WorldWideScience

Sample records for biofuel crop production

  1. Alternative Crops and Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Kenkel, Philip [Oklahoma State Univ., Stillwater, OK (United States); Holcomb, Rodney B. [Oklahoma State Univ., Stillwater, OK (United States)

    2013-03-01

    In order for the biofuel industry to meet the RFS benchmarks for biofuels, new feedstock sources and production systems will have to be identified and evaluated. The Southern Plains has the potential to produce over a billion gallons of biofuels from regionally produced alternative crops, agricultural residues, and animal fats. While information on biofuel conversion processes is available, it is difficult for entrepreneurs, community planners and other interested individuals to determine the feasibility of biofuel processes or to match production alternatives with feed stock availability and community infrastructure. This project facilitates the development of biofuel production from these regionally available feed stocks. Project activities are concentrated in five major areas. The first component focused on demonstrating the supply of biofuel feedstocks. This involves modeling the yield and cost of production of dedicated energy crops at the county level. In 1991 the DOE selected switchgrass as a renewable source to produce transportation fuel after extensive evaluations of many plant species in multiple location (Caddel et al,. 2010). However, data on the yield and cost of production of switchgrass are limited. This deficiency in demonstrating the supply of biofuel feedstocks was addressed by modeling the potential supply and geographic variability of switchgrass yields based on relationship of available switchgrass yields to the yields of other forage crops. This model made it possible to create a database of projected switchgrass yields for five different soil types at the county level. A major advantage of this methodology is that the supply projections can be easily updated as improved varieties of switchgrass are developed and additional yield data becomes available. The modeling techniques are illustrated using the geographic area of Oklahoma. A summary of the regional supply is then provided.

  2. Sustainable production of grain crops for biofuels

    Science.gov (United States)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  3. A modelling approach to estimate the European biofuel production: from crops to biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Clodic, Melissa [Institute National de la Recherche Agronomique (IFP/INRA), Paris (France). Instituto Frances do Petroleo

    2008-07-01

    Today, in the context of energy competition and climate change, biofuels are promoted as a renewable resource to diversify the energy supply. However, biofuel development remains controversial. Here, we will present a way to make an environmental and economic cost and benefit analysis of European biofuels, from the crops until the marketed products, by using a linear programming optimization modelling approach. To make this European biofuel production model, named AGRAF, possible, we decided to use different independent linear programming optimization models which represent the separate parts of the process: European agricultural production, production of transforming industries and refinery production. To model the agricultural and the refining sections, we have chosen to improve existing and experimented models by adding a biofuel production part. For the transforming industry, we will create a new partial equilibrium model which will represent stake holders such as Sofiproteol, Stereos, etc. Data will then be exchanged between the models to coordinate all the biofuel production steps. Here, we will also focus on spatialization in order to meet certain of our requirements, such as the exchange flux analysis or the determination of transport costs, usually important in an industrial optimization model. (author)

  4. Livelihood implications of biofuel crop production: Implications for governance

    DEFF Research Database (Denmark)

    Hunsberger, Carol; Bolwig, Simon; Corbera, Esteve

    2014-01-01

    While much attention has focused on the climate change mitigation potential of biofuels, research from the social sciences increasingly highlights the social and livelihood impacts of their expanded production. Policy and governance measures aimed at improving the social effects of biofuels have...... by their cultivation in the global South – income, food security, access to land-based resources, and social assets – revealing that distributional effects are crucial to evaluating the outcomes of biofuel production across these dimensions. Second, we ask how well selected biofuel governance mechanisms address...

  5. Jatropha: A Promising Crop for Africa's Biofuel Production?

    NARCIS (Netherlands)

    Eijck, J.A.J. van; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    Jatropha has often been proposed as a miracle crop for the production of oil, because of the high yields and low requirements in terms of land quality, climate and crop management. A large number of companies have started with jatropha production in Africa which is projected to increase rapidly.

  6. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    Science.gov (United States)

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  7. Crop diversification can contribute to disease risk control in sustainable biofuels production

    OpenAIRE

    Smith, VH; McBride, RC; Shurin, JB; Bever, JD; Crews, TE; Tilman, GD

    2015-01-01

    © The Ecological Society of America. Global demand for transportation fuels will increase rapidly during the upcoming decades, and concerns about fossil-fuel consumption have stimulated research on renewable biofuels that can be sustainably produced from biological feedstocks. However, if unchecked, pathogens and parasites are likely to infect these cultivated biofuel feedstocks, greatly reducing crop yields and potentially threatening the sustainability of renewable bioenergy production effo...

  8. Biofuel Crops Expansion: Evaluating the Impact on the Agricultural Water Scarcity Costs and Hydropower Production with Hydro Economic Modeling

    Science.gov (United States)

    Marques, G.

    2015-12-01

    Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.

  9. Spatial analysis of the potential crops for the production of biofuels in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Carballo, Stella; Marco, Noelia Flores; Anschau, Alicia [Centro de Investigaciones de Recursos Naturales (CIRN/INTA), Buenos Aires (Argentina). Inst. de Tecnologia Agropecuaria. Inst. de Clima y Agua], E-mail: scarballo@cnia.inta.gov.ar; Hilbert, Jorge [Instiuto de Ingenieria Rural (CIA/INTA), Buenos Aires (Argentina)], E-mail: hilbert@cnia.inta.gov.ar

    2008-07-01

    The increase in biofuels production has been rising in the last ten years at a high rate. Argentina as one of the main crop producers in the world has a great potential to contribute with high volumes of biofuels. At present time common crops are used for large scale production but new alternatives are under study in different regions of the country. The increase in pressure for expansion also raises concerns on the impact on ecology issues such as soil erosion and biodiversity. Looking at a national level INTA has been working on the construction of a GIS were different crops were placed. The purpose is to identify critical information, to raise a methodology to obtain accurate and up-to date thematic maps using satellite images, to feed a GIS and to integrate the different layers to estimate biomass potentials for energy supply in our country, assessing potential land availability for biofuel crops or plantations to be made with ecological, economic and social sustainability bases. (author)

  10. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution.

    Science.gov (United States)

    Femeena, P V; Sudheer, K P; Cibin, R; Chaubey, I

    2018-04-15

    Biofuel has emerged as a substantial source of energy in many countries. In order to avoid the 'food versus fuel competition', arising from grain-based ethanol production, the United States has passed regulations that require second generation or cellulosic biofeedstocks to be used for majority of the biofuel production by 2022. Agricultural residue, such as corn stover, is currently the largest source of cellulosic feedstock. However, increased harvesting of crops residue may lead to increased application of fertilizers in order to recover the soil nutrients lost from the residue removal. Alternatively, introduction of less-fertilizer intensive perennial grasses such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus Greef et Deu.) can be a viable source for biofuel production. Even though these grasses are shown to reduce nutrient loads to a great extent, high production cost have constrained their wide adoptability to be used as a viable feedstock. Nonetheless, there is an opportunity to optimize feedstock production to meet bioenergy demand while improving water quality. This study presents a multi-objective simulation optimization framework using Soil and Water Assessment Tool (SWAT) and Multi Algorithm Genetically Adaptive Method (AMALGAM) to develop optimal cropping pattern with minimum nutrient delivery and minimum biomass production cost. Computational time required for optimization was significantly reduced by loose coupling SWAT with an external in-stream solute transport model. Optimization was constrained by food security and biofuel production targets that ensured not more than 10% reduction in grain yield and at least 100 million gallons of ethanol production. A case study was carried out in St. Joseph River Watershed that covers 280,000 ha area in the Midwest U.S. Results of the study indicated that introduction of corn stover removal and perennial grass production reduce nitrate and total phosphorus loads without

  11. Energy production study of crops with biofuel potential in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Donato, Lidia; Huerga, Ignacio; Hilbert, Jorge [Instituto Nacional de Tecnologia Agropecuaria (CIA/INTA), Buenos Aires (Argentina). Centro de Investigacion de Agroindustria. Inst. de Ingenieria Rural], Emails: ingdonato@cnia.inta.gov.ar, ihuerga@cnia.inta.gov.ar, hilbert@cnia.inta.gov.ar

    2008-07-01

    The present study is focus on the final energy balance of bioenergy production in Argentina using soybean, sunflower, rapeseed, corn and sorghum as feedstocks. The balance considers the difference between the energy contained per unit and the amount used for its generation in all the different steps from sowing to final destination. For direct energy consumption Costo Maq software was employed using local fuel consumption forecast for each field labor. Particular attention is paid to the energy consumption in the agricultural steps considering the distinctive no till system spread out in Argentina that has a very low energy input. Direct and indirect energy were considered in the different steps of bioethanol and biodiesel generation. Industrial conversion consumption was based on international literature data. Comparisons were made between tilled and no till practices and considering or not the energy contained in co products. Results indicate a balance ranging from 0.96 to 1.54 not considering the co products. If co products were introduced the balances ranged between 1.09 and 4.67. (author)

  12. Screening boreal energy crops and crop residues for methane biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaeki, A.; Rintala, J.A. [Department of Biological and Environmental Science, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland); Viinikainen, T.A. [Department of Chemistry, University of Jyvaeskylae, P.O. Box 35, FI-40014 Jyvaeskylae (Finland)

    2008-06-15

    The purpose of the study was to screen potential boreal energy crops and crop residues for their suitability in methane production and to investigate the effect of harvest time on the methane production potential of different crops. The specific methane yields of crops, determined in 100-200 d methane potential assays, varied from 0.17 to 0.49 m{sup 3} CH{sub 4} kg{sup -1} VS{sub added} (volatile solids added) and from 25 to 260 m{sup 3} CH{sub 4} t{sub ww}{sup -1} (tonnes of wet weight). Jerusalem artichoke, timothy-clover grass and reed canary grass gave the highest potential methane yields of 2900-5400 m{sup 3} CH{sub 4} ha{sup -1}, corresponding to a gross energy yield of 28-53 MWh ha{sup -1} and ca. 40,000-60,000 km ha{sup -1} in passenger car transport. The effect of harvest time on specific methane yields per VS of crops varied a lot, whereas the specific methane yields per t{sub ww} increased with most crops as the crops matured. (author)

  13. Biofuels barometer: Crops pending

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    The actors and production capacities have changed only little in the biofuel sector from year to another. Nevertheless, it is interesting to take stock of the development of this sector at the end of 2002, so as to update the more complete barometer published in issue 144 of Systemes Solaires. Indeed, European ethanol production grew by 13% and that of bio-diesel by more than 20% in 2001. (authors)

  14. [Biofuels, food security and transgenic crops].

    Science.gov (United States)

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology.

  15. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    Science.gov (United States)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  16. Spatio-temporal availability of field crop residues for biofuel production in Northwest and Southwest China

    NARCIS (Netherlands)

    Han, L.; Wang, X.; Spiertz, J.H.J.; Yang, L.; Zhou, Y.; Liu, J.; Xie, G.

    2015-01-01

    Developing bioenergy from plant feedstocks is considered an opportunity to reduce greenhouse gas emissions and secure biofuel supply. This study is an assessment of the availability of field crop residues for bioenergy feedstocks in northwest China (NWC) and southwest China (SWC). The amount of

  17. Soil water infiltration affected by biofuel and grain crop production systems in claypan landscape

    Science.gov (United States)

    The effect of soil management systems on water infiltration is very crucial within claypan landscapes to maximize production as well as minimize environmental risks. The objective of this study was to assess the effect of topsoil thickness on water infiltration in claypan soils for grain and biofuel...

  18. Biofuels versus food production: Does biofuels production increase food prices?

    International Nuclear Information System (INIS)

    Ajanovic, Amela

    2011-01-01

    Rapidly growing fossil energy consumption in the transport sector in the last two centuries caused problems such as increasing greenhouse gas emissions, growing energy dependency and supply insecurity. One approach to solve these problems could be to increase the use of biofuels. Preferred feedstocks for current 1st generation biofuels production are corn, wheat, sugarcane, soybean, rapeseed and sunflowers. The major problem is that these feedstocks are also used for food and feed production. The core objective of this paper is to investigate whether the recent increase of biofuels production had a significant impact on the development of agricultural commodity (feedstock) prices. The most important impact factors like biofuels production, land use, yields, feedstock and crude oil prices are analysed. The major conclusions of this analysis are: In recent years the share of bioenergy-based fuels has increased moderately, but continuously, and so did feedstock production, as well as yields. So far, no significant impact of biofuels production on feedstock prices can be observed. Hence, a co-existence of biofuel and food production seems possible especially for 2nd generation biofuels. However, sustainability criteria should be seriously considered. But even if all crops, forests and grasslands currently not used were used for biofuels production it would be impossible to substitute all fossil fuels used today in transport.

  19. Water for Food, Energy, and the Environment: Assessing Streamflow Impacts of Increasing Cellulosic Biofuel Crop Production in the Corn Belt

    Science.gov (United States)

    Yaeger, M. A.; Housh, M.; Ng, T.; Cai, X.; Sivapalan, M.

    2012-12-01

    The recently expanded Renewable Fuel Standard, which now requires 36 billion gallons of renewable fuels by 2022, has increased demand for biofuel refinery feedstocks. Currently, biofuel production consists mainly of corn-based ethanol, but concern over increasing nitrate levels resulting from increased corn crop fertilization has prompted research into alternative biofuel feedstocks. Of these, high-yielding biomass crops such as Miscanthus have been suggested for cellulose-based ethanol production. Because these perennial crops require less fertilization and do not need tilling, increasing land area in the Midwest planted with Miscanthus would result in less nitrate pollution to the Gulf of Mexico. There is a tradeoff, however, as Miscanthus also has higher water requirements than conventional crops in the region. This could pose a serious problem for riparian ecosystems and other streamflow users such as municipalities and biofuel refineries themselves, as the lowest natural flows in this region coincide with the peak of the growing season. Moreover, low flow reduction may eventually cut off the water quality benefit that planting Miscanthus provides. Therefore, for large-scale cellulosic ethanol production to be sustainable, it is important to understand how the watershed will respond to this change in land and water use. To this end a detailed data analysis of current watershed conditions has been combined with hydrologic modeling to gain deeper insights into how catchments in the highly agricultural central IL watershed of the Sangamon River respond to current and future land and water usage, with the focus on the summer low-flow season. In addition, an integrated systems optimization model has been developed that combines hydrologic, agro-biologic, engineering infrastructural, and economic inputs to provide optimal scenarios of crop type and area and corresponding refinery locations and capacities. Through this integrated modeling framework, we address the key

  20. White paper report from working groups attending the international conference on research and educational opportunities in bio-fuel crop production

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, K.T. [University of Florida, Soil and Water Science Dep., Southwest Florida Res. and Educ. Center, Immokalee, FL 34142 (United States); Gilbert, R.A. [University of Florida, Agronomy Dep., Everglades Res. and Educ. Center, Belle Glade, FL 33430 (United States); Helsel, Z.A. [Rutgers University, Plant Biology and Pathology Dep., New Brunswick, NJ 08901-8520 (United States); Buacum, L. [University of Florida, Hendry County Extension, LaBelle, FL 33935 (United States); Leon, R.; Perret, J. [EARTH University, Apto. 4442-1000, San Jose (Costa Rica)

    2010-12-15

    A conference on current research and educational programs in production of crops for bio-fuel was sponsored and organized by the EARTH University and the University of Florida in November, 2008. The meeting addressed current research on crops for bio-fuel production with discussions of research alternatives for future crop production systems, land use issues, ethics of food vs. fuel production, and carbon sequestration in environmentally sensitive tropical and sub-tropical regions of the Americas. The need and potential for development of graduate and undergraduate curricula and inter-institutional cooperation among educational institutions in the region were also discussed. Delegations from Belize, Brazil, Columbia, Costa Rica, Cuba, Honduras, Panama, The Dominican Republic, and the United States including ministers of Agriculture and Energy attended this meeting. Over a two-day period, four working groups provided a framework to facilitate networking, motivate task oriented creative thinking, and maintain a timely accomplishment of assigned duties in the context of the conference themes. Participants in the conference were assigned to one of four working groups, each following given topics: Agronomy, Environment, Socio-Economics and Education/Extension. It was the consensus of representatives of industry, academic and regulatory community assembled in Costa Rica that significant research, education and socio-economic information is needed to make production of bio-fuel crops sustainable. Agronomic research should include better crop selection based on local conditions, improved production techniques, pest and disease management, and mechanical cultivation and harvesting. Another conclusion was that tailoring of production systems to local soil characteristics and use of bio-fuel by-products to improve nutrient use efficiency and reduction of environmental impact on water quantity and quality is critical to sustainability of bio-fuel crop production. (author)

  1. Biorefineries for chemical and biofuel production

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene

    crops for biofuel production is research in biorefineries using a whole-crop approach with the aim of having an optimal use of all the components of the specific crop. Looking at rape as a model crop, the components can be used for i.e. bioethanol, biodiesel, biogas, biohydrogen, feed, food and plant...

  2. Higher US crop prices trigger little area expansion so marginal land for biofuel crops is limited

    International Nuclear Information System (INIS)

    Swinton, Scott M.; Babcock, Bruce A.; James, Laura K.; Bandaru, Varaprasad

    2011-01-01

    By expanding energy biomass production on marginal lands that are not currently used for crops, food prices increase and indirect climate change effects can be mitigated. Studies of the availability of marginal lands for dedicated bioenergy crops have focused on biophysical land traits, ignoring the human role in decisions to convert marginal land to bioenergy crops. Recent history offers insights about farmer willingness to put non-crop land into crop production. The 2006-09 leap in field crop prices and the attendant 64% gain in typical profitability led to only a 2% increase in crop planted area, mostly in the prairie states. At this rate, a doubling of expected profitability from biomass crops would expand cropland supply by only 3.2%. Yet targets for cellulosic ethanol production in the US Energy Independence and Security Act imply boosting US planted area by 10% or more with perennial biomass crops. Given landowner reluctance to expand crop area with familiar crops in the short run, large scale expansion of the area in dedicated bioenergy crops will likely be difficult and costly to achieve. - Highlights: → Biofuel crops on cropland can displace food crops, reducing food supply and triggering indirect land use. → Growing biofuel crops on non-crop marginal land avoids these problems. → But US farmers expanded cropland by only 2% when crop profitability jumped 64% during 2006-09. → So medium-term availability of marginal lands for biofuel crops is limited and costly.

  3. Positive and negative impacts of agricultural production of liquid biofuels

    NARCIS (Netherlands)

    Reijnders, L.; Hester, R.E.; Harrison, R.M.

    2012-01-01

    Agricultural production of liquid biofuels can have positive effects. It can decrease dependence on fossil fuels and increase farmers’ incomes. Agricultural production of mixed perennial biofuel crops may increase pollinator and avian richness. Most types of agricultural crop-based liquid biofuel

  4. Land availability for biofuel production.

    Science.gov (United States)

    Cai, Ximing; Zhang, Xiao; Wang, Dingbao

    2011-01-01

    Marginal agricultural land is estimated for biofuel production in Africa, China, Europe, India, South America, and the continental United States, which have major agricultural production capacities. These countries/regions can have 320-702 million hectares of land available if only abandoned and degraded cropland and mixed crop and vegetation land, which are usually of low quality, are accounted. If grassland, savanna, and shrubland with marginal productivity are considered for planting low-input high-diversity (LIHD) mixtures of native perennials as energy crops, the total land availability can increase from 1107-1411 million hectares, depending on if the pasture land is discounted. Planting the second generation of biofuel feedstocks on abandoned and degraded cropland and LIHD perennials on grassland with marginal productivity may fulfill 26-55% of the current world liquid fuel consumption, without affecting the use of land with regular productivity for conventional crops and without affecting the current pasture land. Under the various land use scenarios, Africa may have more than one-third, and Africa and Brazil, together, may have more than half of the total land available for biofuel production. These estimations are based on physical conditions such as soil productivity, land slope, and climate.

  5. Towards Sustainable Production of Biofuels from Microalgae

    Directory of Open Access Journals (Sweden)

    Hans Ragnar Giselrød

    2008-07-01

    Full Text Available Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel.

  6. Unintended consequences of biofuels production?The effects of large-scale crop conversion on water quality and quantity

    Science.gov (United States)

    Welch, Heather L.; Green, Christopher T.; Rebich, Richard A.; Barlow, Jeannie R.B.; Hicks, Matthew B.

    2010-01-01

    In the search for renewable fuel alternatives, biofuels have gained strong political momentum. In the last decade, extensive mandates, policies, and subsidies have been adopted to foster the development of a biofuels industry in the United States. The Biofuels Initiative in the Mississippi Delta resulted in a 47-percent decrease in cotton acreage with a concurrent 288-percent increase in corn acreage in 2007. Because corn uses 80 percent more water for irrigation than cotton, and more nitrogen fertilizer is recommended for corn cultivation than for cotton, this widespread shift in crop type has implications for water quantity and water quality in the Delta. Increased water use for corn is accelerating water-level declines in the Mississippi River Valley alluvial aquifer at a time when conservation is being encouraged because of concerns about sustainability of the groundwater resource. Results from a mathematical model calibrated to existing conditions in the Delta indicate that increased fertilizer application on corn also likely will increase the extent of nitrate-nitrogen movement into the alluvial aquifer. Preliminary estimates based on surface-water modeling results indicate that higher application rates of nitrogen increase the nitrogen exported from the Yazoo River Basin to the Mississippi River by about 7 percent. Thus, the shift from cotton to corn may further contribute to hypoxic (low dissolved oxygen) conditions in the Gulf of Mexico.

  7. Modifying plants for biofuel and biomaterial production.

    Science.gov (United States)

    Furtado, Agnelo; Lupoi, Jason S; Hoang, Nam V; Healey, Adam; Singh, Seema; Simmons, Blake A; Henry, Robert J

    2014-12-01

    The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost-effective option for biochemical conversion to biofuel. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. An integrated modeling framework for exploring flow regime and water quality changes with increasing biofuel crop production in the U.S. Corn Belt

    Science.gov (United States)

    Yaeger, Mary A.; Housh, Mashor; Cai, Ximing; Sivapalan, Murugesu

    2014-12-01

    To better address the dynamic interactions between human and hydrologic systems, we develop an integrated modeling framework that employs a System of Systems optimization model to emulate human development decisions which are then incorporated into a watershed model to estimate the resulting hydrologic impacts. The two models are run interactively to simulate the coevolution of coupled human-nature systems, such that reciprocal feedbacks between hydrologic processes and human decisions (i.e., human impacts on critical low flows and hydrologic impacts on human decisions on land and water use) can be assessed. The framework is applied to a Midwestern U.S. agricultural watershed, in the context of proposed biofuels development. This operation is illustrated by projecting three possible future coevolution trajectories, two of which use dedicated biofuel crops to reduce annual watershed nitrate export while meeting ethanol production targets. Imposition of a primary external driver (biofuel mandate) combined with different secondary drivers (water quality targets) results in highly nonlinear and multiscale responses of both the human and hydrologic systems, including multiple tradeoffs, impacting the future coevolution of the system in complex, heterogeneous ways. The strength of the hydrologic response is sensitive to the magnitude of the secondary driver; 45% nitrate reduction target leads to noticeable impacts at the outlet, while a 30% reduction leads to noticeable impacts that are mainly local. The local responses are conditioned by previous human-hydrologic modifications and their spatial relationship to the new biofuel development, highlighting the importance of past coevolutionary history in predicting future trajectories of change.

  9. Microalgae: biofuel production

    Directory of Open Access Journals (Sweden)

    Babita Kumari

    2013-04-01

    Full Text Available In the present day, microalgae feedstocks are gaining interest in energy scenario due to their fast growth potential coupled with relatively high lipid, carbohydrate and nutrients contents. All of these properties render them an excellent source for biofuels such as biodiesel, bioethanol and biomethane; as well as a number of other valuable pharmaceutical and nutraceutical products. The present review is a critical appraisal of the commercialization potential of microalgae biofuels. The available literature on various aspects of microalgae for e.g. its cultivation, life cycle assessment, and conceptualization of an algal biorefinery, has been done. The evaluation of available information suggests the operational and maintenance cost along with maximization of oil-rich microalgae production is the key factor for successful commercialization of microalgae-based fuels.

  10. Can biofuel crops alleviate tribal poverty in India's drylands?

    International Nuclear Information System (INIS)

    Agoramoorthy, Govindasamy; Hsu, Minna J.; Chaudhary, Sunita; Shieh, Po-Chuen

    2009-01-01

    The on-going climate change concerns have stimulated heavy interest in biofuels, and supporters of biofuels hail that they are considered naturally carbon-neutral. Critiques on the other hand cry that the large-scale production of biofuels can not only strain agricultural resources, but also threaten future food security. People who live in the drylands of India are often faced with challenges and constraints of poverty. Foremost among the challenges are the marginal environmental conditions for agriculture, often influenced by low and erratic rainfall, frequent droughts, poor soil condition, unreliable irrigation water supply, and rural migration to urban areas in search of work. In this paper, we have analyzed a case study of community lift irrigation practiced in India and its impact in boosting agricultural productivity and enhancing local food security. The lift-irrigation model practiced in the drylands of India to grow food crops can be adopted for the expansion of biofuel crops that has the potential to eradicate poverty among farming communities if appropriate sustainable development measures are carefully implemented. (author)

  11. Strategic system development toward biofuel, desertification, and crop production monitoring in continental scales using satellite-based photosynthesis models

    Science.gov (United States)

    Kaneko, Daijiro

    2013-10-01

    The author regards fundamental root functions as underpinning photosynthesis activities by vegetation and as affecting environmental issues, grain production, and desertification. This paper describes the present development of monitoring and near real-time forecasting of environmental projects and crop production by approaching established operational monitoring step-by-step. The author has been developing a thematic monitoring structure (named RSEM system) which stands on satellite-based photosynthesis models over several continents for operational supports in environmental fields mentioned above. Validation methods stand not on FLUXNET but on carbon partitioning validation (CPV). The models demand continuing parameterization. The entire frame system has been built using Reanalysis meteorological data, but model accuracy remains insufficient except for that of paddy rice. The author shall accomplish the system that incorporates global environmental forces. Regarding crop production applications, industrialization in developing countries achieved through direct investment by economically developed nations raises their income, resulting in increased food demand. Last year, China began to import rice as it had in the past with grains of maize, wheat, and soybeans. Important agro-potential countries make efforts to cultivate new crop lands in South America, Africa, and Eastern Europe. Trends toward less food sustainability and stability are continuing, with exacerbation by rapid social and climate changes. Operational monitoring of carbon sequestration by herbaceous and bore plants converges with efforts at bio-energy, crop production monitoring, and socio-environmental projects such as CDM A/R, combating desertification, and bio-diversity.

  12. Biofuel as an Integrated Farm Drainage Management crop: A bioeconomic analysis

    Science.gov (United States)

    Levers, L. R.; Schwabe, K. A.

    2017-04-01

    Irrigated agricultural lands in arid regions often suffer from soil salinization and lack of drainage, which affect environmental quality and productivity. Integrated Farm Drainage Management (IFDM) systems, where drainage water generated from higher-valued crops grown on high quality soils are used to irrigate salt-tolerant crops grown on marginal soils, is one possible strategy for managing salinity and drainage problems. If the IFDM crop were a biofuel crop, both environmental and private benefits may be generated; however, little is known about this possibility. As such, we develop a bioeconomic programming model of irrigated agricultural production to examine the role salt-tolerant biofuel crops might play within an IFDM system. Our results, generated by optimizing profits over land, water, and crop choice decisions subject to resource constraints, suggest that based on the private profits alone, biofuel crops can be a competitive alternative to the common practices of land retirement and nonbiofuel crop production under both low to high drainage water salinity. Yet IFDM biofuel crop production generates 30-35% fewer GHG emissions than the other strategies. The private market competitiveness coupled with the public good benefits may justify policy changes encouraging the growth of IFDM biofuel crops in arid agricultural areas globally.

  13. Effects of elevated temperature on growth and reproduction of biofuels crops

    Science.gov (United States)

    Background/Questions/Methods Cellulosic biofuels crops have considerable potential to reduce our carbon footprint , and to be at least neutral in terms of carbon production. However, their widespread cultivation may result in unintended ecological and health effects. We report...

  14. Bio-fuel production potential in Romania

    International Nuclear Information System (INIS)

    Laurentiu, F.; Silvian, F.; Dumitru, F.

    2006-01-01

    The paper is based on the ESTO Study: Techno- Economic Feasibility of Large-Scale Production of Bio-Fuels in EU-Candidate Countries. Bio-fuel production has not been taken into account significantly until now in Romania, being limited to small- scale productions of ethanol, used mostly for various industrial purposes. However the climatic conditions and the quality of the soil are very suitable in the country for development of the main crops (wheat, sugar-beet, sunflower and rape-seed) used in bio-ethanol and bio-diesel production. The paper intended to consider a pertinent discussion of the present situation in Romania's agriculture stressing on the following essential items in the estimation of bio-fuels production potential: availability of feed-stock for bio-fuel production; actual productions of bio-fuels; fuel consumption; cost assessment; SWOT approach; expected trends. Our analysis was based on specific agricultural data for the period 1996-2000. An important ethanol potential (due to wheat, sugar-beet and maize cultures), as well as bio-diesel one (due to sun-flower and rape-seed) were predicted for the period 2005-2010 which could be exploited with the support of an important financial and technological effort, mainly from EU countries

  15. Water Use and Quality Footprints of Biofuel Crops in Florida

    Science.gov (United States)

    Shukla, S.; Hendricks, G.; Helsel, Z.; Knowles, J.

    2013-12-01

    The use of biofuel crops for future energy needs will require considerable amounts of water inputs. Favorable growing conditions for large scale biofuel production exist in the sub-tropical environment of South Florida. However, large-scale land use change associated with biofuel crops is likely to affect the quantity and quality of water within the region. South Florida's surface and ground water resources are already stressed by current allocations. Limited data exists to allocate water for growing the energy crops as well as evaluate the accompanying hydrologic and water quality impacts of large-scale land use changes. A three-year study was conducted to evaluate the water supply and quality impacts of three energy crops: sugarcane, switchgrass, and sweet sorghum (with a winter crop). Six lysimeters were used to collect the data needed to quantify crop evapotranspiration (ETc), and nitrogen (N) and phosphorus (P) levels in groundwater and discharge (drainage and runoff). Each lysimeter (4.85 x 3.65 x 1.35 m) was equipped to measure water input, output, and storage. The irrigation, runoff, and drainage volumes were measured using flow meters. Groundwater samples were collected bi-weekly and drainage/runoff sampling was event based; samples were analyzed for nitrogen (N) and phosphorous (P) species. Data collected over the three years revealed that the average annual ETc was highest for sugarcane (1464 mm) followed by switchgrass and sweet sorghum. Sweet sorghum had the highest total N (TN) concentration (7.6 mg/L) in groundwater and TN load (36 kg/ha) in discharge. However, sweet sorghum had the lowest total P (TP) concentration (1.2 mg/L) in groundwater and TP load (9 kg/ha) in discharge. Water use footprint for ethanol (liter of water used per liter of ethanol produced) was lowest for sugarcane and highest for switchgrass. Switchgrass had the highest P-load footprint for ethanol. No differences were observed for the TN load footprint for ethanol. This is the

  16. Land and agronomic potential for biofuel production in Southern Africa

    OpenAIRE

    von Maltitz, Graham; van der Merwe, Marna

    2017-01-01

    The Southern African region, from a purely biophysical perspective, has huge potential for biofuel production, especially in Mozambique and Zambia. Although many of the soils are sandy and acidic, with careful management and correct fertilization, they should be highly productive. We suggest that sugarcane is the crop most easily mobilized for biofuel. A number of other crops, such as sweet sorghum, cassava, and tropical sugar beet, have good potential but will need further agronomic and proc...

  17. Prospects of using algae in biofuel production

    Directory of Open Access Journals (Sweden)

    Y. I. Maltsev

    2017-08-01

    Full Text Available The development of industry, agriculture and the transport sector is associated with the use of various energy sources. Renewable energy sources, including biofuels, are highly promising in this respect. As shown by a number of scientific studies, a promising source for biofuel production that would meet modern requirements may be algal biomass. After activation of the third generation biodiesel production it was assumed that the algae would become the most advantageous source, because it is not only able to accumulate significant amounts of lipids, but could reduce the of agricultural land involved in biofuel production and improve air quality by sequestering CO2. However, a major problem is presented by the cost of algae biomass cultivation and its processing compared to the production of biodiesel from agricultural crops. In this regard, there are several directions of increasing the efficiency of biodiesel production from algae biomass. The first direction is to increase lipid content in algae cells by means of genetic engineering. The second direction is connected with the stimulation of increased accumulation of lipids by stressing algae. The third direction involves the search for new, promising strains of algae that will be characterized by faster biomass accumulation rate, higher content of TAG and the optimal proportions of accumulated saturated and unsaturated fatty acids compared to the already known strains. Recently, a new approach in the search for biotechnologically valuable strains of algae has been formed on the basis of predictions of capacity for sufficient accumulation of lipids by clarifying the evolutionary relationships within the major taxonomic groups of algae. The outcome of these studies is the rapid cost reduction of biofuel production based on algae biomass. All this emphasizes the priority of any research aimed at both improving the process of production of biofuels from algae, and the search for new sources for

  18. The biofuel potential of crop based biomass in Denmark in 2020; Danmarks potentiale for afgroedebaseret biobraendstofproduktion i aar 2020

    Energy Technology Data Exchange (ETDEWEB)

    Bertelsen Blume, S

    2008-02-15

    According to climate change observations and foresights several countries including Denmark have committed to reduce GHGemissions. However, the transport sector is still increasing its GHGemissions. Substitution of fossil fuels with biofuels seems to be the best way to reduce CO{sub 2}-emission from this sector on the shorter term. This project evaluates how Denmark can produce enough biofuels to fulfil the political goal of 10 % substitution of the fossil fuel consumption in the year of 2020. This project also approaches the suitability of different crop species to the biofuel industry. Maize and sugar beet are the most suitable crops for biofuel production when only focusing on maximum biofuel yield. Alfalfa is likewise showings great potential and is the most suitable crop in terms of sustainable biofuel production, because of low energy requirements (diesel, fertilizer, pesticide and irrigation) during cropping. Even though maize has higher needs for energy during cropping, it will still be suitable for sustainable biofuel production because of the high biofuel yield. Present calculations show that it is possible to meet the required amount of biofuels by using domestic biomass, which is currently exported (cereal grain) or not utilized (eg. straw). However, these calculations assume that it will become possible to convert the whole amount of carbohydrates into biofuel before 2020. In terms of assessing the biofuel production potential three storylines are defined for the development until 2020. Changes in land use and crop composition are suggested for each storyline to adjust the biofuel production to Danish agriculture. The biofuel production potential is also assessed for two regions in Denmark. Here the region of Storstroem shows greater potential than the region of Soenderjylland because of low density of domestic animals. (au)

  19. Sustainability aspects of biofuel production

    Science.gov (United States)

    Pawłowski, L.; Cel, W.; Wójcik Oliveira, K.

    2018-05-01

    Nowadays, world development depends on the energy supply. The use of fossil fuels leads to two threats: depletion of resources within a single century and climate changes caused by the emission of CO2 from fossil fuels combustion. Widespread application of renewable energy sources, in which biofuels play a major role, is proposed as a counter-measure. The paper made an attempt to evaluate to what extent biofuels meet the criteria of sustainable development. It was shown that excessive development of biofuels may threaten the sustainable development paradigms both in the aspect of: intergenerational equity, leading to an increase of food prices, as well as intergenerational equity, resulting in degradation of the environment. The paper presents the possibility of sustainable biofuels production increase.

  20. Greenhouse gas emissions from cultivation of energy crops may affect the sustainability of biofuels

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggaard-Nielsen, Henrik; Heiske, Stefan

    2011-01-01

    will be lower than indicated by our data. We obtained the greatest net reduction in greenhouse gas emissions by co-production of bioethanol and biogas or by biogas alone produced from either fresh grass-clover or whole crop maize. Here the net reduction corresponded to about 8 tons CO2 per hectare per year...... or incorporation of crop residues. In this study we relate measured field emissions of N2O to the reduction in fossil fuel-derived CO2, which is obtained when energy crops are used for biofuel production. The analysis includes five organically managed crops (viz. maize, rye, rye-vetch, vetch and grass......-clover) and three scenarios for conversion of biomass to biofuel. The scenarios are 1) bioethanol production, 2) biogas production and 3) co-production of bioethanol and biogas, where the energy crops are first used for bioethanol fermentation and subsequently the residues from this process are utilized for biogas...

  1. Crop residues for advanced biofuels workshop: A synposis

    Science.gov (United States)

    Crop residues are being harvested for a variety of purposes including their use as livestock feed and to produce advanced biofuels. Crop residue harvesting, by definition, reduces the potential annual carbon input to the soil from aboveground biomass but does not affect input from plant roots. The m...

  2. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel

    International Nuclear Information System (INIS)

    Kim, Seungdo; Dale, Bruce E.

    2005-01-01

    A life cycle assessment of different cropping systems emphasizing corn and soybean production was performed, assuming that biomass from the cropping systems is utilized for producing biofuels (i.e., ethanol and biodiesel). The functional unit is defined as 1 ha of arable land producing biomass for biofuels to compare the environmental performance of the different cropping systems. The external functions are allocated by introducing alternative product systems (the system expansion allocation approach). Nonrenewable energy consumption, global warming impact, acidification and eutrophication are considered as potential environmental impacts and estimated by characterization factors given by the United States Environmental Protection Agency (EPA-TRACI). The benefits of corn stover removal are (1) lower nitrogen related environmental burdens from the soil, (2) higher ethanol production rate per unit arable land, and (3) energy recovery from lignin-rich fermentation residues, while the disadvantages of corn stover removal are a lower accumulation rate of soil organic carbon and higher fuel consumption in harvesting corn stover. Planting winter cover crops can compensate for some disadvantages (i.e., soil organic carbon levels and soil erosion) of removing corn stover. Cover crops also permit more corn stover to be harvested. Thus, utilization of corn stover and winter cover crops can improve the eco-efficiency of the cropping systems. When biomass from the cropping systems is utilized for biofuel production, all the cropping systems studied here offer environmental benefits in terms of nonrenewable energy consumption and global warming impact. Therefore utilizing biomass for biofuels would save nonrenewable energy, and reduce greenhouse gases. However, unless additional measures such as planting cover crops were taken, utilization of biomass for biofuels would also tend to increase acidification and eutrophication, primarily because large nitrogen (and phosphorus

  3. Washington biofuel feedstock crop supply under output price and quantity uncertainty

    International Nuclear Information System (INIS)

    Zheng Qiujie; Shumway, C. Richard

    2012-01-01

    Subsidized development of an in-state biofuels industry has received some political support in the state of Washington, USA. Utilizing in-state feedstock supplies could be an efficient way to stimulate biofuel industries and the local economy. In this paper we estimate supply under output price and quantity uncertainty for major biofuel feedstock crops in Washington. Farmers are expected to be risk averse and maximize the utility of profit and uncertainty. We estimate very large Washington price elasticities for corn and sugar beets but a small price elasticity for a third potential feedstock, canola. Even with the large price elasticities for two potential feedstocks, their current and historical production levels in the state are so low that unrealistically large incentives would likely be needed to obtain sufficient feedstock supply for a Washington biofuel industry. Based on our examination of state and regional data, we find low likelihood that a Washington biofuels industry will develop in the near future primarily using within-state biofuel feedstock crops. - Highlights: ► Within-state feedstock crop supplies insufficient for Washington biofuel industry. ► Potential Washington corn and sugar beet supplies very responsive to price changes. ► Feedstock supplies more responsive to higher expected profit than lower risk. ► R and D for conversion of waste cellulosic feedstocks is potentially important policy.

  4. The potential of C4 grasses for cellulosic biofuel production

    Directory of Open Access Journals (Sweden)

    Tim eWeijde

    2013-05-01

    Full Text Available With the advent of biorefinery technologies enabling plant biomass to be processed into biofuel, many researchers set out to study and improve candidate biomass crops. Many of these candidates are C4 grasses, characterized by a high productivity and resource use efficiency. In this review the potential of five C4 grasses as lignocellulose feedstock for biofuel production is discussed. These include three important field crops - maize, sugarcane and sorghum - and two undomesticated perennial energy grasses - miscanthus and switchgrass. Although all these grasses are high yielding, they produce different products. While miscanthus and switchgrass are exploited exclusively for lignocellulosic biomass, maize, sorghum and sugarcane are dual-purpose crops. It is unlikely that all the prerequisites for the sustainable and economic production of biomass for a global cellulosic biofuel industry will be fulfilled by a single crop. High and stable yields of lignocellulose are required in diverse environments worldwide, to sustain a year-round production of biofuel. A high resource use efficiency is indispensable to allow cultivation with minimal inputs of nutrients and water and the exploitation of marginal soils for biomass production. Finally, the lignocellulose composition of the feedstock should be optimized to allow its efficient conversion into biofuel and other by-products. Breeding for these objectives should encompass diverse crops, to meet the demands of local biorefineries and provide adaptability to different environments. Collectively, these C4 grasses are likely to play a central role in the supply of lignocellulose for the cellulosic ethanol industry. Moreover, as these species are evolutionary closely related, advances in each of these crops will expedite improvements in the other crops. This review aims to provide an overview of their potential, prospects and research needs as lignocellulose feedstocks for the commercial production of

  5. Integrating future scenario‐based crop expansion and crop conditions to map switchgrass biofuel potential in eastern Nebraska, USA

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.

    2018-01-01

    Switchgrass (Panicum virgatum) has been evaluated as one potential source for cellulosic biofuel feedstocks. Planting switchgrass in marginal croplands and waterway buffers can reduce soil erosion, improve water quality, and improve regional ecosystem services (i.e. it serves as a potential carbon sink). In previous studies, we mapped high risk marginal croplands and highly erodible cropland buffers that are potentially suitable for switchgrass development, which would improve ecosystem services and minimally impact food production. In this study, we advance our previous study results and integrate future crop expansion information to develop a switchgrass biofuel potential ensemble map for current and future croplands in eastern Nebraska. The switchgrass biomass productivity and carbon benefits (i.e. NEP: net ecosystem production) for the identified biofuel potential ensemble areas were quantified. The future scenario‐based (‘A1B’) land use and land cover map for 2050, the US Geological Survey crop type and Compound Topographic Index (CTI) maps, and long‐term (1981–2010) averaged annual precipitation data were used to identify future crop expansion regions that are suitable for switchgrass development. Results show that 2528 km2 of future crop expansion regions (~3.6% of the study area) are potentially suitable for switchgrass development. The total estimated biofuel potential ensemble area (including cropland buffers, marginal croplands, and future crop expansion regions) is 4232 km2 (~6% of the study area), potentially producing 3.52 million metric tons of switchgrass biomass per year. Converting biofuel ensemble regions to switchgrass leads to potential carbon sinks (the total NEP for biofuel potential areas is 0.45 million metric tons C) and is environmentally sustainable. Results from this study improve our understanding of environmental conditions and ecosystem services of current and future cropland systems in eastern Nebraska and provide

  6. Sustainable Biofuel Project: Emergy Analysis of South Florida Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    Amponsah, Nana Yaw [Intelligentsia International, Inc., LaBelle, FL (United States); Izursa, Jose-Luis [Intelligentsia International, Inc., LaBelle, FL (United States); Hanlon, Edward A. [Univ. of Florida, Gainesville, FL (United States). Soil and Water Sciences Dept.; Capece, John C. [Intelligentsia International, Inc., LaBelle, FL (United States)

    2012-11-15

    This study evaluates the sustainability of various farming systems, namely (1) sugarcane on organic and mineral soils and (2) energycane and sweet sorghum on mineral soils. The primary objective of the study is to compare the relative sustainability matrices of these energy crops and their respective farming systems. These matrices should guide decision and policy makers to determine the overall sustainability of an intended or proposed bioethanol project related to any of these studied crops. Several different methods of energy analysis have been proposed to assess the feasibility or sustainability of projects exploiting natural resources (such as (Life Cycle Analysis, Energy Analysis, Exergy Analysis, Cost Benefit Analysis, Ecological Footprint, etc.). This study primarily focused on the concept of Emergy Analysis, a quantitative analytical technique for determining the values of nonmonied and monied resources, services and commodities in common units of the solar energy it took to make them. With this Emergy Analysis study, the Hendry County Sustainable Biofuels Center intends to provide useful perspective for different stakeholder groups to (1) assess and compare the sustainability levels of above named crops cultivation on mineral soils and organic soils for ethanol production and (2) identify processes within the cultivation that could be targeted for improvements. The results provide as much insight into the assumptions inherent in the investigated approaches as they do into the farming systems in this study.

  7. Experimental approaches for evaluating the invasion risk of biofuel crops

    International Nuclear Information System (INIS)

    Luke Flory, S; Sollenberger, Lynn E; Lorentz, Kimberly A; Gordon, Doria R

    2012-01-01

    There is growing concern that non-native plants cultivated for bioenergy production might escape and result in harmful invasions in natural areas. Literature-derived assessment tools used to evaluate invasion risk are beneficial for screening, but cannot be used to assess novel cultivars or genotypes. Experimental approaches are needed to help quantify invasion risk but protocols for such tools are lacking. We review current methods for evaluating invasion risk and make recommendations for incremental tests from small-scale experiments to widespread, controlled introductions. First, local experiments should be performed to identify conditions that are favorable for germination, survival, and growth of candidate biofuel crops. Subsequently, experimental introductions in semi-natural areas can be used to assess factors important for establishment and performance such as disturbance, founder population size, and timing of introduction across variable habitats. Finally, to fully characterize invasion risk, experimental introductions should be conducted across the expected geographic range of cultivation over multiple years. Any field-based testing should be accompanied by safeguards and monitoring for early detection of spread. Despite the costs of conducting experimental tests of invasion risk, empirical screening will greatly improve our ability to determine if the benefits of a proposed biofuel species outweigh the projected risks of invasions. (letter)

  8. Alternative spatial allocation of suitable land for biofuel production in China

    DEFF Research Database (Denmark)

    Zhang, Jianjun; Chen, Yang; Rao, Yongheng

    2017-01-01

    How to select locations for biofuel production is still a critical consideration for balance of crop and biofuel productions as well as of energy consumption and environmental conservation. Biofuels are widely produced all over the world, but this practice in China is still at the initial stage....... Based on China's current stage on food security and changing biofuel demands, this paper selected agro-environmental and socio-economic factors of biofuel production, and simulated and spatially allocated areas suited for biofuel production under the two scenarios of planning-oriented scenario (Po......S) and biofuel-oriented scenario (BoS) by the target year 2020. It also estimated biofuel production potentials and zones across China's provinces. The results show that land suited for biofuel production is primarily located in Northwestern, Northern, Northeastern, Central and Southwestern China...

  9. Next generation of liquid biofuel production

    NARCIS (Netherlands)

    Batidzirai, B.

    2012-01-01

    More than 99% of all currently produced biofuels are classified as “first generation” (i.e. fuels produced primarily from cereals, grains, sugar crops and oil seeds) (IEA, 2008b). “Second generation” or “next generation” biofuels, on the other hand, are produced from lignocellulosic feedstocks such

  10. Analyzing the effect of biofuel expansion on land use in major producing countries: evidence of increased multiple cropping

    NARCIS (Netherlands)

    Langeveld, J.W.A.; Dixon, J.; Keulen, van H.; Quist-Wessel, P.M.F.

    2014-01-01

    Estimates on impacts of biofuel production often use models with limited ability to incorporate changes in land use, notably cropping intensity. This review studies biofuel expansion between 2000 and 2010 in Brazil, the USA, Indonesia, Malaysia, China, Mozambique, South Africa plus 27 EU member

  11. Why do smallholders plant biofuel crops? The ‘politics of consent’ in Mexico

    NARCIS (Netherlands)

    Castellanos-Navarrete, Antonio; Jansen, Kees

    2017-01-01

    Recent studies have addressed the social and environmental impacts of biofuel crops but seldom the question as to why rural producers engage in their production. It is particularly unclear how governments worldwide, especially in middle-income countries such as Brazil, Thailand, and Mexico, could

  12. Toward nitrogen neutral biofuel production.

    Science.gov (United States)

    Huo, Yi-Xin; Wernick, David G; Liao, James C

    2012-06-01

    Environmental concerns and an increasing global energy demand have spurred scientific research and political action to deliver large-scale production of liquid biofuels. Current biofuel processes and developing approaches have focused on closing the carbon cycle by biological fixation of atmospheric carbon dioxide and conversion of biomass to fuels. To date, these processes have relied on fertilizer produced by the energy-intensive Haber-Bosch process, and have not addressed the global nitrogen cycle and its environmental implications. Recent developments to convert protein to fuel and ammonia may begin to address these problems. In this scheme, recycling ammonia to either plant or algal feedstocks reduces the demand for synthetic fertilizer supplementation. Further development of this technology will realize its advantages of high carbon fixation rates, inexpensive and simple feedstock processing, in addition to reduced fertilizer requirements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Cellulosic biofuels from crop residue and groundwater extraction in the US Plains: the case of Nebraska.

    Science.gov (United States)

    Sesmero, Juan P

    2014-11-01

    This study develops a model of crop residue (i.e. stover) supply and derived demand for irrigation water accounting for non-linear effects of soil organic matter on soil's water holding capacity. The model is calibrated for typical conditions in central Nebraska, United States, and identifies potential interactions between water and biofuel policies. The price offered for feedstock by a cost-minimizing plant facing that stover supply response is calculated. Results indicate that as biofuel production volumes increase, soil carbon depletion per unit of biofuel produced decreases. Consumption of groundwater per unit of biofuel produced first decreases and then increases (after a threshold of 363 dam(3) of biofuels per year) due to plants' increased reliance on the extensive margin for additional biomass. The analysis reveals a tension between biofuel and water policies. As biofuel production raises the economic benefits of relaxing water conservation policies (measured by the "shadow price" of water) increase. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Biofuel crops with CAM photosynthesis: Economic potential on moisture-limited lands

    Science.gov (United States)

    Bartlett, Mark; Hartzell, Samantha; Porporato, Amilcare

    2017-04-01

    As the demand for food and renewable energy increases, the intelligent utilization of marginal lands is becoming increasingly critical. In marginal lands classified by limited rainfall or soil salinity, the cultivation of traditional C3 and C4 photosynthesis crops often is economically infeasible. However, in such lands, nontraditional crops with crassulacean acid metabolism (CAM) photosynthesis show great economic potential for cultivation. CAM crops including Opuntia (prickly pear) and Ananas (pineapple) achieve a water use efficiency which is three fold higher than C4 crops such as corn and 6-fold higher than C3 crops such as wheat, leading to a comparable annual productivity with only 20% of the water demand. This feature, combined with a shallow rooting depth and a high water storage capacity, allows CAM plants to take advantage of small, infrequent rainfall amounts in shallow, quickly draining soils. Furthermore, CAM plants typically have properties (e.g., high content of non-structural carbohydrates) that are favorable for biofuel production. Here, for marginal lands characterized by low soil moisture availability and/or high salinity, we assess the potential productivity and economic benefits of CAM plants. CAM productivity is estimated using a recently developed model which simulates CAM photosynthesis under a range of soil and climate conditions. From these results, we compare the energy and water resource inputs required by CAM plants to those required by more traditional C3 and C4 crops (corn, wheat, sorghum), and we evaluate the economic potential of CAM crops as sources of food, fodder, or biofuel in marginal soils. As precipitation events become more intense and infrequent, we show that even though marginal land area may increase, CAM crop cultivation shows great promise for maintaining high productivity with minimal water inputs. Our analysis indicates that on marginal lands, widespread cultivation of CAM crops as biofuel feedstock may help

  15. The effect of native and introduced biofuel crops on the composition of soil biota communities

    Science.gov (United States)

    Frouz, Jan; Hedenec, Petr

    2016-04-01

    Biofuel crops are an accepted alternative to fossil fuels, but little is known about the ecological impact of their production. The aim of this contribution is to study the effect of native (Salix viminalis and Phalaris arundinacea) and introduced (Helianthus tuberosus, Reynoutria sachalinensis and Silphium perfoliatum) biofuel crop plantations on the soil biota in comparison with cultural meadow vegetation used as control. The study was performed as part of a split plot field experiment of the Crop Research Institute in the city of Chomutov (Czech Republic). The composition of the soil meso- and macrofauna community, composition of the cultivable fraction of the soil fungal community, cellulose decomposition (using litter bags), microbial biomass, basal soil respiration and PLFA composition (incl. F/B ratio) were studied in each site. The C:N ratio and content of polyphenols differed among plant species, but these results could not be considered significant between introduced and native plant species. Abundance of the soil meso- and macrofauna was higher in field sites planted with S. viminalis and P. arundinacea than those planted with S. perfoliatum, H. tuberosus and R. sachalinensis. RDA and Monte Carlo Permutation Test showed that the composition of the faunal community differed significantly between various native and introduced plants. Significantly different basal soil respiration was found in sites planted with various energy crops; however, this difference was not significant between native and introduced species. Microbial biomass carbon and cellulose decomposition did not exhibit any statistical differences among the biofuel crops. The largest statistically significant difference we found was in the content of actinobacterial and bacterial (bacteria, G+ bacteria and G- bacteria) PLFA in sites overgrown by P. arundinacea compared to introduced as well as native biofuel crops. In conclusion, certain parameters significantly differ between various native

  16. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  17. Switchgrass as a biofuels crop for the upper Southeast

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, D.J.; Wolf, D.D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)

    1993-12-31

    Switchgrass (Panicum virgatum) has been identified in DOE-sponsored studies as a widely adapted, productive herbaceous candidate for biofuels cropping. It is a perennial that has been planted using no-till procedures, and it appears to have positive effects on the soils in which it grows. We have been looking at this species as a potential fuelcrop (as well as a valuable forage) for several years. In this presentation, we note several {open_quotes}lessons learned{close_quotes} about switchgrass establishment and management as an energy crop. Data include results from recent plantings in the upper Southeast USA and from cutting management studies. Six varieties of switchgrass (Alamo, Cave-in-Rock, Kanlow, Shelter, and two breeder`s lines) varied markedly in the success of their no-till establishment at eight locations across the upper Southeast. Better weed control, which was achieved at later planting dates, seemed to be the key. Yields obtained in the establishment stands revealed that two harvests per season are more productive (by 2 to 3 Mg/ha) than one, but the date of first cutting is crucial. First cutting should be from late-June to mid-July. A two-cut system may not be economically advantageous, however. Another cutting-management study detected losses of standing biomass at the end of the growing season. As much as 15% of the above-ground biomass present in early-September was no longer harvestable in early-November. We think this loss results from translocation of dry matter to below-ground parts.

  18. Bio-fuel co-products in France: perspectives and consequences for cattle food

    International Nuclear Information System (INIS)

    2010-01-01

    The development of bio-fuels goes along with that of co-products which can be used to feed animals. After having recalled the political context which promotes the development of renewable energies, this document aims at giving an overview of the impact of bio-fuel co-products on agriculture economy. It discusses the production and price evolution for different crops

  19. Environmental effect of constructed wetland as biofuel production system

    Science.gov (United States)

    Liu, Dong

    2017-04-01

    Being as a renewable energy, biofuel has attracted worldwide attention. Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Biofuel may offer a promising alternative to fossil fuels, but serious concerns arise about the adverse greenhouse gas consequences from using nitrogen fertilizers. Waste-nitrogen recycling is an attractive idea. Here we advocate a win-win approach to biofuel production which takes advantage of excessive nitrogen in domestic wastewater treated via constructed wetland (CW) in China. This study will carry on environmental effect analysis of CW as a biomass generation system through field surveys and controllable simulated experiments. This study intends to evaluate net energy balance, net greenhouse effect potential and ecosystem service of CW as biomass generation system, and make comparation with traditional wastewater treatment plant and other biofuel production systems. This study can provide a innovation mode in order to solve the dilemma between energy crops competed crops on production land and excessive nitrogen fertilizer of our traditional energy plant production. Data both from our experimental CWs in China and other researches on comparable CWs worldwide showed that the biomass energy yield of CWs can reach 182.3 GJ ha-1 yr-1, which was two to eight times higher than current biofuel-production systems. Energy output from CW was ˜137% greater than energy input for biofuel production. If CWs are designed with specific goal of biofuel production, biofuel production can be greatly enhanced through the optimization of N supply, hydraulic structures, and species selection in CWs. Assuming that 2.0 Tg (1 Tg = 1012 g) waste nitrogen contained in domestic wastewater is treated by CWs, biofuel production can account for 1.2% of national gasoline consumption in China. The proportion would increase to 6.7% if extra nitrogen (9.5 Tg) from industrial wastewater and agricultural runoff was included

  20. Metabolomics of Clostridial Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D [Princeton Univ., NJ (United States); Aristilde, Ludmilla [Cornell Univ., Ithaca, NY (United States); Amador-Noguez, Daniel [Univ. of Wisconsin, Madison, WI (United States)

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  1. Microalgae for biofuels production and environmental applications ...

