Then, it describes the candidate technologies for the production of this second generation of biofuels, those based on thermo-chemical processes (mainly the pyrolysis-gasification of biomass), and those based on biochemical processes (enzymatic hydrolysis and fermentation of biomass). It highlights the technological challenges for these processes, and describes the various objectives of research projects supported by a 'demonstrator fund'. It discusses the necessity to develop demonstrators, and mentions some current projects of private companies, competitiveness clusters, and public research institutions. An agenda is defined from 2009 to 2020 which encompasses the research, demonstration and operation phases. An appendix provides brief presentations of thermo-chemical or biological demonstrators currently under operation or under construction in foreign countries (Germany, Finland, United States of America, Sweden, Spain, Canada, Japan, and Denmark)

  6. Bio-fuels are not so green

    International Nuclear Information System (INIS)

    Lemarchand, F.

    2007-01-01

    Today there is an unrelenting trend for bio-fuels but some scientists question their utility. Some surveys show that the environmental balance sheet for bio-fuels is strongly positive for instance it is assessed that the production of 1 MJ of ethanol from beet roots of wheat requires only 0.49 MJ of fossil energy, interesting figure when compared to the 1.14 MJ of fossil energy needed to produce 1 MJ of gasoline. Other studies are less optimistic, all depends strongly on the basic data used and on the approach followed. Some scientists wonder whether all the pollutants generated in the transformation processes are well taken into account. In fact the environment benefit of the first generation of bio-fuels is mild because scientists do not know how to use efficiently the wood-cellulose by-products of plants. There is a notably exception to that, it is the sugar cane in Brazil, this plant has a good energy conversion rate and its by-products are completely and efficiently used in industry. A way to valorize cellulose by-products is to transform them in ethanol and hydrogen through the use of mushroom enzymes. (A.C.)

  7. Application of Electroporation Technique in Biofuel Processing

    Directory of Open Access Journals (Sweden)

    Yousuf Abu

    2017-01-01

    Full Text Available Biofuels production is mostly oriented with fermentation process, which requires fermentable sugar as nutrient for microbial growth. Lignocellulosic biomass (LCB represents the most attractive, low-cost feedstock for biofuel production, it is now arousing great interest. The cellulose that is embedded in the lignin matrix has an insoluble, highly-crystalline structure, so it is difficult to hydrolyze into fermentable sugar or cell protein. On the other hand, microbial lipid has been studying as substitute of plant oils or animal fat to produce biodiesel. It is still a great challenge to extract maximum lipid from microbial cells (yeast, fungi, algae investing minimum energy.Electroporation (EP of LCB results a significant increase in cell conductivity and permeability caused due to the application of an external electric field. EP is required to alter the size and structure of the biomass, to reduce the cellulose crystallinity, and increase their porosity as well as chemical composition, so that the hydrolysis of the carbohydrate fraction to monomeric sugars can be achieved rapidly and with greater yields. Furthermore, EP has a great potential to disrupt the microbial cell walls within few seconds to bring out the intracellular materials (lipid to the solution. Therefore, this study aims to describe the challenges and prospect of application of EP technique in biofuels processing.

  8. Estimating Nitrogen Load Resulting from Biofuel Mandates

    Science.gov (United States)

    Alshawaf, Mohammad; Douglas, Ellen; Ricciardi, Karen

    2016-01-01

    The Energy Policy Act of 2005 and the Energy Independence and Security Act (EISA) of 2007 were enacted to reduce the U.S. dependency on foreign oil by increasing the use of biofuels. The increased demand for biofuels from corn and soybeans could result in an increase of nitrogen flux if not managed properly. The objectives of this study are to estimate nitrogen flux from energy crop production and to identify the catchment areas with high nitrogen flux. The results show that biofuel production can result in an increase of nitrogen flux to the northern Gulf of Mexico from 270 to 1742 thousand metric tons. Using all cellulosic (hay) ethanol or biodiesel to meet the 2022 mandate is expected to reduce nitrogen flux; however, it requires approximately 25% more land when compared to other scenarios. Producing ethanol from switchgrass rather than hay results in three-times more nitrogen flux, but requires 43% less land. Using corn ethanol for 2022 mandates is expected to have double the nitrogen flux when compared to the EISA-specified 2022 scenario; however, it will require less land area. Shifting the U.S. energy supply from foreign oil to the Midwest cannot occur without economic and environmental impacts, which could potentially lead to more eutrophication and hypoxia. PMID:27171101

  9. New Insights in Polymer-Biofuels Interaction

    Directory of Open Access Journals (Sweden)

    Richaud Emmanuel

    2015-02-01

    Full Text Available This paper deals with polymer-fuel interaction focusing on specific effects of biofuels on polyethylene (PE in automotive applications. The practical objective is to develop a predictable approach for durability of polyethylene tanks in contact of ethanol based or biofuel based fuels. In the case of ethanol, the main consequence on PE durability is a reduction of the rate of stabilizer extraction; this latter phenomenon can be modeled by first order kinetics with a rate constant that obeys the Arrhenius equation. Concerning biodiesels, the study was focused on soy and rapeseed methyl ester which were compared to methyl oleate and methyl linoleate used as model compounds. Here, PE-fuel interactions can be described as well as physical interaction, linked to the oil penetration into the polymer, as chemical interaction linked to an eventual co-oxidation of PE and oil. Both aspects were investigated. Concerning biofuel transport in PE, it appeared that the oil diffusivity depends only of temperature and oil molar mass. Some aspects of the temperature dependence of the oil solubility in PE are discussed. About chemical interaction between oil and PE, it was put in evidence that unsaturated fatty esters promote and accelerate PE oxidation. A co-oxidation kinetic model was proposed to describe this process.

  10. Developing symbiotic consortia for lignocellulosic biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Zuroff, Trevor R.; Curtis, Wayne R. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemical Engineering

    2012-02-15

    The search for petroleum alternatives has motivated intense research into biological breakdown of lignocellulose to produce liquid fuels such as ethanol. Degradation of lignocellulose for biofuel production is a difficult process which is limited by, among other factors, the recalcitrance of lignocellulose and biological toxicity of the products. Consolidated bioprocessing has been suggested as an efficient and economical method of producing low value products from lignocellulose; however, it is not clear whether this would be accomplished more efficiently with a single organism or community of organisms. This review highlights examples of mixtures of microbes in the context of conceptual models for developing symbiotic consortia for biofuel production from lignocellulose. Engineering a symbiosis within consortia is a putative means of improving both process efficiency and stability relative to monoculture. Because microbes often interact and exist attached to surfaces, quorum sensing and biofilm formation are also discussed in terms of consortia development and stability. An engineered, symbiotic culture of multiple organisms may be a means of assembling a novel combination of metabolic capabilities that can efficiently produce biofuel from lignocellulose. (orig.)

  11. Capabilities for innovation

    DEFF Research Database (Denmark)

    Nielsen, Peter; Nielsen, Rene Nesgaard; Bamberger, Simon Grandjean

    2012-01-01

    is a survey that collected information from 601 firms belonging to the private urban sector in Denmark. The survey was carried out in late 2010. Keywords: dynamic capabilities/innovation/globalization/employee/employer cooperation/Nordic model Acknowledgment: The GOPA study was financed by grant 20080053113......Technological developments combined with increasing levels of competition related to the ongoing globalization imply that firms find themselves in dynamic, changing environments that call for dynamic capabilities. This challenges the internal human and organizational resources of firms in general...

  12. Biofuel Combustion Fly Ash Influence on the Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Aurelijus Daugėla

    2016-02-01

    Full Text Available Cement as the binding agent in the production of concrete can be replaced with active mineral admixtures. Biofuel combustion fly ash is one of such admixtures. Materials used for the study: Portland cement CEM I 42.5 R, sand of 0/4 fraction, gravel of 4/16 fraction, biofuel fly ash, superplasticizer, water. Six compositions of concrete were designed by replacing 0%, 5%, 10%, 15% 20%, and 25% of cement with biofuel fly ash. The article analyses the effect of biofuel fly ash content on the properties of concrete. The tests revealed that the increase of biofuel fly ash content up to 20% increases concrete density and compressive strength after 7 and 28 days of curing and decreases water absorption, with corrected water content by using plasticizing admixture. It was found that concrete where 20% of cement is replaced by biofuel ash has higher frost resistance.

  13. Biofuels: stakes, perspectives and researches; Biocarburants: enjeux, perspectives et recherches

    Energy Technology Data Exchange (ETDEWEB)

    Appert, O.; Ballerin, D.; Montagne, X.

    2004-07-01

    The French institute of petroleum (IFP) is a major intervener of the biofuels sector, from the production to the end-use in engines. In this press conference, the IFP takes stock of the technological, environmental and economical stakes of today and future biofuel production processes and of their impact on transports. This document gathers 2 presentations dealing with: IFP's research strategy on biofuels (transparencies: context; today's processes: ethanol, ETBE, bio-diesel; tomorrows processes: biomass to liquid; perspectives), bio-diesel fuel: the Axens process selected by Diester Industrie company for its Sete site project of bio-diesel production unit. The researches carried out at the IFP on biofuels and biomass are summarized in an appendix: advantage and drawbacks of biofuels, the ethanol fuel industry, the bio-diesel industry, biomass to liquid fuels, French coordinated research program, statistical data of biofuel consumption in France, Spain and Germany. (J.S.)