    African Journals Online (AJOL)

    This review presents the current classification of biofuels, with special focus on microalgae and their applicability for the production of biodiesel. The paper considered issues related with the processing and culturing of microalgae, for not only those that are involved in biofuel production, but as well as the possibility of their ...

  2. Biofuels

    International Nuclear Information System (INIS)

    Poitrat, E.

    2009-01-01

    Biofuels are fuels made from non-fossil vegetal or animal materials (biomass). They belong to the renewable energy sources as they do not contribute to worsen some global environmental impacts, like the greenhouse effect, providing that their production is performed in efficient energy conditions with low fossil fuel consumption. This article presents: 1 - the usable raw materials: biomass-derived resources, qualitative and quantitative aspects, biomass uses; 2 - biofuels production from biomass: alcohols and ethers, vegetable oils and their esters, synthetic liquid or gaseous biofuels, biogas; 3 - characteristics of liquid biofuels and comparison with gasoline and diesel fuel; 4 - biofuel uses: alcohols and their esters, biofuels with oxygenated compounds; vegetable oils and their derivatives in diesel engines, biogas, example of global environmental impact: the greenhouse effect. (J.S.)

  3. Coupling of Algal Biofuel Production with Wastewater

    Directory of Open Access Journals (Sweden)

    Neha Chamoli Bhatt

    2014-01-01

    Full Text Available Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  4. setting sustainable standards for biofuel production

    African Journals Online (AJOL)

    OLAWUYI

    Director for Research, Training and International Development, Institute for Oil, Gas, ..... Table 3 presents the five stages in the product lifecycle for biofuel production ..... Principles on Human Rights Impact Assessments of Trade and Investment.

  5. Microalgae as sustainable renewable energy feedstock for biofuel production.

    Science.gov (United States)

    Medipally, Srikanth Reddy; Yusoff, Fatimah Md; Banerjee, Sanjoy; Shariff, M

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  6. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Srikanth Reddy Medipally

    2015-01-01

    Full Text Available The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties.

  7. Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production

    Science.gov (United States)

    Yusoff, Fatimah Md.; Shariff, M.

    2015-01-01

    The world energy crisis and increased greenhouse gas emissions have driven the search for alternative and environmentally friendly renewable energy sources. According to life cycle analysis, microalgae biofuel is identified as one of the major renewable energy sources for sustainable development, with potential to replace the fossil-based fuels. Microalgae biofuel was devoid of the major drawbacks associated with oil crops and lignocelluloses-based biofuels. Algae-based biofuels are technically and economically viable and cost competitive, require no additional lands, require minimal water use, and mitigate atmospheric CO2. However, commercial production of microalgae biodiesel is still not feasible due to the low biomass concentration and costly downstream processes. The viability of microalgae biodiesel production can be achieved by designing advanced photobioreactors, developing low cost technologies for biomass harvesting, drying, and oil extraction. Commercial production can also be accomplished by improving the genetic engineering strategies to control environmental stress conditions and by engineering metabolic pathways for high lipid production. In addition, new emerging technologies such as algal-bacterial interactions for enhancement of microalgae growth and lipid production are also explored. This review focuses mainly on the problems encountered in the commercial production of microalgae biofuels and the possible techniques to overcome these difficulties. PMID:25874216

  8. New feedstocks for biofuels. Alternative 1st generation of energy crops; Nieuwe Grondstoffen voor Biobrandstoffen. Alternatieve 1e Generatie Energiegewassen

    Energy Technology Data Exchange (ETDEWEB)

    Elbersen, W. [Agrotechnology and Food Sciences Group, WUR-AFSG, Wageningen (Netherlands); Oyen, L. [Plant Resources of Tropical Africa, WUR-PROTA, Wageningen (Netherlands)

    2009-08-15

    A brief overview is provided of a number of alternative crops that can supply feedstocks for 1st generation biofuels and a brief analysis is conducted of the option for renewable biofuel production. [Dutch] Er wordt een kort overzicht gegeven van een aantal alternatieve gewassen die grondstoffen voor 1e generatie biobrandstoffen kunnen leveren en wordt er een korte analyse gegeven van de mogelijkheid voor duurzame biobrandstofproductie.

  9. IEA Energy Technology Essentials: Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biofuel Production is the topic covered in this edition.

  10. Life cycle assessment of first-generation biofuels using a nitrogen crop model.

    Science.gov (United States)

    Gallejones, P; Pardo, G; Aizpurua, A; del Prado, A

    2015-02-01

    This paper presents an alternative approach to assess the impacts of biofuel production using a method integrating the simulated values of a new semi-empirical model at the crop production stage within a life cycle assessment (LCA). This new approach enabled us to capture some of the effects that climatic conditions and crop management have on soil nitrous oxide (N₂O) emissions, crop yields and other nitrogen (N) losses. This analysis considered the whole system to produce 1 MJ of biofuel (bioethanol from wheat and biodiesel from rapeseed). Non-renewable energy use, global warming potential (GWP), acidification, eutrophication and land competition are considered as potential environmental impacts. Different co-products were handled by system expansion. The aim of this study was (i) to evaluate the variability due to site-specific conditions of climate and fertiliser management of the LCA of two different products: biodiesel from rapeseed and bioethanol from wheat produced in the Basque Country (Northern Spain), and (ii) to improve the estimations of the LCA impacts due to N losses (N₂O, NO₃, NH₃), normally estimated with unspecific emission factors (EFs), that contribute to the impact categories analysed in the LCA of biofuels at local scale. Using biodiesel and bioethanol derived from rapeseed and wheat instead of conventional diesel and gasoline, respectively, would reduce non-renewable energy dependence (-55%) and GWP (-40%), on average, but would increase eutrophication (42 times more potential). An uncertainty analysis for GWP impact showed that the variability associated with the prediction of the major contributor to global warming potential (soil N₂O) can significantly affect the results from the LCA. Therefore the use of a model to account for local factors will improve the precision of the assessment and reduce the uncertainty associated with the convenience of the use of biofuels. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Molecular Breeding of Advanced Microorganisms for Biofuel Production

    OpenAIRE

    Sakuragi, Hiroshi; Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain bio...

  12. The role of biochemical engineering in the production of biofuels from microalgae.

    Science.gov (United States)

    Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2011-01-01

    Environmental changes that have occurred due to the use of fossil fuels have driven the search for alternative sources that have a lower environmental impact. First-generation biofuels were derived from crops such as sugar cane, corn and soybean, which contribute to water scarcity and deforestation. Second-generation biofuels originated from lignocellulose agriculture and forest residues, however these needed large areas of land that could be used for food production. Based on technology projections, the third generation of biofuels will be derived from microalgae. Microalgae are considered to be an alternative energy source without the drawbacks of the first- and second-generation biofuels. Depending upon the growing conditions, microalgae can produce biocompounds that are easily converted into biofuels. The biofuels from microalgae are an alternative that can keep the development of human activity in harmony with the environment. This study aimed to present the main biofuels that can be derived from microalgae. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Biofuel production by recombinant microorganisms

    Science.gov (United States)

    Liao, James C.; Atsumi, Shota; Cann, Anthony F.

    2017-07-04

    Provided herein are metabolically-modified microorganisms useful for producing biofuels. More specifically, provided herein are methods of producing high alcohols including isobutanol, 1-butanol, 1-propanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from a suitable substrate.

  14. Biofuel production and implications for land use, food production and environment in India

    International Nuclear Information System (INIS)

    Ravindranath, N.H.; Sita Lakshmi, C.; Manuvie, Ritumbra; Balachandra, P.

    2011-01-01

    There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed.

  15. Biofuel production and implications for land use, food production and environment in India

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, N.H.; Sita Lakshmi, C.; Manuvie, Ritumbra [Center for Sustainable Technologies, Indian Institute of Science, Bangalore 560012 (India); Balachandra, P., E-mail: patilb@mgmt.iisc.ernet.in [Center for Sustainable Technologies, Indian Institute of Science, Bangalore 560012 (India)

    2011-10-15

    There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed.

  16. Microalgae as a raw material for biofuels production.

    Science.gov (United States)

    Gouveia, Luisa; Oliveira, Ana Cristina

    2009-02-01

    Biofuels demand is unquestionable in order to reduce gaseous emissions (fossil CO(2), nitrogen and sulfur oxides) and their purported greenhouse, climatic changes and global warming effects, to face the frequent oil supply crises, as a way to help non-fossil fuel producer countries to reduce energy dependence, contributing to security of supply, promoting environmental sustainability and meeting the EU target of at least of 10% biofuels in the transport sector by 2020. Biodiesel is usually produced from oleaginous crops, such as rapeseed, soybean, sunflower and palm. However, the use of microalgae can be a suitable alternative feedstock for next generation biofuels because certain species contain high amounts of oil, which could be extracted, processed and refined into transportation fuels, using currently available technology; they have fast growth rate, permit the use of non-arable land and non-potable water, use far less water and do not displace food crops cultures; their production is not seasonal and they can be harvested daily. The screening of microalgae (Chlorella vulgaris, Spirulina maxima, Nannochloropsis sp., Neochloris oleabundans, Scenedesmus obliquus and Dunaliella tertiolecta) was done in order to choose the best one(s), in terms of quantity and quality as oil source for biofuel production. Neochloris oleabundans (fresh water microalga) and Nannochloropsis sp. (marine microalga) proved to be suitable as raw materials for biofuel production, due to their high oil content (29.0 and 28.7%, respectively). Both microalgae, when grown under nitrogen shortage, show a great increase (approximately 50%) in oil quantity. If the purpose is to produce biodiesel only from one species, Scenedesmus obliquus presents the most adequate fatty acid profile, namely in terms of linolenic and other polyunsaturated fatty acids. However, the microalgae Neochloris oleabundans, Nannochloropsis sp. and Dunaliella tertiolecta can also be used if associated with other

  17. SMALLHOLDER FARMERS’ WILLINGNESS TO INCORPORATE BIOFUEL CROPS INTO CROPPING SYSTEMS IN MALAWI

    Directory of Open Access Journals (Sweden)

    Beston Bille Maonga

    2015-01-01

    Full Text Available Using cross-sectional data, this study analysed the critical and significant socioeconomic factors with high likelihood to determine smallholder farmers’ decision and willingness to adopt jatropha into cropping systems in Malawi. Employing desk study and multi-stage random sampling technique a sample of 592 households was drawn from across the country for analysis. A probit model was used for the analysis of determinants of jatropha adoption by smallholder farmers. Empirical findings show that education, access to loan, bicycle ownership and farmers’ expectation of raising socioeconomic status are major significant factors that would positively determine probability of smallholder farmers’ willingness to adopt jatropha as a biofuel crop on the farm. Furthermore, keeping of ruminant herds of livestock, long distance to market and fears of market unavailability have been revealed to have significant negative influence on farmers’ decision and willingness to adopt jatropha. Policy implications for sustainable crop diversification drive are drawn and discussed.

  18. Molecular Breeding of Advanced Microorganisms for Biofuel Production

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakuragi

    2011-01-01

    Full Text Available Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society.

  19. Land substitution effects of biofuel side products and implications on the land area requirement for EU 2020 biofuel targets

    International Nuclear Information System (INIS)

    Ozdemir, Enver Doruk; Haerdtlein, Marlies; Eltrop, Ludger

    2009-01-01

    The provision of biofuels today is based on energy crops rather than residual biomass, which results in the requirement of agricultural land area. The side products may serve as animal feed and thus prevent cultivation of other feedstock and the use of corresponding land area. These effects of biofuel provision have to be taken into account for a comprising assessment of land area requirement for biofuel provision. Between 18.5 and 21.1 Mio. hectares (ha) of land area is needed to meet the EU 2020 biofuel target depending on the biofuel portfolio when substitution effects are neglected. The utilization of the bioethanol side products distiller's dried grain and solubles (DDGS) and pressed beet slices may save up to 0.7 Mio. ha of maize cultivation area in the EU. The substitution effect due to the utilization of biodiesel side products (oil cakes of rape, palm and soy) as animal feed may account for up to 7.1 Mio. ha of soy cultivation area in Brazil. The results show that the substitution of land area due to use of side products might ease the pressures on land area requirement considerably and should therefore not be neglected in assessing the impacts of biofuel provision worldwide.

  20. Allelopathic effect of new introduced biofuel crops on the soil biota: A comparative study

    Science.gov (United States)

    Heděnec, Petr; Frouz, Jan; Ustak, Sergej; Novotny, David

    2015-04-01

    Biofuel crops as an alternative to fossil fuels are a component of the energy mix in many countries. Many of them are introduced plants, so they pose a serious threat of biological invasions. Production of allelopathic compounds can increase invasion success by limiting co-occurring species in the invaded environment (novel weapons hypothesis). In this study, we focused on plant chemistry and production of allelopathic compounds by biofuel crops (hybrid sorrel Rumex tianschanicus x Rumex patientia and miscanthus Miscanthus sinensis) in comparison with invasive knotweed (Fallopia sachalinensis) and cultural meadow species. First, we tested the impact of leachates isolated from hybrid sorrel, miscanthus, knotweed and cultural meadow species compared to deionized water, used as a control, on seed germination of mustard (Sinapis arvensis) and wheat (Triticum aestivum) cultivated on sand and soil. Secondly, we studied the effect of leachates on the growth of soil fungal pathogens Fusarium culmorum, Rhizoctonia solani, Sclerotinia solani and Cochliobolus sativus. Finally, we tested the effect of litter of hybrid sorrel, miscanthus, knotweed and cultural meadow litter mixed with soil on population growth of Enchytraeus crypticus and Folsomia candida. Miscanthus and knotweed litter had a higher C:N ratio than the control meadow and hybrid sorrel litter. Miscanthus and hybrid sorrel litter had a higher content of phenols than knotweed and cultural meadow litter. Leachates from hybrid sorrel, miscanthus and knotweed biomass significantly decreased seed germination of wheat and mustard in both substrates. Soil fungal pathogens grew less vigorously on agar enriched by leachates from both biofuel crops than on agar enriched by knotweed and leachates. Litter from hybrid sorrel, miscanthus and knotweed significantly altered (both ways) the population growth of the soil mesofauna.

  1. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications.

    Science.gov (United States)

    Popp, József; Harangi-Rákos, Mónika; Gabnai, Zoltán; Balogh, Péter; Antal, Gabriella; Bai, Attila

    2016-02-29

    This review studies biofuel expansion in terms of competition between conventional and advanced biofuels based on bioenergy potential. Production of advanced biofuels is generally more expensive than current biofuels because products are not yet cost competitive. What is overlooked in the discussion about biofuel is the contribution the industry makes to the global animal feed supply and land use for cultivation of feedstocks. The global ethanol industry produces 44 million metric tonnes of high-quality feed, however, the co-products of biodiesel production have a moderate impact on the feed market contributing to just 8-9 million tonnes of protein meal output a year. By economically displacing traditional feed ingredients co-products from biofuel production are an important and valuable component of the biofuels sector and the global feed market. The return of co-products to the feed market has agricultural land use (and GHG emissions) implications as well. The use of co-products generated from grains and oilseeds can reduce net land use by 11% to 40%. The proportion of global cropland used for biofuels is currently some 2% (30-35 million hectares). By adding co-products substituted for grains and oilseeds the land required for cultivation of feedstocks declines to 1.5% of the global crop area.

  2. MAIN TRENDS OF BIOFUELS PRODUCTION IN UKRAINE

    Directory of Open Access Journals (Sweden)

    Myroslav PANCHUK

    2017-12-01

    Full Text Available The analysis of biological resources for biofuels production in Ukraine has been carried out, and it has been shown that usage of alternative energy sources has great potential for substantially improving energy supply of the state and solving environmental problems. The directions of development and new technologies of obtaining motor fuels from biomass are systematized. It has been established that usage of different types of biofuels and their mixtures for feeding internal combustion engines involves application of modified engines in terms of structure and algorithms and usage of traditional designs of cars without significant structural changes. Moreover, the impact of biofuels on the efficient operation of the engine requires further integrated research.

  3. Exploring new strategies for cellulosic biofuels production

    Science.gov (United States)

    Paul Langan; S. Gnankaran; Kirk D. Rector; Norma Pawley; David T. Fox; Dae Won Cho; Kenneth E. Hammel

    2011-01-01

    A research program has been initiated to formulate new strategies for efficient low-cost lignocellulosic biomass processing technologies for the production of biofuels. This article reviews results from initial research into lignocellulosic biomass structure, recalcitrance, and pretreatment. In addition to contributing towards a comprehensive understanding of...

  4. SOLID BIOFUEL UTILIZATION IN VEGETABLE OIL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Slusarenko V.

    2016-08-01

    Full Text Available The paper deals with questions of creating at JSC “Alimentarmash "in the last 20 years the technological equipment for the production of vegetable oils from oilseeds: from the press for the final spin to mini oilfactory, using as an energy source for heating the liquid coolant (Thermal oil "Arian" of solid biofuels - husk of sunflower seeds.

  5. Ecological effects of feral biofuel crops in constructed oak ...

    Science.gov (United States)

    The effects of elevated temperatures and drought on constructed oak savannahs were studied to determine the interactive effects of potentially invasive feral biofuel species and climate change on native grassland communities. A total of 12 sunlit mesocosm were used. Each mesocosm held three tubs. One had six native plant species; one had five native species with the annual crop Sorghum bicolor and one had five native species along with the weedy perennial Sorghum halepense. The experimental treatments were ambient (control), elevated temperature, drought, or a combination of elevated temperature and drought. Total aboveground biomass of the community was greatest in the control and drought treatments, lowest with elevated temperature + drought, and intermediate in high temperature treatments (Pbacterial biomass. Active bacterial biomass was lowest in the drought and elevated temperature and drought treatments (P<0.05). Active soil fungal biomass was highest in the tubs containing S. bicolor. Percent total carbon in the soil increased between 2010 and 2011 (P=0.0054); it was lowest in the elevated temperature and drought mesocosms (P<0.05). Longer term studi

  6. A comprehensive review of biomass resources and biofuel production in Nigeria: potential and prospects.

    Science.gov (United States)

    Sokan-Adeaga, Adewale Allen; Ana, Godson R E E

    2015-01-01

    The quest for biofuels in Nigeria, no doubt, represents a legitimate ambition. This is so because the focus on biofuel production has assumed a global dimension, and the benefits that may accrue from such effort may turn out to be enormous if the preconditions are adequately satisfied. As a member of the global community, it has become exigent for Nigeria to explore other potential means of bettering her already impoverished economy. Biomass is the major energy source in Nigeria, contributing about 78% of Nigeria's primary energy supply. In this paper, a comprehensive review of the potential of biomass resources and biofuel production in Nigeria is given. The study adopted a desk review of existing literatures on major energy crops produced in Nigeria. A brief description of the current biofuel developmental activities in the country is also given. A variety of biomass resources exist in the country in large quantities with opportunities for expansion. Biomass resources considered include agricultural crops, agricultural crop residues, forestry resources, municipal solid waste, and animal waste. However, the prospects of achieving this giant stride appear not to be feasible in Nigeria. Although the focus on biofuel production may be a worthwhile endeavor in view of Nigeria's development woes, the paper argues that because Nigeria is yet to adequately satisfy the preconditions for such program, the effort may be designed to fail after all. To avoid this, the government must address key areas of concern such as food insecurity, environmental crisis, and blatant corruption in all quarters. It is concluded that given the large availability of biomass resources in Nigeria, there is immense potential for biofuel production from these biomass resources. With the very high potential for biofuel production, the governments as well as private investors are therefore encouraged to take practical steps toward investing in agriculture for the production of energy crops and the

  7. The impact of extreme drought on the biofuel feedstock production

    Science.gov (United States)

    hussain, M.; Zeri, M.; Bernacchi, C.

    2013-12-01

    Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum virgatum) have been identified as the primary targets for second-generation cellulosic biofuel crops. Prairie managed for biomass is also considered as one of the alternative to conventional biofuel and promised to provide ecosystem services, including carbon sequestration. These perennial grasses possess a number of traits that make them desirable biofuel crops and can be cultivated on marginal lands or interspersed with maize and soybean in the Corn Belt region. The U.S. Corn Belt region is the world's most productive and expansive maize-growing region, approximately 20% of the world's harvested corn hectares are found in 12 Corn Belt states. The introduction of a second generation cellulosic biofuels for biomass production in a landscape dominated by a grain crop (maize) has potential implications on the carbon and water cycles of the region. This issue is further intensified by the uncertainty in the response of the vegetation to the climate change induced drought periods, as was seen during the extreme droughts of 2011 and 2012 in the Midwest. The 2011 and 2012 growing seasons were considered driest since the 1932 dust bowl period; temperatures exceeded 3.0 °C above the 50- year mean and precipitation deficit reached 50 %. The major objective of this study was to evaluate the drought responses (2011 and 2012) of corn and perennial species at large scale, and to determine the seasonability of carbon and water fluxes in the response of controlling factors. We measured net CO2 ecosystem exchange (NEE) and water fluxes of maize-maize-soybean, and perennial species such as miscanthus, switchgrass and mixture of prairie grasses, using eddy covariance in the University of Illinois energy farm at Urbana, IL. The data presented here were for 5 years (2008- 2012). In the first two years, higher NEE in maize led to large CO2 sequestration. NEE however, decreased in dry years, particularly in 2012. On the other

  8. Reducing GHG emissions in agricultural production process for production of biofuels by growing legumes and production-technical measures

    International Nuclear Information System (INIS)

    Gurgel, Andreas; Schiemenz, Katja

    2017-01-01

    The reduction of greenhouse gases (GHG) emissions in the supply chain for biofuels is a big challenge especially for the German and European cultivation of energy crops. The production of nitrogen fertilizers and field emissions are the main factors of GHG emissions. The amount of field emissions depends very strongly on the nitrogen effort and the intensity of tillage. The main objective is to reduce GHG emissions in field cropping systems within the biofuel production chains. An inclusion of legumes into crop rotations is particularly important because their cultivation does not require nitrogen fertilizer. Data base for the project is a complex field experiment with the biofuel crops winter rape and winter wheat. Previous crops are winter wheat, peas and lupins. ln each case tilling systems are compared with non-tilling. The first results of the field experiments are nitrogen functions depending on previous crops, sites and tilling system. Calculation models for GHG reduction models were developed on the bases of these results. By growing legumes as previous crops before wheat and rape it is possible to reduce GHG emissions from 2 to 10 g CO_2_e_q per MJ. The best reduction of GHG emissions is possible by combining legumes as previous crops with a reduced nitrogen effort.

  9. Institutional analysis of biofuel production in Northern Ghana

    OpenAIRE

    Kwoyiga, Lydia

    2013-01-01

    The thesis studied the nature of institutional arrangement around biofuel production and how this arrangement has shaped the production outcome of biofuel companies and community development. The study was conducted in two communities of the Yendi Municipal Assembly of the Northern Region of Ghana. In this area, a biofuel company called Biofuel Africa Limited has acquired areas of land and cultivated Jatropha plantations. A total of 32 informants were interviewed to arrive at information ne...

  10. Developing symbiotic consortia for lignocellulosic biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Zuroff, Trevor R.; Curtis, Wayne R. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemical Engineering

    2012-02-15

    The search for petroleum alternatives has motivated intense research into biological breakdown of lignocellulose to produce liquid fuels such as ethanol. Degradation of lignocellulose for biofuel production is a difficult process which is limited by, among other factors, the recalcitrance of lignocellulose and biological toxicity of the products. Consolidated bioprocessing has been suggested as an efficient and economical method of producing low value products from lignocellulose; however, it is not clear whether this would be accomplished more efficiently with a single organism or community of organisms. This review highlights examples of mixtures of microbes in the context of conceptual models for developing symbiotic consortia for biofuel production from lignocellulose. Engineering a symbiosis within consortia is a putative means of improving both process efficiency and stability relative to monoculture. Because microbes often interact and exist attached to surfaces, quorum sensing and biofilm formation are also discussed in terms of consortia development and stability. An engineered, symbiotic culture of multiple organisms may be a means of assembling a novel combination of metabolic capabilities that can efficiently produce biofuel from lignocellulose. (orig.)

  11. Liquid biofuel production from volatile fatty acids

    Energy Technology Data Exchange (ETDEWEB)

    Steinbusch, K.J.J.

    2010-03-19

    The production of renewable fuels and chemicals reduces the dependency on fossil fuels and limits the increase of CO2 concentration in the atmosphere only if a sustainable feedstock and an energy efficient process are used. The thesis assesses the possibility to use municipal and industrial waste as biomass feedstock to have little of no competition with food production, and to save greenhouse gasses emissions. Waste is a complex substrate with a diverse composition and high water content. It can be homogenized without losing its initial energy value by anaerobic conversion to volatile fatty acids (VFA). Using VFA gives the opportunity to process cheap and abundantly present biomass residues to a fuel and chemical instead of sugar containing crops or vegetable oil. This thesis describes the feasibility to convert VFA to compounds with a higher energy content using mixed culture fermentations by eliminating of oxygen and/or increasing the carbon and hydrogen content. At high hydrogen pressure, protons and electrons release via the reduction of organic products such as VFA becomes thermodynamically more attractive. Three VFA reduction reactions were studied: hydrogenation to an alcohol with (1) hydrogen and (2) an electrode as electron donor, and (3) by chain elongation with hydrogen and ethanol. Based on concentration, production rate and efficiency, elongation of acetate with hydrogen and/or ethanol was the best technique to convert VFA into a fuel. In a CSTR (Continuous-flow stirred-tank reactor), 10.5 g L{sup -1} caproic acid and 0.48 g L{sup -1} caprylic acid were produced with ethanol and/or hydrogen at a specific MCFA (medium-chain fatty acids) production activity of 2.9 g caproate and 0.09 g caprylate per gram VSS d{sup -1} (volatile suspended solids). The products were selectively removed by calcium precipitation and solvent extraction with ethyl hexanoate and petroleum ether. Microbial characterization revealed that the microbial populations were stable and

  12. Applications of Cyanobacteria in Biofuel Production

    DEFF Research Database (Denmark)

    Möllers, K. Benedikt

    and to evolve from a wasteful petrochemical system into a sustainable bio-based society, biofuels and the introduction of bio-refineries play an essential role. Aquatic phototrophs are promising organisms to employ photosynthetic capacities as well as the derived carbohydrates for the production of biofuels......, enzymatic conversion of lignocellulosic biomass for further fermentation or as a platform chemical in a bio-refinery concept. Autotrophically cultivated cells of the marine model cyanobacterium Synechococcus sp. PCC 7002 (Synechococcus) were exposed to mild nitrogen starvation which has been identified...... for fermentation of plant waste material or a substitute for yeast extract. By mimicking photosynthetic electron transport from light excited photo pigments to LPMOs in combination with a reductant and cellulose as substrate, a 100-fold increase in catalytic activity of LPMOs was observed. Also, it was found...

  13. Nitrous Oxide Emissions from Biofuel Crops and Atmospheric Aerosols: Associations with Air Quality and Regional Climate

    Science.gov (United States)

    Pillai, Priya Ramachandran

    Emissions of greenhouse gases (GHG) and primary release and secondary formation of aerosols alter the earth's radiative balance and therefore have important climatic implications. Savings in carbon dioxide (CO2) emissions accomplished by replacing fossil fuels with biofuels may increase the nitrous oxide (N2O) emissions. Among various atmospheric trace gases, N2O, irrespective of its low atmospheric concentration, is the fourth most important gas in causing the global greenhouse effect. Major processes, those affect the concentration of atmospheric N2O, are soil microbial activities leading to nitrification and denitrification. Therefore, anthropogenic activities such as industrial emissions, and agricultural practices including application of nitrogenous fertilizers, land use changes, biomass combustion all contribute to the atmospheric N2O concentration. The emission rates of N2O related to biofuel production depend on the nitrogen (N) fertilizer uptake efficiency of biofuel crops. However, crops with less N demand, such as switchgrass may have more favorable climate impacts when compared to crops with high N demands, such as corn. Despite its wide environmental tolerance, the regional adaptability of the potential biofuel crop switch grass varies considerably. Therefore, it is important to regionally quantify the GHG emissions and crop yield in response to N-fertilization. A major objective of this study is to quantify soil emissions of N2O from switchgrass and corn fields as a function of N-fertilization. The roles of soil moisture and soil temperature on N2O fluxes were analyzed. These N2O observations may be used to parameterize the biogeochemical models to better understand the impact of different N2O emission scenarios. This study allows for improvements in climate models that focus on understanding the environmental impacts of the climate change mitigation strategy of replacing fossil fuels with biofuels. As a second major objective, the top of the

  14. Sugar Release and Growth of Biofuel Crops are Improved by Downregulation of Pectin Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Donohoe, Bryon S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sykes, Robert W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gjersing, Erica L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Ziebell, Angela [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Turner, Geoffrey [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Decker, Steve [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Davis, Mark F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Biswal, Ajaya K. [University of Georgia; Oak Ridge National Laboratory; Atmodjo, Melani A. [University of Georgia; Oak Ridge National Laboratory; Li, Mi [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; Baxter, Holly L. [Oak Ridge National Laboratory; University of Tennessee; Yoo, Chang Geun [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; Pu, Yunqiao [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; Lee, Yi-Ching [Oak Ridge National Laboratory; Noble Research Institute; Mazarei, Mitra [Oak Ridge National Laboratory; University of Tennessee; Black, Ian M. [University of Georgia; Zhang, Ji-Yi [Oak Ridge National Laboratory; Noble Research Institute; Ramanna, Hema [Oak Ridge National Laboratory; Noble Research Institute; Bray, Adam L. [Oak Ridge National Laboratory; University of Georgia; King, Zachary R. [Oak Ridge National Laboratory; University of Georgia; LaFayette, Peter R. [Oak Ridge National Laboratory; University of Georgia; Pattathil, Sivakumar [University of Georgia; Oak Ridge National Laboratory; Mohanty, Sushree S. [University of Georgia; Oak Ridge National Laboratory; Ryno, David [University of Georgia; Oak Ridge National Laboratory; Yee, Kelsey [Oak Ridge National Laboratory; Thompson, Olivia A. [Oak Ridge National Laboratory; Rodriguez Jr., Miguel [Oak Ridge National Laboratory; Dumitrache, Alexandru [Oak Ridge National Laboratory; Natzke, Jace [Oak Ridge National Laboratory; Winkeler, Kim [Oak Ridge National Laboratory; ArborGen, Inc.; Collins, Cassandra [Oak Ridge National Laboratory; ArborGen, Inc.; Yang, Xiaohan [Oak Ridge National Laboratory; Tan, Li [University of Georgia; Oak Ridge National Laboratory; Hahn, Michael G. [University of Georgia; Oak Ridge National Laboratory; Davison, Brian H. [Oak Ridge National Laboratory; Udvardi, Michael K. [Oak Ridge National Laboratory; Noble Research Institute; Mielenz, Jonathan R. [Oak Ridge National Laboratory; Nelson, Richard S. [Oak Ridge National Laboratory; Noble Research Institute; Parrott, Wayne A. [Oak Ridge National Laboratory; University of Georgia; Ragauskas, Arthur J. [Oak Ridge National Laboratory; UT-ORNL Joint Institute for Biological Sciences; University of Tennessee; Stewart Jr., C. Neal [Oak Ridge National Laboratory; University of Tennessee; Mohnen, Debra [University of Georgia; Oak Ridge National Laboratory

    2018-02-12

    Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants. We show that GAUT4 is an a-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG). Downregulation of GAUT4 reduces HG and rhamnogalacturonan II (RGII), reduces wall calcium and boron, and increases extractability of cell wall sugars. Decreased recalcitrance in biomass processing and increased growth are likely due to reduced HG and RGII cross-linking in the cell wall.

  15. Smallholder farmers’ awareness of biofuel crops in the Eastern Cape Province, South Africa

    OpenAIRE

    Cheteni, Priviledge

    2016-01-01

    In this study, 157 smallholder farmers from the OR Tambo and Chris Hani district municipality in South Africa were purposively sampled to participate in a survey. The objective was to identify the factors that influence smallholder farmers’ awareness of biofuel crops. Using a binary logistic model it was found that the variables; gender, household income, membership in association; land utilisation and qualification were statistically significant in influencing farmers’ awareness of biofuel c...

  16. Biofuels in Central America, a real potential for commercial production

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, O.L. (Regional Coordinator Energy and Environmental Partnership with Central America EEP (El Salvador))

    2007-07-01

    The purpose of this paper is to show the current capabilities of the Central American countries regarding the production of biofuels, and the real potential in increasing the volumes produced and the impacts that can be generated if a non sustainable policy is followed for achieving the targets of biofuel production. Due to the world oil price crisis, and the fact that Central American counties are fully dependant on oil imports (just Guatemala and Belize produce little amounts of oil), just to mention, in some countries the imports of oil is equivalent to the 40% of the total exports, the region started to look for massive production of biofuels, something that it is not new for us. The countries have started with programs for producing ethanol from sugar cane, because it is one of the most strongest industries in Central America and they have all the infrastructure and financial sources to develop this project. The ethanol is a biofuel that can be mixed with gasoline or a complete substitute. Another biofuel that is currently under develop, is the production of biodiesel, and the main source for it nowadays is the Palm oil, where Costa Rica, Honduras and Guatemala have already commercial productions of crude palm oil, but the principal use of it is for the food industry, but now it is under assessment for using part of it for biodiesel. EEP is now developing pilot programs for production of biodiesel from a native plant named Jatropha curcas, and up to now we have a commercial plantation in Guatemala, and we started as well in Honduras for start spreading this plantations. In El Salvador we installed a pilot processing plant for biodiesel that can be operated with multiple feed stock, such as Jatropha, palm oil, castor oil, vegetable used oil and others. Currently we have interesting and good results regarding the production of Jatropha, we have developed a methodology for its cropping, harvesting and processing. All the vehicles and equipment involved in the

  17. Resource use efficiency and environmental performance of nine major biofuel crops, processed by first-generation conversion techniques

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, Sander C.; van de Ven, Gerrie W.J.; van Ittersum, Martin K.; Giller, Ken E. [Plant Production Systems Group, Wageningen University, P.O. Box 430, 6700 AK Wageningen (Netherlands)

    2010-05-15

    We compared the production-ecological sustainability of biofuel production from several major crops that are also commonly used for production of food or feed, based on current production practices in major production areas. The set of nine sustainability indicators focused on resource use efficiency, soil quality, net energy production and greenhouse gas emissions, disregarding socio-economic or biodiversity aspects and land use change. Based on these nine production-ecological indicators and attributing equal importance to each indicator, biofuel produced from oil palm (South East Asia), sugarcane (Brazil) and sweet sorghum (China) appeared most sustainable: these crops make the most efficient use of land, water, nitrogen and energy resources, while pesticide applications are relatively low in relation to the net energy produced. Provided there is no land use change, greenhouse gas emissions of these three biofuels are substantially reduced compared with fossil fuels. Oil palm was most sustainable with respect to the maintenance of soil quality. Maize (USA) and wheat (Northwest Europe) as feedstock for ethanol perform poorly for nearly all indicators. Sugar beet (Northwest Europe), cassava (Thailand), rapeseed (Northwest Europe) and soybean (USA) take an intermediate position. (author)

  18. Integrated Biorefinery for Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Gabriel [Society for Energy and Environmental Research (SEER), New York, NY (United States)

    2011-09-02

    This project has focused on very low grade fats, oil and greases found in municipal, commercial and industrial facilities around the country. These wastes are often disposed in landfills, wastewater treatment plants or farm fields or are blended illegally into animal feeds. Using any of these waste fatty materials that are unfit for human or animal nutrition as a clean alternative fuel makes good sense. This project defines the aforementioned wastes in terms of quality and prevalence in the US, then builds on specific promising pathways for utilizing these carbon neutral wastes. These pathways are discussed and researched at bench-scale, and in one instance, at pilot-scale. The three primary pathways are as follows: The production of Renewable Diesel Oil (RDO) as a stand-alone fuel or blended with standard distillate or residual hydrocarbons; The production of RDO as a platform for the further manufacture of Biodiesel utilizing acid esterification; The production of RDO as a platform for the manufacture of an ASTM Diesel Fuel using one or more catalysts to effect a decarboxylation of the carboxylics present in RDO This study shows that Biodiesel and ASTM Diesel produced at bench-scale (utilizing RDO made from grease trap waste as an input) could not meet industry specifications utilizing the technologies that were selected by the investigators. Details of these investigations are discussed in this report and will hopefully provide a starting point for other researchers interested in these pathways in future studies. Although results were inconclusive in finding ways to utilize RDO technology, in effect, as a pretreatment for commonly discussed technologies such as Biodiesel and ASTM Diesel, this study does shed light on the properties, performance and cost of utilizing waste greases directly as a retail liquid fuel (RDO). The utilization as a retail RDO as a boiler fuel, or for other such applications, is the most important finding of the study.

  19. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  20. Cyanobacteria as a platform for biofuel production

    Directory of Open Access Journals (Sweden)

    Nicole E Nozzi

    2013-09-01

    Full Text Available Cyanobacteria have great potential as a platform for biofuel production because of their fast growth, ability to fix carbon dioxide gas, and their genetic tractability. Furthermore they do not require fermentable sugars or arable land for growth and so competition with cropland would be greatly reduced. In this perspective we discuss the challenges and areas for improvement most pertinent for advancing cyanobacterial fuel production, including: improving genetic parts, carbon fixation, metabolic flux, nutrient requirements on a large scale, and photosynthetic efficiency using natural light.

  1. Production of biofuels obtained from microalgae

    Directory of Open Access Journals (Sweden)

    Luis Carlos Fernández-Linares

    2012-09-01

    Full Text Available A review of the situation of bio-fuels in the world, mainly of biodiesel is made. A comparison among the different raw materials for the synthesis of biodiesel is done and it is emphasized in the production of biodiesel from microalgae. The different fresh and salt water micro-algae in its lipid content and productivity are compared. A review of the process of biosynthesis of lipids in microalgae and how to improve the production of lipids in microalgae is shown. It is discussed the importance of the genetic manipulation to highly lipid-producing microalgae (example: Botryrococuus braunni, Nannochloropsis sp, Noechlorisoleobundans and Nitschia sp.. A study of the advantages and disadvantages of the different systems of cultivation of microalgae is also made. Finally, it is shown a perspective of biofuels from microalgae. Among the main challenges to overcome to produce biodiesel from microalgae are: the cost of production of biomass, which involves the optimization of media, selection and manipulation of strains and photobioreactors design. The processof separation of biomass, the extraction of oils and by-products, the optimization of the process of transesterification, purification and use of by-products must also be considered.

  2. Economical analysis of biofuel products and nuclear plant hydrogen

    International Nuclear Information System (INIS)

    Edwaren Liun

    2011-01-01

    The increasing in oil prices over the last six years is unprecedented that should be seen as a spur to increased efficiency. The surge in oil prices on the world market today is driven by strong demand factors in the depletion of world oil reserves. To replace the fuel oil from the bowels of the earth the various alternatives should be considered, including other crops or vegetable oil production of bio-fuels and hydrogen are produced by high temperature nuclear reactors. Biofuels in the form of ethanol made from corn or sugar cane and biodiesel made from palm oil or jatropha. With the latest world oil prices, future fuel vegetable oil and nuclear hydrogen-based energy technologies become popular in various parts of the world. Economics of biodiesel will be changed in accordance with world oil prices and subsidy regulations which apply to fuel products. On the other hand the role of nuclear energy in hydrogen production with the most potential in the techno-economics is a form of high temperature steam electrolysis, using heat and electricity from nuclear reactors. The production cost of biodiesel fuel on the basis of ADO type subsidy is 10.49 US$/MMBTU, while the production cost of hydrogen as an energy carrier of high temperature reactor is 15.30 US$/MMBTU. Thus, both types seem to have strong competitiveness. (author)

  3. Oil crops in biofuel applications: South Africa gearing up for a bio-based economy

    Directory of Open Access Journals (Sweden)

    BB Marvey

    2009-04-01

    Full Text Available Large fluctuations in crude oil prices and the diminishing oil supply have left economies vulnerable to energy shortages thus placing an enormous pressure on nations around the world to seriously consider alternative renewable resources as feedstock in biofuel applications. Apart from energy security reasons, biofuels offer other advantages over their petroleum counterparts in that they contribute to the reduction in green- house gas emissions and to sustainable development. Just a few decades after discontinuing its large scale production of bioethanol for use as en- gine fuel, South Africa (SA is again on its way to resuscitating its biofuel industry. Herein an overview is presented on South Africa’s oilseed and biofuel production, biofuels industrial strategy, industry readiness, chal- lenges in switching to biofuels and the strategies to overcome potential obstacles.

  4. Protein engineering for biofuel production: Recent development

    Directory of Open Access Journals (Sweden)

    Nisha Singh

    2016-09-01

    Full Text Available The unstable and unsure handiness of crude oil sources moreover the rising price of fuels have shifted international efforts to utilize renewable resources for the assembly of greener energy and a replacement which might additionally meet the high energy demand of the globe. Biofuels represent a sustainable, renewable, and also the solely predictable energy supply to fossil fuels. During the green production of Biofuels, several in vivo processes place confidence in the conversion of biomass to sugars by engineered enzymes, and the subsequent conversion of sugars to chemicals via designed proteins in microbial production hosts. Enzymes are indispensable within the effort to provide fuels in an ecologically friendly manner. They have the potential to catalyze reactions with high specificity and potency while not using dangerous chemicals. Nature provides an in depth assortment of enzymes, however usually these should be altered to perform desired functions in needed conditions. Presently available enzymes like cellulose are subject to tight induction and regulation systems and additionally suffer inhibition from numerous end products. Therefore, more impregnable and economical catalyst preparations ought to be developed for the enzymatic method to be more economical. Approaches like protein engineering, reconstitution of protein mixtures and bio prospecting for superior enzymes are gaining importance. Advances in enzyme engineering allow the planning and/or directed evolution of enzymes specifically tailored for such industrial applications. Recent years have seen the production of improved enzymes to help with the conversion of biomass into fuels. The assembly of the many of those fuels is feasible due to advances in protein engineering. This review discusses the distinctive challenges that protein engineering faces in the method of changing lignocellulose to biofuels and the way they're addressed by recent advances in this field.

  5. Transport biofuel yields from food and lignocellulosic C{sub 4} crops

    Energy Technology Data Exchange (ETDEWEB)

    Reijnders, L. [IBED University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands)

    2010-01-15

    In the near future, the lignocellulosic C{sub 4} crops Miscanthus and switchgrass (Panicum virgatum) are unlikely to outcompete sugarcane (Saccharum officinarum) in net energetic yearly yield of transport biofuel ha{sup -1}. This holds both for the thermochemical conversion into liquid hydrocarbons and the enzymatic conversion into ethanol. Currently, Miscanthus and switchgrass would also not seem able to outcompete corn (Zea mays) in net energetic yearly yield of liquid transport biofuel ha{sup -1}, but further development of these lignocellulosic crops may gradually lead to a different outcome. (author)

  6. BIOGAS PRODUCTION FROM CATCH CROPS

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2014-01-01

    -substrate in manure-based biogas plants and the profit obtained from the sale of biogas barely compensates for the harvest costs. A new agricultural strategy to harvest catch crops together with the residual straw of the main crop was investigated to increase the biomass and thereby the methane yield per hectare......Catch crop cultivation combined with its use for biogas production would increase renewable energy production in the form of methane, without interfering with the production of food and fodder crops. The low biomass yield of catch crops is the main limiting factor for using these crops as co...... biomass. Leaving the straw on the field until harvest of the catch crop in the autumn could benefit biogas production due to the organic matter degradation of the straw taking place on the field during the autumn months. This new agricultural strategy may be a good alternative to achieve economically...

  7. Spatio-Temporal Impacts of Biofuel Production and Climate Variability on Water Quantity and Quality in Upper Mississippi River Basin

    Directory of Open Access Journals (Sweden)

    Debjani Deb

    2015-06-01

    Full Text Available Impact of climate change on the water resources of the United States exposes the vulnerability of feedstock-specific mandated fuel targets to extreme weather conditions that could become more frequent and intensify in the future. Consequently, a sustainable biofuel policy should consider: (a how climate change would alter both water supply and demand; and (b in turn, how related changes in water availability will impact the production of biofuel crops; and (c the environmental implications of large scale biofuel productions. Understanding the role of biofuels in the water cycle is the key to understanding many of the environmental impacts of biofuels. Therefore, the focus of this study is to model the rarely explored interactions between land use, climate change, water resources and the environment in future biofuel production systems. Results from this study will help explore the impacts of the US biofuel policy and climate change on water and agricultural resources. We used the Soil and Water Assessment Tool (SWAT to analyze the water quantity and quality consequences of land use and land management related changes in cropping conditions (e.g., more use of marginal lands, greater residue harvest, increased yields, plus management practices due to biofuel crops to meet the Renewable Fuel Standard target on water quality and quantity.

  8. Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement.

    Science.gov (United States)

    Maghuly, Fatemeh; Laimer, Margit

    2013-10-01

    Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement. © 2013 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Impact of drought stress on growth and quality of miscanthus for biofuel production

    NARCIS (Netherlands)

    Weijde, van der Tim; Huxley, Laurie M.; Hawkins, Sarah; Eben Haeser Sembiring, Eben; Farrar, Kerrie; Dolstra, Oene; Visser, Richard G.F.; Trindade, Luisa M.

    2017-01-01

    Miscanthus has a high potential as a biomass feedstock for biofuel production. Drought tolerance is an important breeding goal in miscanthus as water deficit is a common abiotic stress and crop irrigation is in most cases uneconomical. Drought may not only severely reduce biomass yields, but also

  10. Biofuels production for smallholder producers in the Greater Mekong Sub-region

    International Nuclear Information System (INIS)

    Malik, Urooj S.; Ahmed, Mahfuz; Sombilla, Mercedita A.; Cueno, Sarah L.

    2009-01-01

    Looming concerns on rising food prices and food security has slowed down the impetus in biofuel production. The development of the sub-sector, however, remains an important agenda among developing countries like those of the Greater Mekong Sub-region (GMS) that have abundant labour and natural resources but have limited supply of fossil fuels which continues to serve as a constraint to economic growth. Five crops have been selected to be further developed and use for biofuel production in the GMS, namely sugarcane, cassava, oil palm, sweet sorghum and Jathropa curcas. The expanded use of sugarcane, cassava, and oil palm for biofuel production can cause problems in the food sector. The other two crops, sweet sorghum and J. curcas, are non-food crops but could still compete with the food crops in terms of resource use for production. In all cases, the GMS needs to formulate a sustainable strategy for the biofuel development that will not compete with the food sector but will rather help achieve energy security, promote rural development and protect the environment. Except for People's Republic of China (PRC) and Thailand that already have fairly developed biofuel sub-sector, the other GMS countries are either poised to start (Lao PDR and Cambodia) or ready to enhance existing initiatives on biofuel production (Myanmar and Vietnam), with support from their respective governments. Biofuel development in these countries has to be strongly integrated with smallholder producers in order to have an impact on improving livelihood. At this initial stage, the sub-sector does not need to compete on a price basis but should rather aim to put up small-scale biofuel processing plants in remote rural areas that can offer an alternative to high-priced diesel and kerosene for local electricity grids serving homes and small enterprises. The social and economic multiplier effects are expected to be high when farmers that produce the energy crops also produce the biofuels to generate

  11. Biofuels production for smallholder producers in the Greater Mekong Sub-region

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Urooj S.; Ahmed, Mahfuz [Southeast Asia Department, Asian Development Bank, 6 ADB Avenue, Mandaluyong City 1550 (Philippines); Sombilla, Mercedita A. [Southeast Asian Center for Graduate Studies and Research in Agriculture (SEARCA), Consulting Services Department, 4031 College, Laguna (Philippines); Cueno, Sarah L. [Agricultural Economist and Regional Program Coordinator Greater Mekong Subregion Economic Cooperation Program Working Group on Agriculture, Southeast Asia Department, Asian Development Bank, 6 ADB Avenue, Mandaluyong City 1550 (Philippines)

    2009-11-15

    Looming concerns on rising food prices and food security has slowed down the impetus in biofuel production. The development of the sub-sector, however, remains an important agenda among developing countries like those of the Greater Mekong Sub-region (GMS) that have abundant labour and natural resources but have limited supply of fossil fuels which continues to serve as a constraint to economic growth. Five crops have been selected to be further developed and use for biofuel production in the GMS, namely sugarcane, cassava, oil palm, sweet sorghum and Jathropa curcas. The expanded use of sugarcane, cassava, and oil palm for biofuel production can cause problems in the food sector. The other two crops, sweet sorghum and J. curcas, are non-food crops but could still compete with the food crops in terms of resource use for production. In all cases, the GMS needs to formulate a sustainable strategy for the biofuel development that will not compete with the food sector but will rather help achieve energy security, promote rural development and protect the environment. Except for People's Republic of China (PRC) and Thailand that already have fairly developed biofuel sub-sector, the other GMS countries are either poised to start (Lao PDR and Cambodia) or ready to enhance existing initiatives on biofuel production (Myanmar and Vietnam), with support from their respective governments. Biofuel development in these countries has to be strongly integrated with smallholder producers in order to have an impact on improving livelihood. At this initial stage, the sub-sector does not need to compete on a price basis but should rather aim to put up small-scale biofuel processing plants in remote rural areas that can offer an alternative to high-priced diesel and kerosene for local electricity grids serving homes and small enterprises. The social and economic multiplier effects are expected to be high when farmers that produce the energy crops also produce the biofuels to

  12. Limits to biofuels

    Directory of Open Access Journals (Sweden)

    Johansson S.

    2013-06-01

    Full Text Available Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays’ use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years’ agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2–6000TWh (biogas from residues and waste and ethanol from woody biomass in the more optimistic cases.

  13. Limits to biofuels

    Science.gov (United States)

    Johansson, S.

    2013-06-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.

  14. Cultivation and Characterization of Cynara Cardunculus for Solid Biofuels Production in the Mediterranean Region

    Directory of Open Access Journals (Sweden)

    Nicholas G. Danalatos

    2008-07-01

    Full Text Available Technical specifications of solid biofuels are continuously improved towards the development and promotion of their market. Efforts in the Greek market are limited, mainly due to the climate particularity of the region, which hinders the growth of suitable biofuels. Taking also into account the increased oil prices and the high inputs required to grow most annual crops in Greece, cardoon (Cynara cardunculus L. is now considered the most important and promising sources for solid biofuel production in Greece in the immediate future. The reason is that cardoon is a perennial crop of Mediterranean origin, well adapted to the xerothermic conditions of southern Europe, which can be utilized particularly for solid biofuel production. This is due to its minimum production cost, as this perennial weed may perform high biomass productivity on most soils with modest or without any inputs of irrigation and agrochemicals. Within this framework, the present research work is focused on the planning and analysis of different land use scenarios involving this specific energy crop and the combustion behaviour characterization for the solid products. Such land use scenarios are based on quantitative estimates of the crop’s production potential under specific soil-climatic conditions as well as the inputs required for its realization in comparison to existing conventional crops. Concerning its decomposition behaviour, devolatilisation and char combustion tests were performed in a non-isothermal thermogravimetric analyser (TA Q600. A kinetic analysis was applied and accrued results were compared with data already available for other lignocellulosic materials. The thermogravimetric analysis showed that the decomposition process of cardoon follows the degradation of other lignocellulosic fuels, meeting high burnout rates. This research work concludes that Cynara cardunculus, under certain circumstances, can be used as a solid biofuel of acceptable quality.

  15. The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth's climate

    Science.gov (United States)

    Smith, Keith A.; Mosier, Arvin R.; Crutzen, Paul J.; Winiwarter, Wilfried

    2012-01-01

    In earlier work, we compared the amount of newly fixed nitrogen (N, as synthetic fertilizer and biologically fixed N) entering agricultural systems globally to the total emission of nitrous oxide (N2O). We obtained an N2O emission factor (EF) of 3–5%, and applied it to biofuel production. For ‘first-generation’ biofuels, e.g. biodiesel from rapeseed and bioethanol from corn (maize), that require N fertilizer, N2O from biofuel production could cause (depending on N uptake efficiency) as much or more global warming as that avoided by replacement of fossil fuel by the biofuel. Our subsequent calculations in a follow-up paper, using published life cycle analysis (LCA) models, led to broadly similar conclusions. The N2O EF applies to agricultural crops in general, not just to biofuel crops, and has made possible a top-down estimate of global emissions from agriculture. Independent modelling by another group using bottom-up IPCC inventory methodology has shown good agreement at the global scale with our top-down estimate. Work by Davidson showed that the rate of accumulation of N2O in the atmosphere in the late nineteenth and twentieth centuries was greater than that predicted from agricultural inputs limited to fertilizer N and biologically fixed N (Davidson, E. A. 2009 Nat. Geosci. 2, 659–662.). However, by also including soil organic N mineralized following land-use change and NOx deposited from the atmosphere in our estimates of the reactive N entering the agricultural cycle, we have now obtained a good fit between the observed atmospheric N2O concentrations from 1860 to 2000 and those calculated on the basis of a 4 per cent EF for the reactive N. PMID:22451102

  16. Carbon and environmental footprinting of global biofuel production

    OpenAIRE

    Hammond, Geoff P.; Seth, S.M.

    2013-01-01

    The carbon and environmental footprints associated with the global production of biofuels have been computed from a baseline of 2007-2009 out until 2019. Estimates of future global biofuel production were adopted from OECD-FAO and related projections. In order to determine the footprints associated with these (essentially 'first generation') biofuel resources, the overall environmental footprint was disaggregated into bioproductive land, built land, carbon, embodied energy, materials and wast...

  17. Bio-fuel co-products in France: perspectives and consequences for cattle food; Coproduits des biocarburants en France: perspectives et consequences en alimentation animale

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The development of bio-fuels goes along with that of co-products which can be used to feed animals. After having recalled the political context which promotes the development of renewable energies, this document aims at giving an overview of the impact of bio-fuel co-products on agriculture economy. It discusses the production and price evolution for different crops

  18. Tools and methodologies to support more sustainable biofuel feedstock production.

    Science.gov (United States)

    Dragisic, Christine; Ashkenazi, Erica; Bede, Lucio; Honzák, Miroslav; Killeen, Tim; Paglia, Adriano; Semroc, Bambi; Savy, Conrad

    2011-02-01

    Increasingly, government regulations, voluntary standards, and company guidelines require that biofuel production complies with sustainability criteria. For some stakeholders, however, compliance with these criteria may seem complex, costly, or unfeasible. What existing tools, then, might facilitate compliance with a variety of biofuel-related sustainability criteria? This paper presents four existing tools and methodologies that can help stakeholders assess (and mitigate) potential risks associated with feedstock production, and can thus facilitate compliance with requirements under different requirement systems. These include the Integrated Biodiversity Assessment Tool (IBAT), the ARtificial Intelligence for Ecosystem Services (ARIES) tool, the Responsible Cultivation Areas (RCA) methodology, and the related Biofuels + Forest Carbon (Biofuel + FC) methodology.