  14. Engineering microbes for tolerance to next-generation biofuels

    Directory of Open Access Journals (Sweden)

    Dunlop Mary J

    2011-09-01

    Full Text Available Abstract A major challenge when using microorganisms to produce bulk chemicals such as biofuels is that the production targets are often toxic to cells. Many biofuels are known to reduce cell viability through damage to the cell membrane and interference with essential physiological processes. Therefore, cells must trade off biofuel production and survival, reducing potential yields. Recently, there have been several efforts towards engineering strains for biofuel tolerance. Promising methods include engineering biofuel export systems, heat shock proteins, membrane modifications, more general stress responses, and approaches that integrate multiple tolerance strategies. In addition, in situ recovery methods and media supplements can help to ease the burden of end-product toxicity and may be used in combination with genetic approaches. Recent advances in systems and synthetic biology provide a framework for tolerance engineering. This review highlights recent targeted approaches towards improving microbial tolerance to next-generation biofuels with a particular emphasis on strategies that will improve production.

  15. Fuel taxes and biofuel promotion: a complementary approach

    International Nuclear Information System (INIS)

    Santamaría, Marta; Azqueta, Diego

    2015-01-01

    Public support for renewable energy technologies is usually justified in terms of its contribution to reducing energy dependency; an improvement in environmental quality and a stimulation of economic activity and employment. In the case of biofuels, greenhouse gas emissions reduction has received significant attention. Nevertheless, nowadays there is a lively debate surrounding the convenience of biofuels. This is a consequence of the potentially negative impacts revealed from their production on a large scale. The aim of the present work is to analyses the potential contribution of biofuels to the main impact categories identified above. This paper tries to analyze the role of biofuel promotion in the context of fuel taxes. Based on the assessment of biofuels in Spain related to environmental damage and economic impacts, it shows that fuel taxes and biofuel promotion should be considered as complementary tools and treated accordingly. (full text)

  16. Next-Gen3: Sequencing, Modeling, and Advanced Biofuels - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Zengler, Karsten [Univ. of California, San Diego, CA (United States). Dept. of Pediatrics; Palsson, Bernhard [Univ. of California, San Diego, CA (United States). Dept. of Bioengineering; Lewis, Nathan [Univ. of California, San Diego, CA (United States). Dept. of Pediatrics

    2017-12-27

    Successful, scalable implementation of biofuels is dependent on the efficient and near complete utilization of diverse biomass sources. One approach is to utilize the large recalcitrant biomass fraction (or any organic waste stream) through the thermochemical conversion of organic compounds to syngas, a mixture of carbon monoxide (CO), carbon dioxide (CO2), and hydrogen (H2), which can subsequently be metabolized by acetogenic microorganisms to produce next-gen biofuels. The goal of this proposal was to advance the development of the acetogen Clostridium ljungdahlii as a chassis organism for next-gen biofuel production from cheap, renewable sources and to detail the interconnectivity of metabolism, energy conservation, and regulation of acetogens using next-gen sequencing and next-gen modeling. To achieve this goal we determined optimization of carbon and energy utilization through differential translational efficiency in C. ljungdahlii. Furthermore, we reconstructed a next-generation model of all major cellular processes, such as macromolecular synthesis and transcriptional regulation and deployed this model to predicting proteome allocation, overflow metabolism, and metal requirements in this model acetogen. In addition we explored the evolutionary significance of tRNA operon structure using the next-gen model and determined the optimal operon structure for bioproduction. Our study substantially enhanced the knowledgebaase for chemolithoautotrophs and their potential for advanced biofuel production. It provides next-generation modeling capability, offer innovative tools for genome-scale engineering, and provide novel methods to utilize next-generation models for the design of tunable systems that produce commodity chemicals from inexpensive sources.

  17. Increase of food commodities prices and their relationship with biofuels

    International Nuclear Information System (INIS)

    Ortiz-Alvarez, Marianela; Piloto-Rodríguez, Ramón

    2017-01-01

    Biofuels are without any doubt, an alternative to the actual energy matrix. In this work, through the analysis of the main influencing factors in the increase of food commodities prices, is demonstrated that this phenomena is not exclusive due to biofuels production. Comparing the food commodities prices with biofuels production and petroleum prices respectively, a stronger correlation between food and petroleum prices was observed, demonstrating the strong influence of the conventional energy market on agricultural products. (author)

  18. Bio-fuels barometer - EurObserv'ER - July 2016

    International Nuclear Information System (INIS)

    2016-07-01

    The European bio-fuel market is now regulated by the directive, known as ILUC, whose wording focuses on the environmental impact of first generation bio-fuel development. This long-awaited clarification has arrived against the backdrop of falling oil prices and shrinking European Union bio-fuel consumption, which should drop by 1.7% between 2014 and 2015, according to EurObserv'ER

  19. Determination of calorific values of some renewable biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jothi V.; Pratt, Benjamin C. [Department of Chemistry, North Carolina A and T State University, Greensboro, North Carolina (United States)

    1996-06-01

    Thermal methods such as differential scanning calorimetry (DSC), and elemental analysis (EA) were employed to determine the calorific values of some renewable biofuels either directly or indirectly. The biofuels tested were the common milkweed, dogbane, kudzu, and eucalyptus tree. The purpose of this work was to optimize the experimental conditions for DSC analysis of biofuels, improve the calorific values by adding metal oxides as catalysts, and compare the heat values between DSC and EA analyses

  20. Recommendations for a sustainable development of biofuels in France

    International Nuclear Information System (INIS)

    Douaud, A.; Gruson, J.F.

    2006-01-01

    The biofuels are presented as a solution to the greenhouse gases and the petroleum consumption decrease. The development of the biofuels needs an active research of the production, transformation and use costs improvement. It will be necessary to prepare the market of the biofuels to the globalization. Some recommendations are also provided in the domains of the vegetal oil ester, the ethanol for the diesel and for the development of simulation tools to evaluate the costs. (A.L.B.)

  1. Current status: biomass valorisation and biofuels in Singapore

    International Nuclear Information System (INIS)

    Guermont, C.; Barbi, A.P.

    2010-05-01

    After having briefly presented the main types of biofuels (bio-ethanol, bio-diesel) and their first, second and third generation technologies to produce them (from food crops, from non food crops, and from algae), this report presents Singapore public R and D centres working in the field of biofuels development, and their activities. It also presents actors belonging to the private sector, and various realized and announced projects on biofuels

  2. Advice on the accelerated market implementation of advanced biofuels

    International Nuclear Information System (INIS)

    2008-04-01

    The Platform for Sustainable Mobility aims to promote the accelerated market introduction of more sustainable motor fuels and vehicle technology. The Platform distinguishes four transition paths: hybridization of the fleet of cars; implementation of biofuels; hydrogen-fuelled driving (driving on natural gas and biogas); intelligent transport systems (ITS). This advice involves part of the transition path for the implementation of biofuels, i.e. accelerated market introduction of advances biofuels. [mk] [nl

  3. Carbon and environmental footprinting of global biofuel production

    OpenAIRE

    Hammond, Geoff P.; Seth, S.M.

    2013-01-01

    The carbon and environmental footprints associated with the global production of biofuels have been computed from a baseline of 2007-2009 out until 2019. Estimates of future global biofuel production were adopted from OECD-FAO and related projections. In order to determine the footprints associated with these (essentially 'first generation') biofuel resources, the overall environmental footprint was disaggregated into bioproductive land, built land, carbon, embodied energy, materials and wast...

  4. Strengthening Africa's science granting councils as champions of ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Science granting councils are central to funding and catalyzing research and innovation, particularly in national science systems in sub-Saharan Africa. The availability of reliable indicators—to monitor Africa's scientific and technological developments, implement science policies and strategies, track public investment in ...

  5. Understanding District-Charter Collaboration Grants. Final Report

    Science.gov (United States)

    Tuttle, Christina; McCullough, Moira; Richman, Scott; Booker, Kevin; Burnett, Alyson; Keating, Betsy; Cavanaugh, Michael

    2016-01-01

    In November 2012, the Bill & Melinda Gates Foundation invested in seven innovative district-charter partnerships with "the potential capacity and commitment to accelerate student college ready rates through deep collaboration and sharing of best practices" (District-Charter Collaboration Grant Request for Proposal [RFP]). These…

  6. Framing Innovation

    DEFF Research Database (Denmark)

    Haase, Louise Møller; Laursen, Linda Nhu

    2017-01-01

    Designing a remarkable product innovation is a difficult challenge, which businesses today continuously are striving to tackle. This challenge is particularly present in the early phase of innovation, where the main product concept and frames of the innovation is determined. As a main challenge...... in the early phase is the reasoning process; innovation team are faced with open-ended ill-defines problems, where they need to make decisions about an unknown future having only incomplete, ambiguous and contradicting insights available. We study the reasoning of experts, how they frame to make sense of all...... the insights and create a basis for decision making in relation to a new project. Based on case studies of five innovative products from various industries, we suggest a Product Reasoning Model for understanding reasoning and envisioning of new product innovations in the early phases...

  7. Online Innovation

    DEFF Research Database (Denmark)

    Vujovic, Sladjana; Ulhøi, John Parm

    2008-01-01

      Purpose - The aim of this paper is to investigate the role of online networking during the innovation process, including its role(s) in communication, cooperation and coordination. The paper neither implicitly assumes that online computer-based networking is a prerequisite for the innovation...... process nor denies the possibility that innovation can emerge and successfully survive without it. It merely presupposes that, in cases of innovation where information and communication technologies play a substantial role, non-proprietarity may offer an interesting alternative to innovations based...... on proprietary knowledge. Design/methodology/approach - The paper borrows from the theory of communities-of-practice, which takes into account social relations, contacts, and the transfer and incorporation of knowledge. Open source innovation is not the exclusive preserve of computer nerds, but also has...

  8. Sensitive innovation

    DEFF Research Database (Denmark)

    Søndergaard, Katia Dupret

    Present paper discusses sources of innovation as heterogenic and at times intangible processes. Arguing for heterogeneity and intangibility as sources of innovation originates from a theoretical reading in STS and ANT studies (e.g. Callon 1986, Latour 1996, Mol 2002, Pols 2005) and from field work...... in the area of mental health (Dupret Søndergaard 2009, 2010). The concept of sensitive innovation is developed to capture and conceptualise exactly those heterogenic and intangible processes. Sensitive innovation is therefore primarily a way to understand innovative sources that can be......, but are not necessarily, recognized and acknowledged as such in the outer organisational culture or by management. The added value that qualifies these processes to be defined as “innovative” are thus argued for along different lines than in more traditional innovation studies (e.g. studies that build on the classic...

  9. 76 FR 39615 - Applications for New Awards; Promise Neighborhoods Program-Implementation Grant Competition

    Science.gov (United States)

    2011-07-06

    ... talking with their child about the importance of college and career; or --possible fourth indicator TBD by... DEPARTMENT OF EDUCATION Applications for New Awards; Promise Neighborhoods Program-- Implementation Grant Competition AGENCY: Office of Innovation and Improvement, Department of Education. ACTION...

  10. Livelihood implications of biofuel crop production: Implications for governance

    DEFF Research Database (Denmark)

    Hunsberger, Carol; Bolwig, Simon; Corbera, Esteve

    2014-01-01

    While much attention has focused on the climate change mitigation potential of biofuels, research from the social sciences increasingly highlights the social and livelihood impacts of their expanded production. Policy and governance measures aimed at improving the social effects of biofuels have...... by their cultivation in the global South – income, food security, access to land-based resources, and social assets – revealing that distributional effects are crucial to evaluating the outcomes of biofuel production across these dimensions. Second, we ask how well selected biofuel governance mechanisms address...

  11. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. Published by Elsevier Ltd.

  12. [Progress in synthesis technologies and application of aviation biofuels].

    Science.gov (United States)

    Sun, Xiaoying; Liu, Xiang; Zhao, Xuebing; Yang, Ming; Liu, Dehua

    2013-03-01

    Development of aviation biofuels has attracted great attention worldwide because that the shortage of fossil resources has become more and more serious. In the present paper, the development background, synthesis technologies, current application status and existing problems of aviation biofuels were reviewed. Several preparation routes of aviation biofuels were described, including Fischer-Tropsch process, catalytic hydrogenation and catalytic cracking of bio-oil. The status of flight tests and commercial operation were also introduced. Finally the problems for development and application of aviation biofuels were stated, and some accommodation were proposed.

  13. Tools and methodologies to support more sustainable biofuel feedstock production.

    Science.gov (United States)

    Dragisic, Christine; Ashkenazi, Erica; Bede, Lucio; Honzák, Miroslav; Killeen, Tim; Paglia, Adriano; Semroc, Bambi; Savy, Conrad

    2011-02-01

    Increasingly, government regulations, voluntary standards, and company guidelines require that biofuel production complies with sustainability criteria. For some stakeholders, however, compliance with these criteria may seem complex, costly, or unfeasible. What existing tools, then, might facilitate compliance with a variety of biofuel-related sustainability criteria? This paper presents four existing tools and methodologies that can help stakeholders assess (and mitigate) potential risks associated with feedstock production, and can thus facilitate compliance with requirements under different requirement systems. These include the Integrated Biodiversity Assessment Tool (IBAT), the ARtificial Intelligence for Ecosystem Services (ARIES) tool, the Responsible Cultivation Areas (RCA) methodology, and the related Biofuels + Forest Carbon (Biofuel + FC) methodology.

  14. From biomass to sustainable biofuels in southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Van Zyl, W.H.; Den Haan, R.; Rose, S.H.; La Grange, D.C.; Bloom, M. [Stellenbosch Univ., Matieland (South Africa). Dept. of Microbiology; Gorgens, J.F.; Knoetze, J.H. [Stellenbosch Univ., Matieland (South Africa). Dept. of Process Engineering; Von Blottnitz, H. [Cape Town Univ., Rondebosch (South Africa). Dept. of Chemical Engineering

    2009-07-01

    This presentation reported on a global sustainable bioenergy project with particular reference to South Africa's strategy to develop biofuels. The current biofuel production in South Africa was presented along with the potential for biofuels production and other clean alternative fuels. The South African industrial biofuel strategy (IBS) was developed in 2007 with a mandate to create jobs in the energy-crop and biofuels value chain; attract investment into rural areas; promote agricultural development; and reduce the import of foreign oil. The proposed crops for bioethanol include sugar cane and sugar beet, while the proposed crops for biodiesel include sunflower, canola and soya beans. The exclusion of maize was based on food security concerns. Jatropha curcas was also excluded because it is considered to be an invasive species. In addition to environmental benefits, the production of biofuels from biomass in Africa offers improved energy security, economic development and social upliftment. All biofuel projects are evaluated to ensure that these benefits are realized. Although first generation technologies do not score well due to marginal energy balance, negative life cycle impacts or detriment to biodiversity, the conversion of lignocellulosic biomass scores well in terms of enabling the commercialization of second generation biofuels. This paper discussed both the biochemical and thermochemical technological interventions needed to develop commercially-viable second generation lignocellulose conversion technologies to biofuels. tabs., figs.

  15. Biofuels barometer - EurObserv'ER - July 2015

    International Nuclear Information System (INIS)

    2015-07-01

    +6.1% The increase of biofuel consumption in European Union transport between 2013 and 2014 (in energy content). Biofuel consumption for transport picked up in Europe after a year of uncertainty and decline, increasing by 6.1% over 2013, to 14 million toe (Mtoe) according to EurObserv'ER's first estimates. However it is still below its 2012 level when 14.5 Mtoe of biofuel was incorporated. Consumption of biofuel that meets the European Renewable Energy directive's sustainability criteria rose to 12.5 Mtoe, its highest level so far

  16. Energy properties of solid fossil fuels and solid biofuels

    International Nuclear Information System (INIS)

    Holubcik, Michal; Jandacka, Jozef; Kolkova, Zuzana

    2016-01-01

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  17. Energy properties of solid fossil fuels and solid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk [University of Žilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitná 8215/1, 010 26 Žilina (Slovakia); Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk [Research centre, University of Žilina, Univerzitna 8215/1, 010 26 Žilina (Slovakia)

    2016-06-30

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  18. Improving the environmental performance of biofuels with industrial symbiosis

    International Nuclear Information System (INIS)

    Martin, Michael; Eklund, Mats

    2011-01-01

    In the production of biofuels for transport many critics have argued about the poor energy efficiency and environmental performance of the production industries. Optimism is thus set on the production of second generation biofuels, while first generation biofuels continue to dominate worldwide. Therefore it is interesting to consider how the environmental performance of first generation biofuel industries can be improved. The field of industrial symbiosis offers many possibilities for potential improvements in the biofuel industry and theories from this research field are used in this paper to highlight how environmental performance improvements can be accomplished. This comes in the form of by-product synergies and utility synergies which can improve material and energy handling. Furthermore, the processes and products can gain increased environmental performance improvements by the adaption of a renewable energy system which will act as a utility provider for many industries in a symbiotic network. By-products may thereafter be upcycled through biogas production processes to generate both energy and a bio-fertilizer. A case study of an actual biofuel industrial symbiosis is also reviewed to provide support for these theories. -- Highlights: → By-product and utility synergies may improve the production processes of biofuel industries for reduced energy consumption and improved environmental performance. → Upcycling tenants can make use of wastes to upgrade waste to a valuable product and/or energy source. → Energy systems for biofuel production have a large influence on the performance of biofuel industries.

  19. Will biofuel projects in Southeast Asia become white elephants?

    International Nuclear Information System (INIS)

    Goh, Chun Sheng; Lee, Keat Teong

    2010-01-01

    Southeast Asia's attempt to join the global biofuel development has not been very successful, despite the large amount of subsidies and incentives allotted for biofuel projects. The outcome of these projects has failed to meet expectation due to overrated assumptions and shortsighted policies. Utilization of edible feedstock such as palm oil and sugar cane for biofuel has disrupted the fragile industry due to the fluctuations of feedstock prices. The appropriate research on jatropha to prove its economic and environmental feasibility as energy crop has not been performed. Biofuel development in Southeast Asia remains at an early stage of development and requires highly intensive monitoring and strict legal enforcement to ensure future success.

  20. The development of the biofuels in the french farms

    International Nuclear Information System (INIS)

    Treguer, D.; Sourie, J.C.

    2005-03-01

    At first, developed to compensate the farmers incomes after 1993, the biofuels are going today on a second development phase, in the framework of the Kyoto protocol. The aim of this paper is to define the particularities of the biofuels production agricultural phase. The most important aspects of the common agricultural policy (PAC) for the biofuels are underlined. The costs of the raw material and the tool developed by the INRA to estimate the biofuels costs are also presented. In conclusion the authors propose some reference results. (A.L.B.)