  19. Aquatic plant Azolla as the universal feedstock for biofuel production.

    Science.gov (United States)

    Miranda, Ana F; Biswas, Bijoy; Ramkumar, Narasimhan; Singh, Rawel; Kumar, Jitendra; James, Anton; Roddick, Felicity; Lal, Banwari; Subudhi, Sanjukta; Bhaskar, Thallada; Mouradov, Aidyn

    2016-01-01

    The quest for sustainable production of renewable and cheap biofuels has triggered an intensive search for domestication of the next generation of bioenergy crops. Aquatic plants which can rapidly colonize wetlands are attracting attention because of their ability to grow in wastewaters and produce large amounts of biomass. Representatives of Azolla species are some of the fastest growing plants, producing substantial biomass when growing in contaminated water and natural ecosystems. Together with their evolutional symbiont, the cyanobacterium Anabaena azollae, Azolla biomass has a unique chemical composition accumulating in each leaf including three major types of bioenergy molecules: cellulose/hemicellulose, starch and lipids, resembling combinations of terrestrial bioenergy crops and microalgae. The growth of Azolla filiculoides in synthetic wastewater led up to 25, 69, 24 and 40 % reduction of NH 4 -N, NO 3 -N, PO 4 -P and selenium, respectively, after 5 days of treatment. This led to a 2.6-fold reduction in toxicity of the treated wastewater to shrimps, common inhabitants of wetlands. Two Azolla species, Azolla filiculoides and Azolla pinnata, were used as feedstock for the production of a range of functional hydrocarbons through hydrothermal liquefaction, bio-hydrogen and bio-ethanol. Given the high annual productivity of Azolla, hydrothermal liquefaction can lead to the theoretical production of 20.2 t/ha-year of bio-oil and 48 t/ha-year of bio-char. The ethanol production from Azolla filiculoides, 11.7 × 10 3  L/ha-year, is close to that from corn stover (13.3 × 10 3  L/ha-year), but higher than from miscanthus (2.3 × 10 3  L/ha-year) and woody plants, such as willow (0.3 × 10 3  L/ha-year) and poplar (1.3 × 10 3  L/ha-year). With a high C/N ratio, fermentation of Azolla biomass generates 2.2 mol/mol glucose/xylose of hydrogen, making this species a competitive feedstock for hydrogen production compared with other bioenergy crops

  20. Genetic Engineering and Crop Production.

    Science.gov (United States)

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  1. Industrial-strength ecology: trade-offs and opportunities in algal biofuel production.

    Science.gov (United States)

    Shurin, Jonathan B; Abbott, Rachel L; Deal, Michael S; Kwan, Garfield T; Litchman, Elena; McBride, Robert C; Mandal, Shovon; Smith, Val H

    2013-11-01

    Microalgae represent one of the most promising groups of candidate organisms for replacing fossil fuels with contemporary primary production as a renewable source of energy. Algae can produce many times more biomass per unit area than terrestrial crop plants, easing the competing demands for land with food crops and native ecosystems. However, several aspects of algal biology present unique challenges to the industrial-scale aquaculture of photosynthetic microorganisms. These include high susceptibility to invading aquatic consumers and weeds, as well as prodigious requirements for nutrients that may compete with the fertiliser demands of other crops. Most research on algal biofuel technologies approaches these problems from a cellular or genetic perspective, attempting either to engineer or select algal strains with particular traits. However, inherent functional trade-offs may limit the capacity of genetic selection or synthetic biology to simultaneously optimise multiple functional traits for biofuel productivity and resilience. We argue that a community engineering approach that manages microalgal diversity, species composition and environmental conditions may lead to more robust and productive biofuel ecosystems. We review evidence for trade-offs, challenges and opportunities in algal biofuel cultivation with a goal of guiding research towards intensifying bioenergy production using established principles of community and ecosystem ecology. © 2013 John Wiley & Sons Ltd/CNRS.

  2. Trade-offs between Biofuels Energy Production, Land Use and Water Use in Florida

    Energy Technology Data Exchange (ETDEWEB)

    Fidler, Michal [Intelligentsia International Inc., LaBelle, FL (United States); Capece, John [Intelligentsia International Inc., LaBelle, FL (United States); Hanlon, Edward [Univ. of Florida, Immokalee, FL (United States); Alsharif, Kamal [Univ. of South Florida, Tampa, FL (United States)

    2014-02-11

    Objective of the presentation is to document land use and water use implications of biomass production to demonstrate the overall resources implications associated with bioethanol production for Florida’s transportation sector needs. Rationale for using biofuels (BF) is explained, so are advantages & challenges of BF production and use. Land use changes (LUC) in Florida are presented and consequences outlined. It is documented that Florida’s agricultural land is a very limited resource, with only 0.43 ac/person comparing to the global average of 1.71 ac/person. The direct relation of increased biofuels production causing increased water use is explained. Favorable climate, water resources, advanced research, traditional leading agricultural role, minor oil reserves, no refineries and increasing energy demands are the main reasons why Florida considers pursuing BF production in large scale. Eight various bioethanol crops produced in Florida were considered in this study (Miscanthus, Switchgrass, Sweet Sorghum, Corn, Elephantgrass, Sugarcane, Energycane, Eucalyptus). Biomass yield and bioethanol yield of these crops are documented. Bioethanol needs of Florida are estimated and related land requirements for the needed bioethanol production calculated. Projections for various bioethanol blends (E15 to E85) are then presented. Finally, water demand for biofuels production is quantified. It is concluded that land use requirement for production of all ethanol in E85 fuel blend in Florida is roughly the same as the total available ag land in Florida for the best yielding biofuels crops (energycane, eucalyptus). Water demand for production of all ethanol needed for E100 would increase current overall water consumption in Florida between 65% and 100% for the most common biofuels crops. Vehicular energy is only 33% of Floridians energy consumption, so even all Florida’s agricultural land was given up for biofuels, it would still produce only 33% of Florida’s total

  3. Physiological and genetic studies towards biofuel production in cyanobacteria

    NARCIS (Netherlands)

    Schuurmans, R.M.

    2017-01-01

    The main aim of this thesis was to contribute to the optimization of the cyanobacterial cell factory and to increase the production of cellulose as a biofuel (precursor) via a physiological and a transgenic approach. Chapter 1 provides an overview of the current state of cyanobacterial biofuel

  4. The South's outlook for sustainable forest bioenergy and biofuels production

    Science.gov (United States)

    David Wear; Robert Abt; Janaki Alavalapati; Greg Comatas; Mike Countess; Will McDow

    2010-01-01

    The future of a wood-based biofuel/bioenergy sector could hold important implications for the use, structure and function of forested landscapes in the South. This paper examines a set of questions regarding the potential effects of biofuel developments both on markets for traditional timber products and on the provision of various non-timber ecosystem services. In...

  5. Global nitrogen requirement for increased biofuel production

    NARCIS (Netherlands)

    Flapper, Joris

    2008-01-01

    Biofuels are thought to be one of the options to substitute fossil fuels and prevent global warming by the greenhouse gas (GHG) effect as they are seen as a renewable form of energy. However, biofuels are almost solely subjected to criticism from an energ

  6. Downstream Processing of Synechocystis for Biofuel Production

    Science.gov (United States)

    Sheng, Jie

    Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from Synechocystis. Chloroform + methanol-based Folch and Bligh & Dyer methods were proved to be "gold standard" for small-scale analysis due to their highest lipid recoveries that were confirmed by their penetration of the cell membranes, higher polarity, and stronger interaction with hydrogen bonds. Less toxic solvents, such as methanol and MTBE, or direct transesterification of biomass (without preextraction step) gave only slightly lower lipid-extraction yields and can be considered for large-scale application. Sustained exposure to high and low temperature extremes severely lowered the biomass and lipid productivity. Temperature stress also triggered changes of lipid quality such as the degree of unsaturation; thus, it affected the productivities and quality of Synechocystis-derived biofuel. Pulsed electric field (PEF) was evaluated for cell disruption prior to lipid extraction. A treatment intensity > 35 kWh/m3 caused significant damage to the plasma membrane, cell wall, and thylakoid membrane, and it even led to complete disruption of some cells into fragments. Treatment by PEF enhanced the potential for the low-toxicity solvent isopropanol to access lipid molecules during subsequent solvent extraction, leading to lower usage of isopropanol for the same extraction efficiency. Other cell-disruption methods also were tested. Distinct disruption effects to the cell envelope, plasma membrane, and thylakoid membranes were observed that were related to extraction efficiency. Microwave and ultrasound had significant enhancement of lipid extraction. Autoclaving, ultrasound, and French press caused significant

  7. Mycorrhiza and crop production

    Energy Technology Data Exchange (ETDEWEB)

    Hayman, D S

    1980-10-09

    This article describes recent research with vesicular-arbuscular mycorrhiza, a symbiotic fungus-root association. The suggestion that the symbiotic association may be harnessed to achieve more economical use of phosphate fertilizers is discussed and the results from various test crops are given.

  8. Biomass valorisation of Arundo donax L., Miscanthus × giganteus and Sida hermaphrodita for biofuel production

    Science.gov (United States)

    Krička, Tajana; Matin, Ana; Bilandžija, Nikola; Jurišić, Vanja; Antonović, Alan; Voća, Neven; Grubor, Mateja

    2017-10-01

    In the context of the growing demand for biomass, which is being encouraged by the EU directives on the promotion of the use of renewable energy, recent investigations have been increasingly focused on fast-growing energy crops. The aim of this study was to investigate the energy properties of three types of agricultural energy crops: Arundo donax L., Miscanthus × giganteus and Sida hermaphrodita. This investigation looked into the content of non-combustible and combustible matter, higher and lower heating values, lignocellulose content, and biomass macro-elements. The results indicate that the energy values of these crops are comparable, while their lignocellulose content shows significant variations. Thus, Arundo donax L. can best be utilised as solid biofuel due to its highest lignin content, while Miscanthus × giganteus and Sida hermaphrodita L. can be used for both liquid and solid biofuels production. As far as Arundo donax L. is concerned, a higher ash level should be taken into consideration.

  9. Thermodynamic evaluation of biomass-to-biofuels production systems

    International Nuclear Information System (INIS)

    Piekarczyk, Wodzisław; Czarnowska, Lucyna; Ptasiński, Krzysztof; Stanek, Wojciech

    2013-01-01

    Biomass is a renewable feedstock for producing modern energy carriers. However, the usage of biomass is accompanied by possible drawbacks, mainly due to limitation of land and water, and competition with food production. In this paper, the analysis concerns so-called second generation biofuels, like Fischer–Tropsch fuels or Substitute Natural Gas which are produced either from wood or from waste biomass. For these biofuels the most promising conversion case is the one which involves production of syngas from biomass gasification, followed by synthesis of biofuels. The thermodynamic efficiency of biofuels production is analyzed and compared using both the direct exergy analysis and the thermo-ecological cost. This analysis leads to the detection of exergy losses in various elements which forms the starting point to the improvement of conversion efficiency. The efficiency of biomass conversion to biofuels is also evaluated for the whole production chain, including biomass cultivation, transportation and conversion. The global effects of natural resources management are investigated using the thermo-ecological cost. The energy carriers' utilities such as electricity and heat are externally generated either from fossil fuels or from renewable biomass. In the former case the production of biofuels not always can be considered as a renewable energy source whereas in the latter case the production of biofuels leads always to the reduction of depletion of non-renewable resources

  10. What is the future for biofuels and bio-energy crops

    International Nuclear Information System (INIS)

    2005-01-01

    This seminar is part of the Ifri research program on agricultural policies. It aims to evaluate the future prospects for the development of bio-energy crops in light of the new energetic and environmental order. Within one generation the hydrocarbon market will likely be under great pressure. The prospect of a lasting high oil price will lead to the use of renewable resources like biofuels. Moreover growing environmental concern about global warming give one more credibility to the development of biofuels. These fuels emit a limited amount of greenhouse gas compared to standard fuels. We have to therefore examine the development possibility of these fuels taking into account the agronomic features of the crops used, the technology of the transformation process and existing initiative policies with respect to the regions studied. Also, we have to evaluate the impact of the energy crisis on food supply via the substitution effect in land allocation. (author)

  11. Rapid saccharification for production of cellulosic biofuels.

    Science.gov (United States)

    Lee, Dae-Seok; Wi, Seung Gon; Lee, Soo Jung; Lee, Yoon-Gyo; Kim, Yeong-Suk; Bae, Hyeun-Jong

    2014-04-01

    The economical production of biofuels is hindered by the recalcitrance of lignocellulose to processing, causing high consumption of processing enzymes and impeding hydrolysis of pretreated lignocellulosic biomass. We determined the major rate-limiting factor in the hydrolysis of popping pre-treated rice straw (PPRS) by examining cellulase adsorption to lignin and cellulose, amorphogenesis of PPRS, and re-hydrolysis. Based on the results, equivalence between enzyme loading and the open structural area of cellulose was required to significantly increase productive adsorption of cellulase and to accelerate enzymatic saccharification of PPRS. Amorphogenesis of PPRS by phosphoric acid treatment to expand open structural area of the cellulose fibers resulted in twofold higher cellulase adsorption and increased the yield of the first re-hydrolysis step from 13% to 46%. The total yield from PPRS was increased to 84% after 3h. These results provide evidence that cellulose structure is one of major effects on the enzymatic hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Allelopathic effect of new introduced biofuel crops on the soil biota: A comparative study

    Czech Academy of Sciences Publication Activity Database

    Heděnec, Petr; Novotný, D.; Usťak, S.; Honzík, R.; Kovářová, M.; Šimáčková, H.; Frouz, J.

    2014-01-01

    Roč. 63, July (2014), s. 14-20 ISSN 1164-5563 R&D Projects: GA MŠk(CZ) 7E08081 Grant - others:GA ČR(CZ) GAP504/12/1288 Program:GA Institutional support: RVO:60077344 Keywords : allelopathic effect * biofuel crops * invasive plant species * plant biomass chemistry * seedling germination Subject RIV: EH - Ecology, Behaviour Impact factor: 1.719, year: 2014

  13. Chlamydomonas as a model for biofuels and bio-products production.

    Science.gov (United States)

    Scranton, Melissa A; Ostrand, Joseph T; Fields, Francis J; Mayfield, Stephen P

    2015-05-01

    Developing renewable energy sources is critical to maintaining the economic growth of the planet while protecting the environment. First generation biofuels focused on food crops like corn and sugarcane for ethanol production, and soybean and palm for biodiesel production. Second generation biofuels based on cellulosic ethanol produced from terrestrial plants, has received extensive funding and recently pilot facilities have been commissioned, but to date output of fuels from these sources has fallen well short of what is needed. Recent research and pilot demonstrations have highlighted the potential of algae as one of the most promising sources of sustainable liquid transportation fuels. Algae have also been established as unique biofactories for industrial, therapeutic, and nutraceutical co-products. Chlamydomonas reinhardtii's long established role in the field of basic research in green algae has paved the way for understanding algal metabolism and developing genetic engineering protocols. These tools are now being utilized in C. reinhardtii and in other algal species for the development of strains to maximize biofuels and bio-products yields from the lab to the field. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  14. Plant senescence and crop productivity

    DEFF Research Database (Denmark)

    Gregersen, Per L.; Culetic, Andrea; Boschian, Luca

    2013-01-01

    Senescence is a developmental process which in annual crop plants overlaps with the reproductive phase. Senescence might reduce crop yield when it is induced prematurely under adverse environmental conditions. This review covers the role of senescence for the productivity of crop plants....... With the aim to enhance productivity, a number of functional stay-green cultivars have been selected by conventional breeding, in particular of sorghum and maize. In many cases, a positive correlation between leaf area duration and yield has been observed, although in a number of other cases, stay...... plants, the expression of the IPT gene under control of senescence-associated promoters has been the most successful. The promoters employed for senescence-regulated expression contain cis-elements for binding of WRKY transcription factors and factors controlled by abscisic acid. In most crops...

  15. Examining the potential for liquid biofuels production and usage in Ghana

    International Nuclear Information System (INIS)

    Afrane, George

    2012-01-01

    The perennial political and social upheavals in major oil-producing regions, the increasing energy demand from emerging economies, the global economic crisis and even environmental disasters, like the recent major oil spill in the Gulf of Mexico, all contribute to price fluctuations and escalations. Usually price instability affects the least-developed countries with the most fragile economies, like Ghana, the most. This paper gives a brief overview of the Ghanaian energy situation, describes the liquid biofuel production processes and examines the possibility of replacing some of the fossil fuels consumed annually, with locally produced renewable biofuels. Various scenarios for substituting different portions of petrol and diesel with biofuels derived from cassava and palm oil are examined. Based on 2009 crop production and fuel consumption data, replacement of 5% of both petrol and diesel with biofuels would require 1.96% and 17.3% of the cassava and palm oil produced in that year, respectively; while replacement of 10% of both fossil fuels would need 3.91% and 34.6% of the corresponding biofuels. Thus while petrol replacement could be initiated with little difficulty, regarding raw material availability, biodiesel would require enhanced palm oil production and/or oil supplement from other sources, including, potentially, jatropha. An implementation strategy is proposed.

  16. Comparing biobased products from oil crops versus sugar crops with regard to non-renewable energy use, GHG emissions and land use

    NARCIS (Netherlands)

    Bos, Harriëtte L.; Meesters, Koen P.H.; Conijn, Sjaak G.; Corré, Wim J.; Patel, Martin K.

    2016-01-01

    Non-renewable energy use, greenhouse gas emissions and land use of two biobased products and biofuel from oil crops is investigated and compared with products from sugar crops. In a bio-based economy chemicals, materials and energy carriers will be produced from biomass. Next to side streams,

  17. Recent developments on biofuels production from microalgae and macroalgae

    DEFF Research Database (Denmark)

    Kumar, Kanhaiya; Ghosh, Supratim; Angelidaki, Irini

    2016-01-01

    and infrastructure requirement. Hydrogen production by microalgae through biophotolysis seems interesting as it directly converts the solar energy into hydrogen. However, the process has not been scaled-up till today. Hydrothermal liquefaction (HTL) is more promising due to handling of wet biomass at moderate......Biofuels from algae are considered as promising alternatives of conventional fossil fuels, as they can eliminate most of the environmental problems. The present study focuses on all the possible avenues of biofuels production through biochemical and thermochemical conversion methods in one place......, bringing together both microalgae and macroalgae on the same platform. It provides a brief overview on the mechanism of different biofuel production from algae. Factors affecting the biofuel process and the associated challenges have been highlighted alongwith analysis of techno-economic study available...

  18. Systems-Level Synthetic Biology for Advanced Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Travis J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strickland, Lucas Marshall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tallant, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  19. Space for innovation for sustainable community-based biofuel production and use: Lessons learned for policy from Nhambita community, Mozambique

    International Nuclear Information System (INIS)

    Schut, Marc; Paassen, Annemarie van; Leeuwis, Cees; Bos, Sandra; Leonardo, Wilson; Lerner, Anna

    2011-01-01

    This paper provides insights and recommendations for policy on the opportunities and constrains that influence the space for innovation for sustainable community-based biofuel production and use. Promoted by the Mozambican government, Nhambita community established jatropha trials in 2005. Initial results were promising, but crop failure and the absence of organized markets led to scepticism amongst farmers. We start from the idea that the promotion of community-based biofuel production and use requires taking interactions between social-cultural, biophysical, economic, political and legal subsystems across different scales and levels of analysis through time into account. Our analysis demonstrates that heterogeneous farming strategies and their synergies at community level should be carefully assessed. Furthermore, national and international political and legal developments, such as the development of biofuel sustainability criteria, influence the local space in which community-based biofuel developments take place. We conclude that ex-ante integrated assessment and creating an enabling environment can enhance space for sustainable community-based biofuel production and use. It may provide insights into the opportunities and constraints for different types of smallholders, and promote the development of adequate policy mechanisms to prevent biofuels from becoming a threat rather than an opportunity for smallholders. - Highlights: → This paper explores space for innovation for community-based biofuel production and use. → Heterogeneous farming strategies and their synergies at community level are key. → Farmers have little trust in jatropha due to crop failure and absence of markets. → (Inter)national biofuel policies influence space for local biofuel production and use. → Policies should focus on ex-ante integrated assessment and creating an enabling environment.

  20. Microbial engineering for the production of advanced biofuels.

    Science.gov (United States)

    Peralta-Yahya, Pamela P; Zhang, Fuzhong; del Cardayre, Stephen B; Keasling, Jay D

    2012-08-16

    Advanced biofuels produced by microorganisms have similar properties to petroleum-based fuels, and can 'drop in' to the existing transportation infrastructure. However, producing these biofuels in yields high enough to be useful requires the engineering of the microorganism's metabolism. Such engineering is not based on just one specific feedstock or host organism. Data-driven and synthetic-biology approaches can be used to optimize both the host and pathways to maximize fuel production. Despite some success, challenges still need to be met to move advanced biofuels towards commercialization, and to compete with more conventional fuels.

  1. Metabolic engineering of biosynthetic pathway for production of renewable biofuels.

    Science.gov (United States)

    Singh, Vijai; Mani, Indra; Chaudhary, Dharmendra Kumar; Dhar, Pawan Kumar

    2014-02-01

    Metabolic engineering is an important area of research that involves editing genetic networks to overproduce a certain substance by the cells. Using a combination of genetic, metabolic, and modeling methods, useful substances have been synthesized in the past at industrial scale and in a cost-effective manner. Currently, metabolic engineering is being used to produce sufficient, economical, and eco-friendly biofuels. In the recent past, a number of efforts have been made towards engineering biosynthetic pathways for large scale and efficient production of biofuels from biomass. Given the adoption of metabolic engineering approaches by the biofuel industry, this paper reviews various approaches towards the production and enhancement of renewable biofuels such as ethanol, butanol, isopropanol, hydrogen, and biodiesel. We have also identified specific areas where more work needs to be done in the future.

  2. Enzymatic deconstruction of xylan for biofuel production

    Science.gov (United States)

    DODD, DYLAN; CANN, ISAAC K. O.

    2010-01-01

    The combustion of fossil-derived fuels has a significant impact on atmospheric carbon dioxide (CO2) levels and correspondingly is an important contributor to anthropogenic global climate change. Plants have evolved photosynthetic mechanisms in which solar energy is used to fix CO2 into carbohydrates. Thus, combustion of biofuels, derived from plant biomass, can be considered a potentially carbon neutral process. One of the major limitations for efficient conversion of plant biomass to biofuels is the recalcitrant nature of the plant cell wall, which is composed mostly of lignocellulosic materials (lignin, cellulose, and hemicellulose). The heteropolymer xylan represents the most abundant hemicellulosic polysaccharide and is composed primarily of xylose, arabinose, and glucuronic acid. Microbes have evolved a plethora of enzymatic strategies for hydrolyzing xylan into its constituent sugars for subsequent fermentation to biofuels. Therefore, microorganisms are considered an important source of biocatalysts in the emerging biofuel industry. To produce an optimized enzymatic cocktail for xylan deconstruction, it will be valuable to gain insight at the molecular level of the chemical linkages and the mechanisms by which these enzymes recognize their substrates and catalyze their reactions. Recent advances in genomics, proteomics, and structural biology have revolutionized our understanding of the microbial xylanolytic enzymes. This review focuses on current understanding of the molecular basis for substrate specificity and catalysis by enzymes involved in xylan deconstruction. PMID:20431716

  3. Production of biofuels via hydrothermal conversion

    DEFF Research Database (Denmark)

    Biller, Patrick; Ross, Andrew

    2016-01-01

    as the quality of targeted biofuel is a function of feedstock and operating conditions. The quality of hydrochar influences its uses as a solid fuel while biocrude quality affects its use as a liquid fuel and feedstock for upgrading to drop-in replacement fuels, while HTG produces a syngas rich in either H2...

  4. Soil physical and hydrological properties under three biofuel crops in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Catherine; Lal, Rattan [The Ohio State Univ., School of Environment and Natural Resources, Carbon Management and Sequestration Center, Columbus, OH (United States); Schmitz, Matthias [Rheinische Friedrich/Wilhelms-Universitaet Bonn, Steinmann Institut fuer Geologie, Mineralogie und Palaeontologie, Bonn (Germany); Wullschleger, S. [The Oakridge National Lab., Oakridge, TN (United States)

    2012-10-15

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60 % lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

  5. Soil physical and hydrological properties under three biofuel crops in Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Bonin, Catherine [Ohio State University; Lal, Dr. Rattan [Ohio State University; Schmitz, Matthias [Rheinsche Friedrich/Wilhelms Universitaet Boon; Wullschleger, Stan D [ORNL

    2012-01-01

    While biofuel crops are widely studied and compared for their energy and carbon footprints, less is known about their effects on other soil properties, particularly hydrologic characteristics. Soils under three biofuel crops, corn (Zea mays), switchgrass (Panicum virgatum), and willow (Salix spp.), were analyzed seven years after establishment to assess the effects on soil bulk density ({rho}{sub b}), penetration resistance (PR), water-holding capacity, and infiltration characteristics. The PR was the highest under corn, along with the lowest associated water content, while PR was 50-60% lower under switchgrass. In accordance with PR data, surface (0-10 cm) bulk density also tended to be lower under switchgrass. Both water infiltration rates and cumulative infiltration amounts varied widely among and within the three crops. Because the Philip model did not fit the data, results were analyzed using the Kostiakov model instead. Switchgrass plots had an average cumulative infiltration of 69 cm over 3 hours with a constant infiltration rate of 0.28 cm min{sup -1}, compared with 37 cm and 0.11 cm min{sup -1} for corn, and 26 cm and 0.06 cm min{sup -1} for willow, respectively. Results suggest that significant changes in soil physical and hydrologic properties may require more time to develop. Soils under switchgrass may have lower surface bulk density, higher field water capacity, and a more rapid water infiltration rate than those under corn or willow.

  6. Main factors influencing the production of biofuels in Romania

    Directory of Open Access Journals (Sweden)

    Alin Paul OLTEANU

    2009-06-01

    Full Text Available Despite the considerable progress achieved by Romania in regenerative energies, especially for the hydro energy, the energy production from biomass still has a great unused potential compared with other EU countries. The interest for biomass has increased over the last years in the EU also in the context of biofuels for the transport sector and has lead to a series of strategic choices to increase their use in the economy. Biofuel production in Romania is at a low level compared with other more developed countries like Germany or France. Thus, outlining the country profile of Romania from the perspective of a national production of biofuels becomes imperative for the integration in the EU market and the development of a new industrial branch, with high growth rates and a positive impact on other economic branches (e.g. agriculture. The present study aims at laying the foundation for a strategic analysis of the biofuels production in Romania. In this regard different factors with a direct impact on the sustainable biofuels production were identified and analyzed. For the purpose of this study information from various reports, issued by both governmental and non-governmental bodies from Romania and internationally, were used.

  7. Impact of Corn Residue Removal on Crop and Soil Productivity

    Science.gov (United States)

    Johnson, J. M.; Wilhelm, W. W.; Hatfield, J. L.; Voorhees, W. B.; Linden, D.

    2003-12-01

    Over-reliance on imported fuels, increasing atmospheric levels of greenhouses and sustaining food production for a growing population are three of the most important problems facing society in the mid-term. The US Department of Energy and private enterprise are developing technology necessary to use high cellulose feedstock, such as crop residues, for ethanol production. Based on production levels, corn (Zea mays L.) residue has potential as a biofuel feedstock. Crop residues are a renewable and domestic fuel source, which can reduce the rate of fossil fuel use (both imported and domestic) and provide an additional farm commodity. Crop residues protect the soil from wind and water erosion, provide inputs to form soil organic matter (a critical component determining soil quality) and play a role in nutrient cycling. Crop residues impact radiation balance and energy fluxes and reduce evaporation. Therefore, the benefits of using crop residues as fuel, which removes crop residues from the field, must be balanced against negative environmental impacts (e.g. soil erosion), maintaining soil organic matter levels, and preserving or enhancing productivity. All ramifications of new management practices and crop uses must be explored and evaluated fully before an industry is established. There are limited numbers of long-term studies with soil and crop responses to residue removal that range from negative to negligible. The range of crop and soil responses to crop residue removal was attributed to interactions with climate, management and soil type. Within limits, corn residue can be harvested for ethanol production to provide a renewable, domestic source of energy feedstock that reduces greenhouse gases. Removal rates must vary based on regional yield, climatic conditions and cultural practices. Agronomists are challenged to develop a protocol (tool) for recommending maximum permissible removal rates that ensure sustained soil productivity.

  8. Microwave-assisted pyrolysis of biomass for liquid biofuels production

    DEFF Research Database (Denmark)

    Yin, Chungen

    2012-01-01

    Production of 2nd-generation biofuels from biomass residues and waste feedstock is gaining great concerns worldwide. Pyrolysis, a thermochemical conversion process involving rapid heating of feedstock under oxygen-absent condition to moderate temperature and rapid quenching of intermediate products......, is an attractive way for bio-oil production. Various efforts have been made to improve pyrolysis process towards higher yield and quality of liquid biofuels and better energy efficiency. Microwave-assisted pyrolysis is one of the promising attempts, mainly due to efficient heating of feedstock by ‘‘microwave...

  9. Using The Corngrass1 Gene To Enhance The Biofuel Properties Of Crop Plants

    Energy Technology Data Exchange (ETDEWEB)

    Hake, Sarah [USDA Agricultural Research Service, Washington DC (United States); Chuck, George [USDA Agricultural Research Service, Washington DC (United States)

    2015-10-29

    The development of novel plant germplasm is vital to addressing our increasing bioenergy demands. The major hurdle to digesting plant biomass is the complex structure of the cell walls, the substrate of fermentation. Plant cell walls are inaccessible matrices of macromolecules that are polymerized with lignin, making fermentation difficult. Overcoming this hurdle is a major goal toward developing usable bioenergy crop plants. Our project seeks to enhance the biofuel properties of perennial grass species using the Corngrass1 (Cg1) gene and its targets. Dominant maize Cg1 mutants produce increased biomass by continuously initiating extra axillary meristems and leaves. We cloned Cg1 and showed that its phenotype is caused by over expression of a unique miR156 microRNA gene that negatively regulates SPL transcription factors. We transferred the Cg1 phenotype to other plants by expressing the gene behind constitutive promoters in four different species, including the monocots, Brachypodium and switchgrass, and dicots, Arabidopsis and poplar. All transformants displayed a similar range of phenotypes, including increased biomass from extended leaf production, and increased vegetative branching. Field grown switchgrass transformants showed that overall lignin content was reduced, the ratio of glucans to xylans was increased, and surprisingly, that starch levels were greatly increased. The goals of this project are to control the tissue and temporal expression of Cg1 by using different promoters to drive its expression, elucidate the function of the SPL targets of Cg1 by generating gain and loss of function alleles, and isolate downstream targets of select SPL genes using deep sequencing and chromatin immunoprecipitation. We believe it is possible to control biomass accumulation, cell wall properties, and sugar levels through manipulation of either the Cg1 gene and/or its SPL targets.

  10. Primary productivity and the prospects for biofuels in the United Kingdom

    Science.gov (United States)

    Lawson, G. J.; Callaghan, T. V.

    1983-09-01

    Estimates of land use and plant productivity are combined to predict total annual primary production in the UK as 252 million tonnes dry matter (10.5 t ha-1yr-1). Annual above ground production is predicted to be 165 Mt (6.9 t ha-1yr-1). Within these totals, intensive agriculture contributes 60%, productive woodland 8%, natural vegetation 26% and urban vegetation 5%. However, only 25% of total plant production is cropped by man and animals, and most of this is subsequently discarded as wastes and residues. 2112 PJ of organic material is available for fuel without reducing food or fibre production, but since much of this could not be economically collected, 859 PJ is calculated as a more realistic biofuel contribution by the year 2000. After deducting 50% conversion losses, this could save P1 billion (1979 prices) in oil imports. Short rotation energy plantations, forest residues, coppice woodlands, animal and crop wastes, industrial and domestic wastes, catch crops, natural vegetation and urban vegetation all have immediate or short term potential as biofuel sources. Sensitive planning is required to reduce environmental impact, but in some cases more diverse wildlife habitats may be created.

  11. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    Science.gov (United States)

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  12. Assessing the environmental sustainability of biofuels.

    Science.gov (United States)

    Kazamia, Elena; Smith, Alison G

    2014-10-01

    Biofuels vary in their potential to reduce greenhouse gas emissions when displacing fossil fuels. Savings depend primarily on the crop used for biofuel production, and on the effect that expanding its cultivation has on land use. Evidence-based policies should be used to ensure that maximal sustainability benefits result from the development of biofuels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Overview on Biofuels from a European Perspective

    Science.gov (United States)

    Ponti, Luigi; Gutierrez, Andrew Paul

    2009-01-01

    In light of the recently developed European Union (EU) Biofuels Strategy, the literature is reviewed to examine (a) the coherency of biofuel production with the EU nonindustrial vision of agriculture, and (b) given its insufficient land base, the implications of a proposed bioenergy pact to grow biofuel crops in the developing world to meet EU…

  14. The green, blue and grey water footprint of crops and derived crop products

    Science.gov (United States)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1

  15. Enhancing microbial production of biofuels by expanding microbial metabolic pathways.

    Science.gov (United States)

    Yu, Ping; Chen, Xingge; Li, Peng

    2017-09-01

    Fatty acid, isoprenoid, and alcohol pathways have been successfully engineered to produce biofuels. By introducing three genes, atfA, adhE, and pdc, into Escherichia coli to expand fatty acid pathway, up to 1.28 g/L of fatty acid ethyl esters can be achieved. The isoprenoid pathway can be expanded to produce bisabolene with a high titer of 900 mg/L in Saccharomyces cerevisiae. Short- and long-chain alcohols can also be effectively biosynthesized by extending the carbon chain of ketoacids with an engineered "+1" alcohol pathway. Thus, it can be concluded that expanding microbial metabolic pathways has enormous potential for enhancing microbial production of biofuels for future industrial applications. However, some major challenges for microbial production of biofuels should be overcome to compete with traditional fossil fuels: lowering production costs, reducing the time required to construct genetic elements and to increase their predictability and reliability, and creating reusable parts with useful and predictable behavior. To address these challenges, several aspects should be further considered in future: mining and transformation of genetic elements related to metabolic pathways, assembling biofuel elements and coordinating their functions, enhancing the tolerance of host cells to biofuels, and creating modular subpathways that can be easily interconnected. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  16. Bioeconomic Sustainability of Cellulosic Biofuel Production on Marginal Lands

    Science.gov (United States)

    Gutierrez, Andrew Paul; Ponti, Luigi

    2009-01-01

    The use of marginal land (ML) for lignocellulosic biofuel production is examined for system stability, resilience, and eco-social sustainability. A North American prairie grass system and its industrialization for maximum biomass production using biotechnology and agro-technical inputs is the focus of the analysis. Demographic models of ML biomass…

  17. New nanomaterial and process for the production of biofuel from ...

    African Journals Online (AJOL)

    New nanomaterial and process for the production of biofuel from metal hyper accumulator water hyacinth. ... African Journal of Biotechnology ... 45.52%), CH3OH (1.43 - 24.67%), and C3H8 / CH3CHO (0.33 -26.09%) products were obtained.

  18. Consequences of agro-biofuel production for greenhouse gas emissions

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Johansen, Anders; Hauggaard-Nielsen, Henrik

    2009-01-01

    that accelerated emissions of N2O associated with the production of biomass for bio-fuel purposes will outweigh the avoided emissions of fossil fuel-derived CO2 (Crutzen et al., 2008). In the present study we examined the effects on N2O and CH4 emissions when residues from bio-energy production were recycled...

  19. Potentials for Sustainable Commercial Biofuels Production in Nigeria

    African Journals Online (AJOL)

    The focus of this paper is to underscore the major potentials for production of biofuels in Nigeria and the problems that may be encountered. It also examined those potentials and how they can be exploited for a sustainable commercial production in a way that brings benefits to the country both in the short and long term.

  20. Value Added Products from Renewable Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Paul [Univ. of Nebraska, Lincoln, NE (United States)

    2014-07-31

    Cellulosic ethanol is an emerging biofuel that will make strong contributions to American domestic energy needs. In the US midwest the standard method for pretreatment of biomass uses hot acid to deconstruct lignocellulose. While other methods work, they are not in common use. Therefore it is necessary to work within this context to achieve process improvements and reductions in biofuel cost. Technology underlying this process could supplement and even replace commodity enzymes with engineered microbes to convert biomass-derived lignocellulose feedstocks into biofuels and valueadded chemicals. The approach that was used here was based on consolidated bioprocessing. Thermoacidophilic microbes belonging to the Domain Archaea were evaluated and modfied to promote deconvolution and saccharification of lignocellulose. Biomass pretreatment (hot acid) was combined with fermentation using an extremely thermoacidophilic microbial platform. The identity and fate of released sugars was controlled using metabolic blocks combined with added biochemical traits where needed. LC/MS analysis supported through the newly established Nebraska Bioenergy Facility provided general support for bioenergy researchers at the University of Nebraska. The primary project strategy was to use microbes that naturally flourish in hot acid (thermoacidophiles) with conventional biomass pretreatment that uses hot acid. The specific objectives were: to screen thermoacidophilic taxa for the ability to deconvolute lignocellulose and depolymerize associated carbohydrates; evaluate and respond to formation of “inhibitors” that arose during incubation of lignocellulose under heated acidic conditions; identify and engineer “sugar flux channeling and catabolic blocks” that redirect metabolic pathways to maximize sugar concentrations; expand the hydrolytic capacity of extremely thermoacidophilic microbes through the addition of deconvolution traits; and establish the Nebraska Bioenergy Facility (NBF

  1. The greenhouse gas intensity and potential biofuel production capacity of maize stover harvest in the US Midwest

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Curtis D. [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Zhang, Xuesong [Joint Global Change Research Institute, Pacific Northwest National Laboratory and University of Maryland, College Park MD 20740 USA; Reddy, Ashwan D. [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Robertson, G. Philip [Great Lakes Bioenergy Research Center, Michigan State University, East Lansing MI 48824 USA; W.K. Kellogg Biological Station, Michigan State University, Hickory Corners MI 49060 USA; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing MI 48824 USA; Izaurralde, Roberto César [Department of Geographical Sciences, University of Maryland, College Park MD 20742 USA; Texas A& M AgriLife Research & Extension Center, Temple TX 76502 USA

    2017-08-11

    Agricultural residues are important sources of feedstock for a cellulosic biofuels industry that is being developed to reduce greenhouse gas emissions and improve energy independence. While the US Midwest has been recognized as key to providing maize stover for meeting near-term cellulosic biofuel production goals, there is uncertainty that such feedstocks can produce biofuels that meet federal cellulosic standards. Here, we conducted extensive site-level calibration of the Environmental Policy Integrated Climate (EPIC) terrestrial ecosystems model and applied the model at high spatial resolution across the US Midwest to improve estimates of the maximum production potential and greenhouse gas emissions expected from continuous maize residue-derived biofuels. A comparison of methodologies for calculating the soil carbon impacts of residue harvesting demonstrates the large impact of study duration, depth of soil considered, and inclusion of litter carbon in soil carbon change calculations on the estimated greenhouse gas intensity of maize stover-derived biofuels. Using the most representative methodology for assessing long-term residue harvesting impacts, we estimate that only 5.3 billion liters per year (bly) of ethanol, or 8.7% of the near-term US cellulosic biofuel demand, could be met under common no-till farming practices. However, appreciably more feedstock becomes available at modestly higher emissions levels, with potential for 89.0 bly of ethanol production meeting US advanced biofuel standards. Adjustments to management practices, such as adding cover crops to no-till management, will be required to produce sufficient quantities of residue meeting the greenhouse gas emission reduction standard for cellulosic biofuels. Considering the rapid increase in residue availability with modest relaxations in GHG reduction level, it is expected that management practices with modest benefits to soil carbon would allow considerable expansion of potential cellulosic

  2. Comprehensive Evaluation of Algal Biofuel Production: Experimental and Target Results

    Directory of Open Access Journals (Sweden)

    Colin M. Beal

    2012-06-01

    Full Text Available Worldwide, algal biofuel research and development efforts have focused on increasing the competitiveness of algal biofuels by increasing the energy and financial return on investments, reducing water intensity and resource requirements, and increasing algal productivity. In this study, analyses are presented in each of these areas—costs, resource needs, and productivity—for two cases: (1 an Experimental Case, using mostly measured data for a lab-scale system, and (2 a theorized Highly Productive Case that represents an optimized commercial-scale production system, albeit one that relies on full-price water, nutrients, and carbon dioxide. For both cases, the analysis described herein concludes that the energy and financial return on investments are less than 1, the water intensity is greater than that for conventional fuels, and the amounts of required resources at a meaningful scale of production amount to significant fractions of current consumption (e.g., nitrogen. The analysis and presentation of results highlight critical areas for advancement and innovation that must occur for sustainable and profitable algal biofuel production can occur at a scale that yields significant petroleum displacement. To this end, targets for energy consumption, production cost, water consumption, and nutrient consumption are presented that would promote sustainable algal biofuel production. Furthermore, this work demonstrates a procedure and method by which subsequent advances in technology and biotechnology can be framed to track progress.

  3. Sustainability of biofuels and renewable chemicals production from biomass.

    Science.gov (United States)

    Kircher, Manfred

    2015-12-01

    In the sectors of biofuel and renewable chemicals the big feedstock demand asks, first, to expand the spectrum of carbon sources beyond primary biomass, second, to establish circular processing chains and, third, to prioritize product sectors exclusively depending on carbon: chemicals and heavy-duty fuels. Large-volume production lines will reduce greenhouse gas (GHG) emission significantly but also low-volume chemicals are indispensable in building 'low-carbon' industries. The foreseeable feedstock change initiates innovation, securing societal wealth in the industrialized world and creating employment in regions producing biomass. When raising the investments in rerouting to sustainable biofuel and chemicals today competitiveness with fossil-based fuel and chemicals is a strong issue. Many countries adopted comprehensive bioeconomy strategies to tackle this challenge. These public actions are mostly biased to biofuel but should give well-balanced attention to renewable chemicals as well. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Field emissions of N2O during biomass production may affect the sustainability of agro-biofuels

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Hauggaard-Nielsen, Henrik; Heiske, Stefan

    relate measured field emissions of N2O to the reduction in fossil fuel‐derived CO2, which is obtained when agricultural biomasses are used for biofuel production. The analysis includes five organically managed crops (viz. maize, rye, rye‐vetch, vetch and grass‐clover) and three scenarios for conversion...... of biomass to biofuel. The scenarios are 1) bioethanol, 2) biogas and 3) co‐production of bioethanol and biogas. In scenarios 3, the biomass is first used for bioethanol fermentation and subsequently the residue from this process is utilized for biogas production. The net reduction in greenhouse gas...... emissions is calculated as the avoided fossil fuel‐derived CO2, where the N2O emission has been subtracted. This value does not account for CO2 emissions from farm machinery and during biofuel production. We obtained the greatest net reduction in greenhouse gas emissions by co‐production of bioethanol...

  5. Metabolic engineering of microalgal based biofuel production: prospects and challenges

    Directory of Open Access Journals (Sweden)

    Chiranjib eBanerjee

    2016-03-01

    Full Text Available The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs, which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e. Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering.

  6. Cyanobacteria and Microalgae: Thermoeconomic Considerations in Biofuel Production

    Directory of Open Access Journals (Sweden)

    Umberto Lucia

    2018-01-01

    Full Text Available In thermodynamics, the useful work in any process can be evaluated by using the exergy quantity. The analyses of irreversibility are fundamental in the engineering design and in the productive processes’ development in order to obtain the economic growth. Recently, the use has been improved also in the thermodynamic analysis of the socio-economic context. Consequently, the exergy lost is linked to the energy cost required to maintain the productive processes themselves. The fundamental role of the fluxes and the interaction between systems and their environment is highlighted. The equivalent wasted primary resource value for the work-hour is proposed as an indicator to support the economic considerations on the biofuel production by using biomass and bacteria. The equivalent wasted primary resource value for the work-hour is proposed as an indicator to support the economic considerations of the biofuel production by using biomass and bacteria. Moreover, the technological considerations can be developed by using the exergy inefficiency. Consequently, bacteria use can be compared with other means of biofuel production, taking into account both the technologies and the economic considerations. Cyanobacteria results as the better organism for biofuel production.

  7. Physiology limits commercially viable photoautotrophic production of microalgal biofuels.

    Science.gov (United States)

    Kenny, Philip; Flynn, Kevin J

    2017-01-01

    Algal biofuels have been offered as an alternative to fossil fuels, based on claims that microalgae can provide a highly productive source of compounds as feedstocks for sustainable transport fuels. Life cycle analyses identify algal productivity as a critical factor affecting commercial and environmental viability. Here, we use mechanistic modelling of the biological processes driving microalgal growth to explore optimal production scenarios in an industrial setting, enabling us to quantify limits to algal biofuels potential. We demonstrate how physiological and operational trade-offs combine to restrict the potential for solar-powered algal-biodiesel production in open ponds to a ceiling of ca. 8000 L ha -1 year -1 . For industrial-scale operations, practical considerations limit production to ca. 6000 L ha -1 year -1 . According to published economic models and life cycle analyses, such production rates cannot support long-term viable commercialisation of solar-powered cultivation of natural microalgae strains exclusively as feedstock for biofuels. The commercial viability of microalgal biofuels depends critically upon limitations in microalgal physiology (primarily in rates of C-fixation); we discuss the scope for addressing this bottleneck concluding that even deployment of genetically modified microalgae with radically enhanced characteristics would leave a very significant logistical if not financial burden.

  8. Reduction of the THG emissions in agricultural productions for the generation of biofuels; Senkung der THG-Emissionen in landwirtschaftlichen Produktionsverfahren zur Erzeugung von Biokraftstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Schiemenz, Katja; Gurgel, Andreas [Landesforschungsanstalt fuer Landwirtschaft und Fischerei Mecklenburg-Vorpommern, Guelzow-Pruezen (Germany). Inst. fuer Pflanzenproduktion und Betriebswirtschaft

    2013-10-01

    The Renewable Energy Directive (RED, 2009/128/EC) sets a binding goal of substituting at least 10% of fossil fuel consumption with renewable energy from 2020 onwards. Although biofuels of the second generation promise ecological and economic advantages, they are not yet available or (as with biomethane) available only to a very limited extent. It is therefore important to produce the currently available biofuels in a more environmentally friendly manner, particularly as biofuels must show a reduction in greenhouse gas (GHG) emissions relative to the fossil fuels they replace of 50% by 2017 and 60% by 2018 as per the German Biofuel Sustainability Ordinance. This concerns emissions from the whole biofuel production chain. In energy crop production the level of GHG emissions is particularly dependent on the amount of N fertilization and the intensity of soil tillage as well as indirectly on the amount of diesel consumption. A current LFA research project aims at the reduction of GHG field emissions in cultivation systems with energy crops (rape, ethanol wheat) for biofuel production. For this, the opportunities which arise from the use of crop rotation with multiple crop types appropriate for the location with the inclusion of N-fixing grain legumes and production technology should be grasped. (orig.)

  9. Bio-fuels production and the environmental indicators

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos Sebastiao de Paula [Mechanical Engineering Department/Pontifical Catholic University of Rio de Janeiro - PUC-Rio, Rua Marques de Sao Vicente 225, Gavea, CEP 22453-900, Rio de Janeiro, RJ (Brazil); Muylaert de Araujo, Maria Silvia [Energy and Environment Planning Program/Federal University of Rio de Janeiro - COPPE/UFRJ, Cidade Universitaria, Centro de Tecnologia, Bloco C, sala 211, Ilha do Fundao, CEP: 21945-970, Caixa Postal: 68501, Rio de Janeiro, RJ (Brazil)

    2009-10-15

    The paper evaluates the role of the bio-fuels production in the transportation sector in the world, for programs of greenhouse gases emissions reductions and sustainable environmental performance. Depending on the methodology used to account for the local pollutant emissions and the global greenhouse gases emissions during the production and consumption of both the fossil and bio-fuels, the results can show huge differences. If it is taken into account a life cycle inventory approach to compare the different fuel sources, these results can present controversies. A comparison study involving the American oil diesel and soybean diesel developed by the National Renewable Energy Laboratory presents CO{sub 2} emissions for the bio-diesel which are almost 20% of the emissions for the oil diesel: 136 g CO{sub 2}/bhp-h for the bio-diesel from soybean and 633 g CO{sub 2}/bhp-h for the oil diesel [National Renewable Energy Laboratory - NREL/SR-580-24089]. Besides that, important local environmental impacts can also make a big difference. The water consumption in the soybean production is much larger in comparison with the water consumption for the diesel production [National Renewable Energy Laboratory - NREL/SR-580-24089]. Brazil has an important role to play in this scenario because of its large experience in bio-fuels production since the seventies, and the country has conditions to produce bio-fuels for attending great part of the world demand in a sustainable pathway. (author)

  10. An integrated renewable energy park approach for algal biofuel production in United States

    Energy Technology Data Exchange (ETDEWEB)

    Subhadra, Bobban [Department of Internal Medicine, School of Medicine, University of New Mexico, Albuquerque, NM 87131 (United States); Edwards, Mark [Marketing and Sustainability, W.P. Carey School of Business, Arizona State University, Tempe, AZ 85282 (United States)

    2010-09-15

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed. (author)

  11. An integrated renewable energy park approach for algal biofuel production in United States

    International Nuclear Information System (INIS)

    Subhadra, Bobban; Edwards, Mark

    2010-01-01

    Algal biomass provides viable third generation feedstock for liquid transportation fuel that does not compete with food crops for cropland. However, fossil energy inputs and intensive water usage diminishes the positive aspects of algal energy production. An integrated renewable energy park (IREP) approach is proposed for aligning renewable energy industries in resource-specific regions in United States for synergistic electricity and liquid biofuel production from algal biomass with net zero carbon emissions. The benefits, challenges and policy needs of this approach are discussed.

  12. Biogas production from catch crops

    DEFF Research Database (Denmark)

    Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kiær

    2013-01-01

    , being in the ranges of 1.4–3.0 t ha−1 and 0.3–1.7 t ha−1 for Holstebro and Aabenraa, respectively. Specific methane yields were in the range of 229–450 m3 t−1 of VS. Methane yields per hectare of up to 800 m3 ha−1 were obtained, making catch crops a promising source of feedstock for manure-based biogas......Manure-based biogas plants in Denmark are dependent on high yielding biomass feedstock in order to secure economically feasible operation. The aim of this study was to investigate the potential of ten different catch crop species or mixtures as feedstock for biogas production in co...

  13. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2008-01-01

    The term biofuel is referred to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. Biofuels include bioethanol, biomethanol, vegetable oils, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Most traditional biofuels, such as ethanol from corn, wheat, or sugar beets, and biodiesel from oil seeds, are produced from classic agricultural food crops that require high-quality agricultural land for growth. Bioethanol is a petrol additive/substitute. Biomethanol can be produced from biomass using bio-syngas obtained from steam reforming process of biomass. Biomethanol is considerably easier to recover than the bioethanol from biomass. Ethanol forms an azeotrope with water so it is expensive to purify the ethanol during recovery. Methanol recycles easier because it does not form an azeotrope. Biodiesel is an environmentally friendly alternative liquid fuel that can be used in any diesel engine without modification. There has been renewed interest in the use of vegetable oils for making biodiesel due to its less polluting and renewable nature as against the conventional petroleum diesel fuel. Due to its environmental merits, the share of biofuel in the automotive fuel market will grow fast in the next decade. There are several reasons for biofuels to be considered as relevant technologies by both developing and industrialized countries. Biofuels include energy security reasons, environmental concerns, foreign exchange savings, and socioeconomic issues related to the rural sector. The biofuel economy will grow rapidly during the 21st century. Its economy development is based on agricultural production and most people live in the rural areas. In the most biomass-intensive scenario, modernized biomass energy contributes by 2050 about one half of total energy

  14. Land use competition for production of food and liquid biofuels. An analysis of the arguments in the current debate

    Energy Technology Data Exchange (ETDEWEB)

    Rathmann, Regis; Szklo, Alexandre; Schaeffer, Roberto [Energy Planning Program, Graduate School of Engineering, Federal University of Rio de Janeiro, Centro de Tecnologia, Bloco C, Sala 211, Cidade Universitaria, Ilha do Fundao, Rio de Janeiro, RJ 21941-972 (Brazil)

    2010-01-15

    This article analyses the current state of the debate over competition for land use, by means of an index of the main arguments in favor and against the production of liquid biofuels and the impacts on food production. Based on this index, an analytic framework is constructed to establish the causal relations indicated by the existing studies on this competition. We find that the emergence of agro-energy has altered the land use dynamic, albeit not yet significantly, with a shift of areas traditionally used to grow foods over to crops to produce biofuels. This has been contributing to raise food prices in the short run. However, it is probable that this is not the only factor determining this trend, nor will it last over the long run. The challenge is to conciliate the production of biofuels with the production of foods in sustainable form. (author)

  15. Harnessing biofuels. A global Renaissance in energy production?

    Energy Technology Data Exchange (ETDEWEB)

    Jegannathan, Kenthorai Raman; Chan, Eng-Seng; Ravindra, Pogaku [Centre of Materials and Minerals, School of Engineering and Information Technology, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah (Malaysia)

    2009-10-15

    Biofuel, peoples' long awaiting alternative fuel, is yet to struggle a long way to reach in retail outlet all over the world as an economical and environmental friendly fuel. Biofuels include bioethanol, biodiesel, biogas, bio-synthetic gas (bio-syngas), bio-oil, bio-char, Fischer-Tropsch liquids, and biohydrogen. Among these bioethanol, biodiesel, biogas are predominant which can be produced either using chemical catalyst or biocatalyst from biomass. At present, the conventional process involves the chemical catalyst while a rigorous research is focused on using a biocatalyst. This review brings out the advantages and disadvantages of using different type of catalyst in biofuel production and emphasis on new technologies as an alternative to conventional technologies. (author)

  16. Thermodynamic evaluation of biomass-to-biofuels production systems

    NARCIS (Netherlands)

    Piekarczyk, W.; Czarnowska, L.; Ptasinski, K.J.; Stanek, W.

    2013-01-01

    Biomass is a renewable feedstock for producing modern energy carriers. However, the usage of biomass is accompanied by possible drawbacks, mainly due to limitation of land and water, and competition with food production. In this paper, the analysis concerns so-called second generation biofuels, like

  17. Yeast synthetic biology toolbox and applications for biofuel production.

    Science.gov (United States)

    Tsai, Ching-Sung; Kwak, Suryang; Turner, Timothy L; Jin, Yong-Su

    2015-02-01

    Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  18. Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production

    Directory of Open Access Journals (Sweden)

    Elena Shimanskaya

    2018-01-01

    How to Cite: Shimanskaya, E.I., Stepacheva, A.A., Sulman, E.M., Rebrov, E.V., Matveeva, V.G. (2018. Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 74-81 (doi:10.9767/bcrec.13.1.969.74-81

  19. Greenhouse gas footprints of different biofuel production systems

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.; Smeets, E.M.W.; Faaij, A.P.C.

    2010-01-01

    The aim of this study is to show the impact of different assumptions and methodological choices on the life-cycle greenhouse gas (GHG) performance of biofuels by providing the results for different key parameters on a consistent basis. These include co-products allocation or system expansion, N2O

  20. Inhibition of Snl6 expression for biofuel production

    Science.gov (United States)

    Bart, Rebecca; Chern, Mawsheng; Ronald, Pamela; Vega-Sanchez, Miguel

    2018-04-03

    The invention provides compositions and methods for inhibiting the expression of the gene Snl6 in plants. Plants with inhibited expression of Snl6 have use in biofuel production, e.g., by increasing the amount of soluble sugar that can be extracted from the plant.

  1. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  2. Organisms for biofuel production: natural bioresources and methodologies for improving their biosynthetic potentials.

    Science.gov (United States)

    Hu, Guangrong; Ji, Shiqi; Yu, Yanchong; Wang, Shi'an; Zhou, Gongke; Li, Fuli

    2015-01-01

    In order to relieve the pressure of energy supply and environment contamination that humans are facing, there are now intensive worldwide efforts to explore natural bioresources for production of energy storage compounds, such as lipids, alcohols, hydrocarbons, and polysaccharides. Around the world, many plants have been evaluated and developed as feedstock for bioenergy production, among which several crops have successfully achieved industrialization. Microalgae are another group of photosynthetic autotroph of interest due to their superior growth rates, relatively high photosynthetic conversion efficiencies, and vast metabolic capabilities. Heterotrophic microorganisms, such as yeast and bacteria, can utilize carbohydrates from lignocellulosic biomass directly or after pretreatment and enzymatic hydrolysis to produce liquid biofuels such as ethanol and butanol. Although finding a suitable organism for biofuel production is not easy, many naturally occurring organisms with good traits have recently been obtained. This review mainly focuses on the new organism resources discovered in the last 5 years for production of transport fuels (biodiesel, gasoline, jet fuel, and alkanes) and hydrogen, and available methods to improve natural organisms as platforms for the production of biofuels.

  3. Energy security for India: Biofuels, energy efficiency and food productivity

    International Nuclear Information System (INIS)

    Gunatilake, Herath; Roland-Holst, David; Sugiyarto, Guntur

    2014-01-01

    The emergence of biofuel as a renewable energy source offers opportunities for significant climate change mitigation and greater energy independence to many countries. At the same time, biofuel represents the possibility of substitution between energy and food. For developing countries like India, which imports over 75% of its crude oil, fossil fuels pose two risks—global warming pollution and long-term risk that oil prices will undermine real living standards. This paper examines India's options for managing energy price risk in three ways: biofuel development, energy efficiency promotion, and food productivity improvements. Our salient results suggest that biodiesel shows promise as a transport fuel substitute that can be produced in ways that fully utilize marginal agricultural resources and hence promote rural livelihoods. First-generation bioethanol, by contrast, appears to have a limited ability to offset the impacts of oil price hikes. Combining the biodiesel expansion policy with energy efficiency improvements and food productivity increases proved to be a more effective strategy to enhance both energy and food security, help mitigate climate change, and cushion the economy against oil price shocks. - Highlights: • We investigate the role of biofuels in India applying a CGE model. • Biodiesel enhances energy security and improve rural livelihoods. • Sugarcane ethanol does not show positive impact on the economy. • Biodiesel and energy efficiency improvements together provide better results. • Food productivity further enhances biodiesel, and energy efficiency impacts

  4. Laccase applications in biofuels production: current status and future prospects.

    Science.gov (United States)

    Kudanga, Tukayi; Le Roes-Hill, Marilize

    2014-08-01

    The desire to reduce dependence on the ever diminishing fossil fuel reserves coupled with the impetus towards green energy has seen increased research in biofuels as alternative sources of energy. Lignocellulose materials are one of the most promising feedstocks for advanced biofuels production. However, their utilisation is dependent on the efficient hydrolysis of polysaccharides, which in part is dependent on cost-effective and benign pretreatment of biomass to remove or modify lignin and release or expose sugars to hydrolytic enzymes. Laccase is one of the enzymes that are being investigated not only for potential use as pretreatment agents in biofuel production, mainly as a delignifying enzyme, but also as a biotechnological tool for removal of inhibitors (mainly phenolic) of subsequent enzymatic processes. The current review discusses the major advances in the application of laccase as a potential pretreatment strategy, the underlying principles as well as directions for future research in the search for better enzyme-based technologies for biofuel production. Future perspectives could include synergy between enzymes that may be required for optimal results and the adoption of the biorefinery concept in line with the move towards the global implementation of the bioeconomy strategy.

  5. Three generation production biotechnology of biomass into bio-fuel

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  6. Energy performance and efficiency of two sugar crops for the biofuel supply chain. Perspectives for sustainable field management in southern Italy

    International Nuclear Information System (INIS)

    Garofalo, Pasquale; D'Andrea, Laura; Vonella, A. Vittorio; Rinaldi, Michele; Palumbo, A. Domenico

    2015-01-01

    Improvement of the energy balance and efficiency for reduced input of cropping systems is one of the main goals for the cultivation of energy crops. In this field study, two sugar crops for bioethanol production were cultivated under different soil tillage management (conventional; no tillage) and mineral nitrogen application (0, 75, 150 kg N ha"−"1): sweet sorghum and sugar beet. The energy performance and efficiency along the bioethanol supply chain were analysed and compared. Both of these crops showed good growth adaptation to the different soil and nitrogen management, and thus the energy return, resource and energy efficiencies were significantly improved in the low-input system. Sweet sorghum provided better responses in terms of water and nitrogen use efficiency for biomass accumulation, as well as its energy yield and net gain, compared to sugar beet, whereas sugar beet showed higher energy efficiency than sorghum. According to these data, both of these crops can be cultivated in a Mediterranean environment with low energy input, which guarantees good crop and energy performances for biofuel strategy planning. - Highlights: • Two sugar crops for the bioethanol supply chain were evaluated. • Energy performances and efficiencies were assessed under different energy input. • Sugar yield resulted not compromised by the different crop management. • The energy gain was improved with low energy input at field level. • Sweet sorghum gave the highest energy yield, sugar beet the energy efficiency.

  7. Assessment of Environmental Stresses for Enhanced Microalgal Biofuel Production – An Overview

    International Nuclear Information System (INIS)

    Cheng, Dan; He, Qingfang

    2014-01-01

    Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates) tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  8. Assessment of environmental stresses for enhanced microalgal biofuel production-an overview

    Directory of Open Access Journals (Sweden)

    Dan eCheng

    2014-07-01

    Full Text Available Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  9. Assessment of Environmental Stresses for Enhanced Microalgal Biofuel Production – An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Dan, E-mail: dxcheng@ualr.edu; He, Qingfang, E-mail: dxcheng@ualr.edu [Department of Applied Science, University of Arkansas at Little Rock, Little Rock, AR (United States)

    2014-07-07

    Microalgal biofuels are currently considered to be the most promising alternative to future renewable energy source. Microalgae have great potential to produce various biofuels, including biodiesel, bioethanol, biomethane, and biohydrogen. Cultivation of biofuel-producing microalgae demands favorable environmental conditions, such as suitable light, temperature, nutrients, salinity, and pH. However, these conditions are not always compatible with the conditions beneficial to biofuel production, because biofuel-related compounds (such as lipids and carbohydrates) tend to accumulate under environmental-stress conditions of light, temperature, nutrient, and salt. This paper presents a brief overview of the effects of environmental conditions on production of microalgal biomass and biofuel, with specific emphasis on how to utilize environmental stresses to improve biofuel productivity. The potential avenues of reaping the benefits of enhanced biofuel production by environmental stresses while maintaining high yields of biomass production have been discussed.

  10. Microalgal cultivation with biogas slurry for biofuel production.

    Science.gov (United States)

    Zhu, Liandong; Yan, Cheng; Li, Zhaohua

    2016-11-01

    Microalgal growth requires a substantial amount of chemical fertilizers. An alternative to the utilization of fertilizer is to apply biogas slurry produced through anaerobic digestion to cultivate microalgae for the production of biofuels. Plenty of studies have suggested that anaerobic digestate containing high nutrient contents is a potentially feasible nutrient source to culture microalgae. However, current literature indicates a lack of review available regarding microalgal cultivation with biogas slurry for the production of biofuels. To help fill this gap, this review highlights the integration of digestate nutrient management with microalgal production. It first unveils the current status of microalgal production, providing basic background to the topic. Subsequently, microalgal cultivation technologies using biogas slurry are discussed in detail. A scale-up scheme for simultaneous biogas upgrade and digestate application through microalgal cultivation is then proposed. Afterwards, several uncertainties that might affect this practice are explored. Finally, concluding remarks are put forward. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The Effects of Biofuel Feedstock Production on Farmers’ Livelihoods in Ghana: The Case of Jatropha curcas

    Directory of Open Access Journals (Sweden)

    Emmanuel Acheampong

    2014-07-01

    Full Text Available The widespread acquisition of land for large-scale/commercial production of biofuel crops in Ghana has raised concerns from civil society organizations, local communities and other parties, regarding the impact of these investments on local livelihoods. This paper assessed the effect of large-scale acquisition of land for production of Jatropha curcas on farmers’ livelihoods in Ghana. The study was conducted in 11 communities spanning the major agro-ecological zones and political divisions across Ghana. Methods of data collection included questionnaire survey, interviews and focus group discussions. Results show that several households have lost their land to Jatropha plantations leading, in some cases, to violent conflicts between biofuel investors, traditional authorities and the local communities. Most people reported that, contrary to the belief that Jatropha does well on marginal lands, the lands acquired by the Jatropha Companies were productive lands. Loss of rights over land has affected households’ food production and security, as many households have resorted to reducing the area they have under cultivation, leading to shortening fallow periods and declining crop yields. In addition, although the cultivation of Jatropha led to the creation of jobs in the communities where they were started, such jobs were merely transient. The paper contends that, even though the impact of Jatropha feedstock production on local livelihoods in Ghana is largely negative, the burgeoning industry could be developed in ways that could support local livelihoods.

  12. Assessing Jatropha Crop Production Alternatives in Abandoned Agricultural Arid Soils Using MCA and GIS

    Directory of Open Access Journals (Sweden)

    Serafin Corral

    2016-05-01

    Full Text Available This paper discusses the assessment of various biofuel crop production alternatives on the island of Fuerteventura using Jatropha crops. It adopts an integrated approach by carrying out a multi-criteria assessment with the support of participatory techniques and geographical information systems. Sixteen production alternatives were analyzed for growing Jatropha, and the results suggest that the best alternative involves using typical torrifluvent soils irrigated with recycled urban wastewater using surface drip irrigation covering 100% evapotranspiration. It was also determined that a potential area of 2546 ha could be used for cultivation within a radius of 10 km from a wastewater treatment plant. This level of production would supply 27.56% of the biofuel needs of Fuerteventura, thereby contributing to the 2020 target of the European Commission regarding biofuels for land transport.

  13. MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum under abiotic stress.

    Directory of Open Access Journals (Sweden)

    Guiling Sun

    Full Text Available Switchgrass has increasingly been recognized as a dedicated biofuel crop for its broad adaptation to marginal lands and high biomass. However, little is known about the basic biology and the regulatory mechanisms of gene expression in switchgrass, particularly under stress conditions. In this study, we investigated the effect of salt and drought stress on switchgrass germination, growth and the expression of small regulatory RNAs. The results indicate that salt stress had a gradual but significant negative effect on switchgrass growth and development. The germination rate was significantly decreased from 82% for control to 36% under 1% NaCl treatment. However, drought stress had little effect on the germination rate but had a significant effect on the growth of switchgrass under the severest salinity stress. Both salt and drought stresses altered the expression pattern of miRNAs in a dose-dependent manner. However, each miRNA responded to drought stress in a different pattern. Salt and drought stress changed the expression level of miRNAs mainly from 0.9-fold up-regulation to 0.7-fold down-regulation. miRNAs were less sensitive to drought treatment than salinity treatment, as evidenced by the narrow fold change in expression levels. Although the range of change in expression level of miRNAs was similar under salt and drought stress, no miRNAs displayed significant change in expression level under all tested salt conditions. Two miRNAs, miR156 and miR162, showed significantly change in expression level under high drought stress. This suggests that miR156 and miR162 may attribute to the adaption of switchgrass to drought stress and are good candidates for improving switchgrass as a biofuel crop by transgenic technology.

  14. Evaluation of Aqua crop Model to Predict Crop Water Productivity

    International Nuclear Information System (INIS)

    Mohd Noor Hidayat Adenan; Faiz Ahmad; Shyful Azizi Abdul Rahman; Abdul Rahim Harun; Khairuddin Abdul Rahim

    2015-01-01

    Water and nutrient are critical inputs for crop production, especially in meeting challenges from increasing fertilizer cost and irregular water availability associated with climate change. The Land and Water Division of Food and Agriculture Organization of the United Nations (FAO) has developed Aqua Crop, an integrated application software to simulate the interactions between plant, water and soil. Field management and irrigation management are the factors that need to be considered since it affects the interactions. Four critical components are needed in the Aqua Crop model, viz. climate, crop, field management and soil conditions. In our case study, climate data from rice field in Utan Aji, Kangar, Perlis was applied to run a simulation by using AquaCrop model. The rice crop was also assessed against deficit irrigation schedules and we found that use of water at optimum level increased rice yield. Results derived from the use of the model corresponded conventional assessment. This model can be adopted to help farmers in Malaysia in planning crop and field management to increase the crop productivity, especially in areas where the water is limited. (author)

  15. Biomass production on marginal lands - catalogue of bioenergy crops

    Science.gov (United States)

    Baumgarten, Wibke; Ivanina, Vadym; Hanzhenko, Oleksandr

    2017-04-01

    Marginal lands are the poorest type of land, with various limitations for traditional agriculture. However, they can be used for biomass production for bioenergy based on perennial plants or trees. The main advantage of biomass as an energy source compared to fossil fuels is the positive influence on the global carbon dioxide balance in the atmosphere. During combustion of biofuels, less carbon dioxide is emitted than is absorbed by plants during photosynthesis. Besides, 20 to 30 times less sulphur oxide and 3 to 4 times less ash is formed as compared with coal. Growing bioenergy crops creates additional workplaces in rural areas. Soil and climatic conditions of most European regions are suitable for growing perennial energy crops that are capable of rapid transforming solar energy into energy-intensive biomass. Selcted plants are not demanding for soil fertility, do not require a significant amount of fertilizers and pesticides and can be cultivated, therefore, also on unproductive lands of Europe. They prevent soil erosion, contribute to the preservation and improvement of agroecosystems and provide low-cost biomass. A catalogue of potential bioenergy plants was developed within the EU H2020 project SEEMLA including woody and perennial crops that are allowed to be grown in the territory of the EU and Ukraine. The catalogue lists high-productive woody and perennial crops that are not demanding to the conditions of growing and can guarantee stable high yields of high-energy-capacity biomass on marginal lands of various categories of marginality. Biomass of perennials plants and trees is composed of cellulose, hemicellulose and lignin, which are directly used to produce solid biofuels. Thanks to the well-developed root system of trees and perennial plants, they are better adapted to poor soils and do not require careful maintenance. Therefore, they can be grown on marginal lands. Particular C4 bioenergy crops are well adapted to a lack of moisture and high

  16. Methods and materials for deconstruction of biomass for biofuels production

    Science.gov (United States)

    Schoeniger, Joseph S; Hadi, Masood Zia

    2015-05-05

    The present invention relates to nucleic acids, peptides, vectors, cells, and plants useful in the production of biofuels. In certain embodiments, the invention relates to nucleic acid sequences and peptides from extremophile organisms, such as SSO1949 and Ce1A, that are useful for hydrolyzing plant cell wall materials. In further embodiments, the invention relates to modified versions of such sequences that have been optimized for production in one or both of monocot and dicot plants. In other embodiments, the invention provides for targeting peptide production or activity to a certain location within the cell or organism, such as the apoplast. In further embodiments, the invention relates to transformed cells or plants. In additional embodiments, the invention relates to methods of producing biofuel utilizing such nucleic acids, peptides, targeting sequences, vectors, cells, and/or plants.

  17. Recycling crop residues for use in recirculating hydroponic crop production

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  18. Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth

    International Nuclear Information System (INIS)

    Mosnier, A.; Havlík, P.; Valin, H.; Baker, J.; Murray, B.; Feng, S.; Obersteiner, M.; McCarl, B.A.; Rose, S.K.; Schneider, U.A.

    2013-01-01

    We investigate the impacts of the U.S. renewable fuel standard (RFS2) and several alternative biofuel policy designs on global GHG emissions from land use change and agriculture over the 2010–2030 horizon. Analysis of the scenarios relies on GLOBIOM, a global, multi-sectoral economic model based on a detailed representation of land use. Our results reveal that RFS2 would substantially increase the portion of agricultural land needed for biofuel feedstock production. U.S. exports of most agricultural products would decrease as long as the biofuel target would increase leading to higher land conversion and nitrogen use globally. In fact, higher levels of the mandate mean lower net emissions within the U.S. but when the emissions from the rest of the world are considered, the US biofuel policy results in almost no change on GHG emissions for the RFS2 level and higher global GHG emissions for higher levels of the mandate or higher share of conventional corn-ethanol in the mandate. Finally, we show that if the projected crop productivity would be lower globally, the imbalance between domestic U.S. GHG savings and additional GHG emissions in the rest of the world would increase, thus deteriorating the net global impact of U.S. biofuel policies. - Highlights: ► We model the impact of the U.S. renewable fuel standard (RFS2). ► RFS2 would require more agricultural land and nitrogen globally. ► Increasing the mandates reduce GHG emissions within the U.S. ► Increasing the mandates increase GHG emissions in the rest of the world. ► Total GHG emissions increase with higher levels of mandate; higher share of corn-ethanol; lower productivity growth

  19. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.

    Science.gov (United States)

    Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar

    2018-03-01

    The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Soil water infiltration affected by topsoil thickness in row crop and switchgrass production systems

    Science.gov (United States)

    Conversion of annual grain crop systems to biofuel production systems can restore soil hydrologic function; however, information on these effects is limited. Hence, the objective of this study was to evaluate the influence of topsoil thickness on water infiltration in claypan soils for grain and swi...

  1. The value of biodiversity in legume symbiotic nitrogen fixation and nodulation for biofuel and food production.

    Science.gov (United States)

    Gresshoff, Peter M; Hayashi, Satomi; Biswas, Bandana; Mirzaei, Saeid; Indrasumunar, Arief; Reid, Dugald; Samuel, Sharon; Tollenaere, Alina; van Hameren, Bethany; Hastwell, April; Scott, Paul; Ferguson, Brett J

    2015-01-01

    Much of modern agriculture is based on immense populations of genetically identical or near-identical varieties, called cultivars. However, advancement of knowledge, and thus experimental utility, is found through biodiversity, whether naturally-found or induced by the experimenter. Globally we are confronted by ever-growing food and energy challenges. Here we demonstrate how such biodiversity from the food legume crop soybean (Glycine max L. Merr) and the bioenergy legume tree Pongamia (Millettia) pinnata is a great value. Legume plants are diverse and are represented by over 18,000 species on this planet. Some, such as soybean, pea and medics are used as food and animal feed crops. Others serve as ornamental (e.g., wisteria), timber (e.g., acacia/wattle) or biofuel (e.g., Pongamia pinnata) resources. Most legumes develop root organs (nodules) after microsymbiont induction that serve as their habitat for biological nitrogen fixation. Through this, nitrogen fertiliser demand is reduced by the efficient symbiosis between soil Rhizobium-type bacteria and the appropriate legume partner. Mechanistic research into the genetics, biochemistry and physiology of legumes is thus strategically essential for future global agriculture. Here we demonstrate how molecular plant science analysis of the genetics of an established food crop (soybean) and an emerging biofuel P. pinnata feedstock contributes to their utility by sustainable production aided by symbiotic nitrogen fixation. Crown Copyright © 2014. Published by Elsevier GmbH. All rights reserved.

  2. Optimal localisation of next generation Biofuel production in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Wetterlund, Elisabeth [Linkoeping Univ., Linkoeping (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Mossberg, Johanna [SP Technical Research Inst. of Sweden, Boraas (Sweden)] [and others

    2013-09-01

    With a high availability of lignocellulosic biomass and various types of cellulosic by-products, as well as a large number of industries, Sweden is a country of great interest for future large scale production of sustainable, next generation biofuels. This is most likely also a necessity as Sweden has the ambition to be independent of fossil fuels in the transport sector by the year 2030 and completely fossil free by 2050. In order to reach competitive biofuel production costs, plants with large production capacities are likely to be required. Feedstock intake capacities in the range of about 1-2 million tonnes per year, corresponding to a biomass feed of 300-600 MW, can be expected, which may lead to major logistical challenges. To enable expansion of biofuel production in such large plants, as well as provide for associated distribution requirements, it is clear that substantial infrastructure planning will be needed. The geographical location of the production plant facilities is therefore of crucial importance and must be strategic to minimise the transports of raw material as well as of final product. Competition for the available feedstock, from for example forest industries and CHP plants (combined heat and power) further complicates the localisation problem. Since the potential for an increased biomass utilisation is limited, high overall resource efficiency is of great importance. Integration of biofuel production processes in existing industries or in district heating systems may be beneficial from several aspects, such as opportunities for efficient heat integration, feedstock and equipment integration, as well as access to existing experience and know-how. This report describes the development of Be Where Sweden, a geographically explicit optimisation model for localisation of next generation biofuel production plants in Sweden. The main objective of developing such a model is to be able to assess production plant locations that are robust to varying

  3. An overview of biofuels

    International Nuclear Information System (INIS)

    Qureshi, I.H.; Ahmad, S.

    2007-01-01

    Biofuels for transport have received considerable attention due to rising oil prices and growing concern about greenhouse gas emissions. Biofuels namely ethanol and esters of fatty acids have the potential to displace a substantial amount of petroleum fuel in the next few decades which will help to conserve fossil fuel resources. Life cycle analyses show that biofuels release lesser amount of greenhouse gases and other air pollutants. Thus biofuels are seen as a pragmatic step towards reducing carbon dioxide emission from transport sector. Biofuels are compatible with petroleum and combustion engines can easily operate with 10% ethanol and 20% biodiesel blended fuel with no modification. However higher concentrations require 'flex-fuel' engines which automatically adjust fuel injection depending upon fuel mix. Biofuels are derived from renewable biomass and can be produced from a variety of feedstocks. The only limiting factors are the availability of cropland, growth of plants and the climate. Countries with warmer climate can get about five times more biofuel crops from each acre of land than cold climate countries. Genetically modified crops and fast growing trees are being developed increase the production of energy crops. (author)

  4. Crop succession requirements in agricultural production planning

    NARCIS (Netherlands)

    Klein Haneveld, W.K.; Stegeman, A.

    2005-01-01

    A method is proposed to write crop succession requirements as linear constraints in an LP-based model for agricultural production planning. Crop succession information is given in the form of a set of inadmissible successions of crops. The decision variables represent the areas where a certain

  5. Impact of climate variability on N and C flux within the life cycle of biofuels produced from crop residues

    Science.gov (United States)

    Pourhashem, G.; Block, P. J.; Adler, P. R.; Spatari, S.

    2013-12-01

    Biofuels from agricultural feedstocks (lignocellulose) are under development to meet national policy objectives for producing domestic renewable fuels. Using crop residues such as corn stover as feedstock for biofuel production can minimize the risks associated with food market disruption; however, it demands managing residue removal to minimize soil carbon loss, erosion, and to ensure nutrient replacement. Emissions of nitrous oxide and changes to soil organic carbon (SOC) are subject to variability in time due to local climate conditions and cultivation practices. Our objective is to investigate the effect of climate inputs (precipitation and temperature) on biogeochemical greenhouse gas (GHG) emissions (N2O and SOC expressed as CO2) within the life cycle of biofuels produced from agricultural residues. Specifically, we investigate the impact of local climate variability on soil carbon and nitrogen fluxes over a 20-year biorefinery lifetime where biomass residue is used for lignocellulosic ethanol production. We investigate two cases studied previously (Pourhashem et al, 2013) where the fermentable sugars in the agricultural residue are converted to ethanol (biofuel) and the lignin byproduct is used in one of two ways: 1) power co-generation; or 2) application to land as a carbon/nutrient-rich amendment to soil. In the second case SOC losses are mitigated through returning the lignin component to land while the need for fertilizer addition is also eliminated, however in both cases N2O and SOC are subject to variability due to variable climate conditions. We used the biogeochemical model DayCent to predict soil carbon and nitrogen fluxes considering soil characteristics, tillage practices and local climate (e.g. temperature and rainfall). We address the impact of climate variability on the soil carbon and nitrogen fluxes by implementing a statistical bootstrap resampling method based on a historic data set (1980 to 2000). The ensuing probabilistic outputs from the

  6. Environmental considerations in energy crop production

    International Nuclear Information System (INIS)

    Ranney, J.W.; Mann, L.K.

    1994-01-01

    This paper is a preliminary attempt to provide information on the probable environmental effects of energy crop production relative to other potential uses of the land. While dedicated energy crop production is anticipated to occur primarily on land currently in agricultural production, some pastureland and forestland with a high potential for conversion to agricultural production may be utilized. Experimental results suggest that chemical use on energy crops will be lower than on most row crops and that land producing energy crops should experience less erosion than land producing row crops. Long-term site productivity should not be a major issue if macro-and micro-fertilizers are added as needed and nutrient-conserving production techniques are used. (Author)

  7. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  8. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  9. Consequences of agro-biofuel production for greenhouse gas emissions

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann; Johansen, Anders; Hauggard-Nielsen, Henrik

    2008-01-01

    The objective of the study was to examine the effect on N2O and CH4 emissions when residues from bio-energy production are recycling as organic fertilizer for a maize energy crop. The study showed that the N2O emission associated with the cultivation of the maize crop offset a considerable faction...

  10. Biofuel Production: Considerations for USACE Civil Works Business Lines

    Science.gov (United States)

    2014-12-01

    feedstock for biofuel production has led to research whereby several genera of duckweed ( Lemna , Landoltia, Spirodela, Wolffia, Wolfiella) have been...as well as the general public when rendering its final permit decisions. Regulatory responsibilities include evaluating minor activities such as...reservoirs scattered along minor river systems in other parts of the United States (Kasul et al. 1998) Through a series of legislative acts in the

  11. POTENTIAL FOR LIQUID BIOFUEL PRODUCTION IN THE ...

    African Journals Online (AJOL)

    user

    2013-02-27

    Feb 27, 2013 ... production from agro-industrial waste in South Africa. Gikuru Mwithiga ... are produced in. South Africa, as well as the immediately economic effect is also discussed. ... Also, the average cost ... production industry that produces some if not all liquid ... capable of producing alcohol in the fermentation process.

  12. Metabolic engineering of yeast for lignocellulosic biofuel production.

    Science.gov (United States)

    Jin, Yong-Su; Cate, Jamie Hd

    2017-12-01

    Production of biofuels from lignocellulosic biomass remains an unsolved challenge in industrial biotechnology. Efforts to use yeast for conversion face the question of which host organism to use, counterbalancing the ease of genetic manipulation with the promise of robust industrial phenotypes. Saccharomyces cerevisiae remains the premier host for metabolic engineering of biofuel pathways, due to its many genetic, systems and synthetic biology tools. Numerous engineering strategies for expanding substrate ranges and diversifying products of S. cerevisiae have been developed. Other yeasts generally lack these tools, yet harbor superior phenotypes that could be exploited in the harsh processes required for lignocellulosic biofuel production. These include thermotolerance, resistance to toxic compounds generated during plant biomass deconstruction, and wider carbon consumption capabilities. Although promising, these yeasts have yet to be widely exploited. By contrast, oleaginous yeasts such as Yarrowia lipolytica capable of producing high titers of lipids are rapidly advancing in terms of the tools available for their metabolic manipulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 75 FR 42745 - Production Incentives for Cellulosic Biofuels: Notice of Program Intent

    Science.gov (United States)

    2010-07-22

    ... Cellulosic Biofuels: Notice of Program Intent AGENCY: Office of Energy Efficiency and Renewable Energy...). Through this notice, biofuels producers and other interested parties are invited to submit pre-auction..., ``Production Incentives for Cellulosic Biofuels; Reverse Auction Procedures and Standards,'' (74 FR 52867...

  14. Biofuels and climate neutrality - system analysis of production and utilisation

    International Nuclear Information System (INIS)

    Holmgren, Kristina; Eriksson, Erik; Olsson, Olle; Olsson, Mats; Hillring, Bengt; Parikka, Matti

    2007-06-01

    The objectives of this study were to investigate to what extent biofuels can be said to be climate neutral. An assessment of greenhouse gas emissions from the production and utilisation chains of a number of solid biofuels were made based on data available in the literature. The data has been used for making radiative forcing calculations. The study also includes a comparison between imported and domestic solid biofuels. We conclude that none of the investigated biofuel chains are 'climate neutral', since all of them result in net emissions of greenhouse gases. However, all of the chains result in lower emissions than corresponding emissions from the use of fossil fuels. The emission estimates for the fuel chains varies depending on fuels and on how system boundaries have been set in the different studies. The following factors can contribute significantly to the total emissions of greenhouse gases of the production and utilisation chain of a biofuel: impact of production system on soil carbon storage, land use methods (especially use of drained peatlands), the use of fertilisers (both direct and indirect), combustion technology, refining of the fuel (i.e. pelletisation) and storage (especially of comminuted fuels). Other sources that also contribute to the emissions during a production and utilisation chain are; harvesting machines, transportation and waste handling. The climate impacts of the greenhouse gas emissions from one of the biofuels, i.e. forest residues, were compared to the impacts of fossil fuels by the concept of radiative forcing. In the radiative forcing calculations the CO 2 emissions from combustion of biofuels and the CO 2 emissions that would have occurred if the residues had been left in the forest to decompose were included, and their different dynamics taken into consideration. The decomposition results in CO 2 emissions during a long time period and in an amount equalling those that are emitted during combustion. Only a minor part is due to

  15. Increasing Feedstock Production for Biofuels: Economic Drivers, Environmental Implications, and the Role of Research

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Biomass Research and Development Board (Board) commissioned an economic analysis of feedstocks to produce biofuels. The Board seeks to inform investments in research and development needed to expand biofuel production. This analysis focuses on feedstocks; other interagency teams have projects underway for other parts of the biofuel sector (e.g., logistics). The analysis encompasses feedstocks for both conventional and advanced biofuels from agriculture and forestry sources.

  16. Efficient production of automotive biofuels; Effektiv produktion av biodrivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Gode, Jenny; Hagberg, Linus; Rydberg, Tomas; Raadberg, Henrik; Saernholm, Erik

    2008-07-01

    The report describes opportunities and consequences associated with biomass polygeneration plants, in particular the role that heat plants (HP) or combined heat and power plants (CHP) in district heating systems can play in the production of automotive biofuels. The aim of the report is to provide a knowledge base to stakeholders to help assess energy and environmental benefits associated with collaborative approaches in planning, constructing and operating energy plants. Several configurations are possible for an energy polygeneration plant, but this report focuses on configurations in which a plant for automotive biofuel production and a district heating system with HPs or CHPs have been integrated in some way in order to achieve added value. The modes of integration are several, e.g.: - Supply of process steam from the CHP to the fuel plant, by which the time of operation for the CHP can be extended; Supply of surplus heat from the fuel plant to the district heating system; Material exchange between the systems, by use of residue streams from the fuel plant as fuel in the HP/CHP; Surplus heat from the fuel plant used for drying of the solid fuel to the HP/CHP or for drying of raw material for pellets production; Co-location providing opportunities for shared infrastructure for raw material handling, service systems, utilities and/or logistics. The report principally addresses integration options of the first three types, but describes briefly also pellets production. The starting point for the analysis of integration options is the description of technologies of interest for the production of automotive biofuels. Commercially available technologies are of prime interest, but also a couple of technologies under development are included in this part of the study. In addition to outlining the process characteristics for these processes, surrounding conditions and system requirements are briefly outlined. The results are summarized in Table S1. Ethanol fermentation

  17. Estimation of economic impacts of cellulosic biofuel production: a comparative analysis of three biofuel pathways: Economic impacts of biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yimin; Goldberg, Marshall; Tan, Eric; Meyer, Pimphan A.

    2016-03-07

    The development of a cellulosic biofuel industry utilizing domestic biomass resources is expected to create opportunities for economic growth resulting from the construction and operation of new biorefineries. We applied an economic input-output model to estimate potential economic impacts, particularly gross job growth, resulting from the construction and operation of biorefineries using three different technology pathways: 1) cellulosic ethanol via biochemical conversion in Iowa, 2) renewable diesel blendstock via biological conversion in Georgia, and 3) renewable diesel and gasoline blendstock via fast pyrolysis in Mississippi. Combining direct, indirect, and induced effects, capital investment associated with the construction of a biorefinery processing 2,000 dry metric tons of biomass per day (DMT/day) could yield between 5,960 and 8,470 full-time equivalent (FTE) jobs during the construction period. Fast pyrolysis biorefineries produce the most jobs on a project level thanks to the highest capital requirement among the three pathways. Normalized for one million dollars of capital investment, the fast pyrolysis biorefineries are estimated to yield slighter more jobs (12.1 jobs) than the renewable diesel (11.8 jobs) and the cellulosic ethanol (11.6 jobs) biorefineries. While operating biorefineries is not labor-intensive, the annual operation of a 2,000 DMT/day biorefinery could support between 720 and 970 jobs when the direct, indirect, and induced effects are considered. The major factor, which results in the variations among the three pathways, is the type of biomass feedstock used for biofuels. The agriculture/forest, services, and trade industries are the primary sectors that will benefit from the ongoing operation of biorefineries.

  18. Biofuel production from Jerusalem artichoke tuber inulins

    Science.gov (United States)

    Jerusalem artichoke has high productivity of tubers that are rich in inulins, a fructan polymer. These inulins can be easily broken down into fructose and glucose for conversion into ethanol by fermentation. This review focuses on tuber and inulin yields, effect of cultivar and environment on tuber ...

  19. Liquid biofuel production from volatile fatty acids

    NARCIS (Netherlands)

    Steinbusch, K.J.J.

    2010-01-01

    The production of renewable fuels and chemicals reduces the dependency on fossil fuels and limits the increase of CO2 concentration in the atmosphere only if a sustainable feedstock and an energy efficient process are used. The thesis assesses the possibility to use municipal and industrial waste as

  20. Biogeochemical Research Priorities for Sustainable Biofuel and Bioenergy Feedstock Production in the Americas.

    Science.gov (United States)

    Gollany, Hero T; Titus, Brian D; Scott, D Andrew; Asbjornsen, Heidi; Resh, Sigrid C; Chimner, Rodney A; Kaczmarek, Donald J; Leite, Luiz F C; Ferreira, Ana C C; Rod, Kenton A; Hilbert, Jorge; Galdos, Marcelo V; Cisz, Michelle E

    2015-12-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems incrementally remove greater quantities of organic matter, which in turn affects soil organic matter and associated carbon and nutrient storage (and hence long-term soil productivity) and off-site impacts. While these consequences have been extensively studied for some crops and sites, the ongoing and impending impacts of biomass removal require management strategies for ensuring that soil properties and functions are sustained for all combinations of crops, soils, sites, climates, and management systems, and that impacts of biomass management (including off-site impacts) are environmentally acceptable. In a changing global environment, knowledge of cumulative impacts will also become increasingly important. Long-term experiments are essential for key crops, soils, and management systems because short-term results do not necessarily reflect long-term impacts, although improved modeling capability may help to predict these impacts. Identification and validation of soil sustainability indicators for both site prescriptions and spatial applications would better inform commercial and policy decisions. In an increasingly inter-related but constrained global context, researchers should engage across inter-disciplinary, inter-agency, and international lines to better ensure the long-term soil productivity across a range of scales, from site to landscape.

  1. Integrated microbial processes for biofuels and high value-added products: the way to improve the cost effectiveness of biofuel production.

    Science.gov (United States)

    da Silva, Teresa Lopes; Gouveia, Luísa; Reis, Alberto

    2014-02-01

    The production of microbial biofuels is currently under investigation, as they are alternative sources to fossil fuels, which are diminishing and their use has a negative impact on the environment. However, so far, biofuels derived from microbes are not economically competitive. One way to overcome this bottleneck is the use of microorganisms to transform substrates into biofuels and high value-added products, and simultaneously taking advantage of the various microbial biomass components to produce other products of interest, as an integrated process. In this way, it is possible to maximize the economic value of the whole process, with the desired reduction of the waste streams produced. It is expected that this integrated system makes the biofuel production economically sustainable and competitive in the near future. This review describes the investigation on integrated microbial processes (based on bacteria, yeast, and microalgal cultivations) that have been experimentally developed, highlighting the importance of this approach as a way to optimize microbial biofuel production process.

  2. Biogas production from energy crops and crop residues

    Energy Technology Data Exchange (ETDEWEB)

    Lehtomaeki, A.

    2006-07-01

    The feasibility of utilising energy crops and crop residues in methane production through anaerobic digestion in boreal conditions was evaluated in this thesis. Potential boreal energy crops and crop residues were screened for their suitability for methane production, and the effects of harvest time and storage on the methane potential of crops was evaluated. Codigestion of energy crops and crop residues with cow manure, as well as digestion of energy crops alone in batch leach bed reactors with and without a second stage upflow anaerobic sludge blanket reactor (UASB) or methanogenic filter (MF) were evaluated. The methane potentials of crops, as determined in laboratory methane potential assays, varied from 0.17 to 0.49 m3 CH{sub 4} kg-1 VS{sub added} (volatile solids added) and from 25 to 260 m3 CH4 t-1 ww (tons of wet weight). Jerusalem artichoke, timothy-clover and reed canary grass gave the highest methane potentials of 2 900-5 400 m3 CH{sub 4} ha-1, corresponding to a gross energy potential of 28-53 MWh ha-1 and 40 000-60 000 km ha-1 in passenger car transport. The methane potentials per ww increased with most crops as the crops matured. Ensiling without additives resulted in minor losses (0-13%) in the methane potential of sugar beet tops but more substantial losses (17-39%) in the methane potential of grass, while ensiling with additives was shown to have potential in improving the methane potentials of these substrates by up to 19-22%. In semi-continuously fed laboratory continuously stirred tank reactors (CSTRs) co-digestion of manure and crops was shown feasible with feedstock VS containing up to 40% of crops. The highest specific methane yields of 0.268, 0.229 and 0.213 m3 CH{sub 4} kg-1 VS{sub added} in co-digestion of cow manure with grass, sugar beet tops and straw, respectively, were obtained with 30% of crop in the feedstock, corresponding to 85-105% of the methane potential in the substrates as determined by batch assays. Including 30% of crop in

  3. Integrated Biorefineries with Engineered Microbes and High-value Co-products for Profitable Biofuels Production

    Science.gov (United States)

    Corn-based fuel ethanol production processes provide several advantages which could be synergistically applied to overcome limitations of biofuel processes based on lignocellulose. These include resources such as equipment, manpower, nutrients, water, and heat. The fact that several demonstration-...

  4. Downgrading recent estimates of land available for biofuel production.

    Science.gov (United States)

    Fritz, Steffen; See, Linda; van der Velde, Marijn; Nalepa, Rachel A; Perger, Christoph; Schill, Christian; McCallum, Ian; Schepaschenko, Dmitry; Kraxner, Florian; Cai, Ximing; Zhang, Xiao; Ortner, Simone; Hazarika, Rubul; Cipriani, Anna; Di Bella, Carlos; Rabia, Ahmed H; Garcia, Alfredo; Vakolyuk, Mar'yana; Singha, Kuleswar; Beget, Maria E; Erasmi, Stefan; Albrecht, Franziska; Shaw, Brian; Obersteiner, Michael

    2013-02-05

    Recent estimates of additional land available for bioenergy production range from 320 to 1411 million ha. These estimates were generated from four scenarios regarding the types of land suitable for bioenergy production using coarse-resolution inputs of soil productivity, slope, climate, and land cover. In this paper, these maps of land availability were assessed using high-resolution satellite imagery. Samples from these maps were selected and crowdsourcing of Google Earth images was used to determine the type of land cover and the degree of human impact. Based on this sample, a set of rules was formulated to downward adjust the original estimates for each of the four scenarios that were previously used to generate the maps of land availability for bioenergy production. The adjusted land availability estimates range from 56 to 1035 million ha depending upon the scenario and the ruleset used when the sample is corrected for bias. Large forest areas not intended for biofuel production purposes were present in all scenarios. However, these numbers should not be considered as definitive estimates but should be used to highlight the uncertainty in attempting to quantify land availability for biofuel production when using coarse-resolution inputs with implications for further policy development.

  5. Solvent production by engineered Ralstonia eutropha: channeling carbon to biofuel.

    Science.gov (United States)

    Chakravarty, Jayashree; Brigham, Christopher J

    2018-06-01

    Microbial production of solvents like acetone and butanol was a couple of the first industrial fermentation processes to gain global importance. These solvents are important feedstocks for the chemical and biofuel industry. Ralstonia eutropha is a facultatively chemolithoautotrophic bacterium able to grow with organic substrates or H 2 and CO 2 under aerobic conditions. This bacterium is a natural producer of polyhydroxyalkanoate biopolymers. Recently, with the advances in the development of genetic engineering tools, the range of metabolites R. eutropha can produce has enlarged. Its ability to utilize various carbon sources renders it an interesting candidate host for synthesis of renewable biofuel and solvent production. This review focuses on progress in metabolic engineering of R. eutropha for the production of alcohols, terpenes, methyl ketones, and alka(e)nes using various resources. Biological synthesis of solvents still presents the challenge of high production costs and competition from chemical synthesis. Better understanding of R. eutropha biology will support efforts to engineer and develop superior microbial strains for solvent production. Continued research on multiple fronts is required to engineer R. eutropha for truly sustainable and economical solvent production.

  6. Barriers and Incentives to Potential Adoption of Biofuels Crops by Smallholder Farmers in the Eastern Cape Province, South Africa

    OpenAIRE

    Cheteni, Priviledge; Mushunje, Abbyssinia; Taruvinga, Amon

    2014-01-01

    The main objective of this study was to identify barriers and incentives that influence the potential adoption of biofuel crops by smallholder farmers. The study utilized a semi-structured questionnaire to record responses from 129 smallholder farmers that were identified through a snowballing sampling technique. The respondents were from the Oliver Tambo and Chris Hani District Municipalities in the Eastern Cape Province, South Africa. A Heckman two-step model was applied to analyze the dat...

  7. Reducing GHG emissions in agricultural production process for production of biofuels by growing legumes and production-technical measures; Senkung der THG-Emissionen in landwirtschaftlichen Produktionsverfahren zur Erzeugung von Biokraftstoffen durch Leguminosenanbau und produktionstechnische Massnahmen

    Energy Technology Data Exchange (ETDEWEB)

    Gurgel, Andreas [Landesforschungsanstalt fuer Landwirtschaft und Fischerei Mecklenburg-Vorpommern, Guelzow-Pruezen (Germany). Sachgebiet Nachwachsende Rohstoffe; Schiemenz, Katja

    2017-08-01

    The reduction of greenhouse gases (GHG) emissions in the supply chain for biofuels is a big challenge especially for the German and European cultivation of energy crops. The production of nitrogen fertilizers and field emissions are the main factors of GHG emissions. The amount of field emissions depends very strongly on the nitrogen effort and the intensity of tillage. The main objective is to reduce GHG emissions in field cropping systems within the biofuel production chains. An inclusion of legumes into crop rotations is particularly important because their cultivation does not require nitrogen fertilizer. Data base for the project is a complex field experiment with the biofuel crops winter rape and winter wheat. Previous crops are winter wheat, peas and lupins. ln each case tilling systems are compared with non-tilling. The first results of the field experiments are nitrogen functions depending on previous crops, sites and tilling system. Calculation models for GHG reduction models were developed on the bases of these results. By growing legumes as previous crops before wheat and rape it is possible to reduce GHG emissions from 2 to 10 g CO{sub 2eq} per MJ. The best reduction of GHG emissions is possible by combining legumes as previous crops with a reduced nitrogen effort.

  8. MICROALGAE AS AN ALTERNATIVE TO BIOFUELS PRODUCTION. PART 1: BIOETHANOL

    Directory of Open Access Journals (Sweden)

    Maiara Priscilla de Souza

    2013-02-01

    Full Text Available The demand from the energy sector is one of the culminating factors to do researches that enable innovations in the biotechnology sector and to boost biofuel production. The variability of the existing feedstocks provides benefits to energy production, however, we must choose the ones that present plausible characteristics depending on the type of product that we want to obtained. In this context, it is noted that the microalgae have suitable characteristics to producing different types of fuels, depending on the type of treatment are subjected, the species being analyzed as well as the biochemical composition of the biomass. Bioethanol production from microalgae is a promising and growing energy alternative under a view that biomass of these microorganisms has an enormous biodiversity and contain high levels of carbohydrates, an indispensable factor for the bioconversion of microalgae in ethanol. Due to these factors, there is a constant search for more viable methods for pretreatment of biomass, hydrolysis and fermentation, having as one of the major aspects the approach of effectives methodologies in the ambit of quality and yield of ethanol. Therefore, we have to search to increase the interest in the developing of biofuels reconciling with the importance of using microalgae, analyzing whether these micro-organisms are capable of being used in bioethanol production.

  9. Embodied crop calories in animal products

    International Nuclear Information System (INIS)

    Pradhan, Prajal; Lüdeke, Matthias K B; Reusser, Dominik E; Kropp, Jürgen P

    2013-01-01

    Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock) and about 4 kcal of crop products are used to generate 1 kcal of animal products (embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20% of the livestock raising areas worldwide and greater than 10 for another 20% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8–2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on

  10. The Role of Small-Scale Biofuel Production in Brazil: Lessons for Developing Countries

    Directory of Open Access Journals (Sweden)

    Arielle Muniz Kubota

    2017-07-01

    Full Text Available Small-scale biofuel initiatives to produce sugarcane ethanol are claimed to be a sustainable opportunity for ethanol supply, particularly for regions with price-restricted or no access to modern biofuels, such as communities located far from the large ethanol production centers in Brazil and family-farm communities in Sub-Saharan Africa, respectively. However, smallholders often struggle to achieve economic sustainability with ethanol microdistilleries. The aim of this paper is to provide an assessment of the challenges faced by small-scale bioenergy initiatives and discuss the conditions that would potentially make these initiatives economically feasible. Ethanol microdistilleries were assessed through a critical discussion of existent models and through an economic analysis of different sugarcane ethanol production models. The technical-economic analysis showed that the lack of competitiveness against large-scale ethanol distillery, largely due to both low crop productivity and process efficiency, makes it unlikely that small-scale distilleries can compete in the national/international ethanol market without governmental policies and subsidies. Nevertheless, small-scale projects intended for local supply and integrated food–fuel systems seem to be an interesting alternative that can potentially make ethanol production in small farms viable as well as increase food security and project sustainability particularly for local communities in developing countries.

  11. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels

    Science.gov (United States)

    2014-01-01

    The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed. PMID:24405789

  12. State of the art review of biofuels production from lignocellulose by thermophilic bacteria.

    Science.gov (United States)

    Jiang, Yujia; Xin, Fengxue; Lu, Jiasheng; Dong, Weiliang; Zhang, Wenming; Zhang, Min; Wu, Hao; Ma, Jiangfeng; Jiang, Min

    2017-12-01

    Biofuels, including ethanol and butanol, are mainly produced by mesophilic solventogenic yeasts and Clostridium species. However, these microorganisms cannot directly utilize lignocellulosic materials, which are abundant, renewable and non-compete with human demand. More recently, thermophilic bacteria show great potential for biofuels production, which could efficiently degrade lignocellulose through the cost effective consolidated bioprocessing. Especially, it could avoid contamination in the whole process owing to its relatively high fermentation temperature. However, wild types thermophiles generally produce low levels of biofuels, hindering their large scale production. This review comprehensively summarizes the state of the art development of biofuels production by reported thermophilic microorganisms, and also concludes strategies to improve biofuels production including the metabolic pathways construction, co-culturing systems and biofuels tolerance. In addition, strategies to further improve butanol production are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cover Crop Biomass Harvest Influences Cotton Nitrogen Utilization and Productivity

    Directory of Open Access Journals (Sweden)

    F. Ducamp

    2012-01-01

    Full Text Available There is a potential in the southeastern US to harvest winter cover crops from cotton (Gossypium hirsutum L. fields for biofuels or animal feed use, but this could impact yields and nitrogen (N fertilizer response. An experiment was established to examine rye (Secale cereale L. residue management (RM and N rates on cotton productivity. Three RM treatments (no winter cover crop (NC, residue removed (REM and residue retained (RET and four N rates for cotton were studied. Cotton population, leaf and plant N concentration, cotton biomass and N uptake at first square, and cotton biomass production between first square and cutout were higher for RET, followed by REM and NC. However, leaf N concentration at early bloom and N concentration in the cotton biomass between first square and cutout were higher for NC, followed by REM and RET. Seed cotton yield response to N interacted with year and RM, but yields were greater with RET followed by REM both years. These results indicate that a rye cover crop can be beneficial for cotton, especially during hot and dry years. Long-term studies would be required to completely understand the effect of rye residue harvest on cotton production under conservation tillage.

  14. A model for improving microbial biofuel production using a synthetic feedback loop

    Energy Technology Data Exchange (ETDEWEB)

    Dunlop, Mary; Keasling, Jay; Mukhopadhyay, Aindrila

    2011-07-14

    Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straight forward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.

  15. Review on biofuel oil and gas production processes from microalgae

    International Nuclear Information System (INIS)

    Amin, Sarmidi

    2009-01-01

    Microalgae, as biomass, are a potential source of renewable energy, and they can be converted into energy such as biofuel oil and gas. This paper presents a brief review on the main conversion processes of microalgae becoming energy. Since microalgae have high water content, not all biomass energy conversion processes can be applied. By using thermochemical processes, oil and gas can be produced, and by using biochemical processes, ethanol and biodiesel can be produced. The properties of the microalgae product are almost similar to those of offish and vegetable oils, and therefore, it can be considered as a substitute of fossil oil.

  16. Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin

    Science.gov (United States)

    Wu, Y.; Liu, S.

    2012-01-01

    Corn stover as well as perennial grasses like switchgrass (Panicum virgatum) and miscanthus are being considered as candidates for the second generation biofuel feedstocks. However, the challenges to biofuel development are its effects on the environment, especially water quality. This study evaluates the long-term impacts of biofuel production alternatives (e.g., elevated corn stover removal rates and the potential land cover change) on an ecosystem with a focus on biomass production, soil erosion, water quantity and quality, and soil nitrate nitrogen concentration at the watershed scale. The Soil and Water Assessment Tool (SWAT) was modified for setting land cover change scenarios and applied to the Iowa River Basin (a tributary of the Upper Mississippi River Basin). Results show that biomass production can be sustained with an increased stover removal rate as long as the crop demand for nutrients is met with appropriate fertilization. Although a drastic increase (4.7–70.6%) in sediment yield due to erosion and a slight decrease (1.2–3.2%) in water yield were estimated with the stover removal rate ranging between 40% and 100%, the nitrate nitrogen load declined about 6–10.1%. In comparison to growing corn, growing either switchgrass or miscanthus can reduce sediment erosion greatly. However, land cover changes from native grass to switchgrass or miscanthus would lead to a decrease in water yield and an increase in nitrate nitrogen load. In contrast to growing switchgrass, growing miscanthus is more productive in generating biomass, but its higher water demand may reduce water availability in the study area.

  17. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    International Nuclear Information System (INIS)

    Johnston, Matt; Foley, J; Mueller, N D; Licker, R; Holloway, T; Barford, C; Kucharik, C

    2011-01-01

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap-essentially improving global yields to median levels-the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike-helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  18. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Matt; Foley, J; Mueller, N D [Institute on the Environment (IonE), University of Minnesota, Saint Paul, MN 55108 (United States); Licker, R; Holloway, T; Barford, C; Kucharik, C [Center for Sustainability and the Global Environment, University of Wisconsin, Madison, WI 53726 (United States)

    2011-07-15

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap-essentially improving global yields to median levels-the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike-helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  19. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    Science.gov (United States)

    Johnston, Matt; Licker, R.; Foley, J.; Holloway, T.; Mueller, N. D.; Barford, C.; Kucharik, C.

    2011-07-01

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap—essentially improving global yields to median levels—the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike—helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  20. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    Science.gov (United States)

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.

  1. Environmental impact at primary production of biofuels; Miljoeeffekter vid primaerproduktion av biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    Bergstedt, Johan; Westerberg, Lars; Tonderski, Karin (Linkoepings Univ, Linkoeping (Sweden). Dept. of Physics, Chemistry and Biology, Div. of Ecology)

    2009-02-15

    Sweden has a policy objective that the forest and agricultural production of renewable energy must increase. Several of the traditionally cultivated annual crops can be used to biofuels, such as wheat, oilseed rape and sugar beet, but other crops are also interesting. Apart from an increase in Salix cultivation we discuss the cultivation of plants we have not cultivated, such as hemp, poplar and aspen, and intensive cultivation of spruce. Reed canary grass and grassland with several species are other candidates. The old reproductive systems environment are well known but what the new ones mean for the environment is poorly known. In this report, the state of knowledge regarding environmental impacts of primary bio-fuel production in Sweden is compiled. Based on the assumption that the reference crop is a plowed field the crops that can be grown on agricultural land are discussed. For the forest soil analyzed GROT (Tree-branches and -tops), root harvesting and intensive farmed spruce. The environmental impacts treated are carbon sinks in soil, compaction (with accompanying erosion problems), nutrient leaching, pesticides, landscape diversity, and biodiversity. One conclusion of the study is that it generally that there are many positive environmental effects of converting agricultural land to perennial crops for bioenergy, at least to some degree. On the other hand, increased collection of primary bio-energy from forests has mainly negative environmental impacts. The size of the effects are strongly linked to how much and where to grow and harvest, so a study of scale problems should be urgently implemented. This applies to both nutrient leaching and on the biological and landscape diversity. Use of ecosystem- and geographic models can be effective tools to generate different scenarios. The greatest potential of all crops, however, appears to be for aquatic systems with harvest of blue-green algae and bacteria, which probably would have mainly positive effects on

  2. The green, blue and grey water footprint of crops and derived crop products

    Directory of Open Access Journals (Sweden)

    M. M. Mekonnen

    2011-05-01

    Full Text Available This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network.

    Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton−1, vegetables (300 m3 ton−1, roots and tubers (400 m3 ton−1, fruits (1000 m3 ton−1, cereals (1600 m3 ton−1, oil crops (2400 m3 ton−1 to pulses (4000 m3 ton−1. The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m

  3. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels.

    Science.gov (United States)

    de Jong, Bouke; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Biofuel seeks endorsement

    NARCIS (Netherlands)

    Jongeneel, C.; Rentmeester, S.

    2015-01-01

    Biofuels such as ethanol from sugar cane and cellulose ‘waste’ are theoretically sustainable, as their combustion releases no more CO2 than is absorbed during production. Even so, they are also controversial, because they are believed to be grown at the expense of food crops, or because areas of

  5. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.

    Science.gov (United States)

    McGinn, Patrick J; Dickinson, Kathryn E; Bhatti, Shabana; Frigon, Jean-Claude; Guiot, Serge R; O'Leary, Stephen J B

    2011-09-01

    There is currently a renewed interest in developing microalgae as a source of renewable energy and fuel. Microalgae hold great potential as a source of biomass for the production of energy and fungible liquid transportation fuels. However, the technologies required for large-scale cultivation, processing, and conversion of microalgal biomass to energy products are underdeveloped. Microalgae offer several advantages over traditional 'first-generation' biofuels crops like corn: these include superior biomass productivity, the ability to grow on poor-quality land unsuitable for agriculture, and the potential for sustainable growth by extracting macro- and micronutrients from wastewater and industrial flue-stack emissions. Integrating microalgal cultivation with municipal wastewater treatment and industrial CO(2) emissions from coal-fired power plants is a potential strategy to produce large quantities of biomass, and represents an opportunity to develop, test, and optimize the necessary technologies to make microalgal biofuels more cost-effective and efficient. However, many constraints on the eventual deployment of this technology must be taken into consideration and mitigating strategies developed before large scale microalgal cultivation can become a reality. As a strategy for CO(2) biomitigation from industrial point source emitters, microalgal cultivation can be limited by the availability of land, light, and other nutrients like N and P. Effective removal of N and P from municipal wastewater is limited by the processing capacity of available microalgal cultivation systems. Strategies to mitigate against the constraints are discussed.

  6. Water quality under increased biofuel production and future climate change and uncertainty

    Science.gov (United States)

    Demissie, Y. K.; Yan, E.