  1. Biofuel Sustainability and the Formation of Transnational Hybrid Governance

    DEFF Research Database (Denmark)

    Ponte, Stefano; Daugbjerg, Carsten

    2015-01-01

    We examine the transnational governance of biofuel sustainability and its coexistence with the WTO trade regime. The way in which the EU Renewable Energy Directive (RED) is shaping transnational biofuel governance shows deep and mutual dependence between public and private. The EU relies on a pri......We examine the transnational governance of biofuel sustainability and its coexistence with the WTO trade regime. The way in which the EU Renewable Energy Directive (RED) is shaping transnational biofuel governance shows deep and mutual dependence between public and private. The EU relies...

  2. Synthetic biology for microbial production of lipid-based biofuels

    Energy Technology Data Exchange (ETDEWEB)

    d' Espaux, L; Mendez-Perez, D; Li, R; Keasling, JD

    2015-10-23

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here in this paper we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. Lastly, we further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  3. Financing Innovation

    OpenAIRE

    William R. Kerr; Ramana Nanda

    2014-01-01

    We review the recent literature on the financing of innovation, inclusive of large companies and new startups. This research strand has been very active over the past five years, generating important new findings, questioning some long-held beliefs, and creating its own puzzles. Our review outlines the growing body of work that documents a role for debt financing related to innovation. We highlight the new literature on learning and experimentation across multi-stage innovation projects and h...

  4. FINAL TECHNICAL REPORT FOR FORESTRY BIOFUEL STATEWIDE COLLABORATION CENTER (MICHIGAN)

    Energy Technology Data Exchange (ETDEWEB)

    LaCourt, Donna M.; Miller, Raymond O.; Shonnard, David R.

    2012-04-24

    A team composed of scientists from Michigan State University (MSU) and Michigan Technological University (MTU) assembled to better understand, document, and improve systems for using forest-based biomass feedstocks in the production of energy products within Michigan. Work was funded by a grant (DE-EE-0000280) from the U.S. Department of Energy (DOE) and was administered by the Michigan Economic Development Corporation (MEDC). The goal of the project was to improve the forest feedstock supply infrastructure to sustainably provide woody biomass for biofuel production in Michigan over the long-term. Work was divided into four broad areas with associated objectives: • TASK A: Develop a Forest-Based Biomass Assessment for Michigan – Define forest-based feedstock inventory, availability, and the potential of forest-based feedstock to support state and federal renewable energy goals while maintaining current uses. • TASK B: Improve Harvesting, Processing and Transportation Systems – Identify and develop cost, energy, and carbon efficient harvesting, processing and transportation systems. • TASK C: Improve Forest Feedstock Productivity and Sustainability – Identify and develop sustainable feedstock production systems through the establishment and monitoring of a statewide network of field trials in forests and energy plantations. • TASK D: Engage Stakeholders – Increase understanding of forest biomass production systems for biofuels by a broad range of stakeholders. The goal and objectives of this research and development project were fulfilled with key model deliverables including: 1) The Forest Biomass Inventory System (Sub-task A1) of feedstock inventory and availability and, 2) The Supply Chain Model (Sub-task B2). Both models are vital to Michigan’s forest biomass industry and support forecasting delivered cost, as well as carbon and energy balance. All of these elements are important to facilitate investor, operational and policy decisions. All

  5. Supplier Innovation

    DEFF Research Database (Denmark)

    Søberg, Peder Veng; Notman, Dorian Mark; Wæhrens, Brian Vejrum

    2017-01-01

    The prevailing research in supplier innovation has been conceptual or based on small data sets. The analysis of a large data set gives a clearer perspective on the actual type and degree of involvement of suppliers in the customer’s innovation process. The supplier perspective of the research...... counterbalances the customer bias that exists in the prevailing literature in this area. Similarly, the issue of the benefit of supplier involvement in the innovation/NPD process can be better understood. Manufacturing suppliers benefit financially from their involvement in the innovation/NPD process of their key...

  6. Responsive Innovation

    DEFF Research Database (Denmark)

    Pedersen, Carsten

    Although the importance of stakeholder networks has been recognized in recent years, a non-teleological model that incorporates their collective sensing into innovation processes has so far not been developed. Hence, this paper argues that traditional linear and sequential innovation models...... are insufficient in hypercompetitive environments. Instead, it is proposed that companies should ground their innovation processes in the collective sensing of frontline-employees and customers that operate around the organizational periphery. This frames the concept of responsive innovation, where key...... stakeholders engaged in the organization’s ongoing business activities collectively identify issues that central managers subsequently can resolve....

  7. Innovation @ NASA

    Science.gov (United States)

    Roman, Juan A.

    2014-01-01

    This presentation provides an overview of the activities National Aeronautics and Space Administration (NASA) is doing to encourage innovation across the agency. All information provided is available publicly.

  8. Methodological aspects on international biofuels trade: International streams and trade of solid and liquid biofuels in Finland

    International Nuclear Information System (INIS)

    Heinimoe, J.

    2008-01-01

    The use of biomass for fuel is increasing in industrialised countries. Rapidly developing biomass markets for energy purposes along with weak information on biofuels trade that statistics offer have been incentives for several recently published studies investigating the status of biofuels trade. The comparison of the studies is often challenging due particularly to the various approaches to the indirect trade of biofuels and the diverse data sources utilised. The purpose of this study was to provide an overview of the Finnish situation with respect to the status of the streams of international biofuels trade. Parallel to this, the study aimed to identify methodological and statistical challenges in observing international biofuels trade. The study analysed available statistical information and introduced a procedure to obtain a clear overview on import and export streams of biofuels. In Finland, the total direct import and export of biofuels, being mainly composed of wood pellets and tall oil, is tiny in comparison with the total consumption of biofuels. Instead, the indirect trade has remarkable importance. Large import volumes of industrial raw wood make Finland a net importer of biofuels. In 2004, approximately 22% (64 PJ) of wood-based energy in Finland originated from imported wood. The study showed that the indirect trade of biofuels may be a significant sector of global biofuels trade. In the case of Finland, a comprehensive compilation of statistics on energy and forestry enabled the determination of the trade status satisfactory. However, national and international statistics should be further developed to take better into consideration international trade and to support continuously developing biofuels markets. (author)

  9. Prospects for Jatropha biofuels in Tanzania: An analysis with Strategic Niche Management

    International Nuclear Information System (INIS)

    Eijck, Janske van; Romijn, Henny

    2008-01-01

    The paper reports on research in Tanzania about the scope for developing biofuels from an oil-seed bearing plant called Jatropha curcas Linnaeus. The plant is widely seen to have potential to help combat the greenhouse effect, help to stop local soil erosion, create additional income for the rural poor, and provide a major source of energy both locally and internationally. The principal analytic tool is Strategic Niche Management (SNM), an approach rooted in evolutionary innovation theory. We analyse how the scope for an energy transition is influenced by factors at three societal levels: the overarching 'landscape'; the sectoral setting or 'regime'; and the 'niche' level where the innovation develops and diffuses. Valuable niche processes were found in a few areas, especially in cultivation, but we conclude that there are still many obstacles in Tanzania's prevailing energy regime. The development of Jatropha biofuels is still in an early phase. We list policy recommendations and discuss some methodological issues arising from the use of SNM

  10. Recent Inventions and Trends in Algal Biofuels Research.

    Science.gov (United States)

    Karemore, Ankush; Nayak, Manoranjan; Sen, Ramkrishna

    2016-01-01

    In recent times, when energy crisis compounded by global warming and climate change is receiving worldwide attention, the emergence of algae, as a better feedstock for third-generation biofuels than energy crops or plants, holds great promise. As compared to conventional biofuels feedstocks, algae offer several advantages and can alone produce a significant amount of biofuels sustainably in a shorter period to fulfill the rising demand for energy. Towards commercialisation, there have been numerous efforts put for- ward for the development of algae-derived biofuel. This article reviews and summarizes the recent inventions and the current trends that are reported and captured in relevant patents pertaining to the novel methods of algae biomass cultivation and processing for biofuels and value-added products. In addition, the recent advancement in techniques and technologies for microalgal biofuel production has been highlighted. Various steps involved in the production of algal biofuels have been considered in this article. Moreover, the work that advances to improve the efficiency and cost-effectiveness of the processes for the manufacture of biofuels has been presented. Our survey was conducted in the patent databases: WIPO, Spacenet and USPTO. There are still some technological bottlenecks that could be overcome by designing advanced photobioreactor and raceway ponds, developing new and low cost technologies for biomass cultivation, harvesting, drying and extraction. Recent advancement in algae biofuels methods is directed toward developing efficient and integrated systems to produce biofuels by overcoming the current challenges. However, further research effort is required to scale-up and improve the efficiency of these methods in the upstream and downstream technologies to make the cost of biofuels competitive with petroleum fuels.

  11. Innovation process

    DEFF Research Database (Denmark)

    Kolodovski, A.

    2006-01-01

    Purpose of this report: This report was prepared for RISO team involved in design of the innovation system Report provides innovation methodology to establish common understanding of the process concepts and related terminology The report does not includeRISO- or Denmark-specific cultural, econom...