    2015-12-01

    Over the past decade, biofuel has emerged as an important renewable energy source to supplement gasoline and reduce the associated greenhouse gas emission. Many countries, for instant, have adopted biofuel production goals to blend 10% or more of gasoline with biofuels within 10 to 20 years. However, meeting these goals requires sustainable production of biofuel feedstock which can be challenging under future change in climate and extreme weather conditions, as well as the likely impacts of biofuel feedstock production on water quality and availability. To understand this interrelationship and the combined effects of increased biofuel production and climate change on regional and local water resources, we have performed watershed hydrology and water quality analyses for the Ohio River Basin. The basin is one of the major biofuel feedstock producing region in the United States, which also currently contributes about half of the flow and one third of phosphorus and nitrogen loadings to the Mississippi River that eventually flows to the Gulf of Mexico. The analyses integrate future scenarios and climate change and biofuel development through various mixes of landuse and agricultural management changes and examine their potential impacts on regional and local hydrology, water quality, soil erosion, and agriculture productivity. The results of the study are expected to provide much needed insight about the sustainability of large-scale biofuel feedstock production under the future climate change and uncertainty, and helps to further optimize the feedstock production taking into consideration the water-use efficiency.

  7. Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels

    Directory of Open Access Journals (Sweden)

    Fu-Xing Niu

    2017-09-01

    Full Text Available Isoprenoids are the most abundant and highly diverse group of natural products. Many isoprenoids have been used for pharmaceuticals, nutraceuticals, flavors, cosmetics, food additives and biofuels. Carotenoids and isoprenoid-based biofuels are two classes of important isoprenoids. These isoprenoids have been produced microbially through metabolic engineering and synthetic biology efforts. Herein, we briefly review the engineered biosynthetic pathways in well-characterized microbial systems for the production of carotenoids and several isoprenoid-based biofuels.

  8. Photosynthetic energy conversion efficiency: setting a baseline for gauging future improvements in important food and biofuel crops.

    Science.gov (United States)

    Slattery, Rebecca A; Ort, Donald R

    2015-06-01

    The conversion efficiency (ε(c)) of absorbed radiation into biomass (MJ of dry matter per MJ of absorbed photosynthetically active radiation) is a component of yield potential that has been estimated at less than half the theoretical maximum. Various strategies have been proposed to improve ε(c), but a statistical analysis to establish baseline ε(c) levels across different crop functional types is lacking. Data from 164 published ε(c) studies conducted in relatively unstressed growth conditions were used to determine the means, greatest contributors to variation, and genetic trends in ε(c )across important food and biofuel crop species. ε(c) was greatest in biofuel crops (0.049-0.066), followed by C4 food crops (0.046-0.049), C3 nonlegumes (0.036-0.041), and finally C3 legumes (0.028-0.035). Despite confining our analysis to relatively unstressed growth conditions, total incident solar radiation and average growing season temperature most often accounted for the largest portion of ε(c) variability. Genetic improvements in ε(c), when present, were less than 0.7% per year, revealing the unrealized potential of improving ε(c) as a promising contributing strategy to meet projected future agricultural demand. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Biofuel Database

    Science.gov (United States)

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  10. Biofuel Production Initiative at Claflin University Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Kamal

    2011-07-20

    For US transportation fuel independence or reduced dependence on foreign oil, the Federal Government has mandated that the country produce 36 billion gallons (bg) of renewable transportation fuel per year for its transportation fuel supply by 2022. This can be achieved only if development of efficient technology for second generation biofuel from ligno-cellulosic sources is feasible. To be successful in this area, development of a widely available, renewable, cost-effective ligno-cellulosic biomass feedstock that can be easily and efficiently converted biochemically by bacteria or other fast-growing organisms is required. Moreover, if the biofuel type is butanol, then the existing infrastructure to deliver fuel to the customer can be used without additional costs and retrofits. The Claflin Biofuel Initiative project is focused on helping the US meet the above-mentioned targets. With support from this grant, Claflin University (CU) scientists have created over 50 new strains of microorganisms that are producing butanol from complex carbohydrates and cellulosic compounds. Laboratory analysis shows that a number of these strains are producing higher percentages of butanol than other methods currently in use. All of these recombinant bacterial strains are producing relatively high concentrations of acetone and numerous other byproducts as well. Therefore, we are carrying out intense mutations in the selected strains to reduce undesirable byproducts and increase the desired butanol production to further maximize the yield of butanol. We are testing the proof of concept of producing pre-industrial large scale biobutanol production by utilizing modifications of currently commercially available fermentation technology and instrumentation. We have already developed an initial process flow diagram (PFD) and selected a site for a biobutanol pilot scale facility in Orangeburg, SC. With the recent success in engineering new strains of various biofuel producing bacteria at CU

  11. Cyanobacterial metabolic engineering for biofuel and chemical production.

    Science.gov (United States)

    Oliver, Neal J; Rabinovitch-Deere, Christine A; Carroll, Austin L; Nozzi, Nicole E; Case, Anna E; Atsumi, Shota

    2016-12-01

    Rising levels of atmospheric CO 2 are contributing to the global greenhouse effect. Large scale use of atmospheric CO 2 may be a sustainable and renewable means of chemical and liquid fuel production to mitigate global climate change. Photosynthetic organisms are an ideal platform for efficient, natural CO 2 conversion to a broad range of chemicals. Cyanobacteria are especially attractive for these purposes, due to their genetic malleability and relatively fast growth rate. Recent years have yielded a range of work in the metabolic engineering of cyanobacteria and have led to greater knowledge of the host metabolism. Understanding of endogenous and heterologous carbon regulation mechanisms leads to the expansion of productive capacity and chemical variety. This review discusses the recent progress in metabolic engineering of cyanobacteria for biofuel and bulk chemical production since 2014. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Benefits versus risks of growing biofuel crops: the case of Miscanthus

    DEFF Research Database (Denmark)

    Jørgensen, Uffe

    2011-01-01

    The giant C4 grasses of the genus Miscanthus holds promise as candidates for the optimal bioenergy crop in the temperate zone with their high yield, cold tolerance, low environmental impact, resistance to pests and diseases, ease of harvesting and handling, and non-invasiveness. The latter is......, further development of the production chain, and stewardship programmes to avoid potential risks are still needed if Miscanthus is to compete with fossil fuel use and be widely produced....

  13. Estimating Soil and Root Parameters of Biofuel Crops using a Hydrogeophysical Inversion

    Science.gov (United States)

    Kuhl, A.; Kendall, A. D.; Van Dam, R. L.; Hyndman, D. W.

    2017-12-01

    Transpiration is the dominant pathway for continental water exchange to the atmosphere, and therefore a crucial aspect of modeling water balances at many scales. The root water uptake dynamics that control transpiration are dependent on soil water availability, as well as the root distribution. However, the root distribution is determined by many factors beyond the plant species alone, including climate conditions and soil texture. Despite the significant contribution of transpiration to global water fluxes, modelling the complex critical zone processes that drive root water uptake remains a challenge. Geophysical tools such as electrical resistivity (ER), have been shown to be highly sensitive to water dynamics in the unsaturated zone. ER data can be temporally and spatially robust, covering large areas or long time periods non-invasively, which is an advantage over in-situ methods. Previous studies have shown the value of using hydrogeophysical inversions to estimate soil properties. Others have used hydrological inversions to estimate both soil properties and root distribution parameters. In this study, we combine these two approaches to create a coupled hydrogeophysical inversion that estimates root and retention curve parameters for a HYDRUS model. To test the feasibility of this new approach, we estimated daily water fluxes and root growth for several biofuel crops at a long-term ecological research site in Southwest Michigan, using monthly ER data from 2009 through 2011. Time domain reflectometry data at seven depths was used to validate modeled soil moisture estimates throughout the model period. This hydrogeophysical inversion method shows promise for improving root distribution and transpiration estimates across a wide variety of settings.

  14. Effect of Mixed Systems on Crop Productivity

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  15. Techno-Economic Analysis of Biofuel Production from Macroalgae (Seaweed

    Directory of Open Access Journals (Sweden)

    Mohsen Soleymani

    2017-11-01

    Full Text Available A techno-economic evaluation of bioenergy production from macroalgae was carried out in this study. Six different scenarios were examined for the production of different energy products and by-products. Seaweed was produced either via the longline method or the grid method. Final products of these scenarios were either ethanol from fermentation, or electricity from anaerobic digestion (AD. By-products were digestate for AD, and animal feed, or electricity and digestate, for the fermentation pathway. Bioenergy breakeven selling prices were investigated according to the cost components and the feedstock supply chain, while suggestions for potential optimization of costs were provided. The lowest production level of dry seaweed to meet 0.93 ($/L for ethanol fuel and 0.07 $/kW-h for electricity was found to be 0.68 and 3.7 million tonnes (dry basis, respectively. At the moment, biofuel production from seaweed has been determined not to be economically feasible, but achieving economic production may be possible by lowering production costs and increasing the area under cultivation.

  16. Techno-Economic Analysis of Biofuel Production from Macroalgae (Seaweed).

    Science.gov (United States)

    Soleymani, Mohsen; Rosentrater, Kurt A

    2017-11-26

    A techno-economic evaluation of bioenergy production from macroalgae was carried out in this study. Six different scenarios were examined for the production of different energy products and by-products. Seaweed was produced either via the longline method or the grid method. Final products of these scenarios were either ethanol from fermentation, or electricity from anaerobic digestion (AD). By-products were digestate for AD, and animal feed, or electricity and digestate, for the fermentation pathway. Bioenergy breakeven selling prices were investigated according to the cost components and the feedstock supply chain, while suggestions for potential optimization of costs were provided. The lowest production level of dry seaweed to meet 0.93 ($/L) for ethanol fuel and 0.07 $/kW-h for electricity was found to be 0.68 and 3.7 million tonnes (dry basis), respectively. At the moment, biofuel production from seaweed has been determined not to be economically feasible, but achieving economic production may be possible by lowering production costs and increasing the area under cultivation.

  17. Innovative business models for sustainable biofuel production : the case of Tanzanian smallholder jatropha farmers in the global biofuel chain

    NARCIS (Netherlands)

    Balkema, A.J.; Romijn, H.A.

    2011-01-01

    This paper focuses on the smallholder outgrower model for jatropha biofuel cultivation in Tanzania. This model is based on seed production by small farmers who sell to a processing company that presses the bio-oil from the seeds locally, either for the local market or for export. This model has been

  18. Sustainability of biofuels in Latin America: Risks and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Rainer, E-mail: rainer.janssen@wip-munich.de [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany); Rutz, Dominik Damian [WIP Renewable Energies, Sylvensteinstrasse 2, 81369 Munich (Germany)

    2011-10-15

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: > This study investigates risks and opportunities of biofuels in Latin America. > Latin American countries are setting up programmes to promote biofuel development. > Strong biofuel sectors provide opportunities for economic development. > Potential negative impact includes deforestation and effects on food security. > Sustainability initiatives exist to minimise negative impact.

  19. Sustainability of biofuels in Latin America: Risks and opportunities

    International Nuclear Information System (INIS)

    Janssen, Rainer; Rutz, Dominik Damian

    2011-01-01

    Several Latin American countries are setting up biofuel programmes to establish alternative markets for agricultural commodities. This is mainly triggered by the current success of Brazilian bioethanol production for the domestic market and for export. Furthermore, the global biofuel market is expected to increase due to ambitious biofuel programmes in the EU and in the USA. Colombia, Venezuela, Costa Rica and Guatemala are focusing on bioethanol production from sugarcane whereas biofuel production in Argentina is based on soy biodiesel. Recent developments of the biofuel sector take place extremely rapid especially in Argentina, which became one of the five largest biodiesel producers in the world in 2008. Till date no specific biofuel sustainability certification systems have been implemented in Latin American, as well as on global level. This fact and the predominant use of food crops for biofuel production raise concerns about the sustainability of biofuel production related to environmental and social aspects. This paper provides an overview of the hotspots of conflicts in biofuel production in Latin America. It investigates presently available sustainability tools and initiatives to ensure sustainable biofuel production in Latin America. Finally, it provides an outlook on how to integrate sustainability in the Latin American biofuel sector. - Research Highlights: → This study investigates risks and opportunities of biofuels in Latin America. → Latin American countries are setting up programmes to promote biofuel development. → Strong biofuel sectors provide opportunities for economic development. → Potential negative impact includes deforestation and effects on food security. → Sustainability initiatives exist to minimise negative impact.

  20. Processing of Brassica seeds for feedstock in biofuels production

    Science.gov (United States)

    Several Brassica species are currently being evaluated to develop regionalized production systems based on their suitability to the environment and with the prevailing practices of growing commodity food crops like wheat, corn, and soybeans. This integrated approach to farming will provide high qual...

  1. Water Resources Implications of Cellulosic Biofuel Production at a Regional Scale

    Science.gov (United States)

    Christopher, S. F.; Schoenholtz, S. H.; Nettles, J. E.

    2011-12-01

    Recent increases in oil prices, a strong national interest in greater energy independence, and a concern for the role of fossil fuels in global climate change, have led to a dramatic expansion in use of alternative renewable energy sources in the U.S. The U.S. government has mandated production of 36 billion gallons of renewable fuels by 2022, of which 16 billion gallons are required to be cellulosic biofuels. Production of cellulosic biomass offers a promising alternative to corn-based systems because large-scale production of corn-based ethanol often requires irrigation and is associated with increased erosion, excess sediment export, and enhanced leaching of nitrogen and phosphorus. Although cultivation of switchgrass using standard agricultural practices is one option being considered for production of cellulosic biomass, intercropping cellulosic biofuel crops within managed forests could provide feedstock without primary land use change or the water quality impacts associated with annual crops. Catchlight Energy LLC is examining the feasibility and sustainability of intercropping switchgrass in loblolly pine plantations in the southeastern U.S. Ongoing research is determining efficient operational techniques and information needed to evaluate effects of these practices on water resources in small watershed-scale (~25 ha) studies. Three sets of four to five sub-watersheds are fully instrumented and currently collecting calibration data in North Carolina, Alabama, and Mississippi. These watershed studies will provide detailed information to understand processes and guide management decisions. However, environmental implications of cellulosic systems need to be examined at a regional scale. We used the Soil Water Assessment Tool (SWAT), a physically-based hydrologic model, to examine water quantity effects of various land use change scenarios ranging from switchgrass intercropping a small percentage of managed pine forest land to conversion of all managed

  2. Global Warming Potential and Eutrophication Potential of Biofuel Feedstock Crops Produced in Florida, Measured Under Different Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Izursa, Jose-Luis; Hanlon, Edward; Amponsah, Nana; Capece, John

    2013-02-15

    The agriculture sector is in a growing need to develop greenhouse gas (GHG) mitigation techniques to reduce the enhanced greenhouse effect. The challenge to the sector is not only to reduce net emissions but also increase production to meet growing demands for food, fiber, and biofuel. This study focuses on the changes in the GHG balance of three biofuel feedstock (biofuel sugarcane, energy-cane and sweet sorghum) considering changes caused by the adoption of conservationist practices such as reduced tillage, use of controlled-release fertilizers or when cultivation areas are converted from burned harvest to green harvest. Based on the Intergovernmental Panel on Climate Change (IPCC) (2006) balance and the Tools for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) characterization factors published by the EPA, the annual emission balance includes use energy (diesel and electricity), equipment, and ancillary materials, according to the mean annual consumption of supplies per hectare. The total amounts of GWP were 2740, 1791, and 1910 kg CO2e ha-1 y-1 for biofuel sugarcane, energy-cane and sweet sorghum, respectively, when produced with conventional tillage and sugarcane was burned prior to harvesting. Applying reduced tillage practices, the GHG emissions reduced to 13% for biofuel sugarcane, 23% for energy-cane and 8% for sweet sorghum. A similar decrease occurs when a controlled-release fertilizer practice is adopted, which helps reduce the total emission balance in 5%, 12% and 19% for biofuel sugarcane, energy-cane and sweet sorghum, respectively and a 31% average reduction in eutrophication potential. Moreover, the GHG emissions for biofuel sugarcane, with the adoption of green harvest, would result in a smaller GHG balance of 1924 kg CO2e ha-1 y-1, providing an effect strategy for GHG mitigation while still providing a profitable yield in Florida.

  3. Sustainable multipurpose biorefineries for third-generation biofuels and value-added co-products

    Science.gov (United States)

    Modern biorefinery facilities conduct many types of processes, including those producing advanced biofuels, commodity chemicals, biodiesel, and value-added co-products such as sweeteners and bioinsecticides, with many more co-products, chemicals and biofuels on the horizon. Most of these processes ...

  4. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production

    Science.gov (United States)

    Dana J. Wolbach; Alan Kuo; Trey K. Sato; Katlyn M. Potts; Asaf A. Salamov; Kurt M. LaButti; Hui Sun; Alicia Clum; Jasmyn L. Pangilinan; Erika A. Lindquist; Susan Lucas; Alla Lapidus; Mingjie Jin; Christa Gunawan; Venkatesh Balan; Bruce E. Dale; Thomas W. Jeffries; Robert Zinkel; Kerrie W. Barry; Igor V. Grigoriev; Audrey P. Gasch

    2011-01-01

    Cellulosic biomass is an abundant and underused substrate for biofuel production. The inability of many microbes to metabolize the pentose sugars abundant within hemicellulose creates specific challenges for microbial biofuel production from cellulosic material. Although engineered strains of Saccharomyces cerevisiae can use the pentose xylose, the fermentative...

  5. Evaluation of fresh and preserved herbaceous field crops for biogas and ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Pakarinen, A

    2012-07-01

    In the future, various forms of bioenergy will be increasingly required to replace fossil energy. Globally, transportation uses almost one third of fossil energy resources, and it is thus of great importance to find ethically, economically, and environmentally viable biofuels in near future. Fieldgrown biomass, including energy crops and crop residues, are alternatives to supplement other non-food biofuel raw materials. The aim of this work was to evaluate the potential of five crops, maize (Zea mays L.), fiber hemp (Cannabis sativa L.), faba bean (Vicia faba L.), white lupin (Lupinus albus L.), and Jerusalem artichoke (Heliantus tuborosus L.) cultivated in boreal conditions as raw materials for methane and ethanol. Climate, cultivation requirements, chemical composition, and recalcitrance are some of the parameters to be considered when choosing energy crops for cultivation and for efficient conversion into biofuels. Among the studied crops, protein-rich legumes (faba bean and white lupin) were attractive options for methane, while hemp and Jerusalem artichoke had high theoretical potential for ethanol. Maize was, however, equally suitable for production of both energy carriers. Preservation of crop materials is essential to preserve and supply biomass material throughout the year. Preservation can be also considered as a mild pretreatment prior to biofuel production. Ensiling was conducted on maize, hemp, and faba bean in this work and additionally hemp was preserved in alkali conditions. Ensiling was found to be most beneficial for hemp when converted to methane, increasing the methane yield by more than 50%, whereas preservation with urea increased the energy yield of hemp as ethanol by 39%. Maize, with a high content of water-soluble carbohydrates (20% of DM), required an acid additive in order to preserve the sugars. Interestingly, hydrothermal pretreatment for maize and hemp prior to methane production was less efficient than ensiling. Enzymatic hydrolysis

  6. Implications of the Biofuels Boom for the Global Livestock Industry: A Computable General Equilibrium Analysis

    OpenAIRE

    Taheripour, Farzad; Hertel, Thomas W.; Tyner, Wallace E.

    2009-01-01

    In this paper, we offer a general equilibrium analysis of the impacts of US and EU biofuel mandates for the global livestock sector. Our simulation boosts biofuel production in the US and EU from 2006 levels to mandated 2015 levels. We show that mandates will encourage crop production in both biofuel and non biofuel producing regions, while reducing livestock and livestock production in most regions of the world. The non-ruminant industry curtails its production more than other livestock indu...

  7. Uncovering the Green, Blue, and Grey Water Footprint and Virtual Water of Biofuel Production in Brazil: A Nexus Perspective

    Directory of Open Access Journals (Sweden)

    Raul Munoz Castillo

    2017-11-01

    Full Text Available Brazil plays a major role in the global biofuel economy as the world’s second largest producer and consumer and the largest exporter of ethanol. Its demand is expected to significantly increase in coming years, largely driven by national and international carbon mitigation targets. However, biofuel crops require significant amounts of water and land resources that could otherwise be used for the production of food, urban water supply, or energy generation. Given Brazil’s uneven spatial distribution of water resources among regions, a potential expansion of ethanol production will need to take into account regional or local water availability, as an increased water demand for irrigation would put further pressure on already water-scarce regions and compete with other users. By applying an environmentally extended multiregional input-output (MRIO approach, we uncover the scarce water footprint and the interregional virtual water flows associated with sugarcane-derived biofuel production driven by domestic final consumption and international exports in 27 states in Brazil. Our results show that bio-ethanol is responsible for about one third of the total sugarcane water footprint besides sugar and other processed food production. We found that richer states such as São Paulo benefit by accruing a higher share of economic value added from exporting ethanol as part of global value chains while increasing water stress in poorer states through interregional trade. We also found that, in comparison with other crops, sugarcane has a comparative advantage when rainfed while showing a comparative disadvantage as an irrigated crop; a tradeoff to be considered when planning irrigation infrastructure and bioethanol production expansion.

  8. Biofuel production in Escherichia coli. The role of metabolic engineering and synthetic biology

    Energy Technology Data Exchange (ETDEWEB)

    Clomburg, James M. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Gonzalez, Ramon [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Rice Univ., Houston, TX (United States). Dept. of Bioengineering

    2010-03-15

    The microbial production of biofuels is a promising avenue for the development of viable processes for the generation of fuels from sustainable resources. In order to become cost and energy effective, these processes must utilize organisms that can be optimized to efficiently produce candidate fuels from a variety of feedstocks. Escherichia coli has become a promising host organism for the microbial production of biofuels in part due to the ease at which this organism can be manipulated. Advancements in metabolic engineering and synthetic biology have led to the ability to efficiently engineer E. coli as a biocatalyst for the production of a wide variety of potential biofuels from several biomass constituents. This review focuses on recent efforts devoted to engineering E. coli for the production of biofuels, with emphasis on the key aspects of both the utilization of a variety of substrates as well as the synthesis of several promising biofuels. Strategies for the efficient utilization of carbohydrates, carbohydrate mixtures, and noncarbohydrate carbon sources will be discussed along with engineering efforts for the exploitation of both fermentative and nonfermentative pathways for the production of candidate biofuels such as alcohols and higher carbon biofuels derived from fatty acid and isoprenoid pathways. Continued advancements in metabolic engineering and synthetic biology will help improve not only the titers, yields, and productivities of biofuels discussed herein, but also increase the potential range of compounds that can be produced. (orig.)

  9. Effect of Media on Algae Growth for Bio-Fuel Production

    Directory of Open Access Journals (Sweden)

    Sriharsha KARAMPUDI

    2011-08-01

    Full Text Available Bio-fuels are commonly produced from oleaginous crops, such as rapeseed, soybean, sunflower and oil palm. However, microalgae can be an attractive alternative feedstock for future biofuels because some of the species contain very high amounts of oil, which can be used to extract and be processed into transportation fuels. Their growth rate is very high and faster, can be cultivated in non-agricultural land and waste water. In addition, production of microalgae is not seasonal and they can be harvested routinely as needed. Two strains of Scenedesmus dimorphus (fresh water microalgae were tested for their growth in proteose medium and Modified Bold 3N medium with different levels of nitrogen and glycerol and growth rates were measured using cell count, fresh and dry weight. The growth of S. dimorphus was better in proteose medium with half of the nitrogen source recommended by the UTEX than other media tested. ANOVA table showed significant differences between days, between media, and day media interaction. When compared to dry weight of S. dimorphus in all media, the growth was better in proteose medium with 10 mL/L glycerol.

  10. Effect of Media on Algae Growth for Bio-Fuel Production

    Directory of Open Access Journals (Sweden)

    Sriharsha KARAMPUDI

    2011-08-01

    Full Text Available Bio-fuels are commonly produced from oleaginous crops, such as rapeseed, soybean, sunflower and oil palm. However, microalgae can be an attractive alternative feedstock for future biofuels because some of the species contain very high amounts of oil, which can be used to extract and be processed into transportation fuels. Their growth rate is very high and faster, can be cultivated in non-agricultural land and waste water. In addition, production of microalgae is not seasonal and they can be harvested routinely as needed. Two strains of Scenedesmus dimorphus (fresh water microalgae were tested for their growth in proteose medium and Modified Bold 3N medium with different levels of nitrogen and glycerol and growth rates were measured using cell count, fresh and dry weight. The growth of S. dimorphus was better in proteose medium with half of the nitrogen source recommended by the UTEX than other media tested. ANOVA table showed significant differences between days, between media, and day � media interaction. When compared to dry weight of S. dimorphus in all media, the growth was better in proteose medium with 10 mL/L glycerol.

  11. Oil crops in biofuel applications: South Africa gearing up for a bio-based economy

    OpenAIRE

    Marvey, B B

    2009-01-01

    Large fluctuations in crude oil prices and the diminishing oil supply have left economies vulnerable to energy shortages thus placing an enormous pressure on nations around the world to seriously consider alternative renewable resources as feedstock in biofuel applications. Apart from energy security reasons, biofuels offer other advantages over their petroleum counterparts in that they contribute to the reduction in green- house gas emissions and to sustainable development. Just a few decade...

  12. Synthetic biology for microbial production of lipid-based biofuels.

    Science.gov (United States)

    d'Espaux, Leo; Mendez-Perez, Daniel; Li, Rachel; Keasling, Jay D

    2015-12-01

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. We further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing. Published by Elsevier Ltd.

  13. Synthetic biology for microbial production of lipid-based biofuels

    Energy Technology Data Exchange (ETDEWEB)

    d' Espaux, L; Mendez-Perez, D; Li, R; Keasling, JD

    2015-10-23

    The risks of maintaining current CO2 emission trends have led to interest in producing biofuels using engineered microbes. Microbial biofuels reduce emissions because CO2 produced by fuel combustion is offset by CO2 captured by growing biomass, which is later used as feedstock for biofuel fermentation. Hydrocarbons found in petroleum fuels share striking similarity with biological lipids. Here in this paper we review synthetic metabolic pathways based on fatty acid and isoprenoid metabolism to produce alkanes and other molecules suitable as biofuels. Lastly, we further discuss engineering strategies to optimize engineered biosynthetic routes, as well as the potential of synthetic biology for sustainable manufacturing.

  14. Fuelling biofuel

    International Nuclear Information System (INIS)

    Collison, M.

    2006-01-01

    The Canadian government has recently committed to legislation ensuring that all transportation fuels will be supplemented with biofuels by 2010. This article provided details of a position paper written by the Canadian Renewable Fuels Association in response to the legislation. Details of new research to optimize the future biodiesel industry were also presented. Guiding principles of the paper included the creation of open markets across provincial boundaries; the manipulation of tax structures to make products competitive in the United States; and establishing quality standards via the Canadian General Standards Board. It is expected that the principles will reassure petroleum producers and retailers, as ethanol behaves differently than gasoline in storage tanks. As ethanol is water-absorbing, retailers must flush and vacuum their tanks to remove water, then install 10 micron filters to protect fuel lines and dispenser filters from accumulated gasoline residue loosened by the ethanol. Refineries are concerned that the average content of ethanol remains consistent across the country, as refiners will be reluctant to make different blends for different provinces. Critics of biodiesel claim that it is not energy-intensive enough to meet demand, and biodiesel crops are not an efficient use of soils that could otherwise be used to grow food crops. However, researchers in Saskatchewan are committed to using a variety of methods such as reduced tillage systems to make biodiesel production more efficient. Laboratory research has resulted in improved refining processes and genetic manipulation of potential biodiesel crops. Membrane technology is now being used to select water from ethanol. A process developed by the Ottawa company Iogen Corporation uses enzymatic hydrolysis to break down the tough fibres found in corn stalks, leaves, wood and other biomass into sugars. Scientists are also continuing to improve oil content yields in canola and soybean crops. It was

  15. Bioethanol production from crops - recent developments

    International Nuclear Information System (INIS)

    Dalton, Colin

    1992-01-01

    The author notes much higher rates of ethanol production in Brazil and the United States of America than in the European Economic Community. While bioethanol from arable crops makes environmental sense there is, at present, a sizeable difference between the value of fuel ethanol (Pound 100-130/t) and the cost of producing it (Pound 236-Pound 450/t). This gap could be remedied using excise duty. Farmers would like to change crop production but await a political initiative. The technology for bioethanol production still needs some fine tuning, with ETBE (an ether produced from reacting isobutylene with ethanol) being preferred to other methods. (UK)

  16. Microalgae biofuel potentials (review).

    Science.gov (United States)

    Ghasemi, Y; Rasoul-Amini, S; Naseri, A T; Montazeri-Najafabady, N; Mobasher, M A; Dabbagh, F

    2012-01-01

    With the decrease of fossil based fuels and the environmental impact of them over the planet, it seems necessary to seek the sustainable sources of clean energy. Biofuels, is becoming a worldwide leader in the development of renewable energy resources. It is worthwhile to say that algal biofuel production is thought to help stabilize the concentration of carbon dioxide in the atmosphere and decrease global warming impacts. Also, among algal fuels' attractive characteristics, algal biodiesel is non toxic, with no sulfur, highly biodegradable and relatively harmless to the environment if spilled. Algae are capable of producing in excess of 30 times more oil per acre than corn and soybean crops. Currently, algal biofuel production has not been commercialized due to high costs associated with production, harvesting and oil extraction but the technology is progressing. Extensive research was conducted to determine the utilization of microalgae as an energy source and make algae oil production commercially viable.

  17. System studies on Biofuel production via Integrated Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jim; Lundgren, Joakim [Luleaa Univ. of Technology Bio4Energy, Luleaa (Sweden); Malek, Laura; Hulteberg, Christian [Lund Univ., Lund (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Wetterlund, Elisabeth [Linkoeping Univ. Linkoeping (Sweden)

    2013-09-01

    A large number of national and international techno-economic studies on industrially integrated gasifiers for production of biofuels have been published during the recent years. These studies comprise different types of gasifiers (fluidized bed, indirect and entrained flow) integrated in different industries for the production of various types of chemicals and transportation fuels (SNG, FT-products, methanol, DME etc.) The results are often used for techno-economic comparisons between different biorefinery concepts. One relatively common observation is that even if the applied technology and the produced biofuel are the same, the results of the techno-economic studies may differ significantly. The main objective of this project has been to perform a comprehensive review of publications regarding industrially integrated biomass gasifiers for motor fuel production. The purposes have been to identify and highlight the main reasons why similar studies differ considerably and to prepare a basis for fair techno-economic comparisons. Another objective has been to identify possible lack of industrial integration studies that may be of interest to carry out in a second phase of the project. Around 40 national and international reports and articles have been analysed and reviewed. The majority of the studies concern gasifiers installed in chemical pulp and paper mills where black liquor gasification is the dominating technology. District heating systems are also well represented. Only a few studies have been found with mechanical pulp and paper mills, steel industries and the oil refineries as case basis. Other industries have rarely, or not at all, been considered for industrial integration studies. Surprisingly, no studies regarding integration of biomass gasification neither in saw mills nor in wood pellet production industry have been found. In the published economic evaluations, it has been found that there is a large number of studies containing both integration and

  18. Effects of US biofuel policies on US and world petroleum product markets with consequences for greenhouse gas emissions

    International Nuclear Information System (INIS)

    Thompson, Wyatt; Whistance, Jarrett; Meyer, Seth

    2011-01-01

    US biofuel policy includes greenhouse gas reduction targets. Regulators do not address the potential that biofuel policy can have indirect impacts on greenhouse gases through its impacts on petroleum product markets, and scientific research only partially addresses this question. We use economic models of US biofuel and agricultural markets and US and world petroleum and petroleum product markets to show that discontinuing biofuel tax credits and ethanol tariff lower biofuel use could lead to increased US petroleum product use, and a reduction in petroleum product use in other parts of the world. The net effect is lower greenhouse gas emissions. Under certain assumptions, we show that biofuel use mandate elimination can have positive or negative impacts on greenhouse gas emissions. The magnitude and the direction of effects depend on how US biofuel trade affects biofuel in other countries with different emissions, context that determines how important use mandates are in the first place, who pays mandate costs, and the price responsiveness of global petroleum supplies and uses. However, our results show that counter-intuitive effects are possible and discourage broad conclusions about the greenhouse gas impacts of removing these elements of US biofuel policy. - Highlights: → Biofuel policy has counter-intuitive greenhouse gas effects under certain conditions. → US biofuel policies affect global petroleum markets, with implications for GHGs. → US biofuel use mandate GHG effects depend on whether they are binding and who pays. → US biofuel GHGs are sensitive to policy, petroleum market responses, and biofuel trade.

  19. %22Trojan Horse%22 strategy for deconstruction of biomass for biofuels production.

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake Alexander; Sinclair, Michael B.; Yu, Eizadora; Timlin, Jerilyn Ann; Hadi, Masood Z.; Tran-Gyamfi, Mary

    2011-02-01

    Production of renewable biofuels to displace fossil fuels currently consumed in the transportation sector is a pressing multiagency national priority (DOE/USDA/EERE). Currently, nearly all fuel ethanol is produced from corn-derived starch. Dedicated 'energy crops' and agricultural waste are preferred long-term solutions for renewable, cheap, and globally available biofuels as they avoid some of the market pressures and secondary greenhouse gas emission challenges currently facing corn ethanol. These sources of lignocellulosic biomass are converted to fermentable sugars using a variety of chemical and thermochemical pretreatments, which disrupt cellulose and lignin cross-links, allowing exogenously added recombinant microbial enzymes to more efficiently hydrolyze the cellulose for 'deconstruction' into glucose. This process is plagued with inefficiencies, primarily due to the recalcitrance of cellulosic biomass, mass transfer issues during deconstruction, and low activity of recombinant deconstruction enzymes. Costs are also high due to the requirement for enzymes and reagents, and energy-intensive cumbersome pretreatment steps. One potential solution to these problems is found in synthetic biology-engineered plants that self-produce a suite of cellulase enzymes. Deconstruction can then be integrated into a one-step process, thereby increasing efficiency (cellulose-cellulase mass-transfer rates) and reducing costs. The unique aspects of our approach are the rationally engineered enzymes which become Trojan horses during pretreatment conditions. During this study we rationally engineered Cazy enzymes and then integrated them into plant cells by multiple transformation techniques. The regenerated plants were assayed for first expression of these messages and then for the resulting proteins. The plants were then subjected to consolidated bioprocessing and characterized in detail. Our results and possible implications of this work on developing

  20. Butanol biorefineries: simultaneous product removal & process integration for conversion of biomass & food waste to biofuel

    Science.gov (United States)

    Butanol, a superior biofuel, packs 30% more energy than ethanol on a per gallon basis. It can be produced from various carbohydrates and lignocellulosic (biomass) feedstocks. For cost effective production of this renewable and high energy biofuel, inexpensive feedstocks and economical process techno...

  1. The interaction between EU biofuel policy and first- and second-generation biodiesel production

    NARCIS (Netherlands)

    Boutesteijn, C.; Drabik, D.; Venus, T.J.

    2017-01-01

    We build a tractable partial equilibrium model to study the interactions between the EU biofuel policies (mandate and double-counting of second-generation biofuels) and first- and second-generation biodiesel production. We find that increasing the biodiesel mandate results in a higher share of

  2. Economic and social implications of biofuel use and production in Canada

    International Nuclear Information System (INIS)

    Klein, K.

    2005-01-01

    The potential role of biofuels in meeting Canadian commitments to greenhouse gas emissions was discussed. The characteristics of various biofuels were presented, including ethanol, methanol, biodiesel and biogas. Benefits of biofuels included a reduction in air contaminants as well as lower greenhouse gas emissions. Federal and provincial programs are currently in place to encourage production and use of biofuels. The Federal Ethanol Expansion Plan was outlined with reference to its target to increase ethanol production from 238 m litres to 1400 m litres by 2010. The main instruments of the program include excision of the gasoline tax exemption, ethanol expansion and the fact that ethanol can operate a polyfuels vehicle fleet. Provincial policies on ethanol were outlined, driven by characteristics of provincial economies. Provincial tax exemptions for ethanol were provided and an overview of the global ethanol market was presented. A map of existing and projected ethanol projects in Canada was presented, along with a forecast of Canadian ethanol production capacity. A time-line of Nebraska's ethanol production from the years 1985 to 2004 was provided. Economic drivers for ethanol include additional markets for products of agricultural, marine and forestry industries; the enhancement and diversification of rural and regional economies; employment; and energy security. Challenges to growth in biofuel production include technological knowledge and a lack of public awareness concerning the benefits of biofuel. The production and use of biofuels may increase environmental amenities but decrease economic growth. Issues concerning the economics of biofuel research were reviewed. The demand for biofuels has grown slowly in Canada, but has been promoted or mandated federally and in several provinces. The costs of biofuel production were reviewed, with a chart presenting ethanol production costs by plant size. Barriers to trade include the complexity of provincial tax

  3. Use of tamarisk as a potential feedstock for biofuel production.

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Amy Cha-Tien; Norman, Kirsten

    2011-01-01

    This study assesses the energy and water use of saltcedar (or tamarisk) as biomass for biofuel production in a hypothetical sub-region in New Mexico. The baseline scenario consists of a rural stretch of the Middle Rio Grande River with 25% coverage of mature saltcedar that is removed and converted to biofuels. A manufacturing system life cycle consisting of harvesting, transportation, pyrolysis, and purification is constructed for calculating energy and water balances. On a dry short ton woody biomass basis, the total energy input is approximately 8.21 mmBTU/st. There is potential for 18.82 mmBTU/st of energy output from the baseline system. Of the extractable energy, approximately 61.1% consists of bio-oil, 20.3% bio-char, and 18.6% biogas. Water consumptive use by removal of tamarisk will not impact the existing rate of evapotranspiration. However, approximately 195 gal of water is needed per short ton of woody biomass for the conversion of biomass to biocrude, three-quarters of which is cooling water that can be recovered and recycled. The impact of salt presence is briefly assessed. Not accounted for in the baseline are high concentrations of Calcium, Sodium, and Sulfur ions in saltcedar woody biomass that can potentially shift the relative quantities of bio-char and bio-oil. This can be alleviated by a pre-wash step prior to the conversion step. More study is needed to account for the impact of salt presence on the overall energy and water balance.

  4. Biofuel production and climate mitigation potential from marginal lands in US North Central region

    Science.gov (United States)

    Gelfand, I.; Sahajpal, R.; Zhang, X.; Izaurralde, R. C.; Robertson, G. P.

    2010-12-01

    An ever-increasing demand for liquid fuels, amidst concerns of anthropogenic impacts on the environment and fossil fuels availability, has spurred a strong interest in the development of agriculturally-based renewable energy sources. However, increasing demand for food as well as direct and indirect effects on land use, have raised concerns about reliance on grain-based ethanol and shifted research towards the direction of cellulosic feedstocks. In order to understand the future possibility for using agricultural systems for bio-fuel production, we present here a full greenhouse gas (GHG) balance of six potential sources of cellulosic feedstocks production. From 1991 to 2008, we measured GHGs sinks and sources in cropped and nearby unmanaged ecosystems in SW Michigan. The measurements included soil fluxes of GHGs (N2O and CH4), soil organic carbon concentration change, agronomic practices data, and biomass yields. We analyzed two types of intensively managed annual cropping systems under corn-soybean-wheat rotation (conventional tillage and no till), two perennial systems (alfalfa and poplar plantation), and one successional system. The use of agricultural residues for biofuel feedstock from conventionally-tilled crops had the lowest climate stabilization potential (-9 ±13 gCO2e m-2 y-1). In contrast, biomass collected from a successional system fertilized with N at123 kg ha-1y-1 showed the highest climate stabilization potential (-749 ±30 gCO2e m-2 y-1). We used our results to parameterize the EPIC model, which, together with GIS analysis was used to scale up the biomass productivity of the best environmentally performing systems to the marginal lands of the 10-state U.S. North Central region. Assuming 80 km as the maximum distance for road haulage to the biorefinery from the field, we identified 32 potential biorefinery placements each capable of supplying sufficient feedstock to produce at least 133 × 106 L y-1. In total, ethanol production from marginal

  5. Environmental impact assessment of biofuel production on contaminated land - Swedish case studies

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Skoeld, Yvonne; Suer, Pascal [Swedish Geotechnical Institute, Linkoeping (Sweden); Blom, Sonja [FB Engineering AB, Goeteborg (Sweden); Bardos, Paul [r3 Environmental Technology Ltd, Reading (United Kingdom); Track, Thomas; Polland, Marcel [DECHEMA e. V., Frankfurt am Main (Germany)

    2009-07-01

    This report studies the (possible) cultivation of short rotation wood (Salix Vinimalis) on two contaminated sites from an environmental perspective, through a life cycle analysis (LCA) and carbon footprint, with an outlook towards an overarching method for a qualitative or semi-quantitative analysis based on a life cycle framework. Two areas were selected as case studies: a small site where short rotation crop (Salix Vinimalis) cultivation is in progress and a large site where biofuel production is hypothetical. For the selection of suitable sites, the following aspects were considered: Site location and size, so that biofuel cultivation might be economically viable without a remediation bonus, Topography and soil conditions, so that machinery could be used for cultivation, Time, so that the site was not in urgent need of remediation due to environmental or human health risks, or acute exploitation requirements, Contamination degree, which should not be plant-toxic, Contamination depth, Assessment of optimum crop and its use. For doubtful areas, it is especially important to analyse what the most viable option for the contaminated site is, and what bio-product could be used. For a more comprehensive analysis, which also incorporates local economic and social aspects, the decision support matrix, inter alia, described in the main report of the project Rejuvenate, is recommended. The calculation of emissions for the LCA and the carbon footprint used a German software tool for LCA of soil remediation. The software includes equipment emission data published in 1995. The module 'landfarming' has been used in this study to calculate emissions from herbicide application, fertilisation, ploughing and deep-ploughing, Salix harvest, harrowing etc. Since production of herbicide and Salix Vinimalis shoots were not included in the software, they were not included in the study. The conclusions for the two sites were very similar, in spite of the large differences between the

  6. Environmental impact assessment of biofuel production on contaminated land - Swedish case studies

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Skoeld, Yvonne; Suer, Pascal (Swedish Geotechnical Institute, Linkoeping (Sweden)); Blom, Sonja (FB Engineering AB, Goeteborg (Sweden)); Bardos, Paul (r3 Environmental Technology Ltd, Reading (United Kingdom)); Track, Thomas; Polland, Marcel (DECHEMA e. V., Frankfurt am Main (Germany))

    2009-07-01

    This report studies the (possible) cultivation of short rotation wood (Salix Vinimalis) on two contaminated sites from an environmental perspective, through a life cycle analysis (LCA) and carbon footprint, with an outlook towards an overarching method for a qualitative or semi-quantitative analysis based on a life cycle framework. Two areas were selected as case studies: a small site where short rotation crop (Salix Vinimalis) cultivation is in progress and a large site where biofuel production is hypothetical. For the selection of suitable sites, the following aspects were considered: Site location and size, so that biofuel cultivation might be economically viable without a remediation bonus, Topography and soil conditions, so that machinery could be used for cultivation, Time, so that the site was not in urgent need of remediation due to environmental or human health risks, or acute exploitation requirements, Contamination degree, which should not be plant-toxic, Contamination depth, Assessment of optimum crop and its use. For doubtful areas, it is especially important to analyse what the most viable option for the contaminated site is, and what bio-product could be used. For a more comprehensive analysis, which also incorporates local economic and social aspects, the decision support matrix, inter alia, described in the main report of the project Rejuvenate, is recommended. The calculation of emissions for the LCA and the carbon footprint used a German software tool for LCA of soil remediation. The software includes equipment emission data published in 1995. The module 'landfarming' has been used in this study to calculate emissions from herbicide application, fertilisation, ploughing and deep-ploughing, Salix harvest, harrowing etc. Since production of herbicide and Salix Vinimalis shoots were not included in the software, they were not included in the study. The conclusions for the two sites were very similar, in spite of the large differences

  7. Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S. Surendran [University of Tennessee, Knoxville (UTK); Nichols, Jeff A. {Cyber Sciences} [ORNL; Post, Wilfred M [ORNL; Wang, Dali [ORNL; Wullschleger, Stan D [ORNL; Kline, Keith L [ORNL; Wei, Yaxing [ORNL; Singh, Nagendra [ORNL; Kang, Shujiang [ORNL

    2014-01-01

    Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

  8. Biofuels, poverty, and growth

    DEFF Research Database (Denmark)

    Arndt, Channing; Benfica, Rui; Tarp, Finn

    2010-01-01

    and accrual of land rents to smallholders, compared with the more capital-intensive plantation approach. Moreover, the benefits of outgrower schemes are enhanced if they result in technology spillovers to other crops. These results should not be taken as a green light for unrestrained biofuels development...... Mozambique's annual economic growth by 0.6 percentage points and reduces the incidence of poverty by about 6 percentage points over a 12-year phase-in period. Benefits depend on production technology. An outgrower approach to producing biofuels is more pro-poor, due to the greater use of unskilled labor...

  9. Development of optimal enzymatic and microbial conversion systems for biofuel production

    Science.gov (United States)

    Aramrueang, Natthiporn

    The increase in demand for fuels, along with the concerns over the depletion of fossil fuels and the environmental problems associated with the use of the petroleum-based fuels, has driven the exploitation of clean and renewable energy. Through a collaboration project with Mendota Bioenergy LLC to produce advanced biofuel from sugar beet and other locally grown crops in the Central Valley of California through demonstration and commercial-scale biorefineries, the present study focused on the investigation of selected potential biomass as biofuel feedstock and development of bioconversion systems for sustainable biofuel production. For an efficient biomass-to-biofuel conversion process, three important steps, which are central to this research, must be considered: feedstock characterization, enzymatic hydrolysis of the feedstock, and the bioconversion process. The first part of the research focused on the characterization of various lignocellulosic biomass as feedstocks and investigated their potential ethanol yields. Physical characteristics and chemical composition were analyzed for four sugar beet varieties, three melon varieties, tomato, Jose tall wheatgrass, wheat hay, and wheat straw. Melons and tomato are those products discarded by the growers or processors due to poor quality. The mass-based ethanol potential of each feedstock was determined based on the composition. The high sugar-containing feedstocks are sugar beet roots, melons, and tomato, containing 72%, 63%, and 42% average soluble sugars on a dry basis, respectively. Thus, for these crops, the soluble sugars are the main substrate for ethanol production. The potential ethanol yields, on average, for sugar beet roots, melons, and tomato are 591, 526, and 448 L ethanol/metric ton dry basis (d.b.), respectively. Lignocellulosic biomass, including Jose Tall wheatgrass and wheat straw, are composed primarily of cellulose (27-39% d.b.) and hemicellulose (26-30% d.b.). The ethanol yields from these

  10. Identifying potential areas for biofuel production and evaluating the environmental effects: a case study of the James River Basin in the Midwestern United States

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang; Li, Zhengpeng

    2012-01-01

    Biofuels are now an important resource in the United States because of the Energy Independence and Security Act of 2007. Both increased corn growth for ethanol production and perennial dedicated energy crop growth for cellulosic feedstocks are potential sources to meet the rising demand for biofuels. However, these measures may cause adverse environmental consequences that are not yet fully understood. This study 1) evaluates the long-term impacts of increased frequency of corn in the crop rotation system on water quantity and quality as well as soil fertility in the James River Basin and 2) identifies potential grasslands for cultivating bioenergy crops (e.g. switchgrass), estimating the water quality impacts. We selected the soil and water assessment tool, a physically based multidisciplinary model, as the modeling approach to simulate a series of biofuel production scenarios involving crop rotation and land cover changes. The model simulations with different crop rotation scenarios indicate that decreases in water yield and soil nitrate nitrogen (NO3-N) concentration along with an increase in NO3-N load to stream water could justify serious concerns regarding increased corn rotations in this basin. Simulations with land cover change scenarios helped us spatially classify the grasslands in terms of biomass productivity and nitrogen loads, and we further derived the relationship of biomass production targets and the resulting nitrogen loads against switchgrass planting acreages. The suggested economically efficient (planting acreage) and environmentally friendly (water quality) planting locations and acreages can be a valuable guide for cultivating switchgrass in this basin. This information, along with the projected environmental costs (i.e. reduced water yield and increased nitrogen load), can contribute to decision support tools for land managers to seek the sustainability of biofuel development in this region.

  11. Development of biological platform for the autotrophic production of biofuels

    Science.gov (United States)

    Khan, Nymul

    The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO 2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E's (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country's petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpae. energy.gov/ProgramsProjects/Electrofuels.aspx). The Electrofuels initiative aimed to develop liquid biofuels that avoid the issues encountered in the current generation of biofuels: (1) the reliance of biomass-derived technologies on the inefficient process of photosynthesis, (2) the relatively energy- and resource-intensive nature of agronomic processes, and (3) the occupation of large areas of arable land for feedstock production. The process proceeds by the capture of solar energy into electrical energy via photovoltaic cells, using the generated electricity to split water into molecular hydrogen (H2) and oxygen (O2), and feeding these gases, along with carbon dioxide (CO2) emitted from point sources such as a biomass or coal-fired power plant, to a microbial bioprocessing platform. The proposed microbial bioprocessing platform leverages a chemolithoautotrophic microorganism (Rhodobacter capsulatus or Ralstonia eutropha) naturally able to utilize these gases as growth substrates, and genetically modified to produce a triterpene hydrocarbon fuel

  12. Wonder crop could pave the way for bio-fuel revolution

    CSIR Research Space (South Africa)

    Gush, Mark B

    2005-03-01

    Full Text Available are some of the pressures that are influencing the quest for alternative, cleaner forms of energy. Some would suggest that the bio-fuel revolution has begun. Because of these trends a recent business initiative has proposed the introduction of the so...

  13. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  14. Agricultural innovations for sustainable crop production intensification

    Directory of Open Access Journals (Sweden)

    Michele Pisante

    2012-10-01

    Full Text Available Sustainable crop production intensification should be the first strategic objective of innovative agronomic research for the next 40 years. A range of options exist (often very location specific for farming practices, approaches and technologies that ensure sustainability, while at the same time improving crop production. The main challenge is to encourage farmers in the use of appropriate technologies,  and  to  ensure  that  knowledge  about  sound  production  practices  is  increasingly accepted and applied by farmers. There is a huge, but underutilized potential to link farmers’ local knowledge with science-based innovations, through favourable institutional arrangements.  The same  holds  for  the  design,  implementation  and  monitoring  of  improved  natural  resource management  that  links  community  initiatives  to  external  expertise.  It is also suggested that a comprehensive effort be undertaken to measure different stages of the innovation system, including technological adoption and diffusion at the farm level, and to investigate the impact of agricultural policies on technological change and technical efficiency. This paper provides a brief review of agronomic management practices that support sustainable crop production system and evidence on developments  in the selection of crops and cultivars; describes farming systems for crop which take a predominantly ecosystem approach; discusses the scientific application of ecosystem principles for the management of pest and weed populations; reviews the  improvements in fertilizer and nutrient management that explain productivity growth; describes the benefits and constraints of irrigation technologies; and suggests a way forward. Seven changes in the context for agricultural development are proposed that heighten the need to examine how innovation occurs in the agricultural sector.

  15. An Overview of Algae Biofuel Production and Potential Environmental Impact

    Science.gov (United States)

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas)...

  16. Protein engineering in designing tailored enzymes and microorganisms for biofuels production

    Science.gov (United States)

    Wen, Fei; Nair, Nikhil U; Zhao, Huimin

    2009-01-01

    Summary Lignocellulosic biofuels represent a sustainable, renewable, and the only foreseeable alternative energy source to transportation fossil fuels. However, the recalcitrant nature of lignocellulose poses technical hurdles to an economically viable biorefinery. Low enzymatic hydrolysis efficiency and low productivity, yield, and titer of biofuels are among the top cost contributors. Protein engineering has been used to improve the performances of lignocellulose-degrading enzymes, as well as proteins involved in biofuel synthesis pathways. Unlike its great success seen in other industrial applications, protein engineering has achieved only modest results in improving the lignocellulose-to-biofuels efficiency. This review will discuss the unique challenges that protein engineering faces in the process of converting lignocellulose to biofuels and how they are addressed by recent advances in this field. PMID:19660930

  17. Development of an attached microalgal growth system for biofuel production.

    Science.gov (United States)

    Johnson, Michael B; Wen, Zhiyou

    2010-01-01

    Algal biofuel production has gained a renewed interest in recent years but is still not economically feasible due to several limitations related to algal culture. The objective of this study is to explore a novel attached culture system for growing the alga Chlorella sp. as biodiesel feedstock, with dairy manure wastewater being used as growth medium. Among supporting materials tested for algal attachment, polystyrene foam led to a firm attachment, high biomass yield (25.65 g/m(2), dry basis), and high fatty acid yield (2.31 g/m(2)). The biomass attached on the supporting material surface was harvested by scraping; the residual colonies left on the surface served as inoculum for regrowth. The algae regrowth on the colony-established surface resulted in a higher biomass yield than that from the initial growth on fresh surface due to the downtime saved for initial algal attachment. The 10-day regrowth culture resulted in a high biodiesel production potential with a fatty acid methyl esters yield of 2.59 g/m(2) and a productivity of 0.26 g/m(-2) day(-1). The attached algal culture also removed 61-79% total nitrogen and 62-93% total phosphorus from dairy manure wastewater, depending on different culture conditions. The biomass harvested from the attached growth system (through scraping) had a water content of 93.75%, similar to that harvested from suspended culture system (through centrifugation). Collectively, the attached algal culture system with polystyrene foam as a supporting material demonstrated a good performance in terms of biomass yield, biodiesel production potential, ease to harvest biomass, and physical robustness for reuse.

  18. Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production

    International Nuclear Information System (INIS)

    Chiaramonti, David; Prussi, Matteo; Buffi, Marco; Rizzo, Andrea Maria; Pari, Luigi

    2017-01-01

    Highlights: • A review of microalgae thermochemical conversion to bioliquids was carried out. • We focused on pyrolysis and hydrothermal liquefaction for biocrude/biofuels. • Original experimental research on microalgae pyrolysis was also carried out. • Starvation does not impact significant on the energy content of the biocrude. • This result is relevant for designing full scale microalgae production plants. - Abstract: Advanced Biofuels steadily developed during recent year, with several highly innovative processes and technologies explored at various scales: among these, lignocellulosic ethanol and CTO (Crude Tall Oil)-biofuel technologies already achieved early-commercial status, while hydrotreating of vegetable oils is today fully commercial, with almost 3.5 Mt/y installed capacity worldwide. In this context, microalgae grown in salt-water and arid areas represent a promising sustainable chain for advanced biofuel production but, at the same time, they also represent a considerable challenge. Processing microalgae in an economic way into a viable and sustainable liquid biofuel (a low-cost mass-product) is not trivial. So far, the most studied microalgae-based biofuel chain is composed by microorganism cultivation, lipid accumulation, oil extraction, co-product valorization, and algae oil conversion through conventional esterification into Fatty Acids Methyl Esters (FAME), i.e. Biodiesel, or Hydrotreated Esters and Fatty Acids (HEFA), the latter representing a very high quality drop-in biofuel (suitable either for road transport or for aviation). However, extracting the algae oil at low cost and industrial scale is not yet a mature process, and there is not yet industrial production of algae-biofuel from these two lipid-based chains. Another option can however be considered: processing the algae through dedicated thermochemical reactors into advanced biofuels, thus approaching the downstream processing of algae in a completely different way than

  19. Engineering ionic liquid-tolerant cellulases for biofuels production.

    Science.gov (United States)

    Wolski, Paul W; Dana, Craig M; Clark, Douglas S; Blanch, Harvey W

    2016-04-01

    Dissolution of lignocellulosic biomass in certain ionic liquids (ILs) can provide an effective pretreatment prior to enzymatic saccharification of cellulose for biofuels production. Toward the goal of combining pretreatment and enzymatic hydrolysis, we evolved enzyme variants of Talaromyces emersonii Cel7A to be more active and stable than wild-type T. emersonii Cel7A or Trichoderma reesei Cel7A in aqueous-IL solutions (up to 43% (w/w) 1,3-dimethylimdazolium dimethylphosphate and 20% (w/w) 1-ethyl-3-methylimidazolium acetate). In general, greater enzyme stability in buffer at elevated temperature corresponded to greater stability in aqueous-ILs. Post-translational modification of the N-terminal glutamine residue to pyroglutamate via glutaminyl cyclase enhanced the stability of T. emersonii Cel7A and variants. Differential scanning calorimetry revealed an increase in melting temperature of 1.9-3.9°C for the variant 1M10 over the wild-type T. emersonii Cel7A in aqueous buffer and in an IL-aqueous mixture. We observed this increase both with and without glutaminyl cyclase treatment of the enzymes. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations

    NARCIS (Netherlands)

    de Jong, S.A.|info:eu-repo/dai/nl/41200836X; Hoefnagels, E.T.A.|info:eu-repo/dai/nl/313935998; Wetterlund, Elisabeth; Pettersson, Karin; Faaij, André; Junginger, H.M.|info:eu-repo/dai/nl/202130703

    2017-01-01

    This study uses a geographically-explicit cost optimization model to analyze the impact of and interrelation between four cost reduction strategies for biofuel production: economies of scale, intermodal transport, integration with existing industries, and distributed supply chain configurations

  1. Agroecology of Novel Annual and Perennial Crops for Biomass Production

    DEFF Research Database (Denmark)

    Manevski, Kiril; Jørgensen, Uffe; Lærke, Poul Erik

    The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production.......The agroecological potential of many crops under sustainable intensification has not been investigated. This study investigates such potential for novel annual and perennial crops grown for biomass production....

  2. Biofuel and other biomass based products from contaminated sites - Potentials and barriers from Swedish perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Skoeld, Yvonne; Enell, Anja; Rihm, Thomas; Haglund, Kristina; Wik, Ola [Swedish Geotechnical Institute, Linkoeping (Sweden); Blom, Sonja; Angelbratt, Alexandra [FB Engineering AB, Goeteborg (Sweden); Bardos, Paul [r3 Environmental Technology Ltd, Reading (United Kingdom); Track, Thomas [DECHEMA e. V., Frankfurt am Main (Germany); Keuning, Sytze [Bioclear b.v., Groningen (Netherlands)

    2009-07-01

    In this report, results are presented based on interviews and literature surveys on the triggers and stoppers for non food crop on contaminated land in Sweden. The report also includes a first estimate of potential marginal land for biofuel production in Sweden. The report is a first step to explore the feasibility of a range of possible approaches to combine risk based land management (RBLM) with non-food crop land-uses and organic matter re-use as appropriate in a Swedish context. The focus of the report is on the treatment of contaminated land by phyto-remediation and on biofuel cultivation. In Sweden, like all other countries in Europe, areas of land have been degraded by past use. Such previously developed land includes areas affected by mining, fallout from industrial processes such as smelting, areas elevated with contaminated dredged sediments, former landfill sites and many other areas where the decline of industrial activity has left a legacy of degraded land and communities. The extent of contamination may not be sufficient to trigger remediation under current regulatory conditions, and there may be little economic incentive to regenerate the affected areas. An ideal solution would be a land management approach that is able to pay for itself. Biomass from coppice or other plantations has long been seen as a possible means of achieving this goal. Phyto remediation offers a low cost method for remediation of areas that are not candidates for conventional regeneration. The optimal conditions for phyto remediation are large land areas of low or mediate contamination. Phyto remediation is also suitable to prevent spreading of contaminants, for example in green areas such as in cities, as waste water buffer and small size remediation areas with diffuse spreading. Phyto remediation implies that plants, fungi or algae are used to remediate, control or increase the natural attenuation of contaminants. Depending on the contaminating species and the site conditions

  3. Biofuel and other biomass based products from contaminated sites - Potentials and barriers from Swedish perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Skoeld, Yvonne; Enell, Anja; Rihm, Thomas; Haglund, Kristina; Wik, Ola (Swedish Geotechnical Institute, Linkoeping (Sweden)); Blom, Sonja; Angelbratt, Alexandra (FB Engineering AB, Goeteborg (Sweden)); Bardos, Paul (r3 Environmental Technology Ltd, Reading (United Kingdom)); Track, Thomas (DECHEMA e. V., Frankfurt am Main (Germany)); Keuning, Sytze (Bioclear b.v., Groningen (Netherlands))

    2009-07-01

    In this report, results are presented based on interviews and literature surveys on the triggers and stoppers for non food crop on contaminated land in Sweden. The report also includes a first estimate of potential marginal land for biofuel production in Sweden. The report is a first step to explore the feasibility of a range of possible approaches to combine risk based land management (RBLM) with non-food crop land-uses and organic matter re-use as appropriate in a Swedish context. The focus of the report is on the treatment of contaminated land by phyto-remediation and on biofuel cultivation. In Sweden, like all other countries in Europe, areas of land have been degraded by past use. Such previously developed land includes areas affected by mining, fallout from industrial processes such as smelting, areas elevated with contaminated dredged sediments, former landfill sites and many other areas where the decline of industrial activity has left a legacy of degraded land and communities. The extent of contamination may not be sufficient to trigger remediation under current regulatory conditions, and there may be little economic incentive to regenerate the affected areas. An ideal solution would be a land management approach that is able to pay for itself. Biomass from coppice or other plantations has long been seen as a possible means of achieving this goal. Phyto remediation offers a low cost method for remediation of areas that are not candidates for conventional regeneration. The optimal conditions for phyto remediation are large land areas of low or mediate contamination. Phyto remediation is also suitable to prevent spreading of contaminants, for example in green areas such as in cities, as waste water buffer and small size remediation areas with diffuse spreading. Phyto remediation implies that plants, fungi or algae are used to remediate, control or increase the natural attenuation of contaminants. Depending on the contaminating species and the site conditions

  4. Sustainable Production of Second-Generation Biofuels. Potential and perspectives in major economies and developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Eisentraut, A

    2010-02-15

    The paper focuses on opportunities and risks presented by second-generation biofuels technologies in eight case study countries: Brazil, Cameroon, China, India, Mexico, South Africa, Tanzania and Thailand. The report begins by exploring the state of the art of second-generation technologies and their production, followed by projections of future demand and a discussion of drivers of that demand. The report then delves into various feedstock options and the global potential for bioenergy production. The final chapter offers a look at the potential for sustainable second-generation biofuel production in developing countries including considerations of economic, social and environmental impacts. Key findings of the report include that: second-generation biofuels produced from agricultural and forestry residues can play a crucial role in the transport sector without competing with food production; the potential for second-generation biofuels should be mobilized in emerging and developing countries where a large share of global residues is produced; less-developed countries will first need to invest in agricultural production and infrastructure in order to improve the framework conditions for the production of second-generation biofuels; financial barriers to production exist in many developing countries; and the suitability of second-generation biofuels against individual developing countries' needs should be evaluated.

  5. Sustainable Production of Second-Generation Biofuels. Potential and perspectives in major economies and developing countries

    International Nuclear Information System (INIS)

    Eisentraut, A.

    2010-02-01

    The paper focuses on opportunities and risks presented by second-generation biofuels technologies in eight case study countries: Brazil, Cameroon, China, India, Mexico, South Africa, Tanzania and Thailand. The report begins by exploring the state of the art of second-generation technologies and their production, followed by projections of future demand and a discussion of drivers of that demand. The report then delves into various feedstock options and the global potential for bioenergy production. The final chapter offers a look at the potential for sustainable second-generation biofuel production in developing countries including considerations of economic, social and environmental impacts. Key findings of the report include that: second-generation biofuels produced from agricultural and forestry residues can play a crucial role in the transport sector without competing with food production; the potential for second-generation biofuels should be mobilized in emerging and developing countries where a large share of global residues is produced; less-developed countries will first need to invest in agricultural production and infrastructure in order to improve the framework conditions for the production of second-generation biofuels; financial barriers to production exist in many developing countries; and the suitability of second-generation biofuels against individual developing countries' needs should be evaluated.

  6. Sustainable Production of Second-Generation Biofuels. Potential and perspectives in major economies and developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Eisentraut, A.

    2010-02-15

    The paper focuses on opportunities and risks presented by second-generation biofuels technologies in eight case study countries: Brazil, Cameroon, China, India, Mexico, South Africa, Tanzania and Thailand. The report begins by exploring the state of the art of second-generation technologies and their production, followed by projections of future demand and a discussion of drivers of that demand. The report then delves into various feedstock options and the global potential for bioenergy production. The final chapter offers a look at the potential for sustainable second-generation biofuel production in developing countries including considerations of economic, social and environmental impacts. Key findings of the report include that: second-generation biofuels produced from agricultural and forestry residues can play a crucial role in the transport sector without competing with food production; the potential for second-generation biofuels should be mobilized in emerging and developing countries where a large share of global residues is produced; less-developed countries will first need to invest in agricultural production and infrastructure in order to improve the framework conditions for the production of second-generation biofuels; financial barriers to production exist in many developing countries; and the suitability of second-generation biofuels against individual developing countries' needs should be evaluated.

  7. Modeling state-level soil carbon emission factors under various scenarios for direct land use change associated with United States biofuel feedstock production

    International Nuclear Information System (INIS)

    Kwon, Ho-Young; Mueller, Steffen; Dunn, Jennifer B.; Wander, Michelle M.

    2013-01-01

    Current estimates of life cycle greenhouse gas emissions of biofuels produced in the US can be improved by refining soil C emission factors (EF; C emissions per land area per year) for direct land use change associated with different biofuel feedstock scenarios. We developed a modeling framework to estimate these EFs at the state-level by utilizing remote sensing data, national statistics databases, and a surrogate model for CENTURY's soil organic C dynamics submodel (SCSOC). We estimated the forward change in soil C concentration within the 0–30 cm depth and computed the associated EFs for the 2011 to 2040 period for croplands, grasslands or pasture/hay, croplands/conservation reserve, and forests that were suited to produce any of four possible biofuel feedstock systems [corn (Zea Mays L)-corn, corn–corn with stover harvest, switchgrass (Panicum virgatum L), and miscanthus (Miscanthus × giganteus Greef et Deuter)]. Our results predict smaller losses or even modest gains in sequestration for corn based systems, particularly on existing croplands, than previous efforts and support assertions that production of perennial grasses will lead to negative emissions in most situations and that conversion of forest or established grasslands to biofuel production would likely produce net emissions. The proposed framework and use of the SCSOC provide transparency and relative simplicity that permit users to easily modify model inputs to inform biofuel feedstock production targets set forth by policy. -- Highlights: ► We model regionalized feedstock-specific United States soil C emission factors. ► We simulate soil C changes from direct land use change associated with biofuel feedstock production. ► Corn, corn-stover, and perennial grass biofuel feedstocks grown in croplands maintain soil C levels. ► Converting grasslands to bioenergy crops risks soil C loss. ► This modeling framework yields more refined soil C emissions than national-level emissions

  8. Toward systems metabolic engineering of Aspergillus and Pichia species for the production of chemicals and biofuels

    DEFF Research Database (Denmark)

    Caspeta, Luis; Nielsen, Jens

    2013-01-01

    trends in systems biology of Aspergillus and Pichia species, highlighting the relevance of these developments for systems metabolic engineering of these organisms for the production of hydrolytic enzymes, biofuels and chemicals from biomass. Metabolic engineering is moving from traditional methods...... for the production of hydrolytic enzymes, biofuels and chemicals from biomass. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim....

  9. National Alliance for Advanced Biofuels and Bio-Products Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, Jose A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baxter, Ivan [US Dept. of Agriculture (USDA)., Washington, DC (United States); Brown, Judith [Univ. of Arizona, Tucson, AZ (United States); Carleton, Michael [Matrix Genetics, Seattle, WA (United States); Cattolico, Rose Anne [Univ. of Washington, Seattle, WA (United States); Taraka, Dale [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Detter, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Devarenne, Timothy P. [Texas Agrilife Research, College Station, TX (United States); Dutcher, Susan K. [Washington Univ., St. Louis, MO (United States); Fox, David T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodenough, Ursula [Washington Univ., St. Louis, MO (United States); Jaworski, Jan [Donald Danforth Plant Science Center, St. Louis, MO (United States); Kramer, David [Michigan State Univ., East Lansing, MI (United States); Lipton, Mary S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McCormick, Margaret [Matrix Genetics, Seattle, WA (United States); Merchant, Sabeeha [Univ. of California, Los Angeles, CA (United States); Molnar, Istvan [Univ. of Arizona, Tucson, AZ (United States); Panisko, Ellen A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pellegrini, Matteo [Univ. of California, Los Angeles, CA (United States); Polle, Juergen [City Univ. (CUNY), NY (United States). Brooklyn College; Sabarsky, Martin [Cellana, Inc., San Diego, CA (United States); Sayre, Richard T. [New Mexico Consortium, Los Alamos, NM (United States); Starkenburg,, Shawn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stormo, Gary [Washington Univ., St. Louis, MO (United States); Twary, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unkefer, Clifford J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unkefer, Pat J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yuan, Joshua S. [Texas Agrilife Research, College Station, TX (United States); Arnold, Bob [Univ. of Arizona, Tucson, AZ (United States); Bai, Xuemei [Cellana, Inc., San Diego, CA (United States); Boeing, Wiebke [New Mexico State Univ., Las Cruces, NM (United States); Brown, Lois [Texas Agrilife Research, College Station, TX (United States); Gujarathi, Ninad [Reliance Industries Limited, Mumbai (India); Huesemann, Michael [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lammers, Pete [New Mexico State Univ., Las Cruces, NM (United States); Laur, Paul [Eldorado Biofuels, Santa Fe, NM (United States); Khandan, Nirmala [New Mexico State Univ., Las Cruces, NM (United States); Parsons, Ronald [Solix BioSystems, Fort Collins, CO (United States); Samocha, Tzachi [Texas Agrilife Research, College Station, TX (United States); Thomasson, Alex [Texas Agrilife Research, College Station, TX (United States); Unc, Adrian [New Mexico State Univ., Las Cruces, NM (United States); Waller, Pete [Univ. of Arizona, Tucson, AZ (United States); Bonner, James [Clarkson Univ., Potsdam, NY (United States); Coons, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernando, Sandun [Texas Agrilife Research, College Station, TX (United States); Goodall, Brian [Valicor Renewables, Dexter, MI (United States); Kadam, Kiran [Valicor Renewables, Dexter, MI (United States); Lacey, Ronald [Texas Agrilife Research, College Station, TX (United States); Wei, Liu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Marrone, Babs [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nikolov, Zivko [Texas Agrilife Research, College Station, TX (United States); Trewyn, Brian [Colorado School of Mines, Golden, CO (United States); Albrecht, Karl [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Capareda, Sergio [Texas Agrilife Research, College Station, TX (United States); Cheny, Scott [Diversified Energy, Gilbert, AZ (United States); Deng, Shuguang [New Mexico State Univ., Las Cruces, NM (United States); Elliott, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cesar, Granda [Terrabon, LLC, Bryan, TX (United States); Hallen, Richard [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lupton, Steven [UOP Honeywell Co, LLC, Des Plaines, IL (United States); Lynch, Sharry [UOP Honeywell Co, LLC, Des Plaines, IL (United States); Marchese, Anthony [Colorado State Univ., Fort Collins, CO (United States); Nieweg, Jennifer [Albemarle Catilin, Ames, IA (United States); Ogden, Kimberly [Univ. of Arizona, Tucson, AZ (United States); Oyler, James [Genifuel, Salt Lake City, UT (United States); Reardon, Ken [Colorado State Univ., Fort Collins, CO (United States); Roberts, William [North Carolina State Univ., Raleigh, NC (United States); Sams, David [Albemarle Catilin, Ames, IA (United States); Schaub, Tanner [New Mexico State Univ., Las Cruces, NM (United States); Silks, Pete [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Archibeque, Shawn [Colorado State Univ., Fort Collins, CO (United States); Foster, James [Texas Agrilife Research, College Station, TX (United States); Gaitlan, Delbert [Texas Agrilife Research, College Station, TX (United States); Lawrence, Addison [Texas Agrilife Research, College Station, TX (United States); Lodge-Ivey, Shanna [New Mexico State Univ., Las Cruces, NM (United States); Wickersham, Tyron [Texas Agrilife Research, College Station, TX (United States); Blowers, Paul [Univ. of Arizona, Tucson, AZ (United States); Davis, Ryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Downes, C. Meghan [New Mexico State Univ., Las Cruces, NM (United States); Dunlop, Eric [Pan Pacific Technologies Pty. Ltd., Adelaide (Australia); Frank, Edward [Argonne National Lab. (ANL), Argonne, IL (United States); Handler, Robert [Michigan Technological Univ., Houghton, MI (United States); Newby, Deborah [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pienkos, Philip [National Renewable Energy Lab. (NREL), Golden, CO (United States); Richardson, James [Texas Agrilife Research, College Station, TX (United States); Seider, Warren [Univ. of Pennsylvania, Philadelphia, PA (United States); Shonnard, David [Michigan Technological Univ., Houghton, MI (United States); Skaggs, Richard [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-30

    The main objective of NAABB was to combine science, technology, and engineering expertise from across the nation to break down critical technical barriers to commercialization of algae-based biofuels. The approach was to address technology development across the entire value chain of algal biofuels production, from selection of strains to cultivation, harvesting, extraction, fuel conversion, and agricultural coproduct production. Sustainable practices and financial feasibility assessments ununderscored the approach and drove the technology development.

  10. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants.

    Science.gov (United States)

    Rogalski, Marcelo; Carrer, Helaine

    2011-06-01

    The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  11. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

    Directory of Open Access Journals (Sweden)

    A. R. Mosier

    2008-01-01

    Full Text Available The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O, has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production, we find an overall conversion factor of 3–5% from newly fixed N to N2O-N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for "direct" emissions from agricultural crop lands (1% estimated by IPCC (2006, and the default factors for the "indirect" emissions (following volatilization/deposition and leaching/runoff of N: 0.35–0.45% cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodology, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our "top-down" method. When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize, depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors

  12. Bio-fuel barometer

    International Nuclear Information System (INIS)

    2015-01-01

    After a year of doubt and decline the consumption of bio-fuel resumed a growth in 2014 in Europe: +6.1% compared to 2013, to reach 14 millions tep (Mtep) that is just below the 2012 peak. This increase was mainly due to bio-diesel. By taking into account the energy content and not the volume, the consumption of bio-diesel represented 79.7% of bio-fuel consumption in 2014, that of bio-ethanol only 19.1% and that of biogas 1%. The incorporating rate of bio-fuels in fuels used for transport were 4.6% in 2013 and 4.9% in 2014. The trend is good and the future of bio-fuel seems clearer as the European Union has set a not-so-bad limit of 7% for first generation bio-fuels in order to take into account the CASI effect. The CASI effect shows that an increase of the consumption of first generation bio-fuels (it means bio-fuels produced from food crops like rape, soy, cereals, sugar beet,...) implies in fact a global increase in greenhouse gas release that is due to a compensation phenomenon. More uncultivated lands (like forests, grasslands, bogs are turned into cultivated lands in order to compensate lands used for bio-fuel production. In most European countries the consumption of bio-diesel increased in 2014 while it was a bad year for the European industry of ethanol because ethanol prices dropped by 16 %. Oil companies are now among the most important producers of bio-diesel in Europe.

  13. Catalyst technology for biofuel production: Conversion of renewable lipids into biojet and biodiesel

    Directory of Open Access Journals (Sweden)

    Scharff Yves

    2013-09-01

    Full Text Available Renewable lipids based biofuels are an important tool to address issues raised by policies put in place in order to reduce the dependence of transportation sector on fossil fuels and to promote the development of non-food based, sustainable and eco-friendly fuels. This paper presents the main features of the heterogeneous catalysis technologies Axens has developed for the production of biofuels from renewable lipids: the first by transesterification to produce fatty acid methyl esters or biodiesel and the second by hydrotreating to produce isoparaffinic hydroprocessed ester and fatty acids, high blending rate drop-in diesel and jet biofuels.

  14. Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand

    Directory of Open Access Journals (Sweden)

    Shabbir H. Gheewala

    2014-06-01

    Full Text Available The proliferation of food, feed and biofuels demands promises to increase pressure on water competition and stress, particularly for Thailand, which has a large agricultural base. This study assesses the water footprint of ten staple crops grown in different regions across the country and evaluates the impact of crop water use in different regions/watersheds by the water stress index and the indication of water deprivation potential. The ten crops include major rice, second rice, maize, soybean, mungbean, peanut, cassava, sugarcane, pineapple and oil palm. The water stress index of the 25 major watersheds in Thailand has been evaluated. The results show that there are high variations of crop water requirements grown in different regions due to many factors. However, based on the current cropping systems, the Northeastern region has the highest water requirement for both green water (or rain water and blue water (or irrigation water. Rice (paddy farming requires the highest amount of irrigation water, i.e., around 10,489 million m3/year followed by the maize, sugarcane, oil palm and cassava. Major rice cultivation induces the highest water deprivation, i.e., 1862 million m3H2Oeq/year; followed by sugarcane, second rice and cassava. The watersheds that have high risk on water competition due to increase in production of the ten crops considered are the Mun, Chi and Chao Phraya watersheds. The main contribution is from the second rice cultivation. Recommendations have been proposed for sustainable crops production in the future.

  15. Commercialization potential aspects of microalgae for biofuel production: An overview

    Directory of Open Access Journals (Sweden)

    Tahani S. Gendy

    2013-06-01

    This article discusses the importance of algae-based biofuels together with the different opinions regarding its future. Advantages and disadvantages of these types of biofuels are presented. Algal growth drives around the world with special emphasis to Egypt are outlined. The article includes a brief description of the concept of algal biorefineries. It also declares the five key strategies to help producers to reduce costs and accelerate the commercialization of algal biodiesel. The internal strengths and weaknesses, and external opportunities, and threats are manifested through the SWOT analysis for micro-algae. Strategies for enhancing algae based-fuels are outlined. New process innovations and the role of genetic engineering in meeting these strategies are briefly discussed. To improve the economics of algal biofuels the concept of employing algae for wastewater treatment is presented.

  16. An Outlook on Microalgal Biofuels

    NARCIS (Netherlands)

    Wijffels, R.H.; Barbosa, M.J.

    2010-01-01

    Microalgae are considered one of the most promising feedstocks for biofuels. The productivity of these photosynthetic microorganisms in converting carbon dioxide into carbon-rich lipids, only a step or two away from biodiesel, greatly exceeds that of agricultural oleaginous crops, without competing

  17. Employment effects of biofuels development

    International Nuclear Information System (INIS)

    Danielsson, B.O.; Hektor, B.

    1992-01-01

    Effects on employment - national and regional - from an expanding market for biofuels in Sweden are estimated in this article. The fuels considered are: Peat, straw, energy crops, silviculture, forestry waste, wood waste, by-products from paper/wood industry and processed fuels from these sources. (22 refs., tabs.)

  18. Noble metal catalysts in the production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A.

    2013-11-01

    The energy demand is increasing in the world together with the need to ensure energy security and the desire to decrease greenhouse gas emissions. While several renewable alternatives are available for the production of electricity, e.g. solar energy, wind power, and hydrogen, biomass is the only renewable source that can meet the demand for carbon-based liquid fuels and chemicals. The technology applied in the conversion of biomass depends on the type and complexity of the biomass, and the desired fuel. Hydrogen and hydrogen-rich mixtures (synthesis gas) are promising energy sources as they are more efficient and cleaner than existing fuels, especially when they are used in fuel cells. Hydrotreatment is a catalytic process that can be used in the conversion of biomass or biomass-derived liquids into fuels. In autothermal reforming (ATR), catalysts are used in the production of hydrogen-rich mixtures from conventional fuels or bio-fuels. The different nature of biomass and biomass-derived liquids and mineral oil makes the use of catalysts developed for the petroleum industry challenging. This requires the improvement of available catalysts and the development of new ones. To overcome the limitations of conventional hydrotreatment and ATR catalysts, zirconia-supported mono- and bimetallic rhodium, palladium, and platinum catalysts were developed and tested in the upgrading of model compounds for wood-based pyrolysis oil and in the production of hydrogen, using model compounds for gasoline and diesel. Catalysts were also tested in the ATR of ethanol. For comparative purposes commercial catalysts were tested and the results obtained with model compounds were compared with those obtained with real feedstocks (hydrotreatmet tests with wood-based pyrolysis oil and ATR tests with NExBTL renewable diesel). Noble metal catalysts were active and selective in the hydrotreatment of guaiacol used as the model compound for the lignin fraction of wood-based pyrolysis oil and wood

  19. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    Energy Technology Data Exchange (ETDEWEB)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022

  20. Fatty acid-derived biofuels and chemicals production in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Yongjin J. Zhou

    2014-09-01

    Full Text Available Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable and cost-effective energy resources. Advanced biofuels have potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. Microbial biosynthesis is generally considered as an environmental friendly refinery process, and fatty acid biosynthesis is an attractive route to synthesize chemicals and especially drop-in biofuels due to the high degree of reduction of fatty acids. The robustness and excellent accessibility to molecular genetics make the yeast S. cerevisiae a suitable host for the production of biofuels, chemicals and pharmaceuticals, and recent advances in metabolic engineering as well as systems and synthetic biology allow us to engineer the yeast fatty acid metabolism and modification pathways for production of advanced biofuels and chemicals.

  1. Refuge or reservoir? The potential impacts of the biofuel crop Miscanthus x giganteus on a major pest of maize.

    Directory of Open Access Journals (Sweden)

    Joseph L Spencer

    Full Text Available BACKGROUND: Interest in the cultivation of biomass crops like the C4 grass Miscanthus x giganteus (Miscanthus is increasing as global demand for biofuel grows. In the US, Miscanthus is promoted as a crop well-suited to the Corn Belt where it could be cultivated on marginal land interposed with maize and soybean. Interactions (direct and indirect of Miscanthus, maize, and the major Corn Belt pest of maize, the western corn rootworm, (Diabrotica virgifera virgifera LeConte, WCR are unknown. Adding a perennial grass/biomass crop to this system is concerning since WCR is adapted to the continuous availability of its grass host, maize (Zea mays. METHODOLOGY/PRINCIPAL FINDINGS: In a greenhouse and field study, we investigated WCR development and oviposition on Miscanthus. The suitability of Miscanthus for WCR development varied across different WCR populations. Data trends indicate that WCR populations that express behavioural resistance to crop rotation performed as well on Miscanthus as on maize. Over the entire study, total adult WCR emergence from Miscanthus (212 WCR was 29.6% of that from maize (717 WCR. Adult dry weight was 75-80% that of WCR from maize; female emergence patterns on Miscanthus were similar to females developing on maize. There was no difference in the mean no. of WCR eggs laid at the base of Miscanthus and maize in the field. CONCLUSIONS/SIGNIFICANCE: Field oviposition and significant WCR emergence from Miscanthus raises many questions about the nature of likely interactions between Miscanthus, maize and WCR and the potential for Miscanthus to act as a refuge or reservoir for Corn Belt WCR. Responsible consideration of the benefits and risks associated with Corn Belt Miscanthus are critical to protecting an agroecosystem that we depend on for food, feed, and increasingly, fuel. Implications for European agroecosystems in which Miscanthus is being proposed are also discussed in light of the WCR's recent invasion into Europe.

  2. Nitrous Oxide Emissions from Biofuel Crops and Parameterization in the EPIC Biogeochemical Model

    Science.gov (United States)

    This presentation describes year 1 field measurements of N2O fluxes and crop yields which are used to parameterize the EPIC biogeochemical model for the corresponding field site. Initial model simulations are also presented.

  3. Biogeochemical research priorities for sustainable biofuel and bioenergy feedstock production in the Americas

    Science.gov (United States)

    Hero T. Gollany; Brian D. Titus; D. Andrew Scott; Heidi Asbjornsen; Sigrid C. Resh; Rodney A. Chimner; Donald J. Kaczmarek; Luiz F.C. Leite; Ana C.C. Ferreira; Kenton A. Rod; Jorge Hilbert; Marcelo V. Galdos; Michelle E. Cisz

    2015-01-01

    Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems...

  4. Biofuels, fossil energy ratio, and the future of energy production

    Science.gov (United States)

    Consiglio, David

    2017-05-01

    Two hundred years ago, much of humanity's energy came from burning wood. As energy needs outstripped supplies, we began to burn fossil fuels. This transition allowed our civilization to modernize rapidly, but it came with heavy costs including climate change. Today, scientists and engineers are taking another look at biofuels as a source of energy to fuel our ever-increasing consumption.

  5. The Navy Biofuel Initiative Under the Defense Production Act

    Science.gov (United States)

    2012-06-22

    renewable energy sources (including solar, geothermal , wind, and biomass sources), more efficient energy storage and distribution technologies, and energy...01/0029.xml. • U.S. Department of Agriculture, “U.S. and China Increase Biofuels Cooperation Ahead of the Third U.S. - China Strategic Economic

  6. Nanobiotechnology for the production of biofuels from spent tea ...

    African Journals Online (AJOL)

    Bioenergy is the only alternative and cheap source of energy which can be made easily available to the world. The present experiment included three steps for the conversion of spent tea (Camellia sinensis) into biofuels. In the first step, spent tea was gasified using Co nano catalyst at 300°C and atmospheric pressure.

  7. Socio-economic impact of biofuel feedstock production on local ...

    African Journals Online (AJOL)

    is followed by a discussion on the state of biofuel investments in Ghana. ... which a person or household commands and can use towards a livelihood (Chambers and ... Nyari (2008) reports that agriculture accounts for more than 90% of .... Bakari Nyari, Vice Chairman of Regional Advisory and Information Network Systems.

  8. Availability of crop cellulosics for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, R.D.

    1982-10-01

    Past estimates of cellulosic resources available from Canadian agriculture totalled over 23 million tonnes of cereal grain straw and corn stover residues surplus to soil and animal requirements. A new much reduced estimate, based on four detailed regional studies that also include previously unassessed resources such as chaff, oilseed hulls, and food processing wastes, is suggested. Eleven million tonnes are currently available from all residue sources for energy conversion by different processes. Only five million tonnes are identified as potentially usable in ethanol production plants were they to be constructed. Additional resource opportunities may become available in future from currently underutilized land, especially saline soils, novel processing techniques of conventional grains and forages, innovative cropping systems that may increase the yield of agricultural biomass, and new food/feed/fuel (i.e. multi-purpose) crops such as kochia, milkweed, and Jerusalem artichoke. 27 refs., 1 fig., 1 tab.

  9. Soil management practices for sustainable crop production

    International Nuclear Information System (INIS)

    Abalos, E.B.

    2005-01-01

    In a sustainable system, the soil is viewed as a fragile and living medium that must be protected and nurtured to ensure its long-term productivity and stability. However, due to high demand for food brought about by high population as well as the decline in agricultural lands, the soil is being exploited beyond its limit thus, leading to poor or sick soils. Sound soil management practices in the Philippines is being reviewed. The technologies, including the advantages and disadvantages are hereby presented. This includes proper cropping systems, fertilizer program, soil erosion control and correcting soil acidity. Sound soil management practices which conserve organic matter for long-term sustainability includes addition of compost, maintaining soil cover, increasing aggregates stability, soil tilt and diversity of soil microbial life. A healthy soil is a key component to sustainability as a health soil produce healthy crop plants and have optimum vigor or less susceptible to pests. (author)

  10. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Biofuels represent 2,6% of the energy content of all the fuels used in road transport in Europe today. Nearly half of the target of 5,75% for 2010 set by the directive on biofuels has thus been reached in four years time. To achieve 5,75%, the european union is going to have to increase its production and doubtless call even more on imports, at a moment when biofuels are found at the core of complex ecological and economic issues. This analysis provided data and reflexions on the biofuels situation in the european union: consumption, bio-diesel, bio-ethanol, producers, environmental problems, directives. (A.L.B.)

  11. Productivity growth in food crop production in Imo State, Nigeria ...

    African Journals Online (AJOL)

    Agriculture plays pivotal roles in Nigeria including food security, employment, foreign exchange earnings and poverty reduction. This study examined the growth in food crop productivity in Imo State in Nigeria with emphasis on the decomposition of total factor productivity (TFP) into technical progress, changes in technical ...

  12. Panorama 2007: Potential biomass mobilization for bio-fuel production worldwide, in Europe and in France

    International Nuclear Information System (INIS)

    Lorne, D.

    2007-01-01

    One key factor in ensuring the success of bio-fuel technologies, which are expected to see high growth, is the availability of biomass resources. Although the targets set in Europe and France for the replacement of petroleum products in the transport sector by 2010 can be met by converting farm surpluses into biofuels, in order to proceed further, it will be necessary to mobilize a resource that is more abundant and potentially less costly: ligno-cellulosic materials, i.e. wood or straw. The future of biofuels depends on establishing the much-awaited 'second generation' bio-fuel pathways able to convert ligno-cellulosic materials to ethanol, bio-diesel and bio-kerosene. (author)

  13. Raising Crop Productivity in Africa through Intensification

    Directory of Open Access Journals (Sweden)

    Zerihun Tadele

    2017-03-01

    Full Text Available The population of Africa will double in the next 33 years to reach 2.5 billion by 2050. Although roughly 60% of the continent’s population is engaged in agriculture, the produce from this sector cannot feed its citizens. Hence, in 2013 alone, Africa imported 56.5 million tons of wheat, maize, and soybean at the cost of 18.8 billion USD. Although crops cultivated in Africa play a vital role in their contribution to Food Security, they produce inferior yields compared to those in other parts of the world. For instance, the average cereal yield in Africa is only 1.6 t·ha−1 compared to the global 3.9 t·ha−1. Low productivity in Africa is also related to poor soil fertility and scarce moisture, as well as a variety of insect pests, diseases, and weeds. While moisture scarcity is responsible for up to 60% of yield losses in some African staple cereals, insect pests inflict annually substantial crop losses. In order to devise a strategy towards boosting crop productivity on the continent where food insecurity is most prevalent, these production constraints should be investigated and properly addressed. This review focuses on conventional (also known as genetic intensification in which crop productivity is raised through breeding for cultivars with high yield-potential and those that thrive well under diverse and extreme environmental conditions. Improved crop varieties alone do not boost crop productivity unless supplemented with optimum soil, water, and plant management practices as well as the promotion of policies pertaining to inputs, credit, extension, and marketing. Studies in Kenya and Uganda have shown that the yield of cassava can be increased by 140% in farmers’ fields using improved varieties and management practices. In addition to traditional organic and inorganic fertilizers, biochar and African Dark Earths have been found to improve soil properties and to enhance productivity, although their availability and affordability to

  14. Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2010-01-01

    Algal biomass can provide viable third generation feedstock for liquid transportation fuel. However, for a mature commercial industry to develop, sustainability as well as technological and economic issues pertinent to algal biofuel sector must be addressed first. This viewpoint focuses on three integrated approaches laid out to meet these challenges. Firstly, an integrated algal biorefinery for sequential biomass processing for multiple high-value products is delineated to bring in the financial sustainability to the algal biofuel production units. Secondly, an integrated renewable energy park (IREP) approach is proposed for amalgamating various renewable energy industries established in different locations. This would aid in synergistic and efficient electricity and liquid biofuel production with zero net carbon emissions while obviating numerous sustainability issues such as productive usage of agricultural land, water, and fossil fuel usage. A 'renewable energy corridor' rich in multiple energy sources needed for algal biofuel production for deploying IREPs in the United States is also illustrated. Finally, the integration of various industries with algal biofuel sector can bring a multitude of sustainable deliverables to society, such as renewable supply of cheap protein supplements, health products and aquafeed ingredients. The benefits, challenges, and policy needs of the IREP approach are also discussed.

  15. A Techno-Economic Analysis of Emission Controls on Hydrocarbon Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Arpit; Zhang, Yimin; Davis, Ryan; Eberle, Annika; Heath, Garvin

    2016-06-23

    Biofuels have the potential to reduce our dependency on petroleum-derived transportation fuels and decrease greenhouse gas (GHG) emissions. Although the overall GHG emissions from biofuels are expected to be lower when compared to those of petroleum fuels, the process of converting biomass feedstocks into biofuels emits various air pollutants, which may be subject to federal air quality regulation or emission limits. While prior research has evaluated the technical and economic feasibility of biofuel technologies, gaps still exist in understanding the regulatory issues associated with the biorefineries and their economic implications on biofuel production costs (referred to as minimum fuel selling price (MFSP) in this study). The aim of our research is to evaluate the economic impact of implementing emission reduction technologies at biorefineries and estimate the cost effectiveness of two primary control technologies that may be required for air permitting purposes. We analyze a lignocellulosic sugars-to-hydrocarbon biofuel production pathway developed by the National Renewable Energy Laboratory (NREL) and implement air emission controls in Aspen Plus to evaluate how they affect the MFSP. Results from this analysis can help inform decisions about biorefinery siting and sizing, as well as mitigate the risks associated with air permitting.

  16. Biofuels and the Greater Mekong Subregion: Assessing the impact on prices, production and trade

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jun; Huang, Jikun; Qiu, Huanguang [Center for Chinese Agricultural Policy, Chinese Academy of Sciences and Institute of Geographical Sciences and Natural Resources Research, Jia 11, Datun Road, Beijing 100101 (China); Rozelle, Scott [Freeman Spogli Institute of International Studies, Stanford University, East Encina Hall, Stanford, CA 94305 (United States); Sombilla, Mercy A. [Southeast Asian Regional Center for Graduate Study and Research in Agriculture, College, Laguna 4031 (Philippines)

    2009-11-15

    Similar to many other countries, all nations in the Greater Mekong Subregion (GMS) have planned or are planning to develop strong national biofuel programs. The overall goal of this paper is to better understand the impacts of global and regional biofuels on agriculture and the rest of the economy, with a specific focus on the GMS. Based on a modified multi-country, multi-sector computable general equilibrium model, this study reveals that global biofuel development will significantly increase agricultural prices and production and change trade in agricultural commodities in the GMS and the rest of world. While biofuel in the GMS will have little impacts on global prices, it will have significant effects on domestic agricultural production, land use, trade, and food security. The results also show that the extent of impacts from biofuel is highly dependent on international oil prices and the degree of substitution between biofuel and gasoline. The findings of this study have important policy implications for the GMS countries and the rest of world. (author)

  17. Biofuels and the Greater Mekong Subregion: Assessing the impact on prices, production and trade

    International Nuclear Information System (INIS)

    Yang, Jun; Huang, Jikun; Qiu, Huanguang; Rozelle, Scott; Sombilla, Mercy A.

    2009-01-01

    Similar to many other countries, all nations in the Greater Mekong Subregion (GMS) have planned or are planning to develop strong national biofuel programs. The overall goal of this paper is to better understand the impacts of global and regional biofuels on agriculture and the rest of the economy, with a specific focus on the GMS. Based on a modified multi-country, multi-sector computable general equilibrium model, this study reveals that global biofuel development will significantly increase agricultural prices and production and change trade in agricultural commodities in the GMS and the rest of world. While biofuel in the GMS will have little impacts on global prices, it will have significant effects on domestic agricultural production, land use, trade, and food security. The results also show that the extent of impacts from biofuel is highly dependent on international oil prices and the degree of substitution between biofuel and gasoline. The findings of this study have important policy implications for the GMS countries and the rest of world. (author)

  18. GPP estimates in a biodiesel crop using MERIS products

    Science.gov (United States)

    Sánchez, M. L.; Pardo, N.; Pérez, I.; García, M. A.; Paredes, V.

    2012-04-01

    Greenhouse gas emissions in Spain in 2008-2009 were 34.3 % higher than the base-year level, significantly above the burden-sharing target of 15 % for the period 2008-2012. Based on this result, our country will need to make a major effort to meet the committed target on time using domestic measures as well as others foreseen in the Kyoto Protocol, such as LULUFC activities. In this framework, agrofuels, in other words biofuels produced by crops that contain high amounts of vegetable oil such as sorghum, sunflower, rape seed and jatropha, appear to be an interesting mitigation alternative. Bearing in mind the meteorological conditions in Spain, sunflower and rape seed in particular are considered the most viable crops. Sunflower cultivated surface in Spain has remained fairly constant in recent years, in contrast to rapeseed crop surface which, although still scarce, has followed an increasing trend. In order to assess rape seed ability as a CO2 sink as well as to describe GPP dynamic evolution, we installed an eddy correlation station in an agricultural plot of the Spanish plateau. Measurements at the plot consisted of 30-min NEE flux measurements (using a LI-7500 and a METEK USA-1 sonic anemometer) as well as other common meteorological variables. Measurements were performed from March to October. This paper presents the results of the GPP 8-d estimated values using a Light Use Efficiency Model, LUE. Input data for the LUE model were the FPAR 8-d products supplied by MERIS, the PAR in situ measurements, and a scalar f varying, between 0 and 1, to take into account the reduction of the maximum PAR conversion efficiency, ɛ0, under limiting environmental conditions. The f values were assumed to be dependent on air temperature and the evaporative fraction, EF, which was considered as a proxy of soil moisture. ɛ0, a key parameter, which depends on biome types, was derived through the results of a linear regression fit between the GPP 8-d eddy covariance composites

  19. Watermelon juice: a promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production

    Directory of Open Access Journals (Sweden)

    Bruton Benny D

    2009-08-01

    Full Text Available Abstract Background Two economic factors make watermelon worthy of consideration as a feedstock for ethanol biofuel production. First, about 20% of each annual watermelon crop is left in the field because of surface blemishes or because they are misshapen; currently these are lost to growers as a source of revenue. Second, the neutraceutical value of lycopene and L-citrulline obtained from watermelon is at a threshold whereby watermelon could serve as starting material to extract and manufacture these products. Processing of watermelons to produce lycopene and L-citrulline, yields a waste stream of watermelon juice at the rate of over 500 L/t of watermelons. Since watermelon juice contains 7 to 10% (w/v directly fermentable sugars and 15 to 35 μmol/ml of free amino acids, its potential as feedstock, diluent, and nitrogen supplement was investigated in fermentations to produce bioethanol. Results Complete watermelon juice and that which did not contain the chromoplasts (lycopene, but did contain free amino acids, were readily fermentable as the sole feedstock or as diluent, feedstock supplement, and nitrogen supplement to granulated sugar or molasses. A minimum level of ~400 mg N/L (~15 μmol/ml amino nitrogen in watermelon juice was required to achieve maximal fermentation rates when it was employed as the sole nitrogen source for the fermentation. Fermentation at pH 5 produced the highest rate of fermentation for the yeast system that was employed. Utilizing watermelon juice as diluent, supplemental feedstock, and nitrogen source for fermentation of processed sugar or molasses allowed complete fermentation of up to 25% (w/v sugar concentration at pH 3 (0.41 to 0.46 g ethanol per g sugar or up to 35% (w/v sugar concentration at pH 5 with a conversion to 0.36 to 0.41 g ethanol per g sugar. Conclusion Although watermelon juice would have to be concentrated 2.5- to 3-fold to serve as the sole feedstock for ethanol biofuel production, the results

  20. Crop characteristics and inulin production in chicory

    International Nuclear Information System (INIS)

    Meijer, W.J.M.; Mathijssen, E.W.J.M.

    1992-01-01

    Crop growth, dry matter partitioning, leaf area development, light interception and dry matter : radiation quotient in chicory were studied in field and glasshouse trials. Variations in root and inulin yields were related to sowing time, sowing density and cultivar. Retarded growth of first leaves appeared to be a major factor in limiting productivity. Growth of the first leaves was limited by assimilate supply and by low temperatures. Leaf area expansion exhibited a lag of 350 °Cd from emergence. From that point until crop closure, leaf area index increased exponentially with thermal time. Initially, 60 per cent of the dry matter was partitioned to the leaves; this share gradually decreased to about 10 per cent during later stages. The average dry matter: radiation quotient was 2.6 g MJ -1 for total dry matter and 2.4 g MJ -1 for root dry matter. Cultivars differed in early leaf growth, dry matter partitioning and dry matter: radiation quotient. The crop characteristics are compared with literature data for sugar beet and the prospects for breeding improved genotypes are discussed. (author)

  1. From biomass to sustainable biofuels in southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Van Zyl, W.H.; Den Haan, R.; Rose, S.H.; La Grange, D.C.; Bloom, M. [Stellenbosch Univ., Matieland (South Africa). Dept. of Microbiology; Gorgens, J.F.; Knoetze, J.H. [Stellenbosch Univ., Matieland (South Africa). Dept. of Process Engineering; Von Blottnitz, H. [Cape Town Univ., Rondebosch (South Africa). Dept. of Chemical Engineering

    2009-07-01

    This presentation reported on a global sustainable bioenergy project with particular reference to South Africa's strategy to develop biofuels. The current biofuel production in South Africa was presented along with the potential for biofuels production and other clean alternative fuels. The South African industrial biofuel strategy (IBS) was developed in 2007 with a mandate to create jobs in the energy-crop and biofuels value chain; attract investment into rural areas; promote agricultural development; and reduce the import of foreign oil. The proposed crops for bioethanol include sugar cane and sugar beet, while the proposed crops for biodiesel include sunflower, canola and soya beans. The exclusion of maize was based on food security concerns. Jatropha curcas was also excluded because it is considered to be an invasive species. In addition to environmental benefits, the production of biofuels from biomass in Africa offers improved energy security, economic development and social upliftment. All biofuel projects are evaluated to ensure that these benefits are realized. Although first generation technologies do not score well due to marginal energy balance, negative life cycle impacts or detriment to biodiversity, the conversion of lignocellulosic biomass scores well in terms of enabling the commercialization of second generation biofuels. This paper discussed both the biochemical and thermochemical technological interventions needed to develop commercially-viable second generation lignocellulose conversion technologies to biofuels. tabs., figs.

  2. Recent progress and future challenges in algal biofuel production [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Jonathan B. Shurin

    2016-10-01

    Full Text Available Modern society is fueled by fossil energy produced millions of years ago by photosynthetic organisms. Cultivating contemporary photosynthetic producers to generate energy and capture carbon from the atmosphere is one potential approach to sustaining society without disrupting the climate. Algae, photosynthetic aquatic microorganisms, are the fastest growing primary producers in the world and can therefore produce more energy with less land, water, and nutrients than terrestrial plant crops. We review recent progress and challenges in developing bioenergy technology based on algae. A variety of high-value products in addition to biofuels can be harvested from algal biomass, and these may be key to developing algal biotechnology and realizing the commercial potential of these organisms. Aspects of algal biology that differentiate them from plants demand an integrative approach based on genetics, cell biology, ecology, and evolution. We call for a systems approach to research on algal biotechnology rooted in understanding their biology, from the level of genes to ecosystems, and integrating perspectives from physical, chemical, and social sciences to solve one of the most critical outstanding technological problems.

  3. Current and potential sustainable corn stover feedstock for biofuel production in the United States

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shu-Guang; Tieszen, Larry L.; Bliss, Norman

    2012-01-01

    Increased demand for corn (Zea mays L.) stover as a feedstock for cellulosic ethanol raises concerns about agricultural sustainability. Excessive corn stover harvesting could have long-term impacts on soil quality. We estimated current and future stover production and evaluated the potential harvestable stover amount (HSA) that could be used for biofuel feedstock in the United States by defining the minimum stover requirement (MSR) associated with the current soil organic carbon (SOC) content, tillage practices, and crop rotation systems. Here we show that the magnitude of the current HSA is limited (31 Tg y−1, dry matter) due to the high MSR for maintaining the current SOC content levels of soils that have a high carbon content. An alternative definition of MSR for soils with a moderate level of SOC content could significantly elevate the annual HSA to 68.7 Tg, or even to 132.2 Tg if the amount of currently applied manure is counted to partially offset the MSR. In the future, a greater potential for stover feedstock could come from an increase in stover yield, areal harvest index, and/or the total planted area. These results suggest that further field experiments on MSR should be designed to identify differences in MSR magnitude between maintaining SOC content and preventing soil erosion, and to understand the role of current SOC content level in determining MSR from soils with a wide range of carbon contents and climatic conditions.

  4. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept.

    Science.gov (United States)

    Hughes, Stephen R; López-Núñez, Juan Carlos; Jones, Marjorie A; Moser, Bryan R; Cox, Elby J; Lindquist, Mitch; Galindo-Leva, Luz Angela; Riaño-Herrera, Néstor M; Rodriguez-Valencia, Nelson; Gast, Fernando; Cedeño, David L; Tasaki, Ken; Brown, Robert C; Darzins, Al; Brunner, Lane

    2014-10-01

    The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to

  5. Forecasting China’s Annual Biofuel Production Using an Improved Grey Model

    Directory of Open Access Journals (Sweden)

    Nana Geng

    2015-10-01

    Full Text Available Biofuel production in China suffers from many uncertainties due to concerns about the government’s support policy and supply of biofuel raw material. Predicting biofuel production is critical to the development of this energy industry. Depending on the biofuel’s characteristics, we improve the prediction precision of the conventional prediction method by creating a dynamic fuzzy grey–Markov prediction model. Our model divides random time series decomposition into a change trend sequence and a fluctuation sequence. It comprises two improvements. We overcome the problem of considering the status of future time from a static angle in the traditional grey model by using the grey equal dimension new information and equal dimension increasing models to create a dynamic grey prediction model. To resolve the influence of random fluctuation data and weak anti-interference ability in the Markov chain model, we improve the traditional grey–Markov model with classification of states using the fuzzy set theory. Finally, we use real data to test the dynamic fuzzy prediction model. The results prove that the model can effectively improve the accuracy of forecast data and can be applied to predict biofuel production. However, there are still some defects in our model. The modeling approach used here predicts biofuel production levels based upon past production levels dictated by economics, governmental policies, and technological developments but none of which can be forecast accurately based upon past events.

  6. DETERMINANTS FOR LIQUID BIOFUELS PRODUCTION IN POLAND AFTER 2006 – MODEL APPROACH

    Directory of Open Access Journals (Sweden)

    Michał Borychowski

    2017-06-01

    Full Text Available Liquid biofuels from agricultural raw materials (mainly cereals and oilseeds are produced in Poland on an industrial scale since 2005. Poland, implementing guidelines for the energy policy of the European Union, is committed to ensure the share of liquid biofuels in the total fuel consumption in transport in at least 10% by 2020. The development of liquid biofuels market is therefore dependent on the one hand on institutional factors (legal and administrative regulations, and on the other hand, primarily on the situation of agricultural raw materials markets (supply-demand relationships and prices and macroeconomic factors, mainly crude oil prices. The aim of the paper is empirical identification of determinants for the production of liquid biofuels (bioethanol and biodiesel in Poland. For this purpose there were built two econometric models based on multiple regression, indicating exactly which factors contribute to the increase or decrease in the production of liquid biofuels. For the bioethanol production importance are mainly sales of bioethanol, the variables concerning the cereals market (prices, purchase and export and macroeconomic factors – interest rate, GDP growth rate (change and USD / PLN exchange rate. Important determinants for the biodiesel production include total sale of biodiesel, production of rapeseed oil, import of rapeseed and vegetable oils (rapeseed oil and palm oil and their prices, as well as crude oil prices, which represent the macroeconomic environment. 

  7. The effect of native and introduced biofuel crops on the composition of soil biota communities

    Czech Academy of Sciences Publication Activity Database

    Heděnec, Petr; Novotný, D.; Usťak, S.; Cajthaml, Tomáš; Slejška, A.; Šimáčková, H.; Honzík, R.; Kovářová, M.; Frouz, Jan

    2014-01-01

    Roč. 60, January (2014), s. 137-146 ISSN 0961-9534 Institutional support: RVO:60077344 ; RVO:61388971 Keywords : soil fauna * energy crops * composition of soil fungi * microbial biomass * basal soil respiration Subject RIV: EH - Ecology, Behaviour Impact factor: 3.394, year: 2014

  8. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    Science.gov (United States)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  9. Relay cropping as a sustainable approach: problems and opportunities for sustainable crop production.

    Science.gov (United States)

    Tanveer, Mohsin; Anjum, Shakeel Ahmad; Hussain, Saddam; Cerdà, Artemi; Ashraf, Umair

    2017-03-01

    Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.

  10. Vermont Biofuels Initiative: Local Production for Local Use to Supply a Portion of Vermont's Energy Needs

    Energy Technology Data Exchange (ETDEWEB)

    Sawyer, Scott; Kahler, Ellen

    2009-05-31

    biodiesel producer; 5) technical assistance in the form of feasibility studies for AgNorth Biopower LLC's proposed multi-feedstock biodigester; 6) technology and infrastructure purchases for the construction of a "Cow Power" biodigester at Gervais Family Farm; and 7) the education and outreach activities of the Vermont Biofuels Association. DOE FY05 funded research, technical assistance, and education and outreach activities have helped to provide Vermont farmers and entrepreneurs with important feedstock production, feedstock logistics, and biomass conversion information that did not exist prior as we work to develop an instate biodiesel sector. The efficacy of producing oilseed crops in New England is now established: Oilseed crops can grow well in Vermont, and good yields are achievable given improved harvesting equipment and techniques. DOE FY05 funds used for technology and infrastructure development have expanded Vermont's pool of renewable electricity and liquid fuel generation. It is now clear that on-farm energy production provides an opportunity for Vermont farmers and entrepreneurs to reduce on-farm expenditures of feed and fuel while providing for their energy security. Meanwhile they are developing new value-added revenue sources (e.g., locally produced livestock meal), retaining more dollars in the local economy, and reducing greenhouse gas emissions.

  11. Development of a standard methodology for integrating non-food crop production in rural areas with niche energy markets. Proceedings

    International Nuclear Information System (INIS)

    1996-09-01

    This project was supported as a Concerted Action under the EC DGVI AIR programme from 1993-1996. It has successfully developed a standard methodology to help integrate non-food crop production in rural areas with niche energy markets. The methodology was used to compare the costs of different energy crop production and conversion options across the six participating nations. The partners provide a representative cross-section of European agriculture and energy expertise. All partners agreed on three niche markets favourable for biomass and biofuels: small-scale heat markets (less than 1 MW th ) for agro-industry, domestic and commercial buildings, medium-scale heat markets (1-10MW th ), including cogeneration for light industry and district heating, and liquid biofuels as substitutes for fossil fuels in transport, heat and power applications. (Author)

  12. The Role of Social Constructions and Biophysical Attributes of the Environment in Decision-Making in the Context of Biofuels and Rubber Production Partnership Regimes in Upland Philippines

    Science.gov (United States)

    Montefrio, M. F.

    2012-12-01

    Burgeoning attention in biofuels and natural rubber has spurred interest among governments and private companies in integrating marginalized communities into global commodity markets. Upland farmers from diverse cultural backgrounds and biophysical settings today are deciding whether to agree with partnership proposals from governments and private firms to grow biofuels and natural rubber. In this paper, I examine whether upland farmers' socio-environmental constructions (evaluative beliefs, place satisfaction, and ecological worldviews) and the actual biophysical attributes (land cover and soil types) of upland environments, respectively, function as significant predictors of the intent and decisions of indigenous and non-indigenous farmers to cooperate with government and private actors to establish certain biofuel crops and natural rubber production systems in Palawan, Philippines. Drawing from ethnography and statistical analysis of household surveys, I propose that social constructions and the biophysical attributes of the environment are closely related with each other and in turn both influence individual decision-making behavior in resource-based production partnership regimes. This has significant implications on the resilience of socio-ecological systems, particularly agro-ecosystems, as certain upland farmers prefer to engage in intensive, monocrop production of biofuels and natural rubber on relatively more biodiverse areas, such as secondary forests and traditional shifting cultivation lands. The study aims to advance new institutional theories of resource management, particularly Ostrom's Institutional Analysis and Development and Socio-Ecological Systems frameworks, and scholarship on environmental decision-making in the context of collective action.

  13. Understanding and engineering enzymes for enhanced biofuel production.

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake Alexander; Volponi, Joanne V.; Sapra, Rajat; Faulon, Jean-Loup Michel; Buffleben, George M.; Roe, Diana C.

    2009-01-01

    Today, carbon-rich fossil fuels, primarily oil, coal and natural gas, provide 85% of the energy consumed in the United States. The release of greenhouse gases from these fuels has spurred research into alternative, non-fossil energy sources. Lignocellulosic biomass is renewable resource that is carbon-neutral, and can provide a raw material for alternative transportation fuels. Plant-derived biomass contains cellulose, which is difficult to convert to monomeric sugars for production of fuels. The development of cost-effective and energy-efficient processes to transform the cellulosic content of biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, the high costs of enzymatic deconstruction of biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. One of the main impediments to more widespread utilization of this important resource is the recalcitrance of cellulosic biomass and techniques that can be utilized to deconstruct cellulosic biomass.