  12. Informal Innovation

    DEFF Research Database (Denmark)

    Hartmann, Mia Rosa Koss; Hartmann, Rasmus Koss

    Informal innovation, defined as the development and putting-into-use of novel solutions by non-R&D employees without prior formal approval from or subsequent revealing to superiors, has been recurrently observed in organizational research. But even as it is increasingly recognized that R&D is not......Informal innovation, defined as the development and putting-into-use of novel solutions by non-R&D employees without prior formal approval from or subsequent revealing to superiors, has been recurrently observed in organizational research. But even as it is increasingly recognized that R......&D is not the only plausible source of innovation inside organizations, informal innovation has yet to be systematically explored or theorized. We propose a theory of informal innovation based on analyses of prior literature and mixed-method, multi-site studies of innovation at the working level of two extreme......-case organizations. We propose that informal innovation occurs as 1) employees personally experience problems that they believe are not recognized or prioritized by superiors; 2) some employees are able to develop solutions, essentially at no cost; 3) innovators face no benefits from revealing to superiors, but can...

  13. Open innovation

    DEFF Research Database (Denmark)

    Bogers, Marcel; Chesbrough, Henry; Moedas, Carlos

    2018-01-01

    Open innovation is now a widely used concept in academia, business, and policy making. This article describes the state of open innovation at the intersection of research, practice, and policy. It discusses some key trends (e.g., digital transformation), challenges (e.g., uncertainty...

  14. Managing Innovation.

    Science.gov (United States)

    White, Ronald V.

    The management of innovation in instruction in English as a second language can benefit from the experience and techniques of management in the world of commerce as well as from theories and procedures in education. A systematic approach to the management of innovation emphasizes the importance of clearly defined objectives, evaluation that…

  15. 76 FR 37191 - Notice of Competition for University Transportation Centers (UTC) Program Grants

    Science.gov (United States)

    2011-06-24

    ... capability, the use of peer review, and effective partnerships to advance diversity. The Research and... Competition for University Transportation Centers (UTC) Program Grants AGENCY: Research and Innovative... conduct a competition for University Transportation Centers (UTC) Program grants for the purpose of...

  16. Better greenhouse gas emissions accounting for biofuels : A key to biofuels sustainability

    NARCIS (Netherlands)

    Peeters, Marjan; Yue, Taotao

    2016-01-01

    Biofuels are promoted by governments as a replacement for fossil fuels in the transport sector. However, according to current scientific evidence, their use does not necessarily significantly reduce greenhouse gas emissions. This article examines issues related to the regulation of biofuels’

  17. MAPPING INNOVATION

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff; Koch, Christian

    2011-01-01

    By adopting a theoretical framework from strategic niche management research (SNM) this paper presents an analysis of the innovation system of the Danish Construction industry. Theories within SNM look upon innovation in a sector as a socio-technical phenomenon and identifies three levels of socio......-technical interaction within which sectorial innovation can be explained. The analysis shows a multifaceted landscape of innovation around an existing regime, built in the existing ways of working and developing over generations. The regime is challenged from various niches and the sociotechnical landscape through...... trends as globalization. Three niches (Lean Construction, BIM and System Deliveries) are subject to a detailed analysis showing partly incompatible rationales and various degrees of innovation potential. The paper further discusses how existing policymaking operates in a number of tensions one being...

  18. Accidental Innovation

    DEFF Research Database (Denmark)

    Austin, Robert D.; Devin, Lee; Sullivan, Erin E.

    2012-01-01

    Historical accounts of human achievement suggest that accidents can play an important role in innovation. In this paper, we seek to contribute to an understanding of how digital systems might support valuable unpredictability in innovation processes by examining how innovators who obtain value from...... they incorporate accidents into their deliberate processes and arranged surroundings. By comparing makers working in varied conditions, we identify specific factors (e.g., technologies, characteristics of technologies) that appear to support accidental innovation. We show that makers in certain specified...... conditions not only remain open to accident but also intentionally design their processes and surroundings to invite and exploit valuable accidents. Based on these findings, we offer advice for the design of digital systems to support innovation processes that can access valuable unpredictability....

  19. Collaborative innovation

    DEFF Research Database (Denmark)

    Torfing, Jacob; Sørensen, Eva; Hartley, Jean

    2013-01-01

    , which emphasizes market competition; the neo-Weberian state, which emphasizes organizational entrepreneurship; and collaborative governance, which emphasizes multiactor engagement across organizations in the private, public, and nonprofit sectors. The authors conclude that the choice of strategies......-driven private sector is more innovative than the public sector by showing that both sectors have a number of drivers of as well as barriers to innovation, some of which are similar, while others are sector specific. The article then systematically analyzes three strategies for innovation: New Public Management......There are growing pressures for the public sector to be more innovative but considerable disagreement about how to achieve it. This article uses institutional and organizational analysis to compare three major public innovation strategies. The article confronts the myth that the market...

  20. Responsible innovation

    CERN Document Server

    De Woot, Philippe

    2015-01-01

    Economic development is rooted in disruption, not in equilibrium. And a powerful engine of economic development is innovation; but is this innovation always for the common good? The dark side of the extraordinary dynamism of innovation lies precisely in its destructive power. If simply left to market forces, it could lead to social chaos and great human suffering. To face the challenges of our time, we must create the proper climate and culture to develop strong entrepreneurial drive. But, more than ever, we must give this entrepreneurial drive its ethical and societal dimensions. Responsible innovation means a more voluntary orientation towards the great problems of the 21st century, e.g. depletion of the planet's resources, rising inequality, and new scientific developments potentially threatening freedom, democracy and human integrity. We need to transform our ceaseless creativity into real progress for humankind. In this respect, the rapid development of social innovation opens the door for new methods an...

  1. Ulysses S. Grant and Reconstruction.

    Science.gov (United States)

    Wilson, David L.

    1989-01-01

    Discusses the role played by Ulysses S. Grant during the four years of Reconstruction before he became President of the United States. Describes the dynamics of the relationship between Grant and Andrew Johnson. Points out that Grant's attitude of service to the laws created by Congress submerged his desire to create a new South. (KO)

  2. Grants: View from the Campus.

    Science.gov (United States)

    Mohrman, Kathryn, Ed.

    Each of 13 authors, all experienced in obtaining grants, examines a separate element of the grantsgetting process. The essays include: The Characteristics of an Effective Grants Officer (Julia B. Leverenz); The Grants Office (Morton Cooper); Working with the Academic Dean (Robert C. Nordvall); Working with the Development Office (Barbara A.…

  3. Policies for second generation biofuels: current status and future challenges

    Energy Technology Data Exchange (ETDEWEB)

    Egger, Haakan; Greaker, Mads; Potter, Emily

    2011-07-01

    Current state-of-the-art knowledge concludes that green house gas (GHG) emissions must be controlled and reduced within the next 30-40 years. The transport sector contributes almost a fifth of the current global emissions, and its share is likely to increase in the future. The US and a number of European countries have therefore introduced various support schemes for research and development (RandD) of low emission fuels that can potentially replace the current fossil fuels. One such alternative is biofuels. The advantage of biofuels are that it is easy to introduce into the transport sector. On the other hand, recent research papers question whether the supply of feedstock is sufficient, and to what extent biofuels lead to GHG emission reductions. This report reviews the current status of second generation biofuels. Second generation biofuels are made from cellulose, which according to our survey of the literature, is in more abundant supply than the first generation biofuels feedstocks. Furthermore, it seems to have the potential to reduce GHG emissions from the transport sector without leading to devastating land use changes, which recent critique has held against first generation biofuels. Given that governments have decided to support RandD of low emission fuels, we ask the following questions: Should second generation biofuels receive RandD support to the same extent as other low emission fuels like hydrogen? How should support schemes for second generation biofuels be designed? Second generation biofuels can be divided according to the production process into thermo-chemical and bio-chemical. With respect to the thermo-chemical process the potential for cost reductions seems to be low. On the other hand, ethanol made from cellulose using the biochemical conversion process is far from a ripe technology. Expert reports point to several potential technological breakthroughs which may reduce costs substantially. Hence, cellulosic ethanol, should receive direct

  4. Value Added Products from Renewable Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Paul [Univ. of Nebraska, Lincoln, NE (United States)

    2014-07-31

    Cellulosic ethanol is an emerging biofuel that will make strong contributions to American domestic energy needs. In the US midwest the standard method for pretreatment of biomass uses hot acid to deconstruct lignocellulose. While other methods work, they are not in common use. Therefore it is necessary to work within this context to achieve process improvements and reductions in biofuel cost. Technology underlying this process could supplement and even replace commodity enzymes with engineered microbes to convert biomass-derived lignocellulose feedstocks into biofuels and valueadded chemicals. The approach that was used here was based on consolidated bioprocessing. Thermoacidophilic microbes belonging to the Domain Archaea were evaluated and modfied to promote deconvolution and saccharification of lignocellulose. Biomass pretreatment (hot acid) was combined with fermentation using an extremely thermoacidophilic microbial platform. The identity and fate of released sugars was controlled using metabolic blocks combined with added biochemical traits where needed. LC/MS analysis supported through the newly established Nebraska Bioenergy Facility provided general support for bioenergy researchers at the University of Nebraska. The primary project strategy was to use microbes that naturally flourish in hot acid (thermoacidophiles) with conventional biomass pretreatment that uses hot acid. The specific objectives were: to screen thermoacidophilic taxa for the ability to deconvolute lignocellulose and depolymerize associated carbohydrates; evaluate and respond to formation of “inhibitors” that arose during incubation of lignocellulose under heated acidic conditions; identify and engineer “sugar flux channeling and catabolic blocks” that redirect metabolic pathways to maximize sugar concentrations; expand the hydrolytic capacity of extremely thermoacidophilic microbes through the addition of deconvolution traits; and establish the Nebraska Bioenergy Facility (NBF