  14. Alternative Technologies for Biofuels Production in Kraft Pulp Mills—Potential and Prospects

    Directory of Open Access Journals (Sweden)

    Esa Vakkilainen

    2012-07-01

    Full Text Available The current global conditions provide the pulp mill new opportunities beyond the traditional production of cellulose. Due to stricter environmental regulations, volatility of oil price, energy policies and also the global competitiveness, the challenges for the pulp industry are many. They range from replacing fossil fuels with renewable energy sources to the export of biofuels, chemicals and biomaterials through the implementation of biorefineries. In spite of the enhanced maturity of various bio and thermo-chemical conversion processes, the economic viability becomes an impediment when considering the effective implementation on an industrial scale. In the case of kraft pulp mills, favorable conditions for biofuels production can be created due to the availability of wood residues and generation of black liquor. The objective of this article is to give an overview of the technologies related to the production of alternative biofuels in the kraft pulp mills and discuss their potential and prospects in the present and future scenario.

  15. From pathways to genomes and beyond. The metabolic engineering toolbox and its place in biofuels production

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Leqian; Reed, Ben; Alper, Hal [Texas Univ., Austin, TX (United States). Dept. of Chemical Engineering

    2011-07-01

    Concerns about the availability of petroleum-derived fuels and chemicals have led to the exploration of metabolically engineered organisms as novel hosts for biofuels and chemicals production. However, the complexity inherent in metabolic and regulatory networks makes this undertaking a complex task. To address these limitations, metabolic engineering has adapted a wide-variety of tools for altering phenotypes. In this review, we will highlight traditional and recent metabolic engineering tools for optimizing cells including pathway-based, global, and genomic-enabled approaches. Specifically, we describe these tools as well as provide demonstrations of their effectiveness in optimizing biofuels production. However, each of these tools provides stepping stones towards the grand goal of biofuels production. Thus, developing methods for large-scale cellular optimization and integrative approaches are invaluable for further cell optimization. This review highlights the challenges that still must be met to accomplish this goal. (orig.)

  16. Second generation biofuels: Economics and policies

    International Nuclear Information System (INIS)

    Carriquiry, Miguel A.; Du Xiaodong; Timilsina, Govinda R.

    2011-01-01

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: → Second generation biofuels could significantly contribute to the future energy supply mix. → Cost is a major barrier to its the commercial production in the near to medium term. → The policy regime should be revised to account for the relative merits of different biofuels.

  17. Second generation biofuels: Economics and policies

    Energy Technology Data Exchange (ETDEWEB)

    Carriquiry, Miguel A., E-mail: miguelc@iastate.edu [Center for Agricultural and Rural Development, Iowa State University (United States); Du Xiaodong, E-mail: xdu23@wisc.edu [Department of Agricultural and Applied Economics, University of Wisconsin-Madison (United States); Timilsina, Govinda R., E-mail: gtimilsina@worldbank.org [Development Research Group, The World Bank (United States)

    2011-07-15

    This study reviews economics of production of second generation biofuels from various feedstocks, including crop and wood/forestry residues, lignocellulosic energy crops, jatropha, and algae. The study indicates that while second generation biofuels could significantly contribute to the future energy supply mix, cost is a major barrier to its commercial production in the near to medium term. Depending upon type of biofuels, feedstock prices and conversion costs, the cost of cellulosic ethanol is found to be two to three times higher than the current price of gasoline on an energy equivalent basis. The median cost (across the studies reviewed) of biodiesel produced from microalgae, a prospective feedstock, is seven times higher than the current price of diesel, although much higher cost estimates have been reported. As compared with the case of first generation biofuels, in which feedstock can account for over two-thirds of the total costs, the share of feedstock in the total costs is relatively lower (30-50%) in the case of second generation biofuels. While significant cost reductions are needed for both types of second generation biofuels, the critical barriers are at different steps of the production process. For cellulosic ethanol, the biomass conversion costs needs to be reduced. On the other hand, feedstock cost is the main issue for biodiesel. At present, policy instruments, such as fiscal incentives and consumption mandates have in general not differentiated between the first and second generation biofuels except in the cases of the US and EU. The policy regime should be revised to account for the relative merits of different types of biofuels. - Highlights: > Second generation biofuels could significantly contribute to the future energy supply mix. > Cost is a major barrier to its the commercial production in the near to medium term. > The policy regime should be revised to account for the relative merits of different biofuels.

  18. Computational metabolic engineering strategies for growth-coupled biofuel production by Synechocystis

    Directory of Open Access Journals (Sweden)

    Kiyan Shabestary

    2016-12-01

    Full Text Available Chemical and fuel production by photosynthetic cyanobacteria is a promising technology but to date has not reached competitive rates and titers. Genome-scale metabolic modeling can reveal limitations in cyanobacteria metabolism and guide genetic engineering strategies to increase chemical production. Here, we used constraint-based modeling and optimization algorithms on a genome-scale model of Synechocystis PCC6803 to find ways to improve productivity of fermentative, fatty-acid, and terpene-derived fuels. OptGene and MOMA were used to find heuristics for knockout strategies that could increase biofuel productivity. OptKnock was used to find a set of knockouts that led to coupling between biofuel and growth. Our results show that high productivity of fermentation or reversed beta-oxidation derived alcohols such as 1-butanol requires elimination of NADH sinks, while terpenes and fatty-acid based fuels require creating imbalances in intracellular ATP and NADPH production and consumption. The FBA-predicted productivities of these fuels are at least 10-fold higher than those reported so far in the literature. We also discuss the physiological and practical feasibility of implementing these knockouts. This work gives insight into how cyanobacteria could be engineered to reach competitive biofuel productivities. Keywords: Cyanobacteria, Modeling, Flux balance analysis, Biofuel, MOMA, OptFlux, OptKnock

  19. Interactions of woody biofuel feedstock production systems with water resources: considerations for sustainability

    Science.gov (United States)

    Carl C. Trettin; Devendra Amatya; Mark Coleman

    2008-01-01

    Water resources are important for the production of woody biofuel feedstocks. It is necessary to ensure that production systems do not adversely affect the quantity or quality of surface and ground water. The effects of woody biomass plantations on water resources are largely dependent on the prior land use and the management regime. Experience from both irrigated and...

  20. The National Biofuels Strategy - Importance of sustainable feedstock production systems in regional-based supply chains

    Science.gov (United States)

    Region-based production systems are needed to produce the feedstocks that will be turned into the biofuels required to meet Federal mandated targets. Executive and Legislative actions have put into motion significant government responses designed to advance the development and production of domestic...

  1. Biofuel Production in Ireland—An Approach to 2020 Targets with a Focus on Algal Biomass

    Directory of Open Access Journals (Sweden)

    Fionnuala Murphy

    2013-12-01

    Full Text Available Under the Biofuels Obligation Scheme in Ireland, the biofuels penetration rate target for 2013 was set at 6% by volume from a previous 4% from 2010. In 2012 the fuel blend reached 3%, with approximately 70 million L of biodiesel and 56 million L of ethanol blended with diesel and gasoline, respectively. Up to and including April 2013, the current blend rate in Ireland for biodiesel was 2.3% and for bioethanol was 3.7% which equates to approximately 37.5 million L of biofuel for the first four months of 2013. The target of 10% by 2020 remains, which equates to approximately 420 million L yr−1. Achieving the biofuels target would require 345 ktoe by 2020 (14,400 TJ. Utilizing the indigenous biofuels in Ireland such as tallow, used cooking oil and oil seed rape leaves a shortfall of approximately 12,000 TJ or 350 million L (achieving only 17% of the 10% target that must be either be imported or met by other renewables. Other solutions seem to suggest that microalgae (for biodiesel and macroalgae (for bioethanol could meet this shortfall for indigenous Irish production. This paper aims to review the characteristics of algae for biofuel production based on oil yields, cultivation, harvesting, processing and finally in terms of the European Union (EU biofuels sustainability criteria, where, up to 2017, a 35% greenhouse gas (GHG emissions reduction is required compared to fossil fuels. From 2017 onwards, a 50% GHG reduction is required for existing installations and from 2018, a 60% reduction for new installations is required.

  2. Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels.

    Science.gov (United States)

    Islam, Zia Ul; Zhisheng, Yu; Hassan, El Barbary; Dongdong, Chang; Hongxun, Zhang

    2015-12-01

    This review highlights the potential of the pyrolysis-based biofuels production, bio-ethanol in particular, and lipid in general as an alternative and sustainable solution for the rising environmental concerns and rapidly depleting natural fuel resources. Levoglucosan (1,6-anhydrous-β-D-glucopyranose) is the major anhydrosugar compound resulting from the degradation of cellulose during the fast pyrolysis process of biomass and thus the most attractive fermentation substrate in the bio-oil. The challenges for pyrolysis-based biorefineries are the inefficient detoxification strategies, and the lack of naturally available efficient and suitable fermentation organisms that could ferment the levoglucosan directly into bio-ethanol. In case of indirect fermentation, acid hydrolysis is used to convert levoglucosan into glucose and subsequently to ethanol and lipids via fermentation biocatalysts, however the presence of fermentation inhibitors poses a big hurdle to successful fermentation relative to pure glucose. Among the detoxification strategies studied so far, over-liming, extraction with solvents like (n-butanol, ethyl acetate), and activated carbon seem very promising, but still further research is required for the optimization of existing detoxification strategies as well as developing new ones. In order to make the pyrolysis-based biofuel production a more efficient as well as cost-effective process, direct fermentation of pyrolysis oil-associated fermentable sugars, especially levoglucosan is highlly desirable. This can be achieved either by expanding the search to identify naturally available direct levoglusoan utilizers or modify the existing fermentation biocatalysts (yeasts and bacteria) with direct levoglucosan pathway coupled with tolerance engineering could significantly improve the overall performance of these microorganisms.

  3. Perspectives of microalgal biofuels as a renewable source of energy

    International Nuclear Information System (INIS)

    Kiran, Bala; Kumar, Ritunesh; Deshmukh, Devendra

    2014-01-01

    Highlights: • Microalgae offer solution of wastewater treatment, CO 2 sequestration, and energy crises. • Microalgal biofuel is renewable, nontoxic and environmentally friendly option. • Integration of wastewater treatment with biofuels production has made them more cost effective. • This article details out the potential production process and benefits of microalgal biofuels. - Abstract: Excessive use of fossil fuels to satisfy our rapidly increasing energy demand has created severe environmental problems, such as air pollution, acid rain and global warming. Biofuels are a potential alternative to fossil fuels. First- and second-generation biofuels face criticism due to food security and biodiversity issues. Third-generation biofuels, based on microalgae, seem to be a plausible solution to the current energy crisis, as their oil-producing capability is many times higher than that of various oil crops. Microalgae are the fastest-growing plants and can serve as a sustainable energy source for the production of biodiesel and several other biofuels by conversion of sunlight into chemical energy. Biofuels produced from microalgae are renewable, non-toxic, biodegradable and environment friendly. Microalgae can be grown in open pond systems or closed photobioreactors. Microalgal biofuels are a potential means to keep the development of human activities in synchronization with the environment. The integration of wastewater treatment with biofuel production using microalgae has made microalgal biofuels more attractive and cost effective. A biorefinery approach can also be used to improve the economics of biofuel production, in which all components of microalgal biomass (i.e., proteins, lipids and carbohydrates) are used to produce useful products. The integration of various processes for maximum economic and environmental benefits minimizes the amount of waste produced and the pollution level. This paper presents an overview of various aspects associated with

  4. Microalgae to biofuels: life cycle impacts of methane production of anaerobically digested lipid extracted algae.

    Science.gov (United States)

    Quinn, Jason C; Hanif, Asma; Sharvelle, Sybil; Bradley, Thomas H

    2014-11-01

    This study presents experimental measurements of the biochemical methane production for whole and lipid extracted Nannochloropsis salina. Results show whole microalgae produced 430 cm(3)-CH4 g-volatile solids(-1) (g-VS) (σ=60), 3 times more methane than was produced by the LEA, 140 cm(3)-CH4 g-VS(-1) (σ=30). Results illustrate current anaerobic modeling efforts in microalgae to biofuel assessments are not reflecting the impact of lipid removal. On a systems level, the overestimation of methane production is shown to positively skew the environmental impact of the microalgae to biofuels process. Discussion focuses on a comparison results to those of previous anaerobic digestion studies and quantifies the corresponding change in greenhouse gas emissions of the microalgae to biofuels process based on results from this study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Fuelling the future: microbial engineering for the production of sustainable biofuels.

    Science.gov (United States)

    Liao, James C; Mi, Luo; Pontrelli, Sammy; Luo, Shanshan

    2016-04-01

    Global climate change linked to the accumulation of greenhouse gases has caused concerns regarding the use of fossil fuels as the major energy source. To mitigate climate change while keeping energy supply sustainable, one solution is to rely on the ability of microorganisms to use renewable resources for biofuel synthesis. In this Review, we discuss how microorganisms can be explored for the production of next-generation biofuels, based on the ability of bacteria and fungi to use lignocellulose; through direct CO2 conversion by microalgae; using lithoautotrophs driven by solar electricity; or through the capacity of microorganisms to use methane generated from landfill. Furthermore, we discuss how to direct these substrates to the biosynthetic pathways of various fuel compounds and how to optimize biofuel production by engineering fuel pathways and central metabolism.

  6. Mathematical modeling of unicellular microalgae and cyanobacteria metabolism for biofuel production.

    Science.gov (United States)

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Bernard, Olivier; Steyer, Jean-Philippe

    2015-06-01

    The conversion of microalgae lipids and cyanobacteria carbohydrates into biofuels appears to be a promising source of renewable energy. This requires a thorough understanding of their carbon metabolism, supported by mathematical models, in order to optimize biofuel production. However, unlike heterotrophic microorganisms that utilize the same substrate as sources of energy and carbon, photoautotrophic microorganisms require light for energy and CO2 as carbon source. Furthermore, they are submitted to permanent fluctuating light environments due to outdoor cultivation or mixing inducing a flashing effect. Although, modeling these nonstandard organisms is a major challenge for which classical tools are often inadequate, this step remains a prerequisite towards efficient optimization of outdoor biofuel production at an industrial scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    Science.gov (United States)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  8. Controversies, development and trends of biofuel industry in the world

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2012-09-01

    Full Text Available Controversies, development and trends of biofuel industry in the world were discussed in present article. First-generation biofuels, i.e., grain and land based biofuels, occupied large areas of arable lands and severely constrained food supplies, are widely disputed. They have been replaced by second-generation biofuels. The raw materials of the second-generation biofuels include plants, straw, grass and other crops and forest residues. However, the cost for production of the second-generation biofuels is higher. Therefore the development of the third-generation biofuels is undergoing. The third-generation technologies use, mainly algae, as raw material to produce bioethanol, biobutanol, biodiesel and hydrogen, and use discarded fruits to produce dimethylfuran, etc. Different countries and regions are experiencing different stages of biofuel industry. In the future the raw materials for biofuel production will be focused on various by-products, wastes, and organisms that have not direct economic benefit for human. Production technologies should be improved or invented to reduce carbon emission and environmental pollution during biofuel production and to reduce production cost.

  9. World Biofuels Study

    Energy Technology Data Exchange (ETDEWEB)

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very

  10. Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    Science.gov (United States)

    Li, Qi

    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be

  11. Potential for fuel production from crops

    Energy Technology Data Exchange (ETDEWEB)

    Hurduc, N.; Teaci, D.; Serbanescu, E.; Hartia, S.

    1986-07-01

    Studies conducted during the last few years show that the various ecological conditions in Romania determine different pathways of energetic phytomass production and transformation into fuel. There are approximately 22 million ha of land covered by terrestrial vegetation of which 10 million is arable land and one-fifth of this is of poor productivity. Waters cover approximately 0.7 million ha. The technologies used for the production of energetic phytomass from various agricultural, forest and aquatic species tend to yield 20-25 t of dry matter for the terrestrial forms and 20-40 t of dry matter for the aquatic ones; this represents a mean annual output of 2000-2500 l of ethanol per ha. For agricultural lands having a high fertility, the following species were shown to be important from an energy point of view: sugar beet (roots), sweet sorghum at the milk-dough stage, kernel maize, Jerusalem artichoke (tubers and green above-ground parts), potatoes (tubers), and oil rape. Some laticiferous plants are also being studied. On fertile soils in the southern irrigated areas, high yields of energetic phytomass were obtained in stubble crops with maize, sorghum X Sudan grass and grain sorghum. Investigations are being conducted with a view to improving the fertility of poorly productive soils, which cannot be used for agricultural purposes at the present time. 3 figs., 6 tabs., 2 refs.

  12. Initial study - compilation and synthesis of knowledge about energy crops from field to energy production

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Magnus; Bubholz, Monika; Forsberg, Maya; Myringer, Aase; Palm, Ola; Roennbaeck, Marie; Tullin, Claes

    2007-11-15

    Energy crops constitute an yet not fully utilised potential as fuel for heating and power production. As competition for biomass increases interest in agricultural fuels such as straw, energy grain, willow, reed canary grass and hemp is increasing. Exploiting the potential for energy crops as fuels will demand that cultivation and harvest be coordinated with transportation, storage and combustion of the crops. Together, Vaermeforsk and the Swedish Farmers' Foundation for Agricultural Research (SLF), have taken the initiative to a common research programme. The long-term aim of the programme is to increase production and utilisation of bioenergy from agriculture to combustion for heat and power production in Sweden. The vision is that during the course of the 2006 - 2009 programme, decisive steps will be taken towards a functioning market for biofuels for bioenergy from agriculture. This survey has compiled and synthesised available knowledge and experiences about energy crops from field to energy production. The aim has been to provide a snapshot of knowledge today, to identify knowledge gaps and to synthesise knowledge we have today into future research needs. A research plan proposal has been developed for the research programme

  13. Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.

    Science.gov (United States)

    Hager, Heather A; Sinasac, Sarah E; Gedalof, Ze'ev; Newman, Jonathan A

    2014-01-01

    In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.

  14. An agent-based model of farmer decision-making and water quality impacts at the watershed scale under markets for carbon allowances and a second-generation biofuel crop

    Science.gov (United States)

    Ng, Tze Ling; Eheart, J. Wayland; Cai, Ximing; Braden, John B.

    2011-09-01

    An agent-based model of farmers' crop and best management practice (BMP) decisions is developed and linked to a hydrologic-agronomic model of a watershed, to examine farmer behavior, and the attendant effects on stream nitrate load, under the influence of markets for conventional crops, carbon allowances, and a second-generation biofuel crop. The agent-based approach introduces interactions among farmers about new technologies and market opportunities, and includes the updating of forecast expectations and uncertainties using Bayesian inference. The model is applied to a semi-hypothetical example case of farmers in the Salt Creek Watershed in Central Illinois, and a sensitivity analysis is performed to effect a first-order assessment of the plausibility of the results. The results show that the most influential factors affecting farmers' decisions are crop prices, production costs, and yields. The results also show that different farmer behavioral profiles can lead to different predictions of farmer decisions. The farmers who are predicted to be more likely to adopt new practices are those who interact more with other farmers, are less risk averse, quick to adjust their expectations, and slow to reduce their forecast confidence. The decisions of farmers have direct water quality consequences, especially those pertaining to the adoption of the second-generation biofuel crop, which are estimated to lead to reductions in stream nitrate load. The results, though empirically untested, appear plausible and consistent with general farmer behavior. The results demonstrate the usefulness of the coupled agent-based and hydrologic-agronomic models for normative research on watershed management on the water-energy nexus.

  15. Annual forage cropping-systems for midwestern ruminant livestock production

    OpenAIRE

    McMillan, John Ernest

    2016-01-01

    Annual forage cropping systems are a vital aspect of livestock forage production. One area where this production system can be enhanced is the integration of novel annual forages into conventional cropping systems. Two separate projects were conducted to investigate alternative forage options in annual forage production. In the first discussed research trial, two sets of crops were sown following soft red winter wheat (Triticum aestivum L.) grain harvest, at two nitrogen application rates 56 ...

  16. Analysis of the potential production and the development of bioenergy in the province of Mendoza - Bio-fuels and biomass - Using geographic information systems

    International Nuclear Information System (INIS)

    Flores Marco, Noelia; Hilbert, Jorge Antonio; Silva Colomer, Jorge; Anschau, Renee Alicia; Carballo, Stella

    2010-01-01

    In this work, the partial results of the potential production of energy, starting from the biomass and the development of the crops, directed to the production of bio-fuels (Colza and Topinamur) in the North irrigation oasis of Mendoza, Argentina within the National Program of Bio-energy developed by INTA is presented. For the evaluation of the bio-energetic potential, derived from the biomass, the WISDOM methodology developed by FAO and implemented by INTA in Argentina was applied with the collaboration of national and provincial governmental entities that contribute local information The study of the potential production and the development of the bio-energetic crops have been carried out with the advising and participation of the experts of INTA of the studied crops. The province of Mendoza has semi-deserted agro-climatic characteristics. The type of soil and type of weather allows the production of great quality fruits and vegetables in the irrigated areas. The four great currents of water conform three oasis; Northeast, Center and South, which occupy the 3.67% of the surface of Mendoza. Today, Mendoza has 267,889 irrigated hectares, but the surface that was farmed by irrigation was near to the 400,000 ha. The climate contingencies, froze and hailstorm precipitations, plus the price instability cause great losses in the productive sector, taking it to the forlornness of the exploitations. The crop setting of these forlornness lands with crops directed to the production of bio-fuels and the utilization of the biomass coming from the agriculture activities and the agro industry (pruning of fruit trees, refuses of olive and vine, remnants of the peach industry, etc.) could assist the access to the energy in the rural areas, stimulating the economical improvement and the development in these communities. (author)

  17. Analysis of the potential production and the development of bioenergy in the province of Mendoza - Bio-fuels and biomass - Using geographic information systems

    Energy Technology Data Exchange (ETDEWEB)

    Flores Marco, Noelia; Hilbert, Jorge Antonio [Instituto de Ingenieria Rural, INTA Las Cabanas y Los Reseros s/n, CP: 1712 Castelar, Buenos Aires (Argentina); Silva Colomer, Jorge [INTA EEA Junin Mendoza, Carril Isidoro Busquets s/n CP: 5572 (Argentina); Anschau, Renee Alicia; Carballo, Stella [Instituto de Clima y Agua, INTA. Las Cabanas y Los Reseros s/n, CP:1712 Castelar, Buenos Aires (Argentina)

    2010-06-15

    In this work, the partial results of the potential production of energy, starting from the biomass and the development of the crops, directed to the production of bio-fuels (Colza and Topinamur) in the North irrigation oasis of Mendoza, Argentina within the National Program of Bio-energy developed by INTA is presented. For the evaluation of the bio-energetic potential, derived from the biomass, the WISDOM methodology developed by FAO and implemented by INTA in Argentina was applied with the collaboration of national and provincial governmental entities that contribute local information The study of the potential production and the development of the bio-energetic crops have been carried out with the advising and participation of the experts of INTA of the studied crops. The province of Mendoza has semi-deserted agro-climatic characteristics. The type of soil and type of weather allows the production of great quality fruits and vegetables in the irrigated areas. The four great currents of water conform three oasis; Northeast, Center and South, which occupy the 3.67% of the surface of Mendoza. Today, Mendoza has 267,889 irrigated hectares, but the surface that was farmed by irrigation was near to the 400,000 ha. The climate contingencies, froze and hailstorm precipitations, plus the price instability cause great losses in the productive sector, taking it to the forlornness of the exploitations. The crop setting of these forlornness lands with crops directed to the production of bio-fuels and the utilization of the biomass coming from the agriculture activities and the agro industry (pruning of fruit trees, refuses of olive and vine, remnants of the peach industry, etc.) could assist the access to the energy in the rural areas, stimulating the economical improvement and the development in these communities. (author)

  18. A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels.

    Directory of Open Access Journals (Sweden)

    Joshua I Park

    Full Text Available Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels.

  19. A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels

    Science.gov (United States)

    Park, Joshua I.; Steen, Eric J.; Burd, Helcio; Evans, Sophia S.; Redding-Johnson, Alyssa M.; Batth, Tanveer; Benke, Peter I.; D'haeseleer, Patrik; Sun, Ning; Sale, Kenneth L.; Keasling, Jay D.; Lee, Taek Soon; Petzold, Christopher J.; Mukhopadhyay, Aindrila; Singer, Steven W.; Simmons, Blake A.; Gladden, John M.

    2012-01-01

    Generation of biofuels from sugars in lignocellulosic biomass is a promising alternative to liquid fossil fuels, but efficient and inexpensive bioprocessing configurations must be developed to make this technology commercially viable. One of the major barriers to commercialization is the recalcitrance of plant cell wall polysaccharides to enzymatic hydrolysis. Biomass pretreatment with ionic liquids (ILs) enables efficient saccharification of biomass, but residual ILs inhibit both saccharification and microbial fuel production, requiring extensive washing after IL pretreatment. Pretreatment itself can also produce biomass-derived inhibitory compounds that reduce microbial fuel production. Therefore, there are multiple points in the process from biomass to biofuel production that must be interrogated and optimized to maximize fuel production. Here, we report the development of an IL-tolerant cellulase cocktail by combining thermophilic bacterial glycoside hydrolases produced by a mixed consortia with recombinant glycoside hydrolases. This enzymatic cocktail saccharifies IL-pretreated biomass at higher temperatures and in the presence of much higher IL concentrations than commercial fungal cocktails. Sugars obtained from saccharification of IL-pretreated switchgrass using this cocktail can be converted into biodiesel (fatty acid ethyl-esters or FAEEs) by a metabolically engineered strain of E. coli. During these studies, we found that this biodiesel-producing E. coli strain was sensitive to ILs and inhibitors released by saccharification. This cocktail will enable the development of novel biomass to biofuel bioprocessing configurations that may overcome some of the barriers to production of inexpensive cellulosic biofuels. PMID:22649505

  20. Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification

    International Nuclear Information System (INIS)

    Li, Qi; Hu, Guiping

    2014-01-01

    An advanced biofuels supply chain is proposed to reduce biomass transportation costs and take advantage of the economics of scale for a gasification facility. In this supply chain, biomass is converted to bio-oil at widely distributed small-scale fast pyrolysis plants, and after bio-oil gasification, the syngas is upgraded to transportation fuels at a centralized biorefinery. A two-stage stochastic programming is formulated to maximize biofuel producers' annual profit considering uncertainties in the supply chain for this pathway. The first stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants as well as the centralized biorefinery, while the second stage determines the biomass and biofuels flows. A case study based on Iowa in the U.S. illustrates that it is economically feasible to meet desired demand using corn stover as the biomass feedstock. The results show that the locations of fast pyrolysis plants are sensitive to uncertainties while the capacity levels are insensitive. The stochastic model outperforms the deterministic model in the stochastic environment, especially when there is insufficient biomass. Also, farmers' participation can have a significant impact on the profitability and robustness of this supply chain. - Highlights: • Decentralized supply chain design for advanced biofuel production is considered. • A two-stage stochastic programming is formulated to consider uncertainties. • Farmers' participation has a significant impact on the biofuel supply chain design

  1. Crop production management practices as a cause for low water ...

    African Journals Online (AJOL)

    Limited knowledge of irrigated crop production among farmers has been identified as one of the constraints to improved crop productivity, but research that investigates the relationship between farmer practices and productivity is lacking. A monitoring study was therefore conducted at the Zanyokwe Irrigation Scheme (ZIS) ...

  2. Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability

    Directory of Open Access Journals (Sweden)

    Ian J. Bonner

    2014-10-01

    Full Text Available Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while benefiting soil and water quality and increasing biodiversity. Despite these positive traits, energy crops remain largely unaccepted due to concerns over their practicality and cost of implementation. This paper presents a case study for Hardin County, Iowa, to demonstrate how subfield decision making can be used to target candidate areas for conversion to energy crop production. Estimates of variability in row crop production at a subfield level are used to model the economic performance of corn (Zea mays L. grain and the environmental impacts of corn stover collection using the Landscape Environmental Analysis Framework (LEAF. The strategy used in the case study integrates switchgrass (Panicum virgatum L. into subfield landscape positions where corn grain is modeled to return a net economic loss. Results show that switchgrass integration has the potential to increase sustainable biomass production from 48% to 99% (depending on the rigor of conservation practices applied to corn stover collection, while also improving field level profitability of corn. Candidate land area is highly sensitive to grain price (0.18 to 0.26 $·kg−1 and dependent on the acceptable subfield net loss for corn production (ranging from 0 to −1000 $·ha−1 and the ability of switchgrass production to meet or exceed this return. This work presents the case that switchgrass may be economically incorporated into row crop landscapes when management decisions are applied at a subfield scale within field areas modeled to have a negative net profit with current management practices.

  3. Production of advanced biofuels: co-processing of upgraded pyrolysis oil in standard refinery units

    NARCIS (Netherlands)

    De Miguel Mercader, F.; de Miguel Mercader, F.; Groeneveld, M.J.; Hogendoorn, Kees; Kersten, Sascha R.A.; Way, N.W.J.; Schaverien, C.J.

    2010-01-01

    One of the possible process options for the production of advanced biofuels is the co-processing of upgraded pyrolysis oil in standard refineries. The applicability of hydrodeoxygenation (HDO) was studied as a pyrolysis oil upgrading step to allow FCC co-processing. Different HDO reaction end

  4. The economics of cyanobacteria-based biofuel production: challenges and opportunities

    NARCIS (Netherlands)

    Sharma, N.K.; Stal, L.J.; Sharma, N.K.; Rai, A.K.; Stal, L.J.

    2014-01-01

    In the current scenario, biofuels based on algae, including cyanobacteria, are expensive, complex to produce, and are only just entering the commercial phase in small quantities in pilot or demonstration plants. This chapter discusses the current scenario of using cyanobacteria for the production of

  5. Applying Bayesian modelling to assess climate change effects on biofuel production

    CSIR Research Space (South Africa)

    Peter, C

    2009-12-01

    Full Text Available the resilience of a strategy that meets the new South African national biofuel production target can be assessed in relation to climate change. Cross-disciplinary consideration of variables may be enhanced through the sensitivity analysis enabled by Bayesian...

  6. Stochastic production planning for a biofuel supply chain under demand and price uncertainties

    International Nuclear Information System (INIS)

    Awudu, Iddrisu; Zhang, Jun

    2013-01-01

    Highlights: ► The proposed stochastic model outperforms the deterministic model. ► The price of biofuel is modeled as Geometric Brownian Motion (GBM). ► The proposed model can be applied in any biofuel supply chain. -- Abstract: In this paper, we propose a stochastic production planning model for a biofuel supply chain under demand and price uncertainties. The supply chain consists of biomass suppliers, biofuel refinery plants and distribution centers. A stochastic linear programming model is proposed within a single-period planning framework to maximize the expected profit. Decisions such as the amount of raw materials purchased, the amount of raw materials consumed and the amount of products produced are considered. Demands of end products are uncertain with known probability distributions. The prices of end products follow Geometric Brownian Motion (GBM). Benders decomposition (BD) with Monte Carlo simulation technique is applied to solve the proposed model. To demonstrate the effectiveness of the proposed stochastic model and the decomposition algorithm, a representative supply chain for an ethanol plant in North Dakota is considered. To investigate the results of the proposed model, a simulation framework is developed to compare the performances of deterministic model and proposed stochastic model. The results from the simulation indicate the proposed model obtain higher expected profit than the deterministic model under different uncertainty settings. Sensitivity analyses are performed to gain management insight on how profit changes due to the uncertainties affect the model developed.

  7. Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study.

    Science.gov (United States)

    Xin, Chunhua; Addy, Min M; Zhao, Jinyu; Cheng, Yanling; Cheng, Sibo; Mu, Dongyan; Liu, Yuhuan; Ding, Rijia; Chen, Paul; Ruan, Roger

    2016-07-01

    Combining algae cultivation and wastewater treatment for biofuel production is considered the feasible way for resource utilization. An updated comprehensive techno-economic analysis method that integrates resources availability into techno-economic analysis was employed to evaluate the wastewater-based algal biofuel production with the consideration of wastewater treatment improvement, greenhouse gases emissions, biofuel production costs, and coproduct utilization. An innovative approach consisting of microalgae cultivation on centrate wastewater, microalgae harvest through flocculation, solar drying of biomass, pyrolysis of biomass to bio-oil, and utilization of co-products, was analyzed and shown to yield profound positive results in comparison with others. The estimated break even selling price of biofuel ($2.23/gallon) is very close to the acceptable level. The approach would have better overall benefits and the internal rate of return would increase up to 18.7% if three critical components, namely cultivation, harvest, and downstream conversion could achieve breakthroughs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Chapter 11: New Conversion Technologies for Liquid Biofuels Production in Africa

    NARCIS (Netherlands)

    Batidzirai, B.; Smeets, E.M.W.; Faaij, A.P.C.

    2012-01-01

    On the longer term, the production of second generation biofuels from lignocellulosic biomass is expected to become economically competitive with gasoline and diesel. A pre-requisite is that several technological hurdles will be overcome and that a large, stable supply of lignocellulosic biomass

  9. Panorama 2011: New bio-fuel production technologies: overview of these expanding sectors and the challenges facing them

    International Nuclear Information System (INIS)

    Lorne, D.; Chabrelie, M.F.

    2011-01-01

    The numerous research programmes looking at new-generation biofuels that were initiated over the last ten years are now starting to bear fruit. Although no plants are producing and marketing biofuels yet, the large-scale, industrial feasibility of second-generation bio-fuel production at competitive cost may be demonstrated in the short-term. As far as third generation biofuels derived from algal biomass are concerned, there is a great deal of R and D interest in the sector, but the technology is still only in its infancy. (author)

  10. Preliminary results on optimising hydrothermal treatment used in co-production of biofuels

    DEFF Research Database (Denmark)

    Thomsen, M.H.; Thomsen, A.B.; Jørgensen, H.

    . The solubilised hemicellulose is in a second step converted by either enzymes or weak acid hydrolyses tomonomeric sugar compounds for ethanol production. The cellulose fraction containing the lignin will be burned for electricity or part of it may be used for ethanol production by means of SSF. By-products from......In December 2002, an EU-project for co-production of biofuels was started. The overall objective is to develop cost and energy effective production systems for co-production of bio ethanol and electricity based on integrated biomass utilization. Duringthe first 12 months period of the project...... illustrates that it is possible to extract more than 95% of the alkaline salts (at 200 C) leaving a solid cellulose rich biofuel for combustion or for further treatment in the ethanol process. In the experiments performed at 190 C, the best totalglucose yield after pre-treatment and following enzymatic...

  11. Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables

    NARCIS (Netherlands)

    Zhao, Gang; Hoffmann, Holger; Bussel, Van L.G.J.; Enders, Andreas; Specka, Xenia; Sosa, Carmen; Yeluripati, Jagadeesh; Tao, Fulu; Constantin, Julie; Raynal, Helene; Teixeira, Edmar; Grosz, Balázs; Doro, Luca; Zhao, Zhigan; Nendel, Claas; Kiese, Ralf; Eckersten, Henrik; Haas, Edwin; Vanuytrecht, Eline; Wang, Enli; Kuhnert, Matthias; Trombi, Giacomo; Moriondo, Marco; Bindi, Marco; Lewan, Elisabet; Bach, Michaela; Kersebaum, Kurt Christian; Rötter, Reimund; Roggero, Pier Paolo; Wallach, Daniel; Cammarano, Davide; Asseng, Senthold; Krauss, Gunther; Siebert, Stefan

    2015-01-01

    We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 processbased crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and

  12. Potential of genetically modified oilseed rape for biofuels in Austria: Land use patterns and coexistence constraints could decrease domestic feedstock production

    Science.gov (United States)

    Moser, Dietmar; Eckerstorfer, Michael; Pascher, Kathrin; Essl, Franz; Zulka, Klaus Peter

    2013-01-01

    Like other EU Member States, Austria will meet the substitution target of the EU European Renewable Energy Directive for transportation almost exclusively by first generation biofuels, primarily biodiesel from oilseed rape (OSR). Genetically modified (GM) plants have been promoted as a new option for biofuel production as they promise higher yield or higher quality feedstock. We tested implications of GM OSR application for biodiesel production in Austria by means of high resolution spatially explicit simulation of 140 different coexistence scenarios within six main OSR cropping regions in Austria (2400 km2). We identified structural land use characteristics such as field size, land use diversity, land holding patterns and the proportion of the target crop as the predominant factors which influence overall production of OSR in a coexistence scenario. Assuming isolation distances of 800 m and non-GM-OSR proportions of at least 10% resulted in a loss of area for cultivation of OSR in all study areas ranging from −4.5% to more than −25%, depending on the percentage of GM farmers and on the region. We could show that particularly the current primary OSR cropping regions are largely unsuitable for coexistence and would suffer from a net loss of OSR area even at isolation distances of 400 or 800 m. Coexistence constraints associated with application of GM OSR are likely to offset possible GM gains by substantially reducing farmland for OSR cultivation, thus contradicting the political aim to increase domestic OSR area to meet the combined demands of food, feed and biofuel production. PMID:26109750

  13. Streamflow impacts of biofuel policy-driven landscape change.

    Directory of Open Access Journals (Sweden)

    Sami Khanal

    Full Text Available Likely changes in precipitation (P and potential evapotranspiration (PET resulting from policy-driven expansion of bioenergy crops in the United States are shown to create significant changes in streamflow volumes and increase water stress in the High Plains. Regional climate simulations for current and biofuel cropping system scenarios are evaluated using the same atmospheric forcing data over the period 1979-2004 using the Weather Research Forecast (WRF model coupled to the NOAH land surface model. PET is projected to increase under the biofuel crop production scenario. The magnitude of the mean annual increase in PET is larger than the inter-annual variability of change in PET, indicating that PET increase is a forced response to the biofuel cropping system land use. Across the conterminous U.S., the change in mean streamflow volume under the biofuel scenario is estimated to range from negative 56% to positive 20% relative to a business-as-usual baseline scenario. In Kansas and Oklahoma, annual streamflow volume is reduced by an average of 20%, and this reduction in streamflow volume is due primarily to increased PET. Predicted increase in mean annual P under the biofuel crop production scenario is lower than its inter-annual variability, indicating that additional simulations would be necessary to determine conclusively whether predicted change in P is a response to biofuel crop production. Although estimated changes in streamflow volume include the influence of P change, sensitivity results show that PET change is the significantly dominant factor causing streamflow change. Higher PET and lower streamflow due to biofuel feedstock production are likely to increase water stress in the High Plains. When pursuing sustainable biofuels policy, decision-makers should consider the impacts of feedstock production on water scarcity.

  14. Lipid metabolism and potentials of biofuel and high added-value oil production in red algae.

    Science.gov (United States)

    Sato, Naoki; Moriyama, Takashi; Mori, Natsumi; Toyoshima, Masakazu

    2017-04-01

    Biomass production is currently explored in microalgae, macroalgae and land plants. Microalgal biofuel development has been performed mostly in green algae. In the Japanese tradition, macrophytic red algae such as Pyropia yezoensis and Gelidium crinale have been utilized as food and industrial materials. Researches on the utilization of unicellular red microalgae such as Cyanidioschyzon merolae and Porphyridium purpureum started only quite recently. Red algae have relatively large plastid genomes harboring more than 200 protein-coding genes that support the biosynthetic capacity of the plastid. Engineering the plastid genome is a unique potential of red microalgae. In addition, large-scale growth facilities of P. purpureum have been developed for industrial production of biofuels. C. merolae has been studied as a model alga for cell and molecular biological analyses with its completely determined genomes and transformation techniques. Its acidic and warm habitat makes it easy to grow this alga axenically in large scales. Its potential as a biofuel producer is recently documented under nitrogen-limited conditions. Metabolic pathways of the accumulation of starch and triacylglycerol and the enzymes involved therein are being elucidated. Engineering these regulatory mechanisms will open a possibility of exploiting the full capability of production of biofuel and high added-value oil. In the present review, we will describe the characteristics and potential of these algae as biotechnological seeds.

  15. Biofuels securing the planet's future energy needs

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    The biofuels include bioethanol, biobutanol, biodiesel, vegetable oils, biomethanol, pyrolysis oils, biogas, and biohydrogen. There are two global biomass based liquid transportation fuels that might replace gasoline and diesel fuel. These are bioethanol and biodiesel. World production of biofuel was about 68 billion L in 2007. The primary feedstocks of bioethanol are sugarcane and corn. Bioethanol is a gasoline additive/substitute. Bioethanol is by far the most widely used biofuel for transportation worldwide. About 60% of global bioethanol production comes from sugarcane and 40% from other crops. Biodiesel refers to a diesel-equivalent mono alkyl ester based oxygenated fuel. Biodiesel production using inedible vegetable oil, waste oil and grease has become more attractive recently. The economic performance of a biodiesel plant can be determined once certain factors are identified, such as plant capacity, process technology, raw material cost and chemical costs. The central policy of biofuel concerns job creation, greater efficiency in the general business environment, and protection of the environment.

  16. Putting mechanisms into crop production models.

    Science.gov (United States)

    Boote, Kenneth J; Jones, James W; White, Jeffrey W; Asseng, Senthold; Lizaso, Jon I

    2013-09-01

    Crop growth models dynamically simulate processes of C, N and water balance on daily or hourly time-steps to predict crop growth and development and at season-end, final yield. Their ability to integrate effects of genetics, environment and crop management have led to applications ranging from understanding gene function to predicting potential impacts of climate change. The history of crop models is reviewed briefly, and their level of mechanistic detail for assimilation and respiration, ranging from hourly leaf-to-canopy assimilation to daily radiation-use efficiency is discussed. Crop models have improved steadily over the past 30-40 years, but much work remains. Improvements are needed for the prediction of transpiration response to elevated CO₂ and high temperature effects on phenology and reproductive fertility, and simulation of root growth and nutrient uptake under stressful edaphic conditions. Mechanistic improvements are needed to better connect crop growth to genetics and to soil fertility, soil waterlogging and pest damage. Because crop models integrate multiple processes and consider impacts of environment and management, they have excellent potential for linking research from genomics and allied disciplines to crop responses at the field scale, thus providing a valuable tool for deciphering genotype by environment by management effects. © 2013 John Wiley & Sons Ltd.

  17. The green, blue and grey water footprint of crops and derived crop products

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2011-01-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid.

  18. Biofuels and their by-products: Global economic and environmental implications

    International Nuclear Information System (INIS)

    Taheripour, Farzad; Hertel, Thomas W.; Tyner, Wallace E.; Beckman, Jayson F.; Birur, Dileep K.

    2010-01-01

    Recently a number of papers have used general equilibrium models to study the economy-wide and environmental consequences of the first generation of biofuels (FGB). In this paper, we argue that nearly all of these studies have overstated the impacts of FGB on global agricultural and land markets due to the fact that they have ignored the role of biofuel by-products. Feed by-products of FGB, such as dried distillers grains with solubles (DDGS) and oilseed meals (VOBP), are used in the livestock industry as protein and energy sources. Their presence mitigates the price impacts of biofuel production. More importantly, they reduce the demand for cropland and moderate the indirect land use consequences of FGB. This paper explicitly introduces DDGS and VOBP into a global computational general equilibrium (CGE) model, developed at the Center for Global Trade Analysis at Purdue University, to examine the economic and environmental impacts of regional and international mandate policies designed to stimulate bioenergy production and use. We show that models with and without by-products reveal different portraits of the economic impacts of the US and EU biofuel mandates for the world economy in 2015. While both models demonstrate significant changes in the agricultural production pattern across the world, the model with by-products shows smaller changes in the production of cereal grains and larger changes for oilseeds products in the US and EU, and the reverse for Brazil. Models that omit by-products are found to overstate cropland conversion from US and EU mandates by about 27%. (author)

  19. Use of arbuscular mycorrhiza fungi for improved crop production in ...

    African Journals Online (AJOL)

    Arbuscular mycorrhiza fungi (AMF), endophytic fungi reputed for their ability to enhance P uptake can be used to alleviate P deficiencies and improve crop productivity. Although the technology has been used in developed countries, it has not been applied in crop production systems in Africa to any significant level. This is ...

  20. Status of Agricultural Production and Crop Variety Improvement in Thailand

    Institute of Scientific and Technical Information of China (English)

    JIAO Chun-hai; GUO Ying; YAO Ming-hua; WAN Zheng-huang

    2012-01-01

    We introduced basic conditions of agricultural production in Thailand, and variety improvement of major crops, including rice, cassava, rubber, and vegetable, in the hope of providing reference for agricultural production and crop variety improvement in Hubei Province and even in the whole country.

  1. Quantifying the Impact of Tropospheric Ozone on Crops Productivity at regional scale using JULES-crop

    Science.gov (United States)

    Leung, F.

    2016-12-01

    Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop

  2. Advances in biofuel production from oil palm and palm oil processing wastes: A review

    Directory of Open Access Journals (Sweden)

    Jundika C. Kurnia

    2016-03-01

    Full Text Available Over the last decades, the palm oil industry has been growing rapidly due to increasing demands for food, cosmetic, and hygienic products. Aside from producing palm oil, the industry generates a huge quantity of residues (dry and wet which can be processed to produce biofuel. Driven by the necessity to find an alternative and renewable energy/fuel resources, numerous technologies have been developed and more are being developed to process oil-palm and palm-oil wastes into biofuel. To further develop these technologies, it is essential to understand the current stage of the industry and technology developments. The objective of this paper is to provide an overview of the palm oil industry, review technologies available to process oil palm and palm oil residues into biofuel, and to summarise the challenges that should be overcome for further development. The paper also discusses the research and development needs, technoeconomics, and life cycle analysis of biofuel production from oil-palm and palm-oil wastes.

  3. Biofuel production system with operation flexibility: Evaluation of economic and environmental performance under external disturbance

    Science.gov (United States)

    Kou, Nannan

    Biomass derived liquid hydrocarbon fuel (biofuel) has been accepted as an effective way to mitigate the reliance on petroleum and reduce the greenhouse gas emissions. An increasing demand for second generation biofuels, produced from ligno-cellulosic feedstock and compatible with current infrastructure and vehicle technologies, addresses two major challenges faced by the current US transportation sector: energy security and global warming. However, biofuel production is subject to internal disturbances (feedstock supply and commodity market) and external factors (energy market). The biofuel industry has also heavily relied on government subsidy during the early development stages. In this dissertation, I investigate how to improve the economic and environmental performance of biorefineries (and biofuel plant), as well as enhance its survivability under the external disturbances. Three types of disturbance are considered: (1) energy market fluctuation, (2) subsidy policy uncertainty, and (3) extreme weather conditions. All three factors are basically volatile, dynamic, and even unpredictable, which makes them difficult to model and have been largely ignored to date. Instead, biofuel industry and biofuel research are intensively focused on improving feedstock conversion efficiency and capital cost efficiency while assuming these advancements alone will successfully generate higher profit and thus foster the biofuel industry. The collapse of the largest corn ethanol biofuel company, Verasun Energy, in 2008 calls into question this efficiency-driven approach. A detailed analysis has revealed that although the corn ethanol plants operated by Verasun adopted the more efficient (i.e. higher ethanol yield per bushel of corn and lower capital cost) dry-mill technology, they could not maintain a fair profit margin under fluctuating market condition which made ethanol production unprofitable. This is because dry-mill plant converts a single type of biomass feedstock (corn

  4. Methodological Foundations of Clustering and Innovativeness for Establishing the Competitive Production of Biofuels

    Directory of Open Access Journals (Sweden)

    Klymchuk Oleksandr V.

    2016-05-01

    Full Text Available The article is aimed to study the worldwide trends in development of innovative processes and creation of cluster structures for elaborating methodological foundations for establishing the competitive production of biofuels. The article highlights the cluster approaches in conducting the global commercial activities that create effective mechanisms and tools to encourage innovation-investment regional development and can be characterized by their relevance for the Ukrainian economy. Emphasis is made on the matter that clustering is one of the key tools for structuring the energy market, integrated exploiting the potential of bioenergy industry sector, management of the economic policies of redistribution of value added, implementation of the growth of investment attractiveness of the biofuel industry in our country. It has been concluded that cluster development in the biofuel production will stimulate specialization and cooperation processes in the agro-industrial economy sector, bringing together related businesses in the direction of an effective interaction, thereby ensuring a high level of competitiveness of biofuels in both the national and the international markets.

  5. Algal biofuels.

    Science.gov (United States)

    Razeghifard, Reza

    2013-11-01

    The world is facing energy crisis and environmental issues due to the depletion of fossil fuels and increasing CO2 concentration in the atmosphere. Growing microalgae can contribute to practical solutions for these global problems because they can harvest solar energy and capture CO2 by converting it into biofuel using photosynthesis. Microalgae are robust organisms capable of rapid growth under a variety of conditions including in open ponds or closed photobioreactors. Their reduced biomass compounds can be used as the feedstock for mass production of a variety of biofuels. As another advantage, their ability to accumulate or secrete biofuels can be controlled by changing their growth conditions or metabolic engineering. This review is aimed to highlight different forms of biofuels produced by microalgae and the approaches taken to improve their biofuel productivity. The costs for industrial-scale production of algal biofuels in open ponds or closed photobioreactors are analyzed. Different strategies for photoproduction of hydrogen by the hydrogenase enzyme of green algae are discussed. Algae are also good sources of biodiesel since some species can make large quantities of lipids as their biomass. The lipid contents for some of the best oil-producing strains of algae in optimized growth conditions are reviewed. The potential of microalgae for producing petroleum related chemicals or ready-make fuels such as bioethanol, triterpenic hydrocarbons, isobutyraldehyde, isobutanol, and isoprene from their biomass are also presented.

  6. Biofuel potential production from the Orbetello lagoon macroalgae: A comparison with sunflower feedstock

    Energy Technology Data Exchange (ETDEWEB)

    Bastianoni, Simone; Coppola, Fazio; Tiezzi, Enzo [Department of Chemical and Biosystems Sciences, Siena University, via della Diana, 2A, 53100 Siena (Italy); Colacevich, Andrea; Borghini, Francesca; Focardi, Silvano [Department of Environmental Sciences, Siena University, via Mattioli 4, 53100 Siena (Italy)

    2008-07-15

    The diversification of different types and sources of biofuels has become an important energy issue in recent times. The aim of this work is to evaluate the use of two kinds of renewable feedstocks in order to produce biodiesel. We have analyzed the potential production of oil from two species of macroalgae considered as waste coming out from a lagoon system involved in eutrophication and from sunflower seeds. We have tested oil extraction yields of both feedstock. Furthermore, a comparison has been carried out based on the emergy approach, in order to evaluate the sustainability and environmental performance of both processes. The results show that, under present conditions, considering oil extraction yields, the production of oil from sunflower seeds is feasible, because of the lower value of transformity of the final product with respect to macroalgae. On the other hand, the results demonstrate that with improvements of oil extraction methodology, macroalgae could be considered a good residual biomass usable for biofuel production. (author)

  7. Characterization of residual biomass from the Arequipa region for the production of biofuels

    Directory of Open Access Journals (Sweden)

    María Laura Stronguiló Leturia

    2015-12-01

    Full Text Available The aim of this work is to select residual biomass from the Arequipa Region for the production of biofuels (biodiesel, bioethanol and biogas. In each case, the initial point is a matrix based on products with residual biomass available in the region, from the agricultural and livestock sectors, information that was obtained from the regional Management of Agriculture web site. Specific factors of the resudue that will be used as raw material for each biofuel production would be considered for the selection process. For the production of biodiesel it is necessary to start from the oil extracted from oilseeds. Regarding obtaining bioethanol, it requires that the residual biomass has high percent of cellulose. With regard to the generation of biogas, we will use animal droppings. Finally, the raw materials selected are: squash and avocado seeds for biodiesel, rice chaff and deseeded corncob for bioethanol and cow and sheep droppings for biogas

  8. State and trends of oil crops production in China

    Directory of Open Access Journals (Sweden)

    Yang Tiankui

    2016-11-01

    Full Text Available This paper attempts to present a full picture of current situation and future trends of Chinese oil crop production. The total oil crop production remained broadly constant during 2011–2014. The top three oil crops are soybean, peanut and rapeseed, together accounting for more than 70% of total oil crop production. The area under cultivation and the production of peanuts will keep steadily increasing because most Chinese like its pleasant roasted flavor. Because of their high content in polyunsaturated fatty acids and the natural minor functional components in their oils, more attention is being paid to sunflower seed and rice bran. The diminishing availability of arable land and concern over the security of edible oil supplies is driving both a change in cultivation structure of crops and improvements in the efficiency of oilseed production in China.

  9. Global economic-biophysical assessment of midterm scenarios for agricultural markets—biofuel policies, dietary patterns, cropland expansion, and productivity growth

    Science.gov (United States)

    Delzeit, Ruth; Klepper, Gernot; Zabel, Florian; Mauser, Wolfram

    2018-02-01

    Land-use decisions are made at the local level. They are influenced both by local factors and by global drivers and trends. These will most likely change over time e.g. due to political shocks, market developments or climate change. Hence, their influence should be taken into account when analysing and projecting local land-use decisions. We provide a set of mid-term scenarios of global drivers (until 2030) for use in regional and local studies on agriculture and land-use. In a participatory process, four important drivers are identified by experts from globally distributed regional studies: biofuel policies, increase in preferences for meat and dairy products in Asia, cropland expansion into uncultivated areas, and changes in agricultural productivity growth. Their impact on possible future developments of global and regional agricultural markets are analysed with a modelling framework consisting of a global computable general equilibrium model and a crop growth model. The business as usual (BAU) scenario causes production and prices of crops to rise over time. It also leads to a conversion of pasture land to cropland. Under different scenarios, global price changes range between -42 and +4% in 2030 compared to the BAU. An abolishment of biofuel targets does not significantly improve food security while an increased agricultural productivity and cropland expansion have a stronger impact on changes in food production and prices.

  10. Projected climate change threatens pollinators and crop production in Brazil.

    Directory of Open Access Journals (Sweden)

    Tereza Cristina Giannini

    Full Text Available Animal pollination can impact food security since many crops depend on pollinators to produce fruits and seeds. However, the effects of projected climate change on crop pollinators and therefore on crop production are still unclear, especially for wild pollinators and aggregate community responses. Using species distributional modeling, we assessed the effects of climate change on the geographic distribution of 95 pollinator species of 13 Brazilian crops, and we estimated their relative impacts on crop production. We described these effects at the municipality level, and we assessed the crops that were grown, the gross production volume of these crops, the total crop production value, and the number of inhabitants. Overall, considering all crop species, we found that the projected climate change will reduce the probability of pollinator occurrence by almost 0.13 by 2050. Our models predict that almost 90% of the municipalities analyzed will face species loss. Decreases in the pollinator occurrence probability varied from 0.08 (persimmon to 0.25 (tomato and will potentially affect 9% (mandarin to 100% (sunflower of the municipalities that produce each crop. Municipalities in central and southern Brazil will potentially face relatively large impacts on crop production due to pollinator loss. In contrast, some municipalities in northern Brazil, particularly in the northwestern Amazon, could potentially benefit from climate change because pollinators of some crops may increase. The decline in the probability of pollinator occurrence is found in a large number of municipalities with the lowest GDP and will also likely affect some places where crop production is high (20% to 90% of the GDP and where the number of inhabitants is also high (more than 6 million people. Our study highlights key municipalities where crops are economically important and where pollinators will potentially face the worst conditions due to climate change. However, pollinators

  11. Potential emissions reduction in road transport sector using biofuel in developing countries

    Science.gov (United States)

    Liaquat, A. M.; Kalam, M. A.; Masjuki, H. H.; Jayed, M. H.