  5. Protein engineering for biofuel production: Recent development

    Directory of Open Access Journals (Sweden)

    Nisha Singh

    2016-09-01

    Full Text Available The unstable and unsure handiness of crude oil sources moreover the rising price of fuels have shifted international efforts to utilize renewable resources for the assembly of greener energy and a replacement which might additionally meet the high energy demand of the globe. Biofuels represent a sustainable, renewable, and also the solely predictable energy supply to fossil fuels. During the green production of Biofuels, several in vivo processes place confidence in the conversion of biomass to sugars by engineered enzymes, and the subsequent conversion of sugars to chemicals via designed proteins in microbial production hosts. Enzymes are indispensable within the effort to provide fuels in an ecologically friendly manner. They have the potential to catalyze reactions with high specificity and potency while not using dangerous chemicals. Nature provides an in depth assortment of enzymes, however usually these should be altered to perform desired functions in needed conditions. Presently available enzymes like cellulose are subject to tight induction and regulation systems and additionally suffer inhibition from numerous end products. Therefore, more impregnable and economical catalyst preparations ought to be developed for the enzymatic method to be more economical. Approaches like protein engineering, reconstitution of protein mixtures and bio prospecting for superior enzymes are gaining importance. Advances in enzyme engineering allow the planning and/or directed evolution of enzymes specifically tailored for such industrial applications. Recent years have seen the production of improved enzymes to help with the conversion of biomass into fuels. The assembly of the many of those fuels is feasible due to advances in protein engineering. This review discusses the distinctive challenges that protein engineering faces in the method of changing lignocellulose to biofuels and the way they're addressed by recent advances in this field.

  6. State-of-art in liquid biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Poitrat, E. [Agency for Environment and Energy Management, Dept. of Agriculture and Bioenergies, Paris (France)

    2001-09-01

    European production of fuel alcohol/ETBE and VOME has now become significant and the research work undertaken i) to reduce the energy requirements and financial costs and ii) to improve environmental benefits, are of major importance. While optimisation still seems necessary, the gain to be achieved should come from the valorisation of co-products and increasing the size of production plants. Larger production plants will make it possible to implement techniques with higher investment costs but having greater energy efficiency. For VOME, the importance of the cost of producing the agricultural feedstock remains very critical, more so than the size of the industrial plant where the size of new plants (100 000 tons up to 250 000 tons) seems a good compromise. Wider use of biofuels will also depend on agricultural policy (setaside status), tax system and harmonisation of the European legislation on oxyfuels. It will improve the greenhouse effect in harmony with the KYOTO agreement. Environmental impacts, and more particularly their quantification in terms of externalities, remain a very crucial topic. In this situation, the quantity of produced biofuels is or will be more 2 millions tons now, including forecasted quantities, which represent 11% of the objective by 2010. Otherwise, the repartition of this current production is very unequal between the different countries of EC. The first production is planned by Germany with 1 millions tons, the second by France with 570 000 tons and the third by Spain with 306 000 tons. Smaller quantities are linked at Italy, Austria, Sweden and Belgium. Other countries have not biofuels production currently. (au)

  7. The European Union stakes on biofuels

    International Nuclear Information System (INIS)

    Laffon, M.

    2008-01-01

    The European Union has just published the environmental side of its action in the fight against climatic change. Like the third 'energy batch', these new legislative proposals are the continuation of the January 2007 communication of the commission which aimed at fixing the trends of the energy policy of the European Communities. Some measures of these last legislative proposals, in particular those treating of biofuels, are sometimes considered as too ambitious and even unrealistic. The overall proposals are waiting for the final adoption during the French presidency. (J.S.)

  8. Cyanobacteria as a platform for biofuel production

    Directory of Open Access Journals (Sweden)

    Nicole E Nozzi

    2013-09-01

    Full Text Available Cyanobacteria have great potential as a platform for biofuel production because of their fast growth, ability to fix carbon dioxide gas, and their genetic tractability. Furthermore they do not require fermentable sugars or arable land for growth and so competition with cropland would be greatly reduced. In this perspective we discuss the challenges and areas for improvement most pertinent for advancing cyanobacterial fuel production, including: improving genetic parts, carbon fixation, metabolic flux, nutrient requirements on a large scale, and photosynthetic efficiency using natural light.

  9. Ensuring sustainability in developing world biofuel productoin

    CSIR Research Space (South Africa)

    Von Maltitz, Graham P

    2009-06-01

    Full Text Available el N at io n al an d in te rn at io n al liq u id fu el s bl en ds Type 1 projects E.g. Mali Folkecentre Ghana Dumpong Biofuels See text box A and B Type 4 projects E.g. Large scale commercial plantations... approach Mali farmer growing jatropha as a fuel source to fuel 3 X 100 KW generators that will provide power to his village Brazilian ethanol production from large scale mechanised sugar cane fields Is certification and setting...

  10. Coproduction of bioethanol with other biofuels

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Westermann, Peter

    2007-01-01

    Large scale transformation of biomass to more versatile energy carriers has most commonly been focused on one product such as ethanol or methane. Due to the nature of the biomass and thermodynamic and biological constraints, this approach is not optimal if the energy content of the biomass...... pilot-scale biorefineries for multiple fuel production and also discuss perspectives for further enhancement of biofuel yields from biomass. The major fuels produced in this refinery are ethanol, hydrogen, and methane. We also discuss the applicability of our biorefinery concept as a bolt-on plant...

  11. 2016 National Algal Biofuels Technology Review

    Energy Technology Data Exchange (ETDEWEB)

    Barry, Amanda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bioenergy Technologies Office, Washington, DC (United States); Wolfe, Alexis [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); English, Christine [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bioenergy Technologies Office, Washington, DC (United States); Ruddick, Colleen [BCS, Incorporated, Washington, DC (United States); Lambert, Devinn [Bioenergy Technologies Office, Washington, DC (United States)

    2016-06-01

    The Bioenergy Technologies Office (BETO) of the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, is committed to advancing the vision of a viable, sustainable domestic biomass industry that produces renewable biofuels, bioproducts, and biopower; enhances U.S. energy security; reduces our dependence on fossil fuels; provides environmental benefits; and creates economic opportunities across the nation. BETO’s goals are driven by various federal policies and laws, including the Energy Independence and Security Act of 2007 (EISA). To accomplish its goals, BETO has undertaken a diverse portfolio of research, development, and demonstration (RD&D) activities, in partnership with national laboratories, academia, and industry.

  12. The Biofuels Revolution: Understanding the Social, Cultural and Economic Impacts of Biofuels Development on Rural Communities

    Energy Technology Data Exchange (ETDEWEB)

    Selfa, Theresa L; Goe, Richard; Kulcsar, Laszlo; Middendorf, Gerad; Bain, Carmen

    2013-02-11

    The aim of this research was an in-depth analysis of the impacts of biofuels industry and ethanol plants on six rural communities in the Midwestern states of Kansas and Iowa. The goal was to provide a better understanding of the social, cultural, and economic implications of biofuels development, and to contribute to more informed policy development regarding bioenergy.Specific project objectives were: 1. To understand how the growth of biofuel production has affected and will affect Midwestern farmers and rural communities in terms of economic, demographic, and socio-cultural impacts; 2. To determine how state agencies, groundwater management districts, local governments and policy makers evaluate or manage bioenergy development in relation to competing demands for economic growth, diminishing water resources, and social considerations; 3. To determine the factors that influence the water management practices of agricultural producers in Kansas and Iowa (e.g. geographic setting, water management institutions, competing water-use demands as well as producers attitudes, beliefs, and values) and how these influences relate to bioenergy feedstock production and biofuel processing; 4. To determine the relative importance of social-cultural, environmental and/or economic factors in the promotion of biofuels development and expansion in rural communities; The research objectives were met through the completion of six detailed case studies of rural communities that are current or planned locations for ethanol biorefineries. Of the six case studies, two will be conducted on rural communities in Iowa and four will be conducted on rural communities in Kansas. A multi-method or mixed method research methodology was employed for each case study.

  13. Bringing biofuels on the market. Options to increase EU biofuels volumes beyond the current blending limits

    Energy Technology Data Exchange (ETDEWEB)

    Kampman, B.; Van Grinsven, A.; Croezen, H. [CE Delft, Delft (Netherlands); Verbeek, R.; Van Mensch, P.; Patuleia, A. [TNO, Delft, (Netherlands)

    2013-07-15

    This handbook on biofuels provides a comprehensive overview of different types of biofuels, and the technical options that exist to market the biofuels volumes expected to be consumed in the EU Member States in 2020. The study concludes that by fully utilizing the current blending limits of biodiesel (FAME) in diesel (B7) and bioethanol in petrol (E10) up to 7.9% share of biofuels in the EU transport sector can be technically reached by 2020. Increasing use of advanced biofuels, particularly blending of fungible fuels into diesel (eg. HVO and BTL) and the use of higher ethanol blends in compatible vehicles (e.g. E20), can play an important role. Also, the increased use of biomethane (in particular bio-CNG) and higher blends of biodiesel (FAME) can contribute. However, it is essential for both governments and industry to decide within 1 or 2 years on the way ahead and take necessary actions covering both, the fuels and the vehicles, to ensure their effective and timely implementation. Even though a range of technical options exist, many of these require considerable time and effort to implement and reach their potential. Large scale implementation of the options beyond current blending limits requires new, targeted policy measures, in many cases complemented by new fuel and vehicle standards, adaptation of engines and fuel distribution, etc. Marketing policies for these vehicles, fuels and blends are also likely to become much more important than in the current situation. Each Member State may develop its own strategy tailored to its market and policy objectives, but the EU should play a crucial facilitating role in these developments.