    2010-10-01

    Use of biofuels as transport fuel has high prospect in developing countries as most of them are facing severe energy insecurity and have strong agricultural sector to support production of biofuels from energy crops. Rapid urbanization and economic growth of developing countries have spurred air pollution especially in road transport sector. The increasing demand of petroleum based fuels and their combustion in internal combustion (IC) engines have adverse effect on air quality, human health and global warming. Air pollution causes respiratory problems, adverse effects on pulmonary function, leading to increased sickness absenteeism and induces high health care service costs, premature birth and even mortality. Production of biofuels promises substantial improvement in air quality through reducing emission from biofuel operated automotives. Some of the developing countries have started biofuel production and utilization as transport fuel in local market. This paper critically reviews the facts and prospects of biofuel production and utilization in developing countries to reduce environmental pollution and petro dependency. Expansion of biofuel industries in developing countries can create more jobs and increase productivity by non-crop marginal lands and wastelands for energy crops plantation. Contribution of India and China in biofuel industry in production and utilization can dramatically change worldwide biofuel market and leap forward in carbon cut as their automotive market is rapidly increasing with a souring proportional rise of GHG emissions.

  12. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    Science.gov (United States)

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) Users’ Manual and Technical Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Mueller, Steffen [Univ. of Illinois, Chicago, IL (United States); Kwon, Ho-young [International Food Policy Research Inst., Washington, DC (United States); Wander, Michelle M. [Univ. of Illinois, Urbana-Champaign, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-12-01

    The Carbon Calculator for Land Use Change from Biofuels Production (CCLUB) calculates carbon emissions from land use change (LUC) for four different ethanol production pathways including corn grain ethanol and cellulosic ethanol from corn stover, Miscanthus, and switchgrass, and a soy biodiesel pathway. This document discusses the version of CCLUB released September 30, 2017 which includes five ethanol LUC scenarios and four soy biodiesel LUC scenarios.

  14. Enhancing productivity of salt affected soils through crops and cropping system

    International Nuclear Information System (INIS)

    Singh, S.S.; Khan, A.R.

    2002-05-01

    The reclamation of salt affected soils needs the addition of soil amendment and enough water to leach down the soluble salts. The operations may also include other simple agronomic techniques to reclaim soils and to know the crops and varieties that may be grown and other management practices which may be followed on such soils (Khan, 2001). The choice of crops to be grown during reclamation of salt affected soils is very important to obtain acceptable yields. This also decides cropping systems as well as favorable diversification for early reclamation, desirable yield and to meet the other requirements of farm families. In any salt affected soils, the following three measures are adopted for reclamation and sustaining the higher productivity of reclaimed soils. 1. Suitable choice of crops, forestry and tree species; 2. Suitable choice of cropping and agroforestry system; 3. Other measures to sustain the productivity of reclaimed soils. (author)

  15. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2011-01-01

    In 2010 bio-fuel continued to gnaw away at petrol and diesel consumption in the European Union (EU). However its pace backs the assertion that bio-fuel consumption growth in EU slackened off in 2010. In the transport sector, it increased by only 1.7 Mtoe compared to 2.7 Mtoe in 2009. The final total bio-fuel consumption figure for 2010 should hover at around 13.9 Mtoe that can be broken down into 10.7 Mtoe for bio-diesel, 2.9 Mtoe for bio-ethanol and 0.3 Mtoe for others. Germany leads the pack for the consumption of bio-fuels and for the production of bio-diesel followed by France and Spain

  16. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  17. Integrating sustainable biofuel and silver nanomaterial production for in situ upgrading of cellulosic biomass pyrolysis

    International Nuclear Information System (INIS)

    Xue, Junjie; Dou, Guolan; Ziade, Elbara; Goldfarb, Jillian L.

    2017-01-01

    Graphical abstract: Integrated production of biotemplated nanomaterials and upgraded biofuels (solid lines indicate current processes, dashed lines indicated proposed pathway). - Highlights: • Novel integrated process to co-produce nanomaterials and biofuels via pyrolysis. • Impregnation of biomass with silver nitrate upgrades bio-oil during pyrolysis. • Co-synthesis enhances syngas produced with more hydrogen. • Biomass template impacts bio-fuels and morphology of resulting nanomaterials. - Abstract: Replacing fossil fuels with biomass-based alternatives is a potential carbon neutral, renewable and sustainable option for meeting the world’s growing energy demand. However, pyrolytic conversions of biomass-to-biofuels suffer marginal total energy gain, and technical limitations such as bio-oils’ high viscosity and oxygen contents that result in unstable, corrosive and low-value fuels. This work demonstrates a new integrated biorefinery process for the co-production of biofuels and silver nanomaterials. By impregnating pure cellulose and corn stalk with silver nitrate, followed by pyrolysis, the gas yield (especially hydrogen) increases substantially. The condensable bio-oil components of the impregnated samples are considerably higher in furfurals (including 5-hydroxymethylfurfural). Though the overall activation energy barrier, as determined via the Distributed Activation Energy Model, does not change significantly with the silver nitrate pre-treatment, the increase in gases devolatilized, and improved 5-hydroxymethylfurfural yield, suggest a catalytic effect, potentially increasing decarboxylation reactions. After using this metal impregnation to improve pyrolysis fuel yield, following pyrolysis, the silver-char composite materials are calcined to remove the biomass template to yield silver nanomaterials. While others have demonstrated the ability to biotemplate such nanosilver on cellulosic biomass, they consider only impregnation and oxidation of the

  18. Life cycle assessment of energy products: environmental impact assessment of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Zah, R.; Boeni, H.; Gauch, M.; Hischier, R.; Lehmann, M.; Waeger, P.

    2007-05-15

    This final report for the Swiss Federal Office of Energy (SFOE) deals with the results of a study that evaluated the environmental impact of the entire production chain of fuels made from biomass and used in Switzerland. Firstly, the study supplies an analysis of the possible environmental impacts of biofuels that can be used as a basis for political decisions. Secondly, an environmental life cycle assessment (LCA) of various biofuels is presented. In addition, the impacts of fuel use are compared with other uses for bioenergy such as the generation of electricity and heat. The methods used in the LCA are discussed, including the Swiss method of ecological scarcity (Environmental Impact Points, UBP 06), and the European Eco-indicator 99 method. The results of the study are discussed, including the finding that not all biofuels can reduce environmental impacts as compared to fossil fuels. The role to be played by biofuels produced in an environmentally-friendly way together with other forms of renewable energy in our future energy supply is discussed.

  19. Tradeoffs and Synergies between biofuel production and large solar infrastructure in deserts.

    Science.gov (United States)

    Ravi, Sujith; Lobell, David B; Field, Christopher B

    2014-01-01

    Solar energy installations in deserts are on the rise, fueled by technological advances and policy changes. Deserts, with a combination of high solar radiation and availability of large areas unusable for crop production are ideal locations for large solar installations. However, for efficient power generation, solar infrastructures use large amounts of water for construction and operation. We investigated the water use and greenhouse gas (GHG) emissions associated with solar installations in North American deserts in comparison to agave-based biofuel production, another widely promoted potential energy source from arid systems. We determined the uncertainty in our analysis by a Monte Carlo approach that varied the most important parameters, as determined by sensitivity analysis. We considered the uncertainty in our estimates as a result of variations in the number of solar modules ha(-1), module efficiency, number of agave plants ha(-1), and overall sugar conversion efficiency for agave. Further, we considered the uncertainty in revenue and returns as a result of variations in the wholesale price of electricity and installation cost of solar photovoltaic (PV), wholesale price of agave ethanol, and cost of agave cultivation and ethanol processing. The life-cycle analyses show that energy outputs and GHG offsets from solar PV systems, mean energy output of 2405 GJ ha(-1) year(-1) (5 and 95% quantile values of 1940-2920) and mean GHG offsets of 464 Mg of CO2 equiv ha(-1) year(-1) (375-562), are much larger than agave, mean energy output from 206 (171-243) to 61 (50-71) GJ ha(-1) year(-1) and mean GHG offsets from 18 (14-22) to 4.6 (3.7-5.5) Mg of CO2 equiv ha(-1) year(-1), depending upon the yield scenario of agave. Importantly though, water inputs for cleaning solar panels and dust suppression are similar to amounts required for annual agave growth, suggesting the possibility of integrating the two systems to maximize the efficiency of land and water use to produce

  20. The potential of freshwater macroalgae as a biofuels feedstock and the influence of nutrient availability on freshwater macroalgal biomass production

    Science.gov (United States)

    Yun, Jin-Ho

    Extensive efforts have been made to evaluate the potential of microalgae as a biofuel feedstock during the past 4-5 decades. However, filamentous freshwater macroalgae have numerous characteristics that favor their potential use as an alternative algal feedstock for biofuels production. Freshwater macroalgae exhibit high rates of areal productivity, and their tendency to form dense floating mats on the water surface imply significant reductions in harvesting and dewater costs compared to microalgae. In Chapter 1, I reviewed the published literature on the elemental composition and energy content of five genera of freshwater macroalgae. This review suggested that freshwater macroalgae compare favorably with traditional bio-based energy sources, including terrestrial residues, wood, and coal. In addition, I performed a semi-continuous culture experiment using the common Chlorophyte genus Oedogonium to investigate whether nutrient availability can influence its higher heating value (HHV), productivity, and proximate analysis. The experimental study suggested that the most nutrient-limited growth conditions resulted in a significant increase in the HHV of the Oedogonium biomass (14.4 MJ/kg to 16.1 MJ/kg). Although there was no significant difference in productivity between the treatments, the average dry weight productivity of Oedogonium (3.37 g/m2/day) was found to be much higher than is achievable with common terrestrial plant crops. Although filamentous freshwater macroalgae, therefore, have significant potential as a renewable source of bioenergy, the ultimate success of freshwater macroalgae as a biofuel feedstock will depend upon the ability to produce biomass at the commercial-scale in a cost-effective and sustainable manner. Aquatic ecology can play an important role to achieve the scale-up of algal crop production by informing the supply rates of nutrients to the cultivation systems, and by helping to create adaptive production systems that are resilient to

  1. Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries

    International Nuclear Information System (INIS)

    Adenle, Ademola A.; Haslam, Gareth E.; Lee, Lisa

    2013-01-01

    The possibility of economically deriving fuel from cultivating algae biomass is an attractive addition to the range of measures to relieve the current reliance on fossil fuels. Algae biofuels avoid some of the previous drawbacks associated with crop-based biofuels as the algae do not compete with food crops. The favourable growing conditions found in many developing countries has led to a great deal of speculation about their potentials for reducing oil imports, stimulating rural economies, and even tackling hunger and poverty. By reviewing the status of this technology we suggest that the large uncertainties make it currently unsuitable as a priority for many developing countries. Using bibliometric and patent data analysis, we indicate that many developing countries lack the human capital to develop their own algae industry or adequately prepare policies to support imported technology. Also, we discuss the potential of modern biotechnology, especially genetic modification (GM) to produce new algal strains that are easier to harvest and yield more oil. Controversy surrounding the use of GM and weak biosafety regulatory system represents a significant challenge to adoption of GM technology in developing countries. A range of policy measures are also suggested to ensure that future progress in algae biofuels can contribute to sustainable development. - Highlights: • Algae biofuels can make positive contribution to sustainable development in developing countries. • Bibliometric and patent data indicate that many lack the human capital to develop their own algae industry. • Large uncertainties make algae biofuels currently unsuitable as a priority for many developing countries

  2. Crop residue inventory estimates for Texas High Plains cotton

    Science.gov (United States)

    Interest in the use of cotton crop by-products for the production of bio-fuels and value-added products is increasing. Research documenting the availability of cotton crop by-products after machine harvest is needed. The objectives of this work were to document the total biomass production for moder...

  3. A trial of the suitability of switchgrass and reed canary grass as biofuel crops under UK conditions. 5th interim report March 2005

    Energy Technology Data Exchange (ETDEWEB)

    Richie, A.B.

    2005-07-01

    The Topgrass Project, established in 2002, investigated the potential of miscanthus, switchgrass and reed canary grass as biofuel crops at various sites in the UK. This interim report covers the period from the harvesting in winter 2003/04 to the harvesting in winter 2004/05. The report gives details on (i) pest and weed control and (ii) yields and associated costs per species per unit area. It was concluded that maximum potential yield has not been reached at some sites. The study was funded by the DTI and carried out by IACR Rothamstead with ADAS Consulting, Duchy College Cornwall and SCRI Invergowrie as collaborators. The project has now terminated.

  4. Genetic Resources for Advanced Biofuel Production Described with the Gene Ontology

    Directory of Open Access Journals (Sweden)

    Trudy eTorto-Alalibo

    2014-10-01

    Full Text Available Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial Energy Gene Ontology (MENGO: http://www.mengo.biochem.vt.edu project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat, can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.

  5. Optimal production scheduling for energy efficiency improvement in biofuel feedstock preprocessing considering work-in-process particle separation

    International Nuclear Information System (INIS)

    Li, Lin; Sun, Zeyi; Yao, Xufeng; Wang, Donghai

    2016-01-01

    Biofuel is considered a promising alternative to traditional liquid transportation fuels. The large-scale substitution of biofuel can greatly enhance global energy security and mitigate greenhouse gas emissions. One major concern of the broad adoption of biofuel is the intensive energy consumption in biofuel manufacturing. This paper focuses on the energy efficiency improvement of biofuel feedstock preprocessing, a major process of cellulosic biofuel manufacturing. An improved scheme of the feedstock preprocessing considering work-in-process particle separation is introduced to reduce energy waste and improve energy efficiency. A scheduling model based on the improved scheme is also developed to identify an optimal production schedule that can minimize the energy consumption of the feedstock preprocessing under production target constraint. A numerical case study is used to illustrate the effectiveness of the proposed method. The research outcome is expected to improve the energy efficiency and enhance the environmental sustainability of biomass feedstock preprocessing. - Highlights: • A novel method to schedule production in biofuel feedstock preprocessing process. • Systems modeling approach is used. • Capable of optimize preprocessing to reduce energy waste and improve energy efficiency. • A numerical case is used to illustrate the effectiveness of the method. • Energy consumption per unit production can be significantly reduced.

  6. Importance of systems biology in engineering microbes for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Aindrila; Redding, Alyssa M.; Rutherford, Becky J.; Keasling, Jay D.

    2009-12-02

    Microorganisms have been rich sources for natural products, some of which have found use as fuels, commodity chemicals, specialty chemicals, polymers, and drugs, to name a few. The recent interest in production of transportation fuels from renewable resources has catalyzed numerous research endeavors that focus on developing microbial systems for production of such natural products. Eliminating bottlenecks in microbial metabolic pathways and alleviating the stresses due to production of these chemicals are crucial in the generation of robust and efficient production hosts. The use of systems-level studies makes it possible to comprehensively understand the impact of pathway engineering within the context of the entire host metabolism, to diagnose stresses due to product synthesis, and provides the rationale to cost-effectively engineer optimal industrial microorganisms.

  7. Effect of resource conserving techniques on crop productivity in rice-wheat cropping system

    International Nuclear Information System (INIS)

    Mann, R.A.; Munir, M.; Haqqani, A.M.

    2004-01-01

    Rice-wheat cropping system is the most important one in Pakistan. The system provides food and livelihood for more than 15 million people in the country. The productivity of the system is much lower than the potential yields of both rice and wheat crops. With the traditional methods, rice-wheat system is not a profitable one to many farmers. Hence, Cost of cultivation must be reduced and at the same time, efficiency of resources like irrigation water, fuel, and fertilizers must be improved to make the crop production system more viable and eco- friendly. Resource conserving technology (RCT) must figure highly in this equation, since they play a major role in achieving the above goals. The RCT include laser land leveling, zero-tillage, bed furrow irrigation method and crop residue management. These technologies were evaluated in irrigated areas of Punjab where rice follows wheat. The results showed that paddy yield was not affected by the new methods. Direct seeding of rice crop saved irrigation water by 13% over the conventionally planted crop. Weeds were the major problem indirect seeded crop, which could be eliminated through cultural, mechanical and chemical means. Wheat crop on beds produced the highest yield but cost of production was minimum in the zero-till wheat crop. Planting of wheat on raised beds in making headway in low- lying and poorly drained areas. Thus, resource conserving tillage technology provides a tool for making progress towards improving and sustaining wheat production system, helping with food security and poverty alleviation in Pakistan in the next few decades. (author)

  8. Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels.

    Science.gov (United States)

    Kondaveeti, Sanath; Min, Booki

    2015-12-15

    This study proves for the first time the feasibility of biofuel production from anaerobic digestion effluent via bioelectrochemical cell operation at various applied cell voltages (1.0, 1.5 and 2.0 V). An increase in cell voltage from 1 to 2 V resulted in more reduction current generation (-0.48 to -0.78 mA) at a lowered cathode potential (-0.45 to -0.84 mV vs Ag/AgCl). Various alcohols were produced depending on applied cell voltages, and the main products were butanol, ethanol, and propanol. Hydrogen and methane production were also observed in the headspace of the cell. A large amount of lactic acid was unexpectedly formed at all conditions, which might be the primary cause of the limited biofuel production. The addition of neutral red (NR) to the system could increase the cathodic reduction current, and thus more biofuels were produced with an enhanced alcohol formation compared to without a mediator. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Monster potential meets potential monster: pros and cons of deploying genetically modified microalgae for biofuels production.

    Science.gov (United States)

    Flynn, K J; Mitra, A; Greenwell, H C; Sui, J

    2013-02-06

    Biofuels production from microalgae attracts much attention but remains an unproven technology. We explore routes to enhance production through modifications to a range of generic microalgal physiological characteristics. Our analysis shows that biofuels production may be enhanced ca fivefold through genetic modification (GM) of factors affecting growth rate, respiration, photoacclimation, photosynthesis efficiency and the minimum cell quotas for nitrogen and phosphorous (N : C and P : C). However, simulations indicate that the ideal GM microalgae for commercial deployment could, on escape to the environment, become a harmful algal bloom species par excellence, with attendant risks to ecosystems and livelihoods. In large measure, this is because an organism able to produce carbohydrate and/or lipid at high rates, providing stock metabolites for biofuels production, will also be able to attain a stoichiometric composition that will be far from optimal as food for the support of zooplankton growth. This composition could suppress or even halt the grazing activity that would otherwise control the microalgal growth in nature. In consequence, we recommend that the genetic manipulation of microalgae, with inherent consequences on a scale comparable to geoengineering, should be considered under strict international regulation.

  10. Techniques for detecting genetically modified crops and products ...

    African Journals Online (AJOL)

    The cultivation of genetically modified crops is becoming increasingly important; more traits are emerging and more acres than ever before are being planted with GM varieties. The release of GM crops and products in the markets worldwide has increased the regulatory need to monitor and verify the presence and the ...

  11. Effects of temporal changes in climate variables on crop production ...

    African Journals Online (AJOL)

    Climate variability and change have been implicated to have significant impacts on global and regional food production particularly the common stable food crops performance in tropical sub-humid climatic zone. However, the extent and nature of these impacts still remain uncertain. In this study, records of crop yields and ...

  12. Biofuels barometer

    International Nuclear Information System (INIS)

    Anon.

    2012-01-01

    The European Union governments no longer view the rapid increase in biofuel consumption as a priority. Between 2010 and 2011 biofuel consumption increased by only 3%, which translates into 13.6 million tonnes of oil equivalent (toe) used in 2011 compared to 13.2 million toe in 2010. In 2011 6 European countries had a biofuel consumption in transport that went further 1 million toe: Germany (2,956,746 toe), France (2,050,873 toe), Spain (1,672,710 toe), Italy (1,432,455 toe), United Kingdom (1,056,105 toe) and Poland (1,017,793 toe). The breakdown of the biofuel consumption for transport in the European Union in 2011 into types of biofuels is: bio-diesel (78%), bio-ethanol (21%), biogas (0.5%) and vegetable oil (0.5%). In 2011, 4 bio-diesel producers had a production capacity in Europe that passed beyond 900,000 tonnes: Diester Industrie International (France) with 3,000,000 tonnes, Neste Oil (Finland) with 1,180,000 tonnes, ADM bio-diesel (Germany) with 975,000 tonnes, and Infinita (Spain) with 900,000 tonnes. It seems that the European Union's attention has shifted to setting up sustainability systems to verify that the biofuel used in the various countries complies with the Renewable Energy Directive's sustainability criteria

  13. Microbial advanced biofuels production: overcoming emulsification challenges for large-scale operation.

    Science.gov (United States)

    Heeres, Arjan S; Picone, Carolina S F; van der Wielen, Luuk A M; Cunha, Rosiane L; Cuellar, Maria C

    2014-04-01

    Isoprenoids and alkanes produced and secreted by microorganisms are emerging as an alternative biofuel for diesel and jet fuel replacements. In a similar way as for other bioprocesses comprising an organic liquid phase, the presence of microorganisms, medium composition, and process conditions may result in emulsion formation during fermentation, hindering product recovery. At the same time, a low-cost production process overcoming this challenge is required to make these advanced biofuels a feasible alternative. We review the main mechanisms and causes of emulsion formation during fermentation, because a better understanding on the microscale can give insights into how to improve large-scale processes and the process technology options that can address these challenges. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Assessment of energy return on energy investment (EROEI of oil bearing crops for renewable fuel production

    Directory of Open Access Journals (Sweden)

    A. Restuccia

    2013-09-01

    Full Text Available As reported in literature the production of biodiesel should lead to a lower energy consumption than those obtainable with its use. So, to justify its consumption, a sustainable and “low input” production should be carried out. In order to assess the sustainability of Linum usitatissimum, Camelina sativa and Brassica carinata cultivation for biodiesel production in terms of energy used compared to that obtained, the index EROEI (Energy Return On Energy Invested has been used. At this aim, an experimental field was realised in the south-eastern Sicilian land. During the autumn-winter crop cycle, no irrigation was carried out and some suitable agricultural practices have been carried out taking into account the peculiarity of each type of used seeds. The total energy consumed for the cultivation of oil bearing crops from sowing to the production of biodiesel represents the Input of the process. In particular, this concerned the energy embodied in machinery and tools utilized, in seed, chemical fertilizer and herbicide but also the energy embodied in diesel fuels and lubricant oils. In addition, the energy consumption relating to machines and reagents required for the processes of extraction and transesterification of the vegetable oil into biodiesel have been calculated for each crops. The energy obtainable from biodiesel production, taking into account the energy used for seed pressing and for vegetable oil transesterification into biodiesel, represents the Output of the process. The ratio Output/Input gets the EROEI index which in the case of Camelina sativa and Linum usatissimum is greater than one. These results show that the cultivation of these crops for biofuels production is convenient in terms of energy return on energy investment. The EROEI index for Brassica carinata is lower than one. This could means that some factors, concerning mechanisation and climatic

  15. Manure and energy crops for biogas production. Status and barriers

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.B.; Nielsen, A.M.; Murto, M.; Christensson, K.; Rintala, J.; Svensson, M.; Seppaelae, M.; Paavola, T.; Angelidaki, I.; Kaparaju, P.L.

    2008-07-01

    This study has evaluated the development of biogas technology in three Nordic countries and analysed the effects of using nine model energy crops as supplement to manure feedstocks in biogas plants. The study compares the global warming impacts and the energy balance for the nine crops used for heat and power production. The energy balances and impacts on greenhouse gases of the studied crops differ between the countries. In Sweden and Denmark, the same crops turned out to be the most promising in terms of energy yield and impact on greenhouse gases. In general, the same crops that score high in terms of energy yield also score high in reducing the amount of greenhouse gases. Based on the examined parameters, it can be concluded that the most promising crops are Jerusalem artichoke, beets, maize, and, in Finland, reed canary grass as well. (au)

  16. Biogas Production from Energy Crops and Agriculture Residues

    DEFF Research Database (Denmark)

    Wang, Guangtao

    and wet explosion pretreated energy crops and agriculture residues with swine manure at various volatile solids (VS) ratio between crop and manure was carried out by batch tests and continuous experiments. The efficiency of the co-digestion experiment was evaluated based on (a) the methane potential......In this thesis, the feasibility of utilizing energy crops (willow and miscanthus) and agriculture residues (wheat straw and corn stalker) in an anaerobic digestion process for biogas production was evaluated. Potential energy crops and agriculture residues were screened according...... of perennial crops was tested as a storage method and pretreatment method for enhancement of the biodegradability of the crops. The efficiency of the silage process was evaluated based on (a) the amount of biomass loss during storage and (b) the effect of the silage on methane potential. Co-digestion of raw...

  17. On the future prospects and limits of biofuels in Brazil, the US and EU

    International Nuclear Information System (INIS)

    Ajanovic, Amela; Haas, Reinhard

    2014-01-01

    Highlights: • Market prospects of biofuels are investigated up to 2030 for Brazil, the US and EU. • 1st generation biofuels are cost-effective under current tax policies. • Their potentials are restricted especially due to limited crops areas. • R and D especially for second generation biofuels has to be intensified. - Abstract: In the early 2000s high expectations existed regarding the potential contribution of biofuels to the reduction of greenhouse gas emissions and substitution of fossil fuels in transport. In recent years sobering judgments prevailed. The major barriers for a further expansion of biofuels are their high costs (compared to fossil fuels), moderate ecological performances, limited feedstocks for biofuel production and their competition with food production. The objective of this paper is to investigate the market prospects of biofuels up to the year 2030. It focuses on the three currently most important regions for biofuels production and use: the US, EU and Brazil which in 2010 accounted together for almost three-quarters of global biofuel supply. Our method of approach is based on a dynamic economic framework considering the major cost components of biofuels and corresponding technological learning with respect to capital costs. Moreover, for the analysis of the competitiveness of biofuels with fossil fuels also taxes are considered. The most important result is that under existing tax policies biofuels are cost-effective today and also for the next decades in the regions investigated. However, their potentials are restricted especially due to limited crops areas, and their environmental performance is currently rather modest. The major final conclusions are: (i) To reveal the real future market value of biofuels, a CO 2 based tax system should be implemented for all types of fuels providing a neutral environmental incentive for competition between all types of fossil and renewable fuels; (ii) Moreover, the research and development for

  18. Corn stover for advanced biofuels perspectives of a soil “Lorax”

    Science.gov (United States)

    Crop residues like corn (Zea Mays L) stover are potential feedstock for production of advanced biofuels (e.g., cellulosic ethanol). Utilization of residue like stover for biofuel feedstock may provide economic and greenhouse gas mitigation benefits; however, harvesting these materials must be done i...

  19. potential for liquid biofuel production in the southern african region

    African Journals Online (AJOL)

    user

    2013-02-27

    Feb 27, 2013 ... There has been a sustained and growing interest in the production of liquid fuel from biomass in recent years. ... This work looks at the energy situation in South Africa and especially the liquid fuel sector and explores the ...... alcohol production.http://www.lowcvp.org.uk/assets/reports/HGCA%20RR61.

  20. A comparison of cellulosic fuel yields and separated soil-surface CO2 fluxes in maize and prairie biofuel cropping systems

    Science.gov (United States)

    Nichols, Virginia A.

    It has been suggested that strategic incorporation of perennial vegetation into agricultural landscapes could provide ecosystem services while maintaining agricultural productivity. To evaluate potential use of prairie as a Midwestern cellulosic feedstock, we investigated theoretical cellulosic fuel yields, as well as soil-surface carbon dioxide emissions of prairie-based biofuel systems as compared to maize-based systems on fertile soils in Boone County, IA, USA. Investigated systems were: a maize-soybean rotation grown for grain only, continuous maize grown for grain and stover both with and without a winter rye cover crop, and a 31-species reconstructed prairie grown with and without spring nitrogen fertilization for fall-harvested biomass. From 2009-2013, the highest producing system was N-fertilized prairie, averaging 10.4 Mg ha -1 yr-1 above-ground biomass with average harvest removals of 7.8 Mg ha-1 yr-1. The unfertilized prairie produced 7.4 Mg ha-1 yr-1, averaging harvests of 5.3 Mg ha-1 yr-1. Lowest cellulosic biomass harvests were realized from continuous maize systems, averaging 3.5 Mg ha -1 yr-1 when grown with, and 3.7 Mg ha-1 yr-1 when grown without a winter rye cover crop, respectively. Un-fertilized prairie biomass and maize stover had equivalent dietary conversion ratios at 330 g ethanol kg-1 dry biomass, but N-fertilized prairie was lower at 315. Over four years prairie systems averaged 1287 L cellulosic ethanol ha-1 yr-1 more than maize systems, with fertilization increasing prairie ethanol production by 865 L ha-1 yr-1. Harvested biomass accounted for >90% of ethanol yield variation. A major hurdle in carbon cycling studies is the separation of the soil-surface CO2 flux into its respective components. From 2012-2013 we used a shading method to separate soil-surface CO2 resulting from oxidation of soil organic matter and CO2 derived from live-root activity in three systems: unfertilized prairie, N-fertilized prairie, and continuous maize

  1. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.

    Science.gov (United States)

    Ndikubwimana, Theoneste; Chang, Jingyu; Xiao, Zongyuan; Shao, Wenyao; Zeng, Xianhai; Ng, I-Son; Lu, Yinghua

    2016-03-01

    Microalgal biomass as renewable energy source is believed to be of great potential for reliable and sustainable biofuels production. However, microalgal biomass production is pinned by harvesting and dewatering stage thus hindering the developing and growing microalgae biotechnology industries. Flotation technology applied in mineral industry could be potentially applied in microalgae harvesting and dewatering, however substantial knowledge on different flotation units is essential. This paper presents an overview on different flotation units as promising cost-effective technologies for microalgae harvesting thus bestowing for further research in development and commercialization of microalgae based biofuels. Dispersed air flotation was found to be less energy consuming. Moreover, Jameson cell flotation and dispersed ozone flotation are believed to be energy efficient microalgae flotation approaches. Microalgae harvesting and dewatering by flotation is still at embryonic stage, therefore extended studies with the focus on life cycle assessment, sustainability of the flotation unit, optimization of the operating parameters using different algal species is imperative. Though there are a number of challenges in microalgae harvesting and dewatering, with well designed and developed cultivation, harvesting/dewatering, extraction and conversion technologies, progressively, microalgae technology will be of great potential for biological carbon sequestration, biofuels and biochemicals production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Surface tension and wetting properties of rapeseed oil to biofuel conversion by-products

    Science.gov (United States)

    Muszyński, Siemowit; Sujak, Agnieszka; Stępniewski, Andrzej; Kornarzyński, Krzysztof; Ejtel, Marta; Kowal, Natalia; Tomczyk-Warunek, Agnieszka; Szcześniak, Emil; Tomczyńska-Mleko, Marta; Mleko, Stanisław

    2018-04-01

    This work presents a study on the surface tension, density and wetting behaviour of distilled glycerol, technical grade glycerol and the matter organic non-glycerin fraction. The research was conducted to expand the knowledge about the physical properties of wastes from the rapeseed oil biofuel production. The results show that the densities of technical grade glycerol (1.300 g cm-3) and distilled glycerol (1.267 g cm-3) did not differ and were significantly lower than the density of the matter organic non-glycerin fraction (1.579 g cm-3). Furthermore, the surface tension of distilled glycerol (49.6 mN m-1) was significantly higher than the matter organic non-glycerin fraction (32.7 mN m-1) and technical grade glycerol (29.5 mN m-1). As a result, both technical grade glycerol and the matter organic non-glycerin fraction had lower contact angles than distilled glycerol. The examined physical properties of distilled glycerol were found to be very close to that of the commercially available pure glycerol. The results suggest that technical grade glycerol may have potential application in the production of glycerol/fuel blends or biosurfactants. The presented results indicate that surface tension measurements are more useful when examining the quality of biofuel wastes than is density determination, as they allow for a more accurate analysis of the effects of impurities on the physical properties of the biofuel by-products.

  3. Environmental assessment of mild bisulfite pretreatment of forest residues into fermentable sugars for biofuel production.

    Science.gov (United States)

    Nwaneshiudu, Ikechukwu C; Ganguly, Indroneil; Pierobon, Francesca; Bowers, Tait; Eastin, Ivan

    2016-01-01

    Sugar production via pretreatment and enzymatic hydrolysis of cellulosic feedstock, in this case softwood harvest residues, is a critical step in the biochemical conversion pathway towards drop-in biofuels. Mild bisulfite (MBS) pretreatment is an emerging option for the breakdown and subsequent processing of biomass towards fermentable sugars. An environmental assessment of this process is critical to discern its future sustainability in the ever-changing biofuels landscape. The subsequent cradle-to-gate assessment of a proposed sugar production facility analyzes sugar made from woody biomass using MBS pretreatment across all seven impact categories (functional unit 1 kg dry mass sugar), with a specific focus on potential global warming and eutrophication impacts. The study found that the eutrophication impact (0.000201 kg N equivalent) is less than the impacts from conventional beet and cane sugars, while the global warming impact (0.353 kg CO2 equivalent) falls within the range of conventional processes. This work discusses some of the environmental impacts of designing and operating a sugar production facility that uses MBS as a method of treating cellulosic forest residuals. The impacts of each unit process in the proposed facility are highlighted. A comparison to other sugar-making process is detailed and will inform the growing biofuels literature.

  4. Analyzing key constraints to biogas production from crop residues and manure in the EU—A spatially explicit model

    Science.gov (United States)

    Persson, U. Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates’ biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures’ carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent). PMID:28141827

  5. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.

    Science.gov (United States)

    Einarsson, Rasmus; Persson, U Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates' biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures' carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent).

  6. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.

    Directory of Open Access Journals (Sweden)

    Rasmus Einarsson

    Full Text Available This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates' biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures' carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops, or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent.

  7. Production of quality/certified seed of fodder-crops

    International Nuclear Information System (INIS)

    Bhutta, A.R.; Hussain, A.

    2006-01-01

    Although, Pakistan has well developed Seed-production and certification Programme for major crops, but seed programme for fodder-crops is still not well organized. Availability of local certified seed, remained 250-350 mt for Berseem, Sorghum, maize, barley and oat. About 5000 to 9000 mt of seed has being imported during 2003-04 to 2005-06. Fodder Research Institute and jullundhur Seed Corporation have demonstrated a model of public/private partnership for initiation of certified seed of a few fodder crops. To produce quality seeds of fodder crops, various steps, procedures and prescribed standards have been given, which will help in production of quality seed of fodder crops in Pakistan. (author)

  8. Sustainable Process Design of Biofuels: Bioethanol Production from Cassava rhizome

    DEFF Research Database (Denmark)

    Mangnimit, S.; Malakul, P.; Gani, Rafiqul

    2013-01-01

    This study is focused on the sustainable process design of bioethanol production from cassava rhizome. The study includes: process simulation, sustainability analysis, economic evaluation and life cycle assessment (LCA). A steady state process simulation if performed to generate a base case design........ Also, simultaneously with sustainability analysis, the life cycle impact on environment associated with bioethanol production is performed. Finally, candidate alternative designs are generated and compared with the base case design in terms of LCA, economics, waste, energy usage and enviromental impact...... in order to identify the most sustainable design for the production of ethanol. The capacity for ethanol production from cassava rhizome is set to 150,000 liters/day, which is about 1.3 % of the total demand of ethanol in Thailand. LCA on the base case design pointed to large amounts of CO2 and CO...

  9. New nanomaterial and process for the production of biofuel from ...

    African Journals Online (AJOL)

    USER

    2010-04-19

    Apr 19, 2010 ... Available online at http://www.academicjournals.org/AJB. ISSN 1684–5315 .... achieved with catalysts prepared by other methods. An example of ... Production and characterization of Co and Ni nano particles. The cobalt ...

  10. Crop and livestock enterprise integration: Effects of annual crops used for fall forage production on livestock productivity

    Science.gov (United States)

    Diversification of farm enterprises is important to maintain sustainable production systems. Systems that integrate crops and livestock may prove beneficial to each enterprise. Our objectives were to determine the effects of annual crops grazed in the fall and early-winter period on cow and calf gro...

  11. Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production.

    Science.gov (United States)

    Peris, David; Moriarty, Ryan V; Alexander, William G; Baker, EmilyClare; Sylvester, Kayla; Sardi, Maria; Langdon, Quinn K; Libkind, Diego; Wang, Qi-Ming; Bai, Feng-Yan; Leducq, Jean-Baptiste; Charron, Guillaume; Landry, Christian R; Sampaio, José Paulo; Gonçalves, Paula; Hyma, Katie E; Fay, Justin C; Sato, Trey K; Hittinger, Chris Todd

    2017-01-01

    Lignocellulosic biomass is a common resource across the globe, and its fermentation offers a promising option for generating renewable liquid transportation fuels. The deconstruction of lignocellulosic biomass releases sugars that can be fermented by microbes, but these processes also produce fermentation inhibitors, such as aromatic acids and aldehydes. Several research projects have investigated lignocellulosic biomass fermentation by the baker's yeast Saccharomyces cerevisiae . Most projects have taken synthetic biological approaches or have explored naturally occurring diversity in S. cerevisiae to enhance stress tolerance, xylose consumption, or ethanol production. Despite these efforts, improved strains with new properties are needed. In other industrial processes, such as wine and beer fermentation, interspecies hybrids have combined important traits from multiple species, suggesting that interspecies hybridization may also offer potential for biofuel research. To investigate the efficacy of this approach for traits relevant to lignocellulosic biofuel production, we generated synthetic hybrids by crossing engineered xylose-fermenting strains of S. cerevisiae with wild strains from various Saccharomyces species. These interspecies hybrids retained important parental traits, such as xylose consumption and stress tolerance, while displaying intermediate kinetic parameters and, in some cases, heterosis (hybrid vigor). Next, we exposed them to adaptive evolution in ammonia fiber expansion-pretreated corn stover hydrolysate and recovered strains with improved fermentative traits. Genome sequencing showed that the genomes of these evolved synthetic hybrids underwent rearrangements, duplications, and deletions. To determine whether the genus Saccharomyces contains additional untapped potential, we screened a genetically diverse collection of more than 500 wild, non-engineered Saccharomyces isolates and uncovered a wide range of capabilities for traits relevant to

  12. Water footprint of crop production for different crop structures in the Hebei southern plain, North China

    Science.gov (United States)

    Chu, Yingmin; Shen, Yanjun; Yuan, Zaijian

    2017-06-01

    The North China Plain (NCP) has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP) was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF) of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1) the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI) of cotton was the largest, and for vegetables, it was the smallest; (2) the total WF, WFblue, WFgreen and WFgrey for 13 years (2000-2012) of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3) winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue) accounted for 74.2 % of the total WFblue in the HSP; (4) the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat-summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.

  13. Water footprint of crop production for different crop structures in the Hebei southern plain, North China

    Directory of Open Access Journals (Sweden)

    Y. Chu

    2017-06-01

    Full Text Available The North China Plain (NCP has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1 the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI of cotton was the largest, and for vegetables, it was the smallest; (2 the total WF, WFblue, WFgreen and WFgrey for 13 years (2000–2012 of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3 winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue accounted for 74.2 % of the total WFblue in the HSP; (4 the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat–summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.

  14. Effects of temporal changes in climate variables on crop production ...

    African Journals Online (AJOL)

    Administrator

    comprehensive study of the impacts of climate variability on some common classes of food crops. (tubers, grains ... erosion, incidents of pests and diseases, and sea level rise (Onyekwelu et .... calamities and human sufferings. The productivity ...

  15. Changes in the Diversity of Soil Arbuscular Mycorrhizal Fungi after Cultivation for Biofuel Production in a Guantanamo (Cuba) Tropical System

    Science.gov (United States)

    Alguacil, Maria del Mar; Torrecillas, Emma; Hernández, Guillermina; Roldán, Antonio

    2012-01-01

    The arbuscular mycorrhizal fungi (AMF) are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a native vegetation soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba), in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity) were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU) rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices-G. fasciculatum-G. irregulare) did not occur in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C) were higher in the soil cultivated with the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the native vegetation soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable for the long-term conservation and sustainable management of these tropical ecosytems. PMID:22536339

  16. Changes in the diversity of soil arbuscular mycorrhizal fungi after cultivation for biofuel production in a Guantanamo (Cuba tropical system.

    Directory of Open Access Journals (Sweden)

    Maria del Mar Alguacil

    Full Text Available The arbuscular mycorrhizal fungi (AMF are a key, integral component of the stability, sustainability and functioning of ecosystems. In this study, we characterised the AMF biodiversity in a native vegetation soil and in a soil cultivated with Jatropha curcas or Ricinus communis, in a tropical system in Guantanamo (Cuba, in order to verify if a change of land use to biofuel plant production had any effect on the AMF communities. We also asses whether some soil properties related with the soil fertility (total N, Organic C, microbial biomass C, aggregate stability percentage, pH and electrical conductivity were changed with the cultivation of both crop species. The AM fungal small sub-unit (SSU rRNA genes were subjected to PCR, cloning, sequencing and phylogenetic analyses. Twenty AM fungal sequence types were identified: 19 belong to the Glomeraceae and one to the Paraglomeraceae. Two AMF sequence types related to cultured AMF species (Glo G3 for Glomus sinuosum and Glo G6 for Glomus intraradices-G. fasciculatum-G. irregulare did not occur in the soil cultivated with J. curcas and R. communis. The soil properties (total N, Organic C and microbial biomass C were higher in the soil cultivated with the two plant species. The diversity of the AMF community decreased in the soil of both crops, with respect to the native vegetation soil, and varied significantly depending on the crop species planted. Thus, R. communis soil showed higher AMF diversity than J. curcas soil. In conclusion, R. communis could be more suitable for the long-term conservation and sustainable management of these tropical ecosytems.

  17. Biofuel technologies. Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vijai Kumar [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry; MITS Univ., Rajasthan (India). Dept. of Science; Tuohy, Maria G. (eds.) [National Univ. of Ireland Galway (Ireland). Dept. of Biochemistry

    2013-02-01

    Written by experts. Richly illustrated. Of interest to both experienced researchers and beginners in the field. Biofuels are considered to be the main potential replacement for fossil fuels in the near future. In this book international experts present recent advances in biofuel research and related technologies. Topics include biomethane and biobutanol production, microbial fuel cells, feedstock production, biomass pre-treatment, enzyme hydrolysis, genetic manipulation of microbial cells and their application in the biofuels industry, bioreactor systems, and economical processing technologies for biofuel residues. The chapters provide concise information to help understand the technology-related implications of biofuels development. Moreover, recent updates on biofuel feedstocks, biofuel types, associated co- and byproducts and their applications are highlighted. The book addresses the needs of postgraduate researchers and scientists across diverse disciplines and industrial sectors in which biofuel technologies and related research and experimentation are pursued.

  18. Renewable energy technologies: enlargement of biofuels list and co-products from microalgae

    Directory of Open Access Journals (Sweden)

    Chernova Nadezhda I.

    2017-01-01

    Full Text Available Microalgae is a perspective feedstock for producing a wide variety of biofuels and co-products with high added value. An alternative to the traditional technology of biodiesel from algae by the transesterification is the technology of hydrothermal liquefaction (HTL. The article presents the results of promising strains screening and directed cultivation of microalgae for the processing by means of variety of technologies and production of valuable co-products. An algorithm for selecting suitable areas for industrial plantations of algae is presented.

  19. Computer modelling of the influences of a subsystems’ interaction on energetic efficiency of biofuel production systems

    Directory of Open Access Journals (Sweden)

    Wasiak Andrzej

    2017-01-01

    Full Text Available Energetic efficiency of biofuel production systems, as well as that of other fuels production systems, can be evaluated on the basis of modified EROEI indicator. In earlier papers, a new definition of the EROEI indicator was introduced. This approach enables the determination of this indicator separately for individual subsystems of a chosen production system, and therefore enables the studies of the influence of every subsystem on the energetic efficiency of the system as a whole. The method has been applied to the analysis of interactions between agricultural, internal transport subsystems, as well as preliminary studies of the effect of industrial subsystem.

  20. The potential for energy production from crop residues in Zimbabwe

    Energy Technology Data Exchange (ETDEWEB)

    Jingura, R.M.; Matengaifa, R. [School of Engineering Sciences and Technology, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi (Zimbabwe)

    2008-12-15

    There is increasing interest in Zimbabwe in the use of renewable energy sources as a means of meeting the country's energy requirements. Biomass provides 47% of the gross energy consumption in Zimbabwe. Energy can be derived from various forms of biomass using various available conversion technologies. Crop residues constitute a large part of the biomass available from the country's agriculture-based economy. The potential for energy production of crop residues is examined using data such as estimates of the quantities of the residues and their energy content. The major crops considered are maize, sugarcane, cotton, soyabeans, groundnuts, wheat, sorghum, fruits and forestry plantations. Quantities of residues are estimated from crop yields by using conversion coefficients for the various crops. Long-term crop yields data from 1970 to 1999 were used. Total annual residue yields for crops, fruits and forestry plantations are 7.805 Mt, 378 kt and 3.05 Mt, respectively. The crops, fruits and forestry residues have energy potential of 81.5, 4.9 and 44.3 PJ per year, respectively. This represents about 44% of the gross energy consumption in Zimbabwe. The need to balance use of crop residues for both energy purposes and other purposes such as animal feeding and soil fertility improvement is also highlighted. (author)

  1. Prospects for the Production of Liquid Biofuels in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Zhelyezna, T.; Geletukha, G. [SEC ' Biomass' , Kiev (Ukraine)

    2006-07-15

    Ukraine is highly dependent on imported energy carriers. Prices of motor fuels permanently trend to rising. On the other hand, Ukraine has all necessary preconditions to start wide production of motor fuels from biomass for internal usage and export abroad. Ukrainian specialists have developed effective technology for production of high-octane oxygen containing admixture to petrol, which is the local analogue of bio-ethanol. For dewatering ethyl alcohol they use azeotropic distillation and adsorption on molecular sieves (zeolites). The technology is implemented at a number of distilleries of Ukraine. Besides, a few enterprises are about to start commercial production of bio-diesel in the country. The main barriers here are absence of clear state policy on the matter, lack of state support and sometimes still old way of thinking.

  2. Meeting the Demand for Biofuels: Impact on Land Use and Carbon Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Madhu; Jain, Atul; Onal, Hayri; Scheffran, Jurgen; Chen, Xiaoguang; Erickson, Matt; Huang, Haixiao; Kang, Seungmo.

    2011-08-14

    The purpose of this research was to develop an integrated, interdisciplinary framework to investigate the implications of large scale production of biofuels for land use, crop production, farm income and greenhouse gases. In particular, we examine the mix of feedstocks that would be viable for biofuel production and the spatial allocation of land required for producing these feedstocks at various gasoline and carbon emission prices as well as biofuel subsidy levels. The implication of interactions between energy policy that seeks energy independence from foreign oil and climate policy that seeks to mitigate greenhouse gas emissions for the optimal mix of biofuels and land use will also be investigated. This project contributes to the ELSI research goals of sustainable biofuel production while balancing competing demands for land and developing policy approaches needed to support biofuel production in a cost-effective and environmentally friendly manner.

  3. The competitiveness of biofuels in heat and power production

    International Nuclear Information System (INIS)

    Kosunen, P.; Leino, P.

    1995-01-01

    The paper showed that natural gas is the most competitive fuel in all the energy production alternatives under review, ie both in separate heat production and electricity generation and in combined heat and power production. Even though the heavy fuel oil taxes have grown more rapidly than taxes on domestic fuels, oil continues to be cheaper than solid fuels in heating and steam plants. According to the feasibility calculations made, combined heat and power production is the least-cost production form of electricity, and the larger the plant unit, the lower the cost. Looking to the future, in respect of merely the development in fuel taxes the competitiveness of domestic fuels will improve markedly if the taxation structure remains unchanged. It seems that at smaller points of consumption, such as heating and steam plants and small-scale power plants, fuel chips would be the most competitive fuel. In larger units, such as heat and power production plants and condensing power plants, fuel peat, primarily milled peat, would be the most competitive. The competitiveness of fuel chips at larger plants will probably be limited by the supply of sufficient volumes from such an area where the delivery costs would not raise the price of fuel chips too high. Coal would remain competitive only if the real import price of coal rose clearly more slowly than the real prices of domestic fuels. It seems that heavy fuel oil will be used only as a start-up, support and back-up fuel. Evaluating the future competitiveness of natural gas is difficult, since the impact of new pipeline investments on the price of natural gas is not known

  4. Impact of biofuel in agglomeration process on production of pollutants

    Directory of Open Access Journals (Sweden)

    Lesko Jaroslav

    2017-01-01

    Full Text Available Production of agglomerate in the metallurgical company belongs among the largest sources of emissions damaging the environment. Effects of coke breeze substitution by charcoal, pine, and oak sawdust there were sintering performed in a laboratory agglomeration pan with substitution ratios of 14 % and 20 % by the emissions of CO2, CO, NOx and NO. Variations in the gas emissions might have been affected by physical and chemical properties of the input materials and the technological parameters of agglomeration. It is important and necessary to seek other methods and materials with which it would be possible to optimize the production of emissions and protect the environment.

  5. Making biofuels sustainable

    International Nuclear Information System (INIS)

    Gallagher, Ed

    2008-01-01

    . Previous land use is also recorded. The indirect effects of biofuel production - such as land displacement - have recently been examined by a review commissioned by the U.K. Government and carried out by the Renewable Fuels Agency. It confirmed the concerns, and work is now under way to measure the indirect effects and incorporate them in reporting and analysis. It concluded that we need to be more cautious and discriminating in our use of biofuels and called for a slowing of targets until, in particular, the indirect efforts could be monitored and evaluated properly. But it also saw a way forward for a sustainable biofuels industry. If this is to happen, biofuels should use the right feedstocks, be grown on the right land and use the least energy intensive production processes. Thus, ethanol derived from sugar cane, grown on land not needed for food production, farmed with an efficient use of fertilisers and produced using bagasse (sugar cane waste) as a source of energy, would be a sustainable biofuel. However, ethanol derived from maize using highly intensive farming processes, grown on land needed for food, and using energy from coal-fired power stations, would be an unsustainable one. The Review recommended that biofuel production should be concentrated on idle agricultural land - areas that have been previously farmed but which would remain uncultivated if not used in this way - and on marginal areas which are unproductive when used for food crops or livestock. It also recommended increasing the use of wastes and residues for feedstocks and creating incentives for second generation biofuels using new technologies, such as cellulosic ethanol from woody plants or biodiesel from algae. The Review also concluded that, left to itself, the market was unlikely to develop in a sustainable way, and so recommended more research into both indirect and direct effects and introducing internationally agreed mandatory sustainability standards. These should be accompanied by full

  6. Broadband Microwave Study of Reaction Intermediates and Products Through the Pyrolysis of Oxygenated Biofuels

    Science.gov (United States)

    Abeysekera, Chamara; Hernandez-Castillo, Alicia O.; Fritz, Sean; Zwier, Timothy S.

    2017-06-01

    The rapidly growing list of potential plant-derived biofuels creates a challenge for the scientific community to provide a molecular-scale understanding of their combustion. Development of accurate combustion models rests on a foundation of experimental data on the kinetics and product branching ratios of their individual reaction steps. Therefore, new spectroscopic tools are necessary to selectively detect and characterize fuel components and reactive intermediates generated by pyrolysis and combustion. Substituted furans, including furanic ethers, are considered second-generation biofuel candidates. Following the work of the Ellison group, an 8-18 GHz microwave study was carried out on the unimolecular and bimolecular decomposition of the smallest furanic ether, 2-methoxy furan, and it`s pyrolysis intermediate, the 2-furanyloxy radical, formed in a high-temperature pyrolysis source coupled to a supersonic expansion. Details of the experimental setup and analysis of the spectrum of the radical will be discussed.

  7. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction.

    Science.gov (United States)

    López Barreiro, Diego; Samorì, Chiara; Terranella, Giuseppe; Hornung, Ursel; Kruse, Andrea; Prins, Wolter

    2014-12-01

    The interest in third generation biofuels from microalgae has been rising during the past years. Meanwhile, it seems not economically feasible to grow algae just for biofuels. Co-products with a higher value should be produced by extracting a particular algae fraction to improve the economics of an algae biorefinery. The present study aims at analyzing the influence of two main microalgae components (lipids and proteins) on the composition and quantity of biocrude oil obtained via hydrothermal liquefaction of two strains (Nannochloropsis gaditana and Scenedesmus almeriensis). The algae were liquefied as raw biomass, after extracting lipids and after extracting proteins in microautoclave experiments at different temperatures (300-375°C) for 5 and 15min. The results indicate that extracting the proteins from the microalgae prior to HTL may be interesting to improve the economics of the process while at the same time reducing the nitrogen content of the biocrude oil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Biofuels in West Africa: prospective analysis of substitution for petroleum products

    International Nuclear Information System (INIS)

    Tonato, A.

    1993-01-01

    Is it viable and realistic to believe that biofuels can relieve the energy bill for certain countries in West Africa, restimulate whole areas often cut off from the development process, and diversify the outlets of the agricultural sector, hard struck as it is by the price drop in raw materials. The answer here is drawn from a micro-economic analysis of Benin, Burkina Faso, the Ivory Coast, and Niger, concerning the competitiveness of the three main products considered: - ethanol, produced from cane sugar; - methanol, obtained from eucalyptus by cryogenic oxygen gasification process; methyl ester, from palm oil. The result of this study is a forecast, for the year 2010, of conditions under which methyl alcohols and ester might be substituted for refined gasoline and fuel oil, and a hierarchical classification of the various biofuels in West Africa. (author). 15 refs., 8 tabs

  9. Corrosion in systems for storage and transportation of petroleum products and biofuels identification, monitoring and solutions

    CERN Document Server

    Groysman, Alec

    2014-01-01

    This book treats corrosion as it occurs and affects processes in real-world situations, and thus points the way to practical solutions. Topics described include the conditions in which petroleum products are corrosive to metals; corrosion mechanisms of petroleum products; which parts of storage tanks containing crude oils and petroleum products undergo corrosion; dependence of corrosion in tanks on type of petroleum products; aggressiveness of petroleum products to polymeric material; how microorganisms take part in corrosion of tanks and pipes containing petroleum products; which corrosion monitoring methods are used in systems for storage and transportation of petroleum products; what corrosion control measures should be chosen; how to choose coatings for inner and outer surfaces of tanks containing petroleum products; and how different additives (oxygenates, aromatic solvents) to petroleum products and biofuels influence metallic and polymeric materials. The book is of interest to corrosion engineers, mat...

  10. Bioprospecting of functional cellulases from metagenome for second generation biofuel production: a review.

    Science.gov (United States)

    Tiwari, Rameshwar; Nain, Lata; Labrou, Nikolaos E; Shukla, Pratyoosh

    2018-03-01

    Second generation biofuel production has been appeared as a sustainable and alternative energy option. The ultimate aim is the development of an industrially feasible and economic conversion process of lignocellulosic biomass into biofuel molecules. Since, cellulose is the most abundant biopolymer and also represented as the photosynthetically fixed form of carbon, the efficient hydrolysis of cellulose is the most important step towards the development of a sustainable biofuel production process. The enzymatic hydrolysis of cellulose by suites of hydrolytic enzymes underlines the importance of cellulase enzyme system in whole hydrolysis process. However, the selection of the suitable cellulolytic enzymes with enhanced activities remains a challenge for the biorefinery industry to obtain efficient enzymatic hydrolysis of biomass. The present review focuses on deciphering the novel and effective cellulases from different environmental niches by unculturable metagenomic approaches. Furthermore, a comprehensive functional aspect of cellulases is also presented and evaluated by assessing the structural and catalytic properties as well as sequence identities and expression patterns. This review summarizes the recent development in metagenomics based approaches for identifying and exploring novel cellulases which open new avenues for their successful application in biorefineries.

  11. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077.

    Science.gov (United States)

    Pancha, Imran; Chokshi, Kaumeel; Maurya, Rahulkumar; Trivedi, Khanjan; Patidar, Shailesh Kumar; Ghosh, Arup; Mishra, Sandhya

    2015-01-01

    Microalgal biomass is considered as potential feedstock for biofuel production. Enhancement of biomass, lipid and carbohydrate contents in microalgae is important for the commercialization of microalgal biofuels. In the present study, salinity stress induced physiological and biochemical changes in microalgae Scenedesmus sp. CCNM 1077 were studied. During single stage cultivation, 33.13% lipid and 35.91% carbohydrate content was found in 400 mM NaCl grown culture. During two stage cultivation, salinity stress of 400 mM for 3 days resulted in 24.77% lipid (containing 74.87% neutral lipid) along with higher biomass compared to single stage, making it an efficient strategy to enhance biofuel production pot