  14. DOE Matching Grant Program

    International Nuclear Information System (INIS)

    Tsoukalas, L.

    2002-01-01

    Funding used to support a portion of the Nuclear Engineering Educational Activities. Upgrade of teaching labs, student support to attend professional conferences, salary support for graduate students. The US Department of Energy (DOE) has funded Purdue University School of Nuclear Engineering during the period of five academic years covered in this report starting in the academic year 1996-97 and ending in the academic year 2000-2001. The total amount of funding for the grant received from DOE is $416K. In the 1990's, Nuclear Engineering Education in the US experienced a significant slow down. Student enrollment, research support, number of degrees at all levels (BS, MS, and PhD), number of accredited programs, University Research and Training Reactors, all went through a decline to alarmingly low levels. Several departments closed down, while some were amalgamated with other academic units (Mechanical Engineering, Chemical Engineering, etc). The School of Nuclear Engineering at Purdue University faced a major challenge when in the mid 90's our total undergraduate enrollment for the Sophomore, Junior and Senior Years dropped in the low 30's. The DOE Matching Grant program greatly strengthened Purdue's commitment to the Nuclear Engineering discipline and has helped to dramatically improve our undergraduate and graduate enrollment, attract new faculty and raise the School of Nuclear Engineering status within the University and in the National scene (our undergraduate enrollment has actually tripled and stands at an all time high of over 90 students; total enrollment currently exceeds 110 students). In this final technical report we outline and summarize how the grant was expended at Purdue University

  15. A strategic assessment of biofuels development in the Western States

    Science.gov (United States)

    Kenneth E. Skog; Robert Rummer; Bryan Jenkins; Nathan Parker; Peter Tittman; Quinn Hart; Richard Nelson; Ed Gray; Anneliese Schmidt; Marcia Patton-Mallory; Gordon Gayle

    2009-01-01

    The Western Governors' Association assessment of biofuels potential in western states estimated the location and capacity of biofuels plants that could potentially be built for selected gasoline prices in 2015 using a mixed integer programming model. The model included information on forest biomass supply curves by county (developed using Forest Service FIA data...

  16. Socio-economic aspects of different biofuel development pathways

    International Nuclear Information System (INIS)

    Duer, Henrik; Christensen, Pernille Ovre

    2010-01-01

    There are several policy drivers for biofuels on a larger scale in the EU transport sector, including increased security of energy supply, reduced emission of greenhouse gases (GHG), and new markets for the agricultural sector. The purpose of this socio-economic cost analysis is to provide an overview of the costs of meeting EU biofuels targets, taking into account several external costs and benefits. Biofuels are generally more expensive than traditional fossil fuels, but the expected increasing value of GHG emission reductions will over time reduce the cost gap. High crude oil prices significantly improve the economic benefit of biofuels, but increased demand for biomass for energy purposes is likely to increase the price of biofuels feedstock and biofuels costs. The key question is to what extent increasing oil prices will be passed on to biofuels costs. Socio-economic least costs for biofuels production require a market with a clear pricing of GHG emissions to ensure that this factor is included in the decision-making of actors in all links of the fuel chain.

  17. Physiological and genetic studies towards biofuel production in cyanobacteria

    NARCIS (Netherlands)

    Schuurmans, R.M.

    2017-01-01

    The main aim of this thesis was to contribute to the optimization of the cyanobacterial cell factory and to increase the production of cellulose as a biofuel (precursor) via a physiological and a transgenic approach. Chapter 1 provides an overview of the current state of cyanobacterial biofuel

  18. Greenhouse gas emission curves for advanced biofuel supply chains

    NARCIS (Netherlands)

    Daioglou, Vassilis|info:eu-repo/dai/nl/345702867; Doelman, Jonathan C.|info:eu-repo/dai/nl/411286099; Stehfest, Elke; Müller, Christoph; Wicke, Birka|info:eu-repo/dai/nl/306645955; Faaij, Andre; van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X

    2017-01-01

    Most climate change mitigation scenarios that are consistent with the 1.5–2 °C target rely on a large-scale contribution from biomass, including advanced (second-generation) biofuels. However, land-based biofuel production has been associated with substantial land-use change emissions. Previous

  19. The South's outlook for sustainable forest bioenergy and biofuels production

    Science.gov (United States)

    David Wear; Robert Abt; Janaki Alavalapati; Greg Comatas; Mike Countess; Will McDow

    2010-01-01

    The future of a wood-based biofuel/bioenergy sector could hold important implications for the use, structure and function of forested landscapes in the South. This paper examines a set of questions regarding the potential effects of biofuel developments both on markets for traditional timber products and on the provision of various non-timber ecosystem services. In...

  20. Sustainability of biofuels and bioproducts: socio-economic impact assessment

    NARCIS (Netherlands)

    Rutz, D.; van Eijck, J.A.J.|info:eu-repo/dai/nl/297954296; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2011-01-01

    Many countries worldwide are increasingly engaging in the promotion of biomass production for industrial uses such as biofuels and bioproducts (chemicals, bioplastics, etc.). Until today, mainly biofuels were supported by European policies, but support for bioproducts is still lacking behind. Thus,

  1. Economy-wide impacts of biofuels in Argentina

    International Nuclear Information System (INIS)

    Timilsina, Govinda R.; Chisari, Omar O.; Romero, Carlos A.

    2013-01-01

    Argentina is one of the world's largest biodiesel producers and the largest exporter, using soybeans as feedstock. Using a computable general equilibrium model that explicitly represents the biofuel industry, this study carries out several simulations on two sets of issues: (i) international markets for biofuel and feedstock, such as an increase in prices of soybean, soybean oil, and biodiesel, and (ii) domestic policies related to biofuels, such as an introduction of biofuel mandates. Both sets of issues can have important consequences to the Argentinean economy. The simulations indicate that increases in international prices of biofuels and feedstocks would increase Argentina's gross domestic product and social welfare. Increases in international prices of ethanol and corn also can benefit Argentina, but to a lesser extent. The domestic mandates for biofuels, however, would cause small losses in economic output and social welfare because they divert part of biodiesel and feedstock from exports to lower-return domestic consumption. An increase in the export tax on either feedstock or biodiesel also would lead to a reduction in gross domestic product and social welfare, although government revenue would rise. - Highlights: ► Argentina is one of the largest biodiesel producer and exporter using soybeans. ► Economy-wide impacts are assessed using a CGE model for Argentina. ► Policies simulated are feedstock and biodiesel price change, and domestic mandates. ► Increases in international prices of biofuels and feedstock benefit the country. ► Domestic mandates for biofuels cause small losses in economic output

  2. Reconciling biofuels, sustainability and commodities demand. Pitfalls and policy options

    International Nuclear Information System (INIS)

    Uslu, A.; Bole, T.; Londo, M.; Pelkmans, L.; Berndes, G.; Prieler, S.; Fischer, G.; Cueste Cabal, H.

    2010-06-01

    Increasing fossil fuel prices, energy security considerations and environmental concerns, particularly concerning climate change, have motivated countries to explore alternative energy sources including biofuels. Global demand for biofuels has been rising rapidly due to biofuel support policies established in many countries. However, proposed strong links between biofuels demand and recent years' high food commodity prices, and notions that increasing biofuels production might bring about serious negative environmental impacts, in particularly associated with the land use change to biofuel crops, have shifted public enthusiasm about biofuels. In this context, the ELOBIO project aims at shedding further light to these aspects of biofuel expansion by collecting and reviewing the available data, and also developing strategies to decrease negative effects of biofuels while enabling their positive contribution to climate change, security of supply and rural development. ELOBIO considers aspects associated with both 1st and 2nd generation biofuels, hence analyses effects on both agricultural commodity markets and lignocellulosic markets. This project, funded by the Intelligent Energy Europe programme, consists of a review of current experiences with biofuels and other renewable energy policies and their impacts on other markets, iterative stakeholder-supported development of low-disturbing biofuels policies, model supported assessment of these policies' impacts on food, feed and lignocellulosic markets, and finally an assessment of the effects of selected optimal policies on biofuels costs and potentials. Results of the ELOBIO study show that rapid biofuel deployment without careful monitoring of consequences and implementation of mitigating measures risks leading to negative consequences. Implementing ambitious global biofuel targets for 2020, based on current 1st generation technologies, can push international agricultural commodity prices upwards and increase crop

  3. Transport biofuels - a life-cycle assessment approach

    NARCIS (Netherlands)

    Reijnders, L.

    2008-01-01

    Life-cycle studies of the currently dominant transport biofuels (bioethanol made from starch or sugar and biodiesel made from vegetable oil) show that solar energy conversion efficiency is relatively poor if compared with solar cells and that such biofuels tend to do worse than conventional fossil

  4. Transgenic perennial biofuel feedstocks and strategies for bioconfinement

    Science.gov (United States)

    The use of transgenic tools for the improvement of plant feedstocks will be required to realize the full economic and environmental benefits of cellulosic and other biofuels, particularly from perennial plants. Traits that are targets for improvement of biofuels crops include he...

  5. Biofuels for road transport: A seed to wheel perspective

    NARCIS (Netherlands)

    Reijnders, L.; Huijbregts, M.A.J.

    2009-01-01

    This book provides a review of the history, the current status and the impact of biofuels used in road transport, across the full ‘seed-to-wheel’ life cycle of these fuels. Successive chapters cover many issues relevant to the current debate on biofuels, such as cost, competition with food

  6. Burning water: The water footprint of biofuel-based transport

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2010-01-01

    The trend towards substitution of conventional transport fuels by biofuels requires additional water. The EU aims to replace 10 percent of total transport fuels by biofuels by 2020. This study calculates the water footprint (WF) of different transport modes using bio-ethanol, biodiesel or

  7. Towards a bioethics of innovation.

    Science.gov (United States)

    Lipworth, Wendy; Axler, Renata

    2016-07-01

    In recent years, it has become almost axiomatic that biomedical research and clinical practice should be 'innovative'-that is, that they should be always evolving and directed towards the production, translation and implementation of new technologies and practices. While this drive towards innovation in biomedicine might be beneficial, it also raises serious moral, legal, economic and sociopolitical questions that require further scrutiny. In this article, we argue that biomedical innovation needs to be accompanied by a dedicated 'bioethics of innovation' that attends systematically to the goals, process and outcomes of biomedical innovation as objects of critical inquiry. Using the example of personalised or precision medicine, we then suggest a preliminary framework for a bioethics of innovation, based on the research policy initiative of 'Responsible Innovation'. We invite and encourage critiques of this framework and hope that this will provoke a challenging and enriching new bioethical discourse. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Nuclear innovation in Saskatchewan: innovation

    International Nuclear Information System (INIS)

    Alexander, N.

    2015-01-01

    This paper describes nuclear innovation in Saskatchewan. The first stage is the Canadian Institute for Science and Innovation Policy (CSIP) and how you have a successful discussion about a technically complex issue, understand what information people need in order to have an informed discussion, understand how to convey that information to those people in a constructive way.

  9. Participatory Innovation

    DEFF Research Database (Denmark)

    Buur, Jacob; Matthews, Ben

    2008-01-01

    An increasing number of corporations engage with users in co-innovation of products and services. But there are a number of competing perspectives on how best to integrate these understandings into existing corporate innovation development processes. This paper maps out three of the dominant appr...... the challenges such an approach sets to innovation management, and discuss research directions we see as fundamental to the development of the field of user-driven innovation. Udgivelsesdato: September......An increasing number of corporations engage with users in co-innovation of products and services. But there are a number of competing perspectives on how best to integrate these understandings into existing corporate innovation development processes. This paper maps out three of the dominant...... approaches, compares them in terms of goals, methods and basic philosophy, and shows how they may beneficially enrich one another. We will present an industrial innovation case that has been instrumental to the development of what we have termed ‘Participatory Innovation’. Based on this we will list...

  10. Innovative grants program teams up Canadian and Latin American ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    24 juin 2016 ... For example, in Colombia, researchers from Simon Fraser University and the Centro Internacional de Entrenamiento e Investigaciones Médicas identified ways to prevent dengue transmission. In Cuba, researchers from the University of Ottawa and the Instituto Superior de Tecnologías y Ciencias Aplicadas ...

  11. Grants and awards: Gender equality and scaling digital innovation ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Alliance creates business and social impact mentorship programs that nurture ... and fostering women's leadership in the Internet-for-development sector. ... IDRC congratulates first cohort of Women in Climate Change Science Fellows.

  12. Grants and awards: Gender equality and scaling digital innovation ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... gender equality is central to global development policy and practice. ... the provision of employment, and leadership development pathways. ... Perspectives asiatiques : Une nouvelle croissance reposant sur une nouvelle productivité.

  13. Segregated Debate on Biofuels in Ghana? Options for Policymaking

    DEFF Research Database (Denmark)

    Ackom, Emmanuel; Poulsen, Emma

    2016-01-01

    Biofuels has been an increasingly debated issue since the beginning of this century. Some scholars emphasize the risks of biofuels on livelihood in Ghana; while others argue positively for the rural development and energy security potential of biofuels. These serve as the rationale of this study...... in the scholarly and grey literature published recently by using the search terms „biofuel‟ and „Ghana‟. The findings show a major skepticism - optimism divide in the biofuel discourse and its potential to improve livelihoods in Ghana. This study attempts to describe this dispute by quantifying different scholars......‟ position on a scale from pessimist to optimist. This is not meant to be reductionist or over simplistic, but rather the work we have done provide an illustrative perspective and overview of the scholarly divisions and gaps. Findings suggest that the biofuel discussions would benefit greatly from less...

  14. Wind versus Biofuels for Addressing Climate, Health, and Energy

    International Nuclear Information System (INIS)

    Jacobson, Mark Z.

    2007-01-01

    The favored approach today for addressing global warming is to promote a variety of options: biofuels, wind, solar thermal, solar photovoltaic, geothermal, hydroelectric, and nuclear energy and to improve efficiency. However, by far, most emphasis has been on biofuels. It is shown here, though, that current-technology biofuels cannot address global warming and may slightly increase death and illness due to ozone-related air pollution. Future biofuels may theoretically slow global warming, but only temporarily and with the cost of increased air pollution mortality. In both cases, the land required renders biofuels an impractical solution. Recent measurements and statistical analyses of U.S. and world wind power carried out at Stanford University suggest that wind combined with other options can substantially address global warming, air pollution mortality, and energy needs simultaneously.

  15. Biofuels, times are changing. Notification effect or real progress?

    International Nuclear Information System (INIS)

    Scarwell, H.J.

    2007-01-01

    This well-documented book analyses the implications relative to the recent decisions taken for the development of biofuels. The history of alcohol-based biofuels, in France, in Europe and in the rest of the world, shows why the present day 'opportunity window' makes these fuels more 'sustainable' today than in the past: the common agricultural policy, the oil crisis, the global warming and its expected impacts have led governments to develop biofuels. The authors stress on the fragile equilibrium between agriculture and energy markets and on the fact that the viability/sustainability of biofuels-related decisions will depend on the economic scales (from micro- to macro-economy) and on the agronomic environmental scales (from the rural area to the global environment). Many researches remain to be carried out on biofuels, in particular with respect to their potential toxicity and to their conformability with recent regulations. (J.S.)

  16. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Soloiu, Valentin A. [Georgia Southern Univ., Statesboro, GA (United States)

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  17. Sustainable Biofuel Contributions to Carbon Mitigation and Energy Independence

    Directory of Open Access Journals (Sweden)

    Phillip Steele

    2011-10-01

    Full Text Available The growing interest in US biofuels has been motivated by two primary national policy goals, (1 to reduce carbon emissions and (2 to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle data for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.

  18. Will EU Biofuel Policies affect Global Agricultural Markets?

    International Nuclear Information System (INIS)

    Banse, M.; Vvan Meijl, H.; Tabeau, A.; Woltjer, G.

    2008-04-01

    This paper assesses the global and sectoral implications of the European Union Biofuels Directive (BFD) in a multi-region computable general equilibrium framework with endogenous determination of land supply. The results show that, without mandatory blending policies or subsidies to stimulate the use of biofuel crops in the petroleum sector, the targets of the BFD will not be met in 2010 and 2020. With a mandatory blending policy, the enhanced demand for biofuel crops has a strong impact on agriculture at the global and European levels. The additional demand from the energy sector leads to an increase in global land use and, ultimately, a decrease in biodiversity. The development, on the other hand, might slow or reverse the long-term process of declining real agricultural prices. Moreover, assuming a further liberalization of the European agricultural market imports of biofuels are expected to increase to more than 50% of the total biofuel demand in Europe

  19. Biofuels barometer - EurObserv'ER - July 2010

    International Nuclear Information System (INIS)

    2010-07-01

    12.1 Mtoe of biofuels consumed in the transport sector in the EU in 2009. European Union biofuel use for transport reached the 12 million tons of oil equivalent (mtoe) threshold during 2009, heralding a further drop in the pace of the sector's growth, which rose by only 18.7% between 2008 and 2009 - just 1.9 mtoe of consumption over the previous year. The biofuel incorporation rate in all fuels used by transport in the EU is unlikely to pass 4% in 2009, which is a very long way short of the 5.75% goal for 2010 set in the 2003 European biofuel directive, which would require around 18 mtoe of biofuel use

  20. Participatory Innovation

    DEFF Research Database (Denmark)

    Buur, Jacob; Matthews, Ben

    In this paper we discuss the potential for Participatory Design (PD) to make a fundamental contribution to the business-oriented field of user-driven innovation, taking note of where we find PD can best benefit from interaction with this other field. We examine some of the challenges that must...... be addressed if PD is to contribute to innovation processes in companies. We conclude by presenting a research agenda comprising of six promising topics to shape a new discipline of Participatory Innovation